python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Norm-Free Residual Networks.""" # pylint: disable=invalid-name import haiku as hk import jax import jax.numpy as jnp from nfnets import base class NF_ResNet(hk.Module): """Norm-Free preactivation ResNet.""" variant_dict = {'ResNet50': {'depth': [3, 4, 6, 3]}, 'ResNet101': {'depth': [3, 4, 23, 3]}, 'ResNet152': {'depth': [3, 8, 36, 3]}, 'ResNet200': {'depth': [3, 24, 36, 3]}, 'ResNet288': {'depth': [24, 24, 24, 24]}, 'ResNet600': {'depth': [50, 50, 50, 50]}, } def __init__(self, num_classes, variant='ResNet50', width=4, alpha=0.2, stochdepth_rate=0.1, drop_rate=None, activation='relu', fc_init=None, skipinit_gain=jnp.zeros, use_se=False, se_ratio=0.25, name='NF_ResNet'): super().__init__(name=name) self.num_classes = num_classes self.variant = variant self.width = width # Get variant info block_params = self.variant_dict[self.variant] self.width_pattern = [item * self.width for item in [64, 128, 256, 512]] self.depth_pattern = block_params['depth'] self.activation = base.nonlinearities[activation] if drop_rate is None: self.drop_rate = block_params['drop_rate'] else: self.drop_rate = drop_rate self.which_conv = base.WSConv2D # Stem ch = int(16 * self.width) self.initial_conv = self.which_conv(ch, kernel_shape=7, stride=2, padding='SAME', with_bias=False, name='initial_conv') # Body self.blocks = [] expected_std = 1.0 num_blocks = sum(self.depth_pattern) index = 0 # Overall block index block_args = (self.width_pattern, self.depth_pattern, [1, 2, 2, 2]) for block_width, stage_depth, stride in zip(*block_args): for block_index in range(stage_depth): # Scalar pre-multiplier so each block sees an N(0,1) input at init beta = 1./ expected_std # Block stochastic depth drop-rate block_stochdepth_rate = stochdepth_rate * index / num_blocks self.blocks += [NFResBlock(ch, block_width, stride=stride if block_index == 0 else 1, beta=beta, alpha=alpha, activation=self.activation, which_conv=self.which_conv, stochdepth_rate=block_stochdepth_rate, skipinit_gain=skipinit_gain, use_se=use_se, se_ratio=se_ratio, )] ch = block_width index += 1 # Reset expected std but still give it 1 block of growth if block_index == 0: expected_std = 1.0 expected_std = (expected_std **2 + alpha**2)**0.5 # Head. By default, initialize with N(0, 0.01) if fc_init is None: fc_init = hk.initializers.RandomNormal(0.01, 0) self.fc = hk.Linear(self.num_classes, w_init=fc_init, with_bias=True) def __call__(self, x, is_training=True, return_metrics=False): """Return the output of the final layer without any [log-]softmax.""" # Stem outputs = {} out = self.initial_conv(x) out = hk.max_pool(out, window_shape=(1, 3, 3, 1), strides=(1, 2, 2, 1), padding='SAME') if return_metrics: outputs.update(base.signal_metrics(out, 0)) # Blocks for i, block in enumerate(self.blocks): out, res_avg_var = block(out, is_training=is_training) if return_metrics: outputs.update(base.signal_metrics(out, i + 1)) outputs[f'res_avg_var_{i}'] = res_avg_var # Final-conv->activation, pool, dropout, classify pool = jnp.mean(self.activation(out), [1, 2]) outputs['pool'] = pool # Optionally apply dropout if self.drop_rate > 0.0 and is_training: pool = hk.dropout(hk.next_rng_key(), self.drop_rate, pool) outputs['logits'] = self.fc(pool) return outputs def count_flops(self, h, w): flops = [] flops += [base.count_conv_flops(3, self.initial_conv, h, w)] h, w = h / 2, w / 2 # Body FLOPs for block in self.blocks: flops += [block.count_flops(h, w)] if block.stride > 1: h, w = h / block.stride, w / block.stride # Count flops for classifier flops += [self.blocks[-1].out_ch * self.fc.output_size] return flops, sum(flops) class NFResBlock(hk.Module): """Normalizer-Free pre-activation ResNet Block.""" def __init__(self, in_ch, out_ch, bottleneck_ratio=0.25, kernel_size=3, stride=1, beta=1.0, alpha=0.2, which_conv=base.WSConv2D, activation=jax.nn.relu, skipinit_gain=jnp.zeros, stochdepth_rate=None, use_se=False, se_ratio=0.25, name=None): super().__init__(name=name) self.in_ch, self.out_ch = in_ch, out_ch self.kernel_size = kernel_size self.activation = activation self.beta, self.alpha = beta, alpha self.skipinit_gain = skipinit_gain self.use_se, self.se_ratio = use_se, se_ratio # Bottleneck width self.width = int(self.out_ch * bottleneck_ratio) self.stride = stride # Conv 0 (typically expansion conv) self.conv0 = which_conv(self.width, kernel_shape=1, padding='SAME', name='conv0') # Grouped NxN conv self.conv1 = which_conv(self.width, kernel_shape=kernel_size, stride=stride, padding='SAME', name='conv1') # Conv 2, typically projection conv self.conv2 = which_conv(self.out_ch, kernel_shape=1, padding='SAME', name='conv2') # Use shortcut conv on channel change or downsample. self.use_projection = stride > 1 or self.in_ch != self.out_ch if self.use_projection: self.conv_shortcut = which_conv(self.out_ch, kernel_shape=1, stride=stride, padding='SAME', name='conv_shortcut') # Are we using stochastic depth? self._has_stochdepth = (stochdepth_rate is not None and stochdepth_rate > 0. and stochdepth_rate < 1.0) if self._has_stochdepth: self.stoch_depth = base.StochDepth(stochdepth_rate) if self.use_se: self.se = base.SqueezeExcite(self.out_ch, self.out_ch, self.se_ratio) def __call__(self, x, is_training): out = self.activation(x) * self.beta shortcut = x if self.use_projection: # Downsample with conv1x1 shortcut = self.conv_shortcut(out) out = self.conv0(out) out = self.conv1(self.activation(out)) out = self.conv2(self.activation(out)) if self.use_se: out = 2 * self.se(out) * out # Get average residual standard deviation for reporting metrics. res_avg_var = jnp.mean(jnp.var(out, axis=[0, 1, 2])) # Apply stochdepth if applicable. if self._has_stochdepth: out = self.stoch_depth(out, is_training) # SkipInit Gain out = out * hk.get_parameter('skip_gain', (), out.dtype, init=self.skipinit_gain) return out * self.alpha + shortcut, res_avg_var def count_flops(self, h, w): # Count conv FLOPs based on input HW expand_flops = base.count_conv_flops(self.in_ch, self.conv0, h, w) # If block is strided we decrease resolution here. dw_flops = base.count_conv_flops(self.width, self.conv1, h, w) if self.stride > 1: h, w = h / self.stride, w / self.stride if self.use_projection: sc_flops = base.count_conv_flops(self.in_ch, self.conv_shortcut, h, w) else: sc_flops = 0 # SE flops happen on avg-pooled activations se_flops = self.se.fc0.output_size * self.width se_flops += self.se.fc0.output_size * self.se.fc1.output_size contract_flops = base.count_conv_flops(self.width, self.conv2, h, w) return sum([expand_flops, dw_flops, se_flops, contract_flops, sc_flops])
deepmind-research-master
nfnets/nf_resnet.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Optimizers and Schedulers, inspired by the PyTorch API.""" from collections import ChainMap # pylint:disable=g-importing-member from typing import Callable, Mapping import haiku as hk import jax import jax.numpy as jnp import tree from nfnets import utils class Optimizer(object): """Optimizer base class.""" def __init__(self, params, defaults): # Flag indicating if parameters have been broadcasted self._broadcasted = False # Optimizer hyperparameters; this is a dict to support using param_groups self._hyperparameters = {} # Mapping from model parameters to optimizer hyperparameters self._params2hyperparams = {} # Assign defaults self._hyperparameters = dict(**defaults) # Prepare parameter groups and mappings self.create_param_groups(params, defaults) # Join params at top-level if params is a list of groups if isinstance(params, list): if any(_is_non_empty_two_level_mapping(g['params']) for g in params): params = hk.data_structures.merge(*[g['params'] for g in params]) else: params = dict(ChainMap(*[g['params'] for g in params])) # Prepare states create_buffers = lambda k, v: self.create_buffers('/'.join(k), v) self._states = tree.map_structure_with_path(create_buffers, params) def add_hyperparam_group(self, group, suffix, defaults): """Adds new hyperparameters to the hyperparams dict.""" # Use default hyperparams unless overridden by group hyperparams group_dict = {key: key for key in defaults if key not in group} for key in group: if key != 'params': # Reserved keyword 'params' group_dict[key] = '%s_%s' % (key, suffix) self._hyperparameters[group_dict[key]] = group[key] # Set up params2hyperparams def set_p2h(k, _): self._params2hyperparams['/'.join(k)] = group_dict tree.map_structure_with_path(set_p2h, group['params']) def create_param_groups(self, params, defaults): """Creates param-hyperparam mappings.""" if isinstance(params, list): for group_index, group in enumerate(params): # Add group to hyperparams and get this group's full hyperparameters self.add_hyperparam_group(group, group_index, defaults) else: mapping = {key: key for key in self._hyperparameters} def set_p2h(k, _): self._params2hyperparams['/'.join(k)] = mapping tree.map_structure_with_path(set_p2h, params) def create_buffers(self, name, params): """Method to be overridden by child classes.""" pass def get_opt_params(self, param_name, itr): """Returns hyperparams corresponding to param_name.""" mapping = self._params2hyperparams[param_name] output = {} for key in mapping: hyper = self._hyperparameters[mapping[key]] # Handle the case where a hyper is a class, for hybrids if isinstance(hyper, Callable) and not isinstance(hyper, type): output[key] = hyper(itr) else: output[key] = hyper return output def get_hyper(self, param_name, hyper_name): """Get an individual hyperparam for a given param.""" mapping = self._params2hyperparams[param_name] return self._hyperparameters[mapping[hyper_name]] def plugin(self, states): self._states = states def states(self): return self._states def broadcast(self): """Brodcasts all buffers and parameters.""" self._broadcasted = True for name, state in self._states.items(): self._states[name] = {key: utils.broadcast(state[key]) for key in state} def gather(self): """Gathers state (if broadcasted) for saving.""" states = {} for name in self._states: state = self._states[name] states[name] = {key: state[key] if state[key] is None else state[key][0] for key in state} return states def __setattr__(self, name, value): """Overrides the object's set-attribute function to register states, etc.""" if '_hyperparameters' in self.__dict__ and name in self._hyperparameters: self._hyperparameters[name] = value elif '_states' in self.__dict__ and name in self._states: self._states[name] = value else: object.__setattr__(self, name, value) def __getattr__(self, name): """Override the object's get-attribute function to return states, etc.""" if '_hyperparameters' in self.__dict__ and name in self._hyperparameters: return self._hyperparameters[name] elif '_states' in self.__dict__ and name in self._states: return self._states[name] else: object.__getattribute__(self, name) def step(self, params, grads, states, itr=None): """Takes a single optimizer step. Args: params: a dict containing the parameters to be updated. grads: a dict containing the gradients for each parameter in params. states: a dict containing any optimizer buffers (momentum, etc) for each parameter in params. itr: an optional integer indicating the current step, for scheduling. Returns: The updated params and optimizer buffers. """ get_hyper = lambda k, v: self.get_opt_params('/'.join(k), itr) hypers = tree.map_structure_with_path(get_hyper, params) outs = tree.map_structure_up_to(params, self.update_param, params, grads, states, hypers) return utils.split_tree(outs, params, 2) def _is_non_empty_two_level_mapping(obj): instof = lambda t: lambda v: isinstance(v, t) # Basically: isinstance(obj, Mapping[str, Mapping[str, Any]]) ... return (isinstance(obj, Mapping) and all(map(instof(str), obj.keys())) and all(map(instof(Mapping), obj.values())) and all(map(lambda v: all(map(instof(str), v.keys())), obj.values())) and # ... and has at least one leaf. bool(obj) and any(map(bool, obj.values()))) class Schedule(object): """Hyperparameter scheduling objects.""" class CosineDecay(Schedule): """Cosine decay.""" def __init__(self, min_val, max_val, num_steps): self.min_val = min_val self.max_val = max_val self.num_steps = num_steps def __call__(self, itr): cos = (1 + jnp.cos(jnp.pi * itr / self.num_steps)) return 0.5 * (self.max_val - self.min_val) * cos + self.min_val class WarmupCosineDecay(Schedule): """Cosine decay with linear warmup.""" def __init__(self, start_val, min_val, max_val, num_steps, warmup_steps): self.start_val = start_val self.min_val = min_val self.max_val = max_val self.num_steps = num_steps self.warmup_steps = warmup_steps def __call__(self, itr): warmup_val = ((self.max_val - self.start_val) * (itr / self.warmup_steps) + self.start_val) cos_itr = (itr - self.warmup_steps) / (self.num_steps - self.warmup_steps) cos = 1 + jnp.cos(jnp.pi * cos_itr) cos_val = 0.5 * (self.max_val - self.min_val) * cos + self.min_val # Select warmup_val if itr < warmup, else cosine val values = jnp.array([warmup_val, cos_val]) index = jnp.sum(jnp.array(self.warmup_steps) < itr) return jnp.take(values, index) class WarmupExpDecay(Schedule): """Exponential step decay with linear warmup.""" def __init__(self, start_val, max_val, warmup_steps, decay_factor, decay_interval): self.start_val = start_val self.max_val = max_val self.warmup_steps = warmup_steps self.decay_factor = decay_factor self.decay_interval = decay_interval def __call__(self, itr): warmup_val = ((self.max_val - self.start_val) * (itr / self.warmup_steps) + self.start_val) # How many decay steps have we taken? num_decays = jnp.floor((itr - self.warmup_steps) / self.decay_interval) exp_val = self.max_val * (self.decay_factor ** num_decays) # Select warmup_val if itr < warmup, else exp_val values = jnp.array([warmup_val, exp_val]) index = jnp.sum(jnp.array(self.warmup_steps) < itr) return jnp.take(values, index) class SGD(Optimizer): """Standard SGD with (nesterov) momentum and weight decay. Attributes: params: Either a dict mapping param names to JAX tensors, or a list where each member of the list is a dict containing parameters and hyperparameters, allowing one to specify param-specific hyperparams. lr: Learning rate. weight_decay: Weight decay parameter. Note that this is decay, not L2 reg. momentum: Momentum parameter dampening: Dampening parameter nesterov: Bool indicating this optimizer will use the NAG formulation. """ defaults = {'weight_decay': None, 'momentum': None, 'dampening': 0, 'nesterov': None} def __init__(self, params, lr, weight_decay=None, momentum=None, dampening=0, nesterov=None): super().__init__( params, defaults={'lr': lr, 'weight_decay': weight_decay, 'momentum': momentum, 'dampening': dampening, 'nesterov': nesterov}) def create_buffers(self, name, param): """Prepares all momentum buffers for each parameter.""" state = {'step': jnp.zeros(jax.local_device_count())} if self.get_hyper(name, 'momentum') is not None: state['momentum'] = jnp.zeros_like(param) return state def update_param(self, param, grad, state, opt_params): """The actual update step for this optimizer.""" if param is None: return param, state # Apply weight decay if opt_params.get('weight_decay') is not None: grad = grad + param * opt_params['weight_decay'] # Update momentum buffers if needed if 'momentum' in state: state['momentum'] = (opt_params['momentum'] * state['momentum'] + (1 - opt_params['dampening']) * grad) if opt_params['nesterov'] is not None: grad = grad + opt_params['momentum'] * state['momentum'] else: grad = state['momentum'] state['step'] += 1 return param - opt_params['lr'] * grad, state class Adam(Optimizer): """Adam optimizer, Kingma & Ba, arxiv.org/abs/1412.6980. Args: params (iterable): nested list of params to optimize lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (default: 0) use_adamw (bool, optional): If not None, use decoupled weight decay as in arxiv.org/abs/1711.05101. The paper version adds an additional "schedule" hyperparameter eta, which we instead just replace with the learning rate following the PyTorch implementation. Note that this implementation will not instantiate a buffer if the beta term for that buffer is passed in as None, thus conserving memory. """ defaults = {'beta1': 0.9, 'beta2': 0.999, 'weight_decay': None, 'eps': 1e-8, 'use_adamw': None} def __init__(self, params, lr, beta1=0.9, beta2=0.999, eps=1e-8, weight_decay=None, use_adamw=None): super().__init__(params=params, defaults={'lr': lr, 'beta1': beta1, 'beta2': beta2, 'eps': eps, 'weight_decay': weight_decay, 'use_adamw': use_adamw}) def create_buffers(self, name, param): """Prepare exp_avg and exp_avg_sq buffers.""" state = {'step': jnp.zeros(jax.local_device_count())} if self.get_hyper(name, 'beta1') is not None: state['exp_avg'] = jnp.zeros_like(param) if self.get_hyper(name, 'beta2') is not None: state['exp_avg_sq'] = jnp.zeros_like(param) return state def update_param(self, param, grad, state, opt_params): """The actual update step for this optimizer.""" if param is None: return param, state state['step'] = state['step'] + 1 # Apply weight decay if opt_params.get('weight_decay') is not None: if opt_params.get('use_adamw') is not None: param = param * (1 - opt_params['lr'] * opt_params['weight_decay']) else: grad = grad + param * opt_params['weight_decay'] # First moment if 'exp_avg' in state: bias_correction1 = 1 - opt_params['beta1'] ** state['step'] state['exp_avg'] = (state['exp_avg'] * opt_params['beta1'] + (1 - opt_params['beta1']) * grad) step_size = opt_params['lr'] * state['exp_avg'] / bias_correction1 else: step_size = opt_params['lr'] * grad # Second moment if 'exp_avg_sq' in state: bias_correction2 = 1 - opt_params['beta2'] ** state['step'] state['exp_avg_sq'] = (state['exp_avg_sq'] * opt_params['beta2'] + (1 - opt_params['beta2']) * grad * grad) denom = jnp.sqrt(state['exp_avg_sq']) * jax.lax.rsqrt(bias_correction2) denom = denom + opt_params['eps'] else: denom = jnp.abs(grad) + opt_params['eps'] # Add eps to avoid divide-by-0 return param - step_size / denom, state class RMSProp(Optimizer): """RMSProp optimizer, Tieleman and Hinton, ref: powerpoint slides. Implements RMSProp as rms = decay * rms{t-1} + (1-decay) * gradient ** 2 mom = momentum * mom{t-1} + learning_rate * g_t / sqrt(rms + epsilon) param -= mom Note that the rms buffer is initialized with ones as in TF, as opposed to zeros as in all other implementations. Args: params (iterable): nested list of params to optimize lr (float): learning rate (default: 1e-3) decay (float): EMA decay rate for running estimate of squared gradient. momentum (float or None): Use heavy ball momentum instead of instant grad. eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (NOT ADAMW (default: 0)) """ defaults = {'weight_decay': None, 'eps': 1e-8} def __init__(self, params, lr, decay, momentum, weight_decay=None, eps=1e-8): super().__init__(params=params, defaults={'lr': lr, 'decay': decay, 'momentum': momentum, 'eps': eps, 'weight_decay': weight_decay}) def create_buffers(self, name, param): """Prepare exp_avg and exp_avg_sq buffers.""" state = {'step': jnp.zeros(jax.local_device_count())} state['rms'] = jnp.ones_like(param) if self.get_hyper(name, 'momentum') is not None: state['momentum'] = jnp.zeros_like(param) return state def update_param(self, param, grad, state, opt_params): """The actual update step for this optimizer.""" if param is None: return param, state state['step'] = state['step'] + 1 # Apply weight decay if opt_params.get('weight_decay') is not None: grad = grad + param * opt_params['weight_decay'] # EMA of the squared gradient state['rms'] = (state['rms'] * opt_params['decay'] + (1 - opt_params['decay']) * (grad ** 2)) scaled_grad = (opt_params['lr'] * grad / (state['rms'] + opt_params['eps']) ** 0.5) if state['momentum'] is not None: state['momentum'] = (state['momentum'] * opt_params['momentum'] + scaled_grad) step_size = state['momentum'] else: step_size = scaled_grad return param - step_size, state class Fromage(Optimizer): """Fromage optimizer, Bernstein et al. arXiv.org/abs/2002.03432. This version optionally includes weight decay. Attributes: params (iterable): nested list of params to optimize lr (float): learning rate. eps (float, optional): Minimum allowable norm. This term is required for in case parameters are zero-initialized (default: 1e-5). weight_decay (float, optional): weight decay (default: 0). """ defaults = {'weight_decay': None, 'eps': 1e-5} def __init__(self, params, lr, weight_decay=None, eps=1e-5): super().__init__( params, defaults={'lr': lr, 'weight_decay': weight_decay, 'eps': eps}) def create_buffers(self, name, param): # pylint: disable=unused-argument """Prepares all momentum buffers for each parameter.""" return {'step': jnp.zeros(1)} def update_param(self, param, grad, state, opt_params): """The actual update step for this optimizer.""" if param is None: return param, state if opt_params['weight_decay'] is not None: grad = grad + param * opt_params['weight_decay'] grad_norm = jnp.maximum(jnp.linalg.norm(grad), opt_params['eps']) param_norm = jnp.maximum(jnp.linalg.norm(param), opt_params['eps']) mult = jax.lax.rsqrt(1 + opt_params['lr'] ** 2) out = (param - opt_params['lr'] * grad * (param_norm / grad_norm)) * mult return out, state def compute_norm(x, axis, keepdims): """Returns norm over arbitrary axis.""" norm = jnp.sum(x ** 2, axis=axis, keepdims=keepdims) ** 0.5 return norm def unitwise_norm(x): """Computes norms of each output unit separately, assuming (HW)IO weights.""" if len(jnp.squeeze(x).shape) <= 1: # Scalars and vectors axis = None keepdims = False elif len(x.shape) in [2, 3]: # Linear layers of shape IO axis = 0 keepdims = True elif len(x.shape) == 4: # Conv kernels of shape HWIO axis = [0, 1, 2,] keepdims = True else: raise ValueError(f'Got a parameter with shape not in [1, 2, 3, 4]! {x}') return compute_norm(x, axis, keepdims) class SGD_AGC(Optimizer): # pylint:disable=invalid-name """SGD with Unit-Adaptive Gradient-Clipping. References: [Brock, Smith, De, Simonyan 2021] High-Performance Large-Scale Image Recognition Without Normalization. """ defaults = {'weight_decay': None, 'momentum': None, 'dampening': 0, 'nesterov': None, 'clipping': 0.01, 'eps': 1e-3} def __init__(self, params, lr, weight_decay=None, momentum=None, dampening=0, nesterov=None, clipping=0.01, eps=1e-3): super().__init__( params, defaults={'lr': lr, 'weight_decay': weight_decay, 'momentum': momentum, 'dampening': dampening, 'clipping': clipping, 'nesterov': nesterov, 'eps': eps}) def create_buffers(self, name, param): return SGD.create_buffers(self, name, param) def update_param(self, param, grad, state, opt_params): """Clips grads if necessary, then applies the optimizer update.""" if param is None: return param, state if opt_params['clipping'] is not None: param_norm = jnp.maximum(unitwise_norm(param), opt_params['eps']) grad_norm = unitwise_norm(grad) max_norm = param_norm * opt_params['clipping'] # If grad norm > clipping * param_norm, rescale trigger = grad_norm > max_norm # Note the max(||G||, 1e-6) is technically unnecessary here, as # the clipping shouldn't trigger if the grad norm is zero, # but we include it in practice as a "just-in-case". clipped_grad = grad * (max_norm / jnp.maximum(grad_norm, 1e-6)) grad = jnp.where(trigger, clipped_grad, grad) return SGD.update_param(self, param, grad, state, opt_params) class Hybrid(Optimizer): """Optimizer which permits passing param groups with different base opts. The API for this class follows the case for any other optimizer where one specifies a list of dicts with separate hyperparams, but in this case it requires the user to also specify an 'opt' key for each group, such as e.g. [{'params': params0, 'opt': optim.Adam, 'lr': 0.1}]. The user must also provide values for any arg in the selected optimizers which does not have a default value associated """ def __init__(self, param_groups): if any(['opt' not in group for group in param_groups]): raise ValueError('All parameter groups must have an opt key!') self.defaults = ChainMap(*[group['opt'].defaults for group in param_groups]) super().__init__(param_groups, defaults=dict(self.defaults)) def create_buffers(self, name, param): return self.get_hyper(name, 'opt').create_buffers(self, name, param) def update_param(self, param, grad, state, opt_params): return opt_params['opt'].update_param(self, param, grad, state, opt_params)
deepmind-research-master
nfnets/optim.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Architecture definitions for different models.""" import haiku as hk import jax import jax.numpy as jnp import numpy as np # Model settings for NF-RegNets nf_regnet_params = { 'B0': {'width': [48, 104, 208, 440], 'depth': [1, 3, 6, 6], 'train_imsize': 192, 'test_imsize': 224, 'drop_rate': 0.2}, 'B1': {'width': [48, 104, 208, 440], 'depth': [2, 4, 7, 7], 'train_imsize': 224, 'test_imsize': 256, 'drop_rate': 0.2}, 'B2': {'width': [56, 112, 232, 488], 'depth': [2, 4, 8, 8], 'train_imsize': 240, 'test_imsize': 272, 'drop_rate': 0.3}, 'B3': {'width': [56, 128, 248, 528], 'depth': [2, 5, 9, 9], 'train_imsize': 288, 'test_imsize': 320, 'drop_rate': 0.3}, 'B4': {'width': [64, 144, 288, 616], 'depth': [2, 6, 11, 11], 'train_imsize': 320, 'test_imsize': 384, 'drop_rate': 0.4}, 'B5': {'width': [80, 168, 336, 704], 'depth': [3, 7, 14, 14], 'train_imsize': 384, 'test_imsize': 456, 'drop_rate': 0.4}, 'B6': {'width': [88, 184, 376, 792], 'depth': [3, 8, 16, 16], 'train_imsize': 448, 'test_imsize': 528, 'drop_rate': 0.5}, 'B7': {'width': [96, 208, 416, 880], 'depth': [4, 10, 19, 19], 'train_imsize': 512, 'test_imsize': 600, 'drop_rate': 0.5}, 'B8': {'width': [104, 232, 456, 968], 'depth': [4, 11, 22, 22], 'train_imsize': 600, 'test_imsize': 672, 'drop_rate': 0.5}, } nfnet_params = {} # F-series models nfnet_params.update(**{ 'F0': { 'width': [256, 512, 1536, 1536], 'depth': [1, 2, 6, 3], 'train_imsize': 192, 'test_imsize': 256, 'RA_level': '405', 'drop_rate': 0.2}, 'F1': { 'width': [256, 512, 1536, 1536], 'depth': [2, 4, 12, 6], 'train_imsize': 224, 'test_imsize': 320, 'RA_level': '410', 'drop_rate': 0.3}, 'F2': { 'width': [256, 512, 1536, 1536], 'depth': [3, 6, 18, 9], 'train_imsize': 256, 'test_imsize': 352, 'RA_level': '410', 'drop_rate': 0.4}, 'F3': { 'width': [256, 512, 1536, 1536], 'depth': [4, 8, 24, 12], 'train_imsize': 320, 'test_imsize': 416, 'RA_level': '415', 'drop_rate': 0.4}, 'F4': { 'width': [256, 512, 1536, 1536], 'depth': [5, 10, 30, 15], 'train_imsize': 384, 'test_imsize': 512, 'RA_level': '415', 'drop_rate': 0.5}, 'F5': { 'width': [256, 512, 1536, 1536], 'depth': [6, 12, 36, 18], 'train_imsize': 416, 'test_imsize': 544, 'RA_level': '415', 'drop_rate': 0.5}, 'F6': { 'width': [256, 512, 1536, 1536], 'depth': [7, 14, 42, 21], 'train_imsize': 448, 'test_imsize': 576, 'RA_level': '415', 'drop_rate': 0.5}, 'F7': { 'width': [256, 512, 1536, 1536], 'depth': [8, 16, 48, 24], 'train_imsize': 480, 'test_imsize': 608, 'RA_level': '415', 'drop_rate': 0.5}, }) # Minor variants FN+, slightly wider nfnet_params.update(**{ **{f'{key}+': {**nfnet_params[key], 'width': [384, 768, 2048, 2048],} for key in nfnet_params} }) # Nonlinearities with magic constants (gamma) baked in. # Note that not all nonlinearities will be stable, especially if they are # not perfectly monotonic. Good choices include relu, silu, and gelu. nonlinearities = { 'identity': lambda x: x, 'celu': lambda x: jax.nn.celu(x) * 1.270926833152771, 'elu': lambda x: jax.nn.elu(x) * 1.2716004848480225, 'gelu': lambda x: jax.nn.gelu(x) * 1.7015043497085571, 'glu': lambda x: jax.nn.glu(x) * 1.8484294414520264, 'leaky_relu': lambda x: jax.nn.leaky_relu(x) * 1.70590341091156, 'log_sigmoid': lambda x: jax.nn.log_sigmoid(x) * 1.9193484783172607, 'log_softmax': lambda x: jax.nn.log_softmax(x) * 1.0002083778381348, 'relu': lambda x: jax.nn.relu(x) * 1.7139588594436646, 'relu6': lambda x: jax.nn.relu6(x) * 1.7131484746932983, 'selu': lambda x: jax.nn.selu(x) * 1.0008515119552612, 'sigmoid': lambda x: jax.nn.sigmoid(x) * 4.803835391998291, 'silu': lambda x: jax.nn.silu(x) * 1.7881293296813965, 'soft_sign': lambda x: jax.nn.soft_sign(x) * 2.338853120803833, 'softplus': lambda x: jax.nn.softplus(x) * 1.9203323125839233, 'tanh': lambda x: jnp.tanh(x) * 1.5939117670059204, } class WSConv2D(hk.Conv2D): """2D Convolution with Scaled Weight Standardization and affine gain+bias.""" @hk.transparent def standardize_weight(self, weight, eps=1e-4): """Apply scaled WS with affine gain.""" mean = jnp.mean(weight, axis=(0, 1, 2), keepdims=True) var = jnp.var(weight, axis=(0, 1, 2), keepdims=True) fan_in = np.prod(weight.shape[:-1]) # Get gain gain = hk.get_parameter('gain', shape=(weight.shape[-1],), dtype=weight.dtype, init=jnp.ones) # Manually fused normalization, eq. to (w - mean) * gain / sqrt(N * var) scale = jax.lax.rsqrt(jnp.maximum(var * fan_in, eps)) * gain shift = mean * scale return weight * scale - shift def __call__(self, inputs: jnp.ndarray, eps: float = 1e-4) -> jnp.ndarray: w_shape = self.kernel_shape + ( inputs.shape[self.channel_index] // self.feature_group_count, self.output_channels) # Use fan-in scaled init, but WS is largely insensitive to this choice. w_init = hk.initializers.VarianceScaling(1.0, 'fan_in', 'normal') w = hk.get_parameter('w', w_shape, inputs.dtype, init=w_init) weight = self.standardize_weight(w, eps) out = jax.lax.conv_general_dilated( inputs, weight, window_strides=self.stride, padding=self.padding, lhs_dilation=self.lhs_dilation, rhs_dilation=self.kernel_dilation, dimension_numbers=self.dimension_numbers, feature_group_count=self.feature_group_count) # Always add bias bias_shape = (self.output_channels,) bias = hk.get_parameter('bias', bias_shape, inputs.dtype, init=jnp.zeros) return out + bias def signal_metrics(x, i): """Things to measure about a NCHW tensor activation.""" metrics = {} # Average channel-wise mean-squared metrics[f'avg_sq_mean_{i}'] = jnp.mean(jnp.mean(x, axis=[0, 1, 2])**2) # Average channel variance metrics[f'avg_var_{i}'] = jnp.mean(jnp.var(x, axis=[0, 1, 2])) return metrics def count_conv_flops(in_ch, conv, h, w): """For a conv layer with in_ch inputs, count the FLOPS.""" # How many outputs are we producing? Note this is wrong for VALID padding. output_shape = conv.output_channels * (h * w) / np.prod(conv.stride) # At each OHW location we do computation equal to (I//G) * kh * kw flop_per_loc = (in_ch / conv.feature_group_count) flop_per_loc *= np.prod(conv.kernel_shape) return output_shape * flop_per_loc class SqueezeExcite(hk.Module): """Simple Squeeze+Excite module.""" def __init__(self, in_ch, out_ch, se_ratio=0.5, hidden_ch=None, activation=jax.nn.relu, name=None): super().__init__(name=name) self.in_ch, self.out_ch = in_ch, out_ch if se_ratio is None: if hidden_ch is None: raise ValueError('Must provide one of se_ratio or hidden_ch') self.hidden_ch = hidden_ch else: self.hidden_ch = max(1, int(self.in_ch * se_ratio)) self.activation = activation self.fc0 = hk.Linear(self.hidden_ch, with_bias=True) self.fc1 = hk.Linear(self.out_ch, with_bias=True) def __call__(self, x): h = jnp.mean(x, axis=[1, 2]) # Mean pool over HW extent h = self.fc1(self.activation(self.fc0(h))) h = jax.nn.sigmoid(h)[:, None, None] # Broadcast along H, W return h class StochDepth(hk.Module): """Batchwise Dropout used in EfficientNet, optionally sans rescaling.""" def __init__(self, drop_rate, scale_by_keep=False, name=None): super().__init__(name=name) self.drop_rate = drop_rate self.scale_by_keep = scale_by_keep def __call__(self, x, is_training) -> jnp.ndarray: if not is_training: return x batch_size = x.shape[0] r = jax.random.uniform(hk.next_rng_key(), [batch_size, 1, 1, 1], dtype=x.dtype) keep_prob = 1. - self.drop_rate binary_tensor = jnp.floor(keep_prob + r) if self.scale_by_keep: x = x / keep_prob return x * binary_tensor
deepmind-research-master
nfnets/base.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Norm-Free Nets.""" # pylint: disable=unused-import # pylint: disable=invalid-name import functools import haiku as hk import jax import jax.numpy as jnp import jax.random as jrandom import numpy as np from nfnets import base class NFNet(hk.Module): """Normalizer-Free Networks with an improved architecture. References: [Brock, Smith, De, Simonyan 2021] High-Performance Large-Scale Image Recognition Without Normalization. """ variant_dict = base.nfnet_params def __init__(self, num_classes, variant='F0', width=1.0, se_ratio=0.5, alpha=0.2, stochdepth_rate=0.1, drop_rate=None, activation='gelu', fc_init=None, final_conv_mult=2, final_conv_ch=None, use_two_convs=True, name='NFNet'): super().__init__(name=name) self.num_classes = num_classes self.variant = variant self.width = width self.se_ratio = se_ratio # Get variant info block_params = self.variant_dict[self.variant] self.train_imsize = block_params['train_imsize'] self.test_imsize = block_params['test_imsize'] self.width_pattern = block_params['width'] self.depth_pattern = block_params['depth'] self.bneck_pattern = block_params.get('expansion', [0.5] * 4) self.group_pattern = block_params.get('group_width', [128] * 4) self.big_pattern = block_params.get('big_width', [True] * 4) self.activation = base.nonlinearities[activation] if drop_rate is None: self.drop_rate = block_params['drop_rate'] else: self.drop_rate = drop_rate self.which_conv = base.WSConv2D # Stem ch = self.width_pattern[0] // 2 self.stem = hk.Sequential([ self.which_conv(16, kernel_shape=3, stride=2, padding='SAME', name='stem_conv0'), self.activation, self.which_conv(32, kernel_shape=3, stride=1, padding='SAME', name='stem_conv1'), self.activation, self.which_conv(64, kernel_shape=3, stride=1, padding='SAME', name='stem_conv2'), self.activation, self.which_conv(ch, kernel_shape=3, stride=2, padding='SAME', name='stem_conv3'), ]) # Body self.blocks = [] expected_std = 1.0 num_blocks = sum(self.depth_pattern) index = 0 # Overall block index stride_pattern = [1, 2, 2, 2] block_args = zip(self.width_pattern, self.depth_pattern, self.bneck_pattern, self.group_pattern, self.big_pattern, stride_pattern) for (block_width, stage_depth, expand_ratio, group_size, big_width, stride) in block_args: for block_index in range(stage_depth): # Scalar pre-multiplier so each block sees an N(0,1) input at init beta = 1./ expected_std # Block stochastic depth drop-rate block_stochdepth_rate = stochdepth_rate * index / num_blocks out_ch = (int(block_width * self.width)) self.blocks += [NFBlock(ch, out_ch, expansion=expand_ratio, se_ratio=se_ratio, group_size=group_size, stride=stride if block_index == 0 else 1, beta=beta, alpha=alpha, activation=self.activation, which_conv=self.which_conv, stochdepth_rate=block_stochdepth_rate, big_width=big_width, use_two_convs=use_two_convs, )] ch = out_ch index += 1 # Reset expected std but still give it 1 block of growth if block_index == 0: expected_std = 1.0 expected_std = (expected_std **2 + alpha**2)**0.5 # Head if final_conv_mult is None: if final_conv_ch is None: raise ValueError('Must provide one of final_conv_mult or final_conv_ch') ch = final_conv_ch else: ch = int(final_conv_mult * ch) self.final_conv = self.which_conv(ch, kernel_shape=1, padding='SAME', name='final_conv') # By default, initialize with N(0, 0.01) if fc_init is None: fc_init = hk.initializers.RandomNormal(mean=0, stddev=0.01) self.fc = hk.Linear(self.num_classes, w_init=fc_init, with_bias=True) def __call__(self, x, is_training=True, return_metrics=False): """Return the output of the final layer without any [log-]softmax.""" # Stem outputs = {} out = self.stem(x) if return_metrics: outputs.update(base.signal_metrics(out, 0)) # Blocks for i, block in enumerate(self.blocks): out, res_avg_var = block(out, is_training=is_training) if return_metrics: outputs.update(base.signal_metrics(out, i + 1)) outputs[f'res_avg_var_{i}'] = res_avg_var # Final-conv->activation, pool, dropout, classify out = self.activation(self.final_conv(out)) pool = jnp.mean(out, [1, 2]) outputs['pool'] = pool # Optionally apply dropout if self.drop_rate > 0.0 and is_training: pool = hk.dropout(hk.next_rng_key(), self.drop_rate, pool) outputs['logits'] = self.fc(pool) return outputs def count_flops(self, h, w): flops = [] ch = 3 for module in self.stem.layers: if isinstance(module, hk.Conv2D): flops += [base.count_conv_flops(ch, module, h, w)] if any([item > 1 for item in module.stride]): h, w = h / module.stride[0], w / module.stride[1] ch = module.output_channels # Body FLOPs for block in self.blocks: flops += [block.count_flops(h, w)] if block.stride > 1: h, w = h / block.stride, w / block.stride # Head module FLOPs out_ch = self.blocks[-1].out_ch flops += [base.count_conv_flops(out_ch, self.final_conv, h, w)] # Count flops for classifier flops += [self.final_conv.output_channels * self.fc.output_size] return flops, sum(flops) class NFBlock(hk.Module): """Normalizer-Free Net Block.""" def __init__(self, in_ch, out_ch, expansion=0.5, se_ratio=0.5, kernel_shape=3, group_size=128, stride=1, beta=1.0, alpha=0.2, which_conv=base.WSConv2D, activation=jax.nn.gelu, big_width=True, use_two_convs=True, stochdepth_rate=None, name=None): super().__init__(name=name) self.in_ch, self.out_ch = in_ch, out_ch self.expansion = expansion self.se_ratio = se_ratio self.kernel_shape = kernel_shape self.activation = activation self.beta, self.alpha = beta, alpha # Mimic resnet style bigwidth scaling? width = int((self.out_ch if big_width else self.in_ch) * expansion) # Round expanded with based on group count self.groups = width // group_size self.width = group_size * self.groups self.stride = stride self.use_two_convs = use_two_convs # Conv 0 (typically expansion conv) self.conv0 = which_conv(self.width, kernel_shape=1, padding='SAME', name='conv0') # Grouped NxN conv self.conv1 = which_conv(self.width, kernel_shape=kernel_shape, stride=stride, padding='SAME', feature_group_count=self.groups, name='conv1') if self.use_two_convs: self.conv1b = which_conv(self.width, kernel_shape=kernel_shape, stride=1, padding='SAME', feature_group_count=self.groups, name='conv1b') # Conv 2, typically projection conv self.conv2 = which_conv(self.out_ch, kernel_shape=1, padding='SAME', name='conv2') # Use shortcut conv on channel change or downsample. self.use_projection = stride > 1 or self.in_ch != self.out_ch if self.use_projection: self.conv_shortcut = which_conv(self.out_ch, kernel_shape=1, padding='SAME', name='conv_shortcut') # Squeeze + Excite Module self.se = base.SqueezeExcite(self.out_ch, self.out_ch, self.se_ratio) # Are we using stochastic depth? self._has_stochdepth = (stochdepth_rate is not None and stochdepth_rate > 0. and stochdepth_rate < 1.0) if self._has_stochdepth: self.stoch_depth = base.StochDepth(stochdepth_rate) def __call__(self, x, is_training): out = self.activation(x) * self.beta if self.stride > 1: # Average-pool downsample. shortcut = hk.avg_pool(out, window_shape=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='SAME') if self.use_projection: shortcut = self.conv_shortcut(shortcut) elif self.use_projection: shortcut = self.conv_shortcut(out) else: shortcut = x out = self.conv0(out) out = self.conv1(self.activation(out)) if self.use_two_convs: out = self.conv1b(self.activation(out)) out = self.conv2(self.activation(out)) out = (self.se(out) * 2) * out # Multiply by 2 for rescaling # Get average residual standard deviation for reporting metrics. res_avg_var = jnp.mean(jnp.var(out, axis=[0, 1, 2])) # Apply stochdepth if applicable. if self._has_stochdepth: out = self.stoch_depth(out, is_training) # SkipInit Gain out = out * hk.get_parameter('skip_gain', (), out.dtype, init=jnp.zeros) return out * self.alpha + shortcut, res_avg_var def count_flops(self, h, w): # Count conv FLOPs based on input HW expand_flops = base.count_conv_flops(self.in_ch, self.conv0, h, w) # If block is strided we decrease resolution here. dw_flops = base.count_conv_flops(self.width, self.conv1, h, w) if self.stride > 1: h, w = h / self.stride, w / self.stride if self.use_two_convs: dw_flops += base.count_conv_flops(self.width, self.conv1b, h, w) if self.use_projection: sc_flops = base.count_conv_flops(self.in_ch, self.conv_shortcut, h, w) else: sc_flops = 0 # SE flops happen on avg-pooled activations se_flops = self.se.fc0.output_size * self.out_ch se_flops += self.se.fc0.output_size * self.se.fc1.output_size contract_flops = base.count_conv_flops(self.width, self.conv2, h, w) return sum([expand_flops, dw_flops, se_flops, contract_flops, sc_flops])
deepmind-research-master
nfnets/nfnet.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config, focused on model evaluation.""" from ml_collections import config_dict def get_config(filter_time_intervals=None): """Return config object for training.""" config = config_dict.ConfigDict() config.eval_strategy = config_dict.ConfigDict() config.eval_strategy.class_name = 'OneDeviceConfig' config.eval_strategy.kwargs = config_dict.ConfigDict( dict(device_type='v100')) ## Experiment config. config.experiment_kwargs = config_dict.ConfigDict(dict( resnet_kwargs=dict( blocks_per_group_list=[3, 4, 6, 3], # This choice is ResNet50. bn_config=dict( decay_rate=0.9, eps=1e-5), resnet_v2=False, additional_features_mode='mlp', ), optimizer_config=dict( class_name='Momentum', kwargs={'momentum': 0.9}, # Set up the learning rate schedule. lr_init=0.025, lr_factor=0.1, lr_schedule=(50e3, 100e3, 150e3), gradient_clip=5., ), l2_regularization=1e-4, total_train_batch_size=128, train_net_args={'is_training': True}, eval_batch_size=128, eval_net_args={'is_training': True}, data_config=dict( # dataset loading dataset_path=None, num_val_splits=10, val_split=0, # image cropping image_size=(80, 80, 7), train_crop_type='crop_fixed', test_crop_type='crop_fixed', n_crop_repeat=1, train_augmentations=dict( rotation_and_flip=True, rescaling=True, translation=True, ), test_augmentations=dict( rotation_and_flip=False, rescaling=False, translation=False, ), test_time_ensembling='sum', num_eval_buckets=5, eval_confidence_interval=95, task='grounded_unnormalized_regression', loss_config=dict( loss='mse', mse_normalize=False, ), model_uncertainty=True, additional_features='', time_filter_intervals=filter_time_intervals, class_boundaries={ '0': [[-1., 0]], '1': [[0, 1.]] }, frequencies_to_use='all', ), n_train_epochs=100 )) return config
deepmind-research-master
galaxy_mergers/config.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers to visualize gradients and other interpretability analysis.""" import numpy as np import tensorflow.compat.v2 as tf def rotate_by_right_angle_multiple(image, rot=90): """Rotate an image by right angles.""" if rot not in [0, 90, 180, 270]: raise ValueError(f"Cannot rotate by non-90 degree angle {rot}") if rot in [90, -270]: image = np.transpose(image, (1, 0, 2)) image = image[::-1] elif rot in [180, -180]: image = image[::-1, ::-1] elif rot in [270, -90]: image = np.transpose(image, (1, 0, 2)) image = image[:, ::-1] return image def compute_gradient(images, evaluator, is_training=False): inputs = tf.Variable(images[None], dtype=tf.float32) with tf.GradientTape() as tape: tape.watch(inputs) time_sigma = evaluator.model(inputs, None, is_training) grad_time = tape.gradient(time_sigma[:, 0], inputs) return grad_time, time_sigma def compute_grads_for_rotations(images, evaluator, is_training=False): test_gradients, test_outputs = [], [] for rotation in np.arange(0, 360, 90): images_rot = rotate_by_right_angle_multiple(images, rotation) grads, time_sigma = compute_gradient(images_rot, evaluator, is_training) grads = np.squeeze(grads.numpy()) inv_grads = rotate_by_right_angle_multiple(grads, -rotation) test_gradients.append(inv_grads) test_outputs.append(time_sigma.numpy()) return np.squeeze(test_gradients), np.squeeze(test_outputs) def compute_grads_for_rotations_and_flips(images, evaluator): grads, time_sigma = compute_grads_for_rotations(images, evaluator) grads_f, time_sigma_f = compute_grads_for_rotations(images[::-1], evaluator) grads_f = grads_f[:, ::-1] all_grads = np.concatenate([grads, grads_f], 0) model_outputs = np.concatenate((time_sigma, time_sigma_f), 0) return all_grads, model_outputs
deepmind-research-master
galaxy_mergers/interpretability_helpers.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fork of a generic ResNet to incorporate additional cosmological features.""" from typing import Mapping, Optional, Sequence, Text import sonnet.v2 as snt import tensorflow.compat.v2 as tf class ResNet(snt.Module): """ResNet model.""" def __init__(self, n_repeats: int, blocks_per_group_list: Sequence[int], num_classes: int, bn_config: Optional[Mapping[Text, float]] = None, resnet_v2: bool = False, channels_per_group_list: Sequence[int] = (256, 512, 1024, 2048), use_additional_features: bool = False, additional_features_mode: Optional[Text] = "per_block", name: Optional[Text] = None): """Constructs a ResNet model. Args: n_repeats: The batch dimension for the input is expected to have the form `B = b * n_repeats`. After the conv stack, the logits for the `n_repeats` replicas are reduced, leading to an output batch dimension of `b`. blocks_per_group_list: A sequence of length 4 that indicates the number of blocks created in each group. num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. By default the `decay_rate` is `0.9` and `eps` is `1e-5`. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. channels_per_group_list: A sequence of length 4 that indicates the number of channels used for each block in each group. use_additional_features: If true, additional vector features will be concatenated to the residual stack before logits are computed. additional_features_mode: Mode for processing additional features. Supported modes: 'mlp' and 'per_block'. name: Name of the module. """ super(ResNet, self).__init__(name=name) self._n_repeats = n_repeats if bn_config is None: bn_config = {"decay_rate": 0.9, "eps": 1e-5} self._bn_config = bn_config self._resnet_v2 = resnet_v2 # Number of blocks in each group for ResNet. if len(blocks_per_group_list) != 4: raise ValueError( "`blocks_per_group_list` must be of length 4 not {}".format( len(blocks_per_group_list))) self._blocks_per_group_list = blocks_per_group_list # Number of channels in each group for ResNet. if len(channels_per_group_list) != 4: raise ValueError( "`channels_per_group_list` must be of length 4 not {}".format( len(channels_per_group_list))) self._channels_per_group_list = channels_per_group_list self._use_additional_features = use_additional_features self._additional_features_mode = additional_features_mode self._initial_conv = snt.Conv2D( output_channels=64, kernel_shape=7, stride=2, with_bias=False, padding="SAME", name="initial_conv") if not self._resnet_v2: self._initial_batchnorm = snt.BatchNorm( create_scale=True, create_offset=True, name="initial_batchnorm", **bn_config) self._block_groups = [] strides = [1, 2, 2, 2] for i in range(4): self._block_groups.append( snt.nets.resnet.BlockGroup( channels=self._channels_per_group_list[i], num_blocks=self._blocks_per_group_list[i], stride=strides[i], bn_config=bn_config, resnet_v2=resnet_v2, name="block_group_%d" % (i))) if self._resnet_v2: self._final_batchnorm = snt.BatchNorm( create_scale=True, create_offset=True, name="final_batchnorm", **bn_config) self._logits = snt.Linear( output_size=num_classes, w_init=snt.initializers.VarianceScaling(scale=2.0), name="logits") if self._use_additional_features: self._embedding = LinearBNReLU(output_size=16, name="embedding", **bn_config) if self._additional_features_mode == "mlp": self._feature_repr = LinearBNReLU( output_size=self._channels_per_group_list[-1], name="features_repr", **bn_config) elif self._additional_features_mode == "per_block": self._feature_repr = [] for i, ch in enumerate(self._channels_per_group_list): self._feature_repr.append( LinearBNReLU(output_size=ch, name=f"features_{i}", **bn_config)) else: raise ValueError(f"Unsupported addiitonal features mode: " f"{additional_features_mode}") def __call__(self, inputs, features, is_training): net = inputs net = self._initial_conv(net) if not self._resnet_v2: net = self._initial_batchnorm(net, is_training=is_training) net = tf.nn.relu(net) net = tf.nn.max_pool2d( net, ksize=3, strides=2, padding="SAME", name="initial_max_pool") if self._use_additional_features: assert features is not None features = self._embedding(features, is_training=is_training) for i, block_group in enumerate(self._block_groups): net = block_group(net, is_training) if (self._use_additional_features and self._additional_features_mode == "per_block"): features_i = self._feature_repr[i](features, is_training=is_training) # support for n_repeats > 1 features_i = tf.repeat(features_i, self._n_repeats, axis=0) net += features_i[:, None, None, :] # expand to spacial resolution if self._resnet_v2: net = self._final_batchnorm(net, is_training=is_training) net = tf.nn.relu(net) net = tf.reduce_mean(net, axis=[1, 2], name="final_avg_pool") # Re-split the batch dimension net = tf.reshape(net, [-1, self._n_repeats] + net.shape.as_list()[1:]) # Average over the various repeats of the input (e.g. those could have # corresponded to different crops). net = tf.reduce_mean(net, axis=1) if (self._use_additional_features and self._additional_features_mode == "mlp"): net += self._feature_repr(features, is_training=is_training) return self._logits(net) class LinearBNReLU(snt.Module): """Wrapper class for Linear layer with Batch Norm and ReLU activation.""" def __init__(self, output_size=64, w_init=snt.initializers.VarianceScaling(scale=2.0), name="linear", **bn_config): """Constructs a LinearBNReLU module. Args: output_size: Output dimension. w_init: weight Initializer for snt.Linear. name: Name of the module. **bn_config: Optional parameters to be passed to snt.BatchNorm. """ super(LinearBNReLU, self).__init__(name=name) self._linear = snt.Linear(output_size=output_size, w_init=w_init, name=f"{name}_linear") self._bn = snt.BatchNorm(create_scale=True, create_offset=True, name=f"{name}_bn", **bn_config) def __call__(self, x, is_training): x = self._linear(x) x = self._bn(x, is_training=is_training) return tf.nn.relu(x)
deepmind-research-master
galaxy_mergers/model.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers to pre-process Antennae galaxy images.""" import collections import os from astropy.io import fits import numpy as np from scipy import ndimage import tensorflow.compat.v2 as tf def norm_antennae_images(images, scale=1000): return tf.math.asinh(images/scale) def renorm_antennae(images): median = np.percentile(images.numpy().flatten(), 50) img_range = np.ptp(images.numpy().flatten()) return (images - median) / (img_range / 2) def get_antennae_images(antennae_fits_dir): """Load the raw Antennae galaxy images.""" all_fits_files = [ os.path.join(antennae_fits_dir, f) for f in os.listdir(antennae_fits_dir) ] freq_mapping = {'red': 160, 'blue': 850} paired_fits_files = collections.defaultdict(list) for f in all_fits_files: redshift = float(f[-8:-5]) paired_fits_files[redshift].append(f) for redshift, files in paired_fits_files.items(): paired_fits_files[redshift] = sorted( files, key=lambda f: freq_mapping[f.split('/')[-1].split('_')[0]]) print('Reading files:', paired_fits_files) print('Redshifts:', sorted(paired_fits_files.keys())) galaxy_views = collections.defaultdict(list) for redshift in paired_fits_files: for view_path in paired_fits_files[redshift]: with open(view_path, 'rb') as f: fits_data = fits.open(f) galaxy_views[redshift].append(np.array(fits_data[0].data)) batched_images = [] for redshift in paired_fits_files: img = tf.constant(np.array(galaxy_views[redshift])) img = tf.transpose(img, (1, 2, 0)) img = tf.image.resize(img, size=(60, 60)) batched_images.append(img) return tf.stack(batched_images) def preprocess_antennae_images(antennae_images): """Pre-process the Antennae galaxy images into a reasonable range.""" rotated_antennae_images = [ ndimage.rotate(img, 10, reshape=True, cval=-1)[10:-10, 10:-10] for img in antennae_images ] rotated_antennae_images = [ np.clip(img, 0, 1e9) for img in rotated_antennae_images ] rotated_antennae_images = tf.stack(rotated_antennae_images) normed_antennae_images = norm_antennae_images(rotated_antennae_images) normed_antennae_images = tf.clip_by_value(normed_antennae_images, 1, 4.5) renormed_antennae_images = renorm_antennae(normed_antennae_images) return renormed_antennae_images
deepmind-research-master
galaxy_mergers/antennae_helpers.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pre-processing functions for input data.""" import functools from absl import logging import tensorflow.compat.v2 as tf from galaxy_mergers import losses CROP_TYPE_NONE = 'crop_none' CROP_TYPE_FIXED = 'crop_fixed' CROP_TYPE_RANDOM = 'crop_random' DATASET_FREQUENCY_MEAN = 4.0 DATASET_FREQUENCY_RANGE = 8.0 PHYSICAL_FEATURES_MIN_MAX = { 'redshift': (0.572788, 2.112304), 'mass': (9.823963, 10.951282) } ALL_FREQUENCIES = [105, 125, 160, 435, 606, 775, 850] VALID_ADDITIONAL_FEATURES = ['redshift', 'sequence_average_redshift', 'mass'] def _make_padding_sizes(pad_size, random_centering): if random_centering: pad_size_left = tf.random.uniform( shape=[], minval=0, maxval=pad_size+1, dtype=tf.int32) else: pad_size_left = pad_size // 2 pad_size_right = pad_size - pad_size_left return pad_size_left, pad_size_right def resize_and_pad(image, target_size, random_centering): """Resize image to target_size (<= image.size) and pad to original size.""" original_shape = image.shape size = tf.reshape(target_size, [1]) size = tf.concat([size, size], axis=0) image = tf.image.resize(image, size=size) pad_size = original_shape[1] - target_size pad_size_left, pad_size_right = _make_padding_sizes( pad_size, random_centering) padding = [[pad_size_left, pad_size_right], [pad_size_left, pad_size_right], [0, 0]] if len(original_shape) == 4: padding = [[0, 0]] + padding image = tf.pad(image, padding) image.set_shape(original_shape) return image def resize_and_extract(image, target_size, random_centering): """Upscale image to target_size (>image.size), extract original size crop.""" original_shape = image.shape size = tf.reshape(target_size, [1]) size = tf.concat([size, size], axis=0) image = tf.image.resize(image, size=size) pad_size = target_size - original_shape[1] pad_size_left, pad_size_right = _make_padding_sizes( pad_size, random_centering) if len(original_shape) == 3: image = tf.expand_dims(image, 0) image = tf.cond(pad_size_right > 0, lambda: image[:, pad_size_left:-pad_size_right, :, :], lambda: image[:, pad_size_left:, :, :]) image = tf.cond(pad_size_right > 0, lambda: image[:, :, pad_size_left:-pad_size_right, :], lambda: image[:, :, pad_size_left:, :]) if len(original_shape) == 3: image = tf.squeeze(image, 0) image.set_shape(original_shape) return image def resize_and_center(image, target_size, random_centering): return tf.cond( tf.math.less_equal(target_size, image.shape[1]), lambda: resize_and_pad(image, target_size, random_centering), lambda: resize_and_extract(image, target_size, random_centering)) def random_rotation_and_flip(image): angle = tf.random.uniform(shape=[], minval=0, maxval=4, dtype=tf.int32) return tf.image.random_flip_left_right(tf.image.rot90(image, angle)) def get_all_rotations_and_flips(images): assert isinstance(images, list) new_images = [] for image in images: for rotation in range(4): new_images.append(tf.image.rot90(image, rotation)) flipped_image = tf.image.flip_left_right(image) new_images.append(tf.image.rot90(flipped_image, rotation)) return new_images def random_rescaling(image, random_centering): assert image.shape.as_list()[0] == image.shape.as_list()[1] original_size = image.shape.as_list()[1] min_size = 2 * (original_size // 4) max_size = original_size * 2 target_size = tf.random.uniform( shape=[], minval=min_size, maxval=max_size // 2, dtype=tf.int32) * 2 return resize_and_center(image, target_size, random_centering) def get_all_rescalings(images, image_width, random_centering): """Get a uniform sample of rescalings of all images in input.""" assert isinstance(images, list) min_size = 2 * (image_width // 4) max_size = image_width * 2 delta_size = (max_size + 2 - min_size) // 5 sizes = range(min_size, max_size + 2, delta_size) new_images = [] for image in images: for size in sizes: new_images.append(resize_and_center(image, size, random_centering)) return new_images def move_repeats_to_batch(image, n_repeats): width, height, n_channels = image.shape.as_list()[1:] image = tf.reshape(image, [-1, width, height, n_channels, n_repeats]) image = tf.transpose(image, [0, 4, 1, 2, 3]) # [B, repeats, x, y, c] return tf.reshape(image, [-1, width, height, n_channels]) def get_classification_label(dataset_row, class_boundaries): merge_time = dataset_row['grounded_normalized_time'] label = tf.dtypes.cast(0, tf.int64) for category, intervals in class_boundaries.items(): for interval in intervals: if merge_time > interval[0] and merge_time < interval[1]: label = tf.dtypes.cast(int(category), tf.int64) return label def get_regression_label(dataset_row, task_type): """Returns time-until-merger regression target given desired modeling task.""" if task_type == losses.TASK_NORMALIZED_REGRESSION: return tf.dtypes.cast(dataset_row['normalized_time'], tf.float32) elif task_type == losses.TASK_GROUNDED_UNNORMALIZED_REGRESSION: return tf.dtypes.cast(dataset_row['grounded_normalized_time'], tf.float32) elif task_type == losses.TASK_UNNORMALIZED_REGRESSION: return tf.dtypes.cast(dataset_row['unnormalized_time'], tf.float32) elif task_type == losses.TASK_CLASSIFICATION: return tf.dtypes.cast(dataset_row['grounded_normalized_time'], tf.float32) else: raise ValueError def get_normalized_time_target(dataset_row): return tf.dtypes.cast(dataset_row['normalized_time'], tf.float32) def apply_time_filter(dataset_row, time_interval): """Returns True if data is within the given time intervals.""" merge_time = dataset_row['grounded_normalized_time'] lower_time, upper_time = time_interval return merge_time > lower_time and merge_time < upper_time def normalize_physical_feature(name, dataset_row): min_feat, max_feat = PHYSICAL_FEATURES_MIN_MAX[name] value = getattr(dataset_row, name) return 2 * (value - min_feat) / (max_feat - min_feat) - 1 def prepare_dataset(ds, target_size, crop_type, n_repeats, augmentations, task_type, additional_features, class_boundaries, time_intervals=None, frequencies_to_use='all', additional_lambdas=None): """Prepare a zipped dataset of image, classification/regression labels.""" def _prepare_image(dataset_row): """Transpose, crop and cast an image.""" image = tf.dtypes.cast(dataset_row['image'], tf.float32) image = tf.reshape(image, tf.cast(dataset_row['image_shape'], tf.int32)) image = tf.transpose(image, perm=[1, 2, 0]) # Convert to NHWC freqs = ALL_FREQUENCIES if frequencies_to_use == 'all' else frequencies_to_use idxs_to_keep = [ALL_FREQUENCIES.index(f) for f in freqs] image = tf.gather(params=image, indices=idxs_to_keep, axis=-1) # Based on offline computation on the empirical frequency range: # Converts [0, 8.] ~~> [-1, 1] image = (image - DATASET_FREQUENCY_MEAN)/(DATASET_FREQUENCY_RANGE/2.0) def crop(image): if crop_type == CROP_TYPE_FIXED: crop_loc = tf.cast(dataset_row['proposed_crop'][0], tf.int32) crop_size = tf.cast(dataset_row['proposed_crop'][1], tf.int32) image = image[ crop_loc[0]:crop_loc[0] + crop_size[0], crop_loc[1]:crop_loc[1] + crop_size[1], :] image = tf.image.resize(image, target_size[0:2]) image.set_shape([target_size[0], target_size[1], target_size[2]]) elif crop_type == CROP_TYPE_RANDOM: image = tf.image.random_crop(image, target_size) image.set_shape([target_size[0], target_size[1], target_size[2]]) elif crop_type != CROP_TYPE_NONE: raise NotImplementedError return image repeated_images = [] for _ in range(n_repeats): repeated_images.append(crop(image)) image = tf.concat(repeated_images, axis=-1) if augmentations['rotation_and_flip']: image = random_rotation_and_flip(image) if augmentations['rescaling']: image = random_rescaling(image, augmentations['translation']) return image def get_regression_label_wrapper(dataset_row): return get_regression_label(dataset_row, task_type=task_type) def get_classification_label_wrapper(dataset_row): return get_classification_label(dataset_row, class_boundaries=class_boundaries) if time_intervals: for time_interval in time_intervals: filter_fn = functools.partial(apply_time_filter, time_interval=time_interval) ds = ds.filter(filter_fn) datasets = [ds.map(_prepare_image)] if additional_features: additional_features = additional_features.split(',') assert all([f in VALID_ADDITIONAL_FEATURES for f in additional_features]) logging.info('Running with additional features: %s.', ', '.join(additional_features)) def _prepare_additional_features(dataset_row): features = [] for f in additional_features: features.append(normalize_physical_feature(f, dataset_row)) features = tf.convert_to_tensor(features, dtype=tf.float32) features.set_shape([len(additional_features)]) return features datasets += [ds.map(_prepare_additional_features)] datasets += [ ds.map(get_classification_label_wrapper), ds.map(get_regression_label_wrapper), ds.map(get_normalized_time_target)] if additional_lambdas: for process_fn in additional_lambdas: datasets += [ds.map(process_fn)] return tf.data.Dataset.zip(tuple(datasets))
deepmind-research-master
galaxy_mergers/preprocessing.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers to compute loss metrics.""" import scipy.stats import tensorflow.compat.v2 as tf import tensorflow_probability as tfp TASK_CLASSIFICATION = 'classification' TASK_NORMALIZED_REGRESSION = 'normalized_regression' TASK_UNNORMALIZED_REGRESSION = 'unnormalized_regression' TASK_GROUNDED_UNNORMALIZED_REGRESSION = 'grounded_unnormalized_regression' REGRESSION_TASKS = [TASK_NORMALIZED_REGRESSION, TASK_UNNORMALIZED_REGRESSION, TASK_GROUNDED_UNNORMALIZED_REGRESSION] ALL_TASKS = [TASK_CLASSIFICATION] + REGRESSION_TASKS LOSS_MSE = 'mse' LOSS_SOFTMAX_CROSS_ENTROPY = 'softmax_cross_entropy' ALL_LOSSES = [LOSS_SOFTMAX_CROSS_ENTROPY, LOSS_MSE] def normalize_regression_loss(regression_loss, predictions): # Normalize loss such that: # 1) E_{x uniform}[loss(x, prediction)] does not depend on prediction # 2) E_{x uniform, prediction uniform}[loss(x, prediction)] is as before. # Divides MSE regression loss by E[(prediction-x)^2]; assumes x=[-1,1] normalization = 2./3. normalized_loss = regression_loss / ((1./3 + predictions**2) / normalization) return normalized_loss def equal32(x, y): return tf.cast(tf.equal(x, y), tf.float32) def mse_loss(predicted, targets): return (predicted - targets) ** 2 def get_std_factor_from_confidence_percent(percent): dec = percent/100. inv_dec = 1 - dec return scipy.stats.norm.ppf(dec+inv_dec/2) def get_all_metric_names(task_type, model_uncertainty, loss_config, # pylint: disable=unused-argument mode='eval', return_dict=True): """Get all the scalar fields produced by compute_loss_and_metrics.""" names = ['regularization_loss', 'prediction_accuracy', str(mode)+'_loss'] if task_type == TASK_CLASSIFICATION: names += ['classification_loss'] else: names += ['regression_loss', 'avg_mu', 'var_mu'] if model_uncertainty: names += ['uncertainty_loss', 'scaled_regression_loss', 'uncertainty_plus_scaled_regression', 'avg_sigma', 'var_sigma', 'percent_in_conf_interval', 'error_sigma_correlation', 'avg_prob'] if return_dict: return {name: 0. for name in names} else: return names def compute_loss_and_metrics(mu, log_sigma_sq, regression_targets, labels, task_type, model_uncertainty, loss_config, regularization_loss=0., confidence_interval=95, mode='train'): """Computes loss statistics and other metrics.""" scalars_to_log = dict() vectors_to_log = dict() scalars_to_log['regularization_loss'] = regularization_loss vectors_to_log['mu'] = mu if task_type == TASK_CLASSIFICATION: cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=mu, labels=labels, name='cross_entropy') classification_loss = tf.reduce_mean(cross_entropy, name='class_loss') total_loss = classification_loss sigma = None scalars_to_log['classification_loss'] = classification_loss predicted_labels = tf.argmax(mu, axis=1) correct_predictions = equal32(predicted_labels, labels) else: regression_loss = mse_loss(mu, regression_targets) if 'mse_normalize' in loss_config and loss_config['mse_normalize']: assert task_type in [TASK_GROUNDED_UNNORMALIZED_REGRESSION, TASK_NORMALIZED_REGRESSION] regression_loss = normalize_regression_loss(regression_loss, mu) avg_regression_loss = tf.reduce_mean(regression_loss) vectors_to_log['regression_loss'] = regression_loss scalars_to_log['regression_loss'] = avg_regression_loss scalars_to_log['avg_mu'] = tf.reduce_mean(mu) scalars_to_log['var_mu'] = tf.reduce_mean(mse_loss(mu, tf.reduce_mean(mu))) predicted_labels = tf.cast(mu > 0, tf.int64) correct_predictions = equal32(predicted_labels, labels) if model_uncertainty: # This implements Eq. (1) in https://arxiv.org/pdf/1612.01474.pdf inv_sigma_sq = tf.math.exp(-log_sigma_sq) scaled_regression_loss = regression_loss * inv_sigma_sq scaled_regression_loss = tf.reduce_mean(scaled_regression_loss) uncertainty_loss = tf.reduce_mean(log_sigma_sq) total_loss = uncertainty_loss + scaled_regression_loss scalars_to_log['uncertainty_loss'] = uncertainty_loss scalars_to_log['scaled_regression_loss'] = scaled_regression_loss scalars_to_log['uncertainty_plus_scaled_regression'] = total_loss sigma = tf.math.exp(log_sigma_sq / 2.) vectors_to_log['sigma'] = sigma scalars_to_log['avg_sigma'] = tf.reduce_mean(sigma) var_sigma = tf.reduce_mean(mse_loss(sigma, tf.reduce_mean(sigma))) scalars_to_log['var_sigma'] = var_sigma # Compute # of labels that fall into the confidence interval. std_factor = get_std_factor_from_confidence_percent(confidence_interval) lower_bound = mu - std_factor * sigma upper_bound = mu + std_factor * sigma preds = tf.logical_and(tf.greater(regression_targets, lower_bound), tf.less(regression_targets, upper_bound)) percent_in_conf_interval = tf.reduce_mean(tf.cast(preds, tf.float32)) scalars_to_log['percent_in_conf_interval'] = percent_in_conf_interval*100 error_sigma_corr = tfp.stats.correlation(x=regression_loss, y=sigma, event_axis=None) scalars_to_log['error_sigma_correlation'] = error_sigma_corr dists = tfp.distributions.Normal(mu, sigma) probs = dists.prob(regression_targets) scalars_to_log['avg_prob'] = tf.reduce_mean(probs) else: total_loss = avg_regression_loss loss_name = str(mode)+'_loss' total_loss = tf.add(total_loss, regularization_loss, name=loss_name) scalars_to_log[loss_name] = total_loss vectors_to_log['correct_predictions'] = correct_predictions scalars_to_log['prediction_accuracy'] = tf.reduce_mean(correct_predictions) # Validate that metrics outputted are exactly what is expected expected = get_all_metric_names(task_type, model_uncertainty, loss_config, mode, False) assert set(expected) == set(scalars_to_log.keys()) return scalars_to_log, vectors_to_log
deepmind-research-master
galaxy_mergers/losses.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple script to model evaluation on a checkpoint and dataset.""" import ast from absl import app from absl import flags from absl import logging from galaxy_mergers import evaluator flags.DEFINE_string('checkpoint_path', '', 'Path to TF2 checkpoint to eval.') flags.DEFINE_string('data_path', '', 'Path to TFRecord(s) with data.') flags.DEFINE_string('filter_time_intervals', None, 'Merger time intervals on which to perform regression.' 'Specify None for the default time interval [-1,1], or' ' a custom list of intervals, e.g. [[-0.2,0], [0.5,1]].') FLAGS = flags.FLAGS def main(_) -> None: if FLAGS.filter_time_intervals is not None: filter_time_intervals = ast.literal_eval(FLAGS.filter_time_intervals) else: filter_time_intervals = None config, ds, experiment = evaluator.get_config_dataset_evaluator( filter_time_intervals, FLAGS.checkpoint_path, config_override={ 'experiment_kwargs.data_config.dataset_path': FLAGS.data_path, }) metrics, _, _ = evaluator.run_model_on_dataset(experiment, ds, config) logging.info('Evaluation complete. Metrics: %s', metrics) if __name__ == '__main__': app.run(main)
deepmind-research-master
galaxy_mergers/main.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for a galaxy merger model evaluation.""" import glob import os from astropy import cosmology from astropy.io import fits import matplotlib.pyplot as plt import numpy as np from PIL import Image import tensorflow.compat.v2 as tf def restore_checkpoint(checkpoint_dir, experiment): checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir) global_step = tf.Variable( 0, dtype=tf.int32, trainable=False, name='global_step') checkpoint = tf.train.Checkpoint( _global_step_=global_step, **experiment.checkpoint_items) checkpoint.restore(checkpoint_path) def sum_average_transformed_mu_and_sigma(mu, log_sigma_sq): """Computes <mu>, var(mu) + <var> in transformed representation. This corresponds to assuming that the output distribution is a sum of Gaussian and computing the mean and variance of the resulting (non-Gaussian) distribution. Args: mu: Tensor of shape [B, ...] representing the means of the input distributions. log_sigma_sq: Tensor of shape [B, ...] representing log(sigma**2) of the input distributions. Can be None, in which case the variance is assumed to be zero. Returns: mu: Tensor of shape [...] representing the means of the output distributions. log_sigma_sq: Tensor of shape [...] representing log(sigma**2) of the output distributions. """ av_mu = tf.reduce_mean(mu, axis=0) var_mu = tf.math.reduce_std(mu, axis=0)**2 if log_sigma_sq is None: return av_mu, tf.math.log(var_mu) max_log_sigma_sq = tf.reduce_max(log_sigma_sq, axis=0) log_sigma_sq -= max_log_sigma_sq # (sigma/sigma_0)**2 sigma_sq = tf.math.exp(log_sigma_sq) # (<sigma**2>)/sigma_0**2 (<1) av_sigma_sq = tf.reduce_mean(sigma_sq, axis=0) # (<sigma**2> + var(mu))/sigma_0**2 av_sigma_sq += var_mu * tf.math.exp(-max_log_sigma_sq) # log(<sigma**2> + var(mu)) log_av_sigma_sq = tf.math.log(av_sigma_sq) + max_log_sigma_sq return av_mu, log_av_sigma_sq def aggregate_regression_ensemble(logits_or_times, ensemble_size, use_uncertainty, test_time_ensembling): """Aggregate output of model ensemble.""" out_shape = logits_or_times.shape.as_list()[1:] logits_or_times = tf.reshape(logits_or_times, [ensemble_size, -1] + out_shape) mus = logits_or_times[..., 0] log_sigma_sqs = logits_or_times[..., -1] if use_uncertainty else None if test_time_ensembling == 'sum': mu, log_sigma_sq = sum_average_transformed_mu_and_sigma(mus, log_sigma_sqs) elif test_time_ensembling == 'none': mu = mus[0] log_sigma_sq = log_sigma_sqs[0] if use_uncertainty else None else: raise ValueError('Unexpected test_time_ensembling') return mu, log_sigma_sq def aggregate_classification_ensemble(logits_or_times, ensemble_size, test_time_ensembling): """Averages the output logits across models in the ensemble.""" out_shape = logits_or_times.shape.as_list()[1:] logits = tf.reshape(logits_or_times, [ensemble_size, -1] + out_shape) if test_time_ensembling == 'sum': logits = tf.reduce_mean(logits, axis=0) return logits, None elif test_time_ensembling == 'none': return logits, None else: raise ValueError('Unexpected test_time_ensembling') def unpack_evaluator_output(data, return_seq_info=False, return_redshift=False): """Unpack evaluator.run_model_on_dataset output.""" mus = np.array(data[1]['mu']).flatten() sigmas = np.array(data[1]['sigma']).flatten() regression_targets = np.array(data[1]['regression_targets']).flatten() outputs = [mus, sigmas, regression_targets] if return_seq_info: seq_ids = np.array(data[2][0]).flatten() seq_ids = np.array([seq_id.decode('UTF-8') for seq_id in seq_ids]) time_idxs = np.array(data[2][1]).flatten() axes = np.array(data[2][2]).flatten() outputs += [seq_ids, axes, time_idxs] if return_redshift: redshifts = np.array(data[2][6]).flatten() outputs += [redshifts] return outputs def process_data_into_myrs(redshifts, *data_lists): """Converts normalized time to virial time using Planck cosmology.""" # small hack to avoid build tools not recognizing non-standard trickery # done in the astropy library: # https://github.com/astropy/astropy/blob/master/astropy/cosmology/core.py#L3290 # that dynamically generates and imports new classes. planck13 = getattr(cosmology, 'Plank13') hubble_constants = planck13.H(redshifts) # (km/s)/megaparsec inv_hubble_constants = 1/hubble_constants # (megaparsec*s) / km megaparsec_to_km = 1e19*3.1 seconds_to_gigayears = 1e-15/31.556 conversion_factor = megaparsec_to_km * seconds_to_gigayears hubble_time_gigayears = conversion_factor * inv_hubble_constants hubble_to_virial_time = 0.14 # approximate simulation-based conversion factor virial_dyn_time = hubble_to_virial_time*hubble_time_gigayears.value return [data_list*virial_dyn_time for data_list in data_lists] def print_rmse_and_class_accuracy(mus, regression_targets, redshifts): """Convert to virial dynamical time and print stats.""" time_pred, time_gt = process_data_into_myrs( redshifts, mus, regression_targets) time_sq_errors = (time_pred-time_gt)**2 rmse = np.sqrt(np.mean(time_sq_errors)) labels = regression_targets > 0 class_preds = mus > 0 accuracy = sum((labels == class_preds).astype(np.int8)) / len(class_preds) print(f'95% Error: {np.percentile(np.sqrt(time_sq_errors), 95)}') print(f'RMSE: {rmse}') print(f'Classification Accuracy: {accuracy}') def print_stats(vec, do_print=True): fvec = vec.flatten() if do_print: print(len(fvec), min(fvec), np.mean(fvec), np.median(fvec), max(fvec)) return (len(fvec), min(fvec), np.mean(fvec), np.median(fvec), max(fvec)) def get_image_from_fits(base_dir, seq='475_31271', time='497', axis=2): """Read *.fits galaxy image from directory.""" axis_map = {0: 'x', 1: 'y', 2: 'z'} fits_glob = f'{base_dir}/{seq}/fits_of_flux_psf/{time}/*_{axis_map[axis]}_*.fits' def get_freq_from_path(p): return int(p.split('/')[-1].split('_')[2][1:]) fits_image_paths = sorted(glob.glob(fits_glob), key=get_freq_from_path) assert len(fits_image_paths) == 7 combined_frequencies = [] for fit_path in fits_image_paths: with open(fit_path, 'rb') as f: fits_data = np.array(fits.open(f)[0].data.astype(np.float32)) combined_frequencies.append(fits_data) fits_image = np.transpose(np.array(combined_frequencies), (1, 2, 0)) return fits_image def stack_desired_galaxy_images(base_dir, seq, n_time_slices): """Searth through galaxy image directory gathering images.""" fits_sequence_dir = os.path.join(base_dir, seq, 'fits_of_flux_psf') all_times_for_seq = os.listdir(fits_sequence_dir) hop = (len(all_times_for_seq)-1)//(n_time_slices-1) desired_time_idxs = [k*hop for k in range(n_time_slices)] all_imgs = [] for j in desired_time_idxs: time = all_times_for_seq[j] img = get_image_from_fits(base_dir=base_dir, seq=seq, time=time, axis=2) all_imgs.append(img) min_img_size = min([img.shape[0] for img in all_imgs]) return all_imgs, min_img_size def draw_galaxy_image(image, target_size=None, color_map='viridis'): normalized_image = image / max(image.flatten()) color_map = plt.get_cmap(color_map) colored_image = color_map(normalized_image)[:, :, :3] colored_image = (colored_image * 255).astype(np.uint8) colored_image = Image.fromarray(colored_image, mode='RGB') if target_size: colored_image = colored_image.resize(target_size, Image.ANTIALIAS) return colored_image def collect_merger_sequence(ds, seq=b'370_11071', n_examples_to_sift=5000): images, targets, redshifts = [], [], [] for i, all_inputs in enumerate(ds): if all_inputs[4][0].numpy() == seq: images.append(all_inputs[0][0].numpy()) targets.append(all_inputs[2][0].numpy()) redshifts.append(all_inputs[10][0].numpy()) if i > n_examples_to_sift: break return np.squeeze(images), np.squeeze(targets), np.squeeze(redshifts) def take_samples(sample_idxs, *data_lists): return [np.take(l, sample_idxs, axis=0) for l in data_lists]
deepmind-research-master
galaxy_mergers/helpers.py
# Copyright 2021 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation runner.""" import collections from absl import logging import tensorflow.compat.v2 as tf from galaxy_mergers import config as tp_config from galaxy_mergers import helpers from galaxy_mergers import losses from galaxy_mergers import model from galaxy_mergers import preprocessing class GalaxyMergeClassifierEvaluator(): """Galaxy Merge Rate Prediction Evaluation Runner.""" def __init__(self, strategy, optimizer_config, total_train_batch_size, train_net_args, eval_batch_size, eval_net_args, l2_regularization, data_config, resnet_kwargs, n_train_epochs): """Initializes evaluator/experiment.""" logging.info('Initializing evaluator...') self._strategy = strategy self._data_config = data_config self._use_additional_features = bool(data_config['additional_features']) self._eval_batch_size = eval_batch_size self._eval_net_args = eval_net_args self._num_buckets = data_config['num_eval_buckets'] self._n_repeats = data_config['n_crop_repeat'] self._image_size = data_config['image_size'] self._task_type = data_config['task'] self._loss_config = data_config['loss_config'] self._model_uncertainty = data_config['model_uncertainty'] del l2_regularization, optimizer_config, train_net_args del total_train_batch_size, n_train_epochs logging.info('Creating model...') num_classes = 2 if self._model_uncertainty else 1 if self._task_type == losses.TASK_CLASSIFICATION: num_classes = len(self._data_config['class_boundaries']) self.model = model.ResNet( n_repeats=self._data_config['n_crop_repeat'], num_classes=num_classes, use_additional_features=self._use_additional_features, **resnet_kwargs) self._eval_input = None def build_eval_input(self, additional_lambdas=None): """Create the galaxy merger evaluation dataset.""" def decode_fn(record_bytes): parsed_example = tf.io.parse_single_example( record_bytes, { 'image': tf.io.VarLenFeature(tf.float32), 'image_shape': tf.io.FixedLenFeature([3], dtype=tf.int64), 'axis': tf.io.FixedLenFeature([], dtype=tf.int64), 'proposed_crop': tf.io.FixedLenFeature([2, 2], dtype=tf.int64), 'normalized_time': tf.io.FixedLenFeature([], dtype=tf.float32), 'unnormalized_time': tf.io.FixedLenFeature([], dtype=tf.float32), 'grounded_normalized_time': tf.io.FixedLenFeature([], dtype=tf.float32), 'redshift': tf.io.FixedLenFeature([], dtype=tf.float32), 'sequence_average_redshift': tf.io.FixedLenFeature([], dtype=tf.float32), 'mass': tf.io.FixedLenFeature([], dtype=tf.float32), 'time_index': tf.io.FixedLenFeature([], dtype=tf.int64), 'sequence_id': tf.io.FixedLenFeature([], dtype=tf.string), }) parsed_example['image'] = tf.sparse.to_dense( parsed_example['image'], default_value=0) dataset_row = parsed_example return dataset_row def build_eval_pipeline(_): """Generate the processed input evaluation data.""" logging.info('Building evaluation input pipeline...') ds_path = self._data_config['dataset_path'] ds = tf.data.TFRecordDataset([ds_path]).map(decode_fn) augmentations = dict( rotation_and_flip=False, rescaling=False, translation=False ) ds = preprocessing.prepare_dataset( ds=ds, target_size=self._image_size, crop_type=self._data_config['test_crop_type'], n_repeats=self._n_repeats, augmentations=augmentations, task_type=self._task_type, additional_features=self._data_config['additional_features'], class_boundaries=self._data_config['class_boundaries'], time_intervals=self._data_config['time_filter_intervals'], frequencies_to_use=self._data_config['frequencies_to_use'], additional_lambdas=additional_lambdas) batched_ds = ds.cache().batch(self._eval_batch_size).prefetch(128) logging.info('Finished building input pipeline...') return batched_ds return self._strategy.experimental_distribute_datasets_from_function( build_eval_pipeline) def run_test_model_ensemble(self, images, physical_features, augmentations): """Run evaluation on input images.""" image_variations = [images] image_shape = images.shape.as_list() if augmentations['rotation_and_flip']: image_variations = preprocessing.get_all_rotations_and_flips( image_variations) if augmentations['rescaling']: image_variations = preprocessing.get_all_rescalings( image_variations, image_shape[1], augmentations['translation']) # Put all augmented images into the batch: batch * num_augmented augmented_images = tf.stack(image_variations, axis=0) augmented_images = tf.reshape(augmented_images, [-1] + image_shape[1:]) if self._use_additional_features: physical_features = tf.concat( [physical_features] * len(image_variations), axis=0) n_reps = self._data_config['n_crop_repeat'] augmented_images = preprocessing.move_repeats_to_batch(augmented_images, n_reps) logits_or_times = self.model(augmented_images, physical_features, **self._eval_net_args) if self._task_type == losses.TASK_CLASSIFICATION: mu, log_sigma_sq = helpers.aggregate_classification_ensemble( logits_or_times, len(image_variations), self._data_config['test_time_ensembling']) else: assert self._task_type in losses.REGRESSION_TASKS mu, log_sigma_sq = helpers.aggregate_regression_ensemble( logits_or_times, len(image_variations), self._model_uncertainty, self._data_config['test_time_ensembling']) return mu, log_sigma_sq @property def checkpoint_items(self): return {'model': self.model} def run_model_on_dataset(evaluator, dataset, config, n_batches=16): """Runs the model against a dataset, aggregates model output.""" scalar_metrics_to_log = collections.defaultdict(list) model_outputs_to_log = collections.defaultdict(list) dataset_features_to_log = collections.defaultdict(list) batch_count = 1 for all_inputs in dataset: if config.experiment_kwargs.data_config['additional_features']: images = all_inputs[0] physical_features = all_inputs[1] labels, regression_targets, _ = all_inputs[2:5] other_dataset_features = all_inputs[5:] else: images, physical_features = all_inputs[0], None labels, regression_targets, _ = all_inputs[1:4] other_dataset_features = all_inputs[4:] mu, log_sigma_sq = evaluator.run_test_model_ensemble( images, physical_features, config.experiment_kwargs.data_config['test_augmentations']) loss_config = config.experiment_kwargs.data_config['loss_config'] task_type = config.experiment_kwargs.data_config['task'] uncertainty = config.experiment_kwargs.data_config['model_uncertainty'] conf = config.experiment_kwargs.data_config['eval_confidence_interval'] scalar_metrics, vector_metrics = losses.compute_loss_and_metrics( mu, log_sigma_sq, regression_targets, labels, task_type, uncertainty, loss_config, 0, conf, mode='eval') for i, dataset_feature in enumerate(other_dataset_features): dataset_features_to_log[i].append(dataset_feature.numpy()) for scalar_metric in scalar_metrics: v = scalar_metrics[scalar_metric] val = v if isinstance(v, int) or isinstance(v, float) else v.numpy() scalar_metrics_to_log[scalar_metric].append(val) for vector_metric in vector_metrics: val = vector_metrics[vector_metric].numpy() model_outputs_to_log[vector_metric].append(val) regression_targets_np = regression_targets.numpy() labels_np = labels.numpy() model_outputs_to_log['regression_targets'].append(regression_targets_np) model_outputs_to_log['labels'].append(labels_np) model_outputs_to_log['model_input_images'].append(images.numpy()) if n_batches and batch_count >= n_batches: break batch_count += 1 return scalar_metrics_to_log, model_outputs_to_log, dataset_features_to_log def get_config_dataset_evaluator(filter_time_intervals, ckpt_path, config_override=None, setup_dataset=True): """Set-up a default config, evaluation dataset, and evaluator.""" config = tp_config.get_config(filter_time_intervals=filter_time_intervals) if config_override: with config.ignore_type(): config.update_from_flattened_dict(config_override) strategy = tf.distribute.OneDeviceStrategy(device='/gpu:0') experiment = GalaxyMergeClassifierEvaluator( strategy=strategy, **config.experiment_kwargs) helpers.restore_checkpoint(ckpt_path, experiment) if setup_dataset: additional_lambdas = [ lambda ds: ds['sequence_id'], lambda ds: ds['time_index'], lambda ds: ds['axis'], lambda ds: ds['normalized_time'], lambda ds: ds['grounded_normalized_time'], lambda ds: ds['unnormalized_time'], lambda ds: ds['redshift'], lambda ds: ds['mass'] ] ds = experiment.build_eval_input(additional_lambdas=additional_lambdas) else: ds = None return config, ds, experiment
deepmind-research-master
galaxy_mergers/evaluator.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A prop-carry task that transition between multiple phases.""" import collections import colorsys import enum from absl import logging from dm_control import composer from dm_control import mjcf from dm_control.composer.observation import observable from dm_control.locomotion.arenas import floors from dm_control.locomotion.mocap import loader as mocap_loader from dm_control.mujoco.wrapper import mjbindings import numpy as np from catch_carry import arm_opener from catch_carry import mocap_data from catch_carry import props from catch_carry import trajectories _PHYSICS_TIMESTEP = 0.005 # Maximum number of physics steps to run when settling props onto pedestals # during episode initialization. _MAX_SETTLE_STEPS = 1000 # Maximum velocity for prop to be considered settled. # Used during episode initialization only. _SETTLE_QVEL_TOL = 1e-5 # Magnitude of the sparse reward. _SPARSE_REWARD = 1.0 # Maximum distance for walkers to be considered to be "near" a pedestal/target. _TARGET_TOL = 0.65 # Defines how pedestals are placed around the arena. # Pedestals are placed at constant angle intervals around the arena's center. _BASE_PEDESTAL_DIST = 3 # Base distance from center. _PEDESTAL_DIST_DELTA = 0.5 # Maximum variation on the base distance. # Base hue-luminosity-saturation of the pedestal colors. # We rotate through the hue for each pedestal created in the environment. _BASE_PEDESTAL_H = 0.1 _BASE_PEDESTAL_L = 0.3 _BASE_PEDESTAL_S = 0.7 # Pedestal luminosity when active. _ACTIVATED_PEDESTAL_L = 0.8 _PEDESTAL_SIZE = (0.2, 0.2, 0.02) _SINGLE_PEDESTAL_COLOR = colorsys.hls_to_rgb(.3, .15, .35) + (1.0,) WALKER_PEDESTAL = 'walker_pedestal' WALKER_PROP = 'walker_prop' PROP_PEDESTAL = 'prop_pedestal' TARGET_STATE = 'target_state/' CURRENT_STATE = 'meta/current_state/' def _is_same_state(state_1, state_2): if state_1.keys() != state_2.keys(): return False for k in state_1: if not np.all(state_1[k] == state_2[k]): return False return True def _singleton_or_none(iterable): iterator = iter(iterable) try: return next(iterator) except StopIteration: return None def _generate_pedestal_colors(num_pedestals): """Function to get colors for pedestals.""" colors = [] for i in range(num_pedestals): h = _BASE_PEDESTAL_H + i / num_pedestals while h > 1: h -= 1 colors.append( colorsys.hls_to_rgb(h, _BASE_PEDESTAL_L, _BASE_PEDESTAL_S) + (1.0,)) return colors InitializationParameters = collections.namedtuple( 'InitializationParameters', ('clip_segment', 'prop_id', 'pedestal_id')) def _rotate_vector_by_quaternion(vec, quat): result = np.empty(3) mjbindings.mjlib.mju_rotVecQuat(result, np.asarray(vec), np.asarray(quat)) return result @enum.unique class WarehousePhase(enum.Enum): TERMINATED = 0 GOTOTARGET = 1 PICKUP = 2 CARRYTOTARGET = 3 PUTDOWN = 4 def _find_random_free_pedestal_id(target_state, random_state): free_pedestals = ( np.where(np.logical_not(np.any(target_state, axis=0)))[0]) return random_state.choice(free_pedestals) def _find_random_occupied_pedestal_id(target_state, random_state): occupied_pedestals = ( np.where(np.any(target_state, axis=0))[0]) return random_state.choice(occupied_pedestals) def one_hot(values, num_unique): return np.squeeze(np.eye(num_unique)[np.array(values).reshape(-1)]) class SinglePropFourPhases(object): """A phase manager that transitions between four phases for a single prop.""" def __init__(self, fixed_initialization_phase=None): self._phase = WarehousePhase.TERMINATED self._fixed_initialization_phase = fixed_initialization_phase def initialize_episode(self, target_state, random_state): """Randomly initializes an episode into one of the four phases.""" if self._fixed_initialization_phase is None: self._phase = random_state.choice([ WarehousePhase.GOTOTARGET, WarehousePhase.PICKUP, WarehousePhase.CARRYTOTARGET, WarehousePhase.PUTDOWN ]) else: self._phase = self._fixed_initialization_phase self._prop_id = random_state.randint(len(target_state[PROP_PEDESTAL])) self._pedestal_id = np.nonzero( target_state[PROP_PEDESTAL][self._prop_id])[0][0] pedestal_id_for_initialization = self._pedestal_id if self._phase == WarehousePhase.GOTOTARGET: clip_segment = trajectories.ClipSegment.APPROACH target_state[WALKER_PROP][:] = 0 target_state[WALKER_PEDESTAL][self._pedestal_id] = 1 elif self._phase == WarehousePhase.PICKUP: clip_segment = trajectories.ClipSegment.PICKUP target_state[WALKER_PROP][self._prop_id] = 1 target_state[WALKER_PEDESTAL][self._pedestal_id] = 1 # Set self._pedestal_id to the next pedestal after pickup is successful. self._pedestal_id = _find_random_free_pedestal_id( target_state[PROP_PEDESTAL], random_state) target_state[PROP_PEDESTAL][self._prop_id, :] = 0 elif self._phase == WarehousePhase.CARRYTOTARGET: clip_segment = random_state.choice([ trajectories.ClipSegment.CARRY1, trajectories.ClipSegment.CARRY2]) self._pedestal_id = _find_random_free_pedestal_id( target_state[PROP_PEDESTAL], random_state) if clip_segment == trajectories.ClipSegment.CARRY2: pedestal_id_for_initialization = self._pedestal_id target_state[WALKER_PROP][self._prop_id] = 1 target_state[WALKER_PEDESTAL][self._pedestal_id] = 1 target_state[PROP_PEDESTAL][self._prop_id, :] = 0 elif self._phase == WarehousePhase.PUTDOWN: clip_segment = trajectories.ClipSegment.PUTDOWN target_state[WALKER_PROP][:] = 0 target_state[WALKER_PEDESTAL][self._pedestal_id] = 1 return InitializationParameters( clip_segment, self._prop_id, pedestal_id_for_initialization) def on_success(self, target_state, random_state): """Transitions into the next phase upon success of current phase.""" if self._phase == WarehousePhase.GOTOTARGET: if self._prop_id is not None: self._phase = WarehousePhase.PICKUP # Set self._pedestal_id to the next pedestal after pickup is successful. self._pedestal_id = ( _find_random_free_pedestal_id( target_state[PROP_PEDESTAL], random_state)) target_state[WALKER_PROP][self._prop_id] = 1 target_state[PROP_PEDESTAL][self._prop_id, :] = 0 else: # If you go to an empty pedestal, go to pedestal with a prop. self._pedestal_id = ( _find_random_occupied_pedestal_id( target_state[PROP_PEDESTAL], random_state)) target_state[WALKER_PEDESTAL][:] = 0 target_state[WALKER_PEDESTAL][self._pedestal_id] = 1 self._prop_id = np.argwhere( target_state[PROP_PEDESTAL][:, self._pedestal_id])[0, 0] elif self._phase == WarehousePhase.PICKUP: self._phase = WarehousePhase.CARRYTOTARGET target_state[WALKER_PEDESTAL][:] = 0 target_state[WALKER_PEDESTAL][self._pedestal_id] = 1 elif self._phase == WarehousePhase.CARRYTOTARGET: self._phase = WarehousePhase.PUTDOWN target_state[WALKER_PROP][:] = 0 target_state[PROP_PEDESTAL][self._prop_id, self._pedestal_id] = 1 elif self._phase == WarehousePhase.PUTDOWN: self._phase = WarehousePhase.GOTOTARGET # Set self._pedestal_id to the next pedestal after putdown is successful. self._pedestal_id = ( _find_random_free_pedestal_id( target_state[PROP_PEDESTAL], random_state)) self._prop_id = None target_state[WALKER_PEDESTAL][:] = 0 target_state[WALKER_PEDESTAL][self._pedestal_id] = 1 return self._phase @property def phase(self): return self._phase @property def prop_id(self): return self._prop_id @property def pedestal_id(self): return self._pedestal_id class PhasedBoxCarry(composer.Task): """A prop-carry task that transitions between multiple phases.""" def __init__( self, walker, num_props, num_pedestals, proto_modifier=None, transition_class=SinglePropFourPhases, min_prop_gap=0.05, pedestal_height_range=(0.45, 0.75), log_transitions=False, negative_reward_on_failure_termination=True, use_single_pedestal_color=True, priority_friction=False, fixed_initialization_phase=None): """Initialize phased/instructed box-carrying ("warehouse") task. Args: walker: the walker to be used in this task. num_props: the number of props in the task scene. num_pedestals: the number of floating shelves (pedestals) in the task scene. proto_modifier: function to modify trajectory proto. transition_class: the object that handles the transition logic. min_prop_gap: arms are automatically opened to leave a gap around the prop to avoid problematic collisions upon initialization. pedestal_height_range: range of heights for the pedestal. log_transitions: logging/printing of transitions. negative_reward_on_failure_termination: boolean for whether to provide negative sparse rewards on failure termination. use_single_pedestal_color: boolean option for pedestals being the same color or different colors. priority_friction: sets friction priority thereby making prop objects have higher friction. fixed_initialization_phase: an instance of the `WarehousePhase` enum that specifies the phase in which to always initialize the task, or `None` if the initial task phase should be chosen randomly for each episode. """ self._num_props = num_props self._num_pedestals = num_pedestals self._proto_modifier = proto_modifier self._transition_manager = transition_class( fixed_initialization_phase=fixed_initialization_phase) self._min_prop_gap = min_prop_gap self._pedestal_height_range = pedestal_height_range self._log_transitions = log_transitions self._target_state = collections.OrderedDict([ (WALKER_PEDESTAL, np.zeros(num_pedestals)), (WALKER_PROP, np.zeros(num_props)), (PROP_PEDESTAL, np.zeros([num_props, num_pedestals])) ]) self._current_state = collections.OrderedDict([ (WALKER_PEDESTAL, np.zeros(num_pedestals)), (WALKER_PROP, np.zeros(num_props)), (PROP_PEDESTAL, np.zeros([num_props, num_pedestals])) ]) self._negative_reward_on_failure_termination = ( negative_reward_on_failure_termination) self._priority_friction = priority_friction clips = sorted( set(mocap_data.medium_pedestal()) & (set(mocap_data.small_box()) | set(mocap_data.large_box()))) loader = mocap_loader.HDF5TrajectoryLoader( mocap_data.H5_PATH, trajectories.SinglePropCarrySegmentedTrajectory) self._trajectories = [ loader.get_trajectory(clip.clip_identifier) for clip in clips] self._arena = floors.Floor() self._walker = walker self._feet_geoms = ( walker.mjcf_model.find('body', 'lfoot').find_all('geom') + walker.mjcf_model.find('body', 'rfoot').find_all('geom')) self._lhand_geoms = ( walker.mjcf_model.find('body', 'lhand').find_all('geom')) self._rhand_geoms = ( walker.mjcf_model.find('body', 'rhand').find_all('geom')) self._trajectories[0].configure_walkers([self._walker]) walker.create_root_joints(self._arena.attach(walker)) control_timestep = self._trajectories[0].dt for i, trajectory in enumerate(self._trajectories): if trajectory.dt != control_timestep: raise ValueError( 'Inconsistent control timestep: ' 'trajectories[{}].dt == {} but trajectories[0].dt == {}' .format(i, trajectory.dt, control_timestep)) self.set_timesteps(control_timestep, _PHYSICS_TIMESTEP) if use_single_pedestal_color: self._pedestal_colors = [_SINGLE_PEDESTAL_COLOR] * num_pedestals else: self._pedestal_colors = _generate_pedestal_colors(num_pedestals) self._pedestals = [props.Pedestal(_PEDESTAL_SIZE, rgba) for rgba in self._pedestal_colors] for pedestal in self._pedestals: self._arena.attach(pedestal) self._props = [ self._trajectories[0].create_props( priority_friction=self._priority_friction)[0] for _ in range(num_props) ] for prop in self._props: self._arena.add_free_entity(prop) self._task_observables = collections.OrderedDict() self._task_observables['target_phase'] = observable.Generic( lambda _: one_hot(self._transition_manager.phase.value, num_unique=5)) def ego_prop_xpos(physics): prop_id = self._focal_prop_id if prop_id is None: return np.zeros((3,)) prop = self._props[prop_id] prop_xpos, _ = prop.get_pose(physics) walker_xpos = physics.bind(self._walker.root_body).xpos return self._walker.transform_vec_to_egocentric_frame( physics, prop_xpos - walker_xpos) self._task_observables['target_prop/xpos'] = ( observable.Generic(ego_prop_xpos)) def prop_zaxis(physics): prop_id = self._focal_prop_id if prop_id is None: return np.zeros((3,)) prop = self._props[prop_id] prop_xmat = physics.bind( mjcf.get_attachment_frame(prop.mjcf_model)).xmat return prop_xmat[[2, 5, 8]] self._task_observables['target_prop/zaxis'] = ( observable.Generic(prop_zaxis)) def ego_pedestal_xpos(physics): pedestal_id = self._focal_pedestal_id if pedestal_id is None: return np.zeros((3,)) pedestal = self._pedestals[pedestal_id] pedestal_xpos, _ = pedestal.get_pose(physics) walker_xpos = physics.bind(self._walker.root_body).xpos return self._walker.transform_vec_to_egocentric_frame( physics, pedestal_xpos - walker_xpos) self._task_observables['target_pedestal/xpos'] = ( observable.Generic(ego_pedestal_xpos)) for obs in (self._walker.observables.proprioception + self._walker.observables.kinematic_sensors + self._walker.observables.dynamic_sensors + list(self._task_observables.values())): obs.enabled = True self._focal_prop_id = None self._focal_pedestal_id = None @property def root_entity(self): return self._arena @property def task_observables(self): return self._task_observables @property def name(self): return 'warehouse' def initialize_episode_mjcf(self, random_state): self._reward = 0.0 self._discount = 1.0 self._should_terminate = False self._before_step_success = False for target_value in self._target_state.values(): target_value[:] = 0 for pedestal_id, pedestal in enumerate(self._pedestals): angle = 2 * np.pi * pedestal_id / len(self._pedestals) dist = (_BASE_PEDESTAL_DIST + _PEDESTAL_DIST_DELTA * random_state.uniform(-1, 1)) height = random_state.uniform(*self._pedestal_height_range) pedestal_pos = [dist * np.cos(angle), dist * np.sin(angle), height - pedestal.geom.size[2]] mjcf.get_attachment_frame(pedestal.mjcf_model).pos = pedestal_pos for prop in self._props: prop.detach() self._props = [] self._trajectory_for_prop = [] for prop_id in range(self._num_props): trajectory = random_state.choice(self._trajectories) if self._proto_modifier: trajectory = trajectory.get_modified_trajectory( self._proto_modifier, random_state=random_state) prop = trajectory.create_props( priority_friction=self._priority_friction)[0] prop.mjcf_model.model = 'prop_{}'.format(prop_id) self._arena.add_free_entity(prop) self._props.append(prop) self._trajectory_for_prop.append(trajectory) def _settle_props(self, physics): prop_freejoints = [mjcf.get_attachment_frame(prop.mjcf_model).freejoint for prop in self._props] physics.bind(prop_freejoints).qvel = 0 physics.forward() for _ in range(_MAX_SETTLE_STEPS): self._update_current_state(physics) success = self._evaluate_target_state() stopped = max(abs(physics.bind(prop_freejoints).qvel)) < _SETTLE_QVEL_TOL if success and stopped: break else: physics.step() physics.data.time = 0 def initialize_episode(self, physics, random_state): self._ground_geomid = physics.bind( self._arena.mjcf_model.worldbody.geom[0]).element_id self._feet_geomids = set(physics.bind(self._feet_geoms).element_id) self._lhand_geomids = set(physics.bind(self._lhand_geoms).element_id) self._rhand_geomids = set(physics.bind(self._rhand_geoms).element_id) for prop_id in range(len(self._props)): pedestal_id = _find_random_free_pedestal_id( self._target_state[PROP_PEDESTAL], random_state) pedestal = self._pedestals[pedestal_id] self._target_state[PROP_PEDESTAL][prop_id, pedestal_id] = 1 for prop_id, prop in enumerate(self._props): trajectory = self._trajectory_for_prop[prop_id] pedestal_id = np.nonzero( self._target_state[PROP_PEDESTAL][prop_id])[0][0] pedestal = self._pedestals[pedestal_id] pedestal_pos, _ = pedestal.get_pose(physics) pedestal_delta = np.array( pedestal_pos - trajectory.infer_pedestal_positions()[0]) pedestal_delta[2] += pedestal.geom.size[2] prop_timestep = trajectory.get_timestep_data(0).props[0] prop_pos = prop_timestep.position + np.array(pedestal_delta) prop_quat = prop_timestep.quaternion prop_pos[:2] += random_state.uniform( -pedestal.geom.size[:2] / 2, pedestal.geom.size[:2] / 2) prop.set_pose(physics, prop_pos, prop_quat) self._settle_props(physics) init_params = self._transition_manager.initialize_episode( self._target_state, random_state) if self._log_transitions: logging.info(init_params) self._on_transition(physics) init_prop = self._props[init_params.prop_id] init_pedestal = self._pedestals[init_params.pedestal_id] self._init_prop_id = init_params.prop_id self._init_pedestal_id = init_params.pedestal_id init_trajectory = self._trajectory_for_prop[init_params.prop_id] init_timestep = init_trajectory.get_random_timestep_in_segment( init_params.clip_segment, random_state) trajectory_pedestal_pos = init_trajectory.infer_pedestal_positions()[0] init_pedestal_pos = np.array(init_pedestal.get_pose(physics)[0]) delta_pos = init_pedestal_pos - trajectory_pedestal_pos delta_pos[2] = 0 delta_angle = np.pi + np.arctan2(init_pedestal_pos[1], init_pedestal_pos[0]) delta_quat = (np.cos(delta_angle / 2), 0, 0, np.sin(delta_angle / 2)) trajectory_pedestal_to_walker = ( init_timestep.walkers[0].position - trajectory_pedestal_pos) rotated_pedestal_to_walker = _rotate_vector_by_quaternion( trajectory_pedestal_to_walker, delta_quat) self._walker.set_pose( physics, position=trajectory_pedestal_pos + rotated_pedestal_to_walker, quaternion=init_timestep.walkers[0].quaternion) self._walker.set_velocity( physics, velocity=init_timestep.walkers[0].velocity, angular_velocity=init_timestep.walkers[0].angular_velocity) self._walker.shift_pose( physics, position=delta_pos, quaternion=delta_quat, rotate_velocity=True) physics.bind(self._walker.mocap_joints).qpos = ( init_timestep.walkers[0].joints) physics.bind(self._walker.mocap_joints).qvel = ( init_timestep.walkers[0].joints_velocity) if init_params.clip_segment in (trajectories.ClipSegment.CARRY1, trajectories.ClipSegment.CARRY2, trajectories.ClipSegment.PUTDOWN): trajectory_pedestal_to_prop = ( init_timestep.props[0].position - trajectory_pedestal_pos) rotated_pedestal_to_prop = _rotate_vector_by_quaternion( trajectory_pedestal_to_prop, delta_quat) init_prop.set_pose( physics, position=trajectory_pedestal_pos + rotated_pedestal_to_prop, quaternion=init_timestep.props[0].quaternion) init_prop.set_velocity( physics, velocity=init_timestep.props[0].velocity, angular_velocity=init_timestep.props[0].angular_velocity) init_prop.shift_pose( physics, position=delta_pos, quaternion=delta_quat, rotate_velocity=True) # If we have moved the pedestal upwards during height initialization, # the prop may now be lodged inside it. We fix that here. if init_pedestal_pos[2] > trajectory_pedestal_pos[2]: init_prop_geomid = physics.bind(init_prop.geom).element_id init_pedestal_geomid = physics.bind(init_pedestal.geom).element_id disallowed_contact = sorted((init_prop_geomid, init_pedestal_geomid)) def has_disallowed_contact(): physics.forward() for contact in physics.data.contact: if sorted((contact.geom1, contact.geom2)) == disallowed_contact: return True return False while has_disallowed_contact(): init_prop.shift_pose(physics, (0, 0, 0.001)) self._move_arms_if_necessary(physics) self._update_current_state(physics) self._previous_step_success = self._evaluate_target_state() self._focal_prop_id = self._init_prop_id self._focal_pedestal_id = self._init_pedestal_id def _move_arms_if_necessary(self, physics): if self._min_prop_gap is not None: for entity in self._props + self._pedestals: try: arm_opener.open_arms_for_prop( physics, self._walker.left_arm_root, self._walker.right_arm_root, entity.mjcf_model, self._min_prop_gap) except RuntimeError as e: raise composer.EpisodeInitializationError(e) def after_step(self, physics, random_state): # First we check for failure termination. for contact in physics.data.contact: if ((contact.geom1 == self._ground_geomid and contact.geom2 not in self._feet_geomids) or (contact.geom2 == self._ground_geomid and contact.geom1 not in self._feet_geomids)): if self._negative_reward_on_failure_termination: self._reward = -_SPARSE_REWARD else: self._reward = 0.0 self._should_terminate = True self._discount = 0.0 return # Then check for normal reward and state transitions. self._update_current_state(physics) success = self._evaluate_target_state() if success and not self._previous_step_success: self._reward = _SPARSE_REWARD new_phase = ( self._transition_manager.on_success(self._target_state, random_state)) self._should_terminate = (new_phase == WarehousePhase.TERMINATED) self._on_transition(physics) self._previous_step_success = self._evaluate_target_state() else: self._reward = 0.0 def _on_transition(self, physics): self._focal_prop_id = self._transition_manager.prop_id self._focal_pedestal_id = self._transition_manager.pedestal_id if self._log_transitions: logging.info('target_state:\n%s', self._target_state) for pedestal_id, pedestal_active in enumerate( self._target_state[WALKER_PEDESTAL]): r, g, b, a = self._pedestal_colors[pedestal_id] if pedestal_active: h, _, s = colorsys.rgb_to_hls(r, g, b) r, g, b = colorsys.hls_to_rgb(h, _ACTIVATED_PEDESTAL_L, s) physics.bind(self._pedestals[pedestal_id].geom).rgba = (r, g, b, a) def get_reward(self, physics): return self._reward def get_discount(self, physics): return self._discount def should_terminate_episode(self, physics): return self._should_terminate def _update_current_state(self, physics): for current_state_value in self._current_state.values(): current_state_value[:] = 0 # Check if the walker is near each pedestal. walker_pos, _ = self._walker.get_pose(physics) for pedestal_id, pedestal in enumerate(self._pedestals): target_pos, _ = pedestal.get_pose(physics) walker_to_target_dist = np.linalg.norm(walker_pos[:2] - target_pos[:2]) if walker_to_target_dist <= _TARGET_TOL: self._current_state[WALKER_PEDESTAL][pedestal_id] = 1 prop_geomids = { physics.bind(prop.geom).element_id: prop_id for prop_id, prop in enumerate(self._props)} pedestal_geomids = { physics.bind(pedestal.geom).element_id: pedestal_id for pedestal_id, pedestal in enumerate(self._pedestals)} prop_pedestal_contact_counts = np.zeros( [self._num_props, self._num_pedestals]) prop_lhand_contact = [False] * self._num_props prop_rhand_contact = [False] * self._num_props for contact in physics.data.contact: prop_id = prop_geomids.get(contact.geom1, prop_geomids.get(contact.geom2)) pedestal_id = pedestal_geomids.get( contact.geom1, pedestal_geomids.get(contact.geom2)) has_lhand = (contact.geom1 in self._lhand_geomids or contact.geom2 in self._lhand_geomids) has_rhand = (contact.geom1 in self._rhand_geomids or contact.geom2 in self._rhand_geomids) if prop_id is not None and pedestal_id is not None: prop_pedestal_contact_counts[prop_id, pedestal_id] += 1 if prop_id is not None and has_lhand: prop_lhand_contact[prop_id] = True if prop_id is not None and has_rhand: prop_rhand_contact[prop_id] = True for prop_id in range(self._num_props): if prop_lhand_contact[prop_id] and prop_rhand_contact[prop_id]: self._current_state[WALKER_PROP][prop_id] = 1 pedestal_contact_counts = prop_pedestal_contact_counts[prop_id] for pedestal_id in range(self._num_pedestals): if pedestal_contact_counts[pedestal_id] >= 4: self._current_state[PROP_PEDESTAL][prop_id, pedestal_id] = 1 def _evaluate_target_state(self): return _is_same_state(self._current_state, self._target_state)
deepmind-research-master
catch_carry/warehouse.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility for opening arms until they are not in contact with a prop.""" import contextlib from dm_control.mujoco.wrapper import mjbindings import numpy as np _MAX_IK_ATTEMPTS = 100 _IK_MAX_CORRECTION_WEIGHT = 0.1 _JOINT_LIMIT_TOLERANCE = 1e-4 _GAP_TOLERANCE = 0.1 class _ArmPropContactRemover(object): """Helper class for removing contacts between an arm and a prop via IK.""" def __init__(self, physics, arm_root, prop, gap): arm_geoms = arm_root.find_all('geom') self._arm_geom_ids = set(physics.bind(arm_geoms).element_id) arm_joints = arm_root.find_all('joint') self._arm_joint_ids = list(physics.bind(arm_joints).element_id) self._arm_qpos_indices = physics.model.jnt_qposadr[self._arm_joint_ids] self._arm_dof_indices = physics.model.jnt_dofadr[self._arm_joint_ids] self._prop_geoms = prop.find_all('geom') self._prop_geom_ids = set(physics.bind(self._prop_geoms).element_id) self._arm_joint_min = np.full(len(self._arm_joint_ids), float('-inf'), dtype=physics.model.jnt_range.dtype) self._arm_joint_max = np.full(len(self._arm_joint_ids), float('inf'), dtype=physics.model.jnt_range.dtype) for i, joint_id in enumerate(self._arm_joint_ids): if physics.model.jnt_limited[joint_id]: self._arm_joint_min[i], self._arm_joint_max[i] = ( physics.model.jnt_range[joint_id]) self._gap = gap def _contact_pair_is_relevant(self, contact): set1 = self._arm_geom_ids set2 = self._prop_geom_ids return ((contact.geom1 in set1 and contact.geom2 in set2) or (contact.geom2 in set1 and contact.geom1 in set2)) def _forward_and_find_next_contact(self, physics): """Forwards the physics and finds the next contact to handle.""" physics.forward() next_contact = None for contact in physics.data.contact: if (self._contact_pair_is_relevant(contact) and (next_contact is None or contact.dist < next_contact.dist)): next_contact = contact return next_contact def _remove_contact_ik_iteration(self, physics, contact): """Performs one linearized IK iteration to remove the specified contact.""" if contact.geom1 in self._arm_geom_ids: sign = -1 geom_id = contact.geom1 else: sign = 1 geom_id = contact.geom2 body_id = physics.model.geom_bodyid[geom_id] normal = sign * contact.frame[:3] jac_dtype = physics.data.qpos.dtype jac = np.empty((6, physics.model.nv), dtype=jac_dtype) jac_pos, jac_rot = jac[:3], jac[3:] mjbindings.mjlib.mj_jacPointAxis( physics.model.ptr, physics.data.ptr, jac_pos, jac_rot, contact.pos + (contact.dist / 2) * normal, normal, body_id) # Calculate corrections w.r.t. all joints, disregarding joint limits. delta_xpos = normal * max(0, self._gap - contact.dist) jac_all_joints = jac_pos[:, self._arm_dof_indices] update_unfiltered = np.linalg.lstsq( jac_all_joints, delta_xpos, rcond=None)[0] # Filter out joints at limit that are corrected in the "wrong" direction. initial_qpos = np.array(physics.data.qpos[self._arm_qpos_indices]) min_filter = np.logical_and( initial_qpos - self._arm_joint_min < _JOINT_LIMIT_TOLERANCE, update_unfiltered < 0) max_filter = np.logical_and( self._arm_joint_max - initial_qpos < _JOINT_LIMIT_TOLERANCE, update_unfiltered > 0) active_joints = np.where( np.logical_not(np.logical_or(min_filter, max_filter)))[0] # Calculate corrections w.r.t. valid joints only. active_dof_indices = self._arm_dof_indices[active_joints] jac_joints = jac_pos[:, active_dof_indices] update_filtered = np.linalg.lstsq(jac_joints, delta_xpos, rcond=None)[0] update_nv = np.zeros(physics.model.nv, dtype=jac_dtype) update_nv[active_dof_indices] = update_filtered # Calculate maximum correction weight that does not violate joint limits. weights = np.full_like(update_filtered, _IK_MAX_CORRECTION_WEIGHT) active_initial_qpos = initial_qpos[active_joints] active_joint_min = self._arm_joint_min[active_joints] active_joint_max = self._arm_joint_max[active_joints] for i in range(len(weights)): proposed_update = update_filtered[i] if proposed_update > 0: max_allowed_update = active_joint_max[i] - active_initial_qpos[i] weights[i] = min(max_allowed_update / proposed_update, weights[i]) elif proposed_update < 0: min_allowed_update = active_joint_min[i] - active_initial_qpos[i] weights[i] = min(min_allowed_update / proposed_update, weights[i]) weight = min(weights) # Integrate the correction into `qpos`. mjbindings.mjlib.mj_integratePos( physics.model.ptr, physics.data.qpos, update_nv, weight) # "Paranoid" clip the modified joint `qpos` to within joint limits. active_qpos_indices = self._arm_qpos_indices[active_joints] physics.data.qpos[active_qpos_indices] = np.clip( physics.data.qpos[active_qpos_indices], active_joint_min, active_joint_max) @contextlib.contextmanager def _override_margins_and_gaps(self, physics): """Context manager that overrides geom margins and gaps to `self._gap`.""" prop_geom_bindings = physics.bind(self._prop_geoms) original_margins = np.array(prop_geom_bindings.margin) original_gaps = np.array(prop_geom_bindings.gap) prop_geom_bindings.margin = self._gap * (1 - _GAP_TOLERANCE) prop_geom_bindings.gap = self._gap * (1 - _GAP_TOLERANCE) yield prop_geom_bindings.margin = original_margins prop_geom_bindings.gap = original_gaps physics.forward() def remove_contacts(self, physics): with self._override_margins_and_gaps(physics): for _ in range(_MAX_IK_ATTEMPTS): contact = self._forward_and_find_next_contact(physics) if contact is None: return self._remove_contact_ik_iteration(physics, contact) contact = self._forward_and_find_next_contact(physics) if contact and contact.dist < 0: raise RuntimeError( 'Failed to remove contact with prop after {} iterations. ' 'Final contact distance is {}.'.format( _MAX_IK_ATTEMPTS, contact.dist)) def open_arms_for_prop(physics, left_arm_root, right_arm_root, prop, gap): """Opens left and right arms so as to leave a specified gap with the prop.""" left_arm_opener = _ArmPropContactRemover(physics, left_arm_root, prop, gap) left_arm_opener.remove_contacts(physics) right_arm_opener = _ArmPropContactRemover(physics, right_arm_root, prop, gap) right_arm_opener.remove_contacts(physics)
deepmind-research-master
catch_carry/arm_opener.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Metadata for mocap clips that correspond to a walker carrying a prop.""" import collections import enum import os from dm_control.locomotion.mocap import loader as mocap_loader from catch_carry import trajectories H5_DIR = os.path.dirname(__file__) H5_PATH = os.path.join(H5_DIR, 'mocap_data.h5') IDENTIFIER_PREFIX = 'DeepMindCatchCarry' IDENTIFIER_TEMPLATE = IDENTIFIER_PREFIX + '-{:03d}' ClipInfo = collections.namedtuple( 'ClipInfo', ('clip_identifier', 'num_steps', 'dt', 'flags')) class Flag(enum.IntEnum): BOX = 1 << 0 BALL = 1 << 1 LIGHT_PROP = 1 << 2 HEAVY_PROP = 1 << 3 SMALL_PROP = 1 << 4 LARGE_PROP = 1 << 5 FLOOR_LEVEL = 1 << 6 MEDIUM_PEDESTAL = 1 << 7 HIGH_PEDESTAL = 1 << 8 _ALL_CLIPS = None def _get_clip_info(loader, clip_number, flags): clip = loader.get_trajectory(IDENTIFIER_TEMPLATE.format(clip_number)) return ClipInfo( clip_identifier=clip.identifier, num_steps=clip.num_steps, dt=clip.dt, flags=flags) def _get_all_clip_infos_if_necessary(): """Creates the global _ALL_CLIPS list if it has not already been created.""" global _ALL_CLIPS if _ALL_CLIPS is None: loader = mocap_loader.HDF5TrajectoryLoader( H5_PATH, trajectories.WarehouseTrajectory) clip_numbers = (1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53) clip_infos = [] for i, clip_number in enumerate(clip_numbers): flags = 0 if i in _FLOOR_LEVEL: flags |= Flag.FLOOR_LEVEL elif i in _MEDIUM_PEDESTAL: flags |= Flag.MEDIUM_PEDESTAL elif i in _HIGH_PEDESTAL: flags |= Flag.HIGH_PEDESTAL if i in _LIGHT_PROP: flags |= Flag.LIGHT_PROP elif i in _HEAVY_PROP: flags |= Flag.HEAVY_PROP if i in _SMALL_BOX: flags |= Flag.SMALL_PROP flags |= Flag.BOX elif i in _LARGE_BOX: flags |= Flag.LARGE_PROP flags |= Flag.BOX elif i in _SMALL_BALL: flags |= Flag.SMALL_PROP flags |= Flag.BALL elif i in _LARGE_BALL: flags |= Flag.LARGE_PROP flags |= Flag.BALL clip_infos.append(_get_clip_info(loader, clip_number, flags)) _ALL_CLIPS = tuple(clip_infos) def _assert_partitions_all_clips(*args): """Asserts that a given set of subcollections partitions ALL_CLIPS.""" sets = tuple(set(arg) for arg in args) # Check that the union of all the sets is ALL_CLIPS. union = set() for subset in sets: union = union | set(subset) assert union == set(range(48)) # Check that the sets are pairwise disjoint. for i in range(len(sets)): for j in range(i + 1, len(sets)): assert sets[i] & sets[j] == set() _FLOOR_LEVEL = tuple(range(0, 16)) _MEDIUM_PEDESTAL = tuple(range(16, 32)) _HIGH_PEDESTAL = tuple(range(32, 48)) _assert_partitions_all_clips(_FLOOR_LEVEL, _MEDIUM_PEDESTAL, _HIGH_PEDESTAL) _LIGHT_PROP = (0, 1, 2, 3, 8, 9, 12, 13, 16, 17, 18, 19, 24, 25, 26, 27, 34, 35, 38, 39, 42, 43, 46, 47) _HEAVY_PROP = (4, 5, 6, 7, 10, 11, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 36, 37, 40, 41, 44, 45) _assert_partitions_all_clips(_LIGHT_PROP, _HEAVY_PROP) _SMALL_BOX = (0, 1, 4, 5, 16, 17, 20, 21, 34, 35, 36, 37) _LARGE_BOX = (2, 3, 6, 7, 18, 19, 22, 23, 32, 33, 38, 39) _SMALL_BALL = (8, 9, 10, 11, 24, 25, 30, 31, 40, 41, 46, 47) _LARGE_BALL = (12, 13, 14, 15, 26, 27, 28, 29, 42, 43, 44, 45) _assert_partitions_all_clips(_SMALL_BOX, _LARGE_BOX, _SMALL_BALL, _LARGE_BALL) def all_clips(): _get_all_clip_infos_if_necessary() return _ALL_CLIPS def floor_level(): clips = all_clips() return tuple(clips[i] for i in _FLOOR_LEVEL) def medium_pedestal(): clips = all_clips() return tuple(clips[i] for i in _MEDIUM_PEDESTAL) def high_pedestal(): clips = all_clips() return tuple(clips[i] for i in _HIGH_PEDESTAL) def light_prop(): clips = all_clips() return tuple(clips[i] for i in _LIGHT_PROP) def heavy_prop(): clips = all_clips() return tuple(clips[i] for i in _HEAVY_PROP) def small_box(): clips = all_clips() return tuple(clips[i] for i in _SMALL_BOX) def large_box(): clips = all_clips() return tuple(clips[i] for i in _LARGE_BOX) def small_ball(): clips = all_clips() return tuple(clips[i] for i in _SMALL_BALL) def large_ball(): clips = all_clips() return tuple(clips[i] for i in _LARGE_BALL)
deepmind-research-master
catch_carry/mocap_data.py
# Copyright 2020 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
deepmind-research-master
catch_carry/__init__.py
# Copyright 2020 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for pip package.""" from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['absl-py', 'dm_control', 'numpy'] setup( name='catch_carry', version='0.1', description='Whole-body object manipulation tasks and motion capture data.', url='https://github.com/deepmind/deepmind-research/catch_carry', author='DeepMind', author_email='[email protected]', # Contained modules and scripts. packages=find_packages(), install_requires=REQUIRED_PACKAGES, platforms=['any'], license='Apache 2.0', )
deepmind-research-master
catch_carry/setup.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A ball-tossing task.""" import collections from dm_control import composer from dm_control import mjcf from dm_control.composer import variation from dm_control.composer.observation import observable from dm_control.locomotion.arenas import floors from dm_control.locomotion.mocap import loader as mocap_loader import numpy as np from catch_carry import mocap_data from catch_carry import props from catch_carry import trajectories _PHYSICS_TIMESTEP = 0.005 _BUCKET_SIZE = (0.2, 0.2, 0.02) # Magnitude of the sparse reward. _SPARSE_REWARD = 1.0 class BallToss(composer.Task): """A task involving catching and throwing a ball.""" def __init__(self, walker, proto_modifier=None, negative_reward_on_failure_termination=True, priority_friction=False, bucket_offset=1., y_range=0.5, toss_delay=0.5, randomize_init=False, ): """Initialize ball tossing task. Args: walker: the walker to be used in this task. proto_modifier: function to modify trajectory proto. negative_reward_on_failure_termination: flag to provide negative reward as task fails. priority_friction: sets friction priority thereby making prop objects have higher friction. bucket_offset: distance in meters to push bucket (away from walker) y_range: range (uniformly sampled) of distance in meters the ball is thrown left/right of the walker. toss_delay: time in seconds to delay after catching before changing reward to encourage throwing the ball. randomize_init: flag to randomize initial pose. """ self._proto_modifier = proto_modifier self._negative_reward_on_failure_termination = ( negative_reward_on_failure_termination) self._priority_friction = priority_friction self._bucket_rewarded = False self._bucket_offset = bucket_offset self._y_range = y_range self._toss_delay = toss_delay self._randomize_init = randomize_init # load a clip to grab a ball prop and initializations loader = mocap_loader.HDF5TrajectoryLoader( mocap_data.H5_PATH, trajectories.WarehouseTrajectory) clip_number = 54 self._trajectory = loader.get_trajectory( mocap_data.IDENTIFIER_TEMPLATE.format(clip_number)) # create the floor arena self._arena = floors.Floor() self._walker = walker self._walker_geoms = tuple(self._walker.mjcf_model.find_all('geom')) self._feet_geoms = ( walker.mjcf_model.find('body', 'lfoot').find_all('geom') + walker.mjcf_model.find('body', 'rfoot').find_all('geom')) self._lhand_geoms = ( walker.mjcf_model.find('body', 'lhand').find_all('geom')) self._rhand_geoms = ( walker.mjcf_model.find('body', 'rhand').find_all('geom')) # resize the humanoid based on the motion capture data subject self._trajectory.configure_walkers([self._walker]) walker.create_root_joints(self._arena.attach(walker)) control_timestep = self._trajectory.dt self.set_timesteps(control_timestep, _PHYSICS_TIMESTEP) # build and attach the bucket to the arena self._bucket = props.Bucket(_BUCKET_SIZE) self._arena.attach(self._bucket) self._prop = self._trajectory.create_props( priority_friction=self._priority_friction)[0] self._arena.add_free_entity(self._prop) self._task_observables = collections.OrderedDict() # define feature based observations (agent may or may not use these) def ego_prop_xpos(physics): prop_xpos, _ = self._prop.get_pose(physics) walker_xpos = physics.bind(self._walker.root_body).xpos return self._walker.transform_vec_to_egocentric_frame( physics, prop_xpos - walker_xpos) self._task_observables['prop_{}/xpos'.format(0)] = ( observable.Generic(ego_prop_xpos)) def prop_zaxis(physics): prop_xmat = physics.bind( mjcf.get_attachment_frame(self._prop.mjcf_model)).xmat return prop_xmat[[2, 5, 8]] self._task_observables['prop_{}/zaxis'.format(0)] = ( observable.Generic(prop_zaxis)) def ego_bucket_xpos(physics): bucket_xpos, _ = self._bucket.get_pose(physics) walker_xpos = physics.bind(self._walker.root_body).xpos return self._walker.transform_vec_to_egocentric_frame( physics, bucket_xpos - walker_xpos) self._task_observables['bucket_{}/xpos'.format(0)] = ( observable.Generic(ego_bucket_xpos)) for obs in (self._walker.observables.proprioception + self._walker.observables.kinematic_sensors + self._walker.observables.dynamic_sensors + list(self._task_observables.values())): obs.enabled = True @property def root_entity(self): return self._arena @property def task_observables(self): return self._task_observables @property def name(self): return 'ball_toss' def initialize_episode_mjcf(self, random_state): self._reward = 0.0 self._discount = 1.0 self._should_terminate = False self._prop.detach() if self._proto_modifier: trajectory = self._trajectory.get_modified_trajectory( self._proto_modifier) self._prop = trajectory.create_props( priority_friction=self._priority_friction)[0] self._arena.add_free_entity(self._prop) # set the bucket position for this episode bucket_distance = 1.*random_state.rand()+self._bucket_offset mjcf.get_attachment_frame(self._bucket.mjcf_model).pos = [bucket_distance, 0, 0] def initialize_episode(self, physics, random_state): self._ground_geomid = physics.bind( self._arena.mjcf_model.worldbody.geom[0]).element_id self._feet_geomids = set(physics.bind(self._feet_geoms).element_id) self._lhand_geomids = set(physics.bind(self._lhand_geoms).element_id) self._rhand_geomids = set(physics.bind(self._rhand_geoms).element_id) self._walker_geomids = set(physics.bind(self._walker_geoms).element_id) self._bucket_rewarded = False if self._randomize_init: timestep_ind = random_state.randint( len(self._trajectory._proto.timesteps)) # pylint: disable=protected-access else: timestep_ind = 0 walker_init_timestep = self._trajectory._proto.timesteps[timestep_ind] # pylint: disable=protected-access prop_init_timestep = self._trajectory._proto.timesteps[0] # pylint: disable=protected-access self._walker.set_pose( physics, position=walker_init_timestep.walkers[0].position, quaternion=walker_init_timestep.walkers[0].quaternion) self._walker.set_velocity( physics, velocity=walker_init_timestep.walkers[0].velocity, angular_velocity=walker_init_timestep.walkers[0].angular_velocity) physics.bind(self._walker.mocap_joints).qpos = ( walker_init_timestep.walkers[0].joints) physics.bind(self._walker.mocap_joints).qvel = ( walker_init_timestep.walkers[0].joints_velocity) initial_prop_pos = np.copy(prop_init_timestep.props[0].position) initial_prop_pos[0] += 1. # move ball (from mocap) relative to origin initial_prop_pos[1] = 0 # align ball with walker along y-axis self._prop.set_pose( physics, position=initial_prop_pos, quaternion=prop_init_timestep.props[0].quaternion) # specify the distributions of ball velocity componentwise x_vel_mag = 4.5*random_state.rand()+1.5 # m/s x_dist = 3 # approximate initial distance from walker to ball self._t_dist = x_dist/x_vel_mag # target time at which to hit the humanoid z_offset = .4*random_state.rand()+.1 # height at which to hit person # compute velocity to satisfy desired projectile trajectory z_vel_mag = (4.9*(self._t_dist**2) + z_offset)/self._t_dist y_range = variation.evaluate(self._y_range, random_state=random_state) y_vel_mag = y_range*random_state.rand()-y_range/2 trans_vel = [-x_vel_mag, y_vel_mag, z_vel_mag] ang_vel = 1.5*random_state.rand(3)-0.75 self._prop.set_velocity( physics, velocity=trans_vel, angular_velocity=ang_vel) def after_step(self, physics, random_state): # First we check for failure termination (walker or ball touches ground). ground_failure = False for contact in physics.data.contact: if ((contact.geom1 == self._ground_geomid and contact.geom2 not in self._feet_geomids) or (contact.geom2 == self._ground_geomid and contact.geom1 not in self._feet_geomids)): ground_failure = True break contact_features = self._evaluate_contacts(physics) prop_lhand, prop_rhand, bucket_prop, bucket_walker, walker_prop = contact_features # or also fail if walker hits bucket if ground_failure or bucket_walker: if self._negative_reward_on_failure_termination: self._reward = -_SPARSE_REWARD else: self._reward = 0.0 self._should_terminate = True self._discount = 0.0 return self._reward = 0.0 # give reward if prop is in bucket (prop touching bottom surface of bucket) if bucket_prop: self._reward += _SPARSE_REWARD/10 # shaping reward for being closer to bucket if physics.data.time > (self._t_dist + self._toss_delay): bucket_xy = physics.bind(self._bucket.geom).xpos[0][:2] prop_xy = self._prop.get_pose(physics)[0][:2] xy_dist = np.sum(np.array(np.abs(bucket_xy - prop_xy))) self._reward += np.exp(-xy_dist/3.)*_SPARSE_REWARD/50 else: # bonus for hands touching ball if prop_lhand: self._reward += _SPARSE_REWARD/100 if prop_rhand: self._reward += _SPARSE_REWARD/100 # combined with penalty for other body parts touching the ball if walker_prop: self._reward -= _SPARSE_REWARD/100 def get_reward(self, physics): return self._reward def get_discount(self, physics): return self._discount def should_terminate_episode(self, physics): return self._should_terminate def _evaluate_contacts(self, physics): prop_elem_id = physics.bind(self._prop.geom).element_id bucket_bottom_elem_id = physics.bind(self._bucket.geom[0]).element_id bucket_any_elem_id = set(physics.bind(self._bucket.geom).element_id) prop_lhand_contact = False prop_rhand_contact = False bucket_prop_contact = False bucket_walker_contact = False walker_prop_contact = False for contact in physics.data.contact: has_prop = (contact.geom1 == prop_elem_id or contact.geom2 == prop_elem_id) has_bucket_bottom = (contact.geom1 == bucket_bottom_elem_id or contact.geom2 == bucket_bottom_elem_id) has_bucket_any = (contact.geom1 in bucket_any_elem_id or contact.geom2 in bucket_any_elem_id) has_lhand = (contact.geom1 in self._lhand_geomids or contact.geom2 in self._lhand_geomids) has_rhand = (contact.geom1 in self._rhand_geomids or contact.geom2 in self._rhand_geomids) has_walker = (contact.geom1 in self._walker_geomids or contact.geom2 in self._walker_geomids) if has_prop and has_bucket_bottom: bucket_prop_contact = True if has_walker and has_bucket_any: bucket_walker_contact = True if has_walker and has_prop: walker_prop_contact = True if has_prop and has_lhand: prop_lhand_contact = True if has_prop and has_rhand: prop_rhand_contact = True return (prop_lhand_contact, prop_rhand_contact, bucket_prop_contact, bucket_walker_contact, walker_prop_contact)
deepmind-research-master
catch_carry/ball_toss.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple script to launch viewer with an example environment.""" from absl import app from absl import flags from dm_control import viewer from catch_carry import task_examples FLAGS = flags.FLAGS flags.DEFINE_enum('task', 'warehouse', ['warehouse', 'toss'], 'The task to visualize.') TASKS = { 'warehouse': task_examples.build_vision_warehouse, 'toss': task_examples.build_vision_toss, } def main(unused_argv): viewer.launch(environment_loader=TASKS[FLAGS.task]) if __name__ == '__main__': app.run(main)
deepmind-research-master
catch_carry/explore.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A rectangular pedestal.""" from dm_control import composer from dm_control import mjcf class Pedestal(composer.Entity): """A rectangular pedestal.""" def _build(self, size=(.2, .3, .05), rgba=(0, .5, 0, 1), name='pedestal'): self._mjcf_root = mjcf.RootElement(model=name) self._geom = self._mjcf_root.worldbody.add( 'geom', type='box', size=size, name='geom', rgba=rgba) @property def mjcf_model(self): return self._mjcf_root @property def geom(self): return self._geom def after_compile(self, physics, unused_random_state): super(Pedestal, self).after_compile(physics, unused_random_state) self._body_geom_ids = set( physics.bind(geom).element_id for geom in self.mjcf_model.find_all('geom')) @property def body_geom_ids(self): return self._body_geom_ids class Bucket(composer.Entity): """A rectangular bucket.""" def _build(self, size=(.2, .3, .05), rgba=(0, .5, 0, 1), name='pedestal'): self._mjcf_root = mjcf.RootElement(model=name) self._geoms = [] self._geoms.append(self._mjcf_root.worldbody.add( 'geom', type='box', size=size, name='geom_bottom', rgba=rgba)) self._geoms.append(self._mjcf_root.worldbody.add( 'geom', type='box', size=(size[2], size[1], size[0]), name='geom_s1', rgba=rgba, pos=[size[0], 0, size[0]])) self._geoms.append(self._mjcf_root.worldbody.add( 'geom', type='box', size=(size[2], size[1], size[0]), name='geom_s2', rgba=rgba, pos=[-size[0], 0, size[0]])) self._geoms.append(self._mjcf_root.worldbody.add( 'geom', type='box', size=(size[0], size[2], size[0]), name='geom_s3', rgba=rgba, pos=[0, size[1], size[0]])) self._geoms.append(self._mjcf_root.worldbody.add( 'geom', type='box', size=(size[0], size[2], size[0]), name='geom_s4', rgba=rgba, pos=[0, -size[1], size[0]])) @property def mjcf_model(self): return self._mjcf_root @property def geom(self): return self._geoms def after_compile(self, physics, unused_random_state): super(Bucket, self).after_compile(physics, unused_random_state) self._body_geom_ids = set( physics.bind(geom).element_id for geom in self.mjcf_model.find_all('geom')) @property def body_geom_ids(self): return self._body_geom_ids
deepmind-research-master
catch_carry/props.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mocap trajectory that assumes props start stationary on pedestals.""" import copy import enum import itertools from dm_control.locomotion.mocap import mocap_pb2 from dm_control.locomotion.mocap import trajectory from dm_control.utils import transformations import numpy as np _PEDESTAL_SIZE = (0.2, 0.2, 0.02) _MAX_SETTLE_STEPS = 100 @enum.unique class ClipSegment(enum.Enum): """Annotations for subsegments within a warehouse clips.""" # Clip segment corresponding to a walker approaching an object APPROACH = 1 # Clip segment corresponding to a walker picking up an object. PICKUP = 2 # Clip segment corresponding to the "first half" of the walker carrying an # object, beginning from the walker backing away from a pedestal with # object in hand. CARRY1 = 3 # Clip segment corresponding to the "second half" of the walker carrying an # object, ending in the walker approaching a pedestal the object in hand. CARRY2 = 4 # Clip segment corresponding to a walker putting down an object on a pedestal. PUTDOWN = 5 # Clip segment corresponding to a walker backing off after successfully # placing an object on a pedestal. BACKOFF = 6 def _get_rotated_bounding_box(size, quaternion): """Calculates the bounding box of a rotated 3D box. Args: size: An array of length 3 specifying the half-lengths of a box. quaternion: A unit quaternion specifying the box's orientation. Returns: An array of length 3 specifying the half-lengths of the bounding box of the rotated box. """ corners = ((size[0], size[1], size[2]), (size[0], size[1], -size[2]), (size[0], -size[1], size[2]), (-size[0], size[1], size[2])) rotated_corners = tuple( transformations.quat_rotate(quaternion, corner) for corner in corners) return np.amax(np.abs(rotated_corners), axis=0) def _get_prop_z_extent(prop_proto, quaternion): """Calculates the "z-extent" of the prop in given orientation. This is the distance from the centre of the prop to its lowest point in the world frame, taking into account the prop's orientation. Args: prop_proto: A `mocap_pb2.Prop` protocol buffer defining a prop. quaternion: A unit quaternion specifying the prop's orientation. Returns: the distance from the centre of the prop to its lowest point in the world frame in the specified orientation. """ if prop_proto.shape == mocap_pb2.Prop.BOX: return _get_rotated_bounding_box(prop_proto.size, quaternion)[2] elif prop_proto.shape == mocap_pb2.Prop.SPHERE: return prop_proto.size[0] else: raise NotImplementedError( 'Unsupported prop shape: {}'.format(prop_proto.shape)) class WarehouseTrajectory(trajectory.Trajectory): """Mocap trajectory that assumes props start stationary on pedestals.""" def infer_pedestal_positions(self, num_averaged_steps=30, ground_height_tolerance=0.1, proto_modifier=None): proto = self._proto if proto_modifier is not None: proto = copy.copy(proto) proto_modifier(proto) if not proto.props: return [] positions = [] for timestep in itertools.islice(proto.timesteps, num_averaged_steps): positions_for_timestep = [] for prop_proto, prop_timestep in zip(proto.props, timestep.props): z_extent = _get_prop_z_extent(prop_proto, prop_timestep.quaternion) positions_for_timestep.append([prop_timestep.position[0], prop_timestep.position[1], prop_timestep.position[2] - z_extent]) positions.append(positions_for_timestep) median_positions = np.median(positions, axis=0) median_positions[:, 2][median_positions[:, 2] < ground_height_tolerance] = 0 return median_positions def get_props_z_extent(self, physics): timestep = self._proto.timesteps[self._get_step_id(physics.time())] out = [] for prop_proto, prop_timestep in zip(self._proto.props, timestep.props): z_extent = _get_prop_z_extent(prop_proto, prop_timestep.quaternion) out.append(z_extent) return out class SinglePropCarrySegmentedTrajectory(WarehouseTrajectory): """A mocap trajectory class that automatically segments prop-carry clips. The algorithm implemented in the class only works if the trajectory consists of exactly one walker and one prop. The value of `pedestal_zone_distance` the exact nature of zone crossings are determined empirically from the DeepMindCatchCarry dataset, and are likely to not work well outside of this setting. """ def __init__(self, proto, start_time=None, end_time=None, pedestal_zone_distance=0.65, start_step=None, end_step=None, zero_out_velocities=True): super(SinglePropCarrySegmentedTrajectory, self).__init__( proto, start_time, end_time, start_step=start_step, end_step=end_step, zero_out_velocities=zero_out_velocities) self._pedestal_zone_distance = pedestal_zone_distance self._generate_segments() def _generate_segments(self): pedestal_position = self.infer_pedestal_positions()[0] # First we find the timesteps at which the walker cross the pedestal's # vicinity zone. This should happen exactly 4 times: enter it to pick up, # leave it, enter it again to put down, and leave it again. was_in_pedestal_zone = False crossings = [] for i, timestep in enumerate(self._proto.timesteps): pedestal_dist = np.linalg.norm( timestep.walkers[0].position[:2] - pedestal_position[:2]) if pedestal_dist > self._pedestal_zone_distance and was_in_pedestal_zone: crossings.append(i) was_in_pedestal_zone = False elif (pedestal_dist <= self._pedestal_zone_distance and not was_in_pedestal_zone): crossings.append(i) was_in_pedestal_zone = True if len(crossings) < 3: raise RuntimeError( 'Failed to segment the given trajectory: ' 'walker should cross the pedestal zone\'s boundary >= 3 times ' 'but got {}'.format(len(crossings))) elif len(crossings) == 3: crossings.append(len(self._proto.timesteps) - 1) elif len(crossings) > 4: crossings = [crossings[0], crossings[1], crossings[-2], crossings[-1]] # Identify the pick up event during the first in-zone interval. start_position = np.array(self._proto.timesteps[0].props[0].position) end_position = np.array(self._proto.timesteps[-1].props[0].position) pick_up_step = crossings[1] - 1 while pick_up_step > crossings[0]: prev_position = self._proto.timesteps[pick_up_step - 1].props[0].position if np.linalg.norm(start_position[2] - prev_position[2]) < 0.001: break pick_up_step -= 1 # Identify the put down event during the second in-zone interval. put_down_step = crossings[2] while put_down_step <= crossings[3]: next_position = self._proto.timesteps[put_down_step + 1].props[0].position if np.linalg.norm(end_position[2] - next_position[2]) < 0.001: break put_down_step += 1 carry_halfway_step = int((crossings[1] + crossings[2]) / 2) self._segment_intervals = { ClipSegment.APPROACH: (0, crossings[0]), ClipSegment.PICKUP: (crossings[0], pick_up_step), ClipSegment.CARRY1: (pick_up_step, carry_halfway_step), ClipSegment.CARRY2: (carry_halfway_step, crossings[2]), ClipSegment.PUTDOWN: (crossings[2], put_down_step), ClipSegment.BACKOFF: (put_down_step, len(self._proto.timesteps)) } def segment_interval(self, segment): start_step, end_step = self._segment_intervals[segment] return (start_step * self._proto.dt, (end_step - 1) * self._proto.dt) def get_random_timestep_in_segment(self, segment, random_step): return self._proto.timesteps[ random_step.randint(*self._segment_intervals[segment])]
deepmind-research-master
catch_carry/trajectories.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions that build representative tasks.""" from dm_control import composer from dm_control.composer.variation import distributions from dm_control.locomotion.mocap import loader as mocap_loader from dm_control.locomotion.walkers import cmu_humanoid from catch_carry import ball_toss from catch_carry import warehouse def build_vision_warehouse(random_state=None): """Build canonical 4-pedestal, 2-prop task.""" # Build a position-controlled CMU humanoid walker. walker = cmu_humanoid.CMUHumanoidPositionControlled( observable_options={'egocentric_camera': dict(enabled=True)}) # Build the task. size_distribution = distributions.Uniform(low=0.75, high=1.25) mass_distribution = distributions.Uniform(low=2, high=7) prop_resizer = mocap_loader.PropResizer(size_factor=size_distribution, mass=mass_distribution) task = warehouse.PhasedBoxCarry( walker=walker, num_props=2, num_pedestals=4, proto_modifier=prop_resizer, negative_reward_on_failure_termination=True) # return the environment return composer.Environment( time_limit=15, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True, max_reset_attempts=float('inf')) def build_vision_toss(random_state=None): """Build canonical ball tossing task.""" # Build a position-controlled CMU humanoid walker. walker = cmu_humanoid.CMUHumanoidPositionControlled( observable_options={'egocentric_camera': dict(enabled=True)}) # Build the task. size_distribution = distributions.Uniform(low=0.95, high=1.5) mass_distribution = distributions.Uniform(low=2, high=4) prop_resizer = mocap_loader.PropResizer(size_factor=size_distribution, mass=mass_distribution) task = ball_toss.BallToss( walker=walker, proto_modifier=prop_resizer, negative_reward_on_failure_termination=True, priority_friction=True, bucket_offset=3., y_range=0.5, toss_delay=1.5, randomize_init=True) # return the environment return composer.Environment( time_limit=6, task=task, random_state=random_state, strip_singleton_obs_buffer_dim=True, max_reset_attempts=float('inf'))
deepmind-research-master
catch_carry/task_examples.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Hierarchical Probabilistic U-Net open-source version.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from model import HierarchicalProbUNet import tensorflow.compat.v1 as tf _NUM_CLASSES = 2 _BATCH_SIZE = 2 _SPATIAL_SHAPE = [32, 32] _CHANNELS_PER_BLOCK = [5, 7, 9, 11, 13] _IMAGE_SHAPE = [_BATCH_SIZE] + _SPATIAL_SHAPE + [1] _BOTTLENECK_SIZE = _SPATIAL_SHAPE[0] // 2 ** (len(_CHANNELS_PER_BLOCK) - 1) _SEGMENTATION_SHAPE = [_BATCH_SIZE] + _SPATIAL_SHAPE + [_NUM_CLASSES] _LATENT_DIMS = [3, 2, 1] _INITIALIZERS = {'w': tf.orthogonal_initializer(gain=1.0, seed=None), 'b': tf.truncated_normal_initializer(stddev=0.001)} def _get_placeholders(): """Returns placeholders for the image and segmentation.""" img = tf.placeholder(dtype=tf.float32, shape=_IMAGE_SHAPE) seg = tf.placeholder(dtype=tf.float32, shape=_SEGMENTATION_SHAPE) return img, seg class HierarchicalProbUNetTest(tf.test.TestCase): def test_shape_of_sample(self): hpu_net = HierarchicalProbUNet(latent_dims=_LATENT_DIMS, channels_per_block=_CHANNELS_PER_BLOCK, num_classes=_NUM_CLASSES, initializers=_INITIALIZERS) img, _ = _get_placeholders() sample = hpu_net.sample(img) self.assertEqual(sample.shape.as_list(), _SEGMENTATION_SHAPE) def test_shape_of_reconstruction(self): hpu_net = HierarchicalProbUNet(latent_dims=_LATENT_DIMS, channels_per_block=_CHANNELS_PER_BLOCK, num_classes=_NUM_CLASSES, initializers=_INITIALIZERS) img, seg = _get_placeholders() reconstruction = hpu_net.reconstruct(img, seg) self.assertEqual(reconstruction.shape.as_list(), _SEGMENTATION_SHAPE) def test_shapes_in_prior(self): hpu_net = HierarchicalProbUNet(latent_dims=_LATENT_DIMS, channels_per_block=_CHANNELS_PER_BLOCK, num_classes=_NUM_CLASSES, initializers=_INITIALIZERS) img, _ = _get_placeholders() prior_out = hpu_net._prior(img) distributions = prior_out['distributions'] latents = prior_out['used_latents'] encoder_features = prior_out['encoder_features'] decoder_features = prior_out['decoder_features'] # Test number of latent disctributions. self.assertEqual(len(distributions), len(_LATENT_DIMS)) # Test shapes of latent scales. for level in range(len(_LATENT_DIMS)): latent_spatial_shape = _BOTTLENECK_SIZE * 2 ** level latent_shape = [_BATCH_SIZE, latent_spatial_shape, latent_spatial_shape, _LATENT_DIMS[level]] self.assertEqual(latents[level].shape.as_list(), latent_shape) # Test encoder shapes. for level in range(len(_CHANNELS_PER_BLOCK)): spatial_shape = _SPATIAL_SHAPE[0] // 2 ** level feature_shape = [_BATCH_SIZE, spatial_shape, spatial_shape, _CHANNELS_PER_BLOCK[level]] self.assertEqual(encoder_features[level].shape.as_list(), feature_shape) # Test decoder shape. start_level = len(_LATENT_DIMS) latent_spatial_shape = _BOTTLENECK_SIZE * 2 ** start_level latent_shape = [_BATCH_SIZE, latent_spatial_shape, latent_spatial_shape, _CHANNELS_PER_BLOCK[::-1][start_level]] self.assertEqual(decoder_features.shape.as_list(), latent_shape) def test_shape_of_kl(self): hpu_net = HierarchicalProbUNet(latent_dims=_LATENT_DIMS, channels_per_block=_CHANNELS_PER_BLOCK, num_classes=_NUM_CLASSES, initializers=_INITIALIZERS) img, seg = _get_placeholders() kl_dict = hpu_net.kl(img, seg) self.assertEqual(len(kl_dict), len(_LATENT_DIMS)) if __name__ == '__main__': tf.test.main()
deepmind-research-master
hierarchical_probabilistic_unet/model_test.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility Functions for the GECO-objective. (GECO is described in `Taming VAEs`, see https://arxiv.org/abs/1810.00597). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf class MovingAverage(snt.AbstractModule): """A thin wrapper around snt.MovingAverage. The module adds the option not to differentiate through the last element that is added to the moving average, specified by means of the kwarg `differentiable`. """ def __init__(self, decay, local=True, differentiable=False, name='snt_moving_average'): super(MovingAverage, self).__init__(name=name) self._differentiable = differentiable self._moving_average = snt.MovingAverage( decay=decay, local=local, name=name) def _build(self, inputs): if not self._differentiable: inputs = tf.stop_gradient(inputs) return self._moving_average(inputs) class LagrangeMultiplier(snt.AbstractModule): """A lagrange multiplier sonnet module.""" def __init__(self, rate=1e-2, name='snt_lagrange_multiplier'): """Initializer for the sonnet module. Args: rate: Scalar used to scale the magnitude of gradients of the Lagrange multipliers, defaulting to 1e-2. name: Name of the Lagrange multiplier sonnet module. """ super(LagrangeMultiplier, self).__init__(name=name) self._rate = rate def _build(self, ma_constraint): """Connects the module to the graph. Args: ma_constraint: A loss minus a target value, denoting a constraint that shall be less or equal than zero. Returns: An op, which when added to a loss and calling minimize on the loss results in the optimizer minimizing w.r.t. to the model's parameters and maximizing w.r.t. the Lagrande multipliers, hence enforcing the constraints. """ lagmul = snt.get_lagrange_multiplier( shape=ma_constraint.shape, rate=self._rate, initializer=np.ones(ma_constraint.shape)) return lagmul def _sample_gumbel(shape, eps=1e-20): """Transforms a uniform random variable to be standard Gumbel distributed.""" return -tf.log( -tf.log(tf.random_uniform(shape, minval=0, maxval=1) + eps) + eps) def _topk_mask(score, k): """Returns a mask for the top-k elements in score.""" _, indices = tf.nn.top_k(score, k=k) return tf.scatter_nd(tf.expand_dims(indices, -1), tf.ones(k), tf.squeeze(score).shape.as_list()) def ce_loss(logits, labels, mask=None, top_k_percentage=None, deterministic=False): """Computes the cross-entropy loss. Optionally a mask and a top-k percentage for the used pixels can be specified. The top-k mask can be produced deterministically or sampled. Args: logits: A tensor of shape (b,h,w,num_classes) labels: A tensor of shape (b,h,w,num_classes) mask: None or a tensor of shape (b,h,w). top_k_percentage: None or a float in (0.,1.]. If None, a standard cross-entropy loss is calculated. deterministic: A Boolean indicating whether or not to produce the prospective top-k mask deterministically. Returns: A dictionary holding the mean and the pixelwise sum of the loss for the batch as well as the employed loss mask. """ num_classes = logits.shape.as_list()[-1] y_flat = tf.reshape(logits, (-1, num_classes), name='reshape_y') t_flat = tf.reshape(labels, (-1, num_classes), name='reshape_t') if mask is None: mask = tf.ones(shape=(t_flat.shape.as_list()[0],)) else: assert mask.shape.as_list()[:3] == labels.shape.as_list()[:3],\ 'The loss mask shape differs from the target shape: {} vs. {}.'.format( mask.shape.as_list(), labels.shape.as_list()[:3]) mask = tf.reshape(mask, (-1,), name='reshape_mask') n_pixels_in_batch = y_flat.shape.as_list()[0] xe = tf.nn.softmax_cross_entropy_with_logits_v2(labels=t_flat, logits=y_flat) if top_k_percentage is not None: assert 0.0 < top_k_percentage <= 1.0 k_pixels = tf.cast(tf.floor(n_pixels_in_batch * top_k_percentage), tf.int32) stopgrad_xe = tf.stop_gradient(xe) norm_xe = stopgrad_xe / tf.reduce_sum(stopgrad_xe) if deterministic: score = tf.log(norm_xe) else: # Use the Gumbel trick to sample the top-k pixels, equivalent to sampling # from a categorical distribution over pixels whose probabilities are # given by the normalized cross-entropy loss values. This is done by # adding Gumbel noise to the logarithmic normalized cross-entropy loss # (followed by choosing the top-k pixels). score = tf.log(norm_xe) + _sample_gumbel(norm_xe.shape.as_list()) score = score + tf.log(mask) top_k_mask = _topk_mask(score, k_pixels) mask = mask * top_k_mask # Calculate batch-averages for the sum and mean of the loss batch_size = labels.shape.as_list()[0] xe = tf.reshape(xe, shape=(batch_size, -1)) mask = tf.reshape(mask, shape=(batch_size, -1)) ce_sum_per_instance = tf.reduce_sum(mask * xe, axis=1) ce_sum = tf.reduce_mean(ce_sum_per_instance, axis=0) ce_mean = tf.reduce_sum(mask * xe) / tf.reduce_sum(mask) return {'mean': ce_mean, 'sum': ce_sum, 'mask': mask}
deepmind-research-master
hierarchical_probabilistic_unet/geco_utils.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Open Source Version of the Hierarchical Probabilistic U-Net.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import geco_utils import sonnet as snt import tensorflow as tf from tensorflow_probability import distributions as tfd import unet_utils class _HierarchicalCore(snt.AbstractModule): """A U-Net encoder-decoder with a full encoder and a truncated decoder. The truncated decoder is interleaved with the hierarchical latent space and has as many levels as there are levels in the hierarchy plus one additional level. """ def __init__(self, latent_dims, channels_per_block, down_channels_per_block=None, activation_fn=tf.nn.relu, initializers=None, regularizers=None, convs_per_block=3, blocks_per_level=3, name='HierarchicalDecoderDist'): """Initializes a HierarchicalCore. Args: latent_dims: List of integers specifying the dimensions of the latents at each scale. The length of the list indicates the number of U-Net decoder scales that have latents. channels_per_block: A list of integers specifying the number of output channels for each encoder block. down_channels_per_block: A list of integers specifying the number of intermediate channels for each encoder block or None. If None, the intermediate channels are chosen equal to channels_per_block. activation_fn: A callable activation function. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. convs_per_block: An integer specifying the number of convolutional layers. blocks_per_level: An integer specifying the number of residual blocks per level. name: A string specifying the name of the module. """ super(_HierarchicalCore, self).__init__(name=name) self._latent_dims = latent_dims self._channels_per_block = channels_per_block self._activation_fn = activation_fn self._initializers = initializers self._regularizers = regularizers self._convs_per_block = convs_per_block self._blocks_per_level = blocks_per_level if down_channels_per_block is None: self._down_channels_per_block = channels_per_block else: self._down_channels_per_block = down_channels_per_block self._name = name def _build(self, inputs, mean=False, z_q=None): """A build-method allowing to sample from the module as specified. Args: inputs: A tensor of shape (b,h,w,c). When using the module as a prior the `inputs` tensor should be a batch of images. When using it as a posterior the tensor should be a (batched) concatentation of images and segmentations. mean: A boolean or a list of booleans. If a boolean, it specifies whether or not to use the distributions' means in ALL latent scales. If a list, each bool therein specifies whether or not to use the scale's mean. If False, the latents of the scale are sampled. z_q: None or a list of tensors. If not None, z_q provides external latents to be used instead of sampling them. This is used to employ posterior latents in the prior during training. Therefore, if z_q is not None, the value of `mean` is ignored. If z_q is None, either the distributions mean is used (in case `mean` for the respective scale is True) or else a sample from the distribution is drawn. Returns: A Dictionary holding the output feature map of the truncated U-Net decoder under key 'decoder_features', a list of the U-Net encoder features produced at the end of each encoder scale under key 'encoder_outputs', a list of the predicted distributions at each scale under key 'distributions', a list of the used latents at each scale under the key 'used_latents'. """ encoder_features = inputs encoder_outputs = [] num_levels = len(self._channels_per_block) num_latent_levels = len(self._latent_dims) if isinstance(mean, bool): mean = [mean] * num_latent_levels distributions = [] used_latents = [] # Iterate the descending levels in the U-Net encoder. for level in range(num_levels): # Iterate the residual blocks in each level. for _ in range(self._blocks_per_level): encoder_features = unet_utils.res_block( input_features=encoder_features, n_channels=self._channels_per_block[level], n_down_channels=self._down_channels_per_block[level], activation_fn=self._activation_fn, initializers=self._initializers, regularizers=self._regularizers, convs_per_block=self._convs_per_block) encoder_outputs.append(encoder_features) if level != num_levels - 1: encoder_features = unet_utils.resize_down(encoder_features, scale=2) # Iterate the ascending levels in the (truncated) U-Net decoder. decoder_features = encoder_outputs[-1] for level in range(num_latent_levels): # Predict a Gaussian distribution for each pixel in the feature map. latent_dim = self._latent_dims[level] mu_logsigma = snt.Conv2D( 2 * latent_dim, (1, 1), padding='SAME', initializers=self._initializers, regularizers=self._regularizers, )(decoder_features) mu = mu_logsigma[..., :latent_dim] logsigma = mu_logsigma[..., latent_dim:] dist = tfd.MultivariateNormalDiag(loc=mu, scale_diag=tf.exp(logsigma)) distributions.append(dist) # Get the latents to condition on. if z_q is not None: z = z_q[level] elif mean[level]: z = dist.loc else: z = dist.sample() used_latents.append(z) # Concat and upsample the latents with the previous features. decoder_output_lo = tf.concat([z, decoder_features], axis=-1) decoder_output_hi = unet_utils.resize_up(decoder_output_lo, scale=2) decoder_features = tf.concat( [decoder_output_hi, encoder_outputs[::-1][level + 1]], axis=-1) # Iterate the residual blocks in each level. for _ in range(self._blocks_per_level): decoder_features = unet_utils.res_block( input_features=decoder_features, n_channels=self._channels_per_block[::-1][level + 1], n_down_channels=self._down_channels_per_block[::-1][level + 1], activation_fn=self._activation_fn, initializers=self._initializers, regularizers=self._regularizers, convs_per_block=self._convs_per_block) return {'decoder_features': decoder_features, 'encoder_features': encoder_outputs, 'distributions': distributions, 'used_latents': used_latents} class _StitchingDecoder(snt.AbstractModule): """A module that completes the truncated U-Net decoder. Using the output of the HierarchicalCore this module fills in the missing decoder levels such that together the two form a symmetric U-Net. """ def __init__(self, latent_dims, channels_per_block, num_classes, down_channels_per_block=None, activation_fn=tf.nn.relu, initializers=None, regularizers=None, convs_per_block=3, blocks_per_level=3, name='StitchingDecoder'): """Initializes a StichtingDecoder. Args: latent_dims: List of integers specifying the dimensions of the latents at each scale. The length of the list indicates the number of U-Net decoder scales that have latents. channels_per_block: A list of integers specifying the number of output channels for each encoder block. num_classes: An integer specifying the number of segmentation classes. down_channels_per_block: A list of integers specifying the number of intermediate channels for each encoder block. If None, the intermediate channels are chosen equal to channels_per_block. activation_fn: A callable activation function. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). The default initializer for the weights is a truncated normal initializer, which is commonly used when the inputs are zero centered (see https://arxiv.org/pdf/1502.03167v3.pdf). The default initializer for the bias is a zero initializer. regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). As a default, no regularizers are used. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. convs_per_block: An integer specifying the number of convolutional layers. blocks_per_level: An integer specifying the number of residual blocks per level. name: A string specifying the name of the module. """ super(_StitchingDecoder, self).__init__(name=name) self._latent_dims = latent_dims self._channels_per_block = channels_per_block self._num_classes = num_classes self._activation_fn = activation_fn self._initializers = initializers self._regularizers = regularizers self._convs_per_block = convs_per_block self._blocks_per_level = blocks_per_level if down_channels_per_block is None: down_channels_per_block = channels_per_block self._down_channels_per_block = down_channels_per_block def _build(self, encoder_features, decoder_features): """Build-method that returns the segmentation logits. Args: encoder_features: A list of tensors of shape (b,h_i,w_i,c_i). decoder_features: A tensor of shape (b,h,w,c). Returns: Logits, i.e. a tensor of shape (b,h,w,num_classes). """ num_latents = len(self._latent_dims) start_level = num_latents + 1 num_levels = len(self._channels_per_block) for level in range(start_level, num_levels, 1): decoder_features = unet_utils.resize_up(decoder_features, scale=2) decoder_features = tf.concat([decoder_features, encoder_features[::-1][level]], axis=-1) for _ in range(self._blocks_per_level): decoder_features = unet_utils.res_block( input_features=decoder_features, n_channels=self._channels_per_block[::-1][level], n_down_channels=self._down_channels_per_block[::-1][level], activation_fn=self._activation_fn, initializers=self._initializers, regularizers=self._regularizers, convs_per_block=self._convs_per_block) return snt.Conv2D(output_channels=self._num_classes, kernel_shape=(1, 1), padding='SAME', initializers=self._initializers, regularizers=self._regularizers, name='logits')(decoder_features) class HierarchicalProbUNet(snt.AbstractModule): """A Hierarchical Probabilistic U-Net.""" def __init__(self, latent_dims=(1, 1, 1, 1), channels_per_block=None, num_classes=2, down_channels_per_block=None, activation_fn=tf.nn.relu, initializers=None, regularizers=None, convs_per_block=3, blocks_per_level=3, loss_kwargs=None, name='HPUNet'): """Initializes a HierarchicalProbUNet. The default values are set as for the LIDC-IDRI experiments in `A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities', see https://arxiv.org/abs/1905.13077. Args: latent_dims: List of integers specifying the dimensions of the latents at each scales. The length of the list indicates the number of U-Net decoder scales that have latents. channels_per_block: A list of integers specifying the number of output channels for each encoder block. num_classes: An integer specifying the number of segmentation classes. down_channels_per_block: A list of integers specifying the number of intermediate channels for each encoder block. If None, the intermediate channels are chosen equal to channels_per_block. activation_fn: A callable activation function. initializers: Optional dict containing ops to initialize the filters (with key 'w') or biases (with key 'b'). regularizers: Optional dict containing regularizers for the filters (with key 'w') and the biases (with key 'b'). convs_per_block: An integer specifying the number of convolutional layers. blocks_per_level: An integer specifying the number of residual blocks per level. loss_kwargs: None or dictionary specifying the loss setup. name: A string specifying the name of the module. """ super(HierarchicalProbUNet, self).__init__(name=name) base_channels = 24 default_channels_per_block = ( base_channels, 2 * base_channels, 4 * base_channels, 8 * base_channels, 8 * base_channels, 8 * base_channels, 8 * base_channels, 8 * base_channels ) if channels_per_block is None: channels_per_block = default_channels_per_block if down_channels_per_block is None: down_channels_per_block =\ tuple([i / 2 for i in default_channels_per_block]) if initializers is None: initializers = { 'w': tf.orthogonal_initializer(gain=1.0, seed=None), 'b': tf.truncated_normal_initializer(stddev=0.001) } if regularizers is None: regularizers = { 'w': tf.keras.regularizers.l2(1e-5), 'b': tf.keras.regularizers.l2(1e-5) } if loss_kwargs is None: self._loss_kwargs = { 'type': 'geco', 'top_k_percentage': 0.02, 'deterministic_top_k': False, 'kappa': 0.05, 'decay': 0.99, 'rate': 1e-2, 'beta': None } else: self._loss_kwargs = loss_kwargs if down_channels_per_block is None: down_channels_per_block = channels_per_block with self._enter_variable_scope(): self._prior = _HierarchicalCore( latent_dims=latent_dims, channels_per_block=channels_per_block, down_channels_per_block=down_channels_per_block, activation_fn=activation_fn, initializers=initializers, regularizers=regularizers, convs_per_block=convs_per_block, blocks_per_level=blocks_per_level, name='prior') self._posterior = _HierarchicalCore( latent_dims=latent_dims, channels_per_block=channels_per_block, down_channels_per_block=down_channels_per_block, activation_fn=activation_fn, initializers=initializers, regularizers=regularizers, convs_per_block=convs_per_block, blocks_per_level=blocks_per_level, name='posterior') self._f_comb = _StitchingDecoder( latent_dims=latent_dims, channels_per_block=channels_per_block, num_classes=num_classes, down_channels_per_block=down_channels_per_block, activation_fn=activation_fn, initializers=initializers, regularizers=regularizers, convs_per_block=convs_per_block, blocks_per_level=blocks_per_level, name='f_comb') if self._loss_kwargs['type'] == 'geco': self._moving_average = geco_utils.MovingAverage( decay=self._loss_kwargs['decay'], differentiable=True, name='ma_test') self._lagmul = geco_utils.LagrangeMultiplier( rate=self._loss_kwargs['rate']) self._cache = () def _build(self, seg, img): """Inserts all ops used during training into the graph exactly once. The first time this method is called given the input pair (seg, img) all ops relevant for training are inserted into the graph. Calling this method more than once does not re-insert the modules into the graph (memoization), thus preventing multiple forward passes of submodules for the same inputs. The method is private and called when setting up the loss. Args: seg: A tensor of shape (b, h, w, num_classes). img: A tensor of shape (b, h, w, c) Returns: None """ inputs = (seg, img) if self._cache == inputs: return else: self._q_sample = self._posterior( tf.concat([seg, img], axis=-1), mean=False) self._q_sample_mean = self._posterior( tf.concat([seg, img], axis=-1), mean=True) self._p_sample = self._prior( img, mean=False, z_q=None) self._p_sample_z_q = self._prior( img, z_q=self._q_sample['used_latents']) self._p_sample_z_q_mean = self._prior( img, z_q=self._q_sample_mean['used_latents']) self._cache = inputs return def sample(self, img, mean=False, z_q=None): """Sample a segmentation from the prior, given an input image. Args: img: A tensor of shape (b, h, w, c). mean: A boolean or a list of booleans. If a boolean, it specifies whether or not to use the distributions' means in ALL latent scales. If a list, each bool therein specifies whether or not to use the scale's mean. If False, the latents of the scale are sampled. z_q: None or a list of tensors. If not None, z_q provides external latents to be used instead of sampling them. This is used to employ posterior latents in the prior during training. Therefore, if z_q is not None, the value of `mean` is ignored. If z_q is None, either the distributions mean is used (in case `mean` for the respective scale is True) or else a sample from the distribution is drawn Returns: A segmentation tensor of shape (b, h, w, num_classes). """ prior_out = self._prior(img, mean, z_q) encoder_features = prior_out['encoder_features'] decoder_features = prior_out['decoder_features'] return self._f_comb(encoder_features=encoder_features, decoder_features=decoder_features) def reconstruct(self, seg, img, mean=False): """Reconstruct a segmentation using the posterior. Args: seg: A tensor of shape (b, h, w, num_classes). img: A tensor of shape (b, h, w, c). mean: A boolean, specifying whether to sample from the full hierarchy of the posterior or use the posterior means at each scale of the hierarchy. Returns: A segmentation tensor of shape (b,h,w,num_classes). """ self._build(seg, img) if mean: prior_out = self._p_sample_z_q_mean else: prior_out = self._p_sample_z_q encoder_features = prior_out['encoder_features'] decoder_features = prior_out['decoder_features'] return self._f_comb(encoder_features=encoder_features, decoder_features=decoder_features) def rec_loss(self, seg, img, mask=None, top_k_percentage=None, deterministic=True): """Cross-entropy reconstruction loss employed in the ELBO-/ GECO-objective. Args: seg: A tensor of shape (b, h, w, num_classes). img: A tensor of shape (b, h, w, c). mask: A mask of shape (b, h, w) or None. If None no pixels are masked in the loss. top_k_percentage: None or a float in (0.,1.]. If None, a standard cross-entropy loss is calculated. deterministic: A Boolean indicating whether or not to produce the prospective top-k mask deterministically. Returns: A dictionary holding the mean and the pixelwise sum of the loss for the batch as well as the employed loss mask. """ reconstruction = self.reconstruct(seg, img, mean=False) return geco_utils.ce_loss( reconstruction, seg, mask, top_k_percentage, deterministic) def kl(self, seg, img): """Kullback-Leibler divergence between the posterior and the prior. Args: seg: A tensor of shape (b, h, w, num_classes). img: A tensor of shape (b, h, w, c). Returns: A dictionary with keys indexing the hierarchy's levels and corresponding values holding the KL-term for each level (per batch). """ self._build(seg, img) posterior_out = self._q_sample prior_out = self._p_sample_z_q q_dists = posterior_out['distributions'] p_dists = prior_out['distributions'] kl = {} for level, (q, p) in enumerate(zip(q_dists, p_dists)): # Shape (b, h, w). kl_per_pixel = tfd.kl_divergence(q, p) # Shape (b,). kl_per_instance = tf.reduce_sum(kl_per_pixel, axis=[1, 2]) # Shape (1,). kl[level] = tf.reduce_mean(kl_per_instance) return kl def loss(self, seg, img, mask): """The full training objective, either ELBO or GECO. Args: seg: A tensor of shape (b, h, w, num_classes). img: A tensor of shape (b, h, w, c). mask: A mask of shape (b, h, w) or None. If None no pixels are masked in the loss. Returns: A dictionary holding the loss (with key 'loss') and the tensorboard summaries (with key 'summaries'). """ summaries = {} top_k_percentage = self._loss_kwargs['top_k_percentage'] deterministic = self._loss_kwargs['deterministic_top_k'] rec_loss = self.rec_loss(seg, img, mask, top_k_percentage, deterministic) kl_dict = self.kl(seg, img) kl_sum = tf.reduce_sum( tf.stack([kl for _, kl in kl_dict.iteritems()], axis=-1)) summaries['rec_loss_mean'] = rec_loss['mean'] summaries['rec_loss_sum'] = rec_loss['sum'] summaries['kl_sum'] = kl_sum for level, kl in kl_dict.iteritems(): summaries['kl_{}'.format(level)] = kl # Set up a regular ELBO objective. if self._loss_kwargs['type'] == 'elbo': loss = rec_loss['sum'] + self._loss_kwargs['beta'] * kl_sum summaries['elbo_loss'] = loss # Set up a GECO objective (ELBO with a reconstruction constraint). elif self._loss_kwargs['type'] == 'geco': ma_rec_loss = self._moving_average(rec_loss['sum']) mask_sum_per_instance = tf.reduce_sum(rec_loss['mask'], axis=-1) num_valid_pixels = tf.reduce_mean(mask_sum_per_instance) reconstruction_threshold = self._loss_kwargs['kappa'] * num_valid_pixels rec_constraint = ma_rec_loss - reconstruction_threshold lagmul = self._lagmul(rec_constraint) loss = lagmul * rec_constraint + kl_sum summaries['geco_loss'] = loss summaries['ma_rec_loss_mean'] = ma_rec_loss / num_valid_pixels summaries['num_valid_pixels'] = num_valid_pixels summaries['lagmul'] = lagmul else: raise NotImplementedError('Loss type {} not implemeted!'.format( self._loss_kwargs['type'])) return dict(supervised_loss=loss, summaries=summaries) if __name__ == '__main__': hpu_net = HierarchicalProbUNet()
deepmind-research-master
hierarchical_probabilistic_unet/model.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for pip package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['numpy', 'dm-sonnet==1.35', 'tensorflow==1.14', 'tensorflow-probability==0.7.0'] setup( name='hpu_net', version='0.1', description='A library for the Hierarchical Probabilistic U-Net model.', url='https://github.com/deepmind/deepmind-research/hierarchical_probabilistic_unet', author='DeepMind', author_email='[email protected]', # Contained modules and scripts. packages=find_packages(), install_requires=REQUIRED_PACKAGES, platforms=['any'], license='Apache 2.0', )
deepmind-research-master
hierarchical_probabilistic_unet/setup.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Architectural blocks and utility functions of the U-Net.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sonnet as snt import tensorflow.compat.v1 as tf def res_block(input_features, n_channels, n_down_channels=None, activation_fn=tf.nn.relu, initializers=None, regularizers=None, convs_per_block=3): """A pre-activated residual block. Args: input_features: A tensor of shape (b, h, w, c). n_channels: An integer specifying the number of output channels. n_down_channels: An integer specifying the number of intermediate channels. activation_fn: A callable activation function. initializers: Initializers for the weights and biases. regularizers: Regularizers for the weights and biases. convs_per_block: An Integer specifying the number of convolutional layers. Returns: A tensor of shape (b, h, w, c). """ # Pre-activate the inputs. skip = input_features residual = activation_fn(input_features) # Set the number of intermediate channels that we compress to. if n_down_channels is None: n_down_channels = n_channels for c in range(convs_per_block): residual = snt.Conv2D(n_down_channels, (3, 3), padding='SAME', initializers=initializers, regularizers=regularizers)(residual) if c < convs_per_block - 1: residual = activation_fn(residual) incoming_channels = input_features.shape[-1] if incoming_channels != n_channels: skip = snt.Conv2D(n_channels, (1, 1), padding='SAME', initializers=initializers, regularizers=regularizers)(skip) if n_down_channels != n_channels: residual = snt.Conv2D(n_channels, (1, 1), padding='SAME', initializers=initializers, regularizers=regularizers)(residual) return skip + residual def resize_up(input_features, scale=2): """Nearest neighbor rescaling-operation for the input features. Args: input_features: A tensor of shape (b, h, w, c). scale: An integer specifying the scaling factor. Returns: A tensor of shape (b, scale * h, scale * w, c). """ assert scale >= 1 _, size_x, size_y, _ = input_features.shape.as_list() new_size_x = int(round(size_x * scale)) new_size_y = int(round(size_y * scale)) return tf.image.resize( input_features, [new_size_x, new_size_y], align_corners=True, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) def resize_down(input_features, scale=2): """Average pooling rescaling-operation for the input features. Args: input_features: A tensor of shape (b, h, w, c). scale: An integer specifying the scaling factor. Returns: A tensor of shape (b, h / scale, w / scale, c). """ assert scale >= 1 return tf.nn.avg_pool2d( input_features, ksize=(1, scale, scale, 1), strides=(1, scale, scale, 1), padding='VALID')
deepmind-research-master
hierarchical_probabilistic_unet/unet_utils.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing code for computing various metrics for training and evaluation.""" from typing import Callable, Dict, Optional import distrax import haiku as hk import jax import jax.nn as nn import jax.numpy as jnp import numpy as np import physics_inspired_models.utils as utils _ReconstructFunc = Callable[[utils.Params, jnp.ndarray, jnp.ndarray, bool], distrax.Distribution] def calculate_small_latents(dist, threshold=0.5): """Calculates the number of active latents by thresholding the variance of their distribution.""" if not isinstance(dist, distrax.Normal): raise NotImplementedError() latent_means = dist.mean() latent_stddevs = dist.variance() small_latents = jnp.sum( (latent_stddevs < threshold) & (jnp.abs(latent_means) > 0.1), axis=1) return jnp.mean(small_latents) def compute_scale( targets: jnp.ndarray, rescale_by: str ) -> jnp.ndarray: """Compute a scaling factor based on targets shape and the rescale_by argument.""" if rescale_by == "pixels_and_time": return jnp.asarray(np.prod(targets.shape[-4:])) elif rescale_by is not None: raise ValueError(f"Unrecognized rescale_by={rescale_by}.") else: return jnp.ones([]) def compute_data_domain_stats( p_x: distrax.Distribution, targets: jnp.ndarray ) -> Dict[str, jnp.ndarray]: """Compute several statistics in the data domain, such as L2 and negative log likelihood.""" axis = tuple(range(2, targets.ndim)) l2_over_time = jnp.sum((p_x.mean() - targets) ** 2, axis=axis) l2 = jnp.sum(l2_over_time, axis=1) # Calculate relative L2 normalised by image "length" norm_factor = jnp.sum(targets**2, axis=(2, 3, 4)) l2_over_time_norm = l2_over_time / norm_factor l2_norm = jnp.sum(l2_over_time_norm, axis=1) # Compute negative log-likelihood under p(x) neg_log_p_x_over_time = - np.sum(p_x.log_prob(targets), axis=axis) neg_log_p_x = jnp.sum(neg_log_p_x_over_time, axis=1) return dict( neg_log_p_x_over_time=neg_log_p_x_over_time, neg_log_p_x=neg_log_p_x, l2_over_time=l2_over_time, l2=l2, l2_over_time_norm=l2_over_time_norm, l2_norm=l2_norm, ) def compute_vae_stats( neg_log_p_x: jnp.ndarray, rng: jnp.ndarray, q_z: distrax.Distribution, prior: distrax.Distribution ) -> Dict[str, jnp.ndarray]: """Compute the KL(q(z|x)||p(z)) and the negative ELBO, which are used for VAE models.""" # Compute the KL kl = distrax.estimate_kl_best_effort(q_z, prior, rng_key=rng, num_samples=1) kl = np.sum(kl, axis=list(range(1, kl.ndim))) # Sanity check assert kl.shape == neg_log_p_x.shape return dict( kl=kl, neg_elbo=neg_log_p_x + kl, ) def training_statistics( p_x: distrax.Distribution, targets: jnp.ndarray, rescale_by: Optional[str], rng: Optional[jnp.ndarray] = None, q_z: Optional[distrax.Distribution] = None, prior: Optional[distrax.Distribution] = None, p_x_learned_sigma: bool = False ) -> Dict[str, jnp.ndarray]: """Computes various statistics we track during training.""" stats = compute_data_domain_stats(p_x, targets) if rng is not None and q_z is not None and prior is not None: stats.update(compute_vae_stats(stats["neg_log_p_x"], rng, q_z, prior)) else: assert rng is None and q_z is None and prior is None # Rescale these stats accordingly scale = compute_scale(targets, rescale_by) # Note that "_over_time" stats are getting normalised by time here stats = jax.tree_map(lambda x: x / scale, stats) if p_x_learned_sigma: stats["p_x_sigma"] = p_x.variance().reshape([-1])[0] if q_z is not None: stats["small_latents"] = calculate_small_latents(q_z) return stats def evaluation_only_statistics( reconstruct_func: _ReconstructFunc, params: hk.Params, inputs: jnp.ndarray, rng: jnp.ndarray, rescale_by: str, can_run_backwards: bool, train_sequence_length: int, reconstruction_skip: int, p_x_learned_sigma: bool = False, ) -> Dict[str, jnp.ndarray]: """Computes various statistics we track only during evaluation.""" full_trajectory = utils.extract_image(inputs) prefixes = ("forward", "backward") if can_run_backwards else ("forward",) full_forward_targets = jax.tree_map( lambda x: x[:, reconstruction_skip:], full_trajectory) full_backward_targets = jax.tree_map( lambda x: x[:, :x.shape[1]-reconstruction_skip], full_trajectory) train_targets_length = train_sequence_length - reconstruction_skip full_targets_length = full_forward_targets.shape[1] stats = dict() keys = () for prefix in prefixes: # Fully unroll the model and reconstruct the whole sequence full_prediction = reconstruct_func(params, full_trajectory, rng, prefix == "forward") assert isinstance(full_prediction, distrax.Normal) full_targets = (full_forward_targets if prefix == "forward" else full_backward_targets) # In cases where the model can run backwards it is possible to reconstruct # parts which were indented to be skipped, so here we take care of that. if full_prediction.mean().shape[1] > full_targets_length: if prefix == "forward": full_prediction = jax.tree_map(lambda x: x[:, -full_targets_length:], full_prediction) else: full_prediction = jax.tree_map(lambda x: x[:, :full_targets_length], full_prediction) # Based on the prefix and suffix fetch correct predictions and targets for suffix in ("train", "extrapolation", "full"): if prefix == "forward" and suffix == "train": predict, targets = jax.tree_map(lambda x: x[:, :train_targets_length], (full_prediction, full_targets)) elif prefix == "forward" and suffix == "extrapolation": predict, targets = jax.tree_map(lambda x: x[:, train_targets_length:], (full_prediction, full_targets)) elif prefix == "backward" and suffix == "train": predict, targets = jax.tree_map(lambda x: x[:, -train_targets_length:], (full_prediction, full_targets)) elif prefix == "backward" and suffix == "extrapolation": predict, targets = jax.tree_map(lambda x: x[:, :-train_targets_length], (full_prediction, full_targets)) else: predict, targets = full_prediction, full_targets # Compute train statistics train_stats = training_statistics(predict, targets, rescale_by, p_x_learned_sigma=p_x_learned_sigma) for key, value in train_stats.items(): stats[prefix + "_" + suffix + "_" + key] = value # Copy all stats keys keys = tuple(train_stats.keys()) # Make a combined metric summing forward and backward if can_run_backwards: # Also compute for suffix in ("train", "extrapolation", "full"): for key in keys: forward = stats["forward_" + suffix + "_" + key] backward = stats["backward_" + suffix + "_" + key] combined = (forward + backward) / 2 stats["combined_" + suffix + "_" + key] = combined return stats def geco_objective( l2_loss, kl, alpha, kappa, constraint_ema, lambda_var, is_training ) -> Dict[str, jnp.ndarray]: """Computes the objective for GECO and some of it statistics used ofr updates.""" # C_t constraint_t = l2_loss - kappa if is_training: # We update C_ma only during training constraint_ema = alpha * constraint_ema + (1 - alpha) * constraint_t lagrange = nn.softplus(lambda_var) lagrange = jnp.broadcast_to(lagrange, constraint_ema.shape) # Add this special op for getting all gradients correct loss = utils.geco_lagrange_product(lagrange, constraint_ema, constraint_t) return dict( loss=loss + kl, geco_multiplier=lagrange, geco_constraint=constraint_t, geco_constraint_ema=constraint_ema ) def elbo_objective(neg_log_p_x, kl, final_beta, beta_delay, step): """Computes objective for optimizing the Evidence Lower Bound (ELBO).""" if beta_delay == 0: beta = final_beta else: delayed_beta = jnp.minimum(float(step) / float(beta_delay), 1.0) beta = delayed_beta * final_beta return dict( loss=neg_log_p_x + beta * kl, elbo_beta=beta )
deepmind-research-master
physics_inspired_models/metrics.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing model evaluation metric.""" import _thread as thread import sys import threading import time import warnings from absl import logging import distrax import numpy as np from sklearn import linear_model from sklearn import model_selection from sklearn import preprocessing def quit_function(fn_name): logging.error('%s took too long', fn_name) sys.stderr.flush() thread.interrupt_main() def exit_after(s): """Use as decorator to exit function after s seconds.""" def outer(fn): def inner(*args, **kwargs): timer = threading.Timer(s, quit_function, args=[fn.__name__]) timer.start() try: result = fn(*args, **kwargs) finally: timer.cancel() return result return inner return outer @exit_after(400) def do_grid_search(data_x_exp, data_y, clf, parameters, cv): scoring_choice = 'explained_variance' regressor = model_selection.GridSearchCV( clf, parameters, cv=cv, refit=True, scoring=scoring_choice) regressor.fit(data_x_exp, data_y) return regressor def symplectic_matrix(dim): """Return anti-symmetric identity matrix of given dimensionality.""" half_dims = int(dim/2) eye = np.eye(half_dims) zeros = np.zeros([half_dims, half_dims]) top_rows = np.concatenate([zeros, - eye], axis=1) bottom_rows = np.concatenate([eye, zeros], axis=1) return np.concatenate([top_rows, bottom_rows], axis=0) def create_latent_mask(z0, dist_std_threshold=0.5): """Create mask based on informativeness of each latent dimension. For stochastic models those latent dimensions that are too close to the prior are likely to be uninformative and can be ignored. Args: z0: distribution or array of phase space dist_std_threshold: informative latents have average inferred stds < dist_std_threshold Returns: latent_mask_final: boolean mask of the same dimensionality as z0 """ if isinstance(z0, distrax.Normal): std_vals = np.mean(z0.variance(), axis=0) elif isinstance(z0, distrax.Distribution): raise NotImplementedError() else: # If the latent is deterministic, pass through all dimensions return np.array([True]*z0.shape[-1]) tensor_shape = std_vals.shape half_dims = int(tensor_shape[-1] / 2) std_vals_q = std_vals[:half_dims] std_vals_p = std_vals[half_dims:] # Keep both q and corresponding p as either one is informative informative_latents_inds = np.array([ x for x in range(len(std_vals_q)) if std_vals_q[x] < dist_std_threshold or std_vals_p[x] < dist_std_threshold ]) if informative_latents_inds.shape[0] > 0: latent_mask_final = np.zeros_like(std_vals_q) latent_mask_final[informative_latents_inds] = 1 latent_mask_final = np.concatenate([latent_mask_final, latent_mask_final]) latent_mask_final = latent_mask_final == 1 return latent_mask_final else: return np.array([True]*tensor_shape[-1]) def standardize_data(data): """Applies the sklearn standardization to the data.""" scaler = preprocessing.StandardScaler() scaler.fit(data) return scaler.transform(data) def find_best_polynomial(data_x, data_y, max_poly_order, rsq_threshold, max_dim_n=32, alpha_sweep=None, max_iter=1000, cv=2): """Find minimal polynomial expansion that is sufficient to explain data using Lasso regression.""" rsq = 0 poly_order = 1 if not np.any(alpha_sweep): alpha_sweep = [1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2] # Avoid a large polynomial expansion for large latent sizes if data_x.shape[-1] > max_dim_n: print(f'>WARNING! Data is too high dimensional at {data_x.shape[-1]}') print('>WARNING! Setting max_poly_order = 1') max_poly_order = 1 while rsq < rsq_threshold and poly_order <= max_poly_order: time_start = time.perf_counter() poly = preprocessing.PolynomialFeatures(poly_order, include_bias=False) data_x_exp = poly.fit_transform(data_x) time_end = time.perf_counter() print( f'Took {time_end-time_start}s to create polynomial features of order ' f'{poly_order} and size {data_x_exp.shape[1]}.') with warnings.catch_warnings(): warnings.simplefilter('ignore') time_start = time.perf_counter() clf = linear_model.Lasso( random_state=0, max_iter=max_iter, normalize=False, warm_start=False) parameters = {'alpha': alpha_sweep} try: regressor = do_grid_search(data_x_exp, data_y, clf, parameters, cv) time_end = time.perf_counter() print(f'Took {time_end-time_start}s to do regression grid search.') # Get rsq results time_start = time.perf_counter() clf = linear_model.Lasso( random_state=0, alpha=regressor.best_params_['alpha'], max_iter=max_iter, normalize=False, warm_start=False) clf.fit(data_x_exp, data_y) rsq = clf.score(data_x_exp, data_y) time_end = time.perf_counter() print(f'Took {time_end-time_start}s to get rsq results.') old_regressor = regressor old_poly_order = poly_order old_poly = poly old_data_x_exp = data_x_exp old_rsq = rsq old_clf = clf print(f'Polynomial of order {poly_order} with ' f' alpha={regressor.best_params_} RSQ: {rsq}') poly_order += 1 except KeyboardInterrupt: time_end = time.perf_counter() print(f'Timed out after {time_end-time_start}s of doing grid search.') # pytype: disable=name-error # py39-upgrade print(f'Continuing with previous poly_order={old_poly_order}...') regressor = old_regressor poly_order = old_poly_order poly = old_poly data_x_exp = old_data_x_exp rsq = old_rsq clf = old_clf # pytype: enable=name-error # py39-upgrade print(f'Polynomial of order {poly_order} with ' f' alpha={regressor.best_params_} RSQ: {rsq}') break return clf, poly, data_x_exp, rsq def eval_monomial_grad(feature, x, w, grad_acc): """Accumulates gradient from polynomial features and their weights.""" features = feature.split(' ') variable_indices = [] grads = np.ones(len(features)) * w for i, feature in enumerate(features): name_and_power = feature.split('^') if len(name_and_power) == 1: name, power = name_and_power[0], 1 else: name, power = name_and_power power = int(power) var_index = int(name[1:]) variable_indices.append(var_index) new_prod = np.ones_like(grads) * (x[var_index] ** power) # This needs a special case, for situation where x[index] = 0.0 if power == 1: new_prod[i] = 1.0 else: new_prod[i] = power * (x[var_index] ** (power - 1)) grads = grads * new_prod grad_acc[variable_indices] += grads return grad_acc def compute_jacobian_manual(x, polynomial_features, weight_matrix, tolerance): """Computes the jacobian manually.""" # Put together the equation for each output var # polynomial_features = np.array(polynomial_obj.get_feature_names()) weight_mask = np.abs(weight_matrix) > tolerance weight_matrix = weight_mask * weight_matrix jacobians = list() for i in range(weight_matrix.shape[0]): grad_accumulator = np.zeros_like(x) for j, feature in enumerate(polynomial_features): eval_monomial_grad(feature, x, weight_matrix[i, j], grad_accumulator) jacobians.append(grad_accumulator) return np.stack(jacobians) def calculate_jacobian_prod(jacobian, noise_eps=1e-6): """Calculates AA*, where A=JEJ^T and A*=JE^TJ^T, which should be I.""" # Add noise as 0 in jacobian creates issues in calculations later jacobian = jacobian + noise_eps sym_matrix = symplectic_matrix(jacobian.shape[1]) pred = np.matmul(jacobian, sym_matrix) pred = np.matmul(pred, np.transpose(jacobian)) pred_t = np.matmul(jacobian, np.transpose(sym_matrix)) pred_t = np.matmul(pred_t, np.transpose(jacobian)) pred_id = np.matmul(pred, pred_t) return pred_id def normalise_jacobian_prods(jacobian_preds): """Normalises Jacobians evaluated at various points by a constant.""" stacked_preds = np.stack(jacobian_preds) # For each attempt at estimating E, get the max term, and take their average normalisation_factor = np.mean(np.max(np.abs(stacked_preds), axis=(1, 2))) if normalisation_factor != 0: stacked_preds = stacked_preds/normalisation_factor return stacked_preds def calculate_symetric_score( gt_data, model_data, max_poly_order, max_sym_score, rsq_threshold, sym_threshold, evaluation_point_n, trajectory_n=1, weight_tolerance=1e-5, alpha_sweep=None, max_iter=1000, cv=2): """Finds minimal polynomial expansion to explain data using Lasso regression, gets the Jacobian of the mapping and calculates how symplectic the map is.""" model_data = model_data[..., :gt_data.shape[0], :] # Fing polynomial expansion that explains enough variance in the gt data print('Finding best polynomial expansion...') time_start = time.perf_counter() # Clean up model data to ensure it doesn't contain NaN, infinity # or values too large for dtype('float32') model_data = np.nan_to_num(model_data) model_data = np.clip(model_data, -999999, 999999) clf, poly, model_data_exp, best_rsq = find_best_polynomial( model_data, gt_data, max_poly_order, rsq_threshold, 32, alpha_sweep, max_iter, cv) time_end = time.perf_counter() print(f'Took {time_end - time_start}s to find best polynomial.') # Calculate Symplecticity score all_raw_scores = [] features = np.array(poly.get_feature_names()) points_per_trajectory = int(len(gt_data) / trajectory_n) for trajectory in range(trajectory_n): random_data_inds = np.random.permutation( range(points_per_trajectory))[:evaluation_point_n] jacobian_preds = [] for point_ind in random_data_inds: input_data_point = model_data[points_per_trajectory * trajectory + point_ind] time_start = time.perf_counter() jacobian = compute_jacobian_manual(input_data_point, features, clf.coef_, weight_tolerance) pred = calculate_jacobian_prod(jacobian) jacobian_preds.append(pred) time_end = time.perf_counter() print(f'Took {time_end - time_start}s to evaluate jacobian ' f'around point {point_ind}.') # Normalise normalised_jacobian_preds = normalise_jacobian_prods(jacobian_preds) # The score is measured as the deviation from I identity = np.eye(normalised_jacobian_preds.shape[-1]) scores = np.mean(np.power(normalised_jacobian_preds - identity, 2), axis=(1, 2)) all_raw_scores.append(scores) sym_score = np.min([np.mean(all_raw_scores), max_sym_score]) # Calculate final SyMetric score if best_rsq > rsq_threshold and sym_score < sym_threshold: sy_metric = 1.0 else: sy_metric = 0.0 results = { 'poly_exp_order': poly.get_params()['degree'], 'rsq': best_rsq, 'sym': sym_score, 'SyMetric': sy_metric, } with np.printoptions(precision=4, suppress=True): print(f'----------------FINAL RESULTS FOR {trajectory_n} ' 'TRAJECTORIES------------------') print(f'BEST POLYNOMIAL EXPANSION ORDER: {results["poly_exp_order"]}') print(f'BEST RSQ (1-best): {results["rsq"]}') print(f'SYMPLECTICITY SCORE AROUND ALL POINTS AND ALL ' f'TRAJECTORIES (0-best): {sym_score}') print(f'SyMETRIC SCORE: {sy_metric}') print(f'----------------FINAL RESULTS FOR {trajectory_n} ' f'TRAJECTORIES------------------') return results, clf, poly, model_data_exp
deepmind-research-master
physics_inspired_models/eval_metric.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing the implementations of the various numerical integrators. Higher order methods mostly taken from [1]. References: [1] Leimkuhler, Benedict and Sebastian Reich. Simulating hamiltonian dynamics. Vol. 14. Cambridge university press, 2004. [2] Forest, Etienne and Ronald D. Ruth. Fourth-order symplectic integration. Physica D: Nonlinear Phenomena 43.1 (1990): 105-117. [3] Blanes, Sergio and Per Christian Moan. Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. Journal of Computational and Applied Mathematics 142.2 (2002): 313-330. [4] McLachlan, Robert I. On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM Journal on Scientific Computing 16.1 (1995): 151-168. [5] Yoshida, Haruo. Construction of higher order symplectic integrators. Physics letters A 150.5-7 (1990): 262-268. [6] Süli, Endre; Mayers, David (2003), An Introduction to Numerical Analysis, Cambridge University Press, ISBN 0-521-00794-1. [7] Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0. """ from typing import Callable, Dict, Optional, Sequence, Tuple, TypeVar, Union from dm_hamiltonian_dynamics_suite.hamiltonian_systems import phase_space import jax from jax import lax from jax.experimental import ode import jax.numpy as jnp import numpy as np M = TypeVar("M") TM = TypeVar("TM") TimeInterval = Union[jnp.ndarray, Tuple[float, float]] # _____ _ # / ____| | | # | | __ ___ _ __ ___ _ __ __ _| | # | | |_ |/ _ \ '_ \ / _ \ '__/ _` | | # | |__| | __/ | | | __/ | | (_| | | # \_____|\___|_| |_|\___|_| \__,_|_| # _____ _ _ _ # |_ _| | | | | (_) # | | _ __ | |_ ___ __ _ _ __ __ _| |_ _ ___ _ __ # | | | '_ \| __/ _ \/ _` | '__/ _` | __| |/ _ \| '_ \ # _| |_| | | | || __/ (_| | | | (_| | |_| | (_) | | | | # |_____|_| |_|\__\___|\__, |_| \__,_|\__|_|\___/|_| |_| # __/ | # |___/ GeneralTangentFunction = Callable[ [ Optional[Union[float, jnp.ndarray]], # t M # y ], TM # dy_dt ] GeneralIntegrator = Callable[ [ GeneralTangentFunction, Optional[Union[float, jnp.ndarray]], # t M, # y jnp.ndarray, # dt ], M # y_next ] def solve_ivp_dt( fun: GeneralTangentFunction, y0: M, t0: Union[float, jnp.ndarray], dt: Union[float, jnp.ndarray], method: Union[str, GeneralIntegrator], num_steps: Optional[int] = None, steps_per_dt: int = 1, use_scan: bool = True, ode_int_kwargs: Optional[Dict[str, Union[float, int]]] = None ) -> Tuple[jnp.ndarray, M]: """Solve an initial value problem for a system of ODEs using explicit method. This function numerically integrates a system of ordinary differential equations given an initial value:: dy / dt = f(t, y) y(t0) = y0 Here t is a one-dimensional independent variable (time), y(t) is an n-dimensional vector-valued function (state), and an n-dimensional vector-valued function f(t, y) determines the differential equations. The goal is to find y(t) approximately satisfying the differential equations, given an initial value y(t0)=y0. All of the solvers supported here are explicit and non-adaptive. This makes them easy to run with a fixed amount of computation and ensures solutions are easily differentiable. Args: fun: callable Right-hand side of the system. The calling signature is ``fun(t, y)``. Here `t` is a scalar representing the time instance. `y` can be any type `M`, including a flat array, that is registered as a pytree. In addition, there is a type denoted as `TM` that represents the tangent space to `M`. It is assumed that any element of `TM` can be multiplied by arrays and scalars, can be added to other `TM` instances as well as they can be right added to an element of `M`, that is add(M, TM) exists. The function should return an element of `TM` that defines the time derivative of `y`. y0: an instance of `M` Initial state at `t_span[0]`. t0: float or array. The initial time point of integration. dt: array Array containing all consecutive increments in time, at which the integral to be evaluated. The size of this array along axis 0 defines the number of steps that the integrator would do. method: string or `GeneralIntegrator` The integrator method to use. Possible values for string are: * general_euler - see `GeneralEuler` * rk2 - see `RungaKutta2` * rk4 - see `RungaKutta4` * rk38 - see `RungaKutta38` num_steps: Optional int. If provided the `dt` will be treated as the same per step time interval, applied for this many steps. In other words setting this argument is equivalent to replicating `dt` num_steps times and stacking over axis=0. steps_per_dt: int This determines the overall step size. Between any two values of t_eval the step size is `dt = (t_eval[i+1] - t_eval[i]) / steps_per_dt. use_scan: bool Whether for the loop to use `lax.scan` or a python loop ode_int_kwargs: dict Extra arguments to be passed to `ode.odeint` when method="adaptive" Returns: t: array Time points at which the solution is evaluated. y : an instance of M Values of the solution at `t`. """ if method == "adaptive": ndim = y0.q.ndim if isinstance(y0, phase_space.PhaseSpace) else y0.ndim signs = jnp.asarray(jnp.sign(dt)) signs = signs.reshape([-1] + [1] * (ndim - 1)) if isinstance(dt, float) or dt.ndim == 0: true_t_eval = t0 + dt * np.arange(1, num_steps + 1) else: true_t_eval = t0 + dt[None] * np.arange(1, num_steps + 1)[:, None] if isinstance(dt, float): dt = np.asarray(dt) if isinstance(dt, np.ndarray) and dt.ndim > 0: if np.all(np.abs(dt) != np.abs(dt[0])): raise ValueError("Not all values of `dt` where the same.") elif isinstance(dt, jnp.ndarray) and dt.ndim > 0: raise ValueError("The code here works only when `dy_dt` is time " "independent and `np.abs(dt)` is the same. For this we " "allow calling this only with numpy (not jax.numpy) " "arrays.") dt: jnp.ndarray = jnp.abs(jnp.asarray(dt)) dt = dt.reshape([-1])[0] t_eval = t0 + dt * np.arange(num_steps + 1) outputs = ode.odeint( func=lambda y_, t_: fun(None, y_) * signs, y0=y0, t=jnp.abs(t_eval - t0), **(ode_int_kwargs or dict()) ) # Note that we do not return the initial point return true_t_eval, jax.tree_map(lambda x: x[1:], outputs) method = get_integrator(method) if num_steps is not None: dt = jnp.repeat(jnp.asarray(dt)[None], repeats=num_steps, axis=0) t_eval = t0 + jnp.cumsum(dt, axis=0) t0 = jnp.ones_like(t_eval[..., :1]) * t0 t = jnp.concatenate([t0, t_eval[..., :-1]], axis=-1) def loop_body(y_: M, t_dt: Tuple[jnp.ndarray, jnp.ndarray]) -> Tuple[M, M]: t_, dt_ = t_dt dt_: jnp.ndarray = dt_ / steps_per_dt for _ in range(steps_per_dt): y_ = method(fun, t_, y_, dt_) t_ = t_ + dt_ return y_, y_ if use_scan: return t_eval, lax.scan(loop_body, init=y0, xs=(t, dt))[1] else: y = [y0] for t_and_dt_i in zip(t, dt): y.append(loop_body(y[-1], t_and_dt_i)[0]) # Note that we do not return the initial point return t_eval, jax.tree_map(lambda *args: jnp.stack(args, axis=0), *y[1:]) def solve_ivp_dt_two_directions( fun: GeneralTangentFunction, y0: M, t0: Union[float, jnp.ndarray], dt: Union[float, jnp.ndarray], method: Union[str, GeneralIntegrator], num_steps_forward: int, num_steps_backward: int, include_y0: bool = True, steps_per_dt: int = 1, use_scan: bool = True, ode_int_kwargs: Optional[Dict[str, Union[float, int]]] = None ) -> M: """Equivalent to `solve_ivp_dt` but you can specify unrolling the problem for a fixed number of steps in both time directions.""" yt = [] if num_steps_backward > 0: yt_bck = solve_ivp_dt( fun=fun, y0=y0, t0=t0, dt=- dt, method=method, num_steps=num_steps_backward, steps_per_dt=steps_per_dt, use_scan=use_scan, ode_int_kwargs=ode_int_kwargs )[1] yt.append(jax.tree_map(lambda x: jnp.flip(x, axis=0), yt_bck)) if include_y0: yt.append(jax.tree_map(lambda x: x[None], y0)) if num_steps_forward > 0: yt_fwd = solve_ivp_dt( fun=fun, y0=y0, t0=t0, dt=dt, method=method, num_steps=num_steps_forward, steps_per_dt=steps_per_dt, use_scan=use_scan, ode_int_kwargs=ode_int_kwargs )[1] yt.append(yt_fwd) if len(yt) > 1: return jax.tree_map(lambda *a: jnp.concatenate(a, axis=0), *yt) else: return yt[0] def solve_ivp_t_eval( fun: GeneralTangentFunction, t_span: TimeInterval, y0: M, method: Union[str, GeneralIntegrator], t_eval: Optional[jnp.ndarray] = None, steps_per_dt: int = 1, use_scan: bool = True, ode_int_kwargs: Optional[Dict[str, Union[float, int]]] = None ) -> Tuple[jnp.ndarray, M]: """Solve an initial value problem for a system of ODEs using an explicit method. This function numerically integrates a system of ordinary differential equations given an initial value:: dy / dt = f(t, y) y(t0) = y0 Here t is a one-dimensional independent variable (time), y(t) is an n-dimensional vector-valued function (state), and an n-dimensional vector-valued function f(t, y) determines the differential equations. The goal is to find y(t) approximately satisfying the differential equations, given an initial value y(t0)=y0. All of the solvers supported here are explicit and non-adaptive. This in terms makes them easy to run with fixed amount of computation and the solutions to be easily differentiable. Args: fun: callable Right-hand side of the system. The calling signature is ``fun(t, y)``. Here `t` is a scalar representing the time instance. `y` can be any type `M`, including a flat array, that is registered as a pytree. In addition, there is a type denoted as `TM` that represents the tangent space to `M`. It is assumed that any element of `TM` can be multiplied by arrays and scalars, can be added to other `TM` instances as well as they can be right added to an element of `M`, that is add(M, TM) exists. The function should return an element of `TM` that defines the time derivative of `y`. t_span: 2-tuple of floats Interval of integration (t0, tf). The solver starts with t=t0 and integrates until it reaches t=tf. y0: an instance of `M` Initial state at `t_span[0]`. method: string or `GeneralIntegrator` The integrator method to use. Possible values for string are: * general_euler - see `GeneralEuler` * rk2 - see `RungaKutta2` * rk4 - see `RungaKutta4` * rk38 - see `RungaKutta38` t_eval: array or None. Times at which to store the computed solution. Must be sorted and lie within `t_span`. If None then t_eval = [t_span[-1]] steps_per_dt: int This determines the overall step size. Between any two values of t_eval the step size is `dt = (t_eval[i+1] - t_eval[i]) / steps_per_dt. use_scan: bool Whether for the loop to use `lax.scan` or a python loop ode_int_kwargs: dict Extra arguments to be passed to `ode.odeint` when method="adaptive" Returns: t: array Time points at which the solution is evaluated. y : an instance of M Values of the solution at `t`. """ # Check for t_eval if t_eval is None: t_eval = np.asarray([t_span[-1]]) if isinstance(t_span[0], float) and isinstance(t_span[1], float): t_span = np.asarray(t_span) elif isinstance(t_span[0], float) and isinstance(t_span[1], jnp.ndarray): t_span = (np.full_like(t_span[1], t_span[0]), t_span[1]) t_span = np.stack(t_span, axis=0) elif isinstance(t_span[1], float) and isinstance(t_span[0], jnp.ndarray): t_span = (t_span[0], jnp.full_like(t_span[0], t_span[1])) t_span = np.stack(t_span, axis=0) else: t_span = np.stack(t_span, axis=0) def check_span(span, ts): # Verify t_span and t_eval if span[0] < span[1]: # Forward in time if not np.all(np.logical_and(span[0] <= ts, ts <= span[1])): raise ValueError("Values in `t_eval` are not within `t_span`.") if not np.all(ts[:-1] < ts[1:]): raise ValueError("Values in `t_eval` are not properly sorted.") else: # Backward in time if not np.all(np.logical_and(span[0] >= ts, ts >= span[1])): raise ValueError("Values in `t_eval` are not within `t_span`.") if not np.all(ts[:-1] > ts[1:]): raise ValueError("Values in `t_eval` are not properly sorted.") if t_span.ndim == 1: check_span(t_span, t_eval) elif t_span.ndim == 2: if t_eval.ndim != 2: raise ValueError("t_eval should have rank 2.") for i in range(t_span.shape[1]): check_span(t_span[:, i], t_eval[:, i]) t = np.concatenate([t_span[:1], t_eval[:-1]], axis=0) return solve_ivp_dt( fun=fun, y0=y0, t0=t_span[0], dt=t_eval - t, method=method, steps_per_dt=steps_per_dt, use_scan=use_scan, ode_int_kwargs=ode_int_kwargs ) class RungaKutta(GeneralIntegrator): """A general Runga-Kutta integrator defined using a Butcher tableau.""" def __init__( self, a_tableau: Sequence[Sequence[float]], b_tableau: Sequence[float], c_tableau: Sequence[float], order: int): if len(b_tableau) != len(c_tableau) + 1: raise ValueError("The length of b_tableau should be exactly one more than" " the length of c_tableau.") if len(b_tableau) != len(a_tableau) + 1: raise ValueError("The length of b_tableau should be exactly one more than" " the length of a_tableau.") self.a_tableau = a_tableau self.b_tableau = b_tableau self.c_tableau = c_tableau self.order = order def __call__( self, tangent_func: GeneralTangentFunction, t: jnp.ndarray, y: M, dt: jnp.ndarray ) -> M: # pytype: disable=invalid-annotation k = [tangent_func(t, y)] zero = jax.tree_map(jnp.zeros_like, k[0]) # We always broadcast opposite to numpy (e.g. leading dims (batch) count) if dt.ndim > 0: dt = dt.reshape(dt.shape + (1,) * (y.ndim - dt.ndim)) if t.ndim > 0: t = t.reshape(t.shape + (1,) * (y.ndim - t.ndim)) for c_n, a_n_row in zip(self.c_tableau, self.a_tableau): t_n = t + dt * c_n products = [a_i * k_i for a_i, k_i in zip(a_n_row, k) if a_i != 0.0] delta_n = sum(products, zero) y_n = y + dt * delta_n k.append(tangent_func(t_n, y_n)) products = [b_i * k_i for b_i, k_i in zip(self.b_tableau, k) if b_i != 0.0] delta = sum(products, zero) return y + dt * delta class GeneralEuler(RungaKutta): """The standard Euler method (for general ODE problems).""" def __init__(self): super().__init__( a_tableau=[], b_tableau=[1.0], c_tableau=[], order=1 ) class RungaKutta2(RungaKutta): """The second order Runga-Kutta method corresponding to the mid-point rule.""" def __init__(self): super().__init__( a_tableau=[[1.0 / 2.0]], b_tableau=[0.0, 1.0], c_tableau=[1.0 / 2.0], order=2 ) class RungaKutta4(RungaKutta): """The fourth order Runga-Kutta method from [6].""" def __init__(self): super().__init__( a_tableau=[[1.0 / 2.0], [0.0, 1.0 / 2.0], [0.0, 0.0, 1.0]], b_tableau=[1.0 / 6.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 6.0], c_tableau=[1.0 / 2.0, 1.0 / 2.0, 1.0], order=4 ) class RungaKutta38(RungaKutta): """The fourth order 3/8 rule Runga-Kutta method from [7].""" def __init__(self): super().__init__( a_tableau=[[1.0 / 3.0], [-1.0 / 3.0, 1.0], [1.0, -1.0, 1.0]], b_tableau=[1.0 / 8.0, 3.0 / 8.0, 3.0 / 8.0, 1.0 / 8.0], c_tableau=[1.0 / 3.0, 2.0 / 3.0, 1.0], order=4 ) # _____ _ _ _ # / ____| | | | | (_) # | (___ _ _ _ __ ___ _ __ | | ___ ___| |_ _ ___ # \___ \| | | | '_ ` _ \| '_ \| |/ _ \/ __| __| |/ __| # ____) | |_| | | | | | | |_) | | __/ (__| |_| | (__ # |_____/ \__, |_| |_| |_| .__/|_|\___|\___|\__|_|\___| # __/ | | | # |___/ |_| # _____ _ _ _ # |_ _| | | | | (_) # | | _ __ | |_ ___ __ _ _ __ __ _| |_ _ ___ _ __ # | | | '_ \| __/ _ \/ _` | '__/ _` | __| |/ _ \| '_ \ # _| |_| | | | || __/ (_| | | | (_| | |_| | (_) | | | | # |_____|_| |_|\__\___|\__, |_| \__,_|\__|_|\___/|_| |_| # __/ | # |___/ SymplecticIntegrator = Callable[ [ phase_space.SymplecticTangentFunction, jnp.ndarray, # t phase_space.PhaseSpace, # (q, p) jnp.ndarray, # dt ], phase_space.PhaseSpace # (q_next, p_next) ] def solve_hamiltonian_ivp_dt( hamiltonian: phase_space.HamiltonianFunction, y0: phase_space.PhaseSpace, t0: Union[float, jnp.ndarray], dt: Union[float, jnp.ndarray], method: Union[str, SymplecticIntegrator], num_steps: Optional[int] = None, steps_per_dt: int = 1, use_scan: bool = True, ode_int_kwargs: Optional[Dict[str, Union[float, int]]] = None ) -> Tuple[jnp.ndarray, phase_space.PhaseSpace]: """Solve an initial value problem for a Hamiltonian system. This function numerically integrates a Hamiltonian system given an initial value:: dq / dt = dH / dp dp / dt = - dH / dq q(t0), p(t0) = y0.q, y0.p Here t is a one-dimensional independent variable (time), y(t) is an n-dimensional vector-valued function (state), and an n-dimensional vector-valued function H(t, q, p) determines the value of the Hamiltonian. The goal is to find q(t) and p(t) approximately satisfying the differential equations, given an initial values q(t0), p(t0) = y0.q, y0.p All of the solvers supported here are explicit and non-adaptive. This in terms makes them easy to run with fixed amount of computation and the solutions to be easily differentiable. Args: hamiltonian: callable The Hamiltonian function. The calling signature is ``h(t, s)``, where `s` is an instance of `PhaseSpace`. y0: an instance of `M` Initial state at t=t0. t0: float or array. The initial time point of integration. dt: array Array containing all consecutive increments in time, at which the integral to be evaluated. The size of this array along axis 0 defines the number of steps that the integrator would do. method: string or `GeneralIntegrator` The integrator method to use. Possible values for string are: * symp_euler - see `SymplecticEuler` * symp_euler_q - a `SymplecticEuler` with position_first=True * symp_euler_p - a `SymplecticEuler` with position_first=False * leap_frog - see `LeapFrog` * leap_frog_q - a `LeapFrog` with position_first=True * leap_frog_p - a `LeapFrog` with position_first=False * stormer_verlet - same as leap_frog * stormer_verlet_q - same as leap_frog_q * stormer_verlet_p - same as leap_frog_p * ruth4 - see `Ruth4`, * sym4 - see `Symmetric4` * sym6 - see `Symmetric6` * so4 - see `SymmetricSo4` * so4_q - a `SymmetricSo4` with position_first=True * so4_p - a `SymmetricSo4` with position_first=False * so6 - see `SymmetricSo6` * so6_q - a `SymmetricSo6` with position_first=True * so6_p - a `SymmetricSo6` with position_first=False * so8 - see `SymmetricSo8` * so8_q - a `SymmetricSo8` with position_first=True * so8_p - a `SymmetricSo8` with position_first=False num_steps: Optional int. If provided the `dt` will be treated as the same per step time interval, applied for this many steps. In other words setting this argument is equivalent to replicating `dt` num_steps times and stacking over axis=0. steps_per_dt: int This determines the overall step size. Between any two values of t_eval the step size is `dt = (t_eval[i+1] - t_eval[i]) / steps_per_dt. use_scan: bool Whether for the loop to use `lax.scan` or a python loop ode_int_kwargs: dict Extra arguments to be passed to `ode.odeint` when method="adaptive" Returns: t: array Time points at which the solution is evaluated. y : an instance of M Values of the solution at `t`. """ if not isinstance(y0, phase_space.PhaseSpace): raise ValueError("The initial state must be an instance of `PhaseSpace`.") dy_dt = phase_space.poisson_bracket_with_q_and_p(hamiltonian) return solve_ivp_dt( fun=dy_dt, y0=y0, t0=t0, dt=dt, method=method, num_steps=num_steps, steps_per_dt=steps_per_dt, use_scan=use_scan, ode_int_kwargs=ode_int_kwargs ) def solve_hamiltonian_ivp_t_eval( hamiltonian: phase_space.HamiltonianFunction, t_span: TimeInterval, y0: phase_space.PhaseSpace, method: Union[str, SymplecticIntegrator], t_eval: Optional[jnp.ndarray] = None, steps_per_dt: int = 1, use_scan: bool = True, ode_int_kwargs: Optional[Dict[str, Union[float, int]]] = None ) -> Tuple[jnp.ndarray, phase_space.PhaseSpace]: """Solve an initial value problem for a Hamiltonian system. This function numerically integrates a Hamiltonian system given an initial value:: dq / dt = dH / dp dp / dt = - dH / dq q(t0), p(t0) = y0.q, y0.p Here t is a one-dimensional independent variable (time), y(t) is an n-dimensional vector-valued function (state), and an n-dimensional vector-valued function H(t, q, p) determines the value of the Hamiltonian. The goal is to find q(t) and p(t) approximately satisfying the differential equations, given an initial values q(t0), p(t0) = y0.q, y0.p All of the solvers supported here are explicit and non-adaptive. This in terms makes them easy to run with fixed amount of computation and the solutions to be easily differentiable. Args: hamiltonian: callable The Hamiltonian function. The calling signature is ``h(t, s)``, where `s` is an instance of `PhaseSpace`. t_span: 2-tuple of floats Interval of integration (t0, tf). The solver starts with t=t0 and integrates until it reaches t=tf. y0: an instance of `M` Initial state at `t_span[0]`. method: string or `GeneralIntegrator` The integrator method to use. Possible values for string are: * symp_euler - see `SymplecticEuler` * symp_euler_q - a `SymplecticEuler` with position_first=True * symp_euler_p - a `SymplecticEuler` with position_first=False * leap_frog - see `LeapFrog` * leap_frog_q - a `LeapFrog` with position_first=True * leap_frog_p - a `LeapFrog` with position_first=False * stormer_verlet - same as leap_frog * stormer_verlet_q - same as leap_frog_q * stormer_verlet_p - same as leap_frog_p * ruth4 - see `Ruth4`, * sym4 - see `Symmetric4` * sym6 - see `Symmetric6` * so4 - see `SymmetricSo4` * so4_q - a `SymmetricSo4` with position_first=True * so4_p - a `SymmetricSo4` with position_first=False * so6 - see `SymmetricSo6` * so6_q - a `SymmetricSo6` with position_first=True * so6_p - a `SymmetricSo6` with position_first=False * so8 - see `SymmetricSo8` * so8_q - a `SymmetricSo8` with position_first=True * so8_p - a `SymmetricSo8` with position_first=False t_eval: array or None. Times at which to store the computed solution. Must be sorted and lie within `t_span`. If None then t_eval = [t_span[-1]] steps_per_dt: int This determines the overall step size. Between any two values of t_eval the step size is `dt = (t_eval[i+1] - t_eval[i]) / steps_per_dt. use_scan: bool Whether for the loop to use `lax.scan` or a python loop ode_int_kwargs: dict Extra argumrnts to be passed to `ode.odeint` when method="adaptive" Returns: t: array Time points at which the solution is evaluated. y : an instance of M Values of the solution at `t`. """ if not isinstance(y0, phase_space.PhaseSpace): raise ValueError("The initial state must be an instance of `PhaseSpace`.") dy_dt = phase_space.poisson_bracket_with_q_and_p(hamiltonian) if method == "adaptive": dy_dt = phase_space.transform_symplectic_tangent_function_using_array(dy_dt) return solve_ivp_t_eval( fun=dy_dt, t_span=t_span, y0=y0, method=method, t_eval=t_eval, steps_per_dt=steps_per_dt, use_scan=use_scan, ode_int_kwargs=ode_int_kwargs ) class CompositionSymplectic(SymplecticIntegrator): """A generalized symplectic integrator based on compositions. Simulates Hamiltonian dynamics using a composition of symplectic steps: q_{0} = q_init, p_{0} = p_init for i in [1, n]: p_{i+1} = p_{i} - c_{i} * dH/dq(q_{i}) * dt q_{i+1} = q_{i} + d_{i} * dH/dp(p_{i+1}) * dt q_next = q_{n}, p_next = p_{n} This integrator always starts with updating the momentum. The order argument is used mainly for testing to estimate the error when integrating various systems. """ def __init__( self, momentum_coefficients: Sequence[float], position_coefficients: Sequence[float], order: int): if len(position_coefficients) != len(momentum_coefficients): raise ValueError("The number of momentum_coefficients and " "position_coefficients must be the same.") if not np.allclose(sum(position_coefficients), 1.0): raise ValueError("The sum of the position_coefficients " "must be equal to 1.") if not np.allclose(sum(momentum_coefficients), 1.0): raise ValueError("The sum of the momentum_coefficients " "must be equal to 1.") self.momentum_coefficients = momentum_coefficients self.position_coefficients = position_coefficients self.order = order def __call__( self, tangent_func: phase_space.SymplecticTangentFunction, t: jnp.ndarray, y: phase_space.PhaseSpace, dt: jnp.ndarray ) -> phase_space.PhaseSpace: q, p = y.q, y.p # This is intentional to prevent a bug where one uses y later del y # We always broadcast opposite to numpy (e.g. leading dims (batch) count) if dt.ndim > 0: dt = dt.reshape(dt.shape + (1,) * (q.ndim - dt.ndim)) if t.ndim > 0: t = t.reshape(t.shape + (1,) * (q.ndim - t.ndim)) t_q = t t_p = t for c, d in zip(self.momentum_coefficients, self.position_coefficients): # Update momentum if c != 0.0: dp_dt = tangent_func(t_p, phase_space.PhaseSpace(q, p)).p p = p + c * dt * dp_dt t_p = t_p + c * dt # Update position if d != 0.0: dq_dt = tangent_func(t_q, phase_space.PhaseSpace(q, p)).q q = q + d * dt * dq_dt t_q = t_q + d * dt return phase_space.PhaseSpace(position=q, momentum=p) class SymplecticEuler(CompositionSymplectic): """The symplectic Euler method (for Hamiltonian systems). If position_first = True: q_{t+1} = q_{t} + dH/dp(p_{t}) * dt p_{t+1} = p_{t} - dH/dq(q_{t+1}) * dt else: p_{t+1} = p_{t} - dH/dq(q_{t}) * dt q_{t+1} = q_{t} + dH/dp(p_{t+1}) * dt """ def __init__(self, position_first=True): if position_first: super().__init__( momentum_coefficients=[0.0, 1.0], position_coefficients=[1.0, 0.0], order=1 ) else: super().__init__( momentum_coefficients=[1.0], position_coefficients=[1.0], order=1 ) class SymmetricCompositionSymplectic(CompositionSymplectic): """A generalized composition integrator that is symmetric. The integrators produced are always of the form: [update_q, update_p, ..., update_p, update_q] or [update_p, update_q, ..., update_q, update_p] based on the position_first argument. The method will expect which ever is updated first to have one more coefficient. """ def __init__( self, momentum_coefficients: Sequence[float], position_coefficients: Sequence[float], position_first: bool, order: int): position_coefficients = list(position_coefficients) momentum_coefficients = list(momentum_coefficients) if position_first: if len(position_coefficients) != len(momentum_coefficients) + 1: raise ValueError("The number of position_coefficients must be one more " "than momentum_coefficients when position_first=True.") momentum_coefficients = [0.0] + momentum_coefficients else: if len(position_coefficients) + 1 != len(momentum_coefficients): raise ValueError("The number of momentum_coefficients must be one more " "than position_coefficients when position_first=True.") position_coefficients = position_coefficients + [0.0] super().__init__( position_coefficients=position_coefficients, momentum_coefficients=momentum_coefficients, order=order ) def symmetrize_coefficients( coefficients: Sequence[float], odd_number: bool ) -> Sequence[float]: """Symmetrizes the coefficients for an integrator.""" coefficients = list(coefficients) if odd_number: final = 1.0 - 2.0 * sum(coefficients) return coefficients + [final] + coefficients[::-1] else: final = 0.5 - sum(coefficients) return coefficients + [final, final] + coefficients[::-1] class LeapFrog(SymmetricCompositionSymplectic): """The standard Leap-Frog method (also known as Stormer-Verlet). If position_first = True: q_half = q_{t} + dH/dp(p_{t}) * dt / 2 p_{t+1} = p_{t} - dH/dq(q_half) * dt q_{t+1} = q_half + dH/dp(p_{t+1}) * dt / 2 else: p_half = p_{t} - dH/dq(q_{t}) * dt / 2 q_{t+1} = q_{t} + dH/dp(p_half) * dt p_{t+1} = p_half - dH/dq(q_{t+1}) * dt / 2 """ def __init__(self, position_first=False): if position_first: super().__init__( position_coefficients=[0.5, 0.5], momentum_coefficients=[1.0], position_first=True, order=2 ) else: super().__init__( position_coefficients=[1.0], momentum_coefficients=[0.5, 0.5], position_first=False, order=2 ) class Ruth4(SymmetricCompositionSymplectic): """The Fourth order method from [2].""" def __init__(self): cbrt_2 = float(np.cbrt(2.0)) c = [1.0 / (2.0 - cbrt_2)] # 3: [c1, 1.0 - 2*c1, c1] c = symmetrize_coefficients(c, odd_number=True) d = [1.0 / (4.0 - 2.0 * cbrt_2)] # 4: [d1, 0.5 - d1, 0.5 - d1, d1] d = symmetrize_coefficients(d, odd_number=False) super().__init__( position_coefficients=d, momentum_coefficients=c, position_first=True, order=4 ) class Symmetric4(SymmetricCompositionSymplectic): """The fourth order method from Table 6.1 in [1] (originally from [3]).""" def __init__(self): c = [0.0792036964311957, 0.353172906049774, -0.0420650803577195] # 7 : [c1, c2, c3, 1.0 - c1 - c2 - c3, c3, c2, c1] c = symmetrize_coefficients(c, odd_number=True) d = [0.209515106613362, -0.143851773179818] # 6: [d1, d2, 0.5 - d1, 0.5 - d1, d2, d1] d = symmetrize_coefficients(d, odd_number=False) super().__init__( position_coefficients=d, momentum_coefficients=c, position_first=False, order=4 ) class Symmetric6(SymmetricCompositionSymplectic): """The sixth order method from Table 6.1 in [1] (originally from [3]).""" def __init__(self): c = [0.0502627644003922, 0.413514300428344, 0.0450798897943977, -0.188054853819569, 0.541960678450780] # 11 : [c1, c2, c3, c4, c5, 1.0 - sum(ci), c5, c4, c3, c2, c1] c = symmetrize_coefficients(c, odd_number=True) d = [0.148816447901042, -0.132385865767784, 0.067307604692185, 0.432666402578175] # 10: [d1, d2, d3, d4, 0.5 - sum(di), 0.5 - sum(di), d4, d3, d2, d1] d = symmetrize_coefficients(d, odd_number=False) super().__init__( position_coefficients=d, momentum_coefficients=c, position_first=False, order=4 ) def coefficients_based_on_composing_second_order( weights: Sequence[float] ) -> Tuple[Sequence[float], Sequence[float]]: """Constructs the coefficients for methods based on second-order schemes.""" coefficients_0 = [] coefficients_1 = [] coefficients_0.append(weights[0] / 2.0) for i in range(len(weights) - 1): coefficients_1.append(weights[i]) coefficients_0.append((weights[i] + weights[i + 1]) / 2.0) coefficients_1.append(weights[-1]) coefficients_0.append(weights[-1] / 2.0) return coefficients_0, coefficients_1 class SymmetricSo4(SymmetricCompositionSymplectic): """The fourth order method from Table 6.2 in [1] (originally from [4]).""" def __init__(self, position_first: bool = False): w = [0.28, 0.62546642846767004501] # 5 w = symmetrize_coefficients(w, odd_number=True) c0, c1 = coefficients_based_on_composing_second_order(w) c_q, c_p = (c0, c1) if position_first else (c1, c0) super().__init__( position_coefficients=c_q, momentum_coefficients=c_p, position_first=position_first, order=4 ) class SymmetricSo6(SymmetricCompositionSymplectic): """The sixth order method from Table 6.2 in [1] (originally from [5]).""" def __init__(self, position_first: bool = False): w = [0.78451361047755726382, 0.23557321335935813368, -1.17767998417887100695] # 7 w = symmetrize_coefficients(w, odd_number=True) c0, c1 = coefficients_based_on_composing_second_order(w) c_q, c_p = (c0, c1) if position_first else (c1, c0) super().__init__( position_coefficients=c_q, momentum_coefficients=c_p, position_first=position_first, order=6 ) class SymmetricSo8(SymmetricCompositionSymplectic): """The eighth order method from Table 6.2 in [1] (originally from [4]).""" def __init__(self, position_first: bool = False): w = [0.74167036435061295345, -0.40910082580003159400, 0.19075471029623837995, -0.57386247111608226666, 0.29906418130365592384, 0.33462491824529818378, 0.31529309239676659663] # 15 w = symmetrize_coefficients(w, odd_number=True) c0, c1 = coefficients_based_on_composing_second_order(w) c_q, c_p = (c0, c1) if position_first else (c1, c0) super().__init__( position_coefficients=c_q, momentum_coefficients=c_p, position_first=position_first, order=8 ) general_integrators = dict( general_euler=GeneralEuler(), rk2=RungaKutta2(), rk4=RungaKutta4(), rk38=RungaKutta38() ) symplectic_integrators = dict( symp_euler=SymplecticEuler(position_first=True), symp_euler_q=SymplecticEuler(position_first=True), symp_euler_p=SymplecticEuler(position_first=False), leap_frog=LeapFrog(position_first=False), leap_frog_q=LeapFrog(position_first=True), leap_frog_p=LeapFrog(position_first=False), stormer_verlet=LeapFrog(position_first=False), stormer_verlet_q=LeapFrog(position_first=True), stormer_verlet_p=LeapFrog(position_first=False), ruth4=Ruth4(), sym4=Symmetric4(), sym6=Symmetric6(), so4=SymmetricSo4(position_first=False), so4_q=SymmetricSo4(position_first=True), so4_p=SymmetricSo4(position_first=False), so6=SymmetricSo6(position_first=False), so6_q=SymmetricSo6(position_first=True), so6_p=SymmetricSo6(position_first=False), so8=SymmetricSo8(position_first=False), so8_q=SymmetricSo8(position_first=True), so8_p=SymmetricSo8(position_first=False), ) def get_integrator( name_or_callable: Union[str, GeneralIntegrator] ) -> GeneralIntegrator: """Returns any integrator with the provided name or the argument.""" if isinstance(name_or_callable, str): if name_or_callable in general_integrators: return general_integrators[name_or_callable] elif name_or_callable in symplectic_integrators: return symplectic_integrators[name_or_callable] else: raise ValueError(f"Unrecognized integrator with name {name_or_callable}.") if not callable(name_or_callable): raise ValueError(f"Expected a callable, but got {type(name_or_callable)}.") return name_or_callable
deepmind-research-master
physics_inspired_models/integrators.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
deepmind-research-master
physics_inspired_models/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for pip package.""" from setuptools import setup REQUIRED_PACKAGES = ( "dm_hamiltonian_dynamics_suite@git+https://github.com/deepmind/dm_hamiltonian_dynamics_suite", # pylint: disable=line-too-long. "absl-py>=0.12.0", "numpy>=1.16.4", "scikit-learn>=1.0", "typing>=3.7.4.3", "jax==0.2.20", "jaxline==0.0.3", "distrax==0.0.2", "optax==0.0.6", "dm-haiku==0.0.3", ) LONG_DESCRIPTION = "\n".join([ "A codebase containing the implementation of the following models:", "Hamiltonian Generative Network (HGN)", "Lagrangian Generative Network (LGN)", "Neural ODE", "Recurrent Generative Network (RGN)", "and RNN, LSTM and GRU.", "This is code accompanying the publication of:" ]) setup( name="physics_inspired_models", version="0.0.1", description="Implementation of multiple physically inspired models.", long_description=LONG_DESCRIPTION, url="https://github.com/deepmind/deepmind-research/physics_inspired_models", author="DeepMind", package_dir={"physics_inspired_models": "."}, packages=["physics_inspired_models", "physics_inspired_models.models"], install_requires=REQUIRED_PACKAGES, platforms=["any"], license="Apache License, Version 2.0", )
deepmind-research-master
physics_inspired_models/setup.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities functions for Jax.""" from collections import abc import functools from typing import Any, Callable, Dict, Mapping, Union import distrax import jax from jax import core from jax import lax from jax import nn import jax.numpy as jnp from jax.tree_util import register_pytree_node from jaxline import utils import numpy as np HaikuParams = Mapping[str, Mapping[str, jnp.ndarray]] Params = Union[Mapping[str, jnp.ndarray], HaikuParams, jnp.ndarray] _Activation = Callable[[jnp.ndarray], jnp.ndarray] tf_leaky_relu = functools.partial(nn.leaky_relu, negative_slope=0.2) def filter_only_scalar_stats(stats): return {k: v for k, v in stats.items() if v.size == 1} def to_numpy(obj): return jax.tree_map(np.array, obj) @jax.custom_gradient def geco_lagrange_product(lagrange_multiplier, constraint_ema, constraint_t): """Modifies the gradients so that they work as described in GECO. The evaluation gives: lagrange * C_ema The gradient w.r.t lagrange: - g * C_t The gradient w.r.t constraint_ema: 0.0 The gradient w.r.t constraint_t: g * lagrange Note that if you pass the same value for `constraint_ema` and `constraint_t` this would only flip the gradient for the lagrange multiplier. Args: lagrange_multiplier: The lagrange multiplier constraint_ema: The moving average of the constraint constraint_t: The current constraint Returns: """ def grad(gradient): return (- gradient * constraint_t, jnp.zeros_like(constraint_ema), gradient * lagrange_multiplier) return lagrange_multiplier * constraint_ema, grad def bcast_if(x, t, n): return [x] * n if isinstance(x, t) else x def stack_time_into_channels( images: jnp.ndarray, data_format: str ) -> jnp.ndarray: axis = data_format.index("C") list_of_time = [jnp.squeeze(v, axis=1) for v in jnp.split(images, images.shape[1], axis=1)] return jnp.concatenate(list_of_time, axis) def stack_device_dim_into_batch(obj): return jax.tree_map(lambda x: x.reshape((-1,) + x.shape[2:]), obj) def nearest_neighbour_upsampling(x, scale, data_format="NHWC"): """Performs nearest-neighbour upsampling.""" if data_format == "NCHW": b, c, h, w = x.shape x = jnp.reshape(x, [b, c, h, 1, w, 1]) ones = jnp.ones([1, 1, 1, scale, 1, scale], dtype=x.dtype) return jnp.reshape(x * ones, [b, c, scale * h, scale * w]) elif data_format == "NHWC": b, h, w, c = x.shape x = jnp.reshape(x, [b, h, 1, w, 1, c]) ones = jnp.ones([1, 1, scale, 1, scale, 1], dtype=x.dtype) return jnp.reshape(x * ones, [b, scale * h, scale * w, c]) else: raise ValueError(f"Unrecognized data_format={data_format}.") def get_activation(arg: Union[_Activation, str]) -> _Activation: """Returns an activation from provided string.""" if isinstance(arg, str): # Try fetch in order - [this module, jax.nn, jax.numpy] if arg in globals(): return globals()[arg] if hasattr(nn, arg): return getattr(nn, arg) elif hasattr(jnp, arg): return getattr(jnp, arg) else: raise ValueError(f"Unrecognized activation with name {arg}.") if not callable(arg): raise ValueError(f"Expected a callable, but got {type(arg)}") return arg def merge_first_dims(x: jnp.ndarray, num_dims_to_merge: int = 2) -> jnp.ndarray: return x.reshape((-1,) + x.shape[num_dims_to_merge:]) def extract_image( inputs: Union[jnp.ndarray, Mapping[str, jnp.ndarray]] ) -> jnp.ndarray: """Extracts a tensor with key `image` or `x_image` if it is a dict, otherwise returns the inputs.""" if isinstance(inputs, dict): if "image" in inputs: return inputs["image"] else: return inputs["x_image"] elif isinstance(inputs, jnp.ndarray): return inputs raise NotImplementedError(f"Not implemented of inputs of type" f" {type(inputs)}.") def extract_gt_state(inputs: Any) -> jnp.ndarray: if isinstance(inputs, dict): return inputs["x"] elif not isinstance(inputs, jnp.ndarray): raise NotImplementedError(f"Not implemented of inputs of type" f" {type(inputs)}.") return inputs def reshape_latents_conv_to_flat(conv_latents, axis_n_to_keep=1): q, p = jnp.split(conv_latents, 2, axis=-1) q = jax.tree_map(lambda x: x.reshape(x.shape[:axis_n_to_keep] + (-1,)), q) p = jax.tree_map(lambda x: x.reshape(x.shape[:axis_n_to_keep] + (-1,)), p) flat_latents = jnp.concatenate([q, p], axis=-1) return flat_latents def triu_matrix_from_v(x, ndim): assert x.shape[-1] == (ndim * (ndim + 1)) // 2 matrix = jnp.zeros(x.shape[:-1] + (ndim, ndim)) idx = jnp.triu_indices(ndim) index_update = lambda x, idx, y: x.at[idx].set(y) for _ in range(x.ndim - 1): index_update = jax.vmap(index_update, in_axes=(0, None, 0)) return index_update(matrix, idx, x) def flatten_dict(d, parent_key: str = "", sep: str = "_") -> Dict[str, Any]: items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, abc.MutableMapping): items.extend(flatten_dict(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def convert_to_pytype(target, reference): """Makes target the same pytype as reference, by jax.tree_flatten.""" _, pytree = jax.tree_flatten(reference) leaves, _ = jax.tree_flatten(target) return jax.tree_unflatten(pytree, leaves) def func_if_not_scalar(func): """Makes a function that uses func only on non-scalar values.""" @functools.wraps(func) def wrapped(array, axis=0): if array.ndim == 0: return array return func(array, axis=axis) return wrapped mean_if_not_scalar = func_if_not_scalar(jnp.mean) class MultiBatchAccumulator(object): """Class for abstracting statistics accumulation over multiple batches.""" def __init__(self): self._obj = None self._obj_max = None self._obj_min = None self._num_samples = None def add(self, averaged_values, num_samples): """Adds an element to the moving average and the max.""" if self._obj is None: self._obj_max = jax.tree_map(lambda y: y * 1.0, averaged_values) self._obj_min = jax.tree_map(lambda y: y * 1.0, averaged_values) self._obj = jax.tree_map(lambda y: y * num_samples, averaged_values) self._num_samples = num_samples else: self._obj_max = jax.tree_map(jnp.maximum, self._obj_max, averaged_values) self._obj_min = jax.tree_map(jnp.minimum, self._obj_min, averaged_values) self._obj = jax.tree_map(lambda x, y: x + y * num_samples, self._obj, averaged_values) self._num_samples += num_samples def value(self): return jax.tree_map(lambda x: x / self._num_samples, self._obj) def max(self): return jax.tree_map(float, self._obj_max) def min(self): return jax.tree_map(float, self._obj_min) def sum(self): return self._obj register_pytree_node( distrax.Normal, lambda instance: ([instance.loc, instance.scale], None), lambda _, args: distrax.Normal(*args) ) def inner_product(x: Any, y: Any) -> jnp.ndarray: products = jax.tree_map(lambda x_, y_: jnp.sum(x_ * y_), x, y) return sum(jax.tree_leaves(products)) get_first = utils.get_first bcast_local_devices = utils.bcast_local_devices py_prefetch = utils.py_prefetch p_split = jax.pmap(lambda x, num: list(jax.random.split(x, num)), static_broadcasted_argnums=1) def wrap_if_pmap(p_func): def p_func_if_pmap(obj, axis_name): try: core.axis_frame(axis_name) return p_func(obj, axis_name) except NameError: return obj return p_func_if_pmap pmean_if_pmap = wrap_if_pmap(lax.pmean) psum_if_pmap = wrap_if_pmap(lax.psum)
deepmind-research-master
physics_inspired_models/utils.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing all of the configurations for various models.""" import copy import os from jaxline import base_config import ml_collections as collections _DATASETS_PATH_VAR_NAME = "DM_HAMILTONIAN_DYNAMICS_SUITE_DATASETS" def get_config(arg_string): """Return config object for training.""" args = arg_string.split(",") if len(args) != 3: raise ValueError("You must provide exactly three arguments separated by a " "comma - model_config_name,sweep_index,dataset_name.") model_config_name, sweep_index, dataset_name = args sweep_index = int(sweep_index) config = base_config.get_base_config() config.random_seed = 123109801 config.eval_modes = ("eval", "eval_metric") # Get the model config and the sweeps if model_config_name not in globals(): raise ValueError(f"The config name {model_config_name} does not exist in " f"jaxline_configs.py") config_and_sweep_fn = globals()[model_config_name] model_config, sweeps = config_and_sweep_fn() if not os.environ.get(_DATASETS_PATH_VAR_NAME, None): raise ValueError(f"You need to set the {_DATASETS_PATH_VAR_NAME}") dm_hamiltonian_suite_path = os.environ[_DATASETS_PATH_VAR_NAME] dataset_folder = os.path.join(dm_hamiltonian_suite_path, dataset_name) # Experiment config. Note that batch_size is per device. # In the experiments we run on 4 GPUs, so the effective batch size was 128. config.experiment_kwargs = collections.ConfigDict( dict( config=dict( dataset_folder=dataset_folder, model_kwargs=model_config, num_extrapolation_steps=60, drop_stats_containing=("neg_log_p_x", "l2_over_time", "neg_elbo"), optimizer=dict( name="adam", kwargs=dict( learning_rate=1.5e-4, b1=0.9, b2=0.999, ) ), training=dict( batch_size=32, burnin_steps=5, num_epochs=None, lagging_vae=False ), evaluation=dict( batch_size=64, ), evaluation_metric=dict( batch_size=5, batch_n=20, num_eval_metric_steps=60, max_poly_order=5, max_jacobian_score=1000, rsq_threshold=0.9, sym_threshold=0.05, evaluation_point_n=10, weight_tolerance=1e-03, max_iter=1000, cv=2, alpha_min_logspace=-4, alpha_max_logspace=-0.5, alpha_step_n=10, calculate_fully_after_steps=40000, ), evaluation_metric_mlp=dict( batch_size=64, batch_n=10000, datapoint_param_multiplier=1000, num_eval_metric_steps=60, evaluation_point_n=10, evaluation_trajectory_n=50, rsq_threshold=0.9, sym_threshold=0.05, ridge_lambda=0.01, model=dict( num_units=4, num_layers=4, activation="tanh", ), optimizer=dict( name="adam", kwargs=dict( learning_rate=1.5e-3, ) ), ), evaluation_vpt=dict( batch_size=5, batch_n=2, vpt_threshold=0.025, ) ) ) ) # Training loop config. config.training_steps = int(500000) config.interval_type = "steps" config.log_tensors_interval = 50 config.log_train_data_interval = 50 config.log_all_train_data = False config.save_checkpoint_interval = 100 config.checkpoint_dir = "/tmp/physics_inspired_models/" config.train_checkpoint_all_hosts = False config.eval_specific_checkpoint_dir = "" config.update_from_flattened_dict(sweeps[sweep_index]) return config config_prefix = "experiment_kwargs.config." model_prefix = config_prefix + "model_kwargs." default_encoder_kwargs = collections.ConfigDict(dict( conv_channels=64, num_blocks=3, blocks_depth=2, activation="leaky_relu", )) default_decoder_kwargs = collections.ConfigDict(dict( conv_channels=64, num_blocks=3, blocks_depth=2, activation="leaky_relu", )) default_latent_system_net_kwargs = collections.ConfigDict(dict( conv_channels=64, num_units=250, num_layers=5, activation="swish", )) default_latent_system_kwargs = collections.ConfigDict(dict( # Physics model arguments input_space=collections.config_dict.placeholder(str), simulation_space=collections.config_dict.placeholder(str), potential_func_form="separable_net", kinetic_func_form=collections.config_dict.placeholder(str), hgn_kinetic_func_form="separable_net", lgn_kinetic_func_form="matrix_dep_quad", parametrize_mass_matrix=collections.config_dict.placeholder(bool), hgn_parametrize_mass_matrix=False, lgn_parametrize_mass_matrix=True, mass_eps=1.0, # ODE model arguments integrator_method=collections.config_dict.placeholder(str), # RGN model arguments residual=collections.config_dict.placeholder(bool), # General arguments net_kwargs=default_latent_system_net_kwargs )) default_config_dict = collections.ConfigDict(dict( name=collections.config_dict.placeholder(str), latent_system_dim=32, latent_system_net_type="mlp", latent_system_kwargs=default_latent_system_kwargs, encoder_aggregation_type="linear_projection", decoder_de_aggregation_type=collections.config_dict.placeholder(str), encoder_kwargs=default_encoder_kwargs, decoder_kwargs=default_decoder_kwargs, has_latent_transform=False, num_inference_steps=5, num_target_steps=60, latent_training_type="forward", # Choices: overlap_by_one, no_overlap, include_inference training_data_split="overlap_by_one", objective_type="ELBO", elbo_beta_delay=0, elbo_beta_final=1.0, geco_kappa=0.001, geco_alpha=0.0, dt=0.125, )) hgn_paper_encoder_kwargs = collections.ConfigDict(dict( conv_channels=[[32, 64], [64, 64], [64]], num_blocks=3, blocks_depth=2, activation="relu", kernel_shapes=[2, 4], padding=["VALID", "SAME"], )) hgn_paper_decoder_kwargs = collections.ConfigDict(dict( conv_channels=64, num_blocks=3, blocks_depth=2, activation="tf_leaky_relu", )) hgn_paper_latent_net_kwargs = collections.ConfigDict(dict( conv_channels=[32, 64, 64, 64], num_units=250, num_layers=5, activation="softplus", kernel_shapes=[3, 2, 2, 2, 2], strides=[1, 2, 1, 2, 1], padding=["SAME", "VALID", "SAME", "VALID", "SAME"] )) hgn_paper_latent_system_kwargs = collections.ConfigDict(dict( potential_func_form="separable_net", kinetic_func_form="separable_net", parametrize_mass_matrix=False, net_kwargs=hgn_paper_latent_net_kwargs )) hgn_paper_latent_transform_kwargs = collections.ConfigDict(dict( num_layers=5, conv_channels=64, num_units=64, activation="relu", )) hgn_paper_config = copy.deepcopy(default_config_dict) hgn_paper_config.training_data_split = "include_inference" hgn_paper_config.latent_system_net_type = "conv" hgn_paper_config.encoder_aggregation_type = (collections.config_dict. placeholder(str)) hgn_paper_config.decoder_de_aggregation_type = (collections.config_dict. placeholder(str)) hgn_paper_config.latent_system_kwargs = hgn_paper_latent_system_kwargs hgn_paper_config.encoder_kwargs = hgn_paper_encoder_kwargs hgn_paper_config.decoder_kwargs = hgn_paper_decoder_kwargs hgn_paper_config.has_latent_transform = True hgn_paper_config.latent_transform_kwargs = hgn_paper_latent_transform_kwargs hgn_paper_config.num_inference_steps = 31 hgn_paper_config.num_target_steps = 0 hgn_paper_config.objective_type = "GECO" forward_overlap_by_one = { model_prefix + "latent_training_type": "forward", model_prefix + "training_data_split": "overlap_by_one", } forward_backward_include_inference = { model_prefix + "latent_training_type": "forward_backward", model_prefix + "training_data_split": "include_inference", } latent_training_sweep = [ forward_overlap_by_one, forward_backward_include_inference, ] def sym_metric_hgn_plus_plus_sweep(): """HGN++ experimental sweep for the SyMetric paper.""" model_config = copy.deepcopy(default_config_dict) model_config.name = "HGN" sweeps = list() for elbo_beta_final in [0.001, 0.1, 1.0, 2.0]: sweeps.append({ config_prefix + "optimizer.kwargs.learning_rate": 1.5e-4, model_prefix + "latent_training_type": "forward", model_prefix + "training_data_split": "overlap_by_one", model_prefix + "elbo_beta_final": elbo_beta_final, }) for elbo_beta_final in [0.001, 0.1, 1.0, 2.0]: sweeps.append({ config_prefix + "optimizer.kwargs.learning_rate": 1.5e-4, model_prefix + "latent_training_type": "forward_backward", model_prefix + "training_data_split": "include_inference", model_prefix + "elbo_beta_final": elbo_beta_final, }) return model_config, sweeps def sym_metric_hgn_sweep(): """HGN experimental sweep for the SyMetric paper.""" model_config = copy.deepcopy(hgn_paper_config) model_config.name = "HGN" return model_config, list(dict()) def benchmark_hgn_overlap_sweep(): """HGN++ sweep for the benchmark paper.""" model_config = copy.deepcopy(default_config_dict) model_config.name = "HGN" sweeps = list() for elbo_beta_final in [0.001, 0.1, 1.0, 2.0]: for train_dict in latent_training_sweep: sweeps.append({ config_prefix + "optimizer.kwargs.learning_rate": 1.5e-4, model_prefix + "elbo_beta_final": elbo_beta_final, }) sweeps[-1].update(train_dict) return model_config, sweeps def benchmark_lgn_sweep(): """LGN sweep for the benchmark paper.""" model_config = copy.deepcopy(default_config_dict) model_config.name = "LGN" sweeps = list() for elbo_beta_final in [0.001, 0.1, 1.0, 2.0]: for train_dict in latent_training_sweep: sweeps.append({ config_prefix + "optimizer.kwargs.learning_rate": 1.5e-4, model_prefix + "latent_system_kwargs.kinetic_func_form": "matrix_dep_pure_quad", model_prefix + "elbo_beta_final": elbo_beta_final, }) sweeps[-1].update(train_dict) return model_config, sweeps def benchmark_ode_sweep(): """Neural ODE sweep for the benchmark paper.""" model_config = copy.deepcopy(default_config_dict) model_config.name = "ODE" sweeps = list() for elbo_beta_final in [0.001, 0.1, 1.0, 2.0]: for integrator in ("adaptive", "rk2"): for train_dict in latent_training_sweep: sweeps.append({ config_prefix + "optimizer.kwargs.learning_rate": 1.5e-4, model_prefix + "integrator_method": integrator, model_prefix + "elbo_beta_final": elbo_beta_final, }) sweeps[-1].update(train_dict) return model_config, sweeps def benchmark_rgn_sweep(): """RGN sweep for the benchmark paper.""" model_config = copy.deepcopy(default_config_dict) model_config.name = "RGN" sweeps = list() for elbo_beta_final in [0.001, 0.1, 1.0, 2.0]: for residual in (True, False): sweeps.append({ config_prefix + "optimizer.kwargs.learning_rate": 1.5e-4, model_prefix + "latent_system_kwargs.residual": residual, model_prefix + "elbo_beta_final": elbo_beta_final, }) return model_config, sweeps def benchmark_ar_sweep(): """AR sweep for the benchmark paper.""" model_config = copy.deepcopy(default_config_dict) model_config.name = "AR" model_config.latent_dynamics_type = "vanilla" sweeps = list() for elbo_beta_final in [0.001, 0.1, 1.0, 2.0]: for ar_type in ("vanilla", "lstm", "gru"): sweeps.append({ config_prefix + "optimizer.kwargs.learning_rate": 1.5e-4, model_prefix + "latent_dynamics_type": ar_type, model_prefix + "elbo_beta_final": elbo_beta_final, }) return model_config, sweeps
deepmind-research-master
physics_inspired_models/jaxline_configs.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The training script for the HGN models.""" import functools from absl import app from absl import flags from absl import logging from dm_hamiltonian_dynamics_suite import load_datasets import haiku as hk import jax import jax.numpy as jnp from jaxline import experiment from jaxline import platform import numpy as np import optax from physics_inspired_models import eval_metric from physics_inspired_models import utils from physics_inspired_models.models import common AutoregressiveModel = common.autoregressive.TeacherForcingAutoregressiveModel class HGNExperiment(experiment.AbstractExperiment): """HGN experiment.""" CHECKPOINT_ATTRS = { "_params": "params", "_state": "state", "_opt_state": "opt_state", } NON_BROADCAST_CHECKPOINT_ATTRS = { "_python_step": "python_step" } def __init__(self, mode, init_rng, config): super().__init__(mode=mode) self.mode = mode self.init_rng = init_rng self.config = config # Checkpointed experiment state. self._python_step = None self._params = None self._state = None self._opt_state = None # Input pipelines. self._train_input = None self._step_fn = None self._burnin_fn = None self._eval_input = None self._eval_batch = None self._eval_input_metric = None self._eval_input_vpt = None self._compute_gt_state_and_latents = None self._get_reconstructions = None self._get_samples = None # Construct the model model_kwargs = dict(**self.config.model_kwargs) self.model = common.construct_model(**model_kwargs) # Construct the optimizer optimizer_ctor = getattr(optax, self.config.optimizer.name) self.optimizer = optimizer_ctor(**self.config.optimizer.kwargs) self.model_init = jax.pmap(self.model.init) self.opt_init = jax.pmap(self.optimizer.init) logging.info("Number of hosts: %d/%d", jax.process_index(), jax.process_count()) logging.info("Number of local devices: %d/%d", jax.local_device_count(), jax.device_count()) def _process_stats(self, stats, axis_name=None): keys_to_remove = list() for key in stats.keys(): for dropped_keys in self.config.drop_stats_containing: if dropped_keys in key: keys_to_remove.append(key) break for key in keys_to_remove: stats.pop(key) # Take average statistics stats = jax.tree_map(utils.mean_if_not_scalar, stats) stats = utils.filter_only_scalar_stats(stats) if axis_name is not None: stats = utils.pmean_if_pmap(stats, axis_name="i") return stats # _ _ # | |_ _ __ __ _(_)_ __ # | __| '__/ _` | | '_ \ # | |_| | | (_| | | | | | # \__|_| \__,_|_|_| |_| # def step(self, global_step, rng, **unused_args): """See base class.""" if self._train_input is None: self._initialize_train() # Do a small burnin to accumulate any persistent network state if self._python_step == 0 and self._state: for _ in range(self.config.training.burnin_steps): rng, key = utils.p_split(rng, 2) batch = next(self._train_input) self._state = self._burnin_fn(self._params, self._state, key, batch) self._state = jax.tree_map( lambda x: x / self.config.training.burnin_steps, self._state) batch = next(self._train_input) self._params, self._state, self._opt_state, stats = self._step_fn( self._params, self._state, self._opt_state, rng, batch, global_step) self._python_step += 1 stats = utils.get_first(stats) logging.info("global_step: %d, %s", self._python_step, jax.tree_map(float, stats)) return stats def _initialize_train(self): self._train_input = utils.py_prefetch( load_datasets.dataset_as_iter(self._build_train_input)) self._burnin_fn = jax.pmap( self._jax_burnin_fn, axis_name="i", donate_argnums=list(range(1, 4))) self._step_fn = jax.pmap( self._jax_train_step_fn, axis_name="i", donate_argnums=list(range(5))) if self._params is not None: logging.info("Not running initialization - loaded from checkpoint.") assert self._opt_state is not None return logging.info("Initializing parameters - NOT loading from checkpoint.") # Use the same rng on all devices, so that the initialization is identical init_rng = utils.bcast_local_devices(self.init_rng) # Initialize the parameters and the optimizer batch = next(self._train_input) self._params, self._state = self.model_init(init_rng, batch) self._python_step = 0 self._opt_state = self.opt_init(self._params) def _build_train_input(self): batch_size = self.config.training.batch_size return load_datasets.load_dataset( path=self.config.dataset_folder, tfrecord_prefix="train", sub_sample_length=self.model.train_sequence_length, per_device_batch_size=batch_size, num_epochs=self.config.training.num_epochs, drop_remainder=True, multi_device=True, shuffle=True, shuffle_buffer=100 * batch_size, cache=False, keys_to_preserve=["image"], ) def _jax_train_step_fn(self, params, state, opt_state, rng_key, batch, step): # The loss and the stats are averaged over the batch def loss_func(*args): outs = self.model.training_objectives(*args, is_training=True) # Average everything over the batch return jax.tree_map(utils.mean_if_not_scalar, outs) # Compute gradients grad_fn = jax.grad(loss_func, has_aux=True) grads, (state, stats, _) = grad_fn(params, state, rng_key, batch, step) # Average everything over the devices (e.g. average and sync) grads, state = utils.pmean_if_pmap((grads, state), axis_name="i") # Apply updates updates, opt_state = self.optimizer.update(grads, opt_state) params = optax.apply_updates(params, updates) return params, state, opt_state, self._process_stats(stats, axis_name="i") def _jax_burnin_fn(self, params, state, rng_key, batch): _, (new_state, _, _) = self.model.training_objectives( params, state, rng_key, batch, jnp.zeros([]), is_training=True) new_state = jax.tree_map(utils.mean_if_not_scalar, new_state) new_state = utils.pmean_if_pmap(new_state, axis_name="i") new_state = hk.data_structures.to_mutable_dict(new_state) new_state = hk.data_structures.to_immutable_dict(new_state) return jax.tree_map(jnp.add, new_state, state) # _ # _____ ____ _| | # / _ \ \ / / _` | | # | __/\ V / (_| | | # \___| \_/ \__,_|_| # def evaluate(self, global_step, rng, writer): """See base class.""" logging.info("Starting evaluation.") if self.mode == "eval": if self._eval_input is None: self._initialize_eval() self._initialize_eval_vpt() key1, _ = utils.p_split(rng, 2) stats = utils.to_numpy(self._eval_epoch(global_step, key1)) stats.update(utils.to_numpy(self._eval_epoch_vpt(global_step, rng))) elif self.mode == "eval_metric": if self._eval_input_metric is None: self._initialize_eval_metric() stats = utils.to_numpy(self._eval_epoch_metric(global_step, rng)) else: raise NotImplementedError() logging.info("Finished evaluation.") return stats def _eval_epoch(self, step, rng): """Evaluates an epoch.""" accumulator = utils.MultiBatchAccumulator() for batch in self._eval_input(): rng, key = utils.p_split(rng, 2) stats, num_samples = utils.get_first( self._eval_batch(self._params, self._state, key, batch, step) ) accumulator.add(stats, num_samples) return accumulator.value() def _eval_epoch_metric(self, step, rng): """Evaluates an epoch.""" # To prevent from calculating SyMetric early on in training where a large # polynomial expansion is likely to be required and the score is likely # to be bad anyway, we only compute using a single batch to save compute if step[0] > self.config.evaluation_metric.calculate_fully_after_steps: batch_n = self.config.evaluation_metric.batch_n else: batch_n = 1 logging.info("Step: %d, batch_n: %d", step[0], batch_n) accumulator = utils.MultiBatchAccumulator() for _ in range(self.config.evaluation_metric.batch_n): batch = next(self._eval_input_metric) rng, key = utils.p_split(rng, 2) stats = self._eval_batch_metric( self._params, key, batch, eval_seq_len=self.config.evaluation_metric.num_eval_metric_steps, ) accumulator.add(stats, 1) stats = utils.flatten_dict(accumulator.value()) max_keys = ("sym", "SyMetric") for k, v in utils.flatten_dict(accumulator.max()).items(): if any(m in k for m in max_keys): stats[k + "_max"] = v min_keys = ("sym", "SyMetric") for k, v in utils.flatten_dict(accumulator.min()).items(): if any(m in k for m in min_keys): stats[k + "_min"] = v sum_keys = ("sym", "SyMetric") for k, v in utils.flatten_dict(accumulator.sum()).items(): if any(m in k for m in sum_keys): stats[k + "_sum"] = v return stats def _eval_epoch_vpt(self, step, rng): """Evaluates an epoch.""" accumulator = utils.MultiBatchAccumulator() for _ in range(self.config.evaluation_vpt.batch_n): batch = next(self._eval_input_vpt) rng, key = utils.p_split(rng, 2) stats = self._eval_batch_vpt(self._params, self._state, key, batch) accumulator.add(stats, 1) stats = utils.flatten_dict(accumulator.value()) return stats def _reconstruct_and_align(self, rng_key, full_trajectory, prefix, suffix): if hasattr(self.model, "training_data_split"): if self.model.training_data_split == "overlap_by_one": reconstruction_skip = self.model.num_inference_steps - 1 elif self.model.training_data_split == "no_overlap": reconstruction_skip = self.model.num_inference_steps elif self.model.training_data_split == "include_inference": reconstruction_skip = 0 else: raise NotImplementedError() else: reconstruction_skip = 1 full_forward_targets = jax.tree_map( lambda x: x[:, :, reconstruction_skip:], full_trajectory) full_backward_targets = jax.tree_map( lambda x: x[:, :, :x.shape[2] - reconstruction_skip], full_trajectory) train_targets_length = (self.model.train_sequence_length - reconstruction_skip) full_targets_length = full_forward_targets.shape[2] # Fully unroll the model and reconstruct the whole sequence, take the mean full_prediction = self._get_reconstructions(self._params, full_trajectory, rng_key, prefix == "forward", True).mean() full_targets = (full_forward_targets if prefix == "forward" else full_backward_targets) # In cases where the model can run backwards it is possible to reconstruct # parts which were indented to be skipped, so here we take care of that. if full_prediction.mean().shape[2] > full_targets_length: if prefix == "forward": full_prediction = jax.tree_map( lambda x: x[:, :, -full_targets_length:], full_prediction) else: full_prediction = jax.tree_map( lambda x: x[:, :, :full_targets_length], full_prediction) # Based on the prefix and suffix fetch correct predictions and targets if prefix == "forward" and suffix == "train": predict, targets = jax.tree_map( lambda x: x[:, :, :train_targets_length], (full_prediction, full_targets)) elif prefix == "forward" and suffix == "extrapolation": predict, targets = jax.tree_map( lambda x: x[:, :, train_targets_length:], (full_prediction, full_targets)) elif prefix == "backward" and suffix == "train": predict, targets = jax.tree_map( lambda x: x[:, :, -train_targets_length:], (full_prediction, full_targets)) elif prefix == "backward" and suffix == "extrapolation": predict, targets = jax.tree_map( lambda x: x[:, :, :-train_targets_length], (full_prediction, full_targets)) else: predict, targets = full_prediction, full_targets return predict, targets def _initialize_eval(self): length = (self.model.train_sequence_length + self.config.num_extrapolation_steps) batch_size = self.config.evaluation.batch_size self._eval_input = load_datasets.dataset_as_iter( load_datasets.load_dataset, path=self.config.dataset_folder, tfrecord_prefix="test", sub_sample_length=length, per_device_batch_size=batch_size, num_epochs=1, drop_remainder=False, shuffle=False, cache=False, keys_to_preserve=["image"] ) self._eval_batch = jax.pmap( self._jax_eval_step_fn, axis_name="i") self._get_reconstructions = jax.pmap( self.model.reconstruct, axis_name="i", static_broadcasted_argnums=(3, 4)) if isinstance(self.model, common.deterministic_vae.DeterministicLatentsGenerativeModel): self._get_samples = jax.pmap( self.model.sample_trajectories_from_prior, static_broadcasted_argnums=(1, 3, 4)) def _initialize_eval_metric(self): self._eval_input_metric = utils.py_prefetch( load_datasets.dataset_as_iter( load_datasets.load_dataset, path=self.config.dataset_folder, tfrecord_prefix="test", sub_sample_length=None, per_device_batch_size=self.config.evaluation_metric.batch_size, num_epochs=None, drop_remainder=False, cache=False, shuffle=False, keys_to_preserve=["image", "x"] ) ) def compute_gt_state_and_latents(*args): # Note that the `dt` has to be passed as a kwargs argument if len(args) == 4: return self.model.gt_state_and_latents(*args[:4]) elif len(args) == 5: return self.model.gt_state_and_latents(*args[:4], dt=args[4]) else: raise NotImplementedError() self._compute_gt_state_and_latents = jax.pmap( compute_gt_state_and_latents, static_broadcasted_argnums=3) def _initialize_eval_vpt(self): dataset_name = self.config.dataset_folder.split("/")[-1] dataset_folder = self.config.dataset_folder if dataset_name in ("hnn_mass_spring_dt_0_05", "mass_spring_colors_v1_dt_0_05", "hnn_pendulum_dt_0_05", "pendulum_colors_v1_dt_0_05", "matrix_rps_dt_0_1", "matrix_mp_dt_0_1"): dataset_folder += "_long_trajectory" self._eval_input_vpt = utils.py_prefetch( load_datasets.dataset_as_iter( load_datasets.load_dataset, path=dataset_folder, tfrecord_prefix="test", sub_sample_length=None, per_device_batch_size=self.config.evaluation_vpt.batch_size, num_epochs=None, drop_remainder=False, cache=False, shuffle=False, keys_to_preserve=["image", "x"] ) ) self._get_reconstructions = jax.pmap( self.model.reconstruct, axis_name="i", static_broadcasted_argnums=(3, 4)) def _jax_eval_step_fn(self, params, state, rng_key, batch, step): # We care only about the statistics _, (_, stats, _) = self.model.training_objectives(params, state, rng_key, batch, step, is_training=False) # Compute the full batch size batch_size = jax.tree_flatten(batch)[0][0].shape[0] batch_size = utils.psum_if_pmap(batch_size, axis_name="i") return self._process_stats(stats, axis_name="i"), batch_size def _eval_batch_vpt(self, params, state, rng_key, batch): full_trajectory = utils.extract_image(batch) prefixes = ("forward", "backward") if self.model.can_run_backwards else ("forward",) stats = dict() vpt_abs_scores = [] vpt_rel_scores = [] seq_length = None for prefix in prefixes: reconstruction, gt_images = self._reconstruct_and_align( rng_key, full_trajectory, prefix, "extrapolation") seq_length = gt_images.shape[2] mse_norm = np.mean( (gt_images - reconstruction)**2, axis=(3, 4, 5)) / np.mean( gt_images**2, axis=(3, 4, 5)) vpt_scores = [] for i in range(mse_norm.shape[1]): vpt_ind = np.argwhere( mse_norm[:, i:i + 1, :] > self.config.evaluation_vpt.vpt_threshold) if vpt_ind.shape[0] > 0: vpt_ind = vpt_ind[0][2] else: vpt_ind = mse_norm.shape[-1] vpt_scores.append(vpt_ind) vpt_abs_scores.append(np.median(vpt_scores)) vpt_rel_scores.append(np.median(vpt_scores) / seq_length) scores = {"vpt_abs": vpt_abs_scores[-1], "vpt_rel": vpt_rel_scores[-1]} scores = utils.to_numpy(scores) scores = utils.filter_only_scalar_stats(scores) stats[prefix] = scores stats["vpt_abs"] = utils.to_numpy(np.mean(vpt_abs_scores)) stats["vpt_rel"] = utils.to_numpy(np.mean(vpt_rel_scores)) logging.info("vpt_abs: %s, seq_length: %d}", str(vpt_abs_scores), seq_length) return stats def _eval_batch_metric(self, params, rng, batch, eval_seq_len=200): # Initialise alpha values for Lasso regression alpha_sweep = np.logspace(self.config.evaluation_metric.alpha_min_logspace, self.config.evaluation_metric.alpha_max_logspace, self.config.evaluation_metric.alpha_step_n) trajectory_n = self.config.evaluation_metric.batch_size subsection = f"{trajectory_n}tr" stats = dict() # Get data (gt_trajectory, model_trajectory, informative_dim_n) = self._get_gt_and_model_phase_space_for_eval( params, rng, batch, eval_seq_len) # Calculate SyMetric scores if informative_dim_n > 1: scores, *_ = eval_metric.calculate_symetric_score( gt_trajectory, model_trajectory, self.config.evaluation_metric.max_poly_order, self.config.evaluation_metric.max_jacobian_score, self.config.evaluation_metric.rsq_threshold, self.config.evaluation_metric.sym_threshold, self.config.evaluation_metric.evaluation_point_n, trajectory_n=trajectory_n, weight_tolerance=self.config.evaluation_metric.weight_tolerance, alpha_sweep=alpha_sweep, max_iter=self.config.evaluation_metric.max_iter, cv=self.config.evaluation_metric.cv) scores["unmasked_latents"] = informative_dim_n scores = utils.to_numpy(scores) scores = utils.filter_only_scalar_stats(scores) stats[subsection] = scores else: scores = { "poly_exp_order": self.config.evaluation_metric.max_poly_order, "rsq": 0, "sym": self.config.evaluation_metric.max_jacobian_score, "SyMetric": 0.0, "unmasked_latents": informative_dim_n } scores = utils.to_numpy(scores) scores = utils.filter_only_scalar_stats(scores) stats[subsection] = scores return stats def _get_gt_and_model_phase_space_for_eval(self, params, rng, batch, eval_seq_len): # Get data gt_data, model_data, z0 = utils.stack_device_dim_into_batch( self._compute_gt_state_and_latents(params, rng, batch, eval_seq_len) ) if isinstance(self.model, AutoregressiveModel): # These models return the `z` for the whole sequence z0 = z0[:, 0] # If latent space is image like, reshape it down to vector if self.model.latent_system_net_type == "conv": z0 = jax.tree_map(utils.reshape_latents_conv_to_flat, z0) model_data = jax.tree_map( lambda x: utils.reshape_latents_conv_to_flat(x, axis_n_to_keep=2), model_data) # Create mask to get rid of uninformative latents latent_mask = eval_metric.create_latent_mask(z0) informative_dim_n = np.sum(latent_mask) model_data = model_data[:, :, latent_mask] logging.info("Masking out model data, leaving dim_n=%d dimensions.", model_data.shape[-1]) gt_trajectory = np.reshape( gt_data, [np.product(gt_data.shape[:-1]), gt_data.shape[-1]] ) model_trajectory = np.reshape(model_data, [ np.product(model_data.shape[:-1]), model_data.shape[-1] ]) # Standardize data gt_trajectory = eval_metric.standardize_data(gt_trajectory) model_trajectory = eval_metric.standardize_data(model_trajectory) return gt_trajectory, model_trajectory, informative_dim_n if __name__ == "__main__": flags.mark_flag_as_required("config") logging.set_stderrthreshold(logging.INFO) app.run(functools.partial(platform.main, HGNExperiment))
deepmind-research-master
physics_inspired_models/jaxline_train.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for all autoregressive models.""" import functools from typing import Any, Dict, Mapping, Optional, Sequence, Tuple, Union import distrax import haiku as hk from jax import lax import jax.numpy as jnp import jax.random as jnr import physics_inspired_models.metrics as metrics import physics_inspired_models.models.base as base import physics_inspired_models.models.networks as nets import physics_inspired_models.utils as utils class TeacherForcingAutoregressiveModel(base.SequenceModel): """A standard autoregressive model trained via teacher forcing.""" def __init__( self, latent_system_dim: int, latent_system_net_type: str, latent_system_kwargs: Dict[str, Any], latent_dynamics_type: str, encoder_aggregation_type: Optional[str], decoder_de_aggregation_type: Optional[str], encoder_kwargs: Dict[str, Any], decoder_kwargs: Dict[str, Any], num_inference_steps: int, num_target_steps: int, name: Optional[str] = None, **kwargs ): # Remove any parameters from vae models encoder_kwargs = dict(**encoder_kwargs) encoder_kwargs["distribution_name"] = None if kwargs.get("has_latent_transform", False): raise ValueError("We do not support AR models with latent transform.") super().__init__( can_run_backwards=False, latent_system_dim=latent_system_dim, latent_system_net_type=latent_system_net_type, latent_system_kwargs=latent_system_kwargs, encoder_aggregation_type=encoder_aggregation_type, decoder_de_aggregation_type=decoder_de_aggregation_type, encoder_kwargs=encoder_kwargs, decoder_kwargs=decoder_kwargs, num_inference_steps=num_inference_steps, num_target_steps=num_target_steps, name=name, **kwargs ) self.latent_dynamics_type = latent_dynamics_type # Arguments checks if self.latent_system_net_type != "mlp": raise ValueError("Currently we do not support non-mlp AR models.") def recurrence_function(sequence, initial_state=None): core = nets.make_flexible_recurrent_net( core_type=latent_dynamics_type, net_type=latent_system_net_type, output_dims=self.latent_system_dim, **self.latent_system_kwargs["net_kwargs"]) initial_state = initial_state or core.initial_state(sequence.shape[1]) core(sequence[0], initial_state) return hk.dynamic_unroll(core, sequence, initial_state) self.recurrence = hk.transform(recurrence_function) def process_inputs_for_encoder(self, x: jnp.ndarray) -> jnp.ndarray: return x def process_latents_for_dynamics(self, z: jnp.ndarray) -> jnp.ndarray: return z def process_latents_for_decoder(self, z: jnp.ndarray) -> jnp.ndarray: return z @property def inferred_index(self) -> int: return self.num_inference_steps - 1 @property def train_sequence_length(self) -> int: return self.num_target_steps def train_data_split( self, images: jnp.ndarray ) -> Tuple[jnp.ndarray, jnp.ndarray, Mapping[str, Any]]: images = images[:, :self.train_sequence_length] inference_data = images[:, :-1] target_data = images[:, 1:] return inference_data, target_data, dict( num_steps_forward=1, num_steps_backward=0, include_z0=False) def unroll_without_inputs( self, params: utils.Params, rng: jnp.ndarray, x_init: jnp.ndarray, h_init: jnp.ndarray, num_steps: int, is_training: bool ) -> Tuple[Tuple[distrax.Distribution, jnp.ndarray], Any]: if num_steps < 1: raise ValueError("`num_steps` must be at least 1.") def step_fn(carry, key): x_last, h_last = carry enc_key, dec_key = jnr.split(key) z_in_next = self.encoder.apply(params, enc_key, x_last, is_training=is_training) z_next, h_next = self.recurrence.apply(params, None, z_in_next[None], h_last) p_x_next = self.decode_latents(params, dec_key, z_next[0], is_training=is_training) return (p_x_next.mean(), h_next), (p_x_next, z_next[0]) return lax.scan( step_fn, init=(x_init, h_init), xs=jnr.split(rng, num_steps) ) def unroll_latent_dynamics( self, z: jnp.ndarray, params: utils.Params, key: jnp.ndarray, num_steps_forward: int, num_steps_backward: int, include_z0: bool, is_training: bool, **kwargs: Any ) -> Tuple[jnp.ndarray, Mapping[str, jnp.ndarray]]: init_key, unroll_key, dec_key = jnr.split(key, 3) if num_steps_backward != 0: raise ValueError("This model can not run backwards.") # Change 'z' time dimension to be first z = jnp.swapaxes(z, 0, 1) # Run recurrent model on inputs z_0, h_0 = self.recurrence.apply(params, init_key, z) if num_steps_forward == 1: z_t = z_0 elif num_steps_forward > 1: p_x_0 = self.decode_latents(params, dec_key, z_0[-1], is_training=False) _, (_, z_t) = self.unroll_without_inputs( params=params, rng=unroll_key, x_init=p_x_0.mean(), h_init=h_0, num_steps=num_steps_forward-1, is_training=is_training ) z_t = jnp.concatenate([z_0, z_t], axis=0) else: raise ValueError("num_steps_forward should be at least 1.") # Make time dimension second return jnp.swapaxes(z_t, 0, 1), dict() def _models_core( self, params: utils.Params, keys: jnp.ndarray, image_data: jnp.ndarray, is_training: bool, **unroll_kwargs: Any ) -> Tuple[distrax.Distribution, jnp.ndarray, jnp.ndarray]: enc_key, _, transform_key, unroll_key, dec_key, _ = keys # Calculate latent input representation inference_data = self.process_inputs_for_encoder(image_data) z_raw = self.encoder.apply(params, enc_key, inference_data, is_training=is_training) # Apply latent transformation (should be identity) z0 = self.apply_latent_transform(params, transform_key, z_raw, is_training=is_training) z0 = self.process_latents_for_dynamics(z0) # Calculate latent output representation decoder_z, _ = self.unroll_latent_dynamics( z=z0, params=params, key=unroll_key, is_training=is_training, **unroll_kwargs ) decoder_z = self.process_latents_for_decoder(decoder_z) # Compute p(x|z) p_x = self.decode_latents(params, dec_key, decoder_z, is_training=is_training) return p_x, z0, decoder_z def training_objectives( self, params: hk.Params, state: hk.State, rng: jnp.ndarray, inputs: jnp.ndarray, step: jnp.ndarray, is_training: bool = True, use_mean_for_eval_stats: bool = True ) -> Tuple[jnp.ndarray, Sequence[Dict[str, jnp.ndarray]]]: """Computes the training objective and any supporting stats.""" # Split all rng keys keys = jnr.split(rng, 6) # Process training data images = utils.extract_image(inputs) image_data, target_data, unroll_kwargs = self.train_data_split(images) p_x, _, _ = self._models_core( params=params, keys=keys, image_data=image_data, is_training=is_training, **unroll_kwargs ) # Compute training statistics stats = metrics.training_statistics( p_x=p_x, targets=target_data, rescale_by=self.rescale_by, p_x_learned_sigma=self.decoder_kwargs.get("learned_sigma", False) ) # The loss is just the negative log-likelihood (e.g. the L2 loss) stats["loss"] = stats["neg_log_p_x"] if not is_training: # Optionally add the evaluation stats when not training # Add also the evaluation statistics # We need to be able to set `use_mean = False` for some of the tests stats.update(metrics.evaluation_only_statistics( reconstruct_func=functools.partial( self.reconstruct, use_mean=use_mean_for_eval_stats), params=params, inputs=inputs, rng=rng, rescale_by=self.rescale_by, can_run_backwards=self.can_run_backwards, train_sequence_length=self.train_sequence_length, reconstruction_skip=1, p_x_learned_sigma=self.decoder_kwargs.get("learned_sigma", False) )) return stats["loss"], (dict(), stats, dict()) def reconstruct( self, params: utils.Params, inputs: jnp.ndarray, rng: jnp.ndarray, forward: bool, use_mean: bool = True, ) -> distrax.Distribution: """Reconstructs the input sequence.""" if not forward: raise ValueError("This model can not run backwards.") images = utils.extract_image(inputs) image_data = images[:, :self.num_inference_steps] return self._models_core( params=params, keys=jnr.split(rng, 6), image_data=image_data, is_training=False, num_steps_forward=images.shape[1] - self.num_inference_steps, num_steps_backward=0, include_z0=False, )[0] def gt_state_and_latents( self, params: hk.Params, rng: jnp.ndarray, inputs: Dict[str, jnp.ndarray], seq_length: int, is_training: bool = False, unroll_direction: str = "forward", **kwargs: Dict[str, Any] ) -> Tuple[jnp.ndarray, jnp.ndarray, Union[distrax.Distribution, jnp.ndarray]]: """Computes the ground state and matching latents.""" assert unroll_direction == "forward" images = utils.extract_image(inputs) gt_state = utils.extract_gt_state(inputs) image_data = images[:, :self.num_inference_steps] gt_state = gt_state[:, 1:seq_length + 1] _, z_in, z_out = self._models_core( params=params, keys=jnr.split(rng, 6), image_data=image_data, is_training=False, num_steps_forward=images.shape[1] - self.num_inference_steps, num_steps_backward=0, include_z0=False, ) return gt_state, z_out, z_in def _init_non_model_params_and_state( self, rng: jnp.ndarray ) -> Tuple[Dict[str, jnp.ndarray], Dict[str, jnp.ndarray]]: return dict(), dict() def _init_latent_system( self, rng: jnp.ndarray, z: jnp.ndarray, **kwargs: Any ) -> utils.Params: return self.recurrence.init(rng, z)
deepmind-research-master
physics_inspired_models/models/autoregressive.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
deepmind-research-master
physics_inspired_models/models/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing all of the networks as Haiku modules.""" from typing import Any, Callable, Mapping, Optional, Sequence, Union from absl import logging import distrax import haiku as hk import jax.numpy as jnp from physics_inspired_models import utils Activation = Union[str, Callable[[jnp.ndarray], jnp.ndarray]] class DenseNet(hk.Module): """A feed forward network (MLP).""" def __init__( self, num_units: Sequence[int], activate_final: bool = False, activation: Activation = "leaky_relu", name: Optional[str] = None): super().__init__(name=name) self.num_units = num_units self.num_layers = len(self.num_units) self.activate_final = activate_final self.activation = utils.get_activation(activation) self.linear_modules = [] for i in range(self.num_layers): self.linear_modules.append( hk.Linear( output_size=self.num_units[i], name=f"ff_{i}" ) ) def __call__(self, inputs: jnp.ndarray, is_training: bool): net = inputs for i, linear in enumerate(self.linear_modules): net = linear(net) if i < self.num_layers - 1 or self.activate_final: net = self.activation(net) return net class Conv2DNet(hk.Module): """Convolutional Network.""" def __init__( self, output_channels: Sequence[int], kernel_shapes: Union[int, Sequence[int]] = 3, strides: Union[int, Sequence[int]] = 1, padding: Union[str, Sequence[str]] = "SAME", data_format: str = "NHWC", with_batch_norm: bool = False, activate_final: bool = False, activation: Activation = "leaky_relu", name: Optional[str] = None): super().__init__(name=name) self.output_channels = tuple(output_channels) self.num_layers = len(self.output_channels) self.kernel_shapes = utils.bcast_if(kernel_shapes, int, self.num_layers) self.strides = utils.bcast_if(strides, int, self.num_layers) self.padding = utils.bcast_if(padding, str, self.num_layers) self.data_format = data_format self.with_batch_norm = with_batch_norm self.activate_final = activate_final self.activation = utils.get_activation(activation) if len(self.kernel_shapes) != self.num_layers: raise ValueError(f"Kernel shapes is of size {len(self.kernel_shapes)}, " f"while output_channels is of size{self.num_layers}.") if len(self.strides) != self.num_layers: raise ValueError(f"Strides is of size {len(self.kernel_shapes)}, while " f"output_channels is of size{self.num_layers}.") if len(self.padding) != self.num_layers: raise ValueError(f"Padding is of size {len(self.padding)}, while " f"output_channels is of size{self.num_layers}.") self.conv_modules = [] self.bn_modules = [] for i in range(self.num_layers): self.conv_modules.append( hk.Conv2D( output_channels=self.output_channels[i], kernel_shape=self.kernel_shapes[i], stride=self.strides[i], padding=self.padding[i], data_format=data_format, name=f"conv_2d_{i}") ) if with_batch_norm: self.bn_modules.append( hk.BatchNorm( create_offset=True, create_scale=False, decay_rate=0.999, name=f"batch_norm_{i}") ) else: self.bn_modules.append(None) def __call__(self, inputs: jnp.ndarray, is_training: bool): assert inputs.ndim == 4 net = inputs for i, (conv, bn) in enumerate(zip(self.conv_modules, self.bn_modules)): net = conv(net) # Batch norm if bn is not None: net = bn(net, is_training=is_training) if i < self.num_layers - 1 or self.activate_final: net = self.activation(net) return net class SpatialConvEncoder(hk.Module): """Spatial Convolutional Encoder for learning the Hamiltonian.""" def __init__( self, latent_dim: int, conv_channels: Union[Sequence[int], int], num_blocks: int, blocks_depth: int = 2, distribution_name: str = "diagonal_normal", aggregation_type: Optional[str] = None, data_format: str = "NHWC", activation: Activation = "leaky_relu", scale_factor: int = 2, kernel_shapes: Union[Sequence[int], int] = 3, padding: Union[Sequence[str], str] = "SAME", name: Optional[str] = None): super().__init__(name=name) if aggregation_type not in (None, "max", "mean", "linear_projection"): raise ValueError(f"Unrecognized aggregation_type={aggregation_type}.") self.latent_dim = latent_dim self.conv_channels = conv_channels self.num_blocks = num_blocks self.scale_factor = scale_factor self.data_format = data_format self.distribution_name = distribution_name self.aggregation_type = aggregation_type # Compute the required size of the output if distribution_name is None: self.output_dim = latent_dim elif distribution_name == "diagonal_normal": self.output_dim = 2 * latent_dim else: raise ValueError(f"Unrecognized distribution_name={distribution_name}.") if isinstance(conv_channels, int): conv_channels = [[conv_channels] * blocks_depth for _ in range(num_blocks)] conv_channels[-1] += [self.output_dim] else: assert isinstance(conv_channels, (list, tuple)) assert len(conv_channels) == num_blocks conv_channels = list(list(c) for c in conv_channels) conv_channels[-1].append(self.output_dim) if isinstance(kernel_shapes, tuple): kernel_shapes = list(kernel_shapes) # Convolutional blocks self.blocks = [] for i, channels in enumerate(conv_channels): if isinstance(kernel_shapes, int): extra_kernel_shapes = 0 else: extra_kernel_shapes = [3] * (len(channels) - len(kernel_shapes)) self.blocks.append(Conv2DNet( output_channels=channels, kernel_shapes=kernel_shapes + extra_kernel_shapes, strides=[self.scale_factor] + [1] * (len(channels) - 1), padding=padding, data_format=data_format, with_batch_norm=False, activate_final=i < num_blocks - 1, activation=activation, name=f"block_{i}" )) def spatial_aggregation(self, x: jnp.ndarray) -> jnp.ndarray: if self.aggregation_type is None: return x axis = (1, 2) if self.data_format == "NHWC" else (2, 3) if self.aggregation_type == "max": return jnp.max(x, axis=axis) if self.aggregation_type == "mean": return jnp.mean(x, axis=axis) if self.aggregation_type == "linear_projection": x = x.reshape(x.shape[:-3] + (-1,)) return hk.Linear(self.output_dim, name="LinearProjection")(x) raise NotImplementedError() def make_distribution(self, net_output: jnp.ndarray) -> distrax.Distribution: if self.distribution_name is None: return net_output elif self.distribution_name == "diagonal_normal": if self.aggregation_type is None: split_axis, num_axes = self.data_format.index("C"), 3 else: split_axis, num_axes = 1, 1 # Add an extra axis if the input has more than 1 batch dimension split_axis += net_output.ndim - num_axes - 1 loc, log_scale = jnp.split(net_output, 2, axis=split_axis) return distrax.Normal(loc, jnp.exp(log_scale)) else: raise NotImplementedError() def __call__( self, inputs: jnp.ndarray, is_training: bool ) -> Union[jnp.ndarray, distrax.Distribution]: # Treat any extra dimensions (like time) as the batch batched_shape = inputs.shape[:-3] net = jnp.reshape(inputs, (-1,) + inputs.shape[-3:]) # Apply all blocks in sequence for block in self.blocks: net = block(net, is_training=is_training) # Final projection net = self.spatial_aggregation(net) # Reshape back to correct dimensions (like batch + time) net = jnp.reshape(net, batched_shape + net.shape[1:]) # Return a distribution over the observations return self.make_distribution(net) class SpatialConvDecoder(hk.Module): """Spatial Convolutional Decoder for learning the Hamiltonian.""" def __init__( self, initial_spatial_shape: Sequence[int], conv_channels: Union[Sequence[int], int], num_blocks: int, max_de_aggregation_dims: int, blocks_depth: int = 2, scale_factor: int = 2, output_channels: int = 3, h_const_channels: int = 2, data_format: str = "NHWC", activation: Activation = "leaky_relu", learned_sigma: bool = False, de_aggregation_type: Optional[str] = None, final_activation: Activation = "sigmoid", discard_half_de_aggregated: bool = False, kernel_shapes: Union[Sequence[int], int] = 3, padding: Union[Sequence[str], str] = "SAME", name: Optional[str] = None): super().__init__(name=name) if de_aggregation_type not in (None, "tile", "linear_projection"): raise ValueError(f"Unrecognized de_aggregation_type=" f"{de_aggregation_type}.") self.num_blocks = num_blocks self.scale_factor = scale_factor self.h_const_channels = h_const_channels self.data_format = data_format self.learned_sigma = learned_sigma self.initial_spatial_shape = tuple(initial_spatial_shape) self.final_activation = utils.get_activation(final_activation) self.de_aggregation_type = de_aggregation_type self.max_de_aggregation_dims = max_de_aggregation_dims self.discard_half_de_aggregated = discard_half_de_aggregated if isinstance(conv_channels, int): conv_channels = [[conv_channels] * blocks_depth for _ in range(num_blocks)] conv_channels[-1] += [output_channels] else: assert isinstance(conv_channels, (list, tuple)) assert len(conv_channels) == num_blocks conv_channels = list(list(c) for c in conv_channels) conv_channels[-1].append(output_channels) # Convolutional blocks self.blocks = [] for i, channels in enumerate(conv_channels): is_final_block = i == num_blocks - 1 self.blocks.append( Conv2DNet( # pylint: disable=g-complex-comprehension output_channels=channels, kernel_shapes=kernel_shapes, strides=1, padding=padding, data_format=data_format, with_batch_norm=False, activate_final=not is_final_block, activation=activation, name=f"block_{i}" )) def spatial_de_aggregation(self, x: jnp.ndarray) -> jnp.ndarray: if self.de_aggregation_type is None: assert x.ndim >= 4 if self.data_format == "NHWC": assert x.shape[1:3] == self.initial_spatial_shape elif self.data_format == "NCHW": assert x.shape[2:4] == self.initial_spatial_shape return x elif self.de_aggregation_type == "linear_projection": assert x.ndim == 2 n, d = x.shape d = min(d, self.max_de_aggregation_dims or d) out_d = d * self.initial_spatial_shape[0] * self.initial_spatial_shape[1] x = hk.Linear(out_d, name="LinearProjection")(x) if self.data_format == "NHWC": shape = (n,) + self.initial_spatial_shape + (d,) else: shape = (n, d) + self.initial_spatial_shape return x.reshape(shape) elif self.de_aggregation_type == "tile": assert x.ndim == 2 if self.data_format == "NHWC": repeats = (1,) + self.initial_spatial_shape + (1,) x = x[:, None, None, :] else: repeats = (1, 1) + self.initial_spatial_shape x = x[:, :, None, None] return jnp.tile(x, repeats) else: raise NotImplementedError() def add_constant_channels(self, inputs: jnp.ndarray) -> jnp.ndarray: # -------------------------------------------- # This is purely for TF compatibility purposes if self.discard_half_de_aggregated: axis = self.data_format.index("C") inputs, _ = jnp.split(inputs, 2, axis=axis) # -------------------------------------------- # An extra constant channels if self.data_format == "NHWC": h_shape = self.initial_spatial_shape + (self.h_const_channels,) else: h_shape = (self.h_const_channels,) + self.initial_spatial_shape h_const = hk.get_parameter("h", h_shape, dtype=inputs.dtype, init=hk.initializers.Constant(1)) h_const = jnp.tile(h_const, reps=[inputs.shape[0], 1, 1, 1]) return jnp.concatenate([h_const, inputs], axis=self.data_format.index("C")) def make_distribution(self, net_output: jnp.ndarray) -> distrax.Distribution: if self.learned_sigma: init = hk.initializers.Constant(- jnp.log(2.0) / 2.0) log_scale = hk.get_parameter("log_scale", shape=(), dtype=net_output.dtype, init=init) scale = jnp.full_like(net_output, jnp.exp(log_scale)) else: scale = jnp.full_like(net_output, 1 / jnp.sqrt(2.0)) return distrax.Normal(net_output, scale) def __call__( self, inputs: jnp.ndarray, is_training: bool ) -> distrax.Distribution: # Apply the spatial de-aggregation inputs = self.spatial_de_aggregation(inputs) # Add the parameterized constant channels net = self.add_constant_channels(inputs) # Apply all the blocks for block in self.blocks: # Up-sample the image net = utils.nearest_neighbour_upsampling(net, self.scale_factor) # Apply the convolutional block net = block(net, is_training=is_training) # Apply any specific output nonlinearity net = self.final_activation(net) # Construct the distribution over the observations return self.make_distribution(net) def make_flexible_net( net_type: str, output_dims: int, conv_channels: Union[Sequence[int], int], num_units: Union[Sequence[int], int], num_layers: Optional[int], activation: Activation, activate_final: bool = False, kernel_shapes: Union[Sequence[int], int] = 3, strides: Union[Sequence[int], int] = 1, padding: Union[Sequence[str], str] = "SAME", name: Optional[str] = None, **unused_kwargs: Mapping[str, Any] ): """Commonly used for creating a flexible network.""" if unused_kwargs: logging.warning("Unused kwargs of `make_flexible_net`: %s", str(unused_kwargs)) if net_type == "mlp": if isinstance(num_units, int): assert num_layers is not None num_units = [num_units] * (num_layers - 1) + [output_dims] else: num_units = list(num_units) + [output_dims] return DenseNet( num_units=num_units, activation=activation, activate_final=activate_final, name=name ) elif net_type == "conv": if isinstance(conv_channels, int): assert num_layers is not None conv_channels = [conv_channels] * (num_layers - 1) + [output_dims] else: conv_channels = list(conv_channels) + [output_dims] return Conv2DNet( output_channels=conv_channels, kernel_shapes=kernel_shapes, strides=strides, padding=padding, activation=activation, activate_final=activate_final, name=name ) elif net_type == "transformer": raise NotImplementedError() else: raise ValueError(f"Unrecognized net_type={net_type}.") def make_flexible_recurrent_net( core_type: str, net_type: str, output_dims: int, num_units: Union[Sequence[int], int], num_layers: Optional[int], activation: Activation, activate_final: bool = False, name: Optional[str] = None, **unused_kwargs ): """Commonly used for creating a flexible recurrences.""" if net_type != "mlp": raise ValueError("We do not support convolutional recurrent nets atm.") if unused_kwargs: logging.warning("Unused kwargs of `make_flexible_recurrent_net`: %s", str(unused_kwargs)) if isinstance(num_units, (list, tuple)): num_units = list(num_units) + [output_dims] num_layers = len(num_units) else: assert num_layers is not None num_units = [num_units] * (num_layers - 1) + [output_dims] name = name or f"{core_type.upper()}" activation = utils.get_activation(activation) core_list = [] for i, n in enumerate(num_units): if core_type.lower() == "vanilla": core_list.append(hk.VanillaRNN(hidden_size=n, name=f"{name}_{i}")) elif core_type.lower() == "lstm": core_list.append(hk.LSTM(hidden_size=n, name=f"{name}_{i}")) elif core_type.lower() == "gru": core_list.append(hk.GRU(hidden_size=n, name=f"{name}_{i}")) else: raise ValueError(f"Unrecognized core_type={core_type}.") if i != num_layers - 1: core_list.append(activation) if activate_final: core_list.append(activation) return hk.DeepRNN(core_list, name="RNN")
deepmind-research-master
physics_inspired_models/models/networks.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for all models.""" from typing import Any, Dict, Optional import physics_inspired_models.models.autoregressive as autoregressive import physics_inspired_models.models.deterministic_vae as deterministic_vae _physics_arguments = ( "input_space", "simulation_space", "potential_func_form", "kinetic_func_form", "hgn_kinetic_func_form", "lgn_kinetic_func_form", "parametrize_mass_matrix", "hgn_parametrize_mass_matrix", "lgn_parametrize_mass_matrix", "mass_eps" ) def construct_model( name: str, *args, **kwargs: Dict[str, Any] ): """Constructs the correct instance of a model given the short name.""" latent_dynamics_type: Optional[str] = kwargs.pop("latent_dynamics_type", None) # pytype: disable=annotation-type-mismatch latent_system_kwargs = dict(**kwargs.pop("latent_system_kwargs", dict())) if name == "AR": assert latent_dynamics_type in ("vanilla", "lstm", "gru") # This arguments are not part of the AR models for k in _physics_arguments + ("integrator_method", "residual"): latent_system_kwargs.pop(k, None) return autoregressive.TeacherForcingAutoregressiveModel( *args, latent_dynamics_type=latent_dynamics_type, latent_system_kwargs=latent_system_kwargs, **kwargs ) elif name == "RGN": assert latent_dynamics_type in ("Discrete", None) latent_dynamics_type = "Discrete" # This arguments are not part of the RGN models for k in _physics_arguments + ("integrator_method",): latent_system_kwargs.pop(k, None) elif name == "ODE": assert latent_dynamics_type in ("ODE", None) latent_dynamics_type = "ODE" # This arguments are not part of the ODE models for k in _physics_arguments + ("residual",): latent_system_kwargs.pop(k, None) elif name == "HGN": assert latent_dynamics_type in ("Physics", None) latent_dynamics_type = "Physics" assert latent_system_kwargs.get("input_space", None) in ("momentum", None) latent_system_kwargs["input_space"] = "momentum" assert (latent_system_kwargs.get("simulation_space", None) in ("momentum", None)) latent_system_kwargs["simulation_space"] = "momentum" # Kinetic func form hgn_specific = latent_system_kwargs.pop("hgn_kinetic_func_form", None) if hgn_specific is not None: latent_system_kwargs["kinetic_func_form"] = hgn_specific # Mass matrix hgn_specific = latent_system_kwargs.pop("hgn_parametrize_mass_matrix", None) if hgn_specific is not None: latent_system_kwargs["parametrize_mass_matrix"] = hgn_specific # This arguments are not part of the HGN models latent_system_kwargs.pop("residual", None) latent_system_kwargs.pop("lgn_kinetic_func_form", None) latent_system_kwargs.pop("lgn_parametrize_mass_matrix", None) elif name == "LGN": assert latent_dynamics_type in ("Physics", None) latent_dynamics_type = "Physics" assert latent_system_kwargs.get("input_space", None) in ("velocity", None) latent_system_kwargs["input_space"] = "velocity" assert (latent_system_kwargs.get("simulation_space", None) in ("velocity", None)) latent_system_kwargs["simulation_space"] = "velocity" # Kinetic func form lgn_specific = latent_system_kwargs.pop("lgn_kinetic_func_form", None) if lgn_specific is not None: latent_system_kwargs["kinetic_func_form"] = lgn_specific # Mass matrix lgn_specific = latent_system_kwargs.pop("lgn_parametrize_mass_matrix", None) if lgn_specific is not None: latent_system_kwargs["parametrize_mass_matrix"] = lgn_specific # This arguments are not part of the HGN models latent_system_kwargs.pop("residual", None) latent_system_kwargs.pop("hgn_kinetic_func_form", None) latent_system_kwargs.pop("hgn_parametrize_mass_matrix", None) elif name == "PGN": assert latent_dynamics_type in ("Physics", None) latent_dynamics_type = "Physics" # This arguments are not part of the PGN models latent_system_kwargs.pop("residual") latent_system_kwargs.pop("hgn_kinetic_func_form", None) latent_system_kwargs.pop("hgn_parametrize_mass_matrix", None) latent_system_kwargs.pop("lgn_kinetic_func_form", None) latent_system_kwargs.pop("lgn_parametrize_mass_matrix", None) else: raise NotImplementedError() return deterministic_vae.DeterministicLatentsGenerativeModel( *args, latent_dynamics_type=latent_dynamics_type, latent_system_kwargs=latent_system_kwargs, **kwargs)
deepmind-research-master
physics_inspired_models/models/common.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing the main models code.""" import functools from typing import Any, Dict, Mapping, Optional, Sequence, Tuple, Union import distrax from dm_hamiltonian_dynamics_suite.hamiltonian_systems import phase_space import haiku as hk import jax.numpy as jnp import jax.random as jnr import numpy as np from physics_inspired_models import metrics from physics_inspired_models import utils from physics_inspired_models.models import base from physics_inspired_models.models import dynamics _ArrayOrPhase = Union[jnp.ndarray, phase_space.PhaseSpace] class DeterministicLatentsGenerativeModel(base.SequenceModel[_ArrayOrPhase]): """Common class for generative models with deterministic latent dynamics.""" def __init__( self, latent_system_dim: int, latent_system_net_type: str, latent_system_kwargs: Dict[str, Any], latent_dynamics_type: str, encoder_aggregation_type: Optional[str], decoder_de_aggregation_type: Optional[str], encoder_kwargs: Dict[str, Any], decoder_kwargs: Dict[str, Any], num_inference_steps: int, num_target_steps: int, latent_training_type: str, training_data_split: str, objective_type: str, dt: float = 0.125, render_from_q_only: bool = True, prior_type: str = "standard_normal", use_analytical_kl: bool = True, geco_kappa: float = 0.001, geco_alpha: Optional[float] = 0.0, elbo_beta_delay: int = 0, elbo_beta_final: float = 1.0, name: Optional[str] = None, **kwargs ): can_run_backwards = latent_dynamics_type in ("ODE", "Physics") # Verify arguments if objective_type not in ("GECO", "ELBO", "NON-PROB"): raise ValueError(f"Unrecognized training type - {objective_type}") if geco_alpha is None: geco_alpha = 0 if geco_alpha < 0 or geco_alpha >= 1: raise ValueError("GECO alpha parameter must be in [0, 1).") if prior_type not in ("standard_normal", "made", "made_gated"): raise ValueError(f"Unrecognized prior_type='{prior_type}.") if (latent_training_type == "forward_backward" and training_data_split != "include_inference"): raise ValueError("Training forward_backward works only when " "training_data_split=include_inference.") if (latent_training_type == "forward_backward" and num_inference_steps % 2 == 0): raise ValueError("Training forward_backward works only when " "num_inference_steps are odd.") if latent_training_type == "forward_backward" and not can_run_backwards: raise ValueError("Training forward_backward works only when the model can" " be run backwards.") if prior_type != "standard_normal": raise ValueError("For now we support only `standard_normal`.") super().__init__( can_run_backwards=can_run_backwards, latent_system_dim=latent_system_dim, latent_system_net_type=latent_system_net_type, latent_system_kwargs=latent_system_kwargs, encoder_aggregation_type=encoder_aggregation_type, decoder_de_aggregation_type=decoder_de_aggregation_type, encoder_kwargs=encoder_kwargs, decoder_kwargs=decoder_kwargs, num_inference_steps=num_inference_steps, num_target_steps=num_target_steps, name=name, **kwargs ) # VAE specific arguments self.prior_type = prior_type self.objective_type = objective_type self.use_analytical_kl = use_analytical_kl self.geco_kappa = geco_kappa self.geco_alpha = geco_alpha self.elbo_beta_delay = elbo_beta_delay self.elbo_beta_final = jnp.asarray(elbo_beta_final) # The dynamics module and arguments self.latent_dynamics_type = latent_dynamics_type self.latent_training_type = latent_training_type self.training_data_split = training_data_split self.dt = dt self.render_from_q_only = render_from_q_only latent_system_kwargs["net_kwargs"] = dict( latent_system_kwargs["net_kwargs"]) latent_system_kwargs["net_kwargs"]["net_type"] = self.latent_system_net_type if self.latent_dynamics_type == "Physics": # Note that here system_dim means the dimensionality of `q` and `p`. model_constructor = functools.partial( dynamics.PhysicsSimulationNetwork, system_dim=self.latent_system_dim // 2, name="Physics", **latent_system_kwargs ) elif self.latent_dynamics_type == "ODE": model_constructor = functools.partial( dynamics.OdeNetwork, system_dim=self.latent_system_dim, name="ODE", **latent_system_kwargs ) elif self.latent_dynamics_type == "Discrete": model_constructor = functools.partial( dynamics.DiscreteDynamicsNetwork, system_dim=self.latent_system_dim, name="Discrete", **latent_system_kwargs ) else: raise NotImplementedError() self.dynamics = hk.transform( lambda *args, **kwargs_: model_constructor()(*args, **kwargs_)) # pylint: disable=unnecessary-lambda def process_inputs_for_encoder(self, x: jnp.ndarray) -> jnp.ndarray: return utils.stack_time_into_channels(x, self.data_format) def process_latents_for_dynamics(self, z: jnp.ndarray) -> _ArrayOrPhase: if self.latent_dynamics_type == "Physics": return phase_space.PhaseSpace.from_state(z) return z def process_latents_for_decoder(self, z: _ArrayOrPhase) -> jnp.ndarray: if self.latent_dynamics_type == "Physics": return z.q if self.render_from_q_only else z.single_state return z @property def inferred_index(self) -> int: if self.latent_training_type == "forward": return self.num_inference_steps - 1 elif self.latent_training_type == "forward_backward": assert self.num_inference_steps % 2 == 1 return self.num_inference_steps // 2 else: raise NotImplementedError() @property def targets_index_offset(self) -> int: if self.training_data_split == "overlap_by_one": return -1 elif self.training_data_split == "no_overlap": return 0 elif self.training_data_split == "include_inference": return - self.num_inference_steps else: raise NotImplementedError() @property def targets_length(self) -> int: if self.training_data_split == "include_inference": return self.num_inference_steps + self.num_target_steps return self.num_target_steps @property def train_sequence_length(self) -> int: """Computes the total length of a sequence needed for training.""" if self.training_data_split == "overlap_by_one": # Input - [-------------------------------------------------] # Inference - [---------------] # Targets - [---------------------------------] return self.num_inference_steps + self.num_target_steps - 1 elif self.training_data_split == "no_overlap": # Input - [-------------------------------------------------] # Inference - [---------------] # Targets - [--------------------------------] return self.num_inference_steps + self.num_target_steps elif self.training_data_split == "include_inference": # Input - [-------------------------------------------------] # Inference - [---------------] # Targets - [-------------------------------------------------] return self.num_inference_steps + self.num_target_steps else: raise NotImplementedError() def train_data_split( self, images: jnp.ndarray ) -> Tuple[jnp.ndarray, jnp.ndarray, Mapping[str, Any]]: images = images[:, :self.train_sequence_length] inf_idx = self.num_inference_steps t_idx = self.num_inference_steps + self.targets_index_offset if self.latent_training_type == "forward": inference_data = images[:, :inf_idx] target_data = images[:, t_idx:] if self.training_data_split == "include_inference": num_steps_backward = self.inferred_index else: num_steps_backward = 0 num_steps_forward = self.num_target_steps if self.training_data_split == "overlap_by_one": num_steps_forward -= 1 unroll_kwargs = dict( num_steps_backward=num_steps_backward, include_z0=self.training_data_split != "no_overlap", num_steps_forward=num_steps_forward, dt=self.dt ) elif self.latent_training_type == "forward_backward": assert self.training_data_split == "include_inference" n_fwd = images.shape[0] // 2 inference_fwd = images[:n_fwd, :inf_idx] targets_fwd = images[:n_fwd, t_idx:] inference_bckwd = images[n_fwd:, -inf_idx:] targets_bckwd = jnp.flip(images[n_fwd:, :images.shape[1] - t_idx], axis=1) inference_data = jnp.concatenate([inference_fwd, inference_bckwd], axis=0) target_data = jnp.concatenate([targets_fwd, targets_bckwd], axis=0) # This needs to by numpy rather than jax.numpy, because we make some # verification checks in `integrators.py:149-161`. dt_fwd = np.full([n_fwd], self.dt) dt_bckwd = np.full([images.shape[0] - n_fwd], self.dt) dt = np.concatenate([dt_fwd, -dt_bckwd], axis=0) unroll_kwargs = dict( num_steps_backward=self.inferred_index, include_z0=True, num_steps_forward=self.targets_length - self.inferred_index - 1, dt=dt ) else: raise NotImplementedError() return inference_data, target_data, unroll_kwargs def prior(self) -> distrax.Distribution: """Given the parameters returns the prior distribution of the model.""" # Allow to run with both the full parameters and only the priors if self.prior_type == "standard_normal": # assert self.prior_nets is None and self.gated_made is None if self.latent_system_net_type == "mlp": event_shape = (self.latent_system_dim,) elif self.latent_system_net_type == "conv": if self.data_format == "NHWC": event_shape = self.latent_spatial_shape + (self.latent_system_dim,) else: event_shape = (self.latent_system_dim,) + self.latent_spatial_shape else: raise NotImplementedError() return distrax.Normal(jnp.zeros(event_shape), jnp.ones(event_shape)) else: raise ValueError(f"Unrecognized prior_type='{self.prior_type}'.") def sample_latent_from_prior( self, params: utils.Params, rng: jnp.ndarray, num_samples: int = 1, **kwargs: Any) -> jnp.ndarray: """Takes sample from the prior (and optionally puts them through the latent transform function.""" _, sample_key, transf_key = jnr.split(rng, 3) prior = self.prior() z_raw = prior.sample(seed=sample_key, sample_shape=[num_samples]) return self.apply_latent_transform(params, transf_key, z_raw, **kwargs) def sample_trajectories_from_prior( self, params: utils.Params, num_steps: int, rng: jnp.ndarray, num_samples: int = 1, is_training: bool = False, **kwargs ) -> distrax.Distribution: """Generates samples from the prior (unconditional generation).""" sample_key, unroll_key, dec_key = jnr.split(rng, 3) z0 = self.sample_latent_from_prior(params, sample_key, num_samples, is_training=is_training) z, _ = self.unroll_latent_dynamics( z=self.process_latents_for_dynamics(z0), params=params, key=unroll_key, num_steps_forward=num_steps, num_steps_backward=0, include_z0=True, is_training=is_training, **kwargs ) z = self.process_latents_for_decoder(z) return self.decode_latents(params, dec_key, z, is_training=is_training) def verify_unroll_args( self, num_steps_forward: int, num_steps_backward: int, include_z0: bool ) -> None: if num_steps_forward < 0 or num_steps_backward < 0: raise ValueError("num_steps_forward and num_steps_backward can not be " "negative.") if num_steps_forward == 0 and num_steps_backward == 0: raise ValueError("You need one of num_steps_forward or " "num_of_steps_backward to be positive.") if num_steps_forward > 0 and num_steps_backward > 0 and not include_z0: raise ValueError("When both num_steps_forward and num_steps_backward are " "positive include_t0 should be True.") if num_steps_backward > 0 and not self.can_run_backwards: raise ValueError("This model can not be unrolled backward in time.") def unroll_latent_dynamics( self, z: phase_space.PhaseSpace, params: hk.Params, key: jnp.ndarray, num_steps_forward: int, num_steps_backward: int, include_z0: bool, is_training: bool, **kwargs: Any ) -> Tuple[_ArrayOrPhase, Mapping[str, jnp.ndarray]]: self.verify_unroll_args(num_steps_forward, num_steps_backward, include_z0) return self.dynamics.apply( params, key, y0=z, dt=kwargs.pop("dt", self.dt), num_steps_forward=num_steps_forward, num_steps_backward=num_steps_backward, include_y0=include_z0, return_stats=True, is_training=is_training ) def _models_core( self, params: utils.Params, keys: jnp.ndarray, image_data: jnp.ndarray, use_mean: bool, is_training: bool, **unroll_kwargs: Any ) -> Tuple[distrax.Distribution, distrax.Distribution, distrax.Distribution, jnp.ndarray, jnp.ndarray, Mapping[str, jnp.ndarray]]: enc_key, sample_key, transform_key, unroll_key, dec_key, _ = keys # Calculate the approximate posterior q(z|x) inference_data = self.process_inputs_for_encoder(image_data) q_z: distrax.Distribution = self.encoder.apply(params, enc_key, inference_data, is_training=is_training) # Sample latent variables or take the mean z_raw = q_z.mean() if use_mean else q_z.sample(seed=sample_key) # Apply latent transformation z0 = self.apply_latent_transform(params, transform_key, z_raw, is_training=is_training) # Unroll the latent variable z, dyn_stats = self.unroll_latent_dynamics( z=self.process_latents_for_dynamics(z0), params=params, key=unroll_key, is_training=is_training, **unroll_kwargs ) decoder_z = self.process_latents_for_decoder(z) # Compute p(x|z) p_x = self.decode_latents(params, dec_key, decoder_z, is_training=is_training) z = z.single_state if isinstance(z, phase_space.PhaseSpace) else z return p_x, q_z, self.prior(), z0, z, dyn_stats def training_objectives( self, params: utils.Params, state: hk.State, rng: jnp.ndarray, inputs: jnp.ndarray, step: jnp.ndarray, is_training: bool = True, use_mean_for_eval_stats: bool = True ) -> Tuple[jnp.ndarray, Sequence[Dict[str, jnp.ndarray]]]: # Split all rng keys keys = jnr.split(rng, 6) # Process training data images = utils.extract_image(inputs) image_data, target_data, unroll_kwargs = self.train_data_split(images) p_x, q_z, prior, _, _, dyn_stats = self._models_core( params=params, keys=keys, image_data=image_data, use_mean=False, is_training=is_training, **unroll_kwargs ) # Note: we reuse the rng key used to sample the latent variable here # so that it can be reused to evaluate a (non-analytical) KL at that sample. stats = metrics.training_statistics( p_x=p_x, targets=target_data, rescale_by=self.rescale_by, rng=keys[1], q_z=q_z, prior=prior, p_x_learned_sigma=self.decoder_kwargs.get("learned_sigma", False) ) stats.update(dyn_stats) # Compute other (non-reported statistics) z_stats = dict() other_stats = dict(x_reconstruct=p_x.mean(), z_stats=z_stats) # The loss computation and GECO state update new_state = dict() if self.objective_type == "GECO": geco_stats = metrics.geco_objective( l2_loss=stats["l2"], kl=stats["kl"], alpha=self.geco_alpha, kappa=self.geco_kappa, constraint_ema=state["GECO"]["geco_constraint_ema"], lambda_var=params["GECO"]["geco_lambda_var"], is_training=is_training ) new_state["GECO"] = dict( geco_constraint_ema=geco_stats["geco_constraint_ema"]) stats.update(geco_stats) elif self.objective_type == "ELBO": elbo_stats = metrics.elbo_objective( neg_log_p_x=stats["neg_log_p_x"], kl=stats["kl"], final_beta=self.elbo_beta_final, beta_delay=self.elbo_beta_delay, step=step ) stats.update(elbo_stats) elif self.objective_type == "NON-PROB": stats["loss"] = stats["neg_log_p_x"] else: raise ValueError() if not is_training: if self.training_data_split == "overlap_by_one": reconstruction_skip = self.num_inference_steps - 1 elif self.training_data_split == "no_overlap": reconstruction_skip = self.num_inference_steps elif self.training_data_split == "include_inference": reconstruction_skip = 0 else: raise NotImplementedError() # We intentionally reuse the same rng as the training, in order to be able # to run tests and verify that the evaluation and reconstruction work # correctly. # We need to be able to set `use_mean = False` for some of the tests stats.update(metrics.evaluation_only_statistics( reconstruct_func=functools.partial( self.reconstruct, use_mean=use_mean_for_eval_stats), params=params, inputs=inputs, rng=rng, rescale_by=self.rescale_by, can_run_backwards=self.can_run_backwards, train_sequence_length=self.train_sequence_length, reconstruction_skip=reconstruction_skip, p_x_learned_sigma=self.decoder_kwargs.get("learned_sigma", False) )) # Make new state the same type as state new_state = utils.convert_to_pytype(new_state, state) return stats["loss"], (new_state, stats, other_stats) def reconstruct( self, params: utils.Params, inputs: jnp.ndarray, rng: Optional[jnp.ndarray], forward: bool, use_mean: bool = True, ) -> distrax.Distribution: if not self.can_run_backwards and not forward: raise ValueError("This model can not be run backwards.") images = utils.extract_image(inputs) # This is intentionally matching the split for the training stats if forward: num_steps_backward = self.inferred_index num_steps_forward = images.shape[1] - num_steps_backward - 1 else: num_steps_forward = self.num_inference_steps - self.inferred_index - 1 num_steps_backward = images.shape[1] - num_steps_forward - 1 if not self.can_run_backwards: num_steps_backward = 0 if forward: image_data = images[:, :self.num_inference_steps] else: image_data = images[:, -self.num_inference_steps:] return self._models_core( params=params, keys=jnr.split(rng, 6), image_data=image_data, use_mean=use_mean, is_training=False, num_steps_forward=num_steps_forward, num_steps_backward=num_steps_backward, include_z0=True, )[0] def gt_state_and_latents( self, params: hk.Params, rng: jnp.ndarray, inputs: Dict[str, jnp.ndarray], seq_length: int, is_training: bool = False, unroll_direction: str = "forward", **kwargs: Dict[str, Any] ) -> Tuple[jnp.ndarray, jnp.ndarray, Union[distrax.Distribution, jnp.ndarray]]: """Computes the ground state and matching latents.""" assert unroll_direction in ("forward", "backward") if unroll_direction == "backward" and not self.can_run_backwards: raise ValueError("This model can not be unrolled backwards.") images = utils.extract_image(inputs) gt_state = utils.extract_gt_state(inputs) if unroll_direction == "forward": image_data = images[:, :self.num_inference_steps] if self.can_run_backwards: num_steps_backward = self.inferred_index gt_start_idx = 0 else: num_steps_backward = 0 gt_start_idx = self.inferred_index num_steps_forward = seq_length - num_steps_backward - 1 gt_state = gt_state[:, gt_start_idx: seq_length + gt_start_idx] elif unroll_direction == "backward": inference_start_idx = seq_length - self.num_inference_steps image_data = images[:, inference_start_idx: seq_length] num_steps_forward = self.num_inference_steps - self.inferred_index - 1 num_steps_backward = seq_length - num_steps_forward - 1 gt_state = gt_state[:, :seq_length] else: raise NotImplementedError() _, q_z, _, z0, z, _ = self._models_core( params=params, keys=jnr.split(rng, 6), image_data=image_data, use_mean=True, is_training=False, num_steps_forward=num_steps_forward, num_steps_backward=num_steps_backward, include_z0=True, ) if self.has_latent_transform: return gt_state, z, z0 else: return gt_state, z, q_z def _init_non_model_params_and_state( self, rng: jnp.ndarray ) -> Tuple[utils.Params, utils.Params]: if self.objective_type == "GECO": # Initialize such that softplus(lambda_var) = 1 geco_lambda_var = jnp.asarray(jnp.log(jnp.e - 1.0)) geco_constraint_ema = jnp.asarray(0.0) return (dict(GECO=dict(geco_lambda_var=geco_lambda_var)), dict(GECO=dict(geco_constraint_ema=geco_constraint_ema))) else: return dict(), dict() def _init_latent_system( self, rng: jnp.ndarray, z: jnp.ndarray, **kwargs: Mapping[str, Any] ) -> hk.Params: """Initializes the parameters of the latent system.""" return self.dynamics.init( rng, y0=z, dt=self.dt, num_steps_forward=1, num_steps_backward=0, include_y0=True, **kwargs )
deepmind-research-master
physics_inspired_models/models/deterministic_vae.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing the base abstract classes for sequence models.""" import abc from typing import Any, Dict, Generic, Mapping, Optional, Sequence, Tuple, TypeVar, Union from absl import logging import distrax import haiku as hk import jax import jax.numpy as jnp import jax.random as jnr from physics_inspired_models import utils from physics_inspired_models.models import networks T = TypeVar("T") class SequenceModel(abc.ABC, Generic[T]): """An abstract class for sequence models.""" def __init__( self, can_run_backwards: bool, latent_system_dim: int, latent_system_net_type: str, latent_system_kwargs: Dict[str, Any], encoder_aggregation_type: Optional[str], decoder_de_aggregation_type: Optional[str], encoder_kwargs: Dict[str, Any], decoder_kwargs: Dict[str, Any], num_inference_steps: int, num_target_steps: int, name: str, latent_spatial_shape: Optional[Tuple[int, int]] = (4, 4), has_latent_transform: bool = False, latent_transform_kwargs: Optional[Dict[str, Any]] = None, rescale_by: Optional[str] = "pixels_and_time", data_format: str = "NHWC", **unused_kwargs ): # Arguments checks encoder_kwargs = encoder_kwargs or dict() decoder_kwargs = decoder_kwargs or dict() # Set the decoder de-aggregation type the "same" type as the encoder if not # provided if (decoder_de_aggregation_type is None and encoder_aggregation_type is not None): if encoder_aggregation_type == "linear_projection": decoder_de_aggregation_type = "linear_projection" elif encoder_aggregation_type in ("mean", "max"): decoder_de_aggregation_type = "tile" else: raise ValueError(f"Unrecognized encoder_aggregation_type=" f"{encoder_aggregation_type}") if latent_system_net_type == "conv": if encoder_aggregation_type is not None: raise ValueError("When the latent system is convolutional, the encoder " "aggregation type should be None.") if decoder_de_aggregation_type is not None: raise ValueError("When the latent system is convolutional, the decoder " "aggregation type should be None.") else: if encoder_aggregation_type is None: raise ValueError("When the latent system is not convolutional, the " "you must provide an encoder aggregation type.") if decoder_de_aggregation_type is None: raise ValueError("When the latent system is not convolutional, the " "you must provide an decoder aggregation type.") if has_latent_transform and latent_transform_kwargs is None: raise ValueError("When using latent transformation you have to provide " "the latent_transform_kwargs argument.") if unused_kwargs: logging.warning("Unused kwargs: %s", str(unused_kwargs)) super().__init__(**unused_kwargs) self.can_run_backwards = can_run_backwards self.latent_system_dim = latent_system_dim self.latent_system_kwargs = latent_system_kwargs self.latent_system_net_type = latent_system_net_type self.latent_spatial_shape = latent_spatial_shape self.num_inference_steps = num_inference_steps self.num_target_steps = num_target_steps self.rescale_by = rescale_by self.data_format = data_format self.name = name # Encoder self.encoder_kwargs = encoder_kwargs self.encoder = hk.transform( lambda *args, **kwargs: networks.SpatialConvEncoder( # pylint: disable=unnecessary-lambda,g-long-lambda latent_dim=latent_system_dim, aggregation_type=encoder_aggregation_type, data_format=data_format, name="Encoder", **encoder_kwargs )(*args, **kwargs)) # Decoder self.decoder_kwargs = decoder_kwargs self.decoder = hk.transform( lambda *args, **kwargs: networks.SpatialConvDecoder( # pylint: disable=unnecessary-lambda,g-long-lambda initial_spatial_shape=self.latent_spatial_shape, de_aggregation_type=decoder_de_aggregation_type, data_format=data_format, max_de_aggregation_dims=self.latent_system_dim // 2, name="Decoder", **decoder_kwargs, )(*args, **kwargs)) self.has_latent_transform = has_latent_transform if has_latent_transform: self.latent_transform = hk.transform( lambda *args, **kwargs: networks.make_flexible_net( # pylint: disable=unnecessary-lambda,g-long-lambda net_type=latent_system_net_type, output_dims=latent_system_dim, name="LatentTransform", **latent_transform_kwargs )(*args, **kwargs)) else: self.latent_transform = None self._jit_init = None @property @abc.abstractmethod def train_sequence_length(self) -> int: """Computes the total length of a sequence needed for training or evaluation.""" pass @abc.abstractmethod def train_data_split( self, images: jnp.ndarray, ) -> Tuple[jnp.ndarray, jnp.ndarray, Mapping[str, Any]]: """Extracts from the inputs the data splits for training.""" pass def decode_latents( self, params: hk.Params, rng: jnp.ndarray, z: jnp.ndarray, **kwargs: Any ) -> distrax.Distribution: """Decodes the latent variable given the parameters of the model.""" # Allow to run with both the full parameters and only the decoders if self.latent_system_net_type == "mlp": fixed_dims = 1 elif self.latent_system_net_type == "conv": fixed_dims = 1 + len(self.latent_spatial_shape) else: raise NotImplementedError() n_shape = z.shape[:-fixed_dims] z = z.reshape((-1,) + z.shape[-fixed_dims:]) x = self.decoder.apply(params, rng, z, **kwargs) return jax.tree_map(lambda a: a.reshape(n_shape + a.shape[1:]), x) def apply_latent_transform( self, params: hk.Params, key: jnp.ndarray, z: jnp.ndarray, **kwargs: Any ) -> jnp.ndarray: if self.latent_transform is not None: return self.latent_transform.apply(params, key, z, **kwargs) else: return z @abc.abstractmethod def process_inputs_for_encoder(self, x: jnp.ndarray) -> jnp.ndarray: pass @abc.abstractmethod def process_latents_for_dynamics(self, z: jnp.ndarray) -> T: pass @abc.abstractmethod def process_latents_for_decoder(self, z: T) -> jnp.ndarray: pass @abc.abstractmethod def unroll_latent_dynamics( self, z: T, params: utils.Params, key: jnp.ndarray, num_steps_forward: int, num_steps_backward: int, include_z0: bool, is_training: bool, **kwargs: Any ) -> Tuple[T, Mapping[str, jnp.ndarray]]: """Unrolls the latent dynamics starting from z and pre-processing for the decoder.""" pass @abc.abstractmethod def reconstruct( self, params: utils.Params, inputs: jnp.ndarray, rng_key: Optional[jnp.ndarray], forward: bool, ) -> distrax.Distribution: """Using the first `num_inference_steps` parts of inputs reconstructs the rest.""" pass @abc.abstractmethod def training_objectives( self, params: utils.Params, state: hk.State, rng: jnp.ndarray, inputs: Union[Dict[str, jnp.ndarray], jnp.ndarray], step: jnp.ndarray, is_training: bool = True, use_mean_for_eval_stats: bool = True ) -> Tuple[jnp.ndarray, Sequence[Dict[str, jnp.ndarray]]]: """Returns all training objectives statistics and update states.""" pass @property @abc.abstractmethod def inferred_index(self): """Returns the time index in the input sequence, for which the encoder infers. If the encoder takes as input the sequence x[0:n-1], where `n = self.num_inference_steps`, then this outputs the index `k` relative to the begging of the input sequence `x_0`, which the encoder infers. """ pass @property def inferred_right_offset(self): return self.num_inference_steps - 1 - self.inferred_index @abc.abstractmethod def gt_state_and_latents( self, params: hk.Params, rng: jnp.ndarray, inputs: Dict[str, jnp.ndarray], seq_len: int, is_training: bool = False, unroll_direction: str = "forward", **kwargs: Dict[str, Any] ) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: """Computes the ground state and matching latents.""" pass @abc.abstractmethod def _init_non_model_params_and_state( self, rng: jnp.ndarray ) -> Tuple[utils.Params, utils.Params]: """Initializes any non-model parameters and state.""" pass @abc.abstractmethod def _init_latent_system( self, rng: jnp.ndarray, z: jnp.ndarray, **kwargs: Any ) -> hk.Params: """Initializes the parameters of the latent system.""" pass def _init( self, rng: jnp.ndarray, images: jnp.ndarray ) -> Tuple[hk.Params, hk.State]: """Initializes the whole model parameters and state.""" inference_data, _, _ = self.train_data_split(images) # Initialize parameters and state for the vae training rng, key = jnr.split(rng) params, state = self._init_non_model_params_and_state(key) # Initialize and run encoder inference_data = self.process_inputs_for_encoder(inference_data) rng, key = jnr.split(rng) encoder_params = self.encoder.init(key, inference_data, is_training=True) rng, key = jnr.split(rng) z_in = self.encoder.apply(encoder_params, key, inference_data, is_training=True) # For probabilistic models this will be a distribution if isinstance(z_in, distrax.Distribution): z_in = z_in.mean() # Initialize and run the optional latent transform if self.latent_transform is not None: rng, key = jnr.split(rng) transform_params = self.latent_transform.init(key, z_in, is_training=True) rng, key = jnr.split(rng) z_in = self.latent_transform.apply(transform_params, key, z_in, is_training=True) else: transform_params = dict() # Initialize and run the latent system z_in = self.process_latents_for_dynamics(z_in) rng, key = jnr.split(rng) latent_params = self._init_latent_system(key, z_in, is_training=True) rng, key = jnr.split(rng) z_out, _ = self.unroll_latent_dynamics( z=z_in, params=latent_params, key=key, num_steps_forward=1, num_steps_backward=0, include_z0=False, is_training=True ) z_out = self.process_latents_for_decoder(z_out) # Initialize and run the decoder rng, key = jnr.split(rng) decoder_params = self.decoder.init(key, z_out[:, 0], is_training=True) _ = self.decoder.apply(decoder_params, rng, z_out[:, 0], is_training=True) # Combine all and make immutable params = hk.data_structures.merge(params, encoder_params, transform_params, latent_params, decoder_params) params = hk.data_structures.to_immutable_dict(params) state = hk.data_structures.to_immutable_dict(state) return params, state def init( self, rng: jnp.ndarray, inputs_or_shape: Union[jnp.ndarray, Mapping[str, jnp.ndarray], Sequence[int]], ) -> Tuple[utils.Params, hk.State]: """Initializes the whole model parameters and state.""" if (isinstance(inputs_or_shape, (tuple, list)) and isinstance(inputs_or_shape[0], int)): images = jnp.zeros(inputs_or_shape) else: images = utils.extract_image(inputs_or_shape) if self._jit_init is None: self._jit_init = jax.jit(self._init) return self._jit_init(rng, images)
deepmind-research-master
physics_inspired_models/models/base.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing all of the networks as Haiku modules.""" from typing import Any, Mapping, Optional, Tuple, Union from dm_hamiltonian_dynamics_suite.hamiltonian_systems import phase_space import haiku as hk import jax import jax.numpy as jnp from physics_inspired_models import integrators from physics_inspired_models import utils from physics_inspired_models.models import networks _PhysicsSimulationOutput = Union[ phase_space.PhaseSpace, Tuple[phase_space.PhaseSpace, Mapping[str, jnp.ndarray]] ] class PhysicsSimulationNetwork(hk.Module): """A model for simulating an abstract physical system, whose energy is defined by a neural network.""" def __init__( self, system_dim: int, input_space: str, simulation_space: str, potential_func_form: str, kinetic_func_form: str, parametrize_mass_matrix: bool, net_kwargs: Mapping[str, Any], mass_eps: float = 1.0, integrator_method: Optional[str] = None, steps_per_dt: int = 1, ode_int_kwargs: Optional[Mapping[str, float]] = None, use_scan: bool = True, feature_axis: int = -1, features_extra_dims: Optional[int] = None, network_creation_func=networks.make_flexible_net, name: Optional[str] = None ): """Initializes the model. Args: system_dim: The number of system dimensions. Note that this specifies the number of dimensions only of the position vectors, not of position and momentum. Hence the generalized coordinates would be of dimension `2 * system_dim`. input_space: Either `velocity` or `momentum`. Specifies whether the inputs to the model are to be interpreted as `(position, velocity)` or as `(position, momentum)`. simulation_space: Either `velocity` or `momentum`. Specifies whether the model should simulate the dynamics in `(position, velocity)` space using the Lagrangian formulation or in `(position, momentum)` space using the Hamiltonian formulation. If this is different than the value of `input_space` then `kinetic_func_form` must be one of pure_quad, matrix_diag_quad, matrix_quad, matrix_dep_diag_quad, matrix_dep_quad. In all other cases one can not compute analytically the form of the functional (Lagrangian or Hamiltonian) from the other. potential_func_form: String specifying the form of the potential energy: * separable_net - The network uses only the position: U(q, q_dot/p) = f(q) f: R^d -> R * dep_net - The network uses both the position and velocity/momentum: U(q, q_dot/p) = f(q, q_dot/p) f: R^d x R^d -> R * embed_quad - A quadratic of the embedding of a network embedding of the velocity/momentum: U(q, q_dot/p) = f(q)^T f(q) / 2 f: R^d -> R^d kinetic_func_form: String specifying the form of the potential energy: * separable_net - The network uses only the velocity/momentum: K(q, q_dot/p) = f(q_dot/p) f: R^d -> R * dep_net - The network uses both the position and velocity/momentum: K(q, q_dot/p) = f(q, q_dot/p) f: R^d x R^d -> R * pure_quad - A quadratic function of the velocity/momentum: K(q, q_dot/p) = (q_dot/p)^T (q_dot/p) / 2 * matrix_diag_quad - A quadratic function of the velocity/momentum, where there is diagonal mass matrix, whose log `P` is a parameter: K(q, q_dot) = q_dot^T M q_dot / 2 K(q, p) = p^T M^-1 p / 2 [if `parameterize_mass_matrix`] M = diag(exp(P) + mass_eps) [else] M^-1 = diag(exp(P) + mass_eps) * matrix_quad - A quadratic function of the velocity/momentum, where there is a full mass matrix, whose Cholesky factor L is a parameter: K(q, q_dot) = q_dot^T M q_dot / 2 K(q, p) = p^T M^-1 p / 2 [if `parameterize_mass_matrix`] M = LL^T + mass_eps * I [else] M^-1 = LL^T + mass_eps * I * matrix_dep_quad - A quadratic function of the velocity/momentum, where there is a full mass matrix defined as a function of the position: K(q, q_dot) = q_dot^T M(q) q_dot / 2 K(q, p) = p^T M(q)^-1 p / 2 [if `parameterize_mass_matrix`] M(q) = g(q) g(q)^T + mass_eps * I g: R^d -> R^(d(d+1)/2) [else] M(q)^-1 = g(q) g(q)^T + mass_eps * I g: R^d -> R^(d(d+1)/2) * embed_quad - A quadratic of the embedding of a network embedding of the velocity/momentum: K(q, q_dot/p) = f(q_dot/p)^T f(q_dot/p) / 2 f: R^d -> R^d * matrix_dep_diag_embed_quad - A quadratic of the embedding of a network embedding of the velocity/momentum where there is diagonal mass matrix defined as a function of the position: K(q, q_dot) = f(q_dot)^T M(q) f(q_dot) / 2 f: R^d -> R^d K(q, p) = f(p)^T M(q)^-1 f(p) / 2 f: R^d -> R^d [if `parameterize_mass_matrix`] M(q) = diag(exp(g(q)) + mass_eps * I g: R^d -> R^d [else] M(q)^-1 = diag(exp(g(q)) + mass_eps * I g: R^d -> R^d * matrix_dep_embed_quad - A quadratic of the embedding of a network embedding of the velocity/momentum where there is a full mass matrix defined as a function of the position: K(q, q_dot) = f(q_dot)^T M(q) f(q_dot) / 2 f: R^d -> R^d K(q, p) = f(p)^T M(q)^-1 f(p) / 2 f: R^d -> R^d [if `parameterize_mass_matrix`] M(q) = g(q) g(q)^T + mass_eps * I g: R^d -> R^(d(d+1)/2) [else] M(q)^-1 = g(q) g(q)^T + mass_eps * I g: R^d -> R^(d(d+1)/2) For any of the function forms with mass matrices, if we have a convolutional input it is assumed that the matrix is shared across all spatial locations. parametrize_mass_matrix: Defines for the kinetic functional form, whether the network output defines the mass or the inverse of the mass matrix. net_kwargs: Any keyword arguments to pass down to the networks. mass_eps: The additional weight of the identity added to the mass matrix, when relevant. integrator_method: What method to use for integrating the system. steps_per_dt: How many internal steps per a single `dt` step to do. ode_int_kwargs: Extra arguments when using "implicit" integrator method. use_scan: Whether to use `lax.scan` for explicit integrators. feature_axis: The number of the features axis in the inputs. features_extra_dims: If the inputs have extra features (like spatial for convolutions) this specifies how many of them there are. network_creation_func: A function that creates the networks. Should have a signature `network_creation_func(output_dims, name, **net_kwargs)`. name: The name of this Haiku module. """ super().__init__(name=name) if input_space not in ("velocity", "momentum"): raise ValueError("input_space must be either velocity or momentum.") if simulation_space not in ("velocity", "momentum"): raise ValueError("simulation_space must be either velocity or momentum.") if potential_func_form not in ("separable_net", "dep_net", "embed_quad"): raise ValueError("The potential network can be only a network.") if kinetic_func_form not in ("separable_net", "dep_net", "pure_quad", "matrix_diag_quad", "matrix_quad", "matrix_dep_diag_quad", "matrix_dep_quad", "embed_quad", "matrix_dep_diag_embed_quad", "matrix_dep_embed_quad"): raise ValueError(f"Unrecognized kinetic func form {kinetic_func_form}.") if input_space != simulation_space: if kinetic_func_form not in ( "pure_quad", "matrix_diag_quad", "matrix_quad", "matrix_dep_diag_quad", "matrix_dep_quad"): raise ValueError( "When the input and simulation space are not the same, it is " "possible to simulate the physical system only if kinetic_func_form" " is one of pure_quad, matrix_diag_quad, matrix_quad, " "matrix_dep_diag_quad, matrix_dep_quad. In all other cases one can" "not compute analytically the form of the functional (Lagrangian or" " Hamiltonian) from the other.") if feature_axis != -1: raise ValueError("Currently we only support features_axis=-1.") if integrator_method is None: if simulation_space == "velocity": integrator_method = "rk2" else: integrator_method = "leap_frog" if features_extra_dims is None: if net_kwargs["net_type"] == "mlp": features_extra_dims = 0 elif net_kwargs["net_type"] == "conv": features_extra_dims = 2 else: raise NotImplementedError() ode_int_kwargs = dict(ode_int_kwargs or {}) ode_int_kwargs.setdefault("rtol", 1e-6) ode_int_kwargs.setdefault("atol", 1e-6) ode_int_kwargs.setdefault("mxstep", 50) self.system_dim = system_dim self.input_space = input_space self.simulation_space = simulation_space self.potential_func_form = potential_func_form self.kinetic_func_form = kinetic_func_form self.parametrize_mass_matrix = parametrize_mass_matrix self.features_axis = feature_axis self.features_extra_dims = features_extra_dims self.integrator_method = integrator_method self.steps_per_dt = steps_per_dt self.ode_int_kwargs = ode_int_kwargs self.net_kwargs = net_kwargs self.mass_eps = mass_eps self.use_scan = use_scan self.name = name self.potential_net = network_creation_func( output_dims=1, name="PotentialNet", **net_kwargs) if kinetic_func_form in ("separable_net", "dep_net"): self.kinetic_net = network_creation_func( output_dims=1, name="KineticNet", **net_kwargs) else: self.kinetic_net = None if kinetic_func_form in ("matrix_dep_quad", "matrix_dep_embed_quad"): output_dims = (system_dim * (system_dim + 1)) // 2 name = "MatrixNet" if parametrize_mass_matrix else "InvMatrixNet" self.mass_matrix_net = network_creation_func( output_dims=output_dims, name=name, **net_kwargs) elif kinetic_func_form in ("matrix_dep_diag_quad", "matrix_dep_diag_embed_quad", "matrix_dep_embed_quad"): name = "MatrixNet" if parametrize_mass_matrix else "InvMatrixNet" self.mass_matrix_net = network_creation_func( output_dims=system_dim, name=name, **net_kwargs) else: self.mass_matrix_net = None if kinetic_func_form in ("embed_quad", "matrix_dep_diag_embed_quad", "matrix_dep_embed_quad"): self.kinetic_embed_net = network_creation_func( output_dims=system_dim, name="KineticEmbed", **net_kwargs) else: self.kinetic_embed_net = None def sum_per_dim_energy(self, energy: jnp.ndarray) -> jnp.ndarray: """Sums the per dimension energy.""" axis = [-i-1 for i in range(self.features_extra_dims + 1)] return jnp.sum(energy, axis=axis) def feature_matrix_vector(self, m, v): """A utility function to compute the product of a matrix and vector in the features axis.""" v = jnp.expand_dims(v, axis=self.features_axis-1) return jnp.sum(m * v, axis=self.features_axis) def mass_matrix_mul( self, q: jnp.ndarray, v: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the product of the mass matrix with a vector and throws an error if not applicable.""" if self.kinetic_func_form in ("separable_net", "dep_net"): raise ValueError("It is not possible to compute `M q_dot` when using a " "network for the kinetic energy.") if self.kinetic_func_form in ("pure_quad", "embed_quad"): return v if self.kinetic_func_form == "matrix_diag_quad": if self.parametrize_mass_matrix: m_diag_log = hk.get_parameter("MassMatrixDiagLog", shape=[self.system_dim], init=hk.initializers.Constant(0.0)) m_diag = jnp.exp(m_diag_log) + self.mass_eps else: m_inv_diag_log = hk.get_parameter("InvMassMatrixDiagLog", shape=[self.system_dim], init=hk.initializers.Constant(0.0)) m_diag = 1.0 / (jnp.exp(m_inv_diag_log) + self.mass_eps) return m_diag * v if self.kinetic_func_form == "matrix_quad": if self.parametrize_mass_matrix: m_triu = hk.get_parameter("MassMatrixU", shape=[self.system_dim, self.system_dim], init=hk.initializers.Identity()) m_triu = jnp.triu(m_triu) m = jnp.matmul(m_triu.T, m_triu) m = m + self.mass_eps * jnp.eye(self.system_dim) return self.feature_matrix_vector(m, v) else: m_inv_triu = hk.get_parameter("InvMassMatrixU", shape=[self.system_dim, self.system_dim], init=hk.initializers.Identity()) m_inv_triu = jnp.triu(m_inv_triu) m_inv = jnp.matmul(m_inv_triu.T, m_inv_triu) m_inv = m_inv + self.mass_eps * jnp.eye(self.system_dim) solve = jnp.linalg.solve for _ in range(v.ndim + 1 - m_inv.ndim): solve = jax.vmap(solve, in_axes=(None, 0)) return solve(m_inv, v) if self.kinetic_func_form in ("matrix_dep_diag_quad", "matrix_dep_diag_embed_quad"): if self.parametrize_mass_matrix: m_diag_log = self.mass_matrix_net(q, **kwargs) m_diag = jnp.exp(m_diag_log) + self.mass_eps else: m_inv_diag_log = self.mass_matrix_net(q, **kwargs) m_diag = 1.0 / (jnp.exp(m_inv_diag_log) + self.mass_eps) return m_diag * v if self.kinetic_func_form in ("matrix_dep_quad", "matrix_dep_embed_quad"): if self.parametrize_mass_matrix: m_triu = self.mass_matrix_net(q, **kwargs) m_triu = utils.triu_matrix_from_v(m_triu, self.system_dim) m = jnp.matmul(jnp.swapaxes(m_triu, -1, -2), m_triu) m = m + self.mass_eps * jnp.eye(self.system_dim) return self.feature_matrix_vector(m, v) else: m_inv_triu = self.mass_matrix_net(q, **kwargs) m_inv_triu = utils.triu_matrix_from_v(m_inv_triu, self.system_dim) m_inv = jnp.matmul(jnp.swapaxes(m_inv_triu, -1, -2), m_inv_triu) m_inv = m_inv + self.mass_eps * jnp.eye(self.system_dim) return jnp.linalg.solve(m_inv, v) raise NotImplementedError() def mass_matrix_inv_mul( self, q: jnp.ndarray, v: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the product of the inverse mass matrix with a vector.""" if self.kinetic_func_form in ("separable_net", "dep_net"): raise ValueError("It is not possible to compute `M^-1 p` when using a " "network for the kinetic energy.") if self.kinetic_func_form in ("pure_quad", "embed_quad"): return v if self.kinetic_func_form == "matrix_diag_quad": if self.parametrize_mass_matrix: m_diag_log = hk.get_parameter("MassMatrixDiagLog", shape=[self.system_dim], init=hk.initializers.Constant(0.0)) m_inv_diag = 1.0 / (jnp.exp(m_diag_log) + self.mass_eps) else: m_inv_diag_log = hk.get_parameter("InvMassMatrixDiagLog", shape=[self.system_dim], init=hk.initializers.Constant(0.0)) m_inv_diag = jnp.exp(m_inv_diag_log) + self.mass_eps return m_inv_diag * v if self.kinetic_func_form == "matrix_quad": if self.parametrize_mass_matrix: m_triu = hk.get_parameter("MassMatrixU", shape=[self.system_dim, self.system_dim], init=hk.initializers.Identity()) m_triu = jnp.triu(m_triu) m = jnp.matmul(m_triu.T, m_triu) m = m + self.mass_eps * jnp.eye(self.system_dim) solve = jnp.linalg.solve for _ in range(v.ndim + 1 - m.ndim): solve = jax.vmap(solve, in_axes=(None, 0)) return solve(m, v) else: m_inv_triu = hk.get_parameter("InvMassMatrixU", shape=[self.system_dim, self.system_dim], init=hk.initializers.Identity()) m_inv_triu = jnp.triu(m_inv_triu) m_inv = jnp.matmul(m_inv_triu.T, m_inv_triu) m_inv = m_inv + self.mass_eps * jnp.eye(self.system_dim) return self.feature_matrix_vector(m_inv, v) if self.kinetic_func_form in ("matrix_dep_diag_quad", "matrix_dep_diag_embed_quad"): if self.parametrize_mass_matrix: m_diag_log = self.mass_matrix_net(q, **kwargs) m_inv_diag = 1.0 / (jnp.exp(m_diag_log) + self.mass_eps) else: m_inv_diag_log = self.mass_matrix_net(q, **kwargs) m_inv_diag = jnp.exp(m_inv_diag_log) + self.mass_eps return m_inv_diag * v if self.kinetic_func_form in ("matrix_dep_quad", "matrix_dep_embed_quad"): if self.parametrize_mass_matrix: m_triu = self.mass_matrix_net(q, **kwargs) m_triu = utils.triu_matrix_from_v(m_triu, self.system_dim) m = jnp.matmul(jnp.swapaxes(m_triu, -2, -1), m_triu) m = m + self.mass_eps * jnp.eye(self.system_dim) return jnp.linalg.solve(m, v) else: m_inv_triu = self.mass_matrix_net(q, **kwargs) m_inv_triu = utils.triu_matrix_from_v(m_inv_triu, self.system_dim) m_inv = jnp.matmul(jnp.swapaxes(m_inv_triu, -2, -1), m_inv_triu) m_inv = m_inv + self.mass_eps * jnp.eye(self.system_dim) return self.feature_matrix_vector(m_inv, v) raise NotImplementedError() def momentum_from_velocity( self, q: jnp.ndarray, q_dot: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the momentum from position and velocity.""" def local_lagrangian(q_dot_): # We take the sum so we can easily take gradients return jnp.sum(self.lagrangian( phase_space.PhaseSpace(q, q_dot_), **kwargs)) return jax.grad(local_lagrangian)(q_dot) def velocity_from_momentum( self, q: jnp.ndarray, p: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the velocity from position and momentum.""" def local_hamiltonian(p_): # We take the sum so we can easily take gradients return jnp.sum(self.hamiltonian( phase_space.PhaseSpace(q, p_), **kwargs)) return jax.grad(local_hamiltonian)(p) def kinetic_energy_velocity( self, q: jnp.ndarray, q_dot: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the kinetic energy in velocity coordinates.""" if self.kinetic_func_form in ("separable_net", "dep_net"): if self.input_space != "velocity": raise ValueError("Can not evaluate the Kinetic energy from velocity, " "when the input space is momentum and " "kinetic_func_form is separable_net or dep_net.") if self.kinetic_func_form == "separable_net": s = q_dot else: s = jnp.concatenate([q, q_dot], axis=-1) per_dim_energy = self.kinetic_net(s, **kwargs) else: if self.kinetic_embed_net is not None: if self.input_space != "velocity": raise ValueError("Can not evaluate the Kinetic energy from velocity, " "when the input space is momentum and " "kinetic_func_form is embed_quad, " "matrix_dep_diag_embed_quad or " "matrix_dep_embed_quad.") q_dot = self.kinetic_embed_net(q_dot, **kwargs) m_q_dot = self.mass_matrix_mul(q, q_dot, **kwargs) per_dim_energy = q_dot * m_q_dot / 2 return self.sum_per_dim_energy(per_dim_energy) def kinetic_energy_momentum( self, q: jnp.ndarray, p: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the kinetic energy in momentum coordinates.""" if self.kinetic_func_form in ("separable_net", "dep_net"): if self.input_space != "momentum": raise ValueError("Can not evaluate the Kinetic energy from momentum, " "when the input space is velocity and " "kinetic_func_form is separable_net or dep_net.") if self.kinetic_func_form == "separable_net": s = p else: s = jnp.concatenate([q, p], axis=-1) per_dim_energy = self.kinetic_net(s, **kwargs) else: if self.kinetic_embed_net is not None: if self.input_space != "momentum": raise ValueError("Can not evaluate the Kinetic energy from momentum, " "when the input space is velocity and " "kinetic_func_form is embed_quad, " "matrix_dep_diag_embed_quad or " "matrix_dep_embed_quad.") p = self.kinetic_embed_net(p, **kwargs) m_inv_p = self.mass_matrix_inv_mul(q, p, **kwargs) per_dim_energy = p * m_inv_p / 2 return self.sum_per_dim_energy(per_dim_energy) def potential_energy_velocity( self, q: jnp.ndarray, q_dot: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the potential energy in velocity coordinates.""" if self.potential_func_form == "separable_net": per_dim_energy = self.potential_net(q, **kwargs) elif self.input_space != "momentum": raise ValueError("Can not evaluate the Potential energy from velocity, " "when the input space is momentum and " "potential_func_form is dep_net.") else: s = jnp.concatenate([q, q_dot], axis=-1) per_dim_energy = self.potential_net(s, **kwargs) return self.sum_per_dim_energy(per_dim_energy) def potential_energy_momentum( self, q: jnp.ndarray, p: jnp.ndarray, **kwargs ) -> jnp.ndarray: """Computes the potential energy in momentum coordinates.""" if self.potential_func_form == "separable_net": per_dim_energy = self.potential_net(q, **kwargs) elif self.input_space != "momentum": raise ValueError("Can not evaluate the Potential energy from momentum, " "when the input space is velocity and " "potential_func_form is dep_net.") else: s = jnp.concatenate([q, p], axis=-1) per_dim_energy = self.potential_net(s, **kwargs) return self.sum_per_dim_energy(per_dim_energy) def hamiltonian( self, s: phase_space.PhaseSpace, **kwargs ) -> jnp.ndarray: """Computes the Hamiltonian in momentum coordinates.""" potential = self.potential_energy_momentum(s.q, s.p, **kwargs) kinetic = self.kinetic_energy_momentum(s.q, s.p, **kwargs) # Sanity check assert potential.shape == kinetic.shape return kinetic + potential def lagrangian( self, s: phase_space.PhaseSpace, **kwargs ) -> jnp.ndarray: """Computes the Lagrangian in velocity coordinates.""" potential = self.potential_energy_velocity(s.q, s.p, **kwargs) kinetic = self.kinetic_energy_velocity(s.q, s.p, **kwargs) # Sanity check assert potential.shape == kinetic.shape return kinetic - potential def energy_from_momentum( self, s: phase_space.PhaseSpace, **kwargs ) -> jnp.ndarray: """Computes the energy of the system in momentum coordinates.""" return self.hamiltonian(s, **kwargs) def energy_from_velocity( self, s: phase_space.PhaseSpace, **kwargs ) -> jnp.ndarray: """Computes the energy of the system in velocity coordinates.""" q, q_dot = s.q, s.p p = self.momentum_from_velocity(q, q_dot, **kwargs) q_dot_p = jnp.sum(q_dot * p, self.features_axis) return q_dot_p - self.lagrangian(s, **kwargs) def velocity_and_acceleration( self, q: jnp.ndarray, q_dot: jnp.ndarray, **kwargs ) -> phase_space.TangentPhaseSpace: """Computes the velocity and acceleration of the system in velocity coordinates.""" def local_lagrangian(*q_and_q_dot): # We take the sum so we can easily take gradients return jnp.sum(self.lagrangian( phase_space.PhaseSpace(*q_and_q_dot), **kwargs)) grad_q = jax.grad(local_lagrangian, 0)(q, q_dot) grad_q_dot_func = jax.grad(local_lagrangian, 1) _, grad_q_dot_grad_q_times_q_dot = jax.jvp(grad_q_dot_func, (q, q_dot), (q_dot, jnp.zeros_like(q_dot))) pre_acc_vector = grad_q - grad_q_dot_grad_q_times_q_dot if self.kinetic_func_form in ("pure_quad", "matrix_diag_quad", "matrix_quad", "matrix_dep_diag_quad", "matrix_dep_quad"): q_dot_dot = self.mass_matrix_inv_mul(q, pre_acc_vector, **kwargs) else: hess_q_dot = jax.vmap(jax.hessian(local_lagrangian, 1))(q, q_dot) q_dot_dot = jnp.linalg.solve(hess_q_dot, pre_acc_vector) return phase_space.TangentPhaseSpace(q_dot, q_dot_dot) def simulate( self, y0: phase_space.PhaseSpace, dt: Union[float, jnp.ndarray], num_steps_forward: int, num_steps_backward: int, include_y0: bool, return_stats: bool = True, **nets_kwargs ) -> _PhysicsSimulationOutput: """Simulates the continuous dynamics of the physical system. Args: y0: Initial state of the system. dt: The size of the time intervals at which to evolve the system. num_steps_forward: Number of steps to make into the future. num_steps_backward: Number of steps to make into the past. include_y0: Whether to include the initial state in the result. return_stats: Whether to return additional statistics. **nets_kwargs: Keyword arguments to pass to the networks. Returns: * The state of the system evolved as many steps as specified by the arguments into the past and future, all in chronological order. * Optionally return a dictionary of additional statistics. For the moment this only returns the energy of the system at each evaluation point. """ # Define the dynamics if self.simulation_space == "velocity": dy_dt = lambda t_, y: self.velocity_and_acceleration( # pylint: disable=g-long-lambda y.q, y.p, **nets_kwargs) # Special Haiku magic to avoid tracer issues if hk.running_init(): return self.lagrangian(y0, **nets_kwargs) else: hamiltonian = lambda t_, y: self.hamiltonian(y, **nets_kwargs) dy_dt = phase_space.poisson_bracket_with_q_and_p(hamiltonian) if hk.running_init(): return self.hamiltonian(y0, **nets_kwargs) # Optionally switch coordinate frame if self.input_space == "velocity" and self.simulation_space == "momentum": p = self.momentum_from_velocity(y0.q, y0.p, **nets_kwargs) y0 = phase_space.PhaseSpace(y0.q, p) if self.input_space == "momentum" and self.simulation_space == "velocity": q_dot = self.velocity_from_momentum(y0.q, y0.p, **nets_kwargs) y0 = phase_space.PhaseSpace(y0.q, q_dot) yt = integrators.solve_ivp_dt_two_directions( fun=dy_dt, y0=y0, t0=0.0, dt=dt, method=self.integrator_method, num_steps_forward=num_steps_forward, num_steps_backward=num_steps_backward, include_y0=include_y0, steps_per_dt=self.steps_per_dt, ode_int_kwargs=self.ode_int_kwargs ) # Make time axis second yt = jax.tree_map(lambda x: jnp.swapaxes(x, 0, 1), yt) # Compute energies for the full trajectory yt_energy = jax.tree_map(utils.merge_first_dims, yt) if self.simulation_space == "momentum": energy = self.energy_from_momentum(yt_energy, **nets_kwargs) else: energy = self.energy_from_velocity(yt_energy, **nets_kwargs) energy = energy.reshape(yt.q.shape[:2]) # Optionally switch back to input coordinate frame if self.input_space == "velocity" and self.simulation_space == "momentum": q_dot = self.velocity_from_momentum(yt.q, yt.p, **nets_kwargs) yt = phase_space.PhaseSpace(yt.q, q_dot) if self.input_space == "momentum" and self.simulation_space == "velocity": p = self.momentum_from_velocity(yt.q, yt.p, **nets_kwargs) yt = phase_space.PhaseSpace(yt.q, p) # Compute energy deficit t = energy.shape[-1] non_zero_diffs = float((t * (t - 1)) // 2) energy_deficits = jnp.abs(energy[..., None, :] - energy[..., None]) avg_deficit = jnp.sum(energy_deficits, axis=(-2, -1)) / non_zero_diffs max_deficit = jnp.max(energy_deficits) # Return the states and energies if return_stats: return yt, dict(avg_energy_deficit=avg_deficit, max_energy_deficit=max_deficit) else: return yt def __call__(self, *args, **kwargs): return self.simulate(*args, **kwargs) class OdeNetwork(hk.Module): """A simple haiku module for constructing a NeuralODE.""" def __init__( self, system_dim: int, net_kwargs: Mapping[str, Any], integrator_method: Optional[str] = None, steps_per_dt: int = 1, ode_int_kwargs: Optional[Mapping[str, float]] = None, use_scan: bool = True, network_creation_func=networks.make_flexible_net, name: Optional[str] = None, ): super().__init__(name=name) ode_int_kwargs = dict(ode_int_kwargs or {}) ode_int_kwargs.setdefault("rtol", 1e-6) ode_int_kwargs.setdefault("atol", 1e-6) ode_int_kwargs.setdefault("mxstep", 50) self.system_dim = system_dim self.integrator_method = integrator_method or "adaptive" self.steps_per_dt = steps_per_dt self.ode_int_kwargs = ode_int_kwargs self.net_kwargs = net_kwargs self.use_scan = use_scan self.core = network_creation_func( output_dims=system_dim, name="Net", **net_kwargs) def simulate( self, y0: jnp.ndarray, dt: Union[float, jnp.ndarray], num_steps_forward: int, num_steps_backward: int, include_y0: bool, return_stats: bool = True, **nets_kwargs ) -> Union[jnp.ndarray, Tuple[jnp.ndarray, Mapping[str, jnp.ndarray]]]: """Simulates the continuous dynamics of the ODE specified by the network. Args: y0: Initial state of the system. dt: The size of the time intervals at which to evolve the system. num_steps_forward: Number of steps to make into the future. num_steps_backward: Number of steps to make into the past. include_y0: Whether to include the initial state in the result. return_stats: Whether to return additional statistics. **nets_kwargs: Keyword arguments to pass to the networks. Returns: * The state of the system evolved as many steps as specified by the arguments into the past and future, all in chronological order. * Optionally return a dictionary of additional statistics. For the moment this is just an empty dictionary. """ if hk.running_init(): return self.core(y0, **nets_kwargs) yt = integrators.solve_ivp_dt_two_directions( fun=lambda t, y: self.core(y, **nets_kwargs), y0=y0, t0=0.0, dt=dt, method=self.integrator_method, num_steps_forward=num_steps_forward, num_steps_backward=num_steps_backward, include_y0=include_y0, steps_per_dt=self.steps_per_dt, ode_int_kwargs=self.ode_int_kwargs ) # Make time axis second yt = jax.tree_map(lambda x: jnp.swapaxes(x, 0, 1), yt) if return_stats: return yt, dict() else: return yt def __call__(self, *args, **kwargs): return self.simulate(*args, **kwargs) class DiscreteDynamicsNetwork(hk.Module): """A simple haiku module for constructing a discrete dynamics network.""" def __init__( self, system_dim: int, residual: bool, net_kwargs: Mapping[str, Any], use_scan: bool = True, network_creation_func=networks.make_flexible_net, name: Optional[str] = None, ): super().__init__(name=name) self.system_dim = system_dim self.residual = residual self.net_kwargs = net_kwargs self.use_scan = use_scan self.core = network_creation_func( output_dims=system_dim, name="Net", **net_kwargs) def simulate( self, y0: jnp.ndarray, num_steps_forward: int, include_y0: bool, return_stats: bool = True, **nets_kwargs ) -> Union[jnp.ndarray, Tuple[jnp.ndarray, Mapping[str, jnp.ndarray]]]: """Simulates the dynamics of the discrete system. Args: y0: Initial state of the system. num_steps_forward: Number of steps to make into the future. include_y0: Whether to include the initial state in the result. return_stats: Whether to return additional statistics. **nets_kwargs: Keyword arguments to pass to the networks. Returns: * The state of the system evolved as many steps as specified by the arguments into the past and future, all in chronological order. * Optionally return a dictionary of additional statistics. For the moment this is just an empty dictionary. """ if num_steps_forward < 0: raise ValueError("It is required to unroll at least one step.") nets_kwargs.pop("dt", None) nets_kwargs.pop("num_steps_backward", None) if hk.running_init(): return self.core(y0, **nets_kwargs) def step(*args): y, _ = args if self.residual: y_next = y + self.core(y, **nets_kwargs) else: y_next = self.core(y, **nets_kwargs) return y_next, y_next if self.use_scan: _, yt = jax.lax.scan(step, init=y0, xs=None, length=num_steps_forward) if include_y0: yt = jnp.concatenate([y0[None], yt], axis=0) # Make time axis second yt = jax.tree_map(lambda x: jnp.swapaxes(x, 0, 1), yt) else: yt = [y0] for _ in range(num_steps_forward): yt.append(step(yt[-1], None)[0]) if not include_y0: yt = yt[1:] if len(yt) == 1: yt = yt[0][:, None] else: yt = jax.tree_map(lambda args: jnp.stack(args, 1), yt) if return_stats: return yt, dict() else: return yt def __call__(self, *args, **kwargs): return self.simulate(*args, **kwargs)
deepmind-research-master
physics_inspired_models/models/dynamics.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Episodic Memory and Synthetic Returns Core Wrapper modules.""" import collections import haiku as hk import jax import jax.numpy as jnp SRCoreWrapperOutput = collections.namedtuple( "SRCoreWrapperOutput", ["output", "synthetic_return", "augmented_return", "sr_loss"]) class EpisodicMemory(hk.RNNCore): """Episodic Memory module.""" def __init__(self, memory_size, capacity, name="episodic_memory"): """Constructor. Args: memory_size: Integer. The size of the vectors to be stored. capacity: Integer. The maximum number of memories to store before it becomes necessary to overwrite old memories. name: String. A name for this Haiku module instance. """ super().__init__(name=name) self._memory_size = memory_size self._capacity = capacity def __call__(self, inputs, prev_state): """Writes a new memory into the episodic memory. Args: inputs: A Tensor of shape ``[batch_size, memory_size]``. prev_state: The previous state of the episodic memory, which is a tuple with a (i) counter of shape ``[batch_size, 1]`` indicating how many memories have been written so far, and (ii) a tensor of shape ``[batch_size, capacity, memory_size]`` with the full content of the episodic memory. Returns: A tuple with (i) a tensor of shape ``[batch_size, capacity, memory_size]`` with the full content of the episodic memory, including the newly written memory, and (ii) the new state of the episodic memory. """ inputs = jax.lax.stop_gradient(inputs) counter, memories = prev_state counter_mod = jnp.mod(counter, self._capacity) slot_selector = jnp.expand_dims( jax.nn.one_hot(counter_mod, self._capacity), axis=2) memories = memories * (1 - slot_selector) + ( slot_selector * jnp.expand_dims(inputs, 1)) counter = counter + 1 return memories, (counter, memories) def initial_state(self, batch_size): """Creates the initial state of the episodic memory. Args: batch_size: Integer. The batch size of the episodic memory. Returns: A tuple with (i) a counter of shape ``[batch_size, 1]`` and (ii) a tensor of shape ``[batch_size, capacity, memory_size]`` with the full content of the episodic memory. """ if batch_size is None: shape = [] else: shape = [batch_size] counter = jnp.zeros(shape) memories = jnp.zeros(shape + [self._capacity, self._memory_size]) return (counter, memories) class SyntheticReturnsCoreWrapper(hk.RNNCore): """Synthetic Returns core wrapper.""" def __init__(self, core, memory_size, capacity, hidden_layers, alpha, beta, loss_func=(lambda x, y: 0.5 * jnp.square(x - y)), apply_core_to_input=False, name="synthetic_returns_wrapper"): """Constructor. Args: core: hk.RNNCore. The recurrent core of the agent. E.g. an LSTM. memory_size: Integer. The size of the vectors to be stored in the episodic memory. capacity: Integer. The maximum number of memories to store before it becomes necessary to overwrite old memories. hidden_layers: Tuple or list of integers, indicating the size of the hidden layers of the MLPs used to produce synthetic returns, current state bias, and gate. alpha: The multiplier of the synthetic returns term in the augmented return. beta: The multiplier of the environment returns term in the augmented return. loss_func: A function of two arguments (predictions and targets) to compute the SR loss. apply_core_to_input: Boolean. Whether to apply the core on the inputs. If true, the synthetic returns will be computed from the outputs of the RNN core passed to the constructor. If false, the RNN core will be applied only at the output of this wrapper, and the synthetic returns will be computed from the inputs. name: String. A name for this Haiku module instance. """ super().__init__(name=name) self._em = EpisodicMemory(memory_size, capacity) self._capacity = capacity hidden_layers = list(hidden_layers) self._synthetic_return = hk.nets.MLP(hidden_layers + [1]) self._bias = hk.nets.MLP(hidden_layers + [1]) self._gate = hk.Sequential([ hk.nets.MLP(hidden_layers + [1]), jax.nn.sigmoid, ]) self._apply_core_to_input = apply_core_to_input self._core = core self._alpha = alpha self._beta = beta self._loss = loss_func def initial_state(self, batch_size): return ( self._em.initial_state(batch_size), self._core.initial_state(batch_size) ) def __call__(self, inputs, prev_state): current_input, return_target = inputs em_state, core_state = prev_state (counter, memories) = em_state if self._apply_core_to_input: current_input, core_state = self._core(current_input, core_state) # Synthetic return for the current state synth_return = jnp.squeeze(self._synthetic_return(current_input), -1) # Current state bias term bias = self._bias(current_input) # Gate computed from current state gate = self._gate(current_input) # When counter > capacity, mask will be all ones mask = 1 - jnp.cumsum(jax.nn.one_hot(counter, self._capacity), axis=1) mask = jnp.expand_dims(mask, axis=2) # Synthetic returns for each state in memory past_synth_returns = hk.BatchApply(self._synthetic_return)(memories) # Sum of synthetic returns from previous states sr_sum = jnp.sum(past_synth_returns * mask, axis=1) prediction = jnp.squeeze(sr_sum * gate + bias, -1) sr_loss = self._loss(prediction, return_target) augmented_return = jax.lax.stop_gradient( self._alpha * synth_return + self._beta * return_target) # Write current state to memory _, em_state = self._em(current_input, em_state) if not self._apply_core_to_input: output, core_state = self._core(current_input, core_state) else: output = current_input output = SRCoreWrapperOutput( output=output, synthetic_return=synth_return, augmented_return=augmented_return, sr_loss=sr_loss, ) return output, (em_state, core_state)
deepmind-research-master
synthetic_returns/synthetic_returns.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Memory & Planning Game environment.""" import string import dm_env import matplotlib.pyplot as plt import networkx as nx import numpy as np class MemoryPlanningGame(dm_env.Environment): """Memory & Planning Game environment.""" ACTION_NAMES = ['Up', 'Down', 'Left', 'Right', 'Collect'] NUM_ACTIONS = len(ACTION_NAMES) DIRECTIONS = [ (0, 1), # Up (0, -1), # Down (-1, 0), # Left (1, 0), # Right (0, 0), # Collect ] def __init__(self, maze_size=4, max_episode_steps=100, target_reward=1., per_step_reward=0., random_respawn=False, seed=None): """The Memory & Planning Game environment. Args: maze_size: (int) size of the maze dimension. max_episode_steps: (int) number of steps per episode. target_reward: (float) reward value of the target. per_step_reward: (float) reward/cost of taking a step. random_respawn: (bool) whether the agent respawns in a random location upon collecting the goal. seed: (int or None) seed for random number generator. """ self._maze_size = maze_size self._num_labels = maze_size * maze_size # The graph itself is the same across episodes, but the node labels will be # randomly sampled in each episode. self._graph = nx.grid_2d_graph( self._maze_size, self._maze_size, periodic=True) self._max_episode_steps = max_episode_steps self._target_reward = target_reward self._per_step_reward = per_step_reward self._random_respawn = random_respawn self._rng = np.random.RandomState(seed) def _one_hot(self, node): one_hot_vector = np.zeros([self._num_labels], dtype=np.int32) one_hot_vector[self._labels[node]] = 1 return one_hot_vector def step(self, action): # If previous step was the last step of an episode, reset. if self._needs_reset: return self.reset() # Increment step count and check if it's the last step of the episode. self._episode_steps += 1 if self._episode_steps >= self._max_episode_steps: self._needs_reset = True transition = dm_env.termination else: transition = dm_env.transition # Recompute agent's position given the selected action. direction = self.DIRECTIONS[action] self._position = tuple( (np.array(self._position) + np.array(direction)) % self._maze_size) self._previous_action = self.ACTION_NAMES[action] # Get reward if agent is over the goal location and the selected action is # `collect`. if self._position == self._goal and self.ACTION_NAMES[action] == 'Collect': reward = self._target_reward self._set_new_goal() else: reward = self._per_step_reward self._episode_reward += reward return transition(reward, self._observation()) def _observation(self): return { 'position': np.array(self._one_hot(self.position), dtype=np.int32), 'goal': np.array(self._one_hot(self.goal), dtype=np.int32), } def observation_spec(self): return { 'position': dm_env.specs.Array( shape=(self._num_labels,), dtype=np.int32, name='position'), 'goal': dm_env.specs.Array( shape=(self._num_labels,), dtype=np.int32, name='goal'), } def action_spec(self): return dm_env.specs.DiscreteArray(self.NUM_ACTIONS) def take_random_action(self): return self.step(self._rng.randint(self.NUM_ACTIONS)) def reset(self): self._previous_action = '' self._episode_reward = 0. self._episode_steps = 0 self._needs_reset = False random_labels = self._rng.permutation(self._num_labels) self._labels = {n: random_labels[i] for i, n in enumerate(self._graph.nodes())} self._respawn() self._set_new_goal() return dm_env.restart(self._observation()) def _respawn(self): random_idx = self._rng.randint(self._num_labels) self._position = list(self._graph.nodes())[random_idx] def _set_new_goal(self): if self._random_respawn: self._respawn() goal = self._position while goal == self._position: random_idx = self._rng.randint(self._num_labels) goal = list(self._graph.nodes())[random_idx] self._goal = goal @property def position(self): return self._position @property def goal(self): return self._goal @property def previous_action(self): return self._previous_action @property def episode_reward(self): return self._episode_reward def draw_maze(self, ax=None): if ax is None: plt.figure() ax = plt.gca() node_positions = {(x, y): (x, y) for x, y in self._graph.nodes()} letters = string.ascii_uppercase + string.ascii_lowercase labels = {n: letters[self._labels[n]] for n in self._graph.nodes()} node_list = list(self._graph.nodes()) colors = [] for n in node_list: if n == self.position: colors.append('lightblue') elif n == self.goal: colors.append('lightgreen') else: colors.append('pink') nx.draw(self._graph, pos=node_positions, nodelist=node_list, ax=ax, node_color=colors, with_labels=True, node_size=200, labels=labels) ax.set_title('{}\nEpisode reward={:.1f}'.format( self.previous_action, self.episode_reward)) ax.margins(.1) return plt.gcf(), ax
deepmind-research-master
rapid_task_solving/memory_planning_game.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """One-shot StreetLearn environment.""" import dm_env import matplotlib.pyplot as plt import networkx as nx import numpy as np def deg_to_rad(x): """Convert degrees to radians.""" return x / 180. * np.pi def rad_to_deg(x): """Convert radians to degrees.""" return x * 180. / np.pi class OneShotStreetLearn(dm_env.Environment): """One-shot Streetlearn environment.""" ACTION_NAMES = [ 'Forward', 'Left', 'Right', 'Collect', ] NUM_ACTIONS = len(ACTION_NAMES) def __init__(self, dataset_path, max_episode_steps, num_junctions=8, target_reward=1., per_step_reward=0., observation_length=60, seed=None): self._graph = nx.read_gexf(dataset_path) self._node_attrs = self._graph.nodes(data=True) self._num_junctions = num_junctions self._observation_length = observation_length self._max_episode_steps = max_episode_steps self._target_reward = target_reward self._per_step_reward = per_step_reward self._rng = np.random.RandomState(seed) self.reset() def reset(self): self._previous_action = '' self._episode_reward = 0. self._episode_steps = 0 self._needs_reset = False self._subgraph = self.get_random_subgraph() self._observation_map = self.randomize_observations(self._subgraph) self._position = self._rng.choice(list(self._subgraph.nodes())) neighbours = self._neighbors_bearings(self._subgraph, self._position) self._neighbour = neighbours[self._rng.randint(len(neighbours))] self._set_new_goal() return dm_env.restart(self._observation()) @property def _current_edge(self): return (self._position, self._neighbour['neighbour']) def _set_new_goal(self): goal = None edges = list(self._observation_map.keys()) while goal is None or goal == self._current_edge: goal = edges[self._rng.randint(len(edges))] self._goal = goal def _one_hot(self, edge): one_hot_vector = np.zeros([self._observation_length], dtype=np.int32) one_hot_vector[self._observation_map[edge]] = 1 return one_hot_vector def _observation(self): return { 'position': np.array(self._one_hot(self._current_edge), dtype=np.int32), 'goal': np.array(self._one_hot(self._goal), dtype=np.int32), } def observation_spec(self): return { 'position': dm_env.specs.Array( shape=(self._observation_length,), dtype=np.int32, name='position'), 'goal': dm_env.specs.Array( shape=(self._observation_length,), dtype=np.int32, name='goal'), } def action_spec(self): return dm_env.specs.DiscreteArray(self.NUM_ACTIONS) def step(self, action): # If previous step was the last step of an episode, reset. if self._needs_reset: return self.reset() # Increment step count and check if it's the last step of the episode. self._episode_steps += 1 if self._episode_steps >= self._max_episode_steps: self._needs_reset = True transition = dm_env.termination else: transition = dm_env.transition # Recompute agent's position self._move(action) self._previous_action = self.ACTION_NAMES[action] # Get reward if agent is at the goal location and the selected action is # `collect`. if (self._current_edge == self._goal and self.ACTION_NAMES[action] == 'Collect'): reward = self._target_reward self._set_new_goal() else: reward = self._per_step_reward self._episode_reward += reward return transition(reward, self._observation()) def randomize_observations(self, subgraph): edges = list(subgraph.edges()) edges.extend([(y, x) for (x, y) in edges]) obs_permutation = self._rng.permutation(self._observation_length) return {e: obs_permutation[i] for i, e in enumerate(edges)} def _calculate_bearing(self, node, neighbor): lat1 = deg_to_rad(self._node_attrs[node]['lat']) lng1 = deg_to_rad(self._node_attrs[node]['lng']) lat2 = deg_to_rad(self._node_attrs[neighbor]['lat']) lng2 = deg_to_rad(self._node_attrs[neighbor]['lng']) delta_lng = lng2 - lng1 theta = np.arctan2( np.sin(delta_lng) * np.cos(lat2), np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(delta_lng)) return theta def _neighbors_bearings(self, subgraph, node): bearings = [] for neighbor in list(subgraph[node]): orientation = self._calculate_bearing(node, neighbor) bearings.append({'neighbour': neighbor, 'orientation': orientation}) bearings.sort(key=lambda x: x['orientation']) return bearings def _sort_neighbors(self, node, neighbour): bearings = self._neighbors_bearings(self._subgraph, node) bs = [x['orientation'] for x in bearings] idx = np.argmin(np.abs(bs - neighbour['orientation'])) return { 'forward': bearings[idx], 'right': bearings[idx-1], 'left': bearings[(idx+1) % len(bearings)], } def _move(self, action): neighbours = self._sort_neighbors(self._position, self._neighbour) if action == 0: new_node = self._neighbour['neighbour'] neighbours = self._sort_neighbors(new_node, neighbours['forward']) new_neighbour = neighbours['forward'] else: new_node = self._position if action == 1: new_neighbour = neighbours['left'] elif action == 2: new_neighbour = neighbours['right'] else: new_neighbour = self._neighbour self._position = new_node self._neighbour = new_neighbour def _all_next_junctions(self, subgraph, node): neighbors = list(subgraph[node]) edges = [self._get_next_junction(subgraph, node, nb) for nb in neighbors] nodes = [y for (_, y) in edges] return nodes, edges def _get_next_junction(self, subgraph, initial_node, next_node): node = initial_node while subgraph.degree(next_node) == 2: neighbours = list(subgraph.neighbors(next_node)) neighbours.remove(node) node = next_node next_node = neighbours.pop() return (initial_node, next_node) def get_random_subgraph(self): graph = self._graph num_nodes = len(graph) rnd_index = self._rng.randint(num_nodes) center_node = list(graph.nodes())[rnd_index] while graph.degree(center_node) <= 2: rnd_index = self._rng.randint(num_nodes) center_node = list(graph.nodes())[rnd_index] to_visit = [center_node] visited = [] subgraph = nx.Graph() while to_visit: node = to_visit.pop(0) visited.append(node) new_nodes, new_edges = self._all_next_junctions(graph, node) subgraph.add_edges_from(new_edges) node_degrees = [subgraph.degree(n) for n in subgraph.nodes()] count_junctions = len(list(filter(lambda x: x > 2, node_degrees))) if count_junctions >= self._num_junctions: break new_nodes = filter(lambda x: x not in visited + to_visit, new_nodes) to_visit.extend(new_nodes) return subgraph def draw_subgraph(self, ax=None): if ax is None: _ = plt.figure(figsize=(3, 3)) ax = plt.gca() node_ids = list(self._subgraph.nodes()) pos = { x: (self._node_attrs[x]['lat'], self._node_attrs[x]['lng']) for x in node_ids } labels = {} nc = 'pink' ec = 'black' ns = 50 nshape = 'o' # Draw the current subgraph nx.draw(self._subgraph, pos=pos, node_color=nc, with_labels=False, node_size=ns, labels=labels, edgecolors=ec, node_shape=nshape, ax=ax) max_xy = np.array([np.array(x) for x in pos.values()]).max(0) min_xy = np.array([np.array(x) for x in pos.values()]).min(0) delta_xy = (max_xy - min_xy) / 6. ax.set_xlim([min_xy[0] - delta_xy[0], max_xy[0] + delta_xy[0]]) ax.set_ylim([min_xy[1] - delta_xy[1], max_xy[1] + delta_xy[1]]) # Draw goal position and orientation x = self._node_attrs[self._goal[0]]['lat'] y = self._node_attrs[self._goal[0]]['lng'] rotation = rad_to_deg(self._calculate_bearing(*self._goal)) _ = ax.plot(x, y, marker=(3, 0, rotation - 90), color=(0, 0, 0), markersize=14, markerfacecolor='white') _ = ax.plot(x, y, marker=(2, 0, rotation - 90), color=(0, 0, 0), markersize=12, markerfacecolor='None') # Draw current position and orientation x = self._node_attrs[self._position]['lat'] y = self._node_attrs[self._position]['lng'] rotation = rad_to_deg(self._neighbour['orientation']) _ = ax.plot(x, y, marker=(3, 0, rotation - 90), color=(0, 0, 0), markersize=14, markerfacecolor='lightgreen') _ = ax.plot(x, y, marker=(2, 0, rotation - 90), color=(0, 0, 0), markersize=12, markerfacecolor='None') ax.set_title('{}\nEpisode reward = {}'.format( self._previous_action, self._episode_reward)) return plt.gcf(), ax
deepmind-research-master
rapid_task_solving/one_shot_streetlearn.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Submission to Unrestricted Adversarial Challenge.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf import tensorflow_hub as hub from unrestricted_advex import eval_kit def _preprocess_image(image): image = tf.image.central_crop(image, central_fraction=0.875) image = tf.image.resize_bilinear(image, [224, 224], align_corners=False) return image def test_preprocess(image): image = _preprocess_image(image) image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image def main(): g = tf.Graph() with g.as_default(): input_tensor = tf.placeholder(tf.float32, (None, 224, 224, 3)) x_np = test_preprocess(input_tensor) raw_module_1 = hub.Module( "https://tfhub.dev/deepmind/llr-pretrain-adv/latents/1") raw_module_2 = hub.Module( "https://tfhub.dev/deepmind/llr-pretrain-adv/linear/1") latents = raw_module_1(dict(inputs=x_np, decay_rate=0.1)) logits = raw_module_2(dict(inputs=latents)) logits = tf.squeeze(logits, axis=[1, 2]) two_class_logits = tf.concat([tf.nn.relu(-logits[:, 1:]), tf.nn.relu(logits[:, 1:])], axis=1) sess = tf.train.SingularMonitoredSession() def model(x_np): return sess.run(two_class_logits, feed_dict={input_tensor: x_np}) eval_kit.evaluate_bird_or_bicycle_model(model, model_name="llr_resnet") if __name__ == "__main__": main()
deepmind-research-master
unrestricted_advx/main.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for DM21 functionals interface to PySCF.""" from setuptools import setup REQUIRED_PACKAGES = [ 'absl-py', 'attrs', # Note PySCF 1.7.6 and older do not support h5py 3.3.0: # https://github.com/pyscf/pyscf/issues/1016 'h5py', 'numpy', # Note DM21 functionals are compatible with PySCF 1.7.6 if an older version # of h5py is used. 'pyscf>=2.0', 'tensorflow', 'tensorflow_hub', ] CHECKPOINT_DATA = ['checkpoints/DM21*/*.pb', 'checkpoints/DM21*/variables/*'] setup( name='density_functional_approximation_dm21', version='0.1', description='An interface to PySCF for the DM21 functionals.', url='https://github.com/deepmind/deepmind-research/density_functional_approximation_dm21', author='DeepMind', author_email='[email protected]', # Contained modules and scripts. packages=['density_functional_approximation_dm21'], package_data={ 'density_functional_approximation_dm21': CHECKPOINT_DATA, }, scripts=['density_functional_approximation_dm21/export_saved_model.py'], install_requires=REQUIRED_PACKAGES, platforms=['any'], license='Apache 2.0', extras_require={'testing': ['pytest', 'scipy']}, )
deepmind-research-master
density_functional_approximation_dm21/setup.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Computation of the Hartree-Fock exchange density. We consider two types of potential: 1. Coulomb potential v(r,r') = 1/|r-r'|, which results in the full HF exchange density and energy. 2. Screened (long-range) Coulomb potential v(r,r') = erf(\omega|r-r'|)/|r-r'|, which results in the screened HF exchange density energy. Note that PySCF and libcint treat a value of omega=0 to correspond to the Coulomb potential. In the following, HF refers to full HF exchange if the Coulomb potential is used and to screened HF exchange if the screened Coulomb potential is used. The Hartree-Fock (HF) exchange energy can be written as: -2 HF_x = \sum_{a,b,c,d} D_{ab} D_{cd} \int dr \int dr' [ \chi_a(r) \chi_c(r) v(r, r') \chi_b(r') \chi_d(r') ] where D is the density matrix, \chi_a the atomic basis functions and r, r' are coordinates. For clarity we have dropped the spin-channel label of the density matrix. Defining the following intermediates: \nu_{bd}(r) = \int dr' (\chi_b(r') v(r, r') \chi_d(r')) E_b(r) = \sum_a D_{ab} \chi_a(r) we get the following expression for HF: -2 HF_x = \int dr \sum_{bd} E_b(r) E_d(r) \nu_{bd}(r) Therefore the quantity exx(r) = -0.5 sum_{bd} E_b(r) E_d(r) \nu_{bd}(r) represents an energy density at location r which integrates to the HF exchange energy. The Fock matrix, F, is the derivative of the energy with respect to the density matrix. If the energy depends upon the set of features {x}, then the Fock matrix can be evaluated as \sum_x dE/dx dx/dD_{ab}. The derivatives with respect to the features can be easily evaluated using automatic differentiation. We hence require the derivative of exx with respect to the density matrix: dexx(r)/dD_{ab} = -D_{cd} \chi_a(r) \chi_c(r) \nu_{bd}(r) This is too large to store, so we instead compute the following intermediate, and evaluate the derivative as required on the fly: fxx_a(r) = D_{bd} \chi_a(r) \nu_{bd}(r) Note: we compute exx and fxx for each spin channel for both restricted and unrestricted calculations. """ from typing import Generator, Optional, Tuple, Union import attr import numpy as np from pyscf.dft import numint from pyscf.gto import mole from pyscf.lib import logger from pyscf.lib import numpy_helper def _evaluate_nu_slow(mol: mole.Mole, coords: np.ndarray, omega: float, hermi: int = 1) -> np.ndarray: """Computes nu integrals for given coordinates using a slow loop.""" nu = [] # Use the Gaussian nuclear model in int1e_rinv_sph to evaluate the screened # integrals. with mol.with_rinv_zeta(zeta=omega * omega): # This is going to be slow... for coord in coords: with mol.with_rinv_origin(coord): nu.append(mol.intor('int1e_rinv_sph', hermi=hermi)) return np.asarray(nu) def _evaluate_nu(mol: mole.Mole, coords: np.ndarray, omega: float, hermi: int = 1) -> np.ndarray: """Computes nu integrals for given coordinates.""" try: with mol.with_range_coulomb(omega=omega): # grids keyword argument supported in pyscf 2.0.0-alpha. nu = mol.intor('int1e_grids_sph', hermi=hermi, grids=coords) # pytype: disable=wrong-keyword-args except TypeError: logger.info( mol, 'Support for int1e_grids not found (requires libcint 4.4.1 and ' 'pyscf 2.0.0a or later. Falling back to slow loop over individual grid ' 'points.') nu = _evaluate_nu_slow(mol, coords, omega) return nu def _nu_chunk(mol: mole.Mole, coords: np.ndarray, omega: float, chunk_size: int = 1000 ) -> Generator[Tuple[int, int, np.ndarray], None, None]: r"""Yields chunks of nu integrals over the grid. Args: mol: pyscf Mole object. coords: coordinates, r', at which to evaluate the nu integrals, shape (N,3). omega: range separation parameter. A value of 0 disables range-separation (i.e. uses the kernel v(r,r') = 1/|r-r'| instead of v(r,r') = erf(\omega |r-r'|) / |r-r'|) chunk_size: number of coordinates to evaluate the integrals at a time. Yields: start_index, end_index, nu_{ab}(r) where start_index, end_index are indices into coords, nu is an array of shape (end_index-start_index, nao, nao), where nao is the number of atomic orbitals and contains nu_{ab}(r) = <a(r')|v(r,r')| b(r')>, where a,b are atomic orbitals and r' are the grid coordinates in coords[start_index:end_index]. Raises: ValueError: if omega is negative. """ if omega < 0: raise ValueError('Range-separated parameter omega must be non-negative!') ncoords = len(coords) for chunk_index in range(0, ncoords, chunk_size): end_index = min(chunk_index + chunk_size, ncoords) coords_chunk = coords[chunk_index:end_index] nu_chunk = _evaluate_nu(mol, coords_chunk, omega=omega) yield chunk_index, end_index, nu_chunk def _compute_exx_block(nu: np.ndarray, e: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: r"""Computes exx and fxx. Args: nu: batch of <i|v(r,r_k)|j> integrals, in format (k,i,j) where r_k is the position of the k-th grid point, i and j label atomic orbitals. e: density matrix in the AO basis at each grid point. Returns: exx and fxx, where fxx_{gb} =\sum_c nu_{gbc} e_{gc} and exx_{g} = -0.5 \sum_b e_{gb} fxx_{gb}. """ fxx = np.einsum('gbc,gc->gb', nu, e) exx = -0.5 * np.einsum('gb,gb->g', e, fxx) return exx, fxx def _compute_jk_block(nu: np.ndarray, fxx: np.ndarray, dm: np.ndarray, ao_value: np.ndarray, weights: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Computes J and K contributions from the given block of nu integrals.""" batch_size = nu.shape[0] vj = numpy_helper.dot(nu.reshape(batch_size, -1), dm.reshape(-1, 1)) vj = np.squeeze(vj) vj_ao = np.einsum('g,gb->gb', vj * weights, ao_value) j = numpy_helper.dot(ao_value.T, vj_ao) w_ao = np.einsum('g,gb->gb', weights, ao_value) k = numpy_helper.dot(fxx.T, w_ao) return j, k @attr.s(auto_attribs=True) class HFDensityResult: r"""Container for results returned by get_hf_density. Note that the kernel used in all integrals is defined by the omega input argument. Attributes: exx: exchange energy density at position r on the grid for the alpha, beta spin channels. Each array is shape (N), where N is the number of grid points. fxx: intermediate for evaluating dexx/dD^{\sigma}_{ab}, where D is the density matrix and \sigma is the spin coordinate. See top-level docstring for details. Each array is shape (N, nao), where nao is the number of atomic orbitals. coulomb: coulomb matrix (restricted calculations) or matrices (unrestricted calculations). Each array is shape (nao, nao). Restricted calculations: \sum_{} D_{cd} (ab|cd) Unrestricted calculations: \sum_{} D^{\sigma}_{cd} (ab|cd) exchange: exchange matrix (restricted calculations) or matrices (unrestricted calculations). Each array is shape (nao, nao). Restricted calculations: \sum_{} D_{cd} (ab|cd) Unrestricted calculations: \sum_{} D^{\sigma}_{cd} (ac|bd). """ exx: Tuple[np.ndarray, np.ndarray] fxx: Optional[Tuple[np.ndarray, np.ndarray]] = None coulomb: Optional[Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]] = None exchange: Optional[Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]] = None def get_hf_density( mol: mole.Mole, dm: Union[Tuple[np.ndarray, np.ndarray], np.ndarray], coords: np.ndarray, omega: float = 0., deriv: int = 0, ao: Optional[np.ndarray] = None, chunk_size: int = 1000, weights: Optional[np.ndarray] = None, ) -> HFDensityResult: r"""Computes the (range-separated) HF energy density. Args: mol: PySCF molecule. dm: The density matrix. For restricted calculations, an array of shape (M, M), where M is the number of atomic orbitals. For unrestricted calculations, either an array of shape (2, M, M) or a tuple of arrays, each of shape (M, M), where dm[0] is the density matrix for the alpha electrons and dm[1] the density matrix for the beta electrons. coords: The coordinates to compute the HF density at, shape (N, 3), where N is the number of grid points. omega: The inverse width of the error function. An omega of 0. means range separation and a 1/|r-R| kernel is used in the nu integrals. Otherwise, the kernel erf(\omega|r-R|)/|r-R|) is used. Must be non-negative. deriv: The derivative order. Only first derivatives (deriv=1) are currently implemented. deriv=0 indicates no derivatives are required. ao: The atomic orbitals evaluated on the grid, shape (N, M). These are computed if not supplied. chunk_size: The number of coordinates to compute the HF density for at once. Reducing this saves memory since we don't have to keep as many Nus (nbasis x nbasis) in memory at once. weights: weight of each grid point, shape (N). If present, the Coulomb and exchange matrices are also computed semi-numerically, otherwise only the HF density and (if deriv=1) its first derivative are computed. Returns: HFDensityResult object with the HF density (exx), the derivative of the HF density with respect to the density (fxx) if deriv is 1, and the Coulomb and exchange matrices if the weights argument is provided. Raises: NotImplementedError: if a Cartesian basis set is used or if deriv is greater than 1. ValueError: if omega or deriv are negative. """ if mol.cart: raise NotImplementedError('Local HF exchange is not implmented for basis ' 'sets with Cartesian functions!') if deriv < 0: raise ValueError(f'`deriv` must be non-negative, got {deriv}') if omega < 0: raise ValueError(f'`omega` must be non-negative, got {omega}') if deriv > 1: raise NotImplementedError('Higher order derivatives are not implemented.') if isinstance(dm, tuple) or dm.ndim == 3: dma, dmb = dm restricted = False else: dma = dm / 2 dmb = dm / 2 restricted = True logger.info(mol, 'Computing contracted density matrix ...') if ao is None: ao = numint.eval_ao(mol, coords, deriv=0) e_a = np.dot(ao, dma) e_b = np.dot(ao, dmb) exxa = [] exxb = [] fxxa = [] fxxb = [] ja = np.zeros_like(dma) jb = np.zeros_like(dmb) ka = np.zeros_like(dma) kb = np.zeros_like(dmb) for start, end, nu in _nu_chunk(mol, coords, omega, chunk_size=chunk_size): logger.info(mol, 'Computing exx %s / %s ...', end, len(e_a)) exxa_block, fxxa_block = _compute_exx_block(nu, e_a[start:end]) exxa.extend(exxa_block) if not restricted: exxb_block, fxxb_block = _compute_exx_block(nu, e_b[start:end]) exxb.extend(exxb_block) if deriv == 1: fxxa.extend(fxxa_block) if not restricted: fxxb.extend(fxxb_block) if weights is not None: ja_block, ka_block = _compute_jk_block(nu, fxxa_block, dma, ao[start:end], weights[start:end]) ja += ja_block ka += ka_block if not restricted: jb_block, kb_block = _compute_jk_block(nu, fxxb_block, dmb, ao[start:end], weights[start:end]) jb += jb_block kb += kb_block exxa = np.asarray(exxa) fxxa = np.asarray(fxxa) if restricted: exxb = exxa fxxb = fxxa else: exxb = np.asarray(exxb) fxxb = np.asarray(fxxb) result = HFDensityResult(exx=(exxa, exxb)) if deriv == 1: result.fxx = (fxxa, fxxb) if weights is not None: if restricted: result.coulomb = 2 * ja result.exchange = 2 * ka else: result.coulomb = (ja, jb) result.exchange = (ka, kb) return result
deepmind-research-master
density_functional_approximation_dm21/density_functional_approximation_dm21/compute_hfx_density.py
#!/usr/bin/env python3 # Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper for exporting a functional and its derivatives to a saved_model.""" from typing import Sequence from absl import app from absl import flags from density_functional_approximation_dm21 import neural_numint _OUT_DIR = flags.DEFINE_string( 'out_dir', None, 'Output directory.', required=True) _BATCH_SIZE = flags.DEFINE_integer( 'batch_size', 1000, 'Number of grid points exported functional will process in a single call.', lower_bound=0) _FUNCTIONAL = flags.DEFINE_enum_class('functional', neural_numint.Functional.DM21, neural_numint.Functional, 'Functional to export.') def export( functional: neural_numint.Functional, export_path: str, batch_dim: int, ) -> None: """Export a functional and its derivatives to a single saved_model. Args: functional: functional to export. export_path: path to saved the model to. batch_dim: number of grid points to process in a single call. """ ni = neural_numint.NeuralNumInt(functional) ni.export_functional_and_derivatives( export_path=export_path, batch_dim=batch_dim) def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') export(_FUNCTIONAL.value, _OUT_DIR.value, _BATCH_SIZE.value) if __name__ == '__main__': app.run(main)
deepmind-research-master
density_functional_approximation_dm21/density_functional_approximation_dm21/export_saved_model.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for neural_numint.""" import os from absl.testing import parameterized import attr from pyscf import dft from pyscf import gto from pyscf import lib import tensorflow.compat.v1 as tf from density_functional_approximation_dm21 import neural_numint class NeuralNumintTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() lib.param.TMPDIR = None lib.num_threads(1) # Golden values were obtained using the version of PySCF (including integral # generation) reported in the DM21 paper. @parameterized.parameters( { 'functional': neural_numint.Functional.DM21, 'expected_energy': -126.898521 }, { 'functional': neural_numint.Functional.DM21m, 'expected_energy': -126.907332 }, { 'functional': neural_numint.Functional.DM21mc, 'expected_energy': -126.922127 }, { 'functional': neural_numint.Functional.DM21mu, 'expected_energy': -126.898178 }, ) def test_rks(self, functional, expected_energy): ni = neural_numint.NeuralNumInt(functional) mol = gto.Mole() mol.atom = [['Ne', 0., 0., 0.]] mol.basis = 'sto-3g' mol.build() mf = dft.RKS(mol) mf.small_rho_cutoff = 1.e-20 mf._numint = ni mf.run() self.assertAlmostEqual(mf.e_tot, expected_energy, delta=2.e-4) @parameterized.parameters( { 'functional': neural_numint.Functional.DM21, 'expected_energy': -37.34184876 }, { 'functional': neural_numint.Functional.DM21m, 'expected_energy': -37.3377766 }, { 'functional': neural_numint.Functional.DM21mc, 'expected_energy': -37.33489173 }, { 'functional': neural_numint.Functional.DM21mu, 'expected_energy': -37.34015315 }, ) def test_uks(self, functional, expected_energy): ni = neural_numint.NeuralNumInt(functional) mol = gto.Mole() mol.atom = [['C', 0., 0., 0.]] mol.spin = 2 mol.basis = 'sto-3g' mol.build() mf = dft.UKS(mol) mf.small_rho_cutoff = 1.e-20 mf._numint = ni mf.run() self.assertAlmostEqual(mf.e_tot, expected_energy, delta=2.e-4) def test_exported_model(self): mol = gto.Mole() mol.atom = [['C', 0., 0., 0.]] mol.spin = 2 mol.basis = 'sto-3g' mol.build() ni = neural_numint.NeuralNumInt(neural_numint.Functional.DM21) mf = dft.UKS(mol) mf.small_rho_cutoff = 1.e-20 mf._numint = ni mf.run() dms = mf.make_rdm1() ao = ni.eval_ao(mol, mf.grids.coords, deriv=2) rho_a = ni.eval_rho(mol, ao, dms[0], xctype='MGGA') rho_b = ni.eval_rho(mol, ao, dms[1], xctype='MGGA') inputs, _ = ni.construct_functional_inputs( mol=mol, dms=dms, spin=1, coords=mf.grids.coords, weights=mf.grids.weights, rho=(rho_a, rho_b), ao=ao[0]) feed_dict = dict( zip( attr.asdict(ni._placeholders).values(), attr.asdict(inputs).values(), )) with ni._graph.as_default(): outputs = ni._session.run( { 'vxc': ni._vxc, 'vrho': ni._vrho, 'vsigma': ni._vsigma, 'vtau': ni._vtau, 'vhf': ni._vhf }, feed_dict=feed_dict) export_path = os.path.join(self.get_temp_dir(), 'export') ni.export_functional_and_derivatives(export_path) model = tf.saved_model.load_v2(export_path) tensor_inputs = { k: tf.constant(v, dtype=tf.float32) for k, v in attr.asdict(inputs).items() } exported_output_tensors = model.signatures['default'](**tensor_inputs) with tf.Session() as session: session.run(tf.global_variables_initializer()) exported_outputs = session.run(exported_output_tensors) self.assertAllClose(outputs, exported_outputs, atol=5.e-5, rtol=1.e-5) if __name__ == '__main__': tf.test.main()
deepmind-research-master
density_functional_approximation_dm21/density_functional_approximation_dm21/neural_numint_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An interface to DM21 family of exchange-correlation functionals for PySCF.""" from density_functional_approximation_dm21.neural_numint import Functional from density_functional_approximation_dm21.neural_numint import NeuralNumInt
deepmind-research-master
density_functional_approximation_dm21/density_functional_approximation_dm21/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An interface to DM21 family of exchange-correlation functionals for PySCF.""" import enum import os from typing import Generator, Optional, Sequence, Tuple, Union import attr import numpy as np from pyscf import dft from pyscf import gto from pyscf.dft import numint import tensorflow.compat.v1 as tf import tensorflow_hub as hub from density_functional_approximation_dm21 import compute_hfx_density tf.disable_v2_behavior() # TODO(b/196260242): avoid depending upon private function _dot_ao_ao = numint._dot_ao_ao # pylint: disable=protected-access @enum.unique class Functional(enum.Enum): """Enum for exchange-correlation functionals in the DM21 family. Attributes: DM21: trained on molecules dataset, and fractional charge, and fractional spin constraints. DM21m: trained on molecules dataset. DM21mc: trained on molecules dataset, and fractional charge constraints. DM21mu: trained on molecules dataset, and electron gas constraints. """ # Break pylint's preferred naming pattern to match the functional names used # in the paper. # pylint: disable=invalid-name DM21 = enum.auto() DM21m = enum.auto() DM21mc = enum.auto() DM21mu = enum.auto() # pylint: enable=invalid-name # We use attr.s instead of here instead of dataclasses.dataclass as # dataclasses.asdict returns a deepcopy of the attributes. This is wasteful in # memory if they are large and breaks (as in the case of tf.Tensors) if they are # not serializable. attr.asdict does not perform this copy and so works with # both np.ndarrays and tf.Tensors. @attr.s(auto_attribs=True) class FunctionalInputs: r""""Inputs required for DM21 functionals. Depending upon the context, this is either a set of numpy arrays (feature construction) or TF tensors (constructing placeholders/running functionals). Attributes: rho_a: Density information for the alpha electrons. PySCF for meta-GGAs supplies a single array for the total density (restricted calculations) and a pair of arrays, one for each spin channel (unrestricted calculations). Each array/tensor is of shape (6, N) and contains the density and density derivatives, where: rho(0, :) - density at each grid point rho(1, :) - norm of the derivative of the density at each grid point along x rho(2, :) - norm of the derivative of the density at each grid point along y rho(3, :) - norm of the derivative of the density at each grid point along z rho(4, :) - \nabla^2 \rho [not used] rho(5, :) - tau (1/2 (\nabla \rho)^2) at each grid point. See pyscf.dft.numint.eval_rho for more details. We require separate inputs for both alpha- and beta-spin densities, even in restricted calculations (where rho_a = rho_b = rho/2, where rho is the total density). rho_b: as for rho_a for the beta electrons. hfx_a: local Hartree-Fock energy density at each grid point for the alpha- spin density for each value of omega. Shape [N, len(omega_values)]. See compute_hfx_density for more details. hfx_b: as for hfx_a for the beta-spin density. grid_coords: grid coordinates at which to evaluate the density. Shape (N, 3), where N is the number of grid points. Note that this is currently unused by the functional, but is still a required input. grid_weights: weight of each grid point. Shape (N). """ rho_a: Union[tf.Tensor, np.ndarray] rho_b: Union[tf.Tensor, np.ndarray] hfx_a: Union[tf.Tensor, np.ndarray] hfx_b: Union[tf.Tensor, np.ndarray] grid_coords: Union[tf.Tensor, np.ndarray] grid_weights: Union[tf.Tensor, np.ndarray] @attr.s(auto_attribs=True) class _GridState: """Internal state required for the numerical grid. Attributes: coords: coordinates of the grid. Shape (N, 3), where N is the number of grid points. weight: weight associated with each grid point. Shape (N). mask: mask indicating whether a shell is zero at a grid point. Shape (N, nbas) where nbas is the number of shells in the basis set. See pyscf.dft.gen_grids.make_mask. ao: atomic orbitals evaluated on the grid. Shape (N, nao), where nao is the number of atomic orbitals, or shape (:, N, nao), where the 0-th element contains the ao values, the next three elements contain the first derivatives, and so on. """ coords: np.ndarray weight: np.ndarray mask: np.ndarray ao: np.ndarray @attr.s(auto_attribs=True) class _SystemState: """Internal state required for system of interest. Attributes: mol: PySCF molecule dms: density matrix or matrices (unrestricted calculations only). Restricted calculations: shape (nao, nao), where nao is the number of atomic orbitals. Unrestricted calculations: shape (2, nao, nao) or a sequence (length 2) of arrays of shape (nao, nao), and dms[0] and dms[1] are the density matrices of the alpha and beta electrons respectively. """ mol: gto.Mole dms: Union[np.ndarray, Sequence[np.ndarray]] def _get_number_of_density_matrices(dms): """Returns the number of density matrices in dms.""" # See pyscf.numint.NumInt._gen_rho_evaluator if isinstance(dms, np.ndarray) and dms.ndim == 2: return 1 return len(dms) class NeuralNumInt(numint.NumInt): """A wrapper around pyscf.dft.numint.NumInt for the DM21 functionals. In order to supply the local Hartree-Fock features required for the DM21 functionals, we lightly wrap the NumInt class. The actual evaluation of the exchange-correlation functional is performed in NeuralNumInt.eval_xc. Usage: mf = dft.RKS(...) # dft.ROKS and dft.UKS are also supported. # Specify the functional by monkey-patching mf._numint rather than using # mf._xc or mf._define_xc_. mf._numint = NeuralNumInt(Functional.DM21) mf.kernel() """ def __init__(self, functional: Functional, *, checkpoint_path: Optional[str] = None): """Constructs a NeuralNumInt object. Args: functional: member of Functional enum giving the name of the functional. checkpoint_path: Optional path to specify the directory containing the checkpoints of the DM21 family of functionals. If not specified, attempt to find the checkpoints using a path relative to the source code. """ self._functional_name = functional.name if checkpoint_path: self._model_path = os.path.join(checkpoint_path, self._functional_name) else: self._model_path = os.path.join( os.path.dirname(__file__), 'checkpoints', self._functional_name) # All DM21 functionals use local Hartree-Fock features with a non-range # separated 1/r kernel and a range-seperated kernel with \omega = 0.4. # Note an omega of 0.0 is interpreted by PySCF and libcint to indicate no # range-separation. self._omega_values = [0.0, 0.4] self._graph = tf.Graph() with self._graph.as_default(): self._build_graph() self._session = tf.Session() self._session.run(tf.global_variables_initializer()) self._grid_state = None self._system_state = None self._vmat_hf = None super().__init__() def _build_graph(self, batch_dim: Optional[int] = None): """Builds the TensorFlow graph for evaluating the functional. Args: batch_dim: the batch dimension of the grid to use in the model. Default: None (determine at runtime). This should only be set if building a model in order to export and ahead-of-time compile it into a standalone library. """ self._functional = hub.Module(spec=self._model_path) grid_coords = tf.placeholder( tf.float32, shape=[batch_dim, 3], name='grid_coords') grid_weights = tf.placeholder( tf.float32, shape=[batch_dim], name='grid_weights') # Density information. rho_a = tf.placeholder(tf.float32, shape=[6, batch_dim], name='rho_a') rho_b = tf.placeholder(tf.float32, shape=[6, batch_dim], name='rho_b') # Split into corresponding terms. rho_only_a, grad_a_x, grad_a_y, grad_a_z, _, tau_a = tf.unstack( rho_a, axis=0) rho_only_b, grad_b_x, grad_b_y, grad_b_z, _, tau_b = tf.unstack( rho_b, axis=0) # Evaluate |\del \rho|^2 for each spin density and for the total density. norm_grad_a = (grad_a_x**2 + grad_a_y**2 + grad_a_z**2) norm_grad_b = (grad_b_x**2 + grad_b_y**2 + grad_b_z**2) grad_x = grad_a_x + grad_b_x grad_y = grad_a_y + grad_b_y grad_z = grad_a_z + grad_b_z norm_grad = (grad_x**2 + grad_y**2 + grad_z**2) # The local Hartree-Fock energy densities at each grid point for the alpha- # and beta-spin densities for each value of omega. # Note an omega of 0 indicates no screening of the Coulomb potential. hfxa = tf.placeholder( tf.float32, shape=[batch_dim, len(self._omega_values)], name='hfxa') hfxb = tf.placeholder( tf.float32, shape=[batch_dim, len(self._omega_values)], name='hfxb') # Make all features 2D arrays on input for ease of handling inside the # functional. features = { 'grid_coords': grid_coords, 'grid_weights': tf.expand_dims(grid_weights, 1), 'rho_a': tf.expand_dims(rho_only_a, 1), 'rho_b': tf.expand_dims(rho_only_b, 1), 'tau_a': tf.expand_dims(tau_a, 1), 'tau_b': tf.expand_dims(tau_b, 1), 'norm_grad_rho_a': tf.expand_dims(norm_grad_a, 1), 'norm_grad_rho_b': tf.expand_dims(norm_grad_b, 1), 'norm_grad_rho': tf.expand_dims(norm_grad, 1), 'hfxa': hfxa, 'hfxb': hfxb, } tensor_dict = {f'tensor_dict${k}': v for k, v in features.items()} predictions = self._functional(tensor_dict, as_dict=True) local_xc = predictions['grid_contribution'] weighted_local_xc = local_xc * grid_weights unweighted_xc = tf.reduce_sum(local_xc, axis=0) xc = tf.reduce_sum(weighted_local_xc, axis=0) # The potential is the local exchange correlation divided by the # total density. Add a small constant to deal with zero density. self._vxc = local_xc / (rho_only_a + rho_only_b + 1E-12) # The derivatives of the exchange-correlation (XC) energy with respect to # input features. PySCF weights the (standard) derivatives by the grid # weights, so we need to compute this with respect to the unweighted sum # over grid points. self._vrho = tf.gradients( unweighted_xc, [features['rho_a'], features['rho_b']], name='GRAD_RHO', unconnected_gradients=tf.UnconnectedGradients.ZERO) self._vsigma = tf.gradients( unweighted_xc, [ features['norm_grad_rho_a'], features['norm_grad_rho_b'], features['norm_grad_rho'] ], name='GRAD_SIGMA', unconnected_gradients=tf.UnconnectedGradients.ZERO) self._vtau = tf.gradients( unweighted_xc, [features['tau_a'], features['tau_b']], name='GRAD_TAU', unconnected_gradients=tf.UnconnectedGradients.ZERO) # Standard meta-GGAs do not have a dependency on local HF, so we need to # compute the contribution to the Fock matrix ourselves. Just use the # weighted XC energy to avoid having to weight this later. self._vhf = tf.gradients( xc, [features['hfxa'], features['hfxb']], name='GRAD_HFX', unconnected_gradients=tf.UnconnectedGradients.ZERO) self._placeholders = FunctionalInputs( rho_a=rho_a, rho_b=rho_b, hfx_a=hfxa, hfx_b=hfxb, grid_coords=grid_coords, grid_weights=grid_weights) outputs = { 'vxc': self._vxc, 'vrho': tf.stack(self._vrho), 'vsigma': tf.stack(self._vsigma), 'vtau': tf.stack(self._vtau), 'vhf': tf.stack(self._vhf), } # Create the signature for TF-Hub, including both the energy and functional # derivatives. # This is a no-op if _build_graph is called outside of # hub.create_module_spec. hub.add_signature( inputs=attr.asdict(self._placeholders), outputs=outputs) def export_functional_and_derivatives( self, export_path: str, batch_dim: Optional[int] = None, ): """Exports the TensorFlow graph containing the functional and derivatives. The hub modules supplied contain the TensorFlow operations for the evaluation of the exchange-correlation energy. Evaluation of the functional derivatives, required for a self-consistent calculation, are added in _build_graph. The module created by export_functional_and_derivatives contains the evaluation of the functional and the functional derivatives. This is much simpler to use from languages other than Python, e.g. using the C or C++ TensorFlow API, or using tfcompile to create a standalone C++ library. Args: export_path: path to write the Hub model to. The exported model can be loaded using either TF-Hub or SavedModel APIs. batch_dim: the batch dimension of the grid to use in the model. Default: None (determine at runtime). This should only be set if the exported model is to be ahead-of-time compiled into a standalone library. """ with tf.Graph().as_default(): spec = hub.create_module_spec( self._build_graph, tags_and_args=[(set(), {'batch_dim': batch_dim})]) functional_and_derivatives = hub.Module(spec=spec) with tf.Session() as session: session.run(tf.global_variables_initializer()) functional_and_derivatives.export(export_path, session) # DM21* functionals include the hybrid term directly, so set the # range-separated and hybrid parameters expected by PySCF to 0 so PySCF # doesn't also add these contributions in separately. def rsh_coeff(self, *args): """Returns the range separated parameters, omega, alpha, beta.""" return [0.0, 0.0, 0.0] def hybrid_coeff(self, *args, **kwargs): """Returns the fraction of Hartree-Fock exchange to include.""" return 0.0 def _xc_type(self, *args, **kwargs): return 'MGGA' def nr_rks(self, mol: gto.Mole, grids: dft.Grids, xc_code: str, dms: Union[np.ndarray, Sequence[np.ndarray]], relativity: int = 0, hermi: int = 0, max_memory: float = 20000, verbose=None) -> Tuple[float, float, np.ndarray]: """Calculates RKS XC functional and potential matrix on a given grid. Args: mol: PySCF molecule. grids: grid on which to evaluate the functional. xc_code: XC code. Unused. NeuralNumInt hard codes the XC functional based upon the functional argument given to the constructor. dms: the density matrix or sequence of density matrices. Multiple density matrices are not currently supported. Shape (nao, nao), where nao is the number of atomic orbitals. relativity: Unused. (pyscf.numint.NumInt.nr_rks does not currently use this argument.) hermi: 0 if the density matrix is Hermitian, 1 if the density matrix is non-Hermitian. max_memory: the maximum cache to use, in MB. verbose: verbosity level. Unused. (PySCF currently does not handle the verbosity level passed in here.) Returns: nelec, excsum, vmat, where nelec is the number of electrons obtained by numerical integration of the density matrix. excsum is the functional's XC energy. vmat is the functional's XC potential matrix, shape (nao, nao). Raises: NotImplementedError: if multiple density matrices are supplied. """ # Wrap nr_rks so we can store internal variables required to evaluate the # contribution to the XC potential from local Hartree-Fock features. # See pyscf.dft.numint.nr_rks for more details. ndms = _get_number_of_density_matrices(dms) if ndms > 1: raise NotImplementedError( 'NeuralNumInt does not support multiple density matrices. ' 'Only ground state DFT calculations are currently implemented.') nao = mol.nao_nr() self._vmat_hf = np.zeros((nao, nao)) self._system_state = _SystemState(mol=mol, dms=dms) nelec, excsum, vmat = super().nr_rks( mol=mol, grids=grids, xc_code=xc_code, dms=dms, relativity=relativity, hermi=hermi, max_memory=max_memory, verbose=verbose) vmat += self._vmat_hf + self._vmat_hf.T # Clear internal state to prevent accidental re-use. self._system_state = None self._grid_state = None return nelec, excsum, vmat def nr_uks(self, mol: gto.Mole, grids: dft.Grids, xc_code: str, dms: Union[Sequence[np.ndarray], Sequence[Sequence[np.ndarray]]], relativity: int = 0, hermi: int = 0, max_memory: float = 20000, verbose=None) -> Tuple[np.ndarray, float, np.ndarray]: """Calculates UKS XC functional and potential matrix on a given grid. Args: mol: PySCF molecule. grids: grid on which to evaluate the functional. xc_code: XC code. Unused. NeuralNumInt hard codes the XC functional based upon the functional argument given to the constructor. dms: the density matrix or sequence of density matrices for each spin channel. Multiple density matrices for each spin channel are not currently supported. Each density matrix is shape (nao, nao), where nao is the number of atomic orbitals. relativity: Unused. (pyscf.dft.numint.NumInt.nr_rks does not currently use this argument.) hermi: 0 if the density matrix is Hermitian, 1 if the density matrix is non-Hermitian. max_memory: the maximum cache to use, in MB. verbose: verbosity level. Unused. (PySCF currently does not handle the verbosity level passed in here.) Returns: nelec, excsum, vmat, where nelec is the number of alpha, beta electrons obtained by numerical integration of the density matrix as an array of size 2. excsum is the functional's XC energy. vmat is the functional's XC potential matrix, shape (2, nao, nao), where vmat[0] and vmat[1] are the potential matrices for the alpha and beta spin channels respectively. Raises: NotImplementedError: if multiple density matrices for each spin channel are supplied. """ # Wrap nr_uks so we can store internal variables required to evaluate the # contribution to the XC potential from local Hartree-Fock features. # See pyscf.dft.numint.nr_uks for more details. if isinstance(dms, np.ndarray) and dms.ndim == 2: # RHF DM ndms = _get_number_of_density_matrices(dms) else: ndms = _get_number_of_density_matrices(dms[0]) if ndms > 1: raise NotImplementedError( 'NeuralNumInt does not support multiple density matrices. ' 'Only ground state DFT calculations are currently implemented.') nao = mol.nao_nr() self._vmat_hf = np.zeros((2, nao, nao)) self._system_state = _SystemState(mol=mol, dms=dms) nelec, excsum, vmat = super().nr_uks( mol=mol, grids=grids, xc_code=xc_code, dms=dms, relativity=relativity, hermi=hermi, max_memory=max_memory, verbose=verbose) vmat[0] += self._vmat_hf[0] + self._vmat_hf[0].T vmat[1] += self._vmat_hf[1] + self._vmat_hf[1].T # Clear internal state to prevent accidental re-use. self._system_state = None self._grid_state = None self._vmat_hf = None return nelec, excsum, vmat def block_loop( self, mol: gto.Mole, grids: dft.Grids, nao: Optional[int] = None, deriv: int = 0, max_memory: float = 2000, non0tab: Optional[np.ndarray] = None, blksize: Optional[int] = None, buf: Optional[np.ndarray] = None ) -> Generator[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray], None, None]: """Loops over the grid by blocks. See pyscf.dft.numint.NumInt.block_loop. Args: mol: PySCF molecule. grids: grid on which to evaluate the functional. nao: number of basis functions. If None, obtained from mol. deriv: unused. The first functional derivatives are always computed. max_memory: the maximum cache to use for the information on the grid, in MB. Determines the size of each block if blksize is None. non0tab: mask determining if a shell in the basis set is zero at a grid point. Shape (N, nbas), where N is the number of grid points and nbas the number of shells in the basis set. Obtained from grids if not supplied. blksize: size of each block. Calculated from max_memory if None. buf: buffer to use for storing ao. If None, a new array for ao is created for each block. Yields: ao, mask, weight, coords: information on a block of the grid containing N' points, where ao: atomic orbitals evaluated on the grid. Shape (N', nao), where nao is the number of atomic orbitals. mask: mask indicating whether a shell in the basis set is zero at a grid point. Shape (N', nbas). weight: weight associated with each grid point. Shape (N'). coords: coordinates of the grid. Shape (N', 3). """ # Wrap block_loop so we can store internal variables required to evaluate # the contribution to the XC potential from local Hartree-Fock features. for ao, mask, weight, coords in super().block_loop( mol=mol, grids=grids, nao=nao, deriv=deriv, max_memory=max_memory, non0tab=non0tab, blksize=blksize, buf=buf): # Cache the curent block so we can access it in eval_xc. self._grid_state = _GridState( ao=ao, mask=mask, weight=weight, coords=coords) yield ao, mask, weight, coords def construct_functional_inputs( self, mol: gto.Mole, dms: Union[np.ndarray, Sequence[np.ndarray]], spin: int, coords: np.ndarray, weights: np.ndarray, rho: Union[np.ndarray, Tuple[np.ndarray, np.ndarray]], ao: Optional[np.ndarray] = None, ) -> Tuple[FunctionalInputs, Tuple[np.ndarray, np.ndarray]]: """Constructs the input features required for the functional. Args: mol: PySCF molecule. dms: density matrix of shape (nao, nao) (restricted calculations) or of shape (2, nao, nao) (unrestricted calculations) or tuple of density matrices for each spin channel, each of shape (nao, nao) (unrestricted calculations). spin: 0 for a spin-unpolarized (restricted Kohn-Sham) calculation, and spin-polarized (unrestricted) otherwise. coords: coordinates of the grid. Shape (N, 3), where N is the number of grid points. weights: weight associated with each grid point. Shape (N). rho: density and density derivatives at each grid point. Single array containing the total density for restricted calculations, tuple of arrays for each spin channel for unrestricted calculations. Each array has shape (6, N). See pyscf.dft.numint.eval_rho and comments in FunctionalInputs for more details. ao: The atomic orbitals evaluated on the grid, shape (N, nao). Computed if not supplied. Returns: inputs, fxx, where inputs: FunctionalInputs object containing the inputs (as np.ndarrays) for the functional. fxx: intermediates, shape (N, nao) for the alpha- and beta-spin channels, required for computing the first derivative of the local Hartree-Fock density with respect to the density matrices. See compute_hfx_density for more details. """ if spin == 0: # RKS rhoa = rho / 2 rhob = rho / 2 else: # UKS rhoa, rhob = rho # Local HF features. exxa, exxb = [], [] fxxa, fxxb = [], [] for omega in sorted(self._omega_values): hfx_results = compute_hfx_density.get_hf_density( mol, dms, coords=coords, omega=omega, deriv=1, ao=ao) exxa.append(hfx_results.exx[0]) exxb.append(hfx_results.exx[1]) fxxa.append(hfx_results.fxx[0]) fxxb.append(hfx_results.fxx[1]) exxa = np.stack(exxa, axis=-1) fxxa = np.stack(fxxa, axis=-1) if spin == 0: exx = (exxa, exxa) fxx = (fxxa, fxxa) else: exxb = np.stack(exxb, axis=-1) fxxb = np.stack(fxxb, axis=-1) exx = (exxa, exxb) fxx = (fxxa, fxxb) return FunctionalInputs( rho_a=rhoa, rho_b=rhob, hfx_a=exx[0], hfx_b=exx[1], grid_coords=coords, grid_weights=weights), fxx def eval_xc( self, xc_code: str, rho: Union[np.ndarray, Tuple[np.ndarray, np.ndarray]], spin: int = 0, relativity: int = 0, deriv: int = 1, omega: Optional[float] = None, verbose=None ) -> Tuple[np.ndarray, Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray], None, None]: """Evaluates the XC energy and functional derivatives. See pyscf.dft.libxc.eval_xc for more details on the interface. Note: this also sets self._vmat_extra, which contains the contribution the the potential matrix from the local Hartree-Fock terms in the functional. Args: xc_code: unused. rho: density and density derivatives at each grid point. Single array containing the total density for restricted calculations, tuple of arrays for each spin channel for unrestricted calculations. Each array has shape (6, N), where N is the number of grid points. See pyscf.dft.numint.eval_rho and comments in FunctionalInputs for more details. spin: 0 for a spin-unpolarized (restricted Kohn-Sham) calculation, and spin-polarized (unrestricted) otherwise. relativity: Not supported. deriv: unused. The first functional derivatives are always computed. omega: RSH parameter. Not supported. verbose: unused. Returns: exc, vxc, fxc, kxc, where: exc is the exchange-correlation potential matrix evaluated at each grid point, shape (N). vxc is (vrho, vgamma, vlapl, vtau), the first-order functional derivatives evaluated at each grid point, each shape (N). fxc is set to None. (The second-order functional derivatives are not computed.) kxc is set to None. (The third-order functional derivatives are not computed.) """ del xc_code, verbose, deriv # unused if relativity != 0: raise NotImplementedError('Relatistic calculations are not implemented ' 'for DM21 functionals.') if omega is not None: raise NotImplementedError('User-specifed range seperation parameters are ' 'not implemented for DM21 functionals.') # Retrieve cached state. ao = self._grid_state.ao if ao.ndim == 3: # Just need the AO values, not the gradients. ao = ao[0] if self._grid_state.weight is None: weights = np.array([1.]) else: weights = self._grid_state.weight mask = self._grid_state.mask inputs, (fxxa, fxxb) = self.construct_functional_inputs( mol=self._system_state.mol, dms=self._system_state.dms, spin=spin, rho=rho, weights=weights, coords=self._grid_state.coords, ao=ao) with self._graph.as_default(): feed_dict = dict( zip( attr.asdict(self._placeholders).values(), attr.asdict(inputs).values(), )) tensor_list = [ self._vxc, self._vrho, self._vsigma, self._vtau, self._vhf, ] exc, vrho, vsigma, vtau, vhf = ( self._session.run(tensor_list, feed_dict=feed_dict)) mol = self._system_state.mol shls_slice = (0, mol.nbas) ao_loc_nr = mol.ao_loc_nr() # Note: tf.gradients returns a list of gradients. # vrho, vsigma, vtau are derivatives of objects that had # tf.expand_dims(..., 1) applied. The [:, 0] indexing undoes this by # selecting the 0-th (and only) element from the second dimension. if spin == 0: vxc_0 = (vrho[0][:, 0] + vrho[1][:, 0]) / 2. # pyscf expects derivatives with respect to: # grad_rho . grad_rho. # The functional uses the first and last as inputs, but then has # grad_(rho_a + rho_b) . grad_(rho_a + rho_b) # as input. The following computes the correct total derivatives. vxc_1 = (vsigma[0][:, 0] / 4. + vsigma[1][:, 0] / 4. + vsigma[2][:, 0]) vxc_3 = (vtau[0][:, 0] + vtau[1][:, 0]) / 2. vxc_2 = np.zeros_like(vxc_3) vhfs = (vhf[0] + vhf[1]) / 2. # Local Hartree-Fock terms for i in range(len(self._omega_values)): # Factor of 1/2 is to account for adding vmat_hf + vmat_hf.T to vmat, # which we do to match existing PySCF style. Unlike other terms, vmat_hf # is already symmetric though. aow = np.einsum('pi,p->pi', fxxa[:, :, i], -0.5 * vhfs[:, i]) self._vmat_hf += _dot_ao_ao(mol, ao, aow, mask, shls_slice, ao_loc_nr) else: vxc_0 = np.stack([vrho[0][:, 0], vrho[1][:, 0]], axis=1) # pyscf expects derivatives with respect to: # grad_rho_a . grad_rho_a # grad_rho_a . grad_rho_b # grad_rho_b . grad_rho_b # The functional uses the first and last as inputs, but then has # grad_(rho_a + rho_b) . grad_(rho_a + rho_b) # as input. The following computes the correct total derivatives. vxc_1 = np.stack([ vsigma[0][:, 0] + vsigma[2][:, 0], 2. * vsigma[2][:, 0], vsigma[1][:, 0] + vsigma[2][:, 0] ], axis=1) vxc_3 = np.stack([vtau[0][:, 0], vtau[1][:, 0]], axis=1) vxc_2 = np.zeros_like(vxc_3) vhfs = np.stack([vhf[0], vhf[1]], axis=2) for i in range(len(self._omega_values)): # Factors of 1/2 are due to the same reason as in the spin=0 case. aow = np.einsum('pi,p->pi', fxxa[:, :, i], -0.5 * vhfs[:, i, 0]) self._vmat_hf[0] += _dot_ao_ao(mol, ao, aow, mask, shls_slice, ao_loc_nr) aow = np.einsum('pi,p->pi', fxxb[:, :, i], -0.5 * vhfs[:, i, 1]) self._vmat_hf[1] += _dot_ao_ao(mol, ao, aow, mask, shls_slice, ao_loc_nr) fxc = None # Second derivative not implemented kxc = None # Second derivative not implemented # PySCF C routines expect float64. exc = exc.astype(np.float64) vxc = tuple(v.astype(np.float64) for v in (vxc_0, vxc_1, vxc_2, vxc_3)) return exc, vxc, fxc, kxc
deepmind-research-master
density_functional_approximation_dm21/density_functional_approximation_dm21/neural_numint.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for compute_hfx_density.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np from pyscf import dft from pyscf import gto from pyscf import lib from pyscf import scf import scipy from density_functional_approximation_dm21 import compute_hfx_density class ComputeHfxDensityTest(parameterized.TestCase): def setUp(self): super().setUp() lib.param.TMPDIR = None lib.num_threads(1) @parameterized.named_parameters( {'testcase_name': 'local_hf', 'omega': 0.}, {'testcase_name': 'range_separated_local_hf_0.5', 'omega': 0.5}, {'testcase_name': 'range_separated_local_hf_1.0', 'omega': 1.0}, {'testcase_name': 'range_separated_local_hf_2.0', 'omega': 2.0}, ) def test_closed_shell(self, omega): mol = gto.M(atom='He 0. 0. 0.', basis='3-21g') solver = dft.RKS(mol) solver.grids.level = 2 solver.grids.build() solver.kernel() dm = solver.make_rdm1() with mol.with_range_coulomb(omega=omega): target_j, target_k = scf.hf.get_jk(mol, dm) target_hf = -0.25 * np.einsum('ij,ji', dm, target_k) target_coulomb = np.einsum('ij,ji', dm, target_j) coords = solver.grids.coords weights = solver.grids.weights results = compute_hfx_density.get_hf_density( mol, dm, coords, omega=omega, weights=weights) coulomb = np.einsum('ij,ji', dm, results.coulomb) hf = -0.25 * np.einsum('ij,ji', dm, results.exchange) predicted_hf = np.sum((results.exx[0] + results.exx[1]) * weights) with self.subTest('test_hf_density'): self.assertAlmostEqual(target_hf, predicted_hf) with self.subTest('test_get_jk'): np.testing.assert_allclose(results.coulomb, target_j) np.testing.assert_allclose(results.exchange, target_k) self.assertAlmostEqual(coulomb, target_coulomb) self.assertAlmostEqual(hf, target_hf) @parameterized.named_parameters( {'testcase_name': 'local_hf', 'omega': 0.}, {'testcase_name': 'range_separated_local_hf_0.5', 'omega': 0.5}, {'testcase_name': 'range_separated_local_hf_1.0', 'omega': 1.0}, {'testcase_name': 'range_separated_local_hf_2.0', 'omega': 2.0}, ) def test_hf_density_on_open_shell(self, omega): mol = gto.M(atom='He 0. 0. 0.', basis='3-21g', charge=1, spin=1) solver = dft.UKS(mol) solver.grids.level = 2 solver.grids.build() solver.kernel() dm = solver.make_rdm1() with mol.with_range_coulomb(omega=omega): target_j, target_k = scf.hf.get_jk(mol, dm) target_hf = -0.5 * ( np.einsum('ij,ji', dm[0], target_k[0]) + np.einsum('ij,ji', dm[1], target_k[1])) target_coulomb = np.einsum('ij,ji', dm[0], target_j[0]) + np.einsum( 'ij,ji', dm[1], target_j[1]) coords = solver.grids.coords weights = solver.grids.weights results = compute_hfx_density.get_hf_density( mol, dm, coords, omega=omega, weights=weights) predicted_hf = np.sum((results.exx[0] + results.exx[1]) * weights) coulomb = ( np.einsum('ij,ji', dm[0], results.coulomb[0]) + np.einsum('ij,ji', dm[1], results.coulomb[1])) hf = -0.5 * ( np.einsum('ij,ji', dm[0], results.exchange[0]) + np.einsum('ij,ji', dm[1], results.exchange[1])) with self.subTest('test_hf_density'): self.assertAlmostEqual(target_hf, predicted_hf, places=3) with self.subTest('test_get_jk'): np.testing.assert_allclose(results.coulomb[0], target_j[0]) np.testing.assert_allclose(results.coulomb[1], target_j[1]) np.testing.assert_allclose(results.exchange[0], target_k[0]) np.testing.assert_allclose(results.exchange[1], target_k[1]) self.assertAlmostEqual(coulomb, target_coulomb) self.assertAlmostEqual(hf, target_hf) def _nu_test_systems(): systems = [ { 'atom': 'N 0 0 0; N 0 0 2.4', 'charge': 0, 'spin': 0, 'basis': 'cc-pVDZ', 'num_grids': -1 }, { 'atom': 'N 0 0 0; N 0 0 2.4', 'charge': 0, 'spin': 0, 'basis': 'cc-pVDZ', 'num_grids': 1 }, { 'atom': 'N 0 0 0; N 0 0 2.4', 'charge': 0, 'spin': 0, 'basis': 'cc-pVDZ', 'num_grids': 2 }, { 'atom': 'N 0 0 0; N 0 0 2.4', 'charge': 0, 'spin': 0, 'basis': 'cc-pVDZ', 'num_grids': 10 }, { 'atom': 'N 0 0 0; N 0 0 2.4', 'charge': 0, 'spin': 0, 'basis': 'cc-pVDZ', 'num_grids': 32 }, { 'atom': 'N 0 0 0; N 0 0 2.4', 'charge': 0, 'spin': 0, 'basis': 'cc-pVDZ', 'num_grids': 33 }, { 'atom': 'Li 0 0 0', 'charge': 0, 'spin': 1, 'basis': 'cc-pVTZ', 'num_grids': -1 }, { 'atom': 'H 0 0 0', 'charge': 0, 'spin': 1, 'basis': 'cc-pVQZ', 'num_grids': -1 }, ] system_names = ['N2', 'N2_1', 'N2_2', 'N2_10', 'N2_32', 'N2_33', 'Li', 'H'] for name, system in zip(system_names, systems): yield {'testcase_name': f'{name}_hermitian', 'hermi': 0, **system} yield {'testcase_name': f'{name}_non_hermitian', 'hermi': 1, **system} class NuTest(parameterized.TestCase): def setUp(self): super(NuTest, self).setUp() lib.param.TMPDIR = None lib.num_threads(1) @parameterized.named_parameters(_nu_test_systems()) def test_nu_integrals(self, atom, charge, spin, basis, num_grids, hermi): mol = gto.M(atom=atom, charge=charge, spin=spin, basis=basis) mf = dft.UKS(mol) mf.grids.build() if num_grids == -1: test_coords = mf.grids.coords else: test_coords = mf.grids.coords[0:num_grids] nu_slow = compute_hfx_density._evaluate_nu_slow( mol, test_coords, omega=0.0, hermi=hermi) nu_fast = compute_hfx_density._evaluate_nu( mol, test_coords, omega=0.0, hermi=hermi) np.testing.assert_allclose(nu_slow, nu_fast, atol=1E-13) def test_range_separated_nu(self): mol = gto.M(atom='He 0 0 0', basis='cc-pVDZ') r0 = np.array([[0.1, 0.2, 1.]]) omega = 1. result = np.squeeze(compute_hfx_density._evaluate_nu(mol, r0, omega=omega)) solver = dft.RKS(mol) solver.grids.level = 2 solver.grids.build() coords = solver.grids.coords weights = solver.grids.weights ao_value = dft.numint.eval_ao(mol, coords, deriv=0) dist = np.linalg.norm(coords - r0, axis=1) erf = scipy.special.erf(omega * dist) / dist expected_result = np.squeeze( np.einsum('g,ga,gb->ab', weights * erf, ao_value, ao_value)) np.testing.assert_allclose(result, expected_result) if __name__ == '__main__': absltest.main()
deepmind-research-master
density_functional_approximation_dm21/density_functional_approximation_dm21/compute_hfx_density_test.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """nest utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import range from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest def _nest_apply_over_list(list_of_nests, fn): """Equivalent to fn, but works on list-of-nests. Transforms a list-of-nests to a nest-of-lists, then applies `fn` to each of the inner lists. It is assumed that all nests have the same structure. Elements of the nest may be None, in which case they are ignored, i.e. they do not form part of the stack. This is useful when stacking agent states where parts of the state nest have been filtered. Args: list_of_nests: A Python list of nests. fn: the function applied on the list of leaves. Returns: A nest-of-arrays, where the arrays are formed by `fn`ing a list. """ list_of_flat_nests = [nest.flatten(n) for n in list_of_nests] flat_nest_of_stacks = [] for position in range(len(list_of_flat_nests[0])): new_list = [flat_nest[position] for flat_nest in list_of_flat_nests] new_list = [x for x in new_list if x is not None] flat_nest_of_stacks.append(fn(new_list)) return nest.pack_sequence_as( structure=list_of_nests[0], flat_sequence=flat_nest_of_stacks) def _take_indices(inputs, indices): return nest.map_structure(lambda t: np.take(t, indices, axis=0), inputs) def nest_stack(list_of_nests, axis=0): """Equivalent to np.stack, but works on list-of-nests. Transforms a list-of-nests to a nest-of-lists, then applies `np.stack` to each of the inner lists. It is assumed that all nests have the same structure. Elements of the nest may be None, in which case they are ignored, i.e. they do not form part of the stack. This is useful when stacking agent states where parts of the state nest have been filtered. Args: list_of_nests: A Python list of nests. axis: Optional, the `axis` argument for `np.stack`. Returns: A nest-of-arrays, where the arrays are formed by `np.stack`ing a list. """ return _nest_apply_over_list(list_of_nests, lambda l: np.stack(l, axis=axis)) def nest_unstack(batched_inputs, batch_size): """Splits a sequence of numpy arrays along 0th dimension.""" return [_take_indices(batched_inputs, idx) for idx in range(batch_size)]
deepmind-research-master
tvt/nest_utils.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Memory Reader/Writer for RMA.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import sonnet as snt import tensorflow.compat.v1 as tf ReadInformation = collections.namedtuple( 'ReadInformation', ('weights', 'indices', 'keys', 'strengths')) class MemoryWriter(snt.RNNCore): """Memory Writer Module.""" def __init__(self, mem_shape, name='memory_writer'): """Initializes the `MemoryWriter`. Args: mem_shape: The shape of the memory `(num_rows, memory_width)`. name: The name to use for the Sonnet module. """ super(MemoryWriter, self).__init__(name=name) self._mem_shape = mem_shape def _build(self, inputs, state): """Inserts z into the argmin row of usage markers and updates all rows. Returns an operation that, when executed, correctly updates the internal state and usage markers. Args: inputs: A tuple consisting of: * z, the value to write at this timestep * mem_state, the state of the memory at this timestep before writing state: The state is just the write_counter. Returns: A tuple of the new memory state and a tuple containing the next state. """ z, mem_state = inputs # Stop gradient on writes to memory. z = tf.stop_gradient(z) prev_write_counter = state new_row_value = z # Find the index to insert the next row into. num_mem_rows = self._mem_shape[0] write_index = tf.cast(prev_write_counter, dtype=tf.int32) % num_mem_rows one_hot_row = tf.one_hot(write_index, num_mem_rows) write_counter = prev_write_counter + 1 # Insert state variable to new row. # First you need to size it up to the full size. insert_new_row = lambda mem, o_hot, z: mem - (o_hot * mem) + (o_hot * z) new_mem = insert_new_row(mem_state, tf.expand_dims(one_hot_row, axis=-1), tf.expand_dims(new_row_value, axis=-2)) new_state = write_counter return new_mem, new_state @property def state_size(self): """Returns a description of the state size, without batch dimension.""" return tf.TensorShape([]) @property def output_size(self): """Returns a description of the output size, without batch dimension.""" return self._mem_shape class MemoryReader(snt.AbstractModule): """Memory Reader Module.""" def __init__(self, memory_word_size, num_read_heads, top_k=0, memory_size=None, name='memory_reader'): """Initializes the `MemoryReader`. Args: memory_word_size: The dimension of the 1-D read keys this memory reader should produce. Each row of the memory is of length `memory_word_size`. num_read_heads: The number of reads to perform. top_k: Softmax and summation when reading is only over top k most similar entries in memory. top_k=0 (default) means dense reads, i.e. no top_k. memory_size: Number of rows in memory. name: The name for this Sonnet module. """ super(MemoryReader, self).__init__(name=name) self._memory_word_size = memory_word_size self._num_read_heads = num_read_heads self._top_k = top_k # This is not an RNNCore but it is useful to expose the output size. self._output_size = num_read_heads * memory_word_size num_read_weights = top_k if top_k > 0 else memory_size self._read_info_size = ReadInformation( weights=tf.TensorShape([num_read_heads, num_read_weights]), indices=tf.TensorShape([num_read_heads, num_read_weights]), keys=tf.TensorShape([num_read_heads, memory_word_size]), strengths=tf.TensorShape([num_read_heads]), ) with self._enter_variable_scope(): # Transforms to value-based read for each read head. output_dim = (memory_word_size + 1) * num_read_heads self._keys_and_read_strengths_generator = snt.Linear(output_dim) def _build(self, inputs): """Looks up rows in memory. In the args list, we have the following conventions: B: batch size M: number of slots in a row of the memory matrix R: number of rows in the memory matrix H: number of read heads in the memory controller Args: inputs: A tuple of * read_inputs, a tensor of shape [B, ...] that will be flattened and passed through a linear layer to get read keys/read_strengths for each head. * mem_state, the primary memory tensor. Of shape [B, R, M]. Returns: The read from the memory (concatenated across read heads) and read information. """ # Assert input shapes are compatible and separate inputs. _assert_compatible_memory_reader_input(inputs) read_inputs, mem_state = inputs # Determine the read weightings for each key. flat_outputs = self._keys_and_read_strengths_generator( snt.BatchFlatten()(read_inputs)) # Separate the read_strengths from the rest of the weightings. h = self._num_read_heads flat_keys = flat_outputs[:, :-h] read_strengths = tf.nn.softplus(flat_outputs[:, -h:]) # Reshape the weights. read_shape = (self._num_read_heads, self._memory_word_size) read_keys = snt.BatchReshape(read_shape)(flat_keys) # Read from memory. memory_reads, read_weights, read_indices, read_strengths = ( read_from_memory(read_keys, read_strengths, mem_state, self._top_k)) concatenated_reads = snt.BatchFlatten()(memory_reads) return concatenated_reads, ReadInformation( weights=read_weights, indices=read_indices, keys=read_keys, strengths=read_strengths) @property def output_size(self): """Returns a description of the output size, without batch dimension.""" return self._output_size, self._read_info_size def read_from_memory(read_keys, read_strengths, mem_state, top_k): """Function for cosine similarity content based reading from memory matrix. In the args list, we have the following conventions: B: batch size M: number of slots in a row of the memory matrix R: number of rows in the memory matrix H: number of read heads (of the controller or the policy) K: top_k if top_k>0 Args: read_keys: the read keys of shape [B, H, M]. read_strengths: the coefficients used to compute the normalised weighting vector of shape [B, H]. mem_state: the primary memory tensor. Of shape [B, R, M]. top_k: only use top k read matches, other reads do not go into softmax and are zeroed out in the output. top_k=0 (default) means use dense reads. Returns: The memory reads [B, H, M], read weights [B, H, top k], read indices [B, H, top k], and read strengths [B, H, 1]. """ _assert_compatible_read_from_memory_inputs(read_keys, read_strengths, mem_state) batch_size = read_keys.shape[0] num_read_heads = read_keys.shape[1] with tf.name_scope('memory_reading'): # Scale such that all rows are L2-unit vectors, for memory and read query. scaled_read_keys = tf.math.l2_normalize(read_keys, axis=-1) # [B, H, M] scaled_mem = tf.math.l2_normalize(mem_state, axis=-1) # [B, R, M] # The cosine distance is then their dot product. # Find the cosine distance between each read head and each row of memory. cosine_distances = tf.matmul( scaled_read_keys, scaled_mem, transpose_b=True) # [B, H, R] # The rank must match cosine_distances for broadcasting to work. read_strengths = tf.expand_dims(read_strengths, axis=-1) # [B, H, 1] weighted_distances = read_strengths * cosine_distances # [B, H, R] if top_k: # Get top k indices (row indices with top k largest weighted distances). top_k_output = tf.nn.top_k(weighted_distances, top_k, sorted=False) read_indices = top_k_output.indices # [B, H, K] # Create a sub-memory for each read head with only the top k rows. # Each batch_gather is [B, K, M] and the list stacks to [B, H, K, M]. topk_mem_per_head = [tf.batch_gather(mem_state, ri_this_head) for ri_this_head in tf.unstack(read_indices, axis=1)] topk_mem = tf.stack(topk_mem_per_head, axis=1) # [B, H, K, M] topk_scaled_mem = tf.math.l2_normalize(topk_mem, axis=-1) # [B, H, K, M] # Calculate read weights for each head's top k sub-memory. expanded_scaled_read_keys = tf.expand_dims( scaled_read_keys, axis=2) # [B, H, 1, M] topk_cosine_distances = tf.reduce_sum( expanded_scaled_read_keys * topk_scaled_mem, axis=-1) # [B, H, K] topk_weighted_distances = ( read_strengths * topk_cosine_distances) # [B, H, K] read_weights = tf.nn.softmax( topk_weighted_distances, axis=-1) # [B, H, K] # For each head, read using the sub-memories and corresponding weights. expanded_weights = tf.expand_dims(read_weights, axis=-1) # [B, H, K, 1] memory_reads = tf.reduce_sum( expanded_weights * topk_mem, axis=2) # [B, H, M] else: read_weights = tf.nn.softmax(weighted_distances, axis=-1) num_rows_memory = mem_state.shape[1] all_indices = tf.range(num_rows_memory, dtype=tf.int32) all_indices = tf.reshape(all_indices, [1, 1, num_rows_memory]) read_indices = tf.tile(all_indices, [batch_size, num_read_heads, 1]) # This is the actual memory access. # Note that matmul automatically batch applies for us. memory_reads = tf.matmul(read_weights, mem_state) read_keys.shape.assert_is_compatible_with(memory_reads.shape) read_strengths = tf.squeeze(read_strengths, axis=-1) # [B, H, 1] -> [B, H] return memory_reads, read_weights, read_indices, read_strengths def _assert_compatible_read_from_memory_inputs(read_keys, read_strengths, mem_state): read_keys.shape.assert_has_rank(3) b_shape, h_shape, m_shape = read_keys.shape mem_state.shape.assert_has_rank(3) r_shape = mem_state.shape[1] read_strengths.shape.assert_is_compatible_with( tf.TensorShape([b_shape, h_shape])) mem_state.shape.assert_is_compatible_with( tf.TensorShape([b_shape, r_shape, m_shape])) def _assert_compatible_memory_reader_input(input_tensors): """Asserts MemoryReader's _build has been given the correct shapes.""" assert len(input_tensors) == 2 _, mem_state = input_tensors mem_state.shape.assert_has_rank(3)
deepmind-research-master
tvt/memory.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Temporal Value Transport implementation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from concurrent import futures import numpy as np from six.moves import range from six.moves import zip def _unstack(array, axis): """Opposite of np.stack.""" split_array = np.split(array, array.shape[axis], axis=axis) return [np.squeeze(a, axis=axis) for a in split_array] def _top_k_args(array, k): """Return top k arguments or all arguments if array size is less than k.""" if len(array) <= k: return np.arange(len(array)) return np.argpartition(array, kth=-k)[-k:] def _threshold_read_event_times(read_strengths, threshold): """Return the times of max read strengths within one threshold read event.""" chosen_times = [] over_threshold = False max_read_strength = 0. # Wait until the threshold is crossed then keep track of max read strength and # time of max read strength until the read strengths go back under the # threshold, then add that max read strength time to the chosen times. Wait # until threshold is crossed again and then repeat the process. for time, strength in enumerate(read_strengths): if strength > threshold: over_threshold = True if strength > max_read_strength: max_read_strength = strength max_read_strength_time = time else: # If coming back under threshold, add the time of the last max read. if over_threshold: chosen_times.append(max_read_strength_time) max_read_strength = 0. over_threshold = False # Add max read strength time if episode finishes before going under threshold. if over_threshold: chosen_times.append(max_read_strength_time) return np.array(chosen_times) def _tvt_rewards_single_head(read_weights, read_strengths, read_times, baselines, alpha, top_k_t1, read_strength_threshold, no_transport_period): """Compute TVT rewards for a single read head, no batch dimension. This performs the updates for one read head. `t1` and `t2` refer to times to where and from where the value is being transported, respectively. I.e. the rewards at `t1` times are being modified based on values at times `t2`. Args: read_weights: shape (ep_length, top_k). read_strengths: shape (ep_length,). read_times: shape (ep_length, top_k). baselines: shape (ep_length,). alpha: The multiplier for the temporal value transport rewards. top_k_t1: For each read event time, this determines how many time points to send tvt reward to. read_strength_threshold: Read strengths below this value are ignored. no_transport_period: Length of no_transport_period. Returns: An array of TVT rewards with shape (ep_length,). """ tvt_rewards = np.zeros_like(baselines) # Mask read_weights for reads that read back to times within # no_transport_period of current time. ep_length = read_times.shape[0] times = np.arange(ep_length) # Expand dims for correct broadcasting when subtracting read_times. times = np.expand_dims(times, -1) read_past_no_transport_period = (times - read_times) > no_transport_period read_weights_masked = np.where(read_past_no_transport_period, read_weights, np.zeros_like(read_weights)) # Find t2 times with maximum read weights. Ignore t2 times whose maximum # read weights fall inside the no_transport_period. max_read_weight_args = np.argmax(read_weights, axis=1) # (ep_length,) times = np.arange(ep_length) max_read_weight_times = read_times[times, max_read_weight_args] # (ep_length,) read_strengths_cut = np.where( times - max_read_weight_times > no_transport_period, read_strengths, np.zeros_like(read_strengths)) # Filter t2 candidates to perform value transport on local maximums # above a threshold. t2_times_with_largest_reads = _threshold_read_event_times( read_strengths_cut, read_strength_threshold) # Loop through all t2 candidates and transport value to top_k_t1 read times. for t2 in t2_times_with_largest_reads: try: baseline_value_when_reading = baselines[t2] except IndexError: raise RuntimeError("Attempting to access baselines array with length {}" " at index {}. Make sure output_baseline is set in" " the agent config.".format(len(baselines), t2)) read_times_from_t2 = read_times[t2] read_weights_from_t2 = read_weights_masked[t2] # Find the top_k_t1 read times for this t2 and their corresponding read # weights. The call to _top_k_args() here gives the array indices for the # times and weights of the top_k_t1 reads from t2. top_t1_indices = _top_k_args(read_weights_from_t2, top_k_t1) top_t1_read_times = np.take(read_times_from_t2, top_t1_indices) top_t1_read_weights = np.take(read_weights_from_t2, top_t1_indices) # For each of the top_k_t1 read times t and corresponding read weight w, # find the trajectory that contains step_num (t + shift) and modify the # reward at step_num (t + shift) using w and the baseline value at t2. # We ignore any read times t >= t2. These can emerge because if nothing # in memory matches positively with the read query, the top reads may be # in the empty region of the memory. for step_num, read_weight in zip(top_t1_read_times, top_t1_read_weights): if step_num >= t2: # Skip this step_num as it is not really a memory time. continue # Compute the tvt reward and add it on. tvt_reward = alpha * read_weight * baseline_value_when_reading tvt_rewards[step_num] += tvt_reward return tvt_rewards def _compute_tvt_rewards_from_read_info( read_weights, read_strengths, read_times, baselines, gamma, alpha=0.9, top_k_t1=50, read_strength_threshold=2., no_transport_period_when_gamma_1=25): """Compute TVT rewards given supplied read information, no batch dimension. Args: read_weights: shape (ep_length, num_read_heads, top_k). read_strengths: shape (ep_length, num_read_heads). read_times: shape (ep_length, num_read_heads, top_k). baselines: shape (ep_length,). gamma: Scalar discount factor used to calculate the no_transport_period. alpha: The multiplier for the temporal value transport rewards. top_k_t1: For each read event time, this determines how many time points to send tvt reward to. read_strength_threshold: Read strengths below this value are ignored. no_transport_period_when_gamma_1: no transport period when gamma == 1. Returns: An array of TVT rewards with shape (ep_length,). """ if gamma < 1: no_transport_period = int(1 / (1 - gamma)) else: if no_transport_period_when_gamma_1 is None: raise ValueError("No transport period must be defined when gamma == 1.") no_transport_period = no_transport_period_when_gamma_1 # Split read infos by read head. num_read_heads = read_weights.shape[1] read_weights = _unstack(read_weights, axis=1) read_strengths = _unstack(read_strengths, axis=1) read_times = _unstack(read_times, axis=1) # Calcuate TVT rewards for each read head separately and add to total. tvt_rewards = np.zeros_like(baselines) for i in range(num_read_heads): tvt_rewards += _tvt_rewards_single_head( read_weights[i], read_strengths[i], read_times[i], baselines, alpha, top_k_t1, read_strength_threshold, no_transport_period) return tvt_rewards def compute_tvt_rewards(read_infos, baselines, gamma=.96): """Compute TVT rewards from EpisodeOutputs. Args: read_infos: A memory_reader.ReadInformation namedtuple, where each element has shape (ep_length, batch_size, num_read_heads, ...). baselines: A numpy float array with shape (ep_length, batch_size). gamma: Discount factor. Returns: An array of TVT rewards with shape (ep_length,). """ if not read_infos: return np.zeros_like(baselines) # TVT reward computation is without batch dimension. so we need to process # read_infos and baselines into batchwise components. batch_size = baselines.shape[1] # Split each element of read info on batch dim. read_weights = _unstack(read_infos.weights, axis=1) read_strengths = _unstack(read_infos.strengths, axis=1) read_indices = _unstack(read_infos.indices, axis=1) # Split baselines on batch dim. baselines = _unstack(baselines, axis=1) # Comute TVT rewards for each element in the batch (threading over batch). tvt_rewards = [] with futures.ThreadPoolExecutor(max_workers=batch_size) as executor: for i in range(batch_size): tvt_rewards.append( executor.submit( _compute_tvt_rewards_from_read_info, read_weights[i], read_strengths[i], read_indices[i], baselines[i], gamma) ) tvt_rewards = [f.result() for f in tvt_rewards] # Process TVT rewards back into an array of shape (ep_length, batch_size). return np.stack(tvt_rewards, axis=1)
deepmind-research-master
tvt/tvt_rewards.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Threaded batch environment wrapper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from concurrent import futures from six.moves import range from six.moves import zip from tvt import nest_utils class BatchEnv(object): """Wrapper that steps multiple environments in separate threads. The threads are stepped in lock step, so all threads progress by one step before any move to the next step. """ def __init__(self, batch_size, env_builder, **env_kwargs): self.batch_size = batch_size self._envs = [env_builder(**env_kwargs) for _ in range(batch_size)] self._num_actions = self._envs[0].num_actions self._observation_shape = self._envs[0].observation_shape self._episode_length = self._envs[0].episode_length self._executor = futures.ThreadPoolExecutor(max_workers=self.batch_size) def reset(self): """Reset the entire batch of environments.""" def reset_environment(env): return env.reset() try: output_list = [] for env in self._envs: output_list.append(self._executor.submit(reset_environment, env)) output_list = [env_output.result() for env_output in output_list] except KeyboardInterrupt: self._executor.shutdown(wait=True) raise observations, rewards = nest_utils.nest_stack(output_list) return observations, rewards def step(self, action_list): """Step batch of envs. Args: action_list: A list of actions, one per environment in the batch. Each one should be a scalar int or a numpy scaler int. Returns: A tuple (observations, rewards): observations: A nest of observations, each one a numpy array where the first dimension has size equal to the number of environments in the batch. rewards: An array of rewards with size equal to the number of environments in the batch. """ def step_environment(env, action): return env.step(action) try: output_list = [] for env, action in zip(self._envs, action_list): output_list.append(self._executor.submit(step_environment, env, action)) output_list = [env_output.result() for env_output in output_list] except KeyboardInterrupt: self._executor.shutdown(wait=True) raise observations, rewards = nest_utils.nest_stack(output_list) return observations, rewards @property def observation_shape(self): """Observation shape per environment, i.e. with no batch dimension.""" return self._observation_shape @property def num_actions(self): return self._num_actions @property def episode_length(self): return self._episode_length def last_phase_rewards(self): return [env.last_phase_reward() for env in self._envs]
deepmind-research-master
tvt/batch_env.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """RMA agent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from six.moves import range from six.moves import zip import sonnet as snt import tensorflow.compat.v1 as tf import trfl from tvt import losses from tvt import memory as memory_module from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest PolicyOutputs = collections.namedtuple( 'PolicyOutputs', ['policy', 'action', 'baseline']) StepOutput = collections.namedtuple( 'StepOutput', ['action', 'baseline', 'read_info']) AgentState = collections.namedtuple( 'AgentState', ['core_state', 'prev_action']) Observation = collections.namedtuple( 'Observation', ['image', 'last_action', 'last_reward']) RNNStateNoMem = collections.namedtuple( 'RNNStateNoMem', ['controller_outputs', 'h_controller']) RNNState = collections.namedtuple( 'RNNState', list(RNNStateNoMem._fields) + ['memory', 'mem_reads', 'h_mem_writer']) CoreOutputs = collections.namedtuple( 'CoreOutputs', ['action', 'policy', 'baseline', 'z', 'read_info']) def rnn_inputs_to_static_rnn_inputs(inputs): """Converts time major tensors to timestep lists.""" # Inputs to core build method are expected to be a tensor or tuple of tensors. if isinstance(inputs, tuple): num_timesteps = inputs[0].shape.as_list()[0] converted_inputs = [tf.unstack(input_, num_timesteps) for input_ in inputs] return list(zip(*converted_inputs)) else: return tf.unstack(inputs) def static_rnn_outputs_to_core_outputs(outputs): """Convert from length T list of nests to nest of tensors with first dim T.""" list_of_flats = [nest.flatten(n) for n in outputs] new_outputs = list() for i in range(len(list_of_flats[0])): new_outputs.append(tf.stack([flat_nest[i] for flat_nest in list_of_flats])) return nest.pack_sequence_as(structure=outputs[0], flat_sequence=new_outputs) def unroll(core, initial_state, inputs, dtype=tf.float32): """Perform a static unroll of the core.""" static_rnn_inputs = rnn_inputs_to_static_rnn_inputs(inputs) static_outputs, _ = tf.nn.static_rnn( core, inputs=static_rnn_inputs, initial_state=initial_state, dtype=dtype) core_outputs = static_rnn_outputs_to_core_outputs(static_outputs) return core_outputs class ImageEncoderDecoder(snt.AbstractModule): """Image Encoder/Decoder module.""" def __init__( self, image_code_size, name='image_encoder_decoder'): """Initialize the image encoder/decoder.""" super(ImageEncoderDecoder, self).__init__(name=name) # This is set by a call to `encode`. `decode` will fail before this is set. self._convnet_output_shape = None with self._enter_variable_scope(): self._convnet = snt.nets.ConvNet2D( output_channels=(16, 32), kernel_shapes=(3, 3), strides=(1, 1), paddings=('SAME',)) self._post_convnet_layer = snt.Linear(image_code_size, name='final_layer') @snt.reuse_variables def encode(self, image): """Encode the image observation.""" convnet_output = self._convnet(image) # Store unflattened convnet output shape for use in decoder. self._convnet_output_shape = convnet_output.shape[1:] # Flatten convnet outputs and pass through final layer to get image code. return self._post_convnet_layer(snt.BatchFlatten()(convnet_output)) @snt.reuse_variables def decode(self, code): """Decode the image observation from a latent code.""" if self._convnet_output_shape is None: raise ValueError('Must call `encode` before `decode`.') transpose_convnet_in_flat = snt.Linear( self._convnet_output_shape.num_elements(), name='decode_initial_linear')( code) transpose_convnet_in_flat = tf.nn.relu(transpose_convnet_in_flat) transpose_convnet_in = snt.BatchReshape( self._convnet_output_shape.as_list())(transpose_convnet_in_flat) return self._convnet.transpose(None)(transpose_convnet_in) def _build(self, *args): # Unused. Use encode/decode instead. raise NotImplementedError('Use encode/decode methods instead of __call__.') class Policy(snt.AbstractModule): """A policy module possibly containing a read-only DNC.""" def __init__(self, num_actions, num_policy_hiddens=(), num_baseline_hiddens=(), activation=tf.nn.tanh, policy_clip_abs_value=10.0, name='Policy'): """Construct a policy module possibly containing a read-only DNC. Args: num_actions: Number of discrete actions to choose from. num_policy_hiddens: Tuple or List, sizes of policy MLP hidden layers. num_baseline_hiddens: Tuple or List, sizes of baseline MLP hidden layers. An empty tuple/list results in a linear layer instead of an MLP. activation: Callable, e.g. tf.nn.tanh. policy_clip_abs_value: float, Policy gradient clip value. name: A string, the module's name """ super(Policy, self).__init__(name=name) self._num_actions = num_actions self._policy_layers = tuple(num_policy_hiddens) + (num_actions,) self._baseline_layers = tuple(num_baseline_hiddens) + (1,) self._policy_clip_abs_value = policy_clip_abs_value self._activation = activation def _build(self, inputs): (shared_inputs, extra_policy_inputs) = inputs policy_in = tf.concat([shared_inputs, extra_policy_inputs], axis=1) policy = snt.nets.MLP( output_sizes=self._policy_layers, activation=self._activation, name='policy_mlp')( policy_in) # Sample an action from the policy logits. action = tf.multinomial(policy, num_samples=1, output_dtype=tf.int32) action = tf.squeeze(action, 1) # [B, 1] -> [B] if self._policy_clip_abs_value > 0: policy = snt.clip_gradient( net=policy, clip_value_min=-self._policy_clip_abs_value, clip_value_max=self._policy_clip_abs_value) baseline_in = tf.concat([shared_inputs, tf.stop_gradient(policy)], axis=1) baseline = snt.nets.MLP( self._baseline_layers, activation=self._activation, name='baseline_mlp')( baseline_in) baseline = tf.squeeze(baseline, axis=-1) # [B, 1] -> [B] if self._policy_clip_abs_value > 0: baseline = snt.clip_gradient( net=baseline, clip_value_min=-self._policy_clip_abs_value, clip_value_max=self._policy_clip_abs_value) outputs = PolicyOutputs( policy=policy, action=action, baseline=baseline) return outputs class _RMACore(snt.RNNCore): """RMA RNN Core.""" def __init__(self, num_actions, with_memory=True, name='rma_core'): super(_RMACore, self).__init__(name=name) # MLP activation as callable. mlp_activation = tf.nn.tanh # Size of latent code written to memory (if using it) and used to # reconstruct from (if including reconstructions). num_latents = 200 # Value function decode settings. baseline_mlp_num_hiddens = (200,) # Policy settings. num_policy_hiddens = (200,) # Only used for non-recurrent core. # Controller settings. control_hidden_size = 256 control_num_layers = 2 # Memory settings (only used if with_memory=True). memory_size = 1000 memory_num_reads = 3 memory_top_k = 50 self._with_memory = with_memory with self._enter_variable_scope(): # Construct the features -> latent encoder. self._z_encoder_mlp = snt.nets.MLP( output_sizes=(2 * num_latents, num_latents), activation=mlp_activation, activate_final=False, name='z_encoder_mlp') # Construct controller. rnn_cores = [snt.LSTM(control_hidden_size) for _ in range(control_num_layers)] self._controller = snt.DeepRNN( rnn_cores, skip_connections=True, name='controller') # Construct memory. if self._with_memory: memory_dim = num_latents # Each write to memory is of size memory_dim. self._mem_shape = (memory_size, memory_dim) self._memory_reader = memory_module.MemoryReader( memory_word_size=memory_dim, num_read_heads=memory_num_reads, top_k=memory_top_k, memory_size=memory_size) self._memory_writer = memory_module.MemoryWriter( mem_shape=self._mem_shape) # Construct policy, starting with policy_core and policy_action_head. # `extra_inputs` in this case will be mem_out from current time step (note # that mem_out is just the controller output if with_memory=False). self._policy = Policy( num_policy_hiddens=num_policy_hiddens, num_actions=num_actions, num_baseline_hiddens=baseline_mlp_num_hiddens, activation=mlp_activation, policy_clip_abs_value=10.0,) # Set state_size and output_size. controller_out_size = self._controller.output_size controller_state_size = self._controller.state_size self._state_size = RNNStateNoMem(controller_outputs=controller_out_size, h_controller=controller_state_size) read_info_size = () if self._with_memory: mem_reads_size, read_info_size = self._memory_reader.output_size mem_writer_state_size = self._memory_writer.state_size self._state_size = RNNState(memory=tf.TensorShape(self._mem_shape), mem_reads=mem_reads_size, h_mem_writer=mem_writer_state_size, **self._state_size._asdict()) z_size = num_latents self._output_size = CoreOutputs( action=tf.TensorShape([]), # Scalar tensor shapes must be explicit. policy=num_actions, baseline=tf.TensorShape([]), # Scalar tensor shapes must be explicit. z=z_size, read_info=read_info_size) def _build(self, inputs, h_prev): features = inputs z_net_inputs = [features, h_prev.controller_outputs] if self._with_memory: z_net_inputs.append(h_prev.mem_reads) z_net_inputs_concat = tf.concat(z_net_inputs, axis=1) z = self._z_encoder_mlp(z_net_inputs_concat) controller_out, h_controller = self._controller(z, h_prev.h_controller) read_info = () if self._with_memory: # Perform a memory read/write step before generating the policy_modules. mem_reads, read_info = self._memory_reader((controller_out, h_prev.memory)) memory, h_mem_writer = self._memory_writer((z, h_prev.memory), h_prev.h_mem_writer) policy_extra_input = tf.concat([controller_out, mem_reads], axis=1) else: policy_extra_input = controller_out # Get policy, action and (possible empty) baseline from policy module. policy_inputs = (z, policy_extra_input) policy_outputs = self._policy(policy_inputs) core_outputs = CoreOutputs( z=z, read_info=read_info, **policy_outputs._asdict()) h_next = RNNStateNoMem(controller_outputs=controller_out, h_controller=h_controller) if self._with_memory: h_next = RNNState(memory=memory, mem_reads=mem_reads, h_mem_writer=h_mem_writer, **h_next._asdict()) return core_outputs, h_next def initial_state(self, batch_size): """Use initial state for RNN modules, otherwise use zero state.""" zero_state = self.zero_state(batch_size, dtype=tf.float32) controller_out = zero_state.controller_outputs h_controller = self._controller.initial_state(batch_size) state = RNNStateNoMem(controller_outputs=controller_out, h_controller=h_controller) if self._with_memory: memory = zero_state.memory mem_reads = zero_state.mem_reads h_mem_writer = self._memory_writer.initial_state(batch_size) state = RNNState(memory=memory, mem_reads=mem_reads, h_mem_writer=h_mem_writer, **state._asdict()) return state @property def state_size(self): return self._state_size @property def output_size(self): return self._output_size class Agent(snt.AbstractModule): """Myriad RMA agent. `latents` here refers to a purely deterministic encoding of the inputs, rather than VAE-like latents in e.g. the MERLIN agent. """ def __init__(self, batch_size, with_reconstructions=True, with_memory=True, image_code_size=500, image_cost_weight=50., num_actions=None, observation_shape=None, entropy_cost=0.01, return_cost_weight=0.4, gamma=0.96, read_strength_cost=5e-5, read_strength_tolerance=2., name='rma_agent'): super(Agent, self).__init__(name=name) self._batch_size = batch_size self._with_reconstructions = with_reconstructions self._image_cost_weight = image_cost_weight self._image_code_size = image_code_size self._entropy_cost = entropy_cost self._return_cost_weight = return_cost_weight self._gamma = gamma self._read_strength_cost = read_strength_cost self._read_strength_tolerance = read_strength_tolerance self._num_actions = num_actions self._name = name self._logged_values = {} # Store total number of pixels across channels (for image loss scaling). self._total_num_pixels = np.prod(observation_shape) with self._enter_variable_scope(): # Construct image encoder/decoder. self._image_encoder_decoder = ImageEncoderDecoder( image_code_size=image_code_size) self._core = _RMACore( num_actions=self._num_actions, with_memory=with_memory) def initial_state(self, batch_size): with tf.name_scope(self._name + '/initial_state'): return AgentState( core_state=self._core.initial_state(batch_size), prev_action=tf.zeros(shape=(batch_size,), dtype=tf.int32)) def _prepare_observations(self, observation, last_reward, last_action): image = observation # Make sure the entries are in [0, 1) range. if image.dtype.is_integer: image = tf.cast(image, tf.float32) / 255. if last_reward is None: # For some envs, in the first timestep the last_reward can be None. batch_size = observation.shape[0] last_reward = tf.zeros((batch_size,), dtype=tf.float32) return Observation( image=image, last_action=last_action, last_reward=last_reward) @snt.reuse_variables def _encode(self, observation, last_reward, last_action): inputs = self._prepare_observations(observation, last_reward, last_action) # Encode image observation. obs_code = self._image_encoder_decoder.encode(inputs.image) # Encode last action. action_code = tf.one_hot(inputs.last_action, self._num_actions) # Encode last reward. reward_code = tf.expand_dims(inputs.last_reward, -1) features = tf.concat([obs_code, action_code, reward_code], axis=1) return inputs, features @snt.reuse_variables def _decode(self, z): # Decode image. image_recon = self._image_encoder_decoder.decode(z) # Decode action. action_recon = snt.Linear(self._num_actions, name='action_recon_linear')(z) # Decode reward. reward_recon = snt.Linear(1, name='reward_recon_linear')(z) # Full reconstructions. recons = Observation( image=image_recon, last_reward=reward_recon, last_action=action_recon) return recons def step(self, reward, observation, prev_state): with tf.name_scope(self._name + '/step'): _, features = self._encode(observation, reward, prev_state.prev_action) core_outputs, next_core_state = self._core( features, prev_state.core_state) action = core_outputs.action step_output = StepOutput( action=action, baseline=core_outputs.baseline, read_info=core_outputs.read_info) agent_state = AgentState( core_state=next_core_state, prev_action=action) return step_output, agent_state @snt.reuse_variables def loss(self, observations, rewards, actions, additional_rewards=None): """Compute the loss.""" dummy_zeroth_step_actions = tf.zeros_like(actions[:1]) all_actions = tf.concat([dummy_zeroth_step_actions, actions], axis=0) inputs, features = snt.BatchApply(self._encode)( observations, rewards, all_actions) rewards = rewards[1:] # Zeroth step reward not correlated to actions. if additional_rewards is not None: # Additional rewards are not passed to the encoder (above) in order to be # consistent with the step, nor to the recon loss so that recons are # consistent with the observations. Thus, additional rewards only affect # the returns used to learn the value function. rewards += additional_rewards initial_state = self._core.initial_state(self._batch_size) rnn_inputs = features core_outputs = unroll(self._core, initial_state, rnn_inputs) # Remove final timestep of outputs. core_outputs = nest.map_structure(lambda t: t[:-1], core_outputs) if self._with_reconstructions: recons = snt.BatchApply(self._decode)(core_outputs.z) recon_targets = nest.map_structure(lambda t: t[:-1], inputs) recon_loss, recon_logged_values = losses.reconstruction_losses( recons=recons, targets=recon_targets, image_cost=self._image_cost_weight / self._total_num_pixels, action_cost=1., reward_cost=1.) else: recon_loss = tf.constant(0.0) recon_logged_values = dict() if core_outputs.read_info is not tuple(): read_reg_loss, read_reg_logged_values = ( losses.read_regularization_loss( read_info=core_outputs.read_info, strength_cost=self._read_strength_cost, strength_tolerance=self._read_strength_tolerance, strength_reg_mode='L1', key_norm_cost=0., key_norm_tolerance=1.)) else: read_reg_loss = tf.constant(0.0) read_reg_logged_values = dict() # Bootstrap value is at end of episode so is zero. bootstrap_value = tf.zeros(shape=(self._batch_size,), dtype=tf.float32) discounts = self._gamma * tf.ones_like(rewards) a2c_loss, a2c_loss_extra = trfl.sequence_advantage_actor_critic_loss( policy_logits=core_outputs.policy, baseline_values=core_outputs.baseline, actions=actions, rewards=rewards, pcontinues=discounts, bootstrap_value=bootstrap_value, lambda_=self._gamma, entropy_cost=self._entropy_cost, baseline_cost=self._return_cost_weight, name='SequenceA2CLoss') a2c_loss = tf.reduce_mean(a2c_loss) # Average over batch. total_loss = a2c_loss + recon_loss + read_reg_loss a2c_loss_logged_values = dict( pg_loss=tf.reduce_mean(a2c_loss_extra.policy_gradient_loss), baseline_loss=tf.reduce_mean(a2c_loss_extra.baseline_loss), entropy_loss=tf.reduce_mean(a2c_loss_extra.entropy_loss)) agent_loss_log = losses.combine_logged_values( a2c_loss_logged_values, recon_logged_values, read_reg_logged_values) agent_loss_log['total_loss'] = total_loss return total_loss, agent_loss_log def _build(self, *args): # Unused. # pylint: disable=no-value-for-parameter return self.step(*args) # pylint: enable=no-value-for-parameter
deepmind-research-master
tvt/rma.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Loss functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import tensorflow.compat.v1 as tf def sum_time_average_batch(tensor, name=None): """Computes the mean over B assuming tensor is of shape [T, B].""" tensor.get_shape().assert_has_rank(2) return tf.reduce_mean(tf.reduce_sum(tensor, axis=0), axis=0, name=name) def combine_logged_values(*logged_values_dicts): """Combine logged values dicts. Throws if there are any repeated keys.""" combined_dict = dict() for logged_values in logged_values_dicts: for k, v in six.iteritems(logged_values): if k in combined_dict: raise ValueError('Key "%s" is repeated in loss logging.' % k) combined_dict[k] = v return combined_dict def reconstruction_losses( recons, targets, image_cost, action_cost, reward_cost): """Reconstruction losses.""" if image_cost > 0.0: # Neg log prob of obs image given Bernoulli(recon image) distribution. negative_image_log_prob = tf.nn.sigmoid_cross_entropy_with_logits( labels=targets.image, logits=recons.image) nll_per_time = tf.reduce_sum(negative_image_log_prob, [-3, -2, -1]) image_loss = image_cost * nll_per_time image_loss = sum_time_average_batch(image_loss) else: image_loss = tf.constant(0.) if action_cost > 0.0 and recons.last_action is not tuple(): # Labels have shape (T, B), logits have shape (T, B, num_actions). action_loss = action_cost * tf.nn.sparse_softmax_cross_entropy_with_logits( labels=targets.last_action, logits=recons.last_action) action_loss = sum_time_average_batch(action_loss) else: action_loss = tf.constant(0.) if reward_cost > 0.0 and recons.last_reward is not tuple(): # MSE loss for reward. recon_last_reward = recons.last_reward recon_last_reward = tf.squeeze(recon_last_reward, -1) reward_loss = 0.5 * reward_cost * tf.square( recon_last_reward - targets.last_reward) reward_loss = sum_time_average_batch(reward_loss) else: reward_loss = tf.constant(0.) total_loss = image_loss + action_loss + reward_loss logged_values = dict( recon_loss_image=image_loss, recon_loss_action=action_loss, recon_loss_reward=reward_loss, total_reconstruction_loss=total_loss,) return total_loss, logged_values def read_regularization_loss( read_info, strength_cost, strength_tolerance, strength_reg_mode, key_norm_cost, key_norm_tolerance): """Computes the sum of read strength and read key regularization losses.""" if (strength_cost <= 0.) and (key_norm_cost <= 0.): read_reg_loss = tf.constant(0.) return read_reg_loss, dict(read_regularization_loss=read_reg_loss) if hasattr(read_info, 'read_strengths'): read_strengths = read_info.read_strengths read_keys = read_info.read_keys else: read_strengths = read_info.strengths read_keys = read_info.keys if read_info == tuple(): raise ValueError('Make sure read regularization costs are zero when ' 'not outputting read info.') read_reg_loss = tf.constant(0.) if strength_cost > 0.: strength_hinged = tf.maximum(strength_tolerance, read_strengths) if strength_reg_mode == 'L2': strength_loss = 0.5 * tf.square(strength_hinged) elif strength_reg_mode == 'L1': # Read strengths are always positive. strength_loss = strength_hinged else: raise ValueError( 'Strength regularization mode "{}" is not supported.'.format( strength_reg_mode)) # Sum across read heads to reduce from [T, B, n_reads] to [T, B]. strength_loss = strength_cost * tf.reduce_sum(strength_loss, axis=2) if key_norm_cost > 0.: key_norm_norms = tf.norm(read_keys, axis=-1) key_norm_norms_hinged = tf.maximum(key_norm_tolerance, key_norm_norms) key_norm_loss = 0.5 * tf.square(key_norm_norms_hinged) # Sum across read heads to reduce from [T, B, n_reads] to [T, B]. key_norm_loss = key_norm_cost * tf.reduce_sum(key_norm_loss, axis=2) read_reg_loss += key_norm_cost * key_norm_loss if strength_cost > 0.: strength_loss = sum_time_average_batch(strength_loss) else: strength_loss = tf.constant(0.) if key_norm_cost > 0.: key_norm_loss = sum_time_average_batch(key_norm_loss) else: key_norm_loss = tf.constant(0.) read_reg_loss = strength_loss + key_norm_loss logged_values = dict( read_reg_strength_loss=strength_loss, read_reg_key_norm_loss=key_norm_loss, total_read_reg_loss=read_reg_loss) return read_reg_loss, logged_values
deepmind-research-master
tvt/losses.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Batched synchronous actor/learner training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from absl import app from absl import flags from absl import logging import numpy as np from six.moves import range from six.moves import zip import tensorflow.compat.v1 as tf from tvt import batch_env from tvt import nest_utils from tvt import rma from tvt import tvt_rewards as tvt_module from tvt.pycolab import env as pycolab_env from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest FLAGS = flags.FLAGS flags.DEFINE_integer('logging_frequency', 1, 'Log training progress every logging_frequency episodes.') flags.DEFINE_string('logdir', None, 'Directory for tensorboard logging.') flags.DEFINE_boolean('with_memory', True, 'whether or not agent has external memory.') flags.DEFINE_boolean('with_reconstruction', True, 'whether or not agent reconstruct the observation.') flags.DEFINE_float('gamma', 0.92, 'Agent discount factor') flags.DEFINE_float('entropy_cost', 0.05, 'weight of the entropy loss') flags.DEFINE_float('image_cost_weight', 50., 'image recon cost weight.') flags.DEFINE_float('read_strength_cost', 5e-5, 'Cost weight of the memory read strength.') flags.DEFINE_float('read_strength_tolerance', 2., 'The tolerance of hinge loss of the read_strength_cost.') flags.DEFINE_boolean('do_tvt', True, 'whether or not do tvt') flags.DEFINE_enum('pycolab_game', 'key_to_door', ['key_to_door', 'active_visual_match'], 'The name of the game in pycolab environment') flags.DEFINE_integer('num_episodes', None, 'Number of episodes to train for. None means run forever.') flags.DEFINE_integer('batch_size', 16, 'Batch size') flags.DEFINE_float('learning_rate', 2e-4, 'Adam optimizer learning rate') flags.DEFINE_float('beta1', 0., 'Adam optimizer beta1') flags.DEFINE_float('beta2', 0.95, 'Adam optimizer beta2') flags.DEFINE_float('epsilon', 1e-6, 'Adam optimizer epsilon') # Pycolab-specific flags: flags.DEFINE_integer('pycolab_num_apples', 10, 'Number of apples to sample from the distractor grid.') flags.DEFINE_float('pycolab_apple_reward_min', 1., 'A reward range [min, max) to uniformly sample from.') flags.DEFINE_float('pycolab_apple_reward_max', 10., 'A reward range [min, max) to uniformly sample from.') flags.DEFINE_boolean('pycolab_fix_apple_reward_in_episode', True, 'Fix the sampled apple reward within an episode.') flags.DEFINE_float('pycolab_final_reward', 10., 'Reward obtained at the last phase.') flags.DEFINE_boolean('pycolab_crop', True, 'Whether to crop observations or not.') def main(_): batch_size = FLAGS.batch_size env_builder = pycolab_env.PycolabEnvironment env_kwargs = { 'game': FLAGS.pycolab_game, 'num_apples': FLAGS.pycolab_num_apples, 'apple_reward': [FLAGS.pycolab_apple_reward_min, FLAGS.pycolab_apple_reward_max], 'fix_apple_reward_in_episode': FLAGS.pycolab_fix_apple_reward_in_episode, 'final_reward': FLAGS.pycolab_final_reward, 'crop': FLAGS.pycolab_crop } env = batch_env.BatchEnv(batch_size, env_builder, **env_kwargs) ep_length = env.episode_length agent = rma.Agent(batch_size=batch_size, num_actions=env.num_actions, observation_shape=env.observation_shape, with_reconstructions=FLAGS.with_reconstruction, gamma=FLAGS.gamma, read_strength_cost=FLAGS.read_strength_cost, read_strength_tolerance=FLAGS.read_strength_tolerance, entropy_cost=FLAGS.entropy_cost, with_memory=FLAGS.with_memory, image_cost_weight=FLAGS.image_cost_weight) # Agent step placeholders and agent step. batch_shape = (batch_size,) observation_ph = tf.placeholder( dtype=tf.uint8, shape=batch_shape + env.observation_shape, name='obs') reward_ph = tf.placeholder( dtype=tf.float32, shape=batch_shape, name='reward') state_ph = nest.map_structure( lambda s: tf.placeholder(dtype=s.dtype, shape=s.shape, name='state'), agent.initial_state(batch_size=batch_size)) step_outputs, state = agent.step(reward_ph, observation_ph, state_ph) # Update op placeholders and update op. observations_ph = tf.placeholder( dtype=tf.uint8, shape=(ep_length + 1, batch_size) + env.observation_shape, name='observations') rewards_ph = tf.placeholder( dtype=tf.float32, shape=(ep_length + 1, batch_size), name='rewards') actions_ph = tf.placeholder( dtype=tf.int64, shape=(ep_length, batch_size), name='actions') tvt_rewards_ph = tf.placeholder( dtype=tf.float32, shape=(ep_length, batch_size), name='tvt_rewards') loss, loss_logs = agent.loss( observations_ph, rewards_ph, actions_ph, tvt_rewards_ph) optimizer = tf.train.AdamOptimizer( learning_rate=FLAGS.learning_rate, beta1=FLAGS.beta1, beta2=FLAGS.beta2, epsilon=FLAGS.epsilon) update_op = optimizer.minimize(loss) initial_state = agent.initial_state(batch_size) if FLAGS.logdir: if not tf.io.gfile.exists(FLAGS.logdir): tf.io.gfile.makedirs(FLAGS.logdir) summary_writer = tf.summary.FileWriter(FLAGS.logdir) # Do init init_ops = (tf.global_variables_initializer(), tf.local_variables_initializer()) tf.get_default_graph().finalize() sess = tf.Session() sess.run(init_ops) run = True ep_num = 0 prev_logging_time = time.time() while run: observation, reward = env.reset() agent_state = sess.run(initial_state) # Initialise episode data stores. observations = [observation] rewards = [reward] actions = [] baselines = [] read_infos = [] for _ in range(ep_length): step_feed = {reward_ph: reward, observation_ph: observation} for ph, ar in zip(nest.flatten(state_ph), nest.flatten(agent_state)): step_feed[ph] = ar step_output, agent_state = sess.run( (step_outputs, state), feed_dict=step_feed) action = step_output.action baseline = step_output.baseline read_info = step_output.read_info # Take step in environment, append results. observation, reward = env.step(action) observations.append(observation) rewards.append(reward) actions.append(action) baselines.append(baseline) if read_info is not None: read_infos.append(read_info) # Stack the lists of length ep_length so that each array (or each element # of nest stucture for read_infos) has shape (ep_length, batch_size, ...). observations = np.stack(observations) rewards = np.array(rewards) actions = np.array(actions) baselines = np.array(baselines) read_infos = nest_utils.nest_stack(read_infos) # Compute TVT rewards. if FLAGS.do_tvt: tvt_rewards = tvt_module.compute_tvt_rewards(read_infos, baselines, gamma=FLAGS.gamma) else: tvt_rewards = np.squeeze(np.zeros_like(baselines)) # Run update op. loss_feed = {observations_ph: observations, rewards_ph: rewards, actions_ph: actions, tvt_rewards_ph: tvt_rewards} ep_loss, _, ep_loss_logs = sess.run([loss, update_op, loss_logs], feed_dict=loss_feed) # Log episode results. if ep_num % FLAGS.logging_frequency == 0: steps_per_second = ( FLAGS.logging_frequency * ep_length * batch_size / ( time.time() - prev_logging_time)) mean_reward = np.mean(np.sum(rewards, axis=0)) mean_last_phase_reward = np.mean(env.last_phase_rewards()) mean_tvt_reward = np.mean(np.sum(tvt_rewards, axis=0)) logging.info('Episode %d. SPS: %s', ep_num, steps_per_second) logging.info('Episode %d. Mean episode reward: %f', ep_num, mean_reward) logging.info('Episode %d. Last phase reward: %f', ep_num, mean_last_phase_reward) logging.info('Episode %d. Mean TVT episode reward: %f', ep_num, mean_tvt_reward) logging.info('Episode %d. Loss: %s', ep_num, ep_loss) logging.info('Episode %d. Loss logs: %s', ep_num, ep_loss_logs) if FLAGS.logdir: summary = tf.Summary() summary.value.add(tag='reward', simple_value=mean_reward) summary.value.add(tag='last phase reward', simple_value=mean_last_phase_reward) summary.value.add(tag='tvt reward', simple_value=mean_tvt_reward) summary.value.add(tag='total loss', simple_value=ep_loss) for k, v in ep_loss_logs.items(): summary.value.add(tag='loss - {}'.format(k), simple_value=v) # Tensorboard x-axis is total number of episodes run. summary_writer.add_summary(summary, ep_num * batch_size) summary_writer.flush() prev_logging_time = time.time() ep_num += 1 if FLAGS.num_episodes and ep_num >= FLAGS.num_episodes: run = False if __name__ == '__main__': app.run(main)
deepmind-research-master
tvt/main.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab env.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from pycolab import rendering from tvt.pycolab import active_visual_match from tvt.pycolab import key_to_door from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest class PycolabEnvironment(object): """A simple environment adapter for pycolab games.""" def __init__(self, game, num_apples=10, apple_reward=1., fix_apple_reward_in_episode=False, final_reward=10., crop=True, default_reward=0): """Construct a `environment.Base` adapter that wraps a pycolab game.""" rng = np.random.RandomState() if game == 'key_to_door': self._game = key_to_door.Game(rng, num_apples, apple_reward, fix_apple_reward_in_episode, final_reward, crop) elif game == 'active_visual_match': self._game = active_visual_match.Game(rng, num_apples, apple_reward, fix_apple_reward_in_episode, final_reward) else: raise ValueError('Unsupported game "%s".' % game) self._default_reward = default_reward self._num_actions = self._game.num_actions # Agents expect HWC uint8 observations, Pycolab uses CHW float observations. colours = nest.map_structure(lambda c: float(c) * 255 / 1000, self._game.colours) self._rgb_converter = rendering.ObservationToArray( value_mapping=colours, permute=(1, 2, 0), dtype=np.uint8) episode = self._game.make_episode() observation, _, _ = episode.its_showtime() self._image_shape = self._rgb_converter(observation).shape def _process_outputs(self, observation, reward): if reward is None: reward = self._default_reward image = self._rgb_converter(observation) return image, reward def reset(self): """Start a new episode.""" self._episode = self._game.make_episode() observation, reward, _ = self._episode.its_showtime() return self._process_outputs(observation, reward) def step(self, action): """Take step in episode.""" observation, reward, _ = self._episode.play(action) return self._process_outputs(observation, reward) @property def num_actions(self): return self._num_actions @property def observation_shape(self): return self._image_shape @property def episode_length(self): return self._game.episode_length def last_phase_reward(self): # In Pycolab games here we only track chapter_reward for final chapter. return float(self._episode.the_plot['chapter_reward'])
deepmind-research-master
tvt/pycolab/env.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab Game interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six @six.add_metaclass(abc.ABCMeta) class AbstractGame(object): """Abstract base class for Pycolab games.""" @abc.abstractmethod def __init__(self, rng, **settings): """Initialize the game.""" @abc.abstractproperty def num_actions(self): """Number of possible actions in the game.""" @abc.abstractproperty def colours(self): """Symbol to colour map for the game.""" @abc.abstractmethod def make_episode(self): """Factory method for generating new episodes of the game."""
deepmind-research-master
tvt/pycolab/game.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Key to door task. The game is split up into three phases: 1. (exploration phase) player can collect a key, 2. (distractor phase) player is collecting apples, 3. (reward phase) player can open the door and get the reward if the key is previously collected. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from pycolab import ascii_art from pycolab import storytelling from pycolab import things as plab_things from tvt.pycolab import common from tvt.pycolab import game from tvt.pycolab import objects COLOURS = { 'i': (1000, 1000, 1000), # Indicator. } EXPLORE_GRID = [ ' ####### ', ' #kkkkk# ', ' #kkkkk# ', ' ## ## ', ' #+++++# ', ' #+++++# ', ' ####### ' ] REWARD_GRID = [ ' ', ' ##d## ', ' # # ', ' # + # ', ' # # ', ' ##### ', ' ', ] class KeySprite(plab_things.Sprite): """Sprite for the key.""" def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = self.position == player_position if self.visible and pick_up: # Pass information to all phases. the_plot['has_key'] = True self._visible = False class DoorSprite(plab_things.Sprite): """Sprite for the door.""" def __init__(self, corner, position, character, pickup_reward): super(DoorSprite, self).__init__(corner, position, character) self._pickup_reward = pickup_reward def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = self.position == player_position if pick_up and the_plot.get('has_key'): the_plot.add_reward(self._pickup_reward) # The key is lost after the first time opening the door # to ensure only one reward per episode. the_plot['has_key'] = False class PlayerSprite(common.PlayerSprite): """Sprite for the actor.""" def __init__(self, corner, position, character): super(PlayerSprite, self).__init__( corner, position, character, impassable=common.BORDER + common.INDICATOR + common.DOOR) def update(self, actions, board, layers, backdrop, things, the_plot): # Allow moving through the door if key is previously collected. if common.DOOR in self.impassable and the_plot.get('has_key'): self._impassable.remove(common.DOOR) super(PlayerSprite, self).update(actions, board, layers, backdrop, things, the_plot) class Game(game.AbstractGame): """Key To Door Game.""" def __init__(self, rng, num_apples=10, apple_reward=(1, 10), fix_apple_reward_in_episode=True, final_reward=10., crop=True, max_frames=common.DEFAULT_MAX_FRAMES_PER_PHASE): del rng # Each episode is identical and colours are not randomised. self._num_apples = num_apples self._apple_reward = apple_reward self._fix_apple_reward_in_episode = fix_apple_reward_in_episode self._final_reward = final_reward self._crop = crop self._max_frames = max_frames self._episode_length = sum(self._max_frames.values()) self._num_actions = common.NUM_ACTIONS self._colours = common.FIXED_COLOURS.copy() self._colours.update(COLOURS) self._extra_observation_fields = ['chapter_reward_as_string'] @property def extra_observation_fields(self): """The field names of extra observations.""" return self._extra_observation_fields @property def num_actions(self): """Number of possible actions in the game.""" return self._num_actions @property def episode_length(self): return self._episode_length @property def colours(self): """Symbol to colour map for key to door.""" return self._colours def _make_explore_phase(self): # Keep only one key and one player position. explore_grid = common.keep_n_characters_in_grid( EXPLORE_GRID, common.KEY, 1) explore_grid = common.keep_n_characters_in_grid( explore_grid, common.PLAYER, 1) return ascii_art.ascii_art_to_game( art=explore_grid, what_lies_beneath=' ', sprites={ common.PLAYER: PlayerSprite, common.KEY: KeySprite, common.INDICATOR: ascii_art.Partial(objects.IndicatorObjectSprite, char_to_track=common.KEY, override_position=(0, 5)), common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['explore']), }, update_schedule=[ common.PLAYER, common.KEY, common.INDICATOR, common.TIMER], z_order=[common.KEY, common.INDICATOR, common.PLAYER, common.TIMER], ) def _make_distractor_phase(self): return common.distractor_phase( player_sprite=PlayerSprite, num_apples=self._num_apples, max_frames=self._max_frames['distractor'], apple_reward=self._apple_reward, fix_apple_reward_in_episode=self._fix_apple_reward_in_episode) def _make_reward_phase(self): return ascii_art.ascii_art_to_game( art=REWARD_GRID, what_lies_beneath=' ', sprites={ common.PLAYER: PlayerSprite, common.DOOR: ascii_art.Partial(DoorSprite, pickup_reward=self._final_reward), common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['reward'], track_chapter_reward=True), }, update_schedule=[common.PLAYER, common.DOOR, common.TIMER], z_order=[common.PLAYER, common.DOOR, common.TIMER], ) def make_episode(self): """Factory method for generating new episodes of the game.""" if self._crop: croppers = common.get_cropper() else: croppers = None return storytelling.Story([ self._make_explore_phase, self._make_distractor_phase, self._make_reward_phase, ], croppers=croppers)
deepmind-research-master
tvt/pycolab/key_to_door.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Active visual match task. The game is split up into three phases: 1. (exploration phase) player is in one room and there's a colour in the other, 2. (distractor phase) player is collecting apples, 3. (reward phase) player sees three doors of different colours and has to select the one of the same color as the colour in the first phase. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from pycolab import ascii_art from pycolab import storytelling from tvt.pycolab import common from tvt.pycolab import game from tvt.pycolab import objects SYMBOLS_TO_SHUFFLE = ['b', 'c', 'e'] EXPLORE_GRID = [ ' ppppppp ', ' p p ', ' p p ', ' pp pp ', ' p+++++p ', ' p+++++p ', ' ppppppp ' ] REWARD_GRID = [ '###########', '# b c e #', '# #', '# #', '#### ####', ' # + # ', ' ##### ' ] class Game(game.AbstractGame): """Image Match Passive Game.""" def __init__(self, rng, num_apples=10, apple_reward=(1, 10), fix_apple_reward_in_episode=True, final_reward=10., max_frames=common.DEFAULT_MAX_FRAMES_PER_PHASE): self._rng = rng self._num_apples = num_apples self._apple_reward = apple_reward self._fix_apple_reward_in_episode = fix_apple_reward_in_episode self._final_reward = final_reward self._max_frames = max_frames self._episode_length = sum(self._max_frames.values()) self._num_actions = common.NUM_ACTIONS self._colours = common.FIXED_COLOURS.copy() self._colours.update( common.get_shuffled_symbol_colour_map(rng, SYMBOLS_TO_SHUFFLE)) self._extra_observation_fields = ['chapter_reward_as_string'] @property def extra_observation_fields(self): """The field names of extra observations.""" return self._extra_observation_fields @property def num_actions(self): """Number of possible actions in the game.""" return self._num_actions @property def episode_length(self): return self._episode_length @property def colours(self): """Symbol to colour map for key to door.""" return self._colours def _make_explore_phase(self, target_char): # Keep only one coloured position and one player position. grid = common.keep_n_characters_in_grid(EXPLORE_GRID, 'p', 1, common.BORDER) grid = common.keep_n_characters_in_grid(grid, 'p', 0, target_char) grid = common.keep_n_characters_in_grid(grid, common.PLAYER, 1) return ascii_art.ascii_art_to_game( grid, what_lies_beneath=' ', sprites={ common.PLAYER: ascii_art.Partial( common.PlayerSprite, impassable=common.BORDER + target_char), target_char: objects.ObjectSprite, common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['explore']), }, update_schedule=[common.PLAYER, target_char, common.TIMER], z_order=[target_char, common.PLAYER, common.TIMER], ) def _make_distractor_phase(self): return common.distractor_phase( player_sprite=common.PlayerSprite, num_apples=self._num_apples, max_frames=self._max_frames['distractor'], apple_reward=self._apple_reward, fix_apple_reward_in_episode=self._fix_apple_reward_in_episode) def _make_reward_phase(self, target_char): return ascii_art.ascii_art_to_game( REWARD_GRID, what_lies_beneath=' ', sprites={ common.PLAYER: common.PlayerSprite, 'b': objects.ObjectSprite, 'c': objects.ObjectSprite, 'e': objects.ObjectSprite, common.TIMER: ascii_art.Partial(common.TimerSprite, self._max_frames['reward'], track_chapter_reward=True), target_char: ascii_art.Partial(objects.ObjectSprite, reward=self._final_reward), }, update_schedule=[common.PLAYER, 'b', 'c', 'e', common.TIMER], z_order=[common.PLAYER, 'b', 'c', 'e', common.TIMER], ) def make_episode(self): """Factory method for generating new episodes of the game.""" target_char = self._rng.choice(SYMBOLS_TO_SHUFFLE) return storytelling.Story([ lambda: self._make_explore_phase(target_char), self._make_distractor_phase, lambda: self._make_reward_phase(target_char), ], croppers=common.get_cropper())
deepmind-research-master
tvt/pycolab/active_visual_match.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Common utilities for Pycolab games.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import colorsys import numpy as np from pycolab import ascii_art from pycolab import cropping from pycolab import things as plab_things from pycolab.prefab_parts import sprites as prefab_sprites from six.moves import zip from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest # Actions. # Those with a negative ID are not allowed for the agent. ACTION_QUIT = -2 ACTION_DELAY = -1 ACTION_NORTH = 0 ACTION_SOUTH = 1 ACTION_WEST = 2 ACTION_EAST = 3 NUM_ACTIONS = 4 DEFAULT_MAX_FRAMES_PER_PHASE = { 'explore': 15, 'distractor': 90, 'reward': 15 } # Reserved symbols. PLAYER = '+' BORDER = '#' BACKGROUND = ' ' KEY = 'k' DOOR = 'd' APPLE = 'a' TIMER = 't' INDICATOR = 'i' FIXED_COLOURS = { PLAYER: (898, 584, 430), BORDER: (100, 100, 100), BACKGROUND: (800, 800, 800), KEY: (627, 321, 176), DOOR: (529, 808, 922), APPLE: (550, 700, 0), } APPLE_DISTRACTOR_GRID = [ '###########', '#a a a a a#', '# a a a a #', '#a a a a a#', '# a a a a #', '#a a + a a#', '###########' ] DEFAULT_APPLE_RESPAWN_TIME = 20 DEFAULT_APPLE_REWARD = 1. def get_shuffled_symbol_colour_map(rng_or_seed, symbols, num_potential_colours=None): """Get a randomized mapping between symbols and colours. Args: rng_or_seed: A random state or random seed. symbols: List of symbols. num_potential_colours: Number of equally spaced colours to choose from. Defaults to number of symbols. Colours are generated deterministically. Returns: Randomized mapping between symbols and colours. """ num_symbols = len(symbols) num_potential_colours = num_potential_colours or num_symbols if isinstance(rng_or_seed, np.random.RandomState): rng = rng_or_seed else: rng = np.random.RandomState(rng_or_seed) # Generate a range of colours. step = 1. / num_potential_colours hues = np.arange(0, num_potential_colours) * step potential_colours = [colorsys.hsv_to_rgb(h, 1.0, 1.0) for h in hues] # Randomly draw num_symbols colours without replacement. rng.shuffle(potential_colours) colours = potential_colours[:num_symbols] symbol_to_colour_map = dict(list(zip(symbols, colours))) # Multiply each colour value by 1000. return nest.map_structure(lambda c: int(c * 1000), symbol_to_colour_map) def get_cropper(): return cropping.ScrollingCropper( rows=5, cols=5, to_track=PLAYER, pad_char=BACKGROUND, scroll_margins=(2, 2)) def distractor_phase(player_sprite, num_apples, max_frames, apple_reward=DEFAULT_APPLE_REWARD, fix_apple_reward_in_episode=False, respawn_every=DEFAULT_APPLE_RESPAWN_TIME): """Distractor phase engine factory. Args: player_sprite: Player sprite class. num_apples: Number of apples to sample from the apple distractor grid. max_frames: Maximum duration of the distractor phase in frames. apple_reward: Can either be a scalar specifying the reward or a reward range [min, max), given as a list or tuple, to uniformly sample from. fix_apple_reward_in_episode: The apple reward is constant throughout each episode. respawn_every: respawn frequency of apples. Returns: Distractor phase engine. """ distractor_grid = keep_n_characters_in_grid(APPLE_DISTRACTOR_GRID, APPLE, num_apples) engine = ascii_art.ascii_art_to_game( distractor_grid, what_lies_beneath=BACKGROUND, sprites={ PLAYER: player_sprite, TIMER: ascii_art.Partial(TimerSprite, max_frames), }, drapes={ APPLE: ascii_art.Partial( AppleDrape, reward=apple_reward, fix_apple_reward_in_episode=fix_apple_reward_in_episode, respawn_every=respawn_every) }, update_schedule=[PLAYER, APPLE, TIMER], z_order=[APPLE, PLAYER, TIMER], ) return engine def replace_grid_symbols(grid, old_to_new_map): """Replaces symbols in the grid. If mapping is not defined the symbol is not updated. Args: grid: Represented as a list of strings. old_to_new_map: Mapping between symbols. Returns: Updated grid. """ def symbol_map(x): if x in old_to_new_map: return old_to_new_map[x] return x new_grid = [] for row in grid: new_grid.append(''.join(symbol_map(i) for i in row)) return new_grid def keep_n_characters_in_grid(grid, character, n, backdrop_char=BACKGROUND): """Keeps only a sample of characters `character` in the grid.""" np_grid = np.array([list(i) for i in grid]) char_positions = np.argwhere(np_grid == character) # Randomly select parts to remove. num_empty_positions = char_positions.shape[0] - n if num_empty_positions < 0: raise ValueError('Not enough characters `{}` in grid.'.format(character)) empty_pos = np.random.permutation(char_positions)[:num_empty_positions] # Remove characters. grid = [list(row) for row in grid] for (i, j) in empty_pos: grid[i][j] = backdrop_char return [''.join(row) for row in grid] class PlayerSprite(prefab_sprites.MazeWalker): """Sprite for the actor.""" def __init__(self, corner, position, character, impassable=BORDER): super(PlayerSprite, self).__init__( corner, position, character, impassable=impassable, confined_to_board=True) def update(self, actions, board, layers, backdrop, things, the_plot): the_plot.add_reward(0.) if actions == ACTION_QUIT: the_plot.next_chapter = None the_plot.terminate_episode() if actions == ACTION_WEST: self._west(board, the_plot) elif actions == ACTION_EAST: self._east(board, the_plot) elif actions == ACTION_NORTH: self._north(board, the_plot) elif actions == ACTION_SOUTH: self._south(board, the_plot) class AppleDrape(plab_things.Drape): """Drape for the apples used in the distractor phase.""" def __init__(self, curtain, character, respawn_every, reward, fix_apple_reward_in_episode): """Constructor. Args: curtain: Array specifying locations of apples. Obtained from ascii grid. character: Character representing the drape. respawn_every: respawn frequency of apples. reward: Can either be a scalar specifying the reward or a reward range [min, max), given as a list or tuple, to uniformly sample from. fix_apple_reward_in_episode: If set to True, then only sample the apple's reward once in the episode and then fix the value. """ super(AppleDrape, self).__init__(curtain, character) self._respawn_every = respawn_every if not isinstance(reward, (list, tuple)): # Assuming scalar. self._reward = [reward, reward] else: if len(reward) != 2: raise ValueError('Reward must be a scalar or a two element list/tuple.') self._reward = reward self._fix_apple_reward_in_episode = fix_apple_reward_in_episode # Grid specifying for each apple the last frame it was picked up. # Initialized to inifinity for cells with apples and -1 for cells without. self._last_pickup = np.where(curtain, np.inf * np.ones_like(curtain), -1. * np.ones_like(curtain)) def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[PLAYER].position # decide the apple_reward if (self._fix_apple_reward_in_episode and not the_plot.get('sampled_apple_reward', None)): the_plot['sampled_apple_reward'] = np.random.choice((self._reward[0], self._reward[1])) if self.curtain[player_position]: self._last_pickup[player_position] = the_plot.frame self.curtain[player_position] = False if not self._fix_apple_reward_in_episode: the_plot.add_reward(np.random.uniform(*self._reward)) else: the_plot.add_reward(the_plot['sampled_apple_reward']) if self._respawn_every: respawn_cond = the_plot.frame > self._last_pickup + self._respawn_every respawn_cond &= self._last_pickup >= 0 self.curtain[respawn_cond] = True class TimerSprite(plab_things.Sprite): """Sprite for the timer. The timer is in charge of stopping the current chapter. Timer sprite should be placed last in the update order to make sure everything is updated before the chapter terminates. """ def __init__(self, corner, position, character, max_frames, track_chapter_reward=False): super(TimerSprite, self).__init__(corner, position, character) if not isinstance(max_frames, int): raise ValueError('max_frames must be of type integer.') self._max_frames = max_frames self._visible = False self._track_chapter_reward = track_chapter_reward self._total_chapter_reward = 0. def update(self, actions, board, layers, backdrop, things, the_plot): directives = the_plot._get_engine_directives() # pylint: disable=protected-access if self._track_chapter_reward: self._total_chapter_reward += directives.summed_reward or 0. # Every chapter starts at frame = 0. if the_plot.frame >= self._max_frames or directives.game_over: # Calculate the reward obtained in this phase and send it through the # extra observations channel. if self._track_chapter_reward: the_plot['chapter_reward'] = self._total_chapter_reward the_plot.terminate_episode()
deepmind-research-master
tvt/pycolab/common.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab human player.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import curses from absl import app from absl import flags import numpy as np from pycolab import human_ui from tvt.pycolab import active_visual_match from tvt.pycolab import common from tvt.pycolab import key_to_door FLAGS = flags.FLAGS flags.DEFINE_enum('game', 'key_to_door', ['key_to_door', 'active_visual_match'], 'The name of the game') def main(unused_argv): rng = np.random.RandomState() if FLAGS.game == 'key_to_door': game = key_to_door.Game(rng) elif FLAGS.game == 'active_visual_match': game = active_visual_match.Game(rng) else: raise ValueError('Unsupported game "%s".' % FLAGS.game) episode = game.make_episode() ui = human_ui.CursesUi( keys_to_actions={ curses.KEY_UP: common.ACTION_NORTH, curses.KEY_DOWN: common.ACTION_SOUTH, curses.KEY_LEFT: common.ACTION_WEST, curses.KEY_RIGHT: common.ACTION_EAST, -1: common.ACTION_DELAY, 'q': common.ACTION_QUIT, 'Q': common.ACTION_QUIT}, delay=-1, colour_fg=game.colours ) ui.play(episode) if __name__ == '__main__': app.run(main)
deepmind-research-master
tvt/pycolab/human_player.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Pycolab sprites.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from pycolab import things as plab_things from pycolab.prefab_parts import sprites as prefab_sprites import six from tvt.pycolab import common class PlayerSprite(prefab_sprites.MazeWalker): """Sprite representing the agent.""" def __init__(self, corner, position, character, max_steps_per_act, moving_player): """Indicates to the superclass that we can't walk off the board.""" super(PlayerSprite, self).__init__( corner, position, character, impassable=[common.BORDER], confined_to_board=True) self._moving_player = moving_player self._max_steps_per_act = max_steps_per_act self._num_steps = 0 def update(self, actions, board, layers, backdrop, things, the_plot): del backdrop # Unused. if actions is not None: assert actions in common.ACTIONS the_plot.log("Step {} | Action {}".format(self._num_steps, actions)) the_plot.add_reward(0.0) self._num_steps += 1 if actions == common.ACTION_QUIT: the_plot.terminate_episode() if self._moving_player: if actions == common.ACTION_WEST: self._west(board, the_plot) elif actions == common.ACTION_EAST: self._east(board, the_plot) elif actions == common.ACTION_NORTH: self._north(board, the_plot) elif actions == common.ACTION_SOUTH: self._south(board, the_plot) if self._max_steps_per_act == self._num_steps: the_plot.terminate_episode() class ObjectSprite(plab_things.Sprite): """Sprite for a generic object which can be collectable.""" def __init__(self, corner, position, character, reward=0., collectable=True, terminate=True): super(ObjectSprite, self).__init__(corner, position, character) self._reward = reward # Reward on pickup. self._collectable = collectable def set_visibility(self, visible): self._visible = visible def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = self.position == player_position if pick_up and self.visible: the_plot.add_reward(self._reward) if self._collectable: self.set_visibility(False) # set all other objects to be invisible for v in six.itervalues(things): if isinstance(v, ObjectSprite): v.set_visibility(False) class IndicatorObjectSprite(plab_things.Sprite): """Sprite for the indicator object. The indicator object is an object that spawns at a designated position once the player picks up an object defined by the `char_to_track` argument. The indicator object is spawned for just a single frame. """ def __init__(self, corner, position, character, char_to_track, override_position=None): super(IndicatorObjectSprite, self).__init__(corner, position, character) if override_position is not None: self._position = override_position self._char_to_track = char_to_track self._visible = False self._pickup_frame = None def update(self, actions, board, layers, backdrop, things, the_plot): player_position = things[common.PLAYER].position pick_up = things[self._char_to_track].position == player_position if self._pickup_frame: self._visible = False if pick_up and not self._pickup_frame: self._visible = True self._pickup_frame = the_plot.frame
deepmind-research-master
tvt/pycolab/objects.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Two dimensional convolutional neural net layers.""" from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import def weight_variable(shape, stddev=0.01): """Returns the weight variable.""" logging.vlog(1, 'weight init for shape %s', str(shape)) return tf.get_variable( 'w', shape, initializer=tf.random_normal_initializer(stddev=stddev)) def bias_variable(shape): return tf.get_variable( 'b', shape, initializer=tf.zeros_initializer()) def conv2d(x, w, atrou_rate=1, data_format='NHWC'): if atrou_rate > 1: return tf.nn.convolution( x, w, dilation_rate=[atrou_rate] * 2, padding='SAME', data_format=data_format) else: return tf.nn.conv2d( x, w, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format) def make_conv_sep2d_layer(input_node, in_channels, channel_multiplier, out_channels, layer_name, filter_size, filter_size_2=None, batch_norm=False, is_training=True, atrou_rate=1, data_format='NHWC', stddev=0.01): """Use separable convolutions.""" if filter_size_2 is None: filter_size_2 = filter_size logging.vlog(1, 'layer %s in %d out %d chan mult %d', layer_name, in_channels, out_channels, channel_multiplier) with tf.variable_scope(layer_name): with tf.variable_scope('depthwise'): w_depthwise = weight_variable( [filter_size, filter_size_2, in_channels, channel_multiplier], stddev=stddev) with tf.variable_scope('pointwise'): w_pointwise = weight_variable( [1, 1, in_channels * channel_multiplier, out_channels], stddev=stddev) h_conv = tf.nn.separable_conv2d( input_node, w_depthwise, w_pointwise, padding='SAME', strides=[1, 1, 1, 1], rate=[atrou_rate, atrou_rate], data_format=data_format) if batch_norm: h_conv = batch_norm_layer( h_conv, layer_name=layer_name, is_training=is_training, data_format=data_format) else: b_conv = bias_variable([out_channels]) h_conv = tf.nn.bias_add(h_conv, b_conv, data_format=data_format) return h_conv def batch_norm_layer(h_conv, layer_name, is_training=True, data_format='NCHW'): """Batch norm layer.""" logging.vlog(1, 'batch norm for layer %s', layer_name) return tf.contrib.layers.batch_norm( h_conv, is_training=is_training, fused=True, decay=0.999, scope=layer_name, data_format=data_format) def make_conv_layer(input_node, in_channels, out_channels, layer_name, filter_size, filter_size_2=None, non_linearity=True, batch_norm=False, is_training=True, atrou_rate=1, data_format='NHWC', stddev=0.01): """Creates a convolution layer.""" if filter_size_2 is None: filter_size_2 = filter_size logging.vlog( 1, 'layer %s in %d out %d', layer_name, in_channels, out_channels) with tf.variable_scope(layer_name): w_conv = weight_variable( [filter_size, filter_size_2, in_channels, out_channels], stddev=stddev) h_conv = conv2d( input_node, w_conv, atrou_rate=atrou_rate, data_format=data_format) if batch_norm: h_conv = batch_norm_layer( h_conv, layer_name=layer_name, is_training=is_training, data_format=data_format) else: b_conv = bias_variable([out_channels]) h_conv = tf.nn.bias_add(h_conv, b_conv, data_format=data_format) if non_linearity: h_conv = tf.nn.elu(h_conv) return h_conv
deepmind-research-master
alphafold_casp13/two_dim_convnet.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code to run distogram inference.""" import collections import os import time from absl import app from absl import flags from absl import logging import numpy as np import six import sonnet as snt import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import config_dict from alphafold_casp13 import contacts_experiment from alphafold_casp13 import distogram_io from alphafold_casp13 import secstruct flags.DEFINE_string('config_path', None, 'Path of the JSON config file.') flags.DEFINE_string('checkpoint_path', None, 'Checkpoint path for evaluation.') flags.DEFINE_boolean('cpu', False, 'Force onto CPU.') flags.DEFINE_string('output_path', None, 'Base path where all output files will be saved to.') flags.DEFINE_string('eval_sstable', None, 'Path of the SSTable to read the input tf.Examples from.') flags.DEFINE_string('stats_file', None, 'Path of the statistics file to use for normalization.') FLAGS = flags.FLAGS # A named tuple to store the outputs of a single prediction run. Prediction = collections.namedtuple( 'Prediction', [ 'single_message', # A debugging message. 'num_crops_local', # The number of crops used to make this prediction. 'sequence', # The amino acid sequence. 'filebase', # The chain name. All output files will use this name. 'softmax_probs', # Softmax of the distogram. 'ss', # Secondary structure prediction. 'asa', # ASA prediction. 'torsions', # Torsion prediction. ]) def evaluate(crop_size_x, crop_size_y, feature_normalization, checkpoint_path, normalization_exclusion, eval_config, network_config): """Main evaluation loop.""" experiment = contacts_experiment.Contacts( tfrecord=eval_config.eval_sstable, stats_file=eval_config.stats_file, network_config=network_config, crop_size_x=crop_size_x, crop_size_y=crop_size_y, feature_normalization=feature_normalization, normalization_exclusion=normalization_exclusion) checkpoint = snt.get_saver(experiment.model, collections=[ tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.MOVING_AVERAGE_VARIABLES]) with tf.train.SingularMonitoredSession(hooks=[]) as sess: logging.info('Restoring from checkpoint %s', checkpoint_path) checkpoint.restore(sess, checkpoint_path) logging.info('Writing output to %s', eval_config.output_path) eval_begin_time = time.time() _run_evaluation(sess=sess, experiment=experiment, eval_config=eval_config, output_dir=eval_config.output_path, min_range=network_config.min_range, max_range=network_config.max_range, num_bins=network_config.num_bins, torsion_bins=network_config.torsion_bins) logging.info('Finished eval %.1fs', (time.time() - eval_begin_time)) def _run_evaluation( sess, experiment, eval_config, output_dir, min_range, max_range, num_bins, torsion_bins): """Evaluate a contact map by aggregating crops. Args: sess: A tf.train.Session. experiment: An experiment class. eval_config: A config dict of eval parameters. output_dir: Directory to save the predictions to. min_range: The minimum range in Angstroms to consider in distograms. max_range: The maximum range in Angstroms to consider in distograms, see num_bins below for clarification. num_bins: The number of bins in the distance histogram being predicted. We divide the min_range--(min_range + max_range) Angstrom range into this many bins. torsion_bins: The number of bins the torsion angles are discretised into. """ tf.io.gfile.makedirs(os.path.join(output_dir, 'pickle_files')) logging.info('Eval config is %s\nnum_bins: %d', eval_config, num_bins) num_examples = 0 num_crops = 0 start_all_time = time.time() # Either do the whole test set, or up to a specified limit. max_examples = experiment.num_eval_examples if eval_config.max_num_examples > 0: max_examples = min(max_examples, eval_config.max_num_examples) while num_examples < max_examples: one_prediction = compute_one_prediction( num_examples, experiment, sess, eval_config, num_bins, torsion_bins) single_message = one_prediction.single_message num_crops_local = one_prediction.num_crops_local sequence = one_prediction.sequence filebase = one_prediction.filebase softmax_probs = one_prediction.softmax_probs ss = one_prediction.ss asa = one_prediction.asa torsions = one_prediction.torsions num_examples += 1 num_crops += num_crops_local # Save the output files. filename = os.path.join(output_dir, 'pickle_files', '%s.pickle' % filebase) distogram_io.save_distance_histogram( filename, softmax_probs, filebase, sequence, min_range=min_range, max_range=max_range, num_bins=num_bins) if experiment.model.torsion_multiplier > 0: torsions_dir = os.path.join(output_dir, 'torsions') tf.io.gfile.makedirs(torsions_dir) distogram_io.save_torsions(torsions_dir, filebase, sequence, torsions) if experiment.model.secstruct_multiplier > 0: ss_dir = os.path.join(output_dir, 'secstruct') tf.io.gfile.makedirs(ss_dir) secstruct.save_secstructs(ss_dir, filebase, None, sequence, ss) if experiment.model.asa_multiplier > 0: asa_dir = os.path.join(output_dir, 'asa') tf.io.gfile.makedirs(asa_dir) secstruct.save_secstructs(asa_dir, filebase, None, sequence, np.expand_dims(asa, 1), label='Deepmind 2D ASA') time_spent = time.time() - start_all_time logging.info( 'Evaluate %d examples, %d crops %.1f crops/ex. ' 'Took %.1fs, %.3f s/example %.3f crops/s\n%s', num_examples, num_crops, num_crops / float(num_examples), time_spent, time_spent / num_examples, num_crops / time_spent, single_message) logging.info('Tested on %d', num_examples) def compute_one_prediction( num_examples, experiment, sess, eval_config, num_bins, torsion_bins): """Find the contact map for a single domain.""" num_crops_local = 0 debug_steps = 0 start = time.time() output_fetches = {'probs': experiment.eval_probs} output_fetches['softmax_probs'] = experiment.eval_probs_softmax # Add the auxiliary outputs if present. experiment.model.update_crop_fetches(output_fetches) # Get data. batch = experiment.get_one_example(sess) length = batch['sequence_lengths'][0] batch_size = batch['sequence_lengths'].shape[0] domain = batch['domain_name'][0][0].decode('utf-8') chain = batch['chain_name'][0][0].decode('utf-8') filebase = domain or chain sequence = six.ensure_str(batch['sequences'][0][0]) logging.info('SepWorking on %d %s %s %d', num_examples, domain, chain, length) inputs_1d = batch['inputs_1d'] if 'residue_index' in batch: logging.info('Getting residue_index from features') residue_index = np.squeeze( batch['residue_index'], axis=2).astype(np.int32) else: logging.info('Generating residue_index') residue_index = np.tile(np.expand_dims( np.arange(length, dtype=np.int32), 0), [batch_size, 1]) assert batch_size == 1 num_examples += batch_size # Crops. prob_accum = np.zeros((length, length, 2)) ss_accum = np.zeros((length, 8)) torsions_accum = np.zeros((length, torsion_bins**2)) asa_accum = np.zeros((length,)) weights_1d_accum = np.zeros((length,)) softmax_prob_accum = np.zeros((length, length, num_bins), dtype=np.float32) crop_size_x = experiment.crop_size_x crop_step_x = crop_size_x // eval_config.crop_shingle_x crop_size_y = experiment.crop_size_y crop_step_y = crop_size_y // eval_config.crop_shingle_y prob_weights = 1 if eval_config.pyramid_weights > 0: sx = np.expand_dims(np.linspace(1.0 / crop_size_x, 1, crop_size_x), 1) sy = np.expand_dims(np.linspace(1.0 / crop_size_y, 1, crop_size_y), 0) prob_weights = np.minimum(np.minimum(sx, np.flipud(sx)), np.minimum(sy, np.fliplr(sy))) prob_weights /= np.max(prob_weights) prob_weights = np.minimum(prob_weights, eval_config.pyramid_weights) logging.log_first_n(logging.INFO, 'Crop: %dx%d step %d,%d pyr %.2f', debug_steps, crop_size_x, crop_size_y, crop_step_x, crop_step_y, eval_config.pyramid_weights) # Accumulate all crops, starting and ending half off the square. for i in range(-crop_size_x // 2, length - crop_size_x // 2, crop_step_x): for j in range(-crop_size_y // 2, length - crop_size_y // 2, crop_step_y): # The ideal crop. patch = compute_one_patch( sess, experiment, output_fetches, inputs_1d, residue_index, prob_weights, batch, length, i, j, crop_size_x, crop_size_y) # Assemble the crops into a final complete prediction. ic = max(0, i) jc = max(0, j) ic_to = ic + patch['prob'].shape[1] jc_to = jc + patch['prob'].shape[0] prob_accum[jc:jc_to, ic:ic_to, 0] += patch['prob'] * patch['weight'] prob_accum[jc:jc_to, ic:ic_to, 1] += patch['weight'] softmax_prob_accum[jc:jc_to, ic:ic_to, :] += ( patch['softmax'] * np.expand_dims(patch['weight'], 2)) weights_1d_accum[jc:jc_to] += 1 weights_1d_accum[ic:ic_to] += 1 if 'asa_x' in patch: asa_accum[ic:ic + patch['asa_x'].shape[0]] += np.squeeze( patch['asa_x'], axis=1) asa_accum[jc:jc + patch['asa_y'].shape[0]] += np.squeeze( patch['asa_y'], axis=1) if 'ss_x' in patch: ss_accum[ic:ic + patch['ss_x'].shape[0]] += patch['ss_x'] ss_accum[jc:jc + patch['ss_y'].shape[0]] += patch['ss_y'] if 'torsions_x' in patch: torsions_accum[ ic:ic + patch['torsions_x'].shape[0]] += patch['torsions_x'] torsions_accum[ jc:jc + patch['torsions_y'].shape[0]] += patch['torsions_y'] num_crops_local += 1 single_message = ( 'Constructed %s len %d from %d chunks [%d, %d x %d, %d] ' 'in %5.1fs' % ( filebase, length, num_crops_local, crop_size_x, crop_step_x, crop_size_y, crop_step_y, time.time() - start)) logging.info(single_message) logging.info('prob_accum[:, :, 1]: %s', prob_accum[:, :, 1]) assert (prob_accum[:, :, 1] > 0.0).all() probs = prob_accum[:, :, 0] / prob_accum[:, :, 1] softmax_probs = softmax_prob_accum[:, :, :] / prob_accum[:, :, 1:2] asa_accum /= weights_1d_accum ss_accum /= np.expand_dims(weights_1d_accum, 1) torsions_accum /= np.expand_dims(weights_1d_accum, 1) # The probs are symmetrical. probs = (probs + probs.transpose()) / 2 if num_bins > 1: softmax_probs = (softmax_probs + np.transpose( softmax_probs, axes=[1, 0, 2])) / 2 return Prediction( single_message=single_message, num_crops_local=num_crops_local, sequence=sequence, filebase=filebase, softmax_probs=softmax_probs, ss=ss_accum, asa=asa_accum, torsions=torsions_accum) def compute_one_patch(sess, experiment, output_fetches, inputs_1d, residue_index, prob_weights, batch, length, i, j, crop_size_x, crop_size_y): """Compute the output predictions for a single crop.""" # Note that these are allowed to go off the end of the protein. end_x = i + crop_size_x end_y = j + crop_size_y crop_limits = np.array([[i, end_x, j, end_y]], dtype=np.int32) ic = max(0, i) jc = max(0, j) end_x_cropped = min(length, end_x) end_y_cropped = min(length, end_y) prepad_x = max(0, -i) prepad_y = max(0, -j) postpad_x = end_x - end_x_cropped postpad_y = end_y - end_y_cropped # Precrop the 2D features: inputs_2d = np.pad(batch['inputs_2d'][ :, jc:end_y, ic:end_x, :], [[0, 0], [prepad_y, postpad_y], [prepad_x, postpad_x], [0, 0]], mode='constant') assert inputs_2d.shape[1] == crop_size_y assert inputs_2d.shape[2] == crop_size_x # Generate the corresponding crop, but it might be truncated. cxx = batch['inputs_2d'][:, ic:end_x, ic:end_x, :] cyy = batch['inputs_2d'][:, jc:end_y, jc:end_y, :] if cxx.shape[1] < inputs_2d.shape[1]: cxx = np.pad(cxx, [[0, 0], [prepad_x, max(0, i + crop_size_y - length)], [prepad_x, postpad_x], [0, 0]], mode='constant') assert cxx.shape[1] == crop_size_y assert cxx.shape[2] == crop_size_x if cyy.shape[2] < inputs_2d.shape[2]: cyy = np.pad(cyy, [[0, 0], [prepad_y, postpad_y], [prepad_y, max(0, j + crop_size_x - length)], [0, 0]], mode='constant') assert cyy.shape[1] == crop_size_y assert cyy.shape[2] == crop_size_x inputs_2d = np.concatenate([inputs_2d, cxx, cyy], 3) output_results = sess.run(output_fetches, feed_dict={ experiment.inputs_1d_placeholder: inputs_1d, experiment.residue_index_placeholder: residue_index, experiment.inputs_2d_placeholder: inputs_2d, experiment.crop_placeholder: crop_limits, }) # Crop out the "live" region of the probs. prob_patch = output_results['probs'][ 0, prepad_y:crop_size_y - postpad_y, prepad_x:crop_size_x - postpad_x] weight_patch = prob_weights[prepad_y:crop_size_y - postpad_y, prepad_x:crop_size_x - postpad_x] patch = {'prob': prob_patch, 'weight': weight_patch} if 'softmax_probs' in output_results: patch['softmax'] = output_results['softmax_probs'][ 0, prepad_y:crop_size_y - postpad_y, prepad_x:crop_size_x - postpad_x] if 'secstruct_probs' in output_results: patch['ss_x'] = output_results['secstruct_probs'][ 0, prepad_x:crop_size_x - postpad_x] patch['ss_y'] = output_results['secstruct_probs'][ 0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y] if 'torsion_probs' in output_results: patch['torsions_x'] = output_results['torsion_probs'][ 0, prepad_x:crop_size_x - postpad_x] patch['torsions_y'] = output_results['torsion_probs'][ 0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y] if 'asa_output' in output_results: patch['asa_x'] = output_results['asa_output'][ 0, prepad_x:crop_size_x - postpad_x] patch['asa_y'] = output_results['asa_output'][ 0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y] return patch def main(argv): del argv # Unused. logging.info('Loading a JSON config from: %s', FLAGS.config_path) with tf.io.gfile.GFile(FLAGS.config_path, 'r') as f: config = config_dict.ConfigDict.from_json(f.read()) # Redefine the relevant output fields. if FLAGS.eval_sstable: config.eval_config.eval_sstable = FLAGS.eval_sstable if FLAGS.stats_file: config.eval_config.stats_file = FLAGS.stats_file if FLAGS.output_path: config.eval_config.output_path = FLAGS.output_path with tf.device('/cpu:0' if FLAGS.cpu else None): evaluate(checkpoint_path=FLAGS.checkpoint_path, **config) if __name__ == '__main__': app.run(main)
deepmind-research-master
alphafold_casp13/contacts.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Layer for modelling and scoring secondary structure.""" import os from absl import logging import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import # 8-class classes (Q8) SECONDARY_STRUCTURES = '-HETSGBI' # Equivalence classes for 3-class (Q3) from Li & Yu 2016. # See http://www.cmbi.ru.nl/dssp.html for letter explanations. Q3_MAP = ['-TSGIB', 'H', 'E'] def make_q3_matrices(): """Generate mapping matrices for secstruct Q8:Q3 equivalence classes.""" dimension = len(SECONDARY_STRUCTURES) q3_map_matrix = np.zeros((dimension, len(Q3_MAP))) q3_lookup = np.zeros((dimension,), dtype=np.int32) for i, eclass in enumerate(Q3_MAP): # equivalence classes for m in eclass: # Members of the class. ss_type = SECONDARY_STRUCTURES.index(m) q3_map_matrix[ss_type, i] = 1.0 q3_lookup[ss_type] = i return q3_map_matrix, q3_lookup class Secstruct(object): """Make a layer that computes hierarchical secstruct.""" # Build static, shared structures: q3_map_matrix, q3_lookup = make_q3_matrices() static_dimension = len(SECONDARY_STRUCTURES) def __init__(self, name='secstruct'): self.name = name self._dimension = Secstruct.static_dimension def make_layer_new(self, activations): """Make the layer.""" with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): logging.info('Creating secstruct %s', activations) self.logits = tf.contrib.layers.linear(activations, self._dimension) self.ss_q8_probs = tf.nn.softmax(self.logits) self.ss_q3_probs = tf.matmul( self.ss_q8_probs, tf.constant(self.q3_map_matrix, dtype=tf.float32)) def get_q8_probs(self): return self.ss_q8_probs def save_secstructs(dump_dir_path, name, index, sequence, probs, label='Deepmind secstruct'): """Write secstruct prob distributions to an ss2 file. Can be overloaded to write out asa values too. Args: dump_dir_path: directory where to write files. name: name of domain index: index number of multiple samples. (or None for no index) sequence: string of L residue labels probs: L x D matrix of probabilities. L is length of sequence, D is probability dimension (usually 3). label: A label for the file. """ filename = os.path.join(dump_dir_path, '%s.ss2' % name) if index is not None: filename = os.path.join(dump_dir_path, '%s_%04d.ss2' % (name, index)) with tf.io.gfile.GFile(filename, 'w') as gf: logging.info('Saving secstruct to %s', filename) gf.write('# %s CLASSES [%s] %s sample %s\n\n' % ( label, ''.join(SECONDARY_STRUCTURES[:probs.shape[1]]), name, index)) for l in range(probs.shape[0]): ss = SECONDARY_STRUCTURES[np.argmax(probs[l, :])] gf.write('%4d %1s %1s %s\n' % (l + 1, sequence[l], ss, ''.join( [('%6.3f' % p) for p in probs[l, :]])))
deepmind-research-master
alphafold_casp13/secstruct.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for storing configuration flags.""" import json class ConfigDict(dict): """Configuration dictionary with convenient dot element access.""" def __init__(self, *args, **kwargs): super(ConfigDict, self).__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): for key, value in arg.items(): self._add(key, value) for key, value in kwargs.items(): self._add(key, value) def _add(self, key, value): if isinstance(value, dict): self[key] = ConfigDict(value) else: self[key] = value def __getattr__(self, attr): try: return self[attr] except KeyError as e: raise AttributeError(e) def __setattr__(self, key, value): self.__setitem__(key, value) def __setitem__(self, key, value): super(ConfigDict, self).__setitem__(key, value) self.__dict__.update({key: value}) def __delattr__(self, item): self.__delitem__(item) def __delitem__(self, key): super(ConfigDict, self).__delitem__(key) del self.__dict__[key] def to_json(self): return json.dumps(self) @classmethod def from_json(cls, json_string): return cls(json.loads(json_string))
deepmind-research-master
alphafold_casp13/config_dict.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class for predicting Accessible Surface Area.""" import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import class ASAOutputLayer(object): """An output layer to predict Accessible Surface Area.""" def __init__(self, name='asa'): self.name = name def compute_asa_output(self, activations): """Just compute the logits and outputs given activations.""" asa_logits = tf.contrib.layers.linear( activations, 1, weights_initializer=tf.random_uniform_initializer(-0.01, 0.01), scope='ASALogits') self.asa_output = tf.nn.relu(asa_logits, name='ASA_output_relu') return asa_logits
deepmind-research-master
alphafold_casp13/asa_output.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """2D Resnet.""" from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import two_dim_convnet def make_sep_res_layer( input_node, in_channels, out_channels, layer_name, filter_size, filter_size_2=None, batch_norm=False, is_training=True, divide_channels_by=2, atrou_rate=1, channel_multiplier=0, data_format='NHWC', stddev=0.01, dropout_keep_prob=1.0): """A separable resnet block.""" with tf.name_scope(layer_name): input_times_almost_1 = input_node h_conv = input_times_almost_1 if batch_norm: h_conv = two_dim_convnet.batch_norm_layer( h_conv, layer_name=layer_name, is_training=is_training, data_format=data_format) h_conv = tf.nn.elu(h_conv) if filter_size_2 is None: filter_size_2 = filter_size # 1x1 with half size h_conv = two_dim_convnet.make_conv_layer( h_conv, in_channels=in_channels, out_channels=in_channels / divide_channels_by, layer_name=layer_name + '_1x1h', filter_size=1, filter_size_2=1, non_linearity=True, batch_norm=batch_norm, is_training=is_training, data_format=data_format, stddev=stddev) # 3x3 with half size if channel_multiplier == 0: h_conv = two_dim_convnet.make_conv_layer( h_conv, in_channels=in_channels / divide_channels_by, out_channels=in_channels / divide_channels_by, layer_name=layer_name + '_%dx%dh' % (filter_size, filter_size_2), filter_size=filter_size, filter_size_2=filter_size_2, non_linearity=True, batch_norm=batch_norm, is_training=is_training, atrou_rate=atrou_rate, data_format=data_format, stddev=stddev) else: # We use separable convolution for 3x3 h_conv = two_dim_convnet.make_conv_sep2d_layer( h_conv, in_channels=in_channels / divide_channels_by, channel_multiplier=channel_multiplier, out_channels=in_channels / divide_channels_by, layer_name=layer_name + '_sep%dx%dh' % (filter_size, filter_size_2), filter_size=filter_size, filter_size_2=filter_size_2, batch_norm=batch_norm, is_training=is_training, atrou_rate=atrou_rate, data_format=data_format, stddev=stddev) # 1x1 back to normal size without relu h_conv = two_dim_convnet.make_conv_layer( h_conv, in_channels=in_channels / divide_channels_by, out_channels=out_channels, layer_name=layer_name + '_1x1', filter_size=1, filter_size_2=1, non_linearity=False, batch_norm=False, is_training=is_training, data_format=data_format, stddev=stddev) if dropout_keep_prob < 1.0: logging.info('dropout keep prob %f', dropout_keep_prob) h_conv = tf.nn.dropout(h_conv, keep_prob=dropout_keep_prob) return h_conv + input_times_almost_1 def make_two_dim_resnet( input_node, num_residues=50, num_features=40, num_predictions=1, num_channels=32, num_layers=2, filter_size=3, filter_size_2=None, final_non_linearity=False, name_prefix='', fancy=True, batch_norm=False, is_training=False, atrou_rates=None, channel_multiplier=0, divide_channels_by=2, resize_features_with_1x1=False, data_format='NHWC', stddev=0.01, dropout_keep_prob=1.0): """Two dim resnet towers.""" del num_residues # Unused. if atrou_rates is None: atrou_rates = [1] if not fancy: raise ValueError('non fancy deprecated') logging.info('atrou rates %s', atrou_rates) logging.info('name prefix %s', name_prefix) x_image = input_node previous_layer = x_image non_linearity = True for i_layer in range(num_layers): in_channels = num_channels out_channels = num_channels curr_atrou_rate = atrou_rates[i_layer % len(atrou_rates)] if i_layer == 0: in_channels = num_features if i_layer == num_layers - 1: out_channels = num_predictions non_linearity = final_non_linearity if i_layer == 0 or i_layer == num_layers - 1: layer_name = name_prefix + 'conv%d' % (i_layer + 1) initial_filter_size = filter_size if resize_features_with_1x1: initial_filter_size = 1 previous_layer = two_dim_convnet.make_conv_layer( input_node=previous_layer, in_channels=in_channels, out_channels=out_channels, layer_name=layer_name, filter_size=initial_filter_size, filter_size_2=filter_size_2, non_linearity=non_linearity, atrou_rate=curr_atrou_rate, data_format=data_format, stddev=stddev) else: layer_name = name_prefix + 'res%d' % (i_layer + 1) previous_layer = make_sep_res_layer( input_node=previous_layer, in_channels=in_channels, out_channels=out_channels, layer_name=layer_name, filter_size=filter_size, filter_size_2=filter_size_2, batch_norm=batch_norm, is_training=is_training, atrou_rate=curr_atrou_rate, channel_multiplier=channel_multiplier, divide_channels_by=divide_channels_by, data_format=data_format, stddev=stddev, dropout_keep_prob=dropout_keep_prob) y = previous_layer return y
deepmind-research-master
alphafold_casp13/two_dim_resnet.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Form a weighted average of several distograms. Can also/instead form a weighted average of a set of distance histogram pickle files, so long as they have identical hyperparameters. """ import os from absl import app from absl import flags from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import distogram_io from alphafold_casp13 import parsers flags.DEFINE_list( 'pickle_dirs', [], 'Comma separated list of directories with pickle files to ensemble.') flags.DEFINE_list( 'weights', [], 'Comma separated list of weights for the pickle files from different dirs.') flags.DEFINE_string( 'output_dir', None, 'Directory where to save results of the evaluation.') FLAGS = flags.FLAGS def ensemble_distance_histograms(pickle_dirs, weights, output_dir): """Find all the contact maps in the first dir, then ensemble across dirs.""" if len(pickle_dirs) <= 1: logging.warning('Pointless to ensemble %d pickle_dirs %s', len(pickle_dirs), pickle_dirs) # Carry on if there's one dir, otherwise do nothing. if not pickle_dirs: return tf.io.gfile.makedirs(output_dir) one_dir_pickle_files = tf.io.gfile.glob( os.path.join(pickle_dirs[0], '*.pickle')) assert one_dir_pickle_files, pickle_dirs[0] original_files = len(one_dir_pickle_files) logging.info('Found %d files %d in first of %d dirs', original_files, len(one_dir_pickle_files), len(pickle_dirs)) targets = [os.path.splitext(os.path.basename(f))[0] for f in one_dir_pickle_files] skipped = 0 wrote = 0 for t in targets: dump_file = os.path.join(output_dir, t + '.pickle') pickle_files = [os.path.join(pickle_dir, t + '.pickle') for pickle_dir in pickle_dirs] _, new_dict = ensemble_one_distance_histogram(pickle_files, weights) if new_dict is not None: wrote += 1 distogram_io.save_distance_histogram_from_dict(dump_file, new_dict) msg = 'Distograms Wrote %s %d / %d Skipped %d %s' % ( t, wrote, len(one_dir_pickle_files), skipped, dump_file) logging.info(msg) def ensemble_one_distance_histogram(pickle_files, weights): """Average the given pickle_files and dump.""" dicts = [] sequence = None max_dim = None for picklefile in pickle_files: if not tf.io.gfile.exists(picklefile): logging.warning('missing %s', picklefile) break logging.info('loading pickle file %s', picklefile) distance_histogram_dict = parsers.parse_distance_histogram_dict(picklefile) if sequence is None: sequence = distance_histogram_dict['sequence'] else: assert sequence == distance_histogram_dict['sequence'], '%s vs %s' % ( sequence, distance_histogram_dict['sequence']) dicts.append(distance_histogram_dict) assert dicts[-1]['probs'].shape[0] == dicts[-1]['probs'].shape[1], ( '%d vs %d' % (dicts[-1]['probs'].shape[0], dicts[-1]['probs'].shape[1])) assert (dicts[0]['probs'].shape[0:2] == dicts[-1]['probs'].shape[0:2] ), ('%d vs %d' % (dicts[0]['probs'].shape, dicts[-1]['probs'].shape)) if max_dim is None or max_dim < dicts[-1]['probs'].shape[2]: max_dim = dicts[-1]['probs'].shape[2] if len(dicts) != len(pickle_files): logging.warning('length mismatch\n%s\nVS\n%s', dicts, pickle_files) return sequence, None ensemble_hist = ( sum(w * c['probs'] for w, c in zip(weights, dicts)) / sum(weights)) new_dict = dict(dicts[0]) new_dict['probs'] = ensemble_hist return sequence, new_dict def main(argv): del argv # Unused. num_dirs = len(FLAGS.pickle_dirs) if FLAGS.weights: assert len(FLAGS.weights) == num_dirs, ( 'Supply as many weights as pickle_dirs, or no weights') weights = [float(w) for w in FLAGS.weights] else: weights = [1.0 for w in range(num_dirs)] ensemble_distance_histograms( pickle_dirs=FLAGS.pickle_dirs, weights=weights, output_dir=FLAGS.output_dir) if __name__ == '__main__': app.run(main)
deepmind-research-master
alphafold_casp13/ensemble_contact_maps.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parsers for various standard biology or AlphaFold-specific formats.""" import pickle import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import def distance_histogram_dict(f): """Parses distance histogram dict pickle. Distance histograms are stored as pickles of dicts. Write one of these with contacts/write_rr_file.write_pickle_file() Args: f: File-like handle to distance histogram dict pickle. Returns: Dict with fields: probs: (an L x L x num_bins) histogram. num_bins: number of bins for each residue pair min_range: left hand edge of the distance histogram max_range: the extent of the histogram NOT the right hand edge. """ contact_dict = pickle.load(f, encoding='latin1') num_res = len(contact_dict['sequence']) if not all(key in contact_dict.keys() for key in ['probs', 'num_bins', 'min_range', 'max_range']): raise ValueError('The pickled contact dict doesn\'t contain all required ' 'keys: probs, num_bins, min_range, max_range but %s.' % contact_dict.keys()) if contact_dict['probs'].ndim != 3: raise ValueError( 'Probs is not rank 3 but %d' % contact_dict['probs'].ndim) if contact_dict['num_bins'] != contact_dict['probs'].shape[2]: raise ValueError( 'The probs shape doesn\'t match num_bins in the third dimension. ' 'Expected %d got %d.' % (contact_dict['num_bins'], contact_dict['probs'].shape[2])) if contact_dict['probs'].shape[:2] != (num_res, num_res): raise ValueError( 'The first two probs dims (%i, %i) aren\'t equal to len(sequence) %i' % (contact_dict['probs'].shape[0], contact_dict['probs'].shape[1], num_res)) return contact_dict def parse_distance_histogram_dict(filepath): """Parses distance histogram piclkle from filepath.""" with tf.io.gfile.GFile(filepath, 'rb') as f: return distance_histogram_dict(f)
deepmind-research-master
alphafold_casp13/parsers.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contact prediction convnet experiment example.""" from absl import logging import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import contacts_dataset from alphafold_casp13 import contacts_network def _int_ph(shape, name): return tf.placeholder( dtype=tf.int32, shape=shape, name=('%s_placeholder' % name)) def _float_ph(shape, name): return tf.placeholder( dtype=tf.float32, shape=shape, name=('%s_placeholder' % name)) class Contacts(object): """Contact prediction experiment.""" def __init__( self, tfrecord, stats_file, network_config, crop_size_x, crop_size_y, feature_normalization, normalization_exclusion): """Builds the TensorFlow graph.""" self.network_config = network_config self.crop_size_x = crop_size_x self.crop_size_y = crop_size_y self._feature_normalization = feature_normalization self._normalization_exclusion = normalization_exclusion self._model = contacts_network.ContactsNet(**network_config) self._features = network_config.features self._scalars = network_config.scalars self._targets = network_config.targets # Add extra targets we need. required_targets = ['domain_name', 'resolution', 'chain_name'] if self.model.torsion_multiplier > 0: required_targets.extend([ 'phi_angles', 'phi_mask', 'psi_angles', 'psi_mask']) if self.model.secstruct_multiplier > 0: required_targets.extend(['sec_structure', 'sec_structure_mask']) if self.model.asa_multiplier > 0: required_targets.extend(['solv_surf', 'solv_surf_mask']) extra_targets = [t for t in required_targets if t not in self._targets] if extra_targets: targets = list(self._targets) targets.extend(extra_targets) self._targets = tuple(targets) logging.info('Targets %s %s extra %s', type(self._targets), self._targets, extra_targets) logging.info('Evaluating on %s, stats: %s', tfrecord, stats_file) self._build_evaluation_graph(tfrecord=tfrecord, stats_file=stats_file) @property def model(self): return self._model def _get_feature_normalization(self, features): return {key: self._feature_normalization for key in features if key not in list(self._normalization_exclusion)} def _build_evaluation_graph(self, tfrecord, stats_file): """Constructs the graph in pieces so it can be fed.""" with tf.name_scope('competitionsep'): # Construct the dataset and mapping ops. dataset = contacts_dataset.create_tf_dataset( tf_record_filename=tfrecord, features=tuple(self._features) + tuple( self._scalars) + tuple(self._targets)) def normalize(data): return contacts_dataset.normalize_from_stats_file( features=data, stats_file_path=stats_file, feature_normalization=self._get_feature_normalization( self._features), copy_unnormalized=list(set(self._features) & set(self._targets))) def convert_to_legacy(features): return contacts_dataset.convert_to_legacy_proteins_dataset_format( features, self._features, self._scalars, self._targets) dataset = dataset.map(normalize) dataset = dataset.map(convert_to_legacy) dataset = dataset.batch(1) # Get a batch of tensors in the legacy ProteinsDataset format. iterator = tf.data.make_one_shot_iterator(dataset) self._input_batch = iterator.get_next() self.num_eval_examples = sum( 1 for _ in tf.python_io.tf_record_iterator(tfrecord)) logging.info('Eval batch:\n%s', self._input_batch) feature_dim_1d = self._input_batch.inputs_1d.shape.as_list()[-1] feature_dim_2d = self._input_batch.inputs_2d.shape.as_list()[-1] feature_dim_2d *= 3 # The diagonals will be stacked before feeding. # Now placeholders for the graph to compute the outputs for one crop. self.inputs_1d_placeholder = _float_ph( shape=[None, None, feature_dim_1d], name='inputs_1d') self.residue_index_placeholder = _int_ph( shape=[None, None], name='residue_index') self.inputs_2d_placeholder = _float_ph( shape=[None, None, None, feature_dim_2d], name='inputs_2d') # 4 ints: x_start, x_end, y_start, y_end. self.crop_placeholder = _int_ph(shape=[None, 4], name='crop') # Finally placeholders for the graph to score the complete contact map. self.probs_placeholder = _float_ph(shape=[None, None, None], name='probs') self.softmax_probs_placeholder = _float_ph( shape=[None, None, None, self.network_config.num_bins], name='softmax_probs') self.cb_placeholder = _float_ph(shape=[None, None, 3], name='cb') self.cb_mask_placeholder = _float_ph(shape=[None, None], name='cb_mask') self.lengths_placeholder = _int_ph(shape=[None], name='lengths') if self.model.secstruct_multiplier > 0: self.sec_structure_placeholder = _float_ph( shape=[None, None, 8], name='sec_structure') self.sec_structure_logits_placeholder = _float_ph( shape=[None, None, 8], name='sec_structure_logits') self.sec_structure_mask_placeholder = _float_ph( shape=[None, None, 1], name='sec_structure_mask') if self.model.asa_multiplier > 0: self.solv_surf_placeholder = _float_ph( shape=[None, None, 1], name='solv_surf') self.solv_surf_logits_placeholder = _float_ph( shape=[None, None, 1], name='solv_surf_logits') self.solv_surf_mask_placeholder = _float_ph( shape=[None, None, 1], name='solv_surf_mask') if self.model.torsion_multiplier > 0: self.torsions_truth_placeholder = _float_ph( shape=[None, None, 2], name='torsions_truth') self.torsions_mask_placeholder = _float_ph( shape=[None, None, 1], name='torsions_mask') self.torsion_logits_placeholder = _float_ph( shape=[None, None, self.network_config.torsion_bins ** 2], name='torsion_logits') # Build a dict to pass all the placeholders into build. placeholders = { 'inputs_1d_placeholder': self.inputs_1d_placeholder, 'residue_index_placeholder': self.residue_index_placeholder, 'inputs_2d_placeholder': self.inputs_2d_placeholder, 'crop_placeholder': self.crop_placeholder, 'probs_placeholder': self.probs_placeholder, 'softmax_probs_placeholder': self.softmax_probs_placeholder, 'cb_placeholder': self.cb_placeholder, 'cb_mask_placeholder': self.cb_mask_placeholder, 'lengths_placeholder': self.lengths_placeholder, } if self.model.secstruct_multiplier > 0: placeholders.update({ 'sec_structure': self.sec_structure_placeholder, 'sec_structure_logits_placeholder': self.sec_structure_logits_placeholder, 'sec_structure_mask': self.sec_structure_mask_placeholder,}) if self.model.asa_multiplier > 0: placeholders.update({ 'solv_surf': self.solv_surf_placeholder, 'solv_surf_logits_placeholder': self.solv_surf_logits_placeholder, 'solv_surf_mask': self.solv_surf_mask_placeholder,}) if self.model.torsion_multiplier > 0: placeholders.update({ 'torsions_truth': self.torsions_truth_placeholder, 'torsion_logits_placeholder': self.torsion_logits_placeholder, 'torsions_truth_mask': self.torsions_mask_placeholder,}) activations = self._model( crop_size_x=self.crop_size_x, crop_size_y=self.crop_size_y, placeholders=placeholders) self.eval_probs_softmax = tf.nn.softmax( activations[:, :, :, :self.network_config.num_bins]) self.eval_probs = tf.reduce_sum( self.eval_probs_softmax[:, :, :, :self._model.quant_threshold()], axis=3) def get_one_example(self, sess): """Pull one example off the queue so we can feed it for evaluation.""" request_dict = { 'inputs_1d': self._input_batch.inputs_1d, 'inputs_2d': self._input_batch.inputs_2d, 'sequence_lengths': self._input_batch.sequence_lengths, 'beta_positions': self._input_batch.targets.beta_positions, 'beta_mask': self._input_batch.targets.beta_mask, 'domain_name': self._input_batch.targets.domain_name, 'chain_name': self._input_batch.targets.chain_name, 'sequences': self._input_batch.sequences, } if hasattr(self._input_batch.targets, 'residue_index'): request_dict.update( {'residue_index': self._input_batch.targets.residue_index}) if hasattr(self._input_batch.targets, 'phi_angles'): request_dict.update( {'phi_angles': self._input_batch.targets.phi_angles, 'psi_angles': self._input_batch.targets.psi_angles, 'phi_mask': self._input_batch.targets.phi_mask, 'psi_mask': self._input_batch.targets.psi_mask}) if hasattr(self._input_batch.targets, 'sec_structure'): request_dict.update( {'sec_structure': self._input_batch.targets.sec_structure, 'sec_structure_mask': self._input_batch.targets.sec_structure_mask,}) if hasattr(self._input_batch.targets, 'solv_surf'): request_dict.update( {'solv_surf': self._input_batch.targets.solv_surf, 'solv_surf_mask': self._input_batch.targets.solv_surf_mask,}) if hasattr(self._input_batch.targets, 'alpha_positions'): request_dict.update( {'alpha_positions': self._input_batch.targets.alpha_positions, 'alpha_mask': self._input_batch.targets.alpha_mask,}) batch = sess.run(request_dict) return batch
deepmind-research-master
alphafold_casp13/contacts_experiment.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Write contact map predictions to a tf.io.gfile. Either write a binary contact map as an RR format text file, or a histogram prediction as a pickle of a dict containing a numpy array. """ import os import numpy as np import six.moves.cPickle as pickle import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import RR_FORMAT = """PFRMAT RR TARGET {} AUTHOR DM-ORIGAMI-TEAM METHOD {} MODEL 1 {} """ def save_rr_file(filename, probs, domain, sequence, method='dm-contacts-resnet'): """Save a contact probability matrix as an RR file.""" assert len(sequence) == probs.shape[0] assert len(sequence) == probs.shape[1] with tf.io.gfile.GFile(filename, 'w') as f: f.write(RR_FORMAT.format(domain, method, sequence)) for i in range(probs.shape[0]): for j in range(i + 1, probs.shape[1]): f.write('{:d} {:d} {:d} {:d} {:f}\n'.format( i + 1, j + 1, 0, 8, probs[j, i])) f.write('END\n') def save_torsions(torsions_dir, filebase, sequence, torsions_probs): """Save Torsions to a file as pickle of a dict.""" filename = os.path.join(torsions_dir, filebase + '.torsions') t_dict = dict(probs=torsions_probs, sequence=sequence) with tf.io.gfile.GFile(filename, 'w') as fh: pickle.dump(t_dict, fh, protocol=2) def save_distance_histogram( filename, probs, domain, sequence, min_range, max_range, num_bins): """Save a distance histogram prediction matrix as a pickle file.""" dh_dict = { 'min_range': min_range, 'max_range': max_range, 'num_bins': num_bins, 'domain': domain, 'sequence': sequence, 'probs': probs.astype(np.float32)} save_distance_histogram_from_dict(filename, dh_dict) def save_distance_histogram_from_dict(filename, dh_dict): """Save a distance histogram prediction matrix as a pickle file.""" fields = ['min_range', 'max_range', 'num_bins', 'domain', 'sequence', 'probs'] missing_fields = [f for f in fields if f not in dh_dict] assert not missing_fields, 'Fields {} missing from dictionary'.format( missing_fields) assert len(dh_dict['sequence']) == dh_dict['probs'].shape[0] assert len(dh_dict['sequence']) == dh_dict['probs'].shape[1] assert dh_dict['num_bins'] == dh_dict['probs'].shape[2] assert dh_dict['min_range'] >= 0.0 assert dh_dict['max_range'] > 0.0 with tf.io.gfile.GFile(filename, 'wb') as fw: pickle.dump(dh_dict, fw, protocol=2) def contact_map_from_distogram(distogram_dict): """Split the boundary bin.""" num_bins = distogram_dict['probs'].shape[-1] bin_size_angstrom = distogram_dict['max_range'] / num_bins threshold_cts = (8.0 - distogram_dict['min_range']) / bin_size_angstrom threshold_bin = int(threshold_cts) # Round down pred_contacts = np.sum(distogram_dict['probs'][:, :, :threshold_bin], axis=-1) if threshold_bin < threshold_cts: # Add on the fraction of the boundary bin. pred_contacts += distogram_dict['probs'][:, :, threshold_bin] * ( threshold_cts - threshold_bin) return pred_contacts
deepmind-research-master
alphafold_casp13/distogram_io.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF wrapper for protein tf.Example datasets.""" import collections import enum import json import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import _ProteinDescription = collections.namedtuple( '_ProteinDescription', ( 'sequence_lengths', 'key', 'sequences', 'inputs_1d', 'inputs_2d', 'inputs_2d_diagonal', 'crops', 'scalars', 'targets')) class FeatureType(enum.Enum): ZERO_DIM = 0 # Shape [x] ONE_DIM = 1 # Shape [num_res, x] TWO_DIM = 2 # Shape [num_res, num_res, x] # Placeholder values that will be replaced with their true value at runtime. NUM_RES = 'num residues placeholder' # Sizes of the protein features. NUM_RES is allowed as a placeholder to be # replaced with the number of residues. FEATURES = { 'aatype': (tf.float32, [NUM_RES, 21]), 'alpha_mask': (tf.int64, [NUM_RES, 1]), 'alpha_positions': (tf.float32, [NUM_RES, 3]), 'beta_mask': (tf.int64, [NUM_RES, 1]), 'beta_positions': (tf.float32, [NUM_RES, 3]), 'between_segment_residues': (tf.int64, [NUM_RES, 1]), 'chain_name': (tf.string, [1]), 'deletion_probability': (tf.float32, [NUM_RES, 1]), 'domain_name': (tf.string, [1]), 'gap_matrix': (tf.float32, [NUM_RES, NUM_RES, 1]), 'hhblits_profile': (tf.float32, [NUM_RES, 22]), 'hmm_profile': (tf.float32, [NUM_RES, 30]), 'key': (tf.string, [1]), 'mutual_information': (tf.float32, [NUM_RES, NUM_RES, 1]), 'non_gapped_profile': (tf.float32, [NUM_RES, 21]), 'num_alignments': (tf.int64, [NUM_RES, 1]), 'num_effective_alignments': (tf.float32, [1]), 'phi_angles': (tf.float32, [NUM_RES, 1]), 'phi_mask': (tf.int64, [NUM_RES, 1]), 'profile': (tf.float32, [NUM_RES, 21]), 'profile_with_prior': (tf.float32, [NUM_RES, 22]), 'profile_with_prior_without_gaps': (tf.float32, [NUM_RES, 21]), 'pseudo_bias': (tf.float32, [NUM_RES, 22]), 'pseudo_frob': (tf.float32, [NUM_RES, NUM_RES, 1]), 'pseudolikelihood': (tf.float32, [NUM_RES, NUM_RES, 484]), 'psi_angles': (tf.float32, [NUM_RES, 1]), 'psi_mask': (tf.int64, [NUM_RES, 1]), 'residue_index': (tf.int64, [NUM_RES, 1]), 'resolution': (tf.float32, [1]), 'reweighted_profile': (tf.float32, [NUM_RES, 22]), 'sec_structure': (tf.int64, [NUM_RES, 8]), 'sec_structure_mask': (tf.int64, [NUM_RES, 1]), 'seq_length': (tf.int64, [NUM_RES, 1]), 'sequence': (tf.string, [1]), 'solv_surf': (tf.float32, [NUM_RES, 1]), 'solv_surf_mask': (tf.int64, [NUM_RES, 1]), 'superfamily': (tf.string, [1]), } FEATURE_TYPES = {k: v[0] for k, v in FEATURES.items()} FEATURE_SIZES = {k: v[1] for k, v in FEATURES.items()} def shape(feature_name, num_residues, features=None): """Get the shape for the given feature name. Args: feature_name: String identifier for the feature. If the feature name ends with "_unnormalized", theis suffix is stripped off. num_residues: The number of residues in the current domain - some elements of the shape can be dynamic and will be replaced by this value. features: A feature_name to (tf_dtype, shape) lookup; defaults to FEATURES. Returns: List of ints representation the tensor size. """ features = features or FEATURES if feature_name.endswith('_unnormalized'): feature_name = feature_name[:-13] unused_dtype, raw_sizes = features[feature_name] replacements = {NUM_RES: num_residues} sizes = [replacements.get(dimension, dimension) for dimension in raw_sizes] return sizes def dim(feature_name): """Determine the type of feature. Args: feature_name: String identifier for the feature to lookup. If the feature name ends with "_unnormalized", theis suffix is stripped off. Returns: A FeatureType enum describing whether the feature is of size num_res or num_res * num_res. Raises: ValueError: If the feature is of an unknown type. """ if feature_name.endswith('_unnormalized'): feature_name = feature_name[:-13] num_dims = len(FEATURE_SIZES[feature_name]) if num_dims == 1: return FeatureType.ZERO_DIM elif num_dims == 2 and FEATURE_SIZES[feature_name][0] == NUM_RES: return FeatureType.ONE_DIM elif num_dims == 3 and FEATURE_SIZES[feature_name][0] == NUM_RES: return FeatureType.TWO_DIM else: raise ValueError('Expect feature sizes to be 2 or 3, got %i' % len(FEATURE_SIZES[feature_name])) def _concat_or_zeros(tensor_list, axis, tensor_shape, name): """Concatenates the tensors if given, otherwise returns a tensor of zeros.""" if tensor_list: return tf.concat(tensor_list, axis=axis, name=name) return tf.zeros(tensor_shape, name=name + '_zeros') def parse_tfexample(raw_data, features): """Read a single TF Example proto and return a subset of its features. Args: raw_data: A serialized tf.Example proto. features: A dictionary of features, mapping string feature names to a tuple (dtype, shape). This dictionary should be a subset of protein_features.FEATURES (or the dictionary itself for all features). Returns: A dictionary of features mapping feature names to features. Only the given features are returned, all other ones are filtered out. """ feature_map = { k: tf.io.FixedLenSequenceFeature(shape=(), dtype=v[0], allow_missing=True) for k, v in features.items() } parsed_features = tf.io.parse_single_example(raw_data, feature_map) # Find out what is the number of sequences and the number of alignments. num_residues = tf.cast(parsed_features['seq_length'][0], dtype=tf.int32) # Reshape the tensors according to the sequence length and num alignments. for k, v in parsed_features.items(): new_shape = shape(feature_name=k, num_residues=num_residues) # Make sure the feature we are reshaping is not empty. assert_non_empty = tf.assert_greater( tf.size(v), 0, name='assert_%s_non_empty' % k, message='The feature %s is not set in the tf.Example. Either do not ' 'request the feature or use a tf.Example that has the feature set.' % k) with tf.control_dependencies([assert_non_empty]): parsed_features[k] = tf.reshape(v, new_shape, name='reshape_%s' % k) return parsed_features def create_tf_dataset(tf_record_filename, features): """Creates an instance of tf.data.Dataset backed by a protein dataset SSTable. Args: tf_record_filename: A string with filename of the TFRecord file. features: A list of strings of feature names to be returned in the dataset. Returns: A tf.data.Dataset object. Its items are dictionaries from feature names to feature values. """ # Make sure these features are always read. required_features = ['aatype', 'sequence', 'seq_length'] features = list(set(features) | set(required_features)) features = {name: FEATURES[name] for name in features} tf_dataset = tf.data.TFRecordDataset(filenames=[tf_record_filename]) tf_dataset = tf_dataset.map(lambda raw: parse_tfexample(raw, features)) return tf_dataset def normalize_from_stats_file( features, stats_file_path, feature_normalization, copy_unnormalized=None): """Normalizes the features set in the feature_normalization by the norm stats. Args: features: A dictionary mapping feature names to feature tensors. stats_file_path: A string with the path of the statistics JSON file. feature_normalization: A dictionary specifying the normalization type for each input feature. Acceptable values are 'std' and 'none'. If not specified default to 'none'. Any extra features that are not present in features will be ignored. copy_unnormalized: A list of features whose unnormalized copy should be added. For any feature F in this list a feature F + "_unnormalized" will be added in the output dictionary containing the unnormalized feature. This is useful if you have a feature you want to have both in desired_features (normalized) and also in desired_targets (unnormalized). See convert_to_legacy_proteins_dataset_format for more details. Returns: A dictionary mapping features names to feature tensors. The ones that were specified in feature_normalization will be normalized. Raises: ValueError: If an unknown normalization mode is used. """ with tf.io.gfile.GFile(stats_file_path, 'r') as f: norm_stats = json.loads(f.read()) if not copy_unnormalized: copy_unnormalized = [] # We need this unnormalized in convert_to_legacy_proteins_dataset_format. copy_unnormalized.append('num_alignments') for feature in copy_unnormalized: if feature in features: features[feature + '_unnormalized'] = features[feature] range_epsilon = 1e-12 for key, value in features.items(): if key not in feature_normalization or feature_normalization[key] == 'none': pass elif feature_normalization[key] == 'std': value = tf.cast(value, dtype=tf.float32) train_mean = tf.cast(norm_stats['mean'][key], dtype=tf.float32) train_range = tf.sqrt(tf.cast(norm_stats['var'][key], dtype=tf.float32)) value -= train_mean value = tf.where( train_range > range_epsilon, value / train_range, value) features[key] = value else: raise ValueError('Unknown normalization mode %s for feature %s.' % (feature_normalization[key], key)) return features def convert_to_legacy_proteins_dataset_format( features, desired_features, desired_scalars, desired_targets): """Converts the output of tf.Dataset to the legacy format. Args: features: A dictionary mapping feature names to feature tensors. desired_features: A list with the names of the desired features. These will be filtered out of features and returned in one of the inputs_1d or inputs_2d. The features concatenated in `inputs_1d`, `inputs_2d` will be concatenated in the same order as they were given in `desired_features`. desired_scalars: A list naming the desired scalars. These will be filtered out of features and returned in scalars. If features contain an unnormalized version of a desired scalar, it will be used. desired_targets: A list naming the desired targets. These will be filtered out of features and returned in targets. If features contain an unnormalized version of a desired target, it will be used. Returns: A _ProteinDescription namedtuple consisting of: sequence_length: A scalar int32 tensor with the sequence length. key: A string tensor with the sequence key or empty if not set features. sequences: A string tensor with the protein sequence. inputs_1d: All 1D features in a single tensor of shape [num_res, 1d_channels]. inputs_2d: All 2D features in a single tensor of shape [num_res, num_res, 2d_channels]. inputs_2d_diagonal: All 2D diagonal features in a single tensor of shape [num_res, num_res, 2d_diagonal_channels]. If no diagonal features found in features, the tensor will be set to inputs_2d. crops: A int32 tensor with the crop poisitions. If not set in features, it will be set to [0, num_res, 0, num_res]. scalars: All requested scalar tensors in a list. targets: All requested target tensors in a list. Raises: ValueError: If the feature size is invalid. """ tensors_1d = [] tensors_2d = [] tensors_2d_diagonal = [] for key in desired_features: # Determine if the feature is 1D or 2D. feature_dim = dim(key) if feature_dim == FeatureType.ONE_DIM: tensors_1d.append(tf.cast(features[key], dtype=tf.float32)) elif feature_dim == FeatureType.TWO_DIM: if key not in features: if not(key + '_cropped' in features and key + '_diagonal' in features): raise ValueError( 'The 2D feature %s is not in the features dictionary and neither ' 'are its cropped and diagonal versions.' % key) else: tensors_2d.append( tf.cast(features[key + '_cropped'], dtype=tf.float32)) tensors_2d_diagonal.append( tf.cast(features[key + '_diagonal'], dtype=tf.float32)) else: tensors_2d.append(tf.cast(features[key], dtype=tf.float32)) else: raise ValueError('Unexpected FeatureType returned: %s' % str(feature_dim)) # Determine num_res from the sequence as seq_length was possibly normalized. num_res = tf.strings.length(features['sequence'])[0] # Concatenate feature tensors into a single tensor inputs_1d = _concat_or_zeros( tensors_1d, axis=1, tensor_shape=[num_res, 0], name='inputs_1d_concat') inputs_2d = _concat_or_zeros( tensors_2d, axis=2, tensor_shape=[num_res, num_res, 0], name='inputs_2d_concat') if tensors_2d_diagonal: # The legacy dataset outputs the two diagonal crops stacked # A1, B1, C1, A2, B2, C2. So convert the A1, A2, B1, B2, C1, C2 format. diagonal_crops1 = [t[:, :, :(t.shape[2] // 2)] for t in tensors_2d_diagonal] diagonal_crops2 = [t[:, :, (t.shape[2] // 2):] for t in tensors_2d_diagonal] inputs_2d_diagonal = tf.concat(diagonal_crops1 + diagonal_crops2, axis=2) else: inputs_2d_diagonal = inputs_2d sequence = features['sequence'] sequence_key = features.get('key', tf.constant(['']))[0] if 'crops' in features: crops = features['crops'] else: crops = tf.stack([0, tf.shape(sequence)[0], 0, tf.shape(sequence)[0]]) scalar_tensors = [] for key in desired_scalars: scalar_tensors.append(features.get(key + '_unnormalized', features[key])) target_tensors = [] for key in desired_targets: target_tensors.append(features.get(key + '_unnormalized', features[key])) scalar_class = collections.namedtuple('_ScalarClass', desired_scalars) target_class = collections.namedtuple('_TargetClass', desired_targets) return _ProteinDescription( sequence_lengths=num_res, key=sequence_key, sequences=sequence, inputs_1d=inputs_1d, inputs_2d=inputs_2d, inputs_2d_diagonal=inputs_2d_diagonal, crops=crops, scalars=scalar_class(*scalar_tensors), targets=target_class(*target_tensors))
deepmind-research-master
alphafold_casp13/contacts_dataset.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Combines predictions by pasting.""" import os from absl import app from absl import flags from absl import logging import numpy as np import six import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import distogram_io from alphafold_casp13 import parsers flags.DEFINE_string("pickle_input_dir", None, "Directory to read pickle distance histogram files from.") flags.DEFINE_string("output_dir", None, "Directory to write chain RR files to.") flags.DEFINE_string("tfrecord_path", "", "If provided, construct the average weighted by number of " "alignments.") flags.DEFINE_string("crop_sizes", "64,128,256", "The crop sizes to use.") flags.DEFINE_integer("crop_step", 32, "The step size for cropping.") FLAGS = flags.FLAGS def generate_domains(target, sequence, crop_sizes, crop_step): """Take fasta files and generate a domain definition for data generation.""" logging.info("Generating crop domains for target %s", target) windows = [int(x) for x in crop_sizes.split(",")] num_residues = len(sequence) domains = [] domains.append({"name": target, "description": (1, num_residues)}) for window in windows: starts = list(range(0, num_residues - window, crop_step)) # Append a last crop to ensure we get all the way to the end of the # sequence, even when num_residues - window is not divisible by crop_step. if num_residues >= window: starts += [num_residues - window] for start in starts: name = "%s-l%i_s%i" % (target, window, start) domains.append({"name": name, "description": (start + 1, start + window)}) return domains def get_weights(path): """Fetch all the weights from a TFRecord.""" if not path: return {} logging.info("Getting weights from %s", path) weights = {} record_iterator = tf.python_io.tf_record_iterator(path=path) for serialized_tfexample in record_iterator: example = tf.train.Example() example.ParseFromString(serialized_tfexample) domain_name = six.ensure_str( example.features.feature["domain_name"].bytes_list.value[0]) weights[domain_name] = float( example.features.feature["num_alignments"].int64_list.value[0]) logging.info("Weight %s: %d", domain_name, weights[domain_name]) logging.info("Loaded %d weights", len(weights)) return weights def paste_distance_histograms( input_dir, output_dir, weights, crop_sizes, crop_step): """Paste together distograms for given domains of given targets and write. Domains distance histograms are 'pasted', meaning they are substituted directly into the contact map. The order is determined by the order in the domain definition file. Args: input_dir: String, path to directory containing chain and domain-level distogram files. output_dir: String, path to directory to write out chain-level distrogram files. weights: A dictionary with weights. crop_sizes: The crop sizes. crop_step: The step size for cropping. Raises: ValueError: if histogram parameters don't match. """ tf.io.gfile.makedirs(output_dir) targets = tf.io.gfile.glob(os.path.join(input_dir, "*.pickle")) targets = [os.path.splitext(os.path.basename(t))[0] for t in targets] targets = set([t.split("-")[0] for t in targets]) logging.info("Pasting distance histograms for %d targets", len(targets)) for target in sorted(targets): logging.info("%s as chain", target) chain_pickle_path = os.path.join(input_dir, "%s.pickle" % target) distance_histogram_dict = parsers.parse_distance_histogram_dict( chain_pickle_path) combined_cmap = np.array(distance_histogram_dict["probs"]) # Make the counter map 1-deep but still rank 3. counter_map = np.ones_like(combined_cmap[:, :, 0:1]) sequence = distance_histogram_dict["sequence"] target_domains = generate_domains( target=target, sequence=sequence, crop_sizes=crop_sizes, crop_step=crop_step) # Paste in each domain. for domain in sorted(target_domains, key=lambda x: x["name"]): if domain["name"] == target: logging.info("Skipping %s as domain", target) continue if "," in domain["description"]: logging.info("Skipping multisegment domain %s", domain["name"]) continue crop_start, crop_end = domain["description"] domain_pickle_path = os.path.join(input_dir, "%s.pickle" % domain["name"]) weight = weights.get(domain["name"], 1e9) logging.info("Pasting %s: %d-%d. weight: %f", domain_pickle_path, crop_start, crop_end, weight) domain_distance_histogram_dict = parsers.parse_distance_histogram_dict( domain_pickle_path) for field in ["num_bins", "min_range", "max_range"]: if domain_distance_histogram_dict[field] != distance_histogram_dict[ field]: raise ValueError("Field {} does not match {} {}".format( field, domain_distance_histogram_dict[field], distance_histogram_dict[field])) weight_matrix_size = crop_end - crop_start + 1 weight_matrix = np.ones( (weight_matrix_size, weight_matrix_size), dtype=np.float32) * weight combined_cmap[crop_start - 1:crop_end, crop_start - 1:crop_end, :] += ( domain_distance_histogram_dict["probs"] * np.expand_dims(weight_matrix, 2)) counter_map[crop_start - 1:crop_end, crop_start - 1:crop_end, 0] += weight_matrix # Broadcast across the histogram bins. combined_cmap /= counter_map # Write out full-chain cmap for folding. output_chain_pickle_path = os.path.join(output_dir, "{}.pickle".format(target)) logging.info("Writing to %s", output_chain_pickle_path) distance_histogram_dict["probs"] = combined_cmap distance_histogram_dict["target"] = target # Save the distogram pickle file. distogram_io.save_distance_histogram_from_dict( output_chain_pickle_path, distance_histogram_dict) # Compute the contact map and save it as an RR file. contact_probs = distogram_io.contact_map_from_distogram( distance_histogram_dict) rr_path = os.path.join(output_dir, "%s.rr" % target) distogram_io.save_rr_file( filename=rr_path, probs=contact_probs, domain=target, sequence=distance_histogram_dict["sequence"]) def main(argv): del argv # Unused. flags.mark_flag_as_required("pickle_input_dir") weights = get_weights(FLAGS.tfrecord_path) paste_distance_histograms( FLAGS.pickle_input_dir, FLAGS.output_dir, weights, FLAGS.crop_sizes, FLAGS.crop_step) if __name__ == "__main__": app.run(main)
deepmind-research-master
alphafold_casp13/paste_contact_maps.py
# Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Network for predicting C-beta contacts.""" from absl import logging import sonnet import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from alphafold_casp13 import asa_output from alphafold_casp13 import secstruct from alphafold_casp13 import two_dim_convnet from alphafold_casp13 import two_dim_resnet def call_on_tuple(f): """Unpacks a tuple input parameter into arguments for a function f. Mimics tuple unpacking in lambdas, which existed in Python 2 but has been removed in Python 3. Args: f: A function taking multiple arguments. Returns: A function equivalent to f accepting a tuple, which is then unpacked. """ return lambda args: f(*args) class ContactsNet(sonnet.AbstractModule): """A network to go from sequence to distance histograms.""" def __init__(self, binary_code_bits, data_format, distance_multiplier, features, features_forward, max_range, min_range, num_bins, reshape_layer, resolution_noise_scale, scalars, targets, network_2d_deep, torsion_bins=None, skip_connect=0, position_specific_bias_size=0, filters_1d=(), collapsed_batch_norm=False, is_ca_feature=False, asa_multiplier=0.0, secstruct_multiplier=0.0, torsion_multiplier=0.0, name='contacts_net'): """Construct position prediction network.""" super(ContactsNet, self).__init__(name=name) self._filters_1d = filters_1d self._collapsed_batch_norm = collapsed_batch_norm self._is_ca_feature = is_ca_feature self._binary_code_bits = binary_code_bits self._data_format = data_format self._distance_multiplier = distance_multiplier self._features = features self._features_forward = features_forward self._max_range = max_range self._min_range = min_range self._num_bins = num_bins self._position_specific_bias_size = position_specific_bias_size self._reshape_layer = reshape_layer self._resolution_noise_scale = resolution_noise_scale self._scalars = scalars self._torsion_bins = torsion_bins self._skip_connect = skip_connect self._targets = targets self._network_2d_deep = network_2d_deep self.asa_multiplier = asa_multiplier self.secstruct_multiplier = secstruct_multiplier self.torsion_multiplier = torsion_multiplier with self._enter_variable_scope(): if self.secstruct_multiplier > 0: self._secstruct = secstruct.Secstruct() if self.asa_multiplier > 0: self._asa = asa_output.ASAOutputLayer() if self._position_specific_bias_size: self._position_specific_bias = tf.get_variable( 'position_specific_bias', [self._position_specific_bias_size, self._num_bins or 1], initializer=tf.zeros_initializer()) def quant_threshold(self, threshold=8.0): """Find the bin that is 8A+: we sum mass below this bin gives contact prob. Args: threshold: The distance threshold. Returns: Index of bin. """ # Note that this misuses the max_range as the range. return int( (threshold - self._min_range) * self._num_bins / float(self._max_range)) def _build(self, crop_size_x=0, crop_size_y=0, placeholders=None): """Puts the network into the graph. Args: crop_size_x: Crop a chunk out in one dimension. 0 means no cropping. crop_size_y: Crop a chunk out in one dimension. 0 means no cropping. placeholders: A dict containing the placeholders needed. Returns: A Tensor with logits of size [batch_size, num_residues, 3]. """ crop_placeholder = placeholders['crop_placeholder'] inputs_1d = placeholders['inputs_1d_placeholder'] if self._is_ca_feature and 'aatype' in self._features: logging.info('Collapsing aatype to is_ca_feature %s', inputs_1d.shape.as_list()[-1]) assert inputs_1d.shape.as_list()[-1] <= 21 + ( 1 if 'seq_length' in self._features else 0) inputs_1d = inputs_1d[:, :, 7:8] logits = self.compute_outputs( inputs_1d=inputs_1d, residue_index=placeholders['residue_index_placeholder'], inputs_2d=placeholders['inputs_2d_placeholder'], crop_x=crop_placeholder[:, 0:2], crop_y=crop_placeholder[:, 2:4], use_on_the_fly_stats=True, crop_size_x=crop_size_x, crop_size_y=crop_size_y, data_format='NHWC', # Force NHWC for evals. ) return logits def compute_outputs(self, inputs_1d, residue_index, inputs_2d, crop_x, crop_y, use_on_the_fly_stats, crop_size_x, crop_size_y, data_format='NHWC'): """Given the inputs for a block, compute the network outputs.""" hidden_1d = inputs_1d hidden_1d_list = [hidden_1d] if len(hidden_1d_list) != 1: hidden_1d = tf.concat(hidden_1d_list, 2) output_dimension = self._num_bins or 1 if self._distance_multiplier > 0: output_dimension += 1 logits, activations = self._build_2d_embedding( hidden_1d=hidden_1d, residue_index=residue_index, inputs_2d=inputs_2d, output_dimension=output_dimension, use_on_the_fly_stats=use_on_the_fly_stats, crop_x=crop_x, crop_y=crop_y, crop_size_x=crop_size_x, crop_size_y=crop_size_y, data_format=data_format) logits = tf.debugging.check_numerics( logits, 'NaN in resnet activations', name='resnet_activations') if (self.secstruct_multiplier > 0 or self.asa_multiplier > 0 or self.torsion_multiplier > 0): # Make a 1d embedding by reducing the 2D activations. # We do this in the x direction and the y direction separately. collapse_dim = 1 join_dim = -1 embedding_1d = tf.concat( # First targets are crop_x (axis 2) which we must reduce on axis 1 [tf.concat([tf.reduce_max(activations, axis=collapse_dim), tf.reduce_mean(activations, axis=collapse_dim)], axis=join_dim), # Next targets are crop_y (axis 1) which we must reduce on axis 2 tf.concat([tf.reduce_max(activations, axis=collapse_dim+1), tf.reduce_mean(activations, axis=collapse_dim+1)], axis=join_dim)], axis=collapse_dim) # Join the two crops together. if self._collapsed_batch_norm: embedding_1d = tf.contrib.layers.batch_norm( embedding_1d, is_training=use_on_the_fly_stats, fused=True, decay=0.999, scope='collapsed_batch_norm', data_format='NHWC') for i, nfil in enumerate(self._filters_1d): embedding_1d = tf.contrib.layers.fully_connected( embedding_1d, num_outputs=nfil, normalizer_fn=( tf.contrib.layers.batch_norm if self._collapsed_batch_norm else None), normalizer_params={'is_training': use_on_the_fly_stats, 'updates_collections': None}, scope='collapsed_embed_%d' % i) if self.torsion_multiplier > 0: self.torsion_logits = tf.contrib.layers.fully_connected( embedding_1d, num_outputs=self._torsion_bins * self._torsion_bins, activation_fn=None, scope='torsion_logits') self.torsion_output = tf.nn.softmax(self.torsion_logits) if self.secstruct_multiplier > 0: self._secstruct.make_layer_new(embedding_1d) if self.asa_multiplier > 0: self.asa_logits = self._asa.compute_asa_output(embedding_1d) return logits @staticmethod def _concatenate_2d(hidden_1d, residue_index, hidden_2d, crop_x, crop_y, binary_code_bits, crop_size_x, crop_size_y): # Form the pairwise expansion of the 1D embedding # And the residue offsets and (one) absolute position. with tf.name_scope('Features2D'): range_scale = 100.0 # Crude normalization factor. n = tf.shape(hidden_1d)[1] # pylint: disable=g-long-lambda hidden_1d_cropped_y = tf.map_fn( call_on_tuple(lambda c, h: tf.pad( h[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_y -(n - c[0]))], [0, 0]])), elems=(crop_y, hidden_1d), dtype=tf.float32, back_prop=True) range_n_y = tf.map_fn( call_on_tuple(lambda ri, c: tf.pad( ri[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_y -(n - c[0]))]])), elems=(residue_index, crop_y), dtype=tf.int32, back_prop=False) hidden_1d_cropped_x = tf.map_fn( call_on_tuple(lambda c, h: tf.pad( h[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_x -(n - c[0]))], [0, 0]])), elems=(crop_x, hidden_1d), dtype=tf.float32, back_prop=True) range_n_x = tf.map_fn( call_on_tuple(lambda ri, c: tf.pad( ri[tf.maximum(0, c[0]):c[1]], [[tf.maximum(0, -c[0]), tf.maximum(0, crop_size_x -(n - c[0]))]])), elems=(residue_index, crop_x), dtype=tf.int32, back_prop=False) # pylint: enable=g-long-lambda n_x = crop_size_x n_y = crop_size_y offset = (tf.expand_dims(tf.cast(range_n_x, tf.float32), 1) - tf.expand_dims(tf.cast(range_n_y, tf.float32), 2)) / range_scale position_features = [ tf.tile( tf.reshape( (tf.cast(range_n_y, tf.float32) - range_scale) / range_scale, [-1, n_y, 1, 1]), [1, 1, n_x, 1], name='TileRange'), tf.tile( tf.reshape(offset, [-1, n_y, n_x, 1]), [1, 1, 1, 1], name='TileOffset') ] channels = 2 if binary_code_bits: # Binary coding of position. exp_range_n_y = tf.expand_dims(range_n_y, 2) bin_y = tf.stop_gradient( tf.concat([tf.math.floormod(exp_range_n_y // (1 << i), 2) for i in range(binary_code_bits)], 2)) exp_range_n_x = tf.expand_dims(range_n_x, 2) bin_x = tf.stop_gradient( tf.concat([tf.math.floormod(exp_range_n_x // (1 << i), 2) for i in range(binary_code_bits)], 2)) position_features += [ tf.tile( tf.expand_dims(tf.cast(bin_y, tf.float32), 2), [1, 1, n_x, 1], name='TileBinRangey'), tf.tile( tf.expand_dims(tf.cast(bin_x, tf.float32), 1), [1, n_y, 1, 1], name='TileBinRangex') ] channels += 2 * binary_code_bits augmentation_features = position_features + [ tf.tile(tf.expand_dims(hidden_1d_cropped_x, 1), [1, n_y, 1, 1], name='Tile1Dx'), tf.tile(tf.expand_dims(hidden_1d_cropped_y, 2), [1, 1, n_x, 1], name='Tile1Dy')] channels += 2 * hidden_1d.shape.as_list()[-1] channels += hidden_2d.shape.as_list()[-1] hidden_2d = tf.concat( [hidden_2d] + augmentation_features, 3, name='Stack2Dfeatures') logging.info('2d stacked features are depth %d %s', channels, hidden_2d) hidden_2d.set_shape([None, None, None, channels]) return hidden_2d def _build_2d_embedding(self, hidden_1d, residue_index, inputs_2d, output_dimension, use_on_the_fly_stats, crop_x, crop_y, crop_size_x, crop_size_y, data_format): """Returns NHWC logits and NHWC preactivations.""" logging.info('2d %s %s', inputs_2d, data_format) # Stack with diagonal has already happened. inputs_2d_cropped = inputs_2d features_forward = None hidden_2d = inputs_2d_cropped hidden_2d = self._concatenate_2d( hidden_1d, residue_index, hidden_2d, crop_x, crop_y, self._binary_code_bits, crop_size_x, crop_size_y) config_2d_deep = self._network_2d_deep num_features = hidden_2d.shape.as_list()[3] if data_format == 'NCHW': logging.info('NCHW shape deep pre %s', hidden_2d) hidden_2d = tf.transpose(hidden_2d, perm=[0, 3, 1, 2]) hidden_2d.set_shape([None, num_features, None, None]) logging.info('NCHW shape deep post %s', hidden_2d) layers_forward = None if config_2d_deep.extra_blocks: # Optionally put some extra double-size blocks at the beginning. with tf.variable_scope('Deep2DExtra'): hidden_2d = two_dim_resnet.make_two_dim_resnet( input_node=hidden_2d, num_residues=None, # Unused num_features=num_features, num_predictions=2 * config_2d_deep.num_filters, num_channels=2 * config_2d_deep.num_filters, num_layers=config_2d_deep.extra_blocks * config_2d_deep.num_layers_per_block, filter_size=3, batch_norm=config_2d_deep.use_batch_norm, is_training=use_on_the_fly_stats, fancy=True, final_non_linearity=True, atrou_rates=[1, 2, 4, 8], data_format=data_format, dropout_keep_prob=1.0 ) num_features = 2 * config_2d_deep.num_filters if self._skip_connect: layers_forward = hidden_2d if features_forward is not None: hidden_2d = tf.concat([hidden_2d, features_forward], 1 if data_format == 'NCHW' else 3) with tf.variable_scope('Deep2D'): logging.info('2d hidden shape is %s', str(hidden_2d.shape.as_list())) contact_pre_logits = two_dim_resnet.make_two_dim_resnet( input_node=hidden_2d, num_residues=None, # Unused num_features=num_features, num_predictions=(config_2d_deep.num_filters if self._reshape_layer else output_dimension), num_channels=config_2d_deep.num_filters, num_layers=config_2d_deep.num_blocks * config_2d_deep.num_layers_per_block, filter_size=3, batch_norm=config_2d_deep.use_batch_norm, is_training=use_on_the_fly_stats, fancy=True, final_non_linearity=self._reshape_layer, atrou_rates=[1, 2, 4, 8], data_format=data_format, dropout_keep_prob=1.0 ) contact_logits = self._output_from_pre_logits( contact_pre_logits, features_forward, layers_forward, output_dimension, data_format, crop_x, crop_y, use_on_the_fly_stats) if data_format == 'NCHW': contact_pre_logits = tf.transpose(contact_pre_logits, perm=[0, 2, 3, 1]) # Both of these will be NHWC return contact_logits, contact_pre_logits def _output_from_pre_logits(self, contact_pre_logits, features_forward, layers_forward, output_dimension, data_format, crop_x, crop_y, use_on_the_fly_stats): """Given pre-logits, compute the final distogram/contact activations.""" config_2d_deep = self._network_2d_deep if self._reshape_layer: in_channels = config_2d_deep.num_filters concat_features = [contact_pre_logits] if features_forward is not None: concat_features.append(features_forward) in_channels += self._features_forward if layers_forward is not None: concat_features.append(layers_forward) in_channels += 2 * config_2d_deep.num_filters if len(concat_features) > 1: contact_pre_logits = tf.concat(concat_features, 1 if data_format == 'NCHW' else 3) contact_logits = two_dim_convnet.make_conv_layer( contact_pre_logits, in_channels=in_channels, out_channels=output_dimension, layer_name='output_reshape_1x1h', filter_size=1, filter_size_2=1, non_linearity=False, batch_norm=config_2d_deep.use_batch_norm, is_training=use_on_the_fly_stats, data_format=data_format) else: contact_logits = contact_pre_logits if data_format == 'NCHW': contact_logits = tf.transpose(contact_logits, perm=[0, 2, 3, 1]) if self._position_specific_bias_size: # Make 2D pos-specific biases: NHWC. biases = build_crops_biases( self._position_specific_bias_size, self._position_specific_bias, crop_x, crop_y, back_prop=True) contact_logits += biases # Will be NHWC. return contact_logits def update_crop_fetches(self, fetches): """Add auxiliary outputs for a crop to the fetches.""" if self.secstruct_multiplier > 0: fetches['secstruct_probs'] = self._secstruct.get_q8_probs() if self.asa_multiplier > 0: fetches['asa_output'] = self._asa.asa_output if self.torsion_multiplier > 0: fetches['torsion_probs'] = self.torsion_output def build_crops_biases(bias_size, raw_biases, crop_x, crop_y, back_prop): """Take the offset-specific biases and reshape them to match current crops. Args: bias_size: how many bias variables we're storing. raw_biases: the bias variable crop_x: B x 2 array of start/end for the batch crop_y: B x 2 array of start/end for the batch back_prop: whether to backprop through the map_fn. Returns: Reshaped biases. """ # First pad the biases with a copy of the final value to the maximum length. max_off_diag = tf.reduce_max( tf.maximum(tf.abs(crop_x[:, 1] - crop_y[:, 0]), tf.abs(crop_y[:, 1] - crop_x[:, 0]))) padded_bias_size = tf.maximum(bias_size, max_off_diag) biases = tf.concat( [raw_biases, tf.tile(raw_biases[-1:, :], [padded_bias_size - bias_size, 1])], axis=0) # Now prepend a mirror image (excluding 0th elt) for below-diagonal. biases = tf.concat([tf.reverse(biases[1:, :], axis=[0]), biases], axis=0) # Which diagonal of the full matrix each crop starts on (top left): start_diag = crop_x[:, 0:1] - crop_y[:, 0:1] # B x 1 crop_size_x = tf.reduce_max(crop_x[:, 1] - crop_x[:, 0]) crop_size_y = tf.reduce_max(crop_y[:, 1] - crop_y[:, 0]) # Relative offset of each row within a crop: # (off-diagonal decreases as y increases) increment = tf.expand_dims(-tf.range(0, crop_size_y), 0) # 1 x crop_size_y # Index of diagonal of first element of each row, flattened. row_offsets = tf.reshape(start_diag + increment, [-1]) # B*crop_size_y logging.info('row_offsets %s', row_offsets) # Make it relative to the start of the biases array. (0-th diagonal is in # the middle at position padded_bias_size - 1) row_offsets += padded_bias_size - 1 # Map_fn to build the individual rows. # B*cropsizey x cropsizex x num_bins cropped_biases = tf.map_fn(lambda i: biases[i:i+crop_size_x, :], elems=row_offsets, dtype=tf.float32, back_prop=back_prop) logging.info('cropped_biases %s', cropped_biases) return tf.reshape( cropped_biases, [-1, crop_size_y, crop_size_x, tf.shape(raw_biases)[-1]])
deepmind-research-master
alphafold_casp13/contacts_network.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `bernoulli.py`.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax import jax.numpy as jnp import numpy as np import tree from gated_linear_networks import bernoulli def _get_dataset(input_size, batch_size=None): """Get mock dataset.""" if batch_size: inputs = jnp.ones([batch_size, input_size]) side_info = jnp.ones([batch_size, input_size]) targets = jnp.ones([batch_size]) else: inputs = jnp.ones([input_size]) side_info = jnp.ones([input_size]) targets = jnp.ones([]) return inputs, side_info, targets class GatedLinearNetworkTest(parameterized.TestCase): # TODO(b/170843789): Factor out common test utilities. def setUp(self): super(GatedLinearNetworkTest, self).setUp() self._name = "test_network" self._rng = hk.PRNGSequence(jax.random.PRNGKey(42)) self._output_sizes = (4, 5, 6) self._context_dim = 2 def gln_factory(): return bernoulli.GatedLinearNetwork( output_sizes=self._output_sizes, context_dim=self._context_dim, name=self._name) def inference_fn(inputs, side_info): return gln_factory().inference(inputs, side_info) def batch_inference_fn(inputs, side_info): return jax.vmap(inference_fn, in_axes=(0, 0))(inputs, side_info) def update_fn(inputs, side_info, label, learning_rate): params, predictions, unused_loss = gln_factory().update( inputs, side_info, label, learning_rate) return predictions, params def batch_update_fn(inputs, side_info, label, learning_rate): predictions, params = jax.vmap( update_fn, in_axes=(0, 0, 0, None))(inputs, side_info, label, learning_rate) avg_params = tree.map_structure(lambda x: jnp.mean(x, axis=0), params) return predictions, avg_params # Haiku transform functions. self._init_fn, inference_fn_ = hk.without_apply_rng( hk.transform_with_state(inference_fn)) self._batch_init_fn, batch_inference_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_inference_fn)) _, update_fn_ = hk.without_apply_rng(hk.transform_with_state(update_fn)) _, batch_update_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_update_fn)) self._inference_fn = jax.jit(inference_fn_) self._batch_inference_fn = jax.jit(batch_inference_fn_) self._update_fn = jax.jit(update_fn_) self._batch_update_fn = jax.jit(batch_update_fn_) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_shapes(self, batch_size): """Test shapes in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn input_size = 10 inputs, side_info, _ = _get_dataset(input_size, batch_size) input_size = inputs.shape[-1] # Initialize network. gln_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Test shapes of parameters layer-wise. layer_input_size = input_size for layer_idx, output_size in enumerate(self._output_sizes): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) weights = gln_params[name]["weights"] expected_shape = (output_size, 2**self._context_dim, layer_input_size + 1) self.assertEqual(weights.shape, expected_shape) layer_input_size = output_size # Test shape of output. output_size = sum(self._output_sizes) predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) expected_shape = (batch_size, output_size) if batch_size else (output_size,) self.assertEqual(predictions.shape, expected_shape) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_update(self, batch_size): """Test network updates in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn update_fn = self._update_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn update_fn = self._batch_update_fn input_size = 10 inputs, side_info, targets = _get_dataset(input_size, batch_size) # Initialize network. initial_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Initial predictions. initial_predictions, _ = inference_fn(initial_params, gln_state, inputs, side_info) # Test that params remain valid after consecutive updates. gln_params = initial_params for _ in range(3): (_, gln_params), gln_state = update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-4) # Check updated weights layer-wise. for layer_idx in range(len(self._output_sizes)): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) initial_weights = initial_params[name]["weights"] new_weights = gln_params[name]["weights"] # Shape consistency. self.assertEqual(new_weights.shape, initial_weights.shape) # Check that different weights yield different predictions. new_predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) self.assertFalse(np.array_equal(new_predictions, initial_predictions)) def test_batch_consistency(self): """Test consistency between online and batch updates.""" input_size = 10 batch_size = 3 inputs, side_info, targets = _get_dataset(input_size, batch_size) # Initialize network. gln_params, gln_state = self._batch_init_fn( next(self._rng), inputs, side_info) test_layer = "{}/~/{}_layer_0".format(self._name, self._name) for _ in range(10): # Update on full batch. (expected_predictions, expected_params), _ = self._batch_update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-3) # Average updates across batch and check equivalence. accum_predictions = [] accum_weights = [] for inputs_, side_info_, targets_ in zip(inputs, side_info, targets): (predictions, params), _ = self._update_fn( gln_params, gln_state, inputs_, side_info_, targets_, learning_rate=1e-3) accum_predictions.append(predictions) accum_weights.append(params[test_layer]["weights"]) # Check prediction equivalence. actual_predictions = np.stack(accum_predictions, axis=0) np.testing.assert_array_almost_equal(actual_predictions, expected_predictions) # Check weight equivalence. actual_weights = np.mean(np.stack(accum_weights, axis=0), axis=0) expected_weights = expected_params[test_layer]["weights"] np.testing.assert_array_almost_equal(actual_weights, expected_weights) gln_params = expected_params if __name__ == "__main__": absltest.main()
deepmind-research-master
gated_linear_networks/bernoulli_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bernoulli Gated Linear Network.""" from typing import List, Text, Tuple import chex import jax import jax.numpy as jnp import rlax import tensorflow_probability as tfp from gated_linear_networks import base tfp = tfp.experimental.substrates.jax tfd = tfp.distributions Array = chex.Array GLN_EPS = 0.01 MAX_WEIGHT = 200. class GatedLinearNetwork(base.GatedLinearNetwork): """Bernoulli Gated Linear Network.""" def __init__(self, output_sizes: List[int], context_dim: int, name: Text = "bernoulli_gln"): """Initialize a Bernoulli GLN.""" super(GatedLinearNetwork, self).__init__( output_sizes, context_dim, inference_fn=GatedLinearNetwork._inference_fn, update_fn=GatedLinearNetwork._update_fn, init=jnp.zeros, dtype=jnp.float32, name=name) def _add_bias(self, inputs): return jnp.append(inputs, rlax.sigmoid(1.)) @staticmethod def _inference_fn( inputs: Array, # [input_size] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, input_size] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] ) -> Array: """Inference step for a single Beurnolli neuron.""" weight_index = GatedLinearNetwork._compute_context(side_info, hyperplanes, hyperplane_bias) used_weights = weights[weight_index] inputs = rlax.logit(jnp.clip(inputs, GLN_EPS, 1. - GLN_EPS)) prediction = rlax.sigmoid(jnp.dot(used_weights, inputs)) return prediction @staticmethod def _update_fn( inputs: Array, # [input_size] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, num_features] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] target: Array, # [] learning_rate: float, ) -> Tuple[Array, Array, Array]: """Update step for a single Bernoulli neuron.""" def log_loss_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias, target): """Log loss for a single Bernoulli neuron.""" prediction = GatedLinearNetwork._inference_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias) prediction = jnp.clip(prediction, GLN_EPS, 1. - GLN_EPS) return rlax.log_loss(prediction, target), prediction grad_log_loss = jax.value_and_grad(log_loss_fn, argnums=2, has_aux=True) ((log_loss, prediction), dloss_dweights) = grad_log_loss(inputs, side_info, weights, hyperplanes, hyperplane_bias, target) delta_weights = learning_rate * dloss_dweights new_weights = jnp.clip(weights - delta_weights, -MAX_WEIGHT, MAX_WEIGHT) return new_weights, prediction, log_loss class LastNeuronAggregator(base.LastNeuronAggregator): """Bernoulli last neuron aggregator, implemented by the super class.""" pass
deepmind-research-master
gated_linear_networks/bernoulli.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `gaussian.py`.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax import jax.numpy as jnp import numpy as np import tree from gated_linear_networks import gaussian def _get_dataset(input_size, batch_size=None): """Get mock dataset.""" if batch_size: inputs = jnp.ones([batch_size, input_size, 2]) side_info = jnp.ones([batch_size, input_size]) targets = 0.8 * jnp.ones([batch_size]) else: inputs = jnp.ones([input_size, 2]) side_info = jnp.ones([input_size]) targets = jnp.ones([]) return inputs, side_info, targets class UtilsTest(absltest.TestCase): def test_packing_identity(self): mu = jnp.array([1., 2., 3., 4., 5.]) sigma_sq = jnp.array([6., 7., 8., 9., 10.]) mu_2, sigma_sq_2 = gaussian._unpack_inputs( gaussian._pack_inputs(mu, sigma_sq)) np.testing.assert_array_equal(mu, mu_2) np.testing.assert_array_equal(sigma_sq, sigma_sq_2) class GatedLinearNetworkTest(parameterized.TestCase): # TODO(b/170843789): Factor out common test utilities. def setUp(self): super(GatedLinearNetworkTest, self).setUp() self._name = "test_network" self._rng = hk.PRNGSequence(jax.random.PRNGKey(42)) self._output_sizes = (4, 5, 6) self._context_dim = 2 self._bias_len = 3 def gln_factory(): return gaussian.GatedLinearNetwork( output_sizes=self._output_sizes, context_dim=self._context_dim, bias_len=self._bias_len, name=self._name, ) def inference_fn(inputs, side_info): return gln_factory().inference(inputs, side_info, 0.5) def batch_inference_fn(inputs, side_info): return jax.vmap(inference_fn, in_axes=(0, 0))(inputs, side_info) def update_fn(inputs, side_info, label, learning_rate): params, predictions, unused_loss = gln_factory().update( inputs, side_info, label, learning_rate, 0.5) return predictions, params def batch_update_fn(inputs, side_info, label, learning_rate): predictions, params = jax.vmap( update_fn, in_axes=(0, 0, 0, None))( inputs, side_info, label, learning_rate) avg_params = tree.map_structure(lambda x: jnp.mean(x, axis=0), params) return predictions, avg_params # Haiku transform functions. self._init_fn, inference_fn_ = hk.without_apply_rng( hk.transform_with_state(inference_fn)) self._batch_init_fn, batch_inference_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_inference_fn)) _, update_fn_ = hk.without_apply_rng(hk.transform_with_state(update_fn)) _, batch_update_fn_ = hk.without_apply_rng( hk.transform_with_state(batch_update_fn)) self._inference_fn = jax.jit(inference_fn_) self._batch_inference_fn = jax.jit(batch_inference_fn_) self._update_fn = jax.jit(update_fn_) self._batch_update_fn = jax.jit(batch_update_fn_) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_shapes(self, batch_size): """Test shapes in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn input_size = 10 inputs, side_info, _ = _get_dataset(input_size, batch_size) # Initialize network. gln_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Test shapes of parameters layer-wise. layer_input_size = input_size for layer_idx, output_size in enumerate(self._output_sizes): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) weights = gln_params[name]["weights"] expected_shape = (output_size, 2**self._context_dim, layer_input_size + self._bias_len) self.assertEqual(weights.shape, expected_shape) layer_input_size = output_size # Test shape of output. output_size = sum(self._output_sizes) predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) expected_shape = (batch_size, output_size, 2) if batch_size else (output_size, 2) self.assertEqual(predictions.shape, expected_shape) @parameterized.named_parameters(("Online mode", None), ("Batch mode", 3)) def test_update(self, batch_size): """Test network updates in online and batch regimes.""" if batch_size is None: init_fn = self._init_fn inference_fn = self._inference_fn update_fn = self._update_fn else: init_fn = self._batch_init_fn inference_fn = self._batch_inference_fn update_fn = self._batch_update_fn inputs, side_info, targets = _get_dataset(10, batch_size) # Initialize network. initial_params, gln_state = init_fn(next(self._rng), inputs, side_info) # Initial predictions. initial_predictions, _ = inference_fn(initial_params, gln_state, inputs, side_info) # Test that params remain valid after consecutive updates. gln_params = initial_params for _ in range(3): (_, gln_params), _ = update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-4) # Check updated weights layer-wise. for layer_idx in range(len(self._output_sizes)): name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx) initial_weights = initial_params[name]["weights"] new_weights = gln_params[name]["weights"] # Shape consistency. self.assertEqual(new_weights.shape, initial_weights.shape) # Check that different weights yield different predictions. new_predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info) self.assertFalse(np.array_equal(new_predictions, initial_predictions)) def test_batch_consistency(self): """Test consistency between online and batch updates.""" batch_size = 3 inputs, side_info, targets = _get_dataset(10, batch_size) # Initialize network. gln_params, gln_state = self._batch_init_fn( next(self._rng), inputs, side_info) test_layer = "{}/~/{}_layer_0".format(self._name, self._name) for _ in range(10): # Update on full batch. (expected_predictions, expected_params), _ = self._batch_update_fn( gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-3) # Average updates across batch and check equivalence. accum_predictions = [] accum_weights = [] for inputs_, side_info_, targets_ in zip(inputs, side_info, targets): (predictions, params), _ = self._update_fn( gln_params, gln_state, inputs_, side_info_, targets_, learning_rate=1e-3) accum_predictions.append(predictions) accum_weights.append(params[test_layer]["weights"]) # Check prediction equivalence. actual_predictions = np.stack(accum_predictions, axis=0) np.testing.assert_array_almost_equal(actual_predictions, expected_predictions) # Check weight equivalence. actual_weights = np.mean(np.stack(accum_weights, axis=0), axis=0) expected_weights = expected_params[test_layer]["weights"] np.testing.assert_array_almost_equal(actual_weights, expected_weights) gln_params = expected_params if __name__ == "__main__": absltest.main()
deepmind-research-master
gated_linear_networks/gaussian_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base classes for Gated Linear Networks.""" import abc import collections import functools import inspect from typing import Any, Callable, Optional, Sequence, Tuple import chex import haiku as hk import jax import jax.numpy as jnp Array = chex.Array DType = Any Initializer = hk.initializers.Initializer Shape = Sequence[int] EPS = 1e-12 MIN_ALPHA = 1e-5 def _l2_normalize(x: Array, axis: int) -> Array: return x / jnp.sqrt(jnp.maximum(jnp.sum(x**2, axis, keepdims=True), EPS)) def _wrapped_fn_argnames(fun): """Returns list of argnames of a (possibly wrapped) function.""" return tuple(inspect.signature(fun).parameters) def _vmap(fun, in_axes=0, out_axes=0, parameters=None): """JAX vmap with human-friendly axes.""" def _axes(fun, d): """Maps dict {kwarg_i, : val_i} to [None, ..., val_i, ..., None].""" argnames = _wrapped_fn_argnames(fun) if not parameters else parameters for key in d: if key not in argnames: raise ValueError(f"{key} is not a valid axis.") return tuple(d.get(key, None) for key in argnames) in_axes = _axes(fun, in_axes) if isinstance(in_axes, dict) else in_axes return jax.vmap(fun, in_axes, out_axes) # Map a neuron-level function across a layer. _layer_vmap = functools.partial( _vmap, in_axes=({ "weights": 0, "hyperplanes": 0, "hyperplane_bias": 0, })) class NormalizedRandomNormal(hk.initializers.RandomNormal): """Random normal initializer with l2-normalization.""" def __init__(self, stddev: float = 1., mean: float = 0., normalize_axis: int = 0): super(NormalizedRandomNormal, self).__init__(stddev, mean) self._normalize_axis = normalize_axis def __call__(self, shape: Shape, dtype: DType) -> Array: if self._normalize_axis >= len(shape): raise ValueError("Cannot normalize axis {} for ndim = {}.".format( self._normalize_axis, len(shape))) weights = super(NormalizedRandomNormal, self).__call__(shape, dtype) return _l2_normalize(weights, axis=self._normalize_axis) class ShapeScaledConstant(hk.initializers.Initializer): """Initializes with a constant dependent on last dimension of input shape.""" def __call__(self, shape: Shape, dtype: DType) -> jnp.ndarray: constant = 1. / shape[-1] return jnp.broadcast_to(constant, shape).astype(dtype) class LocalUpdateModule(hk.Module): """Abstract base class for GLN variants and utils.""" def __init__(self, name: Optional[str] = None): if hasattr(self, "__call__"): raise ValueError("Do not implement `__call__` for a LocalUpdateModule." + " Implement `inference` and `update` instead.") super(LocalUpdateModule, self).__init__(name) @abc.abstractmethod def inference(self, *args, **kwargs): """Module inference step.""" @abc.abstractmethod def update(self, *args, **kwargs): """Module update step.""" @property @abc.abstractmethod def output_sizes(self) -> Shape: """Returns network output sizes.""" class GatedLinearNetwork(LocalUpdateModule): """Abstract base class for a multi-layer Gated Linear Network.""" def __init__(self, output_sizes: Shape, context_dim: int, inference_fn: Callable[..., Array], update_fn: Callable[..., Array], init: Initializer, hyp_w_init: Optional[Initializer] = None, hyp_b_init: Optional[Initializer] = None, dtype: DType = jnp.float32, name: str = "gated_linear_network"): """Initialize a GatedLinearNetwork as a sequence of GatedLinearLayers.""" super(GatedLinearNetwork, self).__init__(name=name) self._layers = [] self._output_sizes = output_sizes for i, output_size in enumerate(self._output_sizes): layer = _GatedLinearLayer( output_size=output_size, context_dim=context_dim, update_fn=update_fn, inference_fn=inference_fn, init=init, hyp_w_init=hyp_w_init, hyp_b_init=hyp_b_init, dtype=dtype, name=name + "_layer_{}".format(i)) self._layers.append(layer) self._name = name @abc.abstractmethod def _add_bias(self, inputs): pass def inference(self, inputs: Array, side_info: Array, *args, **kwargs) -> Array: """GatedLinearNetwork inference.""" predictions_per_layer = [] predictions = inputs for layer in self._layers: predictions = self._add_bias(predictions) predictions = layer.inference(predictions, side_info, *args, **kwargs) predictions_per_layer.append(predictions) return jnp.concatenate(predictions_per_layer, axis=0) def update(self, inputs, side_info, target, learning_rate, *args, **kwargs): """GatedLinearNetwork update.""" all_params = [] all_predictions = [] all_losses = [] predictions = inputs for layer in self._layers: predictions = self._add_bias(predictions) # Note: This is correct because returned predictions are pre-update. params, predictions, log_loss = layer.update(predictions, side_info, target, learning_rate, *args, **kwargs) all_params.append(params) all_predictions.append(predictions) all_losses.append(log_loss) new_params = dict(collections.ChainMap(*all_params)) predictions = jnp.concatenate(all_predictions, axis=0) log_loss = jnp.concatenate(all_losses, axis=0) return new_params, predictions, log_loss @property def output_sizes(self): return self._output_sizes @staticmethod def _compute_context( side_info: Array, # [side_info_size] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] ) -> Array: # Index weights by side information. context_dim = hyperplane_bias.shape[0] proj = jnp.dot(hyperplanes, side_info) bits = (proj > hyperplane_bias).astype(jnp.int32) weight_index = jnp.sum( bits * jnp.array([2**i for i in range(context_dim)])) if context_dim else 0 return weight_index class _GatedLinearLayer(LocalUpdateModule): """A single layer of a Gated Linear Network.""" def __init__(self, output_size: int, context_dim: int, inference_fn: Callable[..., Array], update_fn: Callable[..., Array], init: Initializer, hyp_w_init: Optional[Initializer] = None, hyp_b_init: Optional[Initializer] = None, dtype: DType = jnp.float32, name: str = "gated_linear_layer"): """Initialize a GatedLinearLayer.""" super(_GatedLinearLayer, self).__init__(name=name) self._output_size = output_size self._context_dim = context_dim self._inference_fn = inference_fn self._update_fn = update_fn self._init = init self._hyp_w_init = hyp_w_init self._hyp_b_init = hyp_b_init self._dtype = dtype self._name = name def _get_weights(self, input_size): """Get (or initialize) weight parameters.""" weights = hk.get_parameter( "weights", shape=(self._output_size, 2**self._context_dim, input_size), dtype=self._dtype, init=self._init, ) return weights def _get_hyperplanes(self, side_info_size): """Get (or initialize) hyperplane weights and bias.""" hyp_w_init = self._hyp_w_init or NormalizedRandomNormal( stddev=1., normalize_axis=1) hyperplanes = hk.get_state( "hyperplanes", shape=(self._output_size, self._context_dim, side_info_size), init=hyp_w_init) hyp_b_init = self._hyp_b_init or hk.initializers.RandomNormal(stddev=0.05) hyperplane_bias = hk.get_state( "hyperplane_bias", shape=(self._output_size, self._context_dim), init=hyp_b_init) return hyperplanes, hyperplane_bias def inference(self, inputs: Array, side_info: Array, *args, **kwargs) -> Array: """GatedLinearLayer inference.""" # Initialize layer weights. weights = self._get_weights(inputs.shape[0]) # Initialize fixed random hyperplanes. side_info_size = side_info.shape[0] hyperplanes, hyperplane_bias = self._get_hyperplanes(side_info_size) # Perform layer-wise inference by mapping along output_size (num_neurons). layer_inference = _layer_vmap(self._inference_fn) predictions = layer_inference(inputs, side_info, weights, hyperplanes, hyperplane_bias, *args, **kwargs) return predictions def update(self, inputs: Array, side_info: Array, target: Array, learning_rate: float, *args, **kwargs) -> Tuple[Array, Array, Array]: """GatedLinearLayer update.""" # Fetch layer weights. weights = self._get_weights(inputs.shape[0]) # Fetch fixed random hyperplanes. side_info_size = side_info.shape[0] hyperplanes, hyperplane_bias = self._get_hyperplanes(side_info_size) # Perform layer-wise update by mapping along output_size (num_neurons). layer_update = _layer_vmap(self._update_fn) new_weights, predictions, log_loss = layer_update(inputs, side_info, weights, hyperplanes, hyperplane_bias, target, learning_rate, *args, **kwargs) assert new_weights.shape == weights.shape params = {self.module_name: {"weights": new_weights}} return params, predictions, log_loss @property def output_sizes(self): return self._output_size class Mutator(LocalUpdateModule): """Abstract base class for GLN Mutators.""" def __init__( self, network_factory: Callable[..., LocalUpdateModule], name: str, ): super(Mutator, self).__init__(name=name) self._network = network_factory() self._name = name @property def output_sizes(self): return self._network.output_sizes class LastNeuronAggregator(Mutator): """Last neuron aggregator: network output is read from the last neuron.""" def __init__( self, network_factory: Callable[..., LocalUpdateModule], name: str = "last_neuron", ): super(LastNeuronAggregator, self).__init__(network_factory, name) if self._network.output_sizes[-1] != 1: raise ValueError( "LastNeuronAggregator requires the last GLN layer to have" " output_size = 1.") def inference(self, *args, **kwargs) -> Array: predictions = self._network.inference(*args, **kwargs) return predictions[-1] def update(self, *args, **kwargs) -> Tuple[Array, Array, Array]: params_t, predictions_tm1, loss_tm1 = self._network.update(*args, **kwargs) return params_t, predictions_tm1[-1], loss_tm1[-1]
deepmind-research-master
gated_linear_networks/base.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gaussian Gated Linear Network.""" from typing import Callable, List, Text, Tuple import chex import jax import jax.numpy as jnp import tensorflow_probability as tfp from gated_linear_networks import base tfp = tfp.experimental.substrates.jax tfd = tfp.distributions Array = chex.Array MIN_SIGMA_SQ_AGGREGATOR = 0.5 MAX_SIGMA_SQ = 1e5 MAX_WEIGHT = 1e3 MIN_WEIGHT = -1e3 def _unpack_inputs(inputs: Array) -> Tuple[Array, Array]: inputs = jnp.atleast_2d(inputs) chex.assert_rank(inputs, 2) (mu, sigma_sq) = [jnp.squeeze(x, 1) for x in jnp.hsplit(inputs, 2)] return mu, sigma_sq def _pack_inputs(mu: Array, sigma_sq: Array) -> Array: mu = jnp.atleast_1d(mu) sigma_sq = jnp.atleast_1d(sigma_sq) chex.assert_rank([mu, sigma_sq], 1) return jnp.vstack([mu, sigma_sq]).T class GatedLinearNetwork(base.GatedLinearNetwork): """Gaussian Gated Linear Network.""" def __init__( self, output_sizes: List[int], context_dim: int, bias_len: int = 3, bias_max_mu: float = 1., bias_sigma_sq: float = 1., name: Text = "gaussian_gln"): """Initialize a Gaussian GLN.""" super(GatedLinearNetwork, self).__init__( output_sizes, context_dim, inference_fn=GatedLinearNetwork._inference_fn, update_fn=GatedLinearNetwork._update_fn, init=base.ShapeScaledConstant(), dtype=jnp.float64, name=name) self._bias_len = bias_len self._bias_max_mu = bias_max_mu self._bias_sigma_sq = bias_sigma_sq def _add_bias(self, inputs): mu = jnp.linspace(-1. * self._bias_max_mu, self._bias_max_mu, self._bias_len) sigma_sq = self._bias_sigma_sq * jnp.ones_like(mu) bias = _pack_inputs(mu, sigma_sq) return jnp.concatenate([inputs, bias], axis=0) @staticmethod def _inference_fn( inputs: Array, # [input_size, 2] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, input_size] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] min_sigma_sq: float, ) -> Array: """Inference step for a single Gaussian neuron.""" mu_in, sigma_sq_in = _unpack_inputs(inputs) weight_index = GatedLinearNetwork._compute_context(side_info, hyperplanes, hyperplane_bias) used_weights = weights[weight_index] # This projection operation is differentiable and affects the gradients. used_weights = GatedLinearNetwork._project_weights(inputs, used_weights, min_sigma_sq) sigma_sq_out = 1. / jnp.sum(used_weights / sigma_sq_in) mu_out = sigma_sq_out * jnp.sum((used_weights * mu_in) / sigma_sq_in) prediction = jnp.hstack((mu_out, sigma_sq_out)) return prediction @staticmethod def _project_weights(inputs: Array, # [input_size] weights: Array, # [2**context_dim, num_features] min_sigma_sq: float) -> Array: """Implements hard projection.""" # This projection should be performed before the sigma related ones. weights = jnp.minimum(jnp.maximum(MIN_WEIGHT, weights), MAX_WEIGHT) _, sigma_sq_in = _unpack_inputs(inputs) lambda_in = 1. / sigma_sq_in sigma_sq_out = 1. / weights.dot(lambda_in) # If w.dot(x) < U, linearly project w such that w.dot(x) = U. weights = jnp.where( sigma_sq_out < min_sigma_sq, weights - lambda_in * (1. / sigma_sq_out - 1. / min_sigma_sq) / jnp.sum(lambda_in**2), weights) # If w.dot(x) > U, linearly project w such that w.dot(x) = U. weights = jnp.where( sigma_sq_out > MAX_SIGMA_SQ, weights - lambda_in * (1. / sigma_sq_out - 1. / MAX_SIGMA_SQ) / jnp.sum(lambda_in**2), weights) return weights @staticmethod def _update_fn( inputs: Array, # [input_size] side_info: Array, # [side_info_size] weights: Array, # [2**context_dim, num_features] hyperplanes: Array, # [context_dim, side_info_size] hyperplane_bias: Array, # [context_dim] target: Array, # [] learning_rate: float, min_sigma_sq: float, # needed for inference (weight projection) ) -> Tuple[Array, Array, Array]: """Update step for a single Gaussian neuron.""" def log_loss_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias, target): """Log loss for a single Gaussian neuron.""" prediction = GatedLinearNetwork._inference_fn(inputs, side_info, weights, hyperplanes, hyperplane_bias, min_sigma_sq) mu, sigma_sq = prediction.T loss = -tfd.Normal(mu, jnp.sqrt(sigma_sq)).log_prob(target) return loss, prediction grad_log_loss = jax.value_and_grad(log_loss_fn, argnums=2, has_aux=True) (log_loss, prediction), dloss_dweights = grad_log_loss(inputs, side_info, weights, hyperplanes, hyperplane_bias, target) delta_weights = learning_rate * dloss_dweights return weights - delta_weights, prediction, log_loss class ConstantInputSigma(base.Mutator): """Input pre-processing by concatenating a constant sigma^2.""" def __init__( self, network_factory: Callable[..., GatedLinearNetwork], input_sigma_sq: float, name: Text = "constant_input_sigma", ): super(ConstantInputSigma, self).__init__(network_factory, name) self._input_sigma_sq = input_sigma_sq def inference(self, inputs, *args, **kwargs): """ConstantInputSigma inference.""" chex.assert_rank(inputs, 1) sigma_sq = self._input_sigma_sq * jnp.ones_like(inputs) return self._network.inference(_pack_inputs(inputs, sigma_sq), *args, **kwargs) def update(self, inputs, *args, **kwargs): """ConstantInputSigma update.""" chex.assert_rank(inputs, 1) sigma_sq = self._input_sigma_sq * jnp.ones_like(inputs) return self._network.update(_pack_inputs(inputs, sigma_sq), *args, **kwargs) class LastNeuronAggregator(base.LastNeuronAggregator): """Gaussian last neuron aggregator, implemented by the super class.""" pass
deepmind-research-master
gated_linear_networks/gaussian.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `utils.py`.""" from absl.testing import absltest import haiku as hk import jax import numpy as np from gated_linear_networks.examples import utils class MeanStdEstimator(absltest.TestCase): def test_statistics(self): num_features = 100 feature_size = 3 samples = np.random.normal( loc=5., scale=2., size=(num_features, feature_size)) true_mean = np.mean(samples, axis=0) true_std = np.std(samples, axis=0) def tick_(sample): return utils.MeanStdEstimator()(sample) init_fn, apply_fn = hk.without_apply_rng(hk.transform_with_state(tick_)) tick = jax.jit(apply_fn) params, state = init_fn(rng=None, sample=samples[0]) for sample in samples: (mean, std), state = tick(params, state, sample) np.testing.assert_array_almost_equal(mean, true_mean, decimal=5) np.testing.assert_array_almost_equal(std, true_std, decimal=5) if __name__ == '__main__': absltest.main()
deepmind-research-master
gated_linear_networks/examples/utils_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Online MNIST classification example with Bernoulli GLN.""" from absl import app from absl import flags import haiku as hk import jax import jax.numpy as jnp import rlax from gated_linear_networks import bernoulli from gated_linear_networks.examples import utils MAX_TRAIN_STEPS = flags.DEFINE_integer( name='max_train_steps', default=None, help='Maximum number of training steps to perform (None=no limit)', ) # Small example network, achieves ~95% test set accuracy ======================= # Network parameters. NUM_LAYERS = flags.DEFINE_integer( name='num_layers', default=2, help='Number of network layers', ) NEURONS_PER_LAYER = flags.DEFINE_integer( name='neurons_per_layer', default=100, help='Number of neurons per layer', ) CONTEXT_DIM = flags.DEFINE_integer( name='context_dim', default=1, help='Context vector size', ) # Learning rate schedule. MAX_LR = flags.DEFINE_float( name='max_lr', default=0.003, help='Maximum learning rate', ) LR_CONSTANT = flags.DEFINE_float( name='lr_constant', default=1.0, help='Learning rate constant parameter', ) LR_DECAY = flags.DEFINE_float( name='lr_decay', default=0.1, help='Learning rate decay parameter', ) # Logging parameters. EVALUATE_EVERY = flags.DEFINE_integer( name='evaluate_every', default=1000, help='Number of training steps per evaluation epoch', ) def main(unused_argv): # Load MNIST dataset ========================================================= mnist_data, info = utils.load_deskewed_mnist( name='mnist', batch_size=-1, with_info=True) num_classes = info.features['label'].num_classes (train_images, train_labels) = (mnist_data['train']['image'], mnist_data['train']['label']) (test_images, test_labels) = (mnist_data['test']['image'], mnist_data['test']['label']) # Build a (binary) GLN classifier ============================================ def network_factory(): def gln_factory(): output_sizes = [NEURONS_PER_LAYER.value] * NUM_LAYERS.value + [1] return bernoulli.GatedLinearNetwork( output_sizes=output_sizes, context_dim=CONTEXT_DIM.value) return bernoulli.LastNeuronAggregator(gln_factory) def extract_features(image): mean, stddev = utils.MeanStdEstimator()(image) standardized_img = (image - mean) / (stddev + 1.) inputs = rlax.sigmoid(standardized_img) side_info = standardized_img return inputs, side_info def inference_fn(image, *args, **kwargs): inputs, side_info = extract_features(image) return network_factory().inference(inputs, side_info, *args, **kwargs) def update_fn(image, *args, **kwargs): inputs, side_info = extract_features(image) return network_factory().update(inputs, side_info, *args, **kwargs) init_, inference_ = hk.without_apply_rng( hk.transform_with_state(inference_fn)) _, update_ = hk.without_apply_rng(hk.transform_with_state(update_fn)) # Map along class dimension to create a one-vs-all classifier ================ @jax.jit def init(dummy_image, key): """One-vs-all classifier init fn.""" dummy_images = jnp.stack([dummy_image] * num_classes, axis=0) keys = jax.random.split(key, num_classes) return jax.vmap(init_, in_axes=(0, 0))(keys, dummy_images) @jax.jit def accuracy(params, state, image, label): """One-vs-all classifier inference fn.""" fn = jax.vmap(inference_, in_axes=(0, 0, None)) predictions, unused_state = fn(params, state, image) return (jnp.argmax(predictions) == label).astype(jnp.float32) @jax.jit def update(params, state, step, image, label): """One-vs-all classifier update fn.""" # Learning rate schedules. learning_rate = jnp.minimum( MAX_LR.value, LR_CONSTANT.value / (1. + LR_DECAY.value * step)) # Update weights and report log-loss. targets = hk.one_hot(jnp.asarray(label), num_classes) fn = jax.vmap(update_, in_axes=(0, 0, None, 0, None)) out = fn(params, state, image, targets, learning_rate) (params, unused_predictions, log_loss), state = out return (jnp.mean(log_loss), params), state # Train on train split ======================================================= dummy_image = train_images[0] params, state = init(dummy_image, jax.random.PRNGKey(42)) for step, (image, label) in enumerate(zip(train_images, train_labels), 1): (unused_loss, params), state = update( params, state, step, image, label, ) # Evaluate on test split =================================================== if not step % EVALUATE_EVERY.value: batch_accuracy = jax.vmap(accuracy, in_axes=(None, None, 0, 0)) accuracies = batch_accuracy(params, state, test_images, test_labels) total_accuracy = float(jnp.mean(accuracies)) # Report statistics. print({ 'step': step, 'accuracy': float(total_accuracy), }) if MAX_TRAIN_STEPS.value is not None and step >= MAX_TRAIN_STEPS.value: return if __name__ == '__main__': app.run(main)
deepmind-research-master
gated_linear_networks/examples/bernoulli_mnist.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Haiku modules for feature processing.""" import copy from typing import Tuple import chex import haiku as hk import jax.numpy as jnp import numpy as np from scipy.ndimage import interpolation import tensorflow_datasets as tfds Array = chex.Array def _moments(image): """Compute the first and second moments of a given image.""" c0, c1 = np.mgrid[:image.shape[0], :image.shape[1]] total_image = np.sum(image) m0 = np.sum(c0 * image) / total_image m1 = np.sum(c1 * image) / total_image m00 = np.sum((c0 - m0)**2 * image) / total_image m11 = np.sum((c1 - m1)**2 * image) / total_image m01 = np.sum((c0 - m0) * (c1 - m1) * image) / total_image mu_vector = np.array([m0, m1]) covariance_matrix = np.array([[m00, m01], [m01, m11]]) return mu_vector, covariance_matrix def _deskew(image): """Image deskew.""" c, v = _moments(image) alpha = v[0, 1] / v[0, 0] affine = np.array([[1, 0], [alpha, 1]]) ocenter = np.array(image.shape) / 2.0 offset = c - np.dot(affine, ocenter) return interpolation.affine_transform(image, affine, offset=offset) def _deskew_dataset(dataset): """Dataset deskew.""" deskewed = copy.deepcopy(dataset) for k, before in dataset.items(): images = before["image"] num_images = images.shape[0] after = np.stack([_deskew(i) for i in np.squeeze(images, axis=-1)], axis=0) deskewed[k]["image"] = np.reshape(after, (num_images, -1)) return deskewed def load_deskewed_mnist(*a, **k): """Returns deskewed MNIST numpy dataset.""" mnist_data, info = tfds.load(*a, **k) mnist_data = tfds.as_numpy(mnist_data) deskewed_data = _deskew_dataset(mnist_data) return deskewed_data, info class MeanStdEstimator(hk.Module): """Online mean and standard deviation estimator using Welford's algorithm.""" def __call__(self, sample: jnp.DeviceArray) -> Tuple[Array, Array]: if len(sample.shape) > 1: raise ValueError("sample must be a rank 0 or 1 DeviceArray.") count = hk.get_state("count", shape=(), dtype=jnp.int32, init=jnp.zeros) mean = hk.get_state( "mean", shape=sample.shape, dtype=jnp.float32, init=jnp.zeros) m2 = hk.get_state( "m2", shape=sample.shape, dtype=jnp.float32, init=jnp.zeros) count += 1 delta = sample - mean mean += delta / count delta_2 = sample - mean m2 += delta * delta_2 hk.set_state("count", count) hk.set_state("mean", mean) hk.set_state("m2", m2) stddev = jnp.sqrt(m2 / count) return mean, stddev
deepmind-research-master
gated_linear_networks/examples/utils.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GAN modules.""" import collections import math import sonnet as snt import tensorflow.compat.v1 as tf from cs_gan import utils class GAN(object): """Standard generative adversarial network setup. The aim of the generator is to generate samples which fool a discriminator. Does not make any assumptions about the discriminator and generator loss functions. Trained module components: * discriminator * generator For the standard GAN algorithm, generator_inputs is a vector of noise (either Gaussian or uniform). """ def __init__(self, discriminator, generator, num_z_iters=None, z_step_size=None, z_project_method=None, optimisation_cost_weight=None): """Constructs the module. Args: discriminator: The discriminator network. A sonnet module. See `nets.py`. generator: The generator network. A sonnet module. For examples, see `nets.py`. num_z_iters: an integer, the number of latent optimisation steps. z_step_size: an integer, latent optimisation step size. z_project_method: the method for projecting latent after optimisation, a string from {'norm', 'clip'}. optimisation_cost_weight: a float, how much to penalise the distance of z moved by latent optimisation. """ self._discriminator = discriminator self.generator = generator self.num_z_iters = num_z_iters self.z_project_method = z_project_method if z_step_size: self._log_step_size_module = snt.TrainableVariable( [], initializers={'w': tf.constant_initializer(math.log(z_step_size))}) self.z_step_size = tf.exp(self._log_step_size_module()) self._optimisation_cost_weight = optimisation_cost_weight def connect(self, data, generator_inputs): """Connects the components and returns the losses, outputs and debug ops. Args: data: a `tf.Tensor`: `[batch_size, ...]`. There are no constraints on the rank of this tensor, but it has to be compatible with the shapes expected by the discriminator. generator_inputs: a `tf.Tensor`: `[g_in_batch_size, ...]`. It does not have to have the same batch size as the `data` tensor. There are not constraints on the rank of this tensor, but it has to be compatible with the shapes the generator network supports as inputs. Returns: An `ModelOutputs` instance. """ samples, optimised_z = utils.optimise_and_sample( generator_inputs, self, data, is_training=True) optimisation_cost = utils.get_optimisation_cost(generator_inputs, optimised_z) # Pass in the labels to the discriminator in case we are using a # discriminator which makes use of labels. The labels can be None. disc_data_logits = self._discriminator(data) disc_sample_logits = self._discriminator(samples) disc_data_loss = utils.cross_entropy_loss( disc_data_logits, tf.ones(tf.shape(disc_data_logits[:, 0]), dtype=tf.int32)) disc_sample_loss = utils.cross_entropy_loss( disc_sample_logits, tf.zeros(tf.shape(disc_sample_logits[:, 0]), dtype=tf.int32)) disc_loss = disc_data_loss + disc_sample_loss generator_loss = utils.cross_entropy_loss( disc_sample_logits, tf.ones(tf.shape(disc_sample_logits[:, 0]), dtype=tf.int32)) optimization_components = self._build_optimization_components( discriminator_loss=disc_loss, generator_loss=generator_loss, optimisation_cost=optimisation_cost) debug_ops = {} debug_ops['disc_data_loss'] = disc_data_loss debug_ops['disc_sample_loss'] = disc_sample_loss debug_ops['disc_loss'] = disc_loss debug_ops['gen_loss'] = generator_loss debug_ops['opt_cost'] = optimisation_cost if hasattr(self, 'z_step_size'): debug_ops['z_step_size'] = self.z_step_size return utils.ModelOutputs( optimization_components, debug_ops) def gen_loss_fn(self, data, samples): """Generator loss as latent optimisation's error function.""" del data disc_sample_logits = self._discriminator(samples) generator_loss = utils.cross_entropy_loss( disc_sample_logits, tf.ones(tf.shape(disc_sample_logits[:, 0]), dtype=tf.int32)) return generator_loss def _build_optimization_components( self, generator_loss=None, discriminator_loss=None, optimisation_cost=None): """Create the optimization components for this module.""" discriminator_vars = _get_and_check_variables(self._discriminator) generator_vars = _get_and_check_variables(self.generator) if hasattr(self, '_log_step_size_module'): step_vars = _get_and_check_variables(self._log_step_size_module) generator_vars += step_vars optimization_components = collections.OrderedDict() optimization_components['disc'] = utils.OptimizationComponent( discriminator_loss, discriminator_vars) if self._optimisation_cost_weight: generator_loss += self._optimisation_cost_weight * optimisation_cost optimization_components['gen'] = utils.OptimizationComponent( generator_loss, generator_vars) return optimization_components def get_variables(self): disc_vars = _get_and_check_variables(self._discriminator) gen_vars = _get_and_check_variables(self.generator) return disc_vars, gen_vars def _get_and_check_variables(module): module_variables = module.get_all_variables() if not module_variables: raise ValueError( 'Module {} has no variables! Variables needed for training.'.format( module.module_name)) # TensorFlow optimizers require lists to be passed in. return list(module_variables)
deepmind-research-master
cs_gan/gan.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training script.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from absl import logging import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from cs_gan import cs from cs_gan import file_utils from cs_gan import utils tfd = tfp.distributions flags.DEFINE_string( 'mode', 'recons', 'Model mode.') flags.DEFINE_integer( 'num_training_iterations', 10000000, 'Number of training iterations.') flags.DEFINE_integer( 'batch_size', 64, 'Training batch size.') flags.DEFINE_integer( 'num_measurements', 25, 'The number of measurements') flags.DEFINE_integer( 'num_latents', 100, 'The number of latents') flags.DEFINE_integer( 'num_z_iters', 3, 'The number of latent optimisation steps.') flags.DEFINE_float( 'z_step_size', 0.01, 'Step size for latent optimisation.') flags.DEFINE_string( 'z_project_method', 'norm', 'The method to project z.') flags.DEFINE_integer( 'summary_every_step', 1000, 'The interval at which to log debug ops.') flags.DEFINE_integer( 'export_every', 10, 'The interval at which to export samples.') flags.DEFINE_string( 'dataset', 'mnist', 'The dataset used for learning (cifar|mnist.') flags.DEFINE_float('learning_rate', 1e-4, 'Learning rate.') flags.DEFINE_string( 'output_dir', '/tmp/cs_gan/cs', 'Location where to save output files.') FLAGS = flags.FLAGS # Log info level (for Hooks). tf.logging.set_verbosity(tf.logging.INFO) def main(argv): del argv utils.make_output_dir(FLAGS.output_dir) data_processor = utils.DataProcessor() images = utils.get_train_dataset(data_processor, FLAGS.dataset, FLAGS.batch_size) logging.info('Learning rate: %d', FLAGS.learning_rate) # Construct optimizers. optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) # Create the networks and models. generator = utils.get_generator(FLAGS.dataset) metric_net = utils.get_metric_net(FLAGS.dataset, FLAGS.num_measurements) model = cs.CS(metric_net, generator, FLAGS.num_z_iters, FLAGS.z_step_size, FLAGS.z_project_method) prior = utils.make_prior(FLAGS.num_latents) generator_inputs = prior.sample(FLAGS.batch_size) model_output = model.connect(images, generator_inputs) optimization_components = model_output.optimization_components debug_ops = model_output.debug_ops reconstructions, _ = utils.optimise_and_sample( generator_inputs, model, images, is_training=False) global_step = tf.train.get_or_create_global_step() update_op = optimizer.minimize( optimization_components.loss, var_list=optimization_components.vars, global_step=global_step) sample_exporter = file_utils.FileExporter( os.path.join(FLAGS.output_dir, 'reconstructions')) # Hooks. debug_ops['it'] = global_step # Abort training on Nans. nan_hook = tf.train.NanTensorHook(optimization_components.loss) # Step counter. step_conter_hook = tf.train.StepCounterHook() checkpoint_saver_hook = tf.train.CheckpointSaverHook( checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60) loss_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.summary_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(debug_ops)) hooks = [checkpoint_saver_hook, nan_hook, step_conter_hook, loss_summary_saver_hook] # Start training. with tf.train.MonitoredSession(hooks=hooks) as sess: logging.info('starting training') for i in range(FLAGS.num_training_iterations): sess.run(update_op) if i % FLAGS.export_every == 0: reconstructions_np, data_np = sess.run([reconstructions, images]) # Create an object which gets data and does the processing. data_np = data_processor.postprocess(data_np) reconstructions_np = data_processor.postprocess(reconstructions_np) sample_exporter.save(reconstructions_np, 'reconstructions') sample_exporter.save(data_np, 'data') if __name__ == '__main__': app.run(main)
deepmind-research-master
cs_gan/main_cs.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training script.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from absl import logging import tensorflow.compat.v1 as tf from cs_gan import file_utils from cs_gan import gan from cs_gan import image_metrics from cs_gan import utils flags.DEFINE_integer( 'num_training_iterations', 1200000, 'Number of training iterations.') flags.DEFINE_string( 'ode_mode', 'rk4', 'Integration method.') flags.DEFINE_integer( 'batch_size', 64, 'Training batch size.') flags.DEFINE_float( 'grad_reg_weight', 0.02, 'Step size for latent optimisation.') flags.DEFINE_string( 'opt_name', 'gd', 'Name of the optimiser (gd|adam).') flags.DEFINE_bool( 'schedule_lr', True, 'The method to project z.') flags.DEFINE_bool( 'reg_first_grad_only', True, 'Whether only to regularise the first grad.') flags.DEFINE_integer( 'num_latents', 128, 'The number of latents') flags.DEFINE_integer( 'summary_every_step', 1000, 'The interval at which to log debug ops.') flags.DEFINE_integer( 'image_metrics_every_step', 1000, 'The interval at which to log (expensive) image metrics.') flags.DEFINE_integer( 'export_every', 10, 'The interval at which to export samples.') # Use 50k to reproduce scores from the paper. Default to 10k here to avoid the # runtime error caused by too large graph with 50k samples on some machines. flags.DEFINE_integer( 'num_eval_samples', 10000, 'The number of samples used to evaluate FID/IS.') flags.DEFINE_string( 'dataset', 'cifar', 'The dataset used for learning (cifar|mnist).') flags.DEFINE_string( 'output_dir', '/tmp/ode_gan/gan', 'Location where to save output files.') flags.DEFINE_float('disc_lr', 4e-2, 'Discriminator Learning rate.') flags.DEFINE_float('gen_lr', 4e-2, 'Generator Learning rate.') flags.DEFINE_bool( 'run_real_data_metrics', False, 'Whether or not to run image metrics on real data.') flags.DEFINE_bool( 'run_sample_metrics', True, 'Whether or not to run image metrics on samples.') FLAGS = flags.FLAGS # Log info level (for Hooks). tf.logging.set_verbosity(tf.logging.INFO) def _copy_vars(v_list): """Copy variables in v_list.""" t_list = [] for v in v_list: t_list.append(tf.identity(v)) return t_list def _restore_vars(v_list, t_list): """Restore variables in v_list from t_list.""" ops = [] for v, t in zip(v_list, t_list): ops.append(v.assign(t)) return ops def _scale_vars(s, v_list): """Scale all variables in v_list by s.""" return [s * v for v in v_list] def _acc_grads(g_sum, g_w, g): """Accumulate gradients in g, weighted by g_w.""" return [g_sum_i + g_w * g_i for g_sum_i, g_i in zip(g_sum, g)] def _compute_reg_grads(gen_grads, disc_vars): """Compute gradients norm (this is an upper-bpund of the full-batch norm).""" gen_norm = tf.accumulate_n([tf.reduce_sum(u * u) for u in gen_grads]) disc_reg_grads = tf.gradients(gen_norm, disc_vars) return disc_reg_grads def run_model(prior, images, model, disc_reg_weight): """Run the model with new data and samples. Args: prior: the noise source as the generator input. images: images sampled from dataset. model: a GAN model defined in gan.py. disc_reg_weight: regularisation weight for discrmininator gradients. Returns: debug_ops: statistics from the model, see gan.py for more detials. disc_grads: discriminator gradients. gen_grads: generator gradients. """ generator_inputs = prior.sample(FLAGS.batch_size) model_output = model.connect(images, generator_inputs) optimization_components = model_output.optimization_components disc_grads = tf.gradients( optimization_components['disc'].loss, optimization_components['disc'].vars) gen_grads = tf.gradients( optimization_components['gen'].loss, optimization_components['gen'].vars) if disc_reg_weight > 0.0: reg_grads = _compute_reg_grads(gen_grads, optimization_components['disc'].vars) disc_grads = _acc_grads(disc_grads, disc_reg_weight, reg_grads) debug_ops = model_output.debug_ops return debug_ops, disc_grads, gen_grads def update_model(model, disc_grads, gen_grads, disc_opt, gen_opt, global_step, update_scale): """Update model with gradients.""" disc_vars, gen_vars = model.get_variables() with tf.control_dependencies(gen_grads + disc_grads): disc_update_op = disc_opt.apply_gradients( zip(_scale_vars(update_scale, disc_grads), disc_vars)) gen_update_op = gen_opt.apply_gradients( zip(_scale_vars(update_scale, gen_grads), gen_vars), global_step=global_step) update_op = tf.group([disc_update_op, gen_update_op]) return update_op def main(argv): del argv utils.make_output_dir(FLAGS.output_dir) data_processor = utils.DataProcessor() # Compute the batch-size multiplier if FLAGS.ode_mode == 'rk2': batch_mul = 2 elif FLAGS.ode_mode == 'rk4': batch_mul = 4 else: batch_mul = 1 images = utils.get_train_dataset(data_processor, FLAGS.dataset, int(FLAGS.batch_size * batch_mul)) image_splits = tf.split(images, batch_mul) logging.info('Generator learning rate: %d', FLAGS.gen_lr) logging.info('Discriminator learning rate: %d', FLAGS.disc_lr) global_step = tf.train.get_or_create_global_step() # Construct optimizers. if FLAGS.opt_name == 'adam': disc_opt = tf.train.AdamOptimizer(FLAGS.disc_lr, beta1=0.5, beta2=0.999) gen_opt = tf.train.AdamOptimizer(FLAGS.gen_lr, beta1=0.5, beta2=0.999) elif FLAGS.opt_name == 'gd': if FLAGS.schedule_lr: gd_disc_lr = tf.train.piecewise_constant( global_step, values=[FLAGS.disc_lr / 4., FLAGS.disc_lr, FLAGS.disc_lr / 2.], boundaries=[500, 400000]) gd_gen_lr = tf.train.piecewise_constant( global_step, values=[FLAGS.gen_lr / 4., FLAGS.gen_lr, FLAGS.gen_lr / 2.], boundaries=[500, 400000]) else: gd_disc_lr = FLAGS.disc_lr gd_gen_lr = FLAGS.gen_lr disc_opt = tf.train.GradientDescentOptimizer(gd_disc_lr) gen_opt = tf.train.GradientDescentOptimizer(gd_gen_lr) else: raise ValueError('Unknown ODE mode!') # Create the networks and models. generator = utils.get_generator(FLAGS.dataset) metric_net = utils.get_metric_net(FLAGS.dataset, use_sn=False) model = gan.GAN(metric_net, generator) prior = utils.make_prior(FLAGS.num_latents) # Setup ODE parameters. if FLAGS.ode_mode == 'rk2': ode_grad_weights = [0.5, 0.5] step_scale = [1.0] elif FLAGS.ode_mode == 'rk4': ode_grad_weights = [1. / 6., 1. / 3., 1. / 3., 1. / 6.] step_scale = [0.5, 0.5, 1.] elif FLAGS.ode_mode == 'euler': # Euler update ode_grad_weights = [1.0] step_scale = [] else: raise ValueError('Unknown ODE mode!') # Extra steps for RK updates. num_extra_steps = len(step_scale) if FLAGS.reg_first_grad_only: first_reg_weight = FLAGS.grad_reg_weight / ode_grad_weights[0] other_reg_weight = 0.0 else: first_reg_weight = FLAGS.grad_reg_weight other_reg_weight = FLAGS.grad_reg_weight debug_ops, disc_grads, gen_grads = run_model(prior, image_splits[0], model, first_reg_weight) disc_vars, gen_vars = model.get_variables() final_disc_grads = _scale_vars(ode_grad_weights[0], disc_grads) final_gen_grads = _scale_vars(ode_grad_weights[0], gen_grads) restore_ops = [] # Preparing for further RK steps. if num_extra_steps > 0: # copy the variables before they are changed by update_op saved_disc_vars = _copy_vars(disc_vars) saved_gen_vars = _copy_vars(gen_vars) # Enter RK loop. with tf.control_dependencies(saved_disc_vars + saved_gen_vars): step_deps = [] for i_step in range(num_extra_steps): with tf.control_dependencies(step_deps): # Compute gradient steps for intermediate updates. update_op = update_model( model, disc_grads, gen_grads, disc_opt, gen_opt, None, step_scale[i_step]) with tf.control_dependencies([update_op]): _, disc_grads, gen_grads = run_model( prior, image_splits[i_step + 1], model, other_reg_weight) # Accumlate gradients for final update. final_disc_grads = _acc_grads(final_disc_grads, ode_grad_weights[i_step + 1], disc_grads) final_gen_grads = _acc_grads(final_gen_grads, ode_grad_weights[i_step + 1], gen_grads) # Make new restore_op for each step. restore_ops = [] restore_ops += _restore_vars(disc_vars, saved_disc_vars) restore_ops += _restore_vars(gen_vars, saved_gen_vars) step_deps = restore_ops with tf.control_dependencies(restore_ops): update_op = update_model( model, final_disc_grads, final_gen_grads, disc_opt, gen_opt, global_step, 1.0) samples = generator(prior.sample(FLAGS.batch_size), is_training=False) # Get data needed to compute FID. We also compute metrics on # real data as a sanity check and as a reference point. eval_real_data = utils.get_real_data_for_eval(FLAGS.num_eval_samples, FLAGS.dataset, split='train') def sample_fn(x): return utils.optimise_and_sample(x, module=model, data=None, is_training=False)[0] if FLAGS.run_sample_metrics: sample_metrics = image_metrics.get_image_metrics_for_samples( eval_real_data, sample_fn, prior, data_processor, num_eval_samples=FLAGS.num_eval_samples) else: sample_metrics = {} if FLAGS.run_real_data_metrics: data_metrics = image_metrics.get_image_metrics( eval_real_data, eval_real_data) else: data_metrics = {} sample_exporter = file_utils.FileExporter( os.path.join(FLAGS.output_dir, 'samples')) # Hooks. debug_ops['it'] = global_step # Abort training on Nans. nan_disc_hook = tf.train.NanTensorHook(debug_ops['disc_loss']) nan_gen_hook = tf.train.NanTensorHook(debug_ops['gen_loss']) # Step counter. step_conter_hook = tf.train.StepCounterHook() checkpoint_saver_hook = tf.train.CheckpointSaverHook( checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60) loss_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.summary_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(debug_ops)) metrics_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.image_metrics_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(sample_metrics)) hooks = [checkpoint_saver_hook, metrics_summary_saver_hook, nan_disc_hook, nan_gen_hook, step_conter_hook, loss_summary_saver_hook] # Start training. with tf.train.MonitoredSession(hooks=hooks) as sess: logging.info('starting training') for key, value in sess.run(data_metrics).items(): logging.info('%s: %d', key, value) for i in range(FLAGS.num_training_iterations): sess.run(update_op) if i % FLAGS.export_every == 0: samples_np, data_np = sess.run([samples, image_splits[0]]) # Create an object which gets data and does the processing. data_np = data_processor.postprocess(data_np) samples_np = data_processor.postprocess(samples_np) sample_exporter.save(samples_np, 'samples') sample_exporter.save(data_np, 'data') if __name__ == '__main__': tf.enable_resource_variables() app.run(main)
deepmind-research-master
cs_gan/main_ode.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GAN modules.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import sonnet as snt import tensorflow.compat.v1 as tf from cs_gan import utils class CS(object): """Compressed Sensing Module.""" def __init__(self, metric_net, generator, num_z_iters, z_step_size, z_project_method): """Constructs the module. Args: metric_net: the measurement network. generator: The generator network. A sonnet module. For examples, see `nets.py`. num_z_iters: an integer, the number of latent optimisation steps. z_step_size: an integer, latent optimisation step size. z_project_method: the method for projecting latent after optimisation, a string from {'norm', 'clip'}. """ self._measure = metric_net self.generator = generator self.num_z_iters = num_z_iters self.z_project_method = z_project_method self._log_step_size_module = snt.TrainableVariable( [], initializers={'w': tf.constant_initializer(math.log(z_step_size))}) self.z_step_size = tf.exp(self._log_step_size_module()) def connect(self, data, generator_inputs): """Connects the components and returns the losses, outputs and debug ops. Args: data: a `tf.Tensor`: `[batch_size, ...]`. There are no constraints on the rank of this tensor, but it has to be compatible with the shapes expected by the discriminator. generator_inputs: a `tf.Tensor`: `[g_in_batch_size, ...]`. It does not have to have the same batch size as the `data` tensor. There are not constraints on the rank of this tensor, but it has to be compatible with the shapes the generator network supports as inputs. Returns: An `ModelOutputs` instance. """ samples, optimised_z = utils.optimise_and_sample( generator_inputs, self, data, is_training=True) optimisation_cost = utils.get_optimisation_cost(generator_inputs, optimised_z) debug_ops = {} initial_samples = self.generator(generator_inputs, is_training=True) generator_loss = tf.reduce_mean(self.gen_loss_fn(data, samples)) # compute the RIP loss # (\sqrt{F(x_1 - x_2)^2} - \sqrt{(x_1 - x_2)^2})^2 # as a triplet loss for 3 pairs of images. r1 = self._get_rip_loss(samples, initial_samples) r2 = self._get_rip_loss(samples, data) r3 = self._get_rip_loss(initial_samples, data) rip_loss = tf.reduce_mean((r1 + r2 + r3) / 3.0) total_loss = generator_loss + rip_loss optimization_components = self._build_optimization_components( generator_loss=total_loss) debug_ops['rip_loss'] = rip_loss debug_ops['recons_loss'] = tf.reduce_mean( tf.norm(snt.BatchFlatten()(samples) - snt.BatchFlatten()(data), axis=-1)) debug_ops['z_step_size'] = self.z_step_size debug_ops['opt_cost'] = optimisation_cost debug_ops['gen_loss'] = generator_loss return utils.ModelOutputs( optimization_components, debug_ops) def _get_rip_loss(self, img1, img2): r"""Compute the RIP loss from two images. The RIP loss: (\sqrt{F(x_1 - x_2)^2} - \sqrt{(x_1 - x_2)^2})^2 Args: img1: an image (x_1), 4D tensor of shape [batch_size, W, H, C]. img2: an other image (x_2), 4D tensor of shape [batch_size, W, H, C]. """ m1 = self._measure(img1) m2 = self._measure(img2) img_diff_norm = tf.norm(snt.BatchFlatten()(img1) - snt.BatchFlatten()(img2), axis=-1) m_diff_norm = tf.norm(m1 - m2, axis=-1) return tf.square(img_diff_norm - m_diff_norm) def _get_measurement_error(self, target_img, sample_img): """Compute the measurement error of sample images given the targets.""" m_targets = self._measure(target_img) m_samples = self._measure(sample_img) return tf.reduce_sum(tf.square(m_targets - m_samples), -1) def gen_loss_fn(self, data, samples): """Generator loss as latent optimisation's error function.""" return self._get_measurement_error(data, samples) def _build_optimization_components( self, generator_loss=None, discriminator_loss=None): """Create the optimization components for this module.""" metric_vars = _get_and_check_variables(self._measure) generator_vars = _get_and_check_variables(self.generator) step_vars = _get_and_check_variables(self._log_step_size_module) assert discriminator_loss is None optimization_components = utils.OptimizationComponent( generator_loss, generator_vars + metric_vars + step_vars) return optimization_components def _get_and_check_variables(module): module_variables = module.get_all_variables() if not module_variables: raise ValueError( 'Module {} has no variables! Variables needed for training.'.format( module.module_name)) # TensorFlow optimizers require lists to be passed in. return list(module_variables)
deepmind-research-master
cs_gan/cs.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for latent optimisation.""" import collections import os from absl import logging import numpy as np import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from cs_gan import nets tfd = tfp.distributions class ModelOutputs( collections.namedtuple('AdversarialModelOutputs', ['optimization_components', 'debug_ops'])): """All the information produced by the adversarial module. Fields: * `optimization_components`: A dictionary. Each entry in this dictionary corresponds to a module to train using their own optimizer. The keys are names of the components, and the values are `common.OptimizationComponent` instances. The keys of this dict can be made keys of the configuration used by the main train loop, to define the configuration of the optimization details for each module. * `debug_ops`: A dictionary, from string to a scalar `tf.Tensor`. Quantities used for tracking training. """ class OptimizationComponent( collections.namedtuple('OptimizationComponent', ['loss', 'vars'])): """Information needed by the optimizer to train modules. Usage: `optimizer.minimize( opt_compoment.loss, var_list=opt_component.vars)` Fields: * `loss`: A `tf.Tensor` the loss of the module. * `vars`: A list of variables, the ones which will be used to minimize the loss. """ def cross_entropy_loss(logits, expected): """The cross entropy classification loss between logits and expected values. The loss proposed by the original GAN paper: https://arxiv.org/abs/1406.2661. Args: logits: a `tf.Tensor`, the model produced logits. expected: a `tf.Tensor`, the expected output. Returns: A scalar `tf.Tensor`, the average loss obtained on the given inputs. Raises: ValueError: if the logits do not have shape [batch_size, 2]. """ num_logits = logits.get_shape()[1] if num_logits != 2: raise ValueError(('Invalid number of logits for cross_entropy_loss! ' 'cross_entropy_loss supports only 2 output logits!')) return tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=expected)) def optimise_and_sample(init_z, module, data, is_training): """Optimising generator latent variables and sample.""" if module.num_z_iters is None or module.num_z_iters == 0: z_final = init_z else: init_loop_vars = (0, _project_z(init_z, module.z_project_method)) loop_cond = lambda i, _: i < module.num_z_iters def loop_body(i, z): loop_samples = module.generator(z, is_training) gen_loss = module.gen_loss_fn(data, loop_samples) z_grad = tf.gradients(gen_loss, z)[0] z -= module.z_step_size * z_grad z = _project_z(z, module.z_project_method) return i + 1, z # Use the following static loop for debugging # z = init_z # for _ in xrange(num_z_iters): # _, z = loop_body(0, z) # z_final = z _, z_final = tf.while_loop(loop_cond, loop_body, init_loop_vars) return module.generator(z_final, is_training), z_final def get_optimisation_cost(initial_z, optimised_z): optimisation_cost = tf.reduce_mean( tf.reduce_sum((optimised_z - initial_z)**2, -1)) return optimisation_cost def _project_z(z, project_method='clip'): """To be used for projected gradient descent over z.""" if project_method == 'norm': z_p = tf.nn.l2_normalize(z, axis=-1) elif project_method == 'clip': z_p = tf.clip_by_value(z, -1, 1) else: raise ValueError('Unknown project_method: {}'.format(project_method)) return z_p class DataProcessor(object): def preprocess(self, x): return x * 2 - 1 def postprocess(self, x): return (x + 1) / 2. def _get_np_data(data_processor, dataset, split='train'): """Get the dataset as numpy arrays.""" index = 0 if split == 'train' else 1 if dataset == 'mnist': # Construct the dataset. x, _ = tf.keras.datasets.mnist.load_data()[index] # Note: tf dataset is binary so we convert it to float. x = x.astype(np.float32) x = x / 255. x = x.reshape((-1, 28, 28, 1)) if dataset == 'cifar': x, _ = tf.keras.datasets.cifar10.load_data()[index] x = x.astype(np.float32) x = x / 255. if data_processor: # Normalize data if a processor is given. x = data_processor.preprocess(x) return x def make_output_dir(output_dir): logging.info('Creating output dir %s', output_dir) if not tf.gfile.IsDirectory(output_dir): tf.gfile.MakeDirs(output_dir) def get_ckpt_dir(output_dir): ckpt_dir = os.path.join(output_dir, 'ckpt') if not tf.gfile.IsDirectory(ckpt_dir): tf.gfile.MakeDirs(ckpt_dir) return ckpt_dir def get_real_data_for_eval(num_eval_samples, dataset, split='valid'): data = _get_np_data(data_processor=None, dataset=dataset, split=split) data = data[:num_eval_samples] return tf.constant(data) def get_summaries(ops): summaries = [] for name, op in ops.items(): # Ensure to log the value ops before writing them in the summary. # We do this instead of a hook to ensure IS/FID are never computed twice. print_op = tf.print(name, [op], output_stream=tf.logging.info) with tf.control_dependencies([print_op]): summary = tf.summary.scalar(name, op) summaries.append(summary) return summaries def get_train_dataset(data_processor, dataset, batch_size): """Creates the training data tensors.""" x_train = _get_np_data(data_processor, dataset, split='train') # Create the TF dataset. dataset = tf.data.Dataset.from_tensor_slices(x_train) # Shuffle and repeat the dataset for training. # This is required because we want to do multiple passes through the entire # dataset when training. dataset = dataset.shuffle(100000).repeat() # Batch the data and return the data batch. one_shot_iterator = dataset.batch(batch_size).make_one_shot_iterator() data_batch = one_shot_iterator.get_next() return data_batch def get_generator(dataset): if dataset == 'mnist': return nets.MLPGeneratorNet() if dataset == 'cifar': return nets.ConvGenNet() def get_metric_net(dataset, num_outputs=2, use_sn=True): if dataset == 'mnist': return nets.MLPMetricNet(num_outputs) if dataset == 'cifar': return nets.ConvMetricNet(num_outputs, use_sn) def make_prior(num_latents): # Zero mean, unit variance prior. prior_mean = tf.zeros(shape=(num_latents), dtype=tf.float32) prior_scale = tf.ones(shape=(num_latents), dtype=tf.float32) return tfd.Normal(loc=prior_mean, scale=prior_scale)
deepmind-research-master
cs_gan/utils.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compute image metrics: IS, FID.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow_gan as tfgan def get_image_metrics_for_samples( real_images, generator, prior, data_processor, num_eval_samples): """Compute inception score and FID.""" max_classifier_batch = 10 num_batches = num_eval_samples // max_classifier_batch def sample_fn(arg): del arg samples = generator(prior.sample(max_classifier_batch)) # Samples must be in [-1, 1], as expected by TFGAN. # Resizing to appropriate size is done by TFGAN. return samples fake_outputs = tfgan.eval.sample_and_run_inception( sample_fn, sample_inputs=[1.0] * num_batches) # Dummy inputs. fake_logits = fake_outputs['logits'] inception_score = tfgan.eval.classifier_score_from_logits(fake_logits) real_outputs = tfgan.eval.run_inception( data_processor.preprocess(real_images), num_batches=num_batches) fid = tfgan.eval.frechet_classifier_distance_from_activations( real_outputs['pool_3'], fake_outputs['pool_3']) return { 'inception_score': inception_score, 'fid': fid}
deepmind-research-master
cs_gan/image_metrics.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """File utilities.""" import math import os import numpy as np from PIL import Image class FileExporter(object): """File exporter utilities.""" def __init__(self, path, grid_height=None, zoom=1): """Constructor. Arguments: path: The directory to save data to. grid_height: How many data elements tall to make the grid, if appropriate. The width will be chosen based on height. If None, automatically determined. zoom: How much to zoom in each data element by, if appropriate. """ if not os.path.exists(path): os.makedirs(path) self._path = path self._zoom = zoom self._grid_height = grid_height def _reshape(self, data): """Reshape given data into image format.""" batch_size, height, width, n_channels = data.shape if self._grid_height: grid_height = self._grid_height else: grid_height = int(math.floor(math.sqrt(batch_size))) grid_width = int(math.ceil(batch_size/grid_height)) if n_channels == 1: data = np.tile(data, (1, 1, 1, 3)) n_channels = 3 if n_channels != 3: raise ValueError('Image batch must have either 1 or 3 channels, but ' 'was {}'.format(n_channels)) shape = (height * grid_height, width * grid_width, n_channels) buf = np.full(shape, 255, dtype=np.uint8) multiplier = 1 if data.dtype in (np.int32, np.int64) else 255 for k in range(batch_size): i = k // grid_width j = k % grid_width arr = data[k] x, y = i * height, j * width buf[x:x + height, y:y + width, :] = np.clip( multiplier * arr, 0, 255).astype(np.uint8) if self._zoom > 1: buf = buf.repeat(self._zoom, axis=0).repeat(self._zoom, axis=1) return buf def save(self, data, name): data = self._reshape(data) relative_name = '{}_last.png'.format(name) target_file = os.path.join(self._path, relative_name) img = Image.fromarray(data) img.save(target_file, format='PNG')
deepmind-research-master
cs_gan/file_utils.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training script.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from absl import logging import tensorflow.compat.v1 as tf from cs_gan import file_utils from cs_gan import gan from cs_gan import image_metrics from cs_gan import utils flags.DEFINE_integer( 'num_training_iterations', 200000, 'Number of training iterations.') flags.DEFINE_integer( 'batch_size', 64, 'Training batch size.') flags.DEFINE_integer( 'num_latents', 128, 'The number of latents') flags.DEFINE_integer( 'summary_every_step', 1000, 'The interval at which to log debug ops.') flags.DEFINE_integer( 'image_metrics_every_step', 2000, 'The interval at which to log (expensive) image metrics.') flags.DEFINE_integer( 'export_every', 10, 'The interval at which to export samples.') flags.DEFINE_integer( 'num_eval_samples', 10000, 'The number of samples used to evaluate FID/IS') flags.DEFINE_string( 'dataset', 'cifar', 'The dataset used for learning (cifar|mnist.') flags.DEFINE_float( 'optimisation_cost_weight', 3., 'weight for latent optimisation cost.') flags.DEFINE_integer( 'num_z_iters', 3, 'The number of latent optimisation steps.' 'It falls back to vanilla GAN when num_z_iters is set to 0.') flags.DEFINE_float( 'z_step_size', 0.01, 'Step size for latent optimisation.') flags.DEFINE_string( 'z_project_method', 'norm', 'The method to project z.') flags.DEFINE_string( 'output_dir', '/tmp/cs_gan/gan', 'Location where to save output files.') flags.DEFINE_float('disc_lr', 2e-4, 'Discriminator Learning rate.') flags.DEFINE_float('gen_lr', 2e-4, 'Generator Learning rate.') flags.DEFINE_bool( 'run_real_data_metrics', False, 'Whether or not to run image metrics on real data.') flags.DEFINE_bool( 'run_sample_metrics', True, 'Whether or not to run image metrics on samples.') FLAGS = flags.FLAGS # Log info level (for Hooks). tf.logging.set_verbosity(tf.logging.INFO) def main(argv): del argv utils.make_output_dir(FLAGS.output_dir) data_processor = utils.DataProcessor() images = utils.get_train_dataset(data_processor, FLAGS.dataset, FLAGS.batch_size) logging.info('Generator learning rate: %d', FLAGS.gen_lr) logging.info('Discriminator learning rate: %d', FLAGS.disc_lr) # Construct optimizers. disc_optimizer = tf.train.AdamOptimizer(FLAGS.disc_lr, beta1=0.5, beta2=0.999) gen_optimizer = tf.train.AdamOptimizer(FLAGS.gen_lr, beta1=0.5, beta2=0.999) # Create the networks and models. generator = utils.get_generator(FLAGS.dataset) metric_net = utils.get_metric_net(FLAGS.dataset) model = gan.GAN(metric_net, generator, FLAGS.num_z_iters, FLAGS.z_step_size, FLAGS.z_project_method, FLAGS.optimisation_cost_weight) prior = utils.make_prior(FLAGS.num_latents) generator_inputs = prior.sample(FLAGS.batch_size) model_output = model.connect(images, generator_inputs) optimization_components = model_output.optimization_components debug_ops = model_output.debug_ops samples = generator(generator_inputs, is_training=False) global_step = tf.train.get_or_create_global_step() # We pass the global step both to the disc and generator update ops. # This means that the global step will not be the same as the number of # iterations, but ensures that hooks which rely on global step work correctly. disc_update_op = disc_optimizer.minimize( optimization_components['disc'].loss, var_list=optimization_components['disc'].vars, global_step=global_step) gen_update_op = gen_optimizer.minimize( optimization_components['gen'].loss, var_list=optimization_components['gen'].vars, global_step=global_step) # Get data needed to compute FID. We also compute metrics on # real data as a sanity check and as a reference point. eval_real_data = utils.get_real_data_for_eval(FLAGS.num_eval_samples, FLAGS.dataset, split='train') def sample_fn(x): return utils.optimise_and_sample(x, module=model, data=None, is_training=False)[0] if FLAGS.run_sample_metrics: sample_metrics = image_metrics.get_image_metrics_for_samples( eval_real_data, sample_fn, prior, data_processor, num_eval_samples=FLAGS.num_eval_samples) else: sample_metrics = {} if FLAGS.run_real_data_metrics: data_metrics = image_metrics.get_image_metrics( eval_real_data, eval_real_data) else: data_metrics = {} sample_exporter = file_utils.FileExporter( os.path.join(FLAGS.output_dir, 'samples')) # Hooks. debug_ops['it'] = global_step # Abort training on Nans. nan_disc_hook = tf.train.NanTensorHook(optimization_components['disc'].loss) nan_gen_hook = tf.train.NanTensorHook(optimization_components['gen'].loss) # Step counter. step_conter_hook = tf.train.StepCounterHook() checkpoint_saver_hook = tf.train.CheckpointSaverHook( checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60) loss_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.summary_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(debug_ops)) metrics_summary_saver_hook = tf.train.SummarySaverHook( save_steps=FLAGS.image_metrics_every_step, output_dir=os.path.join(FLAGS.output_dir, 'summaries'), summary_op=utils.get_summaries(sample_metrics)) hooks = [checkpoint_saver_hook, metrics_summary_saver_hook, nan_disc_hook, nan_gen_hook, step_conter_hook, loss_summary_saver_hook] # Start training. with tf.train.MonitoredSession(hooks=hooks) as sess: logging.info('starting training') for key, value in sess.run(data_metrics).items(): logging.info('%s: %d', key, value) for i in range(FLAGS.num_training_iterations): sess.run(disc_update_op) sess.run(gen_update_op) if i % FLAGS.export_every == 0: samples_np, data_np = sess.run([samples, images]) # Create an object which gets data and does the processing. data_np = data_processor.postprocess(data_np) samples_np = data_processor.postprocess(samples_np) sample_exporter.save(samples_np, 'samples') sample_exporter.save(data_np, 'data') if __name__ == '__main__': app.run(main)
deepmind-research-master
cs_gan/main.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Network utilities.""" import functools import re import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf import tensorflow_gan as tfgan def _sn_custom_getter(): def name_filter(name): match = re.match(r'.*w(_.*)?$', name) return match is not None return tfgan.features.spectral_normalization_custom_getter( name_filter=name_filter) class ConvGenNet(snt.AbstractModule): """As in the SN paper.""" def __init__(self, name='conv_gen'): super(ConvGenNet, self).__init__(name=name) def _build(self, inputs, is_training): batch_size = inputs.get_shape().as_list()[0] first_shape = [4, 4, 512] norm_ctor = snt.BatchNormV2 norm_ctor_config = {'scale': True} up_tensor = snt.Linear(np.prod(first_shape))(inputs) first_tensor = tf.reshape(up_tensor, shape=[batch_size] + first_shape) net = snt.nets.ConvNet2DTranspose( output_channels=[256, 128, 64, 3], output_shapes=[(8, 8), (16, 16), (32, 32), (32, 32)], kernel_shapes=[(4, 4), (4, 4), (4, 4), (3, 3)], strides=[2, 2, 2, 1], normalization_ctor=norm_ctor, normalization_kwargs=norm_ctor_config, normalize_final=False, paddings=[snt.SAME], activate_final=False, activation=tf.nn.relu) output = net(first_tensor, is_training=is_training) return tf.nn.tanh(output) class ConvMetricNet(snt.AbstractModule): """Convolutional discriminator (metric) architecture.""" def __init__(self, num_outputs=2, use_sn=True, name='sn_metric'): super(ConvMetricNet, self).__init__(name=name) self._num_outputs = num_outputs self._use_sn = use_sn def _build(self, inputs): def build_net(): net = snt.nets.ConvNet2D( output_channels=[64, 64, 128, 128, 256, 256, 512], kernel_shapes=[ (3, 3), (4, 4), (3, 3), (4, 4), (3, 3), (4, 4), (3, 3)], strides=[1, 2, 1, 2, 1, 2, 1], paddings=[snt.SAME], activate_final=True, activation=functools.partial(tf.nn.leaky_relu, alpha=0.1)) linear = snt.Linear(self._num_outputs) output = linear(snt.BatchFlatten()(net(inputs))) return output if self._use_sn: with tf.variable_scope('', custom_getter=_sn_custom_getter()): output = build_net() else: output = build_net() return output class MLPGeneratorNet(snt.AbstractModule): """MNIST generator net.""" def __init__(self, name='mlp_generator'): super(MLPGeneratorNet, self).__init__(name=name) def _build(self, inputs, is_training=True): del is_training net = snt.nets.MLP([500, 500, 784], activation=tf.nn.leaky_relu) out = net(inputs) out = tf.nn.tanh(out) return snt.BatchReshape([28, 28, 1])(out) class MLPMetricNet(snt.AbstractModule): """Same as in Grover and Ermon, ICLR workshop 2017.""" def __init__(self, num_outputs=2, name='mlp_metric'): super(MLPMetricNet, self).__init__(name=name) self._layer_size = [500, 500, num_outputs] def _build(self, inputs): net = snt.nets.MLP(self._layer_size, activation=tf.nn.leaky_relu) output = net(snt.BatchFlatten()(inputs)) return output
deepmind-research-master
cs_gan/nets.py
# Copyright 2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sonnet as snt import tensorflow.compat.v1 as tf from cs_gan import gan class DummyGenerator(snt.AbstractModule): def __init__(self): super(DummyGenerator, self).__init__(name='dummy_generator') def _build(self, inputs, is_training): return snt.Linear(10)(inputs) class GanTest(tf.test.TestCase): def testConnect(self): discriminator = snt.Linear(2) generator = DummyGenerator() model = gan.GAN( discriminator, generator, num_z_iters=0, z_step_size=0.1, z_project_method='none', optimisation_cost_weight=0.0) generator_inputs = tf.ones((16, 3), dtype=tf.float32) data = tf.ones((16, 10)) opt_compoments, _ = model.connect(data, generator_inputs) self.assertIn('disc', opt_compoments) self.assertIn('gen', opt_compoments) self.assertCountEqual( opt_compoments['disc'].vars, discriminator.get_variables()) self.assertCountEqual( opt_compoments['gen'].vars, generator.get_variables() + model._log_step_size_module.get_variables()) if __name__ == '__main__': tf.test.main()
deepmind-research-master
cs_gan/tests/gan_test.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for the Transporter module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import tensorflow.compat.v1 as tf from transporter import transporter IMAGE_H = 16 IMAGE_W = 16 IMAGE_C = 3 BATCH_SIZE = 4 IMAGE_BATCH_SHAPE = (BATCH_SIZE, IMAGE_H, IMAGE_W, IMAGE_C) FILTERS = (16, 16, 32, 32, 64, 64) STRIDES = (1, 1, 2, 1, 2, 1) KERNEL_SIZES = (7, 3, 3, 3, 3, 3) class TransporterTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters( {'norm_type': 'batch'}, {'norm_type': 'layer'}, {'norm_type': 'instance'}) def test_output_shape(self, norm_type): encoder_ctor = transporter.Encoder encoder_kwargs = { 'filters': FILTERS, 'strides': STRIDES, 'kernel_sizes': KERNEL_SIZES, 'norm_type': norm_type, } decoder_filters = 4 num_keypoints = 5 gauss_std = 0.1 encoder = encoder_ctor(name='encoder', **encoder_kwargs) keypoint_encoder = encoder_ctor(name='keypoint_encoder', **encoder_kwargs) keypointer = transporter.KeyPointer(keypoint_encoder=keypoint_encoder, num_keypoints=num_keypoints, gauss_std=gauss_std) decoder = transporter.Decoder(initial_filters=decoder_filters, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C, norm_type=norm_type) model = transporter.Transporter(encoder=encoder, decoder=decoder, keypointer=keypointer) image_a = tf.random.normal(IMAGE_BATCH_SHAPE) image_b = tf.random.normal(IMAGE_BATCH_SHAPE) transporter_results = model(image_a, image_b, is_training=True) reconstructed_image_b = transporter_results['reconstructed_image_b'] self.assertEqual(reconstructed_image_b.shape, IMAGE_BATCH_SHAPE) def testIncorrectEncoderShapes(self): """Test that a possible misconfiguration throws an error as expected. If the two encoders used produce different spatial sizes for their feature maps, this should cause an error when multiplying tensors together. """ decoder_filters = 4 num_keypoints = 5 gauss_std = 0.1 encoder = transporter.Encoder( filters=FILTERS, strides=STRIDES, kernel_sizes=KERNEL_SIZES) # Use less conv layers in this, in particular one less stride 2 layer, so # we will get a different spatial output resolution. keypoint_encoder = transporter.Encoder( filters=FILTERS[:-2], strides=STRIDES[:-2], kernel_sizes=KERNEL_SIZES[:-2]) keypointer = transporter.KeyPointer( keypoint_encoder=keypoint_encoder, num_keypoints=num_keypoints, gauss_std=gauss_std) decoder = transporter.Decoder( initial_filters=decoder_filters, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C) model = transporter.Transporter( encoder=encoder, decoder=decoder, keypointer=keypointer) with self.assertRaisesRegexp(ValueError, 'Dimensions must be equal'): model(tf.random.normal(IMAGE_BATCH_SHAPE), tf.random.normal(IMAGE_BATCH_SHAPE), is_training=True) class EncoderTest(tf.test.TestCase): def test_output_shape(self): image_batch = tf.random.normal(shape=IMAGE_BATCH_SHAPE) filters = (4, 4, 8, 8, 16, 16) encoder = transporter.Encoder(filters=filters, strides=STRIDES, kernel_sizes=KERNEL_SIZES) features = encoder(image_batch, is_training=True) self.assertEqual(features.shape, (BATCH_SIZE, IMAGE_H // 4, IMAGE_W // 4, filters[-1])) class KeyPointerTest(tf.test.TestCase): def test_output_shape(self): image_batch = tf.random.normal(shape=IMAGE_BATCH_SHAPE) num_keypoints = 6 gauss_std = 0.1 keypoint_encoder = transporter.Encoder(filters=FILTERS, strides=STRIDES, kernel_sizes=KERNEL_SIZES) keypointer = transporter.KeyPointer(keypoint_encoder=keypoint_encoder, num_keypoints=num_keypoints, gauss_std=gauss_std) keypointer_results = keypointer(image_batch, is_training=True) self.assertEqual(keypointer_results['centers'].shape, (BATCH_SIZE, num_keypoints, 2)) self.assertEqual(keypointer_results['heatmaps'].shape, (BATCH_SIZE, IMAGE_H // 4, IMAGE_W // 4, num_keypoints)) class DecoderTest(tf.test.TestCase): def test_output_shape(self): feature_batch = tf.random.normal(shape=(BATCH_SIZE, IMAGE_H // 4, IMAGE_W // 4, 64)) decoder = transporter.Decoder(initial_filters=64, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C) reconstructed_image_batch = decoder(feature_batch, is_training=True) self.assertEqual(reconstructed_image_batch.shape, IMAGE_BATCH_SHAPE) def test_encoder_decoder_output_shape(self): image_batch = tf.random.normal(shape=IMAGE_BATCH_SHAPE) encoder = transporter.Encoder(filters=FILTERS, strides=STRIDES, kernel_sizes=KERNEL_SIZES) decoder = transporter.Decoder(initial_filters=4, output_size=[IMAGE_H, IMAGE_W], output_channels=IMAGE_C) features = encoder(image_batch, is_training=True) reconstructed_images = decoder(features, is_training=True) self.assertEqual(reconstructed_images.shape, IMAGE_BATCH_SHAPE) if __name__ == '__main__': tf.test.main()
deepmind-research-master
transporter/transporter_test.py