python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transporter architecture in Sonnet/TF 1: https://arxiv.org/abs/1906.11883.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import sonnet as snt import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers as contrib_layers nest = contrib_framework.nest # Paper submission used BatchNorm, but we have since found that Layer & Instance # norm can be quite a lot more stable. _NORMALIZATION_CTORS = { "layer": snt.LayerNorm, "instance": functools.partial(snt.LayerNorm, axis=[1, 2]), "batch": snt.BatchNormV2, } def _connect_module_with_kwarg_if_supported(module, input_tensor, kwarg_name, kwarg_value): """Connects a module to some input, plus a kwarg= if supported by module.""" if snt.supports_kwargs(module, kwarg_name) == "supported": kwargs = {kwarg_name: kwarg_value} else: kwargs = {} return module(input_tensor, **kwargs) class Transporter(snt.AbstractModule): """Sonnet module implementing the Transporter architecture.""" def __init__( self, encoder, keypointer, decoder, name="transporter"): """Initialize the Transporter module. Args: encoder: `snt.AbstractModule` mapping images to features (see `Encoder`) keypointer: `snt.AbstractModule` mapping images to keypoint masks (see `KeyPointer`) decoder: `snt.AbstractModule` decoding features to images (see `Decoder`) name: `str` module name """ super(Transporter, self).__init__(name=name) self._encoder = encoder self._decoder = decoder self._keypointer = keypointer def _build(self, image_a, image_b, is_training): """Reconstructs image_b using feature transport from image_a. This approaches matches the NeurIPS submission. Args: image_a: Tensor of shape [B, H, W, C] containing a batch of images. image_b: Tensor of shape [B, H, W, C] containing a batch of images. is_training: `bool` indication whether the model is in training mode. Returns: A dict containing keys: 'reconstructed_image_b': Reconstruction of image_b, with the same shape. 'features_a': Tensor of shape [B, F_h, F_w, N] of the extracted features for `image_a`. 'features_b': Tensor of shape [B, F_h, F_w, N] of the extracted features for `image_b`. 'keypoints_a': The result of the keypointer module on image_a, with stop gradients applied. 'keypoints_b': The result of the keypointer module on image_b. """ # Process both images. All gradients related to image_a are stopped. image_a_features = tf.stop_gradient( self._encoder(image_a, is_training=is_training)) image_a_keypoints = nest.map_structure( tf.stop_gradient, self._keypointer(image_a, is_training=is_training)) image_b_features = self._encoder(image_b, is_training=is_training) image_b_keypoints = self._keypointer(image_b, is_training=is_training) # Transport features num_keypoints = image_a_keypoints["heatmaps"].shape[-1] transported_features = image_a_features for k in range(num_keypoints): mask_a = image_a_keypoints["heatmaps"][..., k, None] mask_b = image_b_keypoints["heatmaps"][..., k, None] # suppress features from image a, around both keypoint locations. transported_features = ( (1 - mask_a) * (1 - mask_b) * transported_features) # copy features from image b around keypoints for image b. transported_features += (mask_b * image_b_features) reconstructed_image_b = self._decoder( transported_features, is_training=is_training) return { "reconstructed_image_b": reconstructed_image_b, "features_a": image_a_features, "features_b": image_b_features, "keypoints_a": image_a_keypoints, "keypoints_b": image_b_keypoints, } def reconstruction_loss(image, predicted_image, loss_type="l2"): """Returns the reconstruction loss between the image and the predicted_image. Args: image: target image tensor of shape [B, H, W, C] predicted_image: reconstructed image as returned by the model loss_type: `str` reconstruction loss, either `l2` (default) or `l1`. Returns: The reconstruction loss """ if loss_type == "l2": return tf.reduce_mean(tf.square(image - predicted_image)) elif loss_type == "l1": return tf.reduce_mean(tf.abs(image - predicted_image)) else: raise ValueError("Unknown loss type: {}".format(loss_type)) class Encoder(snt.AbstractModule): """Encoder module mapping an image to features. The encoder is a standard convolutional network with ReLu activations. """ def __init__( self, filters=(16, 16, 32, 32), kernel_sizes=(7, 3, 3, 3), strides=(1, 1, 2, 1), norm_type="batch", name="encoder"): """Initialize the Encoder. Args: filters: tuple of `int`. The ith layer of the encoder will consist of `filters[i]` filters. kernel_sizes: tuple of `int` kernel sizes for each layer strides: tuple of `int` strides for each layer norm_type: string, one of 'instance', 'layer', 'batch'. name: `str` name of the module. """ super(Encoder, self).__init__(name=name) if len({len(filters), len(kernel_sizes), len(strides)}) != 1: raise ValueError( "length of filters/kernel_sizes/strides lists must be the same") self._filters = filters self._kernels = kernel_sizes self._strides = strides self._norm_ctor = _NORMALIZATION_CTORS[norm_type] def _build(self, image, is_training): """Connect the Encoder. Args: image: A batch of images of shape [B, H, W, C] is_training: `bool` indicating if the model is in training mode. Returns: A tensor of features of shape [B, F_h, F_w, N] where F_h and F_w are the height and width of the feature map and N = 4 * `self._filters` """ regularizers = {"w": contrib_layers.l2_regularizer(1.0)} features = image for l in range(len(self._filters)): with tf.variable_scope("conv_{}".format(l + 1)): conv = snt.Conv2D( self._filters[l], self._kernels[l], self._strides[l], padding=snt.SAME, regularizers=regularizers, name="conv_{}".format(l+1)) norm_module = self._norm_ctor(name="normalization") features = conv(features) features = _connect_module_with_kwarg_if_supported( norm_module, features, "is_training", is_training) features = tf.nn.relu(features) return features class KeyPointer(snt.AbstractModule): """Module for extracting keypoints from an image.""" def __init__(self, num_keypoints, gauss_std, keypoint_encoder, custom_getter=None, name="key_pointer"): """Iniitialize the keypointer. Args: num_keypoints: `int` number of keypoints to extract gauss_std: `float` size of the keypoints, relative to the image dimensions normalized to the range [-1, 1] keypoint_encoder: sonnet Module which produces a feature map. Must accept an is_training kwarg. When used in the Transporter, the output spatial resolution of this encoder should match the output spatial resolution of the other encoder, although these two encoders should not share weights. custom_getter: optional custom getter for variables in this module. name: `str` name of the module """ super(KeyPointer, self).__init__(name=name, custom_getter=custom_getter) self._num_keypoints = num_keypoints self._gauss_std = gauss_std self._keypoint_encoder = keypoint_encoder def _build(self, image, is_training): """Compute the gaussian keypoints for the image. Args: image: Image tensor of shape [B, H, W, C] is_training: `bool` whether the model is in training or evaluation mode Returns: a dict with keys: 'centers': A tensor of shape [B, K, 2] of the center locations for each of the K keypoints. 'heatmaps': A tensor of shape [B, F_h, F_w, K] of gaussian maps over the keypoints, where [F_h, F_w] is the size of the keypoint_encoder feature maps. """ conv = snt.Conv2D( self._num_keypoints, [1, 1], stride=1, regularizers={"w": contrib_layers.l2_regularizer(1.0)}, name="conv_1/conv_1") image_features = self._keypoint_encoder(image, is_training=is_training) keypoint_features = conv(image_features) return get_keypoint_data_from_feature_map( keypoint_features, self._gauss_std) def get_keypoint_data_from_feature_map(feature_map, gauss_std): """Returns keypoint information from a feature map. Args: feature_map: [B, H, W, K] Tensor, should be activations from a convnet. gauss_std: float, the standard deviation of the gaussians to be put around the keypoints. Returns: a dict with keys: 'centers': A tensor of shape [B, K, 2] of the center locations for each of the K keypoints. 'heatmaps': A tensor of shape [B, H, W, K] of gaussian maps over the keypoints. """ gauss_mu = _get_keypoint_mus(feature_map) map_size = feature_map.shape.as_list()[1:3] gauss_maps = _get_gaussian_maps(gauss_mu, map_size, 1.0 / gauss_std) return { "centers": gauss_mu, "heatmaps": gauss_maps, } def _get_keypoint_mus(keypoint_features): """Returns the keypoint center points. Args: keypoint_features: A tensor of shape [B, F_h, F_w, K] where K is the number of keypoints to extract. Returns: A tensor of shape [B, K, 2] of the y, x center points of each keypoint. Each center point are in the range [-1, 1]^2. Note: the first element is the y coordinate, the second is the x coordinate. """ gauss_y = _get_coord(keypoint_features, 1) gauss_x = _get_coord(keypoint_features, 2) gauss_mu = tf.stack([gauss_y, gauss_x], axis=2) return gauss_mu def _get_coord(features, axis): """Returns the keypoint coordinate encoding for the given axis. Args: features: A tensor of shape [B, F_h, F_w, K] where K is the number of keypoints to extract. axis: `int` which axis to extract the coordinate for. Has to be axis 1 or 2. Returns: A tensor of shape [B, K] containing the keypoint centers along the given axis. The location is given in the range [-1, 1]. """ if axis != 1 and axis != 2: raise ValueError("Axis needs to be 1 or 2.") other_axis = 1 if axis == 2 else 2 axis_size = features.shape[axis] # Compute the normalized weight for each row/column along the axis g_c_prob = tf.reduce_mean(features, axis=other_axis) g_c_prob = tf.nn.softmax(g_c_prob, axis=1) # Linear combination of the interval [-1, 1] using the normalized weights to # give a single coordinate in the same interval [-1, 1] scale = tf.cast(tf.linspace(-1.0, 1.0, axis_size), tf.float32) scale = tf.reshape(scale, [1, axis_size, 1]) coordinate = tf.reduce_sum(g_c_prob * scale, axis=1) return coordinate def _get_gaussian_maps(mu, map_size, inv_std, power=2): """Transforms the keypoint center points to a gaussian masks.""" mu_y, mu_x = mu[:, :, 0:1], mu[:, :, 1:2] y = tf.cast(tf.linspace(-1.0, 1.0, map_size[0]), tf.float32) x = tf.cast(tf.linspace(-1.0, 1.0, map_size[1]), tf.float32) mu_y, mu_x = tf.expand_dims(mu_y, -1), tf.expand_dims(mu_x, -1) y = tf.reshape(y, [1, 1, map_size[0], 1]) x = tf.reshape(x, [1, 1, 1, map_size[1]]) g_y = tf.pow(y - mu_y, power) g_x = tf.pow(x - mu_x, power) dist = (g_y + g_x) * tf.pow(inv_std, power) g_yx = tf.exp(-dist) g_yx = tf.transpose(g_yx, perm=[0, 2, 3, 1]) return g_yx class Decoder(snt.AbstractModule): """Decoder reconstruction network. The decoder is a standard convolutional network with ReLu activations. """ def __init__(self, initial_filters, output_size, output_channels=3, norm_type="batch", name="decoder"): """Initialize the decoder. Args: initial_filters: `int` number of initial filters used in the decoder output_size: tuple of `int` height and width of the reconstructed image output_channels: `int` number of output channels, for RGB use 3 (default) norm_type: string, one of 'instance', 'layer', 'batch'. name: `str` name of the module """ super(Decoder, self).__init__(name=name) self._initial_filters = initial_filters self._output_height = output_size[0] self._output_width = output_size[1] self._output_channels = output_channels self._norm_ctor = _NORMALIZATION_CTORS[norm_type] def _build(self, features, is_training): """Connect the Decoder. Args: features: Tensor of shape [B, F_h, F_w, N] is_training: `bool` whether the module is in training mode. Returns: A reconstructed image tensor of shape [B, output_height, output_width, output_channels] """ height, width = features.shape.as_list()[1:3] filters = self._initial_filters regularizers = {"w": contrib_layers.l2_regularizer(1.0)} layer = 0 while height <= self._output_height: layer += 1 with tf.variable_scope("conv_{}".format(layer)): conv1 = snt.Conv2D( filters, [3, 3], stride=1, regularizers=regularizers, name="conv_{}".format(layer)) norm_module = self._norm_ctor(name="normalization") features = conv1(features) features = _connect_module_with_kwarg_if_supported( norm_module, features, "is_training", is_training) features = tf.nn.relu(features) if height == self._output_height: layer += 1 with tf.variable_scope("conv_{}".format(layer)): conv2 = snt.Conv2D( self._output_channels, [3, 3], stride=1, regularizers=regularizers, name="conv_{}".format(layer)) features = conv2(features) break else: layer += 1 with tf.variable_scope("conv_{}".format(layer)): conv2 = snt.Conv2D( filters, [3, 3], stride=1, regularizers=regularizers, name="conv_{}".format(layer)) norm_module = self._norm_ctor(name="normalization") features = conv2(features) features = _connect_module_with_kwarg_if_supported( norm_module, features, "is_training", is_training) features = tf.nn.relu(features) height *= 2 width *= 2 features = tf.image.resize(features, [height, width]) if filters >= 8: filters /= 2 assert height == self._output_height assert width == self._output_width return features
deepmind-research-master
transporter/transporter.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Single file script for doing a quick evaluation of a model. This script is called by run.sh. Usage: user@host:/path/to/deepmind_research$ unsupervised_adversarial_training/run.sh """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from absl import app from absl import flags import cleverhans from cleverhans import attacks import numpy as np import tensorflow.compat.v1 as tf import tensorflow_hub as hub UAT_HUB_URL = ('https://tfhub.dev/deepmind/unsupervised-adversarial-training/' 'cifar10/wrn_106/1') FLAGS = flags.FLAGS flags.DEFINE_enum('attack_fn_name', 'fgsm', ['fgsm', 'none'], 'Name of the attack method to use.') flags.DEFINE_float('epsilon_attack', 8.0 / 255, 'Maximum allowable perturbation size, between 0 and 1.') flags.DEFINE_integer('num_steps', 20, 'Number of attack iterations.') flags.DEFINE_integer('num_batches', 100, 'Number of batches to evaluate.') flags.DEFINE_integer('batch_size', 32, 'Batch size.') flags.DEFINE_integer('skip_batches', 0, 'Controls index of start image. This can be used to ' 'evaluate the model on different subsets of the test set.') flags.DEFINE_float('learning_rate', 0.003, 'Attack optimizer learning rate.') def _top_1_accuracy(logits, labels): return tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 1), tf.float32)) def make_classifier(): model = hub.Module(UAT_HUB_URL) def classifier(x): x = _cifar_meanstd_normalize(x) model_input = dict(x=x, decay_rate=0.1, prefix='default') return model(model_input) return classifier def eval_cifar(): """Evaluate an adversarially trained model.""" attack_fn_name = FLAGS.attack_fn_name total_batches = FLAGS.num_batches batch_size = FLAGS.batch_size # Note that a `classifier` is a function mapping [0,1]-scaled image Tensors # to a logit Tensor. In particular, it includes *both* the preprocessing # function, and the neural network. classifier = make_classifier() cleverhans_model = cleverhans.model.CallableModelWrapper(classifier, 'logits') _, data_test = tf.keras.datasets.cifar10.load_data() data = _build_dataset(data_test, batch_size=batch_size, shuffle=False) # Generate adversarial images. if attack_fn_name == 'fgsm': attack = attacks.MadryEtAl(cleverhans_model) num_cifar_classes = 10 adv_x = attack.generate(data.image, eps=FLAGS.epsilon_attack, eps_iter=FLAGS.learning_rate, nb_iter=FLAGS.num_steps, y=tf.one_hot(data.label, depth=num_cifar_classes)) elif attack_fn_name == 'none': adv_x = data.image logits = classifier(adv_x) probs = tf.nn.softmax(logits) adv_acc = _top_1_accuracy(logits, data.label) with tf.train.SingularMonitoredSession() as sess: total_acc = 0. for _ in range(FLAGS.skip_batches): sess.run(data.image) for _ in range(total_batches): _, _, adv_acc_val = sess.run([probs, data.label, adv_acc]) total_acc += adv_acc_val print('Batch accuracy: {}'.format(adv_acc_val)) print('Total accuracy against {}: {}'.format( FLAGS.attack_fn_name, total_acc / total_batches)) ########## Utilities ########## # Defines a dataset sample.""" Sample = collections.namedtuple('Sample', ['image', 'label']) def _build_dataset(raw_data, batch_size=32, shuffle=False): """Builds a dataset from raw NumPy tensors. Args: raw_data: Pair (images, labels) of numpy arrays. `images` should have shape (N, H, W, C) with values in [0, 255], and `labels` should have shape (N,) or (N, 1) indicating class indices. batch_size: int, batch size shuffle: bool, whether to shuffle the data (default: True). Returns: (image_tensor, label_tensor), which iterate over the dataset, which are (batch_size, H, W, C) tf.float32 and (batch_size,) tf.int32 Tensors respectively """ images, labels = raw_data labels = np.squeeze(labels) samples = Sample(images.astype(np.float32) / 255., labels.astype(np.int64)) data = tf.data.Dataset.from_tensor_slices(samples) if shuffle: data = data.shuffle(1000) return data.repeat().batch(batch_size).make_one_shot_iterator().get_next() def _cifar_meanstd_normalize(image): """Mean + stddev whitening for CIFAR-10 used in ResNets. Args: image: Numpy array or TF Tensor, with values in [0, 255] Returns: image: Numpy array or TF Tensor, shifted and scaled by mean/stdev on CIFAR-10 dataset. """ # Channel-wise means and std devs calculated from the CIFAR-10 training set cifar_means = [125.3, 123.0, 113.9] cifar_devs = [63.0, 62.1, 66.7] rescaled_means = [x / 255. for x in cifar_means] rescaled_devs = [x / 255. for x in cifar_devs] image = (image - rescaled_means) / rescaled_devs return image def main(unused_argv): eval_cifar() if __name__ == '__main__': app.run(main)
deepmind-research-master
unsupervised_adversarial_training/quick_eval_cifar.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Loads images from the 80M@200K training set and saves them in PNG format. Usage: cd /path/to/deepmind_research python -m unsupervised_adversarial_training.save_example_images \ --data_bin_path=/path/to/tiny_images.bin """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags import numpy as np from PIL import Image DIR_NAME = os.path.dirname(__file__) FLAGS = flags.FLAGS flags.DEFINE_string('data_bin_path', None, 'path to 80M Tiny Images data binary') flags.DEFINE_string('idxs_path', os.path.join(DIR_NAME, 'tiny_200K_idxs.txt'), 'path to file of indices indicating subset of 80M dataset') flags.DEFINE_string('output_dir', os.path.join(DIR_NAME, 'images'), 'path to output directory for images') flags.mark_flag_as_required('data_bin_path') CIFAR_LABEL_IDX_TO_NAME = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] DATASET_SIZE = 79302017 def _load_dataset_as_array(ds_path): dataset = np.memmap(filename=ds_path, dtype=np.uint8, mode='r', shape=(DATASET_SIZE, 3, 32, 32)) return dataset.transpose([0, 3, 2, 1]) def main(unused_argv): dataset = _load_dataset_as_array(FLAGS.data_bin_path) # Load the indices and labels of the 80M@200K training set data_idxs, data_labels = np.loadtxt( FLAGS.idxs_path, delimiter=',', dtype=[('index', np.uint64), ('label', np.uint8)], unpack=True) # Save images as PNG files if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) for i in range(100): class_name = CIFAR_LABEL_IDX_TO_NAME[data_labels[i]] file_name = 'im{}_{}.png'.format(i, class_name) file_path = os.path.join(FLAGS.output_dir, file_name) img = dataset[data_idxs[i]] Image.fromarray(img).save(file_path) if __name__ == '__main__': app.run(main)
deepmind-research-master
unsupervised_adversarial_training/save_example_images.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the PolyGen open-source version.""" from modules import FaceModel from modules import VertexModel import numpy as np import tensorflow as tf _BATCH_SIZE = 4 _TRANSFORMER_CONFIG = { 'num_layers': 2, 'hidden_size': 64, 'fc_size': 256 } _CLASS_CONDITIONAL = True _NUM_CLASSES = 4 _NUM_INPUT_VERTS = 50 _NUM_PAD_VERTS = 10 _NUM_INPUT_FACE_INDICES = 200 _QUANTIZATION_BITS = 8 _VERTEX_MODEL_USE_DISCRETE_EMBEDDINGS = True _FACE_MODEL_DECODER_CROSS_ATTENTION = True _FACE_MODEL_DISCRETE_EMBEDDINGS = True _MAX_SAMPLE_LENGTH_VERTS = 10 _MAX_SAMPLE_LENGTH_FACES = 10 def _get_vertex_model_batch(): """Returns batch with placeholders for vertex model inputs.""" return { 'class_label': tf.range(_BATCH_SIZE), 'vertices_flat': tf.placeholder( dtype=tf.int32, shape=[_BATCH_SIZE, None]), } def _get_face_model_batch(): """Returns batch with placeholders for face model inputs.""" return { 'vertices': tf.placeholder( dtype=tf.float32, shape=[_BATCH_SIZE, None, 3]), 'vertices_mask': tf.placeholder( dtype=tf.float32, shape=[_BATCH_SIZE, None]), 'faces': tf.placeholder( dtype=tf.int32, shape=[_BATCH_SIZE, None]), } class VertexModelTest(tf.test.TestCase): def setUp(self): """Defines a vertex model.""" super(VertexModelTest, self).setUp() self.model = VertexModel( decoder_config=_TRANSFORMER_CONFIG, class_conditional=_CLASS_CONDITIONAL, num_classes=_NUM_CLASSES, max_num_input_verts=_NUM_INPUT_VERTS, quantization_bits=_QUANTIZATION_BITS, use_discrete_embeddings=_VERTEX_MODEL_USE_DISCRETE_EMBEDDINGS) def test_model_runs(self): """Tests if the model runs without crashing.""" batch = _get_vertex_model_batch() pred_dist = self.model(batch, is_training=False) logits = pred_dist.logits with self.session() as sess: sess.run(tf.global_variables_initializer()) vertices_flat = np.random.randint( 2**_QUANTIZATION_BITS + 1, size=[_BATCH_SIZE, _NUM_INPUT_VERTS * 3 + 1]) sess.run(logits, {batch['vertices_flat']: vertices_flat}) def test_sample_outputs_range(self): """Tests if the model produces samples in the correct range.""" context = {'class_label': tf.zeros((_BATCH_SIZE,), dtype=tf.int32)} sample_dict = self.model.sample( _BATCH_SIZE, max_sample_length=_MAX_SAMPLE_LENGTH_VERTS, context=context) with self.session() as sess: sess.run(tf.global_variables_initializer()) sample_dict_np = sess.run(sample_dict) in_range = np.logical_and( 0 <= sample_dict_np['vertices'], sample_dict_np['vertices'] <= 2**_QUANTIZATION_BITS).all() self.assertTrue(in_range) class FaceModelTest(tf.test.TestCase): def setUp(self): """Defines a face model.""" super(FaceModelTest, self).setUp() self.model = FaceModel( encoder_config=_TRANSFORMER_CONFIG, decoder_config=_TRANSFORMER_CONFIG, class_conditional=False, max_seq_length=_NUM_INPUT_FACE_INDICES, decoder_cross_attention=_FACE_MODEL_DECODER_CROSS_ATTENTION, use_discrete_vertex_embeddings=_FACE_MODEL_DISCRETE_EMBEDDINGS, quantization_bits=_QUANTIZATION_BITS) def test_model_runs(self): """Tests if the model runs without crashing.""" batch = _get_face_model_batch() pred_dist = self.model(batch, is_training=False) logits = pred_dist.logits with self.session() as sess: sess.run(tf.global_variables_initializer()) vertices = np.random.rand(_BATCH_SIZE, _NUM_INPUT_VERTS, 3) - 0.5 vertices_mask = np.ones([_BATCH_SIZE, _NUM_INPUT_VERTS]) faces = np.random.randint( _NUM_INPUT_VERTS + 2, size=[_BATCH_SIZE, _NUM_INPUT_FACE_INDICES]) sess.run( logits, {batch['vertices']: vertices, batch['vertices_mask']: vertices_mask, batch['faces']: faces} ) def test_sample_outputs_range(self): """Tests if the model produces samples in the correct range.""" context = _get_face_model_batch() del context['faces'] sample_dict = self.model.sample( context, max_sample_length=_MAX_SAMPLE_LENGTH_FACES) with self.session() as sess: sess.run(tf.global_variables_initializer()) # Pad the vertices in order to test that the face model only outputs # vertex indices in the unpadded range vertices = np.pad( np.random.rand(_BATCH_SIZE, _NUM_INPUT_VERTS, 3) - 0.5, [[0, 0], [0, _NUM_PAD_VERTS], [0, 0]], mode='constant') vertices_mask = np.pad( np.ones([_BATCH_SIZE, _NUM_INPUT_VERTS]), [[0, 0], [0, _NUM_PAD_VERTS]], mode='constant') sample_dict_np = sess.run( sample_dict, {context['vertices']: vertices, context['vertices_mask']: vertices_mask}) in_range = np.logical_and( 0 <= sample_dict_np['faces'], sample_dict_np['faces'] <= _NUM_INPUT_VERTS + 1).all() self.assertTrue(in_range) if __name__ == '__main__': tf.test.main()
deepmind-research-master
polygen/model_test.py
# Copyright 2020 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for pip package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['numpy', 'dm-sonnet==1.36', 'tensorflow==1.14', 'tensor2tensor==1.15', 'networkx', 'matplotlib', 'six'] setup( name='polygen', version='0.1', description='A library for PolyGen: An Autoregressive Generative Model of 3D Meshes.', url='https://github.com/deepmind/deepmind-research/polygen', author='DeepMind', author_email='[email protected]', # Contained modules and scripts. packages=find_packages(), install_requires=REQUIRED_PACKAGES, platforms=['any'], license='Apache 2.0', )
deepmind-research-master
polygen/setup.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mesh data utilities.""" import matplotlib.pyplot as plt from mpl_toolkits import mplot3d # pylint: disable=unused-import from mpl_toolkits.mplot3d.art3d import Poly3DCollection import networkx as nx import numpy as np import six from six.moves import range import tensorflow.compat.v1 as tf import tensorflow_probability as tfp tfd = tfp.distributions def random_shift(vertices, shift_factor=0.25): """Apply random shift to vertices.""" max_shift_pos = tf.cast(255 - tf.reduce_max(vertices, axis=0), tf.float32) max_shift_pos = tf.maximum(max_shift_pos, 1e-9) max_shift_neg = tf.cast(tf.reduce_min(vertices, axis=0), tf.float32) max_shift_neg = tf.maximum(max_shift_neg, 1e-9) shift = tfd.TruncatedNormal( tf.zeros([1, 3]), shift_factor*255, -max_shift_neg, max_shift_pos).sample() shift = tf.cast(shift, tf.int32) vertices += shift return vertices def make_vertex_model_dataset(ds, apply_random_shift=False): """Prepare dataset for vertex model training.""" def _vertex_model_map_fn(example): vertices = example['vertices'] # Randomly shift vertices if apply_random_shift: vertices = random_shift(vertices) # Re-order vertex coordinates as (z, y, x). vertices_permuted = tf.stack( [vertices[:, 2], vertices[:, 1], vertices[:, 0]], axis=-1) # Flatten quantized vertices, reindex starting from 1, and pad with a # zero stopping token. vertices_flat = tf.reshape(vertices_permuted, [-1]) example['vertices_flat'] = tf.pad(vertices_flat + 1, [[0, 1]]) # Create mask to indicate valid tokens after padding and batching. example['vertices_flat_mask'] = tf.ones_like( example['vertices_flat'], dtype=tf.float32) return example return ds.map(_vertex_model_map_fn) def make_face_model_dataset( ds, apply_random_shift=False, shuffle_vertices=True, quantization_bits=8): """Prepare dataset for face model training.""" def _face_model_map_fn(example): vertices = example['vertices'] # Randomly shift vertices if apply_random_shift: vertices = random_shift(vertices) example['num_vertices'] = tf.shape(vertices)[0] # Optionally shuffle vertices and re-order faces to match if shuffle_vertices: permutation = tf.random_shuffle(tf.range(example['num_vertices'])) vertices = tf.gather(vertices, permutation) face_permutation = tf.concat( [tf.constant([0, 1], dtype=tf.int32), tf.argsort(permutation) + 2], axis=0) example['faces'] = tf.cast( tf.gather(face_permutation, example['faces']), tf.int64) def _dequantize_verts(verts, n_bits): min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts = tf.cast(verts, tf.float32) verts = verts * (max_range - min_range) / range_quantize + min_range return verts # Vertices are quantized. So convert to floats for input to face model example['vertices'] = _dequantize_verts(vertices, quantization_bits) example['vertices_mask'] = tf.ones_like( example['vertices'][..., 0], dtype=tf.float32) example['faces_mask'] = tf.ones_like(example['faces'], dtype=tf.float32) return example return ds.map(_face_model_map_fn) def read_obj_file(obj_file): """Read vertices and faces from already opened file.""" vertex_list = [] flat_vertices_list = [] flat_vertices_indices = {} flat_triangles = [] for line in obj_file: tokens = line.split() if not tokens: continue line_type = tokens[0] # We skip lines not starting with v or f. if line_type == 'v': vertex_list.append([float(x) for x in tokens[1:]]) elif line_type == 'f': triangle = [] for i in range(len(tokens) - 1): vertex_name = tokens[i + 1] if vertex_name in flat_vertices_indices: triangle.append(flat_vertices_indices[vertex_name]) continue flat_vertex = [] for index in six.ensure_str(vertex_name).split('/'): if not index: continue # obj triangle indices are 1 indexed, so subtract 1 here. flat_vertex += vertex_list[int(index) - 1] flat_vertex_index = len(flat_vertices_list) flat_vertices_list.append(flat_vertex) flat_vertices_indices[vertex_name] = flat_vertex_index triangle.append(flat_vertex_index) flat_triangles.append(triangle) return np.array(flat_vertices_list, dtype=np.float32), flat_triangles def read_obj(obj_path): """Open .obj file from the path provided and read vertices and faces.""" with open(obj_path) as obj_file: return read_obj_file(obj_file) def write_obj(vertices, faces, file_path, transpose=True, scale=1.): """Write vertices and faces to obj.""" if transpose: vertices = vertices[:, [1, 2, 0]] vertices *= scale if faces is not None: if min(min(faces)) == 0: f_add = 1 else: f_add = 0 with open(file_path, 'w') as f: for v in vertices: f.write('v {} {} {}\n'.format(v[0], v[1], v[2])) for face in faces: line = 'f' for i in face: line += ' {}'.format(i + f_add) line += '\n' f.write(line) def quantize_verts(verts, n_bits=8): """Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1].""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts_quantize = (verts - min_range) * range_quantize / ( max_range - min_range) return verts_quantize.astype('int32') def dequantize_verts(verts, n_bits=8, add_noise=False): """Convert quantized vertices to floats.""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts = verts.astype('float32') verts = verts * (max_range - min_range) / range_quantize + min_range if add_noise: verts += np.random.uniform(size=verts.shape) * (1 / range_quantize) return verts def face_to_cycles(face): """Find cycles in face.""" g = nx.Graph() for v in range(len(face) - 1): g.add_edge(face[v], face[v + 1]) g.add_edge(face[-1], face[0]) return list(nx.cycle_basis(g)) def flatten_faces(faces): """Converts from list of faces to flat face array with stopping indices.""" if not faces: return np.array([0]) else: l = [f + [-1] for f in faces[:-1]] l += [faces[-1] + [-2]] return np.array([item for sublist in l for item in sublist]) + 2 # pylint: disable=g-complex-comprehension def unflatten_faces(flat_faces): """Converts from flat face sequence to a list of separate faces.""" def group(seq): g = [] for el in seq: if el == 0 or el == -1: yield g g = [] else: g.append(el - 1) yield g outputs = list(group(flat_faces - 1))[:-1] # Remove empty faces return [o for o in outputs if len(o) > 2] def center_vertices(vertices): """Translate the vertices so that bounding box is centered at zero.""" vert_min = vertices.min(axis=0) vert_max = vertices.max(axis=0) vert_center = 0.5 * (vert_min + vert_max) return vertices - vert_center def normalize_vertices_scale(vertices): """Scale the vertices so that the long diagonal of the bounding box is one.""" vert_min = vertices.min(axis=0) vert_max = vertices.max(axis=0) extents = vert_max - vert_min scale = np.sqrt(np.sum(extents**2)) return vertices / scale def quantize_process_mesh(vertices, faces, tris=None, quantization_bits=8): """Quantize vertices, remove resulting duplicates and reindex faces.""" vertices = quantize_verts(vertices, quantization_bits) vertices, inv = np.unique(vertices, axis=0, return_inverse=True) # Sort vertices by z then y then x. sort_inds = np.lexsort(vertices.T) vertices = vertices[sort_inds] # Re-index faces and tris to re-ordered vertices. faces = [np.argsort(sort_inds)[inv[f]] for f in faces] if tris is not None: tris = np.array([np.argsort(sort_inds)[inv[t]] for t in tris]) # Merging duplicate vertices and re-indexing the faces causes some faces to # contain loops (e.g [2, 3, 5, 2, 4]). Split these faces into distinct # sub-faces. sub_faces = [] for f in faces: cliques = face_to_cycles(f) for c in cliques: c_length = len(c) # Only append faces with more than two verts. if c_length > 2: d = np.argmin(c) # Cyclically permute faces just that first index is the smallest. sub_faces.append([c[(d + i) % c_length] for i in range(c_length)]) faces = sub_faces if tris is not None: tris = np.array([v for v in tris if len(set(v)) == len(v)]) # Sort faces by lowest vertex indices. If two faces have the same lowest # index then sort by next lowest and so on. faces.sort(key=lambda f: tuple(sorted(f))) if tris is not None: tris = tris.tolist() tris.sort(key=lambda f: tuple(sorted(f))) tris = np.array(tris) # After removing degenerate faces some vertices are now unreferenced. # Remove these. num_verts = vertices.shape[0] vert_connected = np.equal( np.arange(num_verts)[:, None], np.hstack(faces)[None]).any(axis=-1) vertices = vertices[vert_connected] # Re-index faces and tris to re-ordered vertices. vert_indices = ( np.arange(num_verts) - np.cumsum(1 - vert_connected.astype('int'))) faces = [vert_indices[f].tolist() for f in faces] if tris is not None: tris = np.array([vert_indices[t].tolist() for t in tris]) return vertices, faces, tris def process_mesh(vertices, faces, quantization_bits=8): """Process mesh vertices and faces.""" # Transpose so that z-axis is vertical. vertices = vertices[:, [2, 0, 1]] # Translate the vertices so that bounding box is centered at zero. vertices = center_vertices(vertices) # Scale the vertices so that the long diagonal of the bounding box is equal # to one. vertices = normalize_vertices_scale(vertices) # Quantize and sort vertices, remove resulting duplicates, sort and reindex # faces. vertices, faces, _ = quantize_process_mesh( vertices, faces, quantization_bits=quantization_bits) # Flatten faces and add 'new face' = 1 and 'stop' = 0 tokens. faces = flatten_faces(faces) # Discard degenerate meshes without faces. return { 'vertices': vertices, 'faces': faces, } def load_process_mesh(mesh_obj_path, quantization_bits=8): """Load obj file and process.""" # Load mesh vertices, faces = read_obj(mesh_obj_path) return process_mesh(vertices, faces, quantization_bits) def plot_meshes(mesh_list, ax_lims=0.3, fig_size=4, el=30, rot_start=120, vert_size=10, vert_alpha=0.75, n_cols=4): """Plots mesh data using matplotlib.""" n_plot = len(mesh_list) n_cols = np.minimum(n_plot, n_cols) n_rows = np.ceil(n_plot / n_cols).astype('int') fig = plt.figure(figsize=(fig_size * n_cols, fig_size * n_rows)) for p_inc, mesh in enumerate(mesh_list): for key in [ 'vertices', 'faces', 'vertices_conditional', 'pointcloud', 'class_name' ]: if key not in list(mesh.keys()): mesh[key] = None ax = fig.add_subplot(n_rows, n_cols, p_inc + 1, projection='3d') if mesh['faces'] is not None: if mesh['vertices_conditional'] is not None: face_verts = np.concatenate( [mesh['vertices_conditional'], mesh['vertices']], axis=0) else: face_verts = mesh['vertices'] collection = [] for f in mesh['faces']: collection.append(face_verts[f]) plt_mesh = Poly3DCollection(collection) plt_mesh.set_edgecolor((0., 0., 0., 0.3)) plt_mesh.set_facecolor((1, 0, 0, 0.2)) ax.add_collection3d(plt_mesh) if mesh['vertices'] is not None: ax.scatter3D( mesh['vertices'][:, 0], mesh['vertices'][:, 1], mesh['vertices'][:, 2], lw=0., s=vert_size, c='g', alpha=vert_alpha) if mesh['vertices_conditional'] is not None: ax.scatter3D( mesh['vertices_conditional'][:, 0], mesh['vertices_conditional'][:, 1], mesh['vertices_conditional'][:, 2], lw=0., s=vert_size, c='b', alpha=vert_alpha) if mesh['pointcloud'] is not None: ax.scatter3D( mesh['pointcloud'][:, 0], mesh['pointcloud'][:, 1], mesh['pointcloud'][:, 2], lw=0., s=2.5 * vert_size, c='b', alpha=1.) ax.set_xlim(-ax_lims, ax_lims) ax.set_ylim(-ax_lims, ax_lims) ax.set_zlim(-ax_lims, ax_lims) ax.view_init(el, rot_start) display_string = '' if mesh['faces'] is not None: display_string += 'Num. faces: {}\n'.format(len(collection)) if mesh['vertices'] is not None: num_verts = mesh['vertices'].shape[0] if mesh['vertices_conditional'] is not None: num_verts += mesh['vertices_conditional'].shape[0] display_string += 'Num. verts: {}\n'.format(num_verts) if mesh['class_name'] is not None: display_string += 'Synset: {}'.format(mesh['class_name']) if mesh['pointcloud'] is not None: display_string += 'Num. pointcloud: {}\n'.format( mesh['pointcloud'].shape[0]) ax.text2D(0.05, 0.8, display_string, transform=ax.transAxes) plt.subplots_adjust( left=0., right=1., bottom=0., top=1., wspace=0.025, hspace=0.025) plt.show()
deepmind-research-master
polygen/data_utils.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Modules and networks for mesh generation.""" import sonnet as snt from tensor2tensor.layers import common_attention from tensor2tensor.layers import common_layers import tensorflow.compat.v1 as tf from tensorflow.python.framework import function import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors def dequantize_verts(verts, n_bits, add_noise=False): """Quantizes vertices and outputs integers with specified n_bits.""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts = tf.cast(verts, tf.float32) verts = verts * (max_range - min_range) / range_quantize + min_range if add_noise: verts += tf.random_uniform(tf.shape(verts)) * (1 / float(range_quantize)) return verts def quantize_verts(verts, n_bits): """Dequantizes integer vertices to floats.""" min_range = -0.5 max_range = 0.5 range_quantize = 2**n_bits - 1 verts_quantize = ( (verts - min_range) * range_quantize / (max_range - min_range)) return tf.cast(verts_quantize, tf.int32) def top_k_logits(logits, k): """Masks logits such that logits not in top-k are small.""" if k == 0: return logits else: values, _ = tf.math.top_k(logits, k=k) k_largest = tf.reduce_min(values) logits = tf.where(tf.less_equal(logits, k_largest), tf.ones_like(logits)*-1e9, logits) return logits def top_p_logits(logits, p): """Masks logits using nucleus (top-p) sampling.""" if p == 1: return logits else: logit_shape = tf.shape(logits) seq, dim = logit_shape[1], logit_shape[2] logits = tf.reshape(logits, [-1, dim]) sort_indices = tf.argsort(logits, axis=-1, direction='DESCENDING') probs = tf.gather(tf.nn.softmax(logits), sort_indices, batch_dims=1) cumprobs = tf.cumsum(probs, axis=-1, exclusive=True) # The top 1 candidate always will not be masked. # This way ensures at least 1 indices will be selected. sort_mask = tf.cast(tf.greater(cumprobs, p), logits.dtype) batch_indices = tf.tile( tf.expand_dims(tf.range(tf.shape(logits)[0]), axis=-1), [1, dim]) top_p_mask = tf.scatter_nd( tf.stack([batch_indices, sort_indices], axis=-1), sort_mask, tf.shape(logits)) logits -= top_p_mask * 1e9 return tf.reshape(logits, [-1, seq, dim]) _function_cache = {} # For multihead_self_attention_memory_efficient def multihead_self_attention_memory_efficient(x, bias, num_heads, head_size=None, cache=None, epsilon=1e-6, forget=True, test_vars=None, name=None): """Memory-efficient Multihead scaled-dot-product self-attention. Based on Tensor2Tensor version but adds optional caching. Returns multihead-self-attention(layer_norm(x)) Computes one attention head at a time to avoid exhausting memory. If forget=True, then forget all forwards activations and recompute on the backwards pass. Args: x: a Tensor with shape [batch, length, input_size] bias: an attention bias tensor broadcastable to [batch, 1, length, length] num_heads: an integer head_size: an optional integer - defaults to input_size/num_heads cache: Optional dict containing tensors which are the results of previous attentions, used for fast decoding. Expects the dict to contain two keys ('k' and 'v'), for the initial call the values for these keys should be empty Tensors of the appropriate shape. 'k' [batch_size, 0, key_channels] 'v' [batch_size, 0, value_channels] epsilon: a float, for layer norm forget: a boolean - forget forwards activations and recompute on backprop test_vars: optional tuple of variables for testing purposes name: an optional string Returns: A Tensor. """ io_size = x.get_shape().as_list()[-1] if head_size is None: assert io_size % num_heads == 0 head_size = io_size / num_heads def forward_internal(x, wqkv, wo, attention_bias, norm_scale, norm_bias): """Forward function.""" n = common_layers.layer_norm_compute(x, epsilon, norm_scale, norm_bias) wqkv_split = tf.unstack(wqkv, num=num_heads) wo_split = tf.unstack(wo, num=num_heads) y = 0 if cache is not None: cache_k = [] cache_v = [] for h in range(num_heads): with tf.control_dependencies([y] if h > 0 else []): combined = tf.nn.conv1d(n, wqkv_split[h], 1, 'SAME') q, k, v = tf.split(combined, 3, axis=2) if cache is not None: k = tf.concat([cache['k'][:, h], k], axis=1) v = tf.concat([cache['v'][:, h], v], axis=1) cache_k.append(k) cache_v.append(v) o = common_attention.scaled_dot_product_attention_simple( q, k, v, attention_bias) y += tf.nn.conv1d(o, wo_split[h], 1, 'SAME') if cache is not None: cache['k'] = tf.stack(cache_k, axis=1) cache['v'] = tf.stack(cache_v, axis=1) return y key = ( 'multihead_self_attention_memory_efficient %s %s' % (num_heads, epsilon)) if not forget: forward_fn = forward_internal elif key in _function_cache: forward_fn = _function_cache[key] else: @function.Defun(compiled=True) def grad_fn(x, wqkv, wo, attention_bias, norm_scale, norm_bias, dy): """Custom gradient function.""" with tf.control_dependencies([dy]): n = common_layers.layer_norm_compute(x, epsilon, norm_scale, norm_bias) wqkv_split = tf.unstack(wqkv, num=num_heads) wo_split = tf.unstack(wo, num=num_heads) deps = [] dwqkvs = [] dwos = [] dn = 0 for h in range(num_heads): with tf.control_dependencies(deps): combined = tf.nn.conv1d(n, wqkv_split[h], 1, 'SAME') q, k, v = tf.split(combined, 3, axis=2) o = common_attention.scaled_dot_product_attention_simple( q, k, v, attention_bias) partial_y = tf.nn.conv1d(o, wo_split[h], 1, 'SAME') pdn, dwqkvh, dwoh = tf.gradients( ys=[partial_y], xs=[n, wqkv_split[h], wo_split[h]], grad_ys=[dy]) dn += pdn dwqkvs.append(dwqkvh) dwos.append(dwoh) deps = [dn, dwqkvh, dwoh] dwqkv = tf.stack(dwqkvs) dwo = tf.stack(dwos) with tf.control_dependencies(deps): dx, dnorm_scale, dnorm_bias = tf.gradients( ys=[n], xs=[x, norm_scale, norm_bias], grad_ys=[dn]) return (dx, dwqkv, dwo, tf.zeros_like(attention_bias), dnorm_scale, dnorm_bias) @function.Defun( grad_func=grad_fn, compiled=True, separate_compiled_gradients=True) def forward_fn(x, wqkv, wo, attention_bias, norm_scale, norm_bias): return forward_internal(x, wqkv, wo, attention_bias, norm_scale, norm_bias) _function_cache[key] = forward_fn if bias is not None: bias = tf.squeeze(bias, 1) with tf.variable_scope(name, default_name='multihead_attention', values=[x]): if test_vars is not None: wqkv, wo, norm_scale, norm_bias = list(test_vars) else: wqkv = tf.get_variable( 'wqkv', [num_heads, 1, io_size, 3 * head_size], initializer=tf.random_normal_initializer(stddev=io_size**-0.5)) wo = tf.get_variable( 'wo', [num_heads, 1, head_size, io_size], initializer=tf.random_normal_initializer( stddev=(head_size * num_heads)**-0.5)) norm_scale, norm_bias = common_layers.layer_norm_vars(io_size) y = forward_fn(x, wqkv, wo, bias, norm_scale, norm_bias) y.set_shape(x.get_shape()) # pytype: disable=attribute-error return y class TransformerEncoder(snt.AbstractModule): """Transformer encoder. Sonnet Transformer encoder module as described in Vaswani et al. 2017. Uses the Tensor2Tensor multihead_attention function for full self attention (no masking). Layer norm is applied inside the residual path as in sparse transformers (Child 2019). This module expects inputs to be already embedded, and does not add position embeddings. """ def __init__(self, hidden_size=256, fc_size=1024, num_heads=4, layer_norm=True, num_layers=8, dropout_rate=0.2, re_zero=True, memory_efficient=False, name='transformer_encoder'): """Initializes TransformerEncoder. Args: hidden_size: Size of embedding vectors. fc_size: Size of fully connected layer. num_heads: Number of attention heads. layer_norm: If True, apply layer normalization num_layers: Number of Transformer blocks, where each block contains a multi-head attention layer and a MLP. dropout_rate: Dropout rate applied immediately after the ReLU in each fully-connected layer. re_zero: If True, alpha scale residuals with zero init. memory_efficient: If True, recompute gradients for memory savings. name: Name of variable scope """ super(TransformerEncoder, self).__init__(name=name) self.hidden_size = hidden_size self.num_heads = num_heads self.layer_norm = layer_norm self.fc_size = fc_size self.num_layers = num_layers self.dropout_rate = dropout_rate self.re_zero = re_zero self.memory_efficient = memory_efficient def _build(self, inputs, is_training=False): """Passes inputs through Transformer encoder network. Args: inputs: Tensor of shape [batch_size, sequence_length, embed_size]. Zero embeddings are masked in self-attention. is_training: If True, dropout is applied. Returns: output: Tensor of shape [batch_size, sequence_length, embed_size]. """ if is_training: dropout_rate = self.dropout_rate else: dropout_rate = 0. # Identify elements with all zeros as padding, and create bias to mask # out padding elements in self attention. encoder_padding = common_attention.embedding_to_padding(inputs) encoder_self_attention_bias = ( common_attention.attention_bias_ignore_padding(encoder_padding)) x = inputs for layer_num in range(self.num_layers): with tf.variable_scope('layer_{}'.format(layer_num)): # Multihead self-attention from Tensor2Tensor. res = x if self.memory_efficient: res = multihead_self_attention_memory_efficient( res, bias=encoder_self_attention_bias, num_heads=self.num_heads, head_size=self.hidden_size // self.num_heads, forget=True if is_training else False, name='self_attention' ) else: if self.layer_norm: res = common_layers.layer_norm(res, name='self_attention') res = common_attention.multihead_attention( res, memory_antecedent=None, bias=encoder_self_attention_bias, total_key_depth=self.hidden_size, total_value_depth=self.hidden_size, output_depth=self.hidden_size, num_heads=self.num_heads, dropout_rate=0., make_image_summary=False, name='self_attention') if self.re_zero: res *= tf.get_variable('self_attention/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res # MLP res = x if self.layer_norm: res = common_layers.layer_norm(res, name='fc') res = tf.layers.dense( res, self.fc_size, activation=tf.nn.relu, name='fc_1') res = tf.layers.dense(res, self.hidden_size, name='fc_2') if self.re_zero: res *= tf.get_variable('fc/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res if self.layer_norm: output = common_layers.layer_norm(x, name='output') else: output = x return output class TransformerDecoder(snt.AbstractModule): """Transformer decoder. Sonnet Transformer decoder module as described in Vaswani et al. 2017. Uses the Tensor2Tensor multihead_attention function for masked self attention, and non-masked cross attention attention. Layer norm is applied inside the residual path as in sparse transformers (Child 2019). This module expects inputs to be already embedded, and does not add position embeddings. """ def __init__(self, hidden_size=256, fc_size=1024, num_heads=4, layer_norm=True, num_layers=8, dropout_rate=0.2, re_zero=True, memory_efficient=False, name='transformer_decoder'): """Initializes TransformerDecoder. Args: hidden_size: Size of embedding vectors. fc_size: Size of fully connected layer. num_heads: Number of attention heads. layer_norm: If True, apply layer normalization. If mem_efficient_attention is True, then layer norm is always applied. num_layers: Number of Transformer blocks, where each block contains a multi-head attention layer and a MLP. dropout_rate: Dropout rate applied immediately after the ReLU in each fully-connected layer. re_zero: If True, alpha scale residuals with zero init. memory_efficient: If True, recompute gradients for memory savings. name: Name of variable scope """ super(TransformerDecoder, self).__init__(name=name) self.hidden_size = hidden_size self.num_heads = num_heads self.layer_norm = layer_norm self.fc_size = fc_size self.num_layers = num_layers self.dropout_rate = dropout_rate self.re_zero = re_zero self.memory_efficient = memory_efficient def _build(self, inputs, sequential_context_embeddings=None, is_training=False, cache=None): """Passes inputs through Transformer decoder network. Args: inputs: Tensor of shape [batch_size, sequence_length, embed_size]. Zero embeddings are masked in self-attention. sequential_context_embeddings: Optional tensor with global context (e.g image embeddings) of shape [batch_size, context_seq_length, context_embed_size]. is_training: If True, dropout is applied. cache: Optional dict containing tensors which are the results of previous attentions, used for fast decoding. Expects the dict to contain two keys ('k' and 'v'), for the initial call the values for these keys should be empty Tensors of the appropriate shape. 'k' [batch_size, 0, key_channels] 'v' [batch_size, 0, value_channels] Returns: output: Tensor of shape [batch_size, sequence_length, embed_size]. """ if is_training: dropout_rate = self.dropout_rate else: dropout_rate = 0. # create bias to mask future elements for causal self-attention. seq_length = tf.shape(inputs)[1] decoder_self_attention_bias = common_attention.attention_bias_lower_triangle( seq_length) # If using sequential_context, identify elements with all zeros as padding, # and create bias to mask out padding elements in self attention. if sequential_context_embeddings is not None: encoder_padding = common_attention.embedding_to_padding( sequential_context_embeddings) encoder_decoder_attention_bias = ( common_attention.attention_bias_ignore_padding(encoder_padding)) x = inputs for layer_num in range(self.num_layers): with tf.variable_scope('layer_{}'.format(layer_num)): # If using cached decoding, access cache for current layer, and create # bias that enables un-masked attention into the cache if cache is not None: layer_cache = cache[layer_num] layer_decoder_bias = tf.zeros([1, 1, 1, 1]) # Otherwise use standard masked bias else: layer_cache = None layer_decoder_bias = decoder_self_attention_bias # Multihead self-attention from Tensor2Tensor. res = x if self.memory_efficient: res = multihead_self_attention_memory_efficient( res, bias=layer_decoder_bias, cache=layer_cache, num_heads=self.num_heads, head_size=self.hidden_size // self.num_heads, forget=True if is_training else False, name='self_attention' ) else: if self.layer_norm: res = common_layers.layer_norm(res, name='self_attention') res = common_attention.multihead_attention( res, memory_antecedent=None, bias=layer_decoder_bias, total_key_depth=self.hidden_size, total_value_depth=self.hidden_size, output_depth=self.hidden_size, num_heads=self.num_heads, cache=layer_cache, dropout_rate=0., make_image_summary=False, name='self_attention') if self.re_zero: res *= tf.get_variable('self_attention/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res # Optional cross attention into sequential context if sequential_context_embeddings is not None: res = x if self.layer_norm: res = common_layers.layer_norm(res, name='cross_attention') res = common_attention.multihead_attention( res, memory_antecedent=sequential_context_embeddings, bias=encoder_decoder_attention_bias, total_key_depth=self.hidden_size, total_value_depth=self.hidden_size, output_depth=self.hidden_size, num_heads=self.num_heads, dropout_rate=0., make_image_summary=False, name='cross_attention') if self.re_zero: res *= tf.get_variable('cross_attention/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res # FC layers res = x if self.layer_norm: res = common_layers.layer_norm(res, name='fc') res = tf.layers.dense( res, self.fc_size, activation=tf.nn.relu, name='fc_1') res = tf.layers.dense(res, self.hidden_size, name='fc_2') if self.re_zero: res *= tf.get_variable('fc/alpha', initializer=0.) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) x += res if self.layer_norm: output = common_layers.layer_norm(x, name='output') else: output = x return output def create_init_cache(self, batch_size): """Creates empty cache dictionary for use in fast decoding.""" def compute_cache_shape_invariants(tensor): """Helper function to get dynamic shapes for cache tensors.""" shape_list = tensor.shape.as_list() if len(shape_list) == 4: return tf.TensorShape( [shape_list[0], shape_list[1], None, shape_list[3]]) elif len(shape_list) == 3: return tf.TensorShape([shape_list[0], None, shape_list[2]]) # Build cache k = common_attention.split_heads( tf.zeros([batch_size, 0, self.hidden_size]), self.num_heads) v = common_attention.split_heads( tf.zeros([batch_size, 0, self.hidden_size]), self.num_heads) cache = [{'k': k, 'v': v} for _ in range(self.num_layers)] shape_invariants = tf.nest.map_structure( compute_cache_shape_invariants, cache) return cache, shape_invariants def conv_residual_block(inputs, output_channels=None, downsample=False, kernel_size=3, re_zero=True, dropout_rate=0., name='conv_residual_block'): """Convolutional block with residual connections for 2D or 3D inputs. Args: inputs: Input tensor of shape [batch_size, height, width, channels] or [batch_size, height, width, depth, channels]. output_channels: Number of output channels. downsample: If True, downsample by 1/2 in this block. kernel_size: Spatial size of convolutional kernels. re_zero: If True, alpha scale residuals with zero init. dropout_rate: Dropout rate applied after second ReLU in residual path. name: Name for variable scope. Returns: outputs: Output tensor of shape [batch_size, height, width, output_channels] or [batch_size, height, width, depth, output_channels]. """ with tf.variable_scope(name): input_shape = inputs.get_shape().as_list() num_dims = len(input_shape) - 2 if num_dims == 2: conv = tf.layers.conv2d elif num_dims == 3: conv = tf.layers.conv3d input_channels = input_shape[-1] if output_channels is None: output_channels = input_channels if downsample: shortcut = conv( inputs, filters=output_channels, strides=2, kernel_size=kernel_size, padding='same', name='conv_shortcut') else: shortcut = inputs res = inputs res = tf.nn.relu(res) res = conv( res, filters=input_channels, kernel_size=kernel_size, padding='same', name='conv_1') res = tf.nn.relu(res) if dropout_rate: res = tf.nn.dropout(res, rate=dropout_rate) if downsample: out_strides = 2 else: out_strides = 1 res = conv( res, filters=output_channels, kernel_size=kernel_size, padding='same', strides=out_strides, name='conv_2') if re_zero: res *= tf.get_variable('alpha', initializer=0.) return shortcut + res class ResNet(snt.AbstractModule): """ResNet architecture for 2D image or 3D voxel inputs.""" def __init__(self, num_dims, hidden_sizes=(64, 256), num_blocks=(2, 2), dropout_rate=0.1, re_zero=True, name='res_net'): """Initializes ResNet. Args: num_dims: Number of spatial dimensions. 2 for images or 3 for voxels. hidden_sizes: Sizes of hidden layers in resnet blocks. num_blocks: Number of resnet blocks at each size. dropout_rate: Dropout rate applied immediately after the ReLU in each fully-connected layer. re_zero: If True, alpha scale residuals with zero init. name: Name of variable scope """ super(ResNet, self).__init__(name=name) self.num_dims = num_dims self.hidden_sizes = hidden_sizes self.num_blocks = num_blocks self.dropout_rate = dropout_rate self.re_zero = re_zero def _build(self, inputs, is_training=False): """Passes inputs through resnet. Args: inputs: Tensor of shape [batch_size, height, width, channels] or [batch_size, height, width, depth, channels]. is_training: If True, dropout is applied. Returns: output: Tensor of shape [batch_size, height, width, depth, output_size]. """ if is_training: dropout_rate = self.dropout_rate else: dropout_rate = 0. # Initial projection with large kernel as in original resnet architecture if self.num_dims == 3: conv = tf.layers.conv3d elif self.num_dims == 2: conv = tf.layers.conv2d x = conv( inputs, filters=self.hidden_sizes[0], kernel_size=7, strides=2, padding='same', name='conv_input') if self.num_dims == 2: x = tf.layers.max_pooling2d( x, strides=2, pool_size=3, padding='same', name='pool_input') for d, (hidden_size, blocks) in enumerate(zip(self.hidden_sizes, self.num_blocks)): with tf.variable_scope('resolution_{}'.format(d)): # Downsample at the start of each collection of blocks x = conv_residual_block( x, downsample=False if d == 0 else True, dropout_rate=dropout_rate, output_channels=hidden_size, re_zero=self.re_zero, name='block_1_downsample') for i in range(blocks - 1): x = conv_residual_block( x, dropout_rate=dropout_rate, output_channels=hidden_size, re_zero=self.re_zero, name='block_{}'.format(i + 2)) return x class VertexModel(snt.AbstractModule): """Autoregressive generative model of quantized mesh vertices. Operates on flattened vertex sequences with a stopping token: [z_0, y_0, x_0, z_1, y_1, x_1, ..., z_n, y_n, z_n, STOP] Input vertex coordinates are embedded and tagged with learned coordinate and position indicators. A transformer decoder outputs logits for a quantized vertex distribution. """ def __init__(self, decoder_config, quantization_bits, class_conditional=False, num_classes=55, max_num_input_verts=2500, use_discrete_embeddings=True, name='vertex_model'): """Initializes VertexModel. Args: decoder_config: Dictionary with TransformerDecoder config quantization_bits: Number of quantization used in mesh preprocessing. class_conditional: If True, then condition on learned class embeddings. num_classes: Number of classes to condition on. max_num_input_verts: Maximum number of vertices. Used for learned position embeddings. use_discrete_embeddings: If True, use discrete rather than continuous vertex embeddings. name: Name of variable scope """ super(VertexModel, self).__init__(name=name) self.embedding_dim = decoder_config['hidden_size'] self.class_conditional = class_conditional self.num_classes = num_classes self.max_num_input_verts = max_num_input_verts self.quantization_bits = quantization_bits self.use_discrete_embeddings = use_discrete_embeddings with self._enter_variable_scope(): self.decoder = TransformerDecoder(**decoder_config) @snt.reuse_variables def _embed_class_label(self, labels): """Embeds class label with learned embedding matrix.""" init_dict = {'embeddings': tf.glorot_uniform_initializer} return snt.Embed( vocab_size=self.num_classes, embed_dim=self.embedding_dim, initializers=init_dict, densify_gradients=True, name='class_label')(labels) @snt.reuse_variables def _prepare_context(self, context, is_training=False): """Prepare class label context.""" if self.class_conditional: global_context_embedding = self._embed_class_label(context['class_label']) else: global_context_embedding = None return global_context_embedding, None @snt.reuse_variables def _embed_inputs(self, vertices, global_context_embedding=None): """Embeds flat vertices and adds position and coordinate information.""" # Dequantize inputs and get shapes input_shape = tf.shape(vertices) batch_size, seq_length = input_shape[0], input_shape[1] # Coord indicators (x, y, z) coord_embeddings = snt.Embed( vocab_size=3, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_embeddings')(tf.mod(tf.range(seq_length), 3)) # Position embeddings pos_embeddings = snt.Embed( vocab_size=self.max_num_input_verts, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_embeddings')(tf.floordiv(tf.range(seq_length), 3)) # Discrete vertex value embeddings if self.use_discrete_embeddings: vert_embeddings = snt.Embed( vocab_size=2**self.quantization_bits + 1, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='value_embeddings')(vertices) # Continuous vertex value embeddings else: vert_embeddings = tf.layers.dense( dequantize_verts(vertices[..., None], self.quantization_bits), self.embedding_dim, use_bias=True, name='value_embeddings') # Step zero embeddings if global_context_embedding is None: zero_embed = tf.get_variable( 'embed_zero', shape=[1, 1, self.embedding_dim]) zero_embed_tiled = tf.tile(zero_embed, [batch_size, 1, 1]) else: zero_embed_tiled = global_context_embedding[:, None] # Aggregate embeddings embeddings = vert_embeddings + (coord_embeddings + pos_embeddings)[None] embeddings = tf.concat([zero_embed_tiled, embeddings], axis=1) return embeddings @snt.reuse_variables def _project_to_logits(self, inputs): """Projects transformer outputs to logits for predictive distribution.""" return tf.layers.dense( inputs, 2**self.quantization_bits + 1, # + 1 for stopping token use_bias=True, kernel_initializer=tf.zeros_initializer(), name='project_to_logits') @snt.reuse_variables def _create_dist(self, vertices, global_context_embedding=None, sequential_context_embeddings=None, temperature=1., top_k=0, top_p=1., is_training=False, cache=None): """Outputs categorical dist for quantized vertex coordinates.""" # Embed inputs decoder_inputs = self._embed_inputs(vertices, global_context_embedding) if cache is not None: decoder_inputs = decoder_inputs[:, -1:] # pass through decoder outputs = self.decoder( decoder_inputs, cache=cache, sequential_context_embeddings=sequential_context_embeddings, is_training=is_training) # Get logits and optionally process for sampling logits = self._project_to_logits(outputs) logits /= temperature logits = top_k_logits(logits, top_k) logits = top_p_logits(logits, top_p) cat_dist = tfd.Categorical(logits=logits) return cat_dist def _build(self, batch, is_training=False): """Pass batch through vertex model and get log probabilities under model. Args: batch: Dictionary containing: 'vertices_flat': int32 vertex tensors of shape [batch_size, seq_length]. is_training: If True, use dropout. Returns: pred_dist: tfd.Categorical predictive distribution with batch shape [batch_size, seq_length]. """ global_context, seq_context = self._prepare_context( batch, is_training=is_training) pred_dist = self._create_dist( batch['vertices_flat'][:, :-1], # Last element not used for preds global_context_embedding=global_context, sequential_context_embeddings=seq_context, is_training=is_training) return pred_dist def sample(self, num_samples, context=None, max_sample_length=None, temperature=1., top_k=0, top_p=1., recenter_verts=True, only_return_complete=True): """Autoregressive sampling with caching. Args: num_samples: Number of samples to produce. context: Dictionary of context, such as class labels. See _prepare_context for details. max_sample_length: Maximum length of sampled vertex sequences. Sequences that do not complete are truncated. temperature: Scalar softmax temperature > 0. top_k: Number of tokens to keep for top-k sampling. top_p: Proportion of probability mass to keep for top-p sampling. recenter_verts: If True, center vertex samples around origin. This should be used if model is trained using shift augmentations. only_return_complete: If True, only return completed samples. Otherwise return all samples along with completed indicator. Returns: outputs: Output dictionary with fields: 'completed': Boolean tensor of shape [num_samples]. If True then corresponding sample completed within max_sample_length. 'vertices': Tensor of samples with shape [num_samples, num_verts, 3]. 'num_vertices': Tensor indicating number of vertices for each example in padded vertex samples. 'vertices_mask': Tensor of shape [num_samples, num_verts] that masks corresponding invalid elements in 'vertices'. """ # Obtain context for decoder global_context, seq_context = self._prepare_context( context, is_training=False) # num_samples is the minimum value of num_samples and the batch size of # context inputs (if present). if global_context is not None: num_samples = tf.minimum(num_samples, tf.shape(global_context)[0]) global_context = global_context[:num_samples] if seq_context is not None: seq_context = seq_context[:num_samples] elif seq_context is not None: num_samples = tf.minimum(num_samples, tf.shape(seq_context)[0]) seq_context = seq_context[:num_samples] def _loop_body(i, samples, cache): """While-loop body for autoregression calculation.""" cat_dist = self._create_dist( samples, global_context_embedding=global_context, sequential_context_embeddings=seq_context, cache=cache, temperature=temperature, top_k=top_k, top_p=top_p) next_sample = cat_dist.sample() samples = tf.concat([samples, next_sample], axis=1) return i + 1, samples, cache def _stopping_cond(i, samples, cache): """Stopping condition for sampling while-loop.""" del i, cache # Unused return tf.reduce_any(tf.reduce_all(tf.not_equal(samples, 0), axis=-1)) # Initial values for loop variables samples = tf.zeros([num_samples, 0], dtype=tf.int32) max_sample_length = max_sample_length or self.max_num_input_verts cache, cache_shape_invariants = self.decoder.create_init_cache(num_samples) _, v, _ = tf.while_loop( cond=_stopping_cond, body=_loop_body, loop_vars=(0, samples, cache), shape_invariants=(tf.TensorShape([]), tf.TensorShape([None, None]), cache_shape_invariants), maximum_iterations=max_sample_length * 3 + 1, back_prop=False, parallel_iterations=1) # Check if samples completed. Samples are complete if the stopping token # is produced. completed = tf.reduce_any(tf.equal(v, 0), axis=-1) # Get the number of vertices in the sample. This requires finding the # index of the stopping token. For complete samples use to argmax to get # first nonzero index. stop_index_completed = tf.argmax( tf.cast(tf.equal(v, 0), tf.int32), axis=-1, output_type=tf.int32) # For incomplete samples the stopping index is just the maximum index. stop_index_incomplete = ( max_sample_length * 3 * tf.ones_like(stop_index_completed)) stop_index = tf.where( completed, stop_index_completed, stop_index_incomplete) num_vertices = tf.floordiv(stop_index, 3) # Convert to 3D vertices by reshaping and re-ordering x -> y -> z v = v[:, :(tf.reduce_max(num_vertices) * 3)] - 1 verts_dequantized = dequantize_verts(v, self.quantization_bits) vertices = tf.reshape(verts_dequantized, [num_samples, -1, 3]) vertices = tf.stack( [vertices[..., 2], vertices[..., 1], vertices[..., 0]], axis=-1) # Pad samples to max sample length. This is required in order to concatenate # Samples across different replicator instances. Pad with stopping tokens # for incomplete samples. pad_size = max_sample_length - tf.shape(vertices)[1] vertices = tf.pad(vertices, [[0, 0], [0, pad_size], [0, 0]]) # 3D Vertex mask vertices_mask = tf.cast( tf.range(max_sample_length)[None] < num_vertices[:, None], tf.float32) if recenter_verts: vert_max = tf.reduce_max( vertices - 1e10 * (1. - vertices_mask)[..., None], axis=1, keepdims=True) vert_min = tf.reduce_min( vertices + 1e10 * (1. - vertices_mask)[..., None], axis=1, keepdims=True) vert_centers = 0.5 * (vert_max + vert_min) vertices -= vert_centers vertices *= vertices_mask[..., None] if only_return_complete: vertices = tf.boolean_mask(vertices, completed) num_vertices = tf.boolean_mask(num_vertices, completed) vertices_mask = tf.boolean_mask(vertices_mask, completed) completed = tf.boolean_mask(completed, completed) # Outputs outputs = { 'completed': completed, 'vertices': vertices, 'num_vertices': num_vertices, 'vertices_mask': vertices_mask, } return outputs class ImageToVertexModel(VertexModel): """Generative model of quantized mesh vertices with image conditioning. Operates on flattened vertex sequences with a stopping token: [z_0, y_0, x_0, z_1, y_1, x_1, ..., z_n, y_n, z_n, STOP] Input vertex coordinates are embedded and tagged with learned coordinate and position indicators. A transformer decoder outputs logits for a quantized vertex distribution. Image inputs are encoded and used to condition the vertex decoder. """ def __init__(self, res_net_config, decoder_config, quantization_bits, use_discrete_embeddings=True, max_num_input_verts=2500, name='image_to_vertex_model'): """Initializes VoxelToVertexModel. Args: res_net_config: Dictionary with ResNet config. decoder_config: Dictionary with TransformerDecoder config. quantization_bits: Number of quantization used in mesh preprocessing. use_discrete_embeddings: If True, use discrete rather than continuous vertex embeddings. max_num_input_verts: Maximum number of vertices. Used for learned position embeddings. name: Name of variable scope """ super(ImageToVertexModel, self).__init__( decoder_config=decoder_config, quantization_bits=quantization_bits, max_num_input_verts=max_num_input_verts, use_discrete_embeddings=use_discrete_embeddings, name=name) with self._enter_variable_scope(): self.res_net = ResNet(num_dims=2, **res_net_config) @snt.reuse_variables def _prepare_context(self, context, is_training=False): # Pass images through encoder image_embeddings = self.res_net( context['image'] - 0.5, is_training=is_training) # Add 2D coordinate grid embedding processed_image_resolution = tf.shape(image_embeddings)[1] x = tf.linspace(-1., 1., processed_image_resolution) image_coords = tf.stack(tf.meshgrid(x, x), axis=-1) image_coord_embeddings = tf.layers.dense( image_coords, self.embedding_dim, use_bias=True, name='image_coord_embeddings') image_embeddings += image_coord_embeddings[None] # Reshape spatial grid to sequence batch_size = tf.shape(image_embeddings)[0] sequential_context_embedding = tf.reshape( image_embeddings, [batch_size, -1, self.embedding_dim]) return None, sequential_context_embedding class VoxelToVertexModel(VertexModel): """Generative model of quantized mesh vertices with voxel conditioning. Operates on flattened vertex sequences with a stopping token: [z_0, y_0, x_0, z_1, y_1, x_1, ..., z_n, y_n, z_n, STOP] Input vertex coordinates are embedded and tagged with learned coordinate and position indicators. A transformer decoder outputs logits for a quantized vertex distribution. Image inputs are encoded and used to condition the vertex decoder. """ def __init__(self, res_net_config, decoder_config, quantization_bits, use_discrete_embeddings=True, max_num_input_verts=2500, name='voxel_to_vertex_model'): """Initializes VoxelToVertexModel. Args: res_net_config: Dictionary with ResNet config. decoder_config: Dictionary with TransformerDecoder config. quantization_bits: Integer number of bits used for vertex quantization. use_discrete_embeddings: If True, use discrete rather than continuous vertex embeddings. max_num_input_verts: Maximum number of vertices. Used for learned position embeddings. name: Name of variable scope """ super(VoxelToVertexModel, self).__init__( decoder_config=decoder_config, quantization_bits=quantization_bits, max_num_input_verts=max_num_input_verts, use_discrete_embeddings=use_discrete_embeddings, name=name) with self._enter_variable_scope(): self.res_net = ResNet(num_dims=3, **res_net_config) @snt.reuse_variables def _prepare_context(self, context, is_training=False): # Embed binary input voxels voxel_embeddings = snt.Embed( vocab_size=2, embed_dim=self.pre_embed_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='voxel_embeddings')(context['voxels']) # Pass embedded voxels through voxel encoder voxel_embeddings = self.res_net( voxel_embeddings, is_training=is_training) # Add 3D coordinate grid embedding processed_voxel_resolution = tf.shape(voxel_embeddings)[1] x = tf.linspace(-1., 1., processed_voxel_resolution) voxel_coords = tf.stack(tf.meshgrid(x, x, x), axis=-1) voxel_coord_embeddings = tf.layers.dense( voxel_coords, self.embedding_dim, use_bias=True, name='voxel_coord_embeddings') voxel_embeddings += voxel_coord_embeddings[None] # Reshape spatial grid to sequence batch_size = tf.shape(voxel_embeddings)[0] sequential_context_embedding = tf.reshape( voxel_embeddings, [batch_size, -1, self.embedding_dim]) return None, sequential_context_embedding class FaceModel(snt.AbstractModule): """Autoregressive generative model of n-gon meshes. Operates on sets of input vertices as well as flattened face sequences with new face and stopping tokens: [f_0^0, f_0^1, f_0^2, NEW, f_1^0, f_1^1, ..., STOP] Input vertices are encoded using a Transformer encoder. Input face sequences are embedded and tagged with learned position indicators, as well as their corresponding vertex embeddings. A transformer decoder outputs a pointer which is compared to each vertex embedding to obtain a distribution over vertex indices. """ def __init__(self, encoder_config, decoder_config, class_conditional=True, num_classes=55, decoder_cross_attention=True, use_discrete_vertex_embeddings=True, quantization_bits=8, max_seq_length=5000, name='face_model'): """Initializes FaceModel. Args: encoder_config: Dictionary with TransformerEncoder config. decoder_config: Dictionary with TransformerDecoder config. class_conditional: If True, then condition on learned class embeddings. num_classes: Number of classes to condition on. decoder_cross_attention: If True, the use cross attention from decoder querys into encoder outputs. use_discrete_vertex_embeddings: If True, use discrete vertex embeddings. quantization_bits: Number of quantization bits for discrete vertex embeddings. max_seq_length: Maximum face sequence length. Used for learned position embeddings. name: Name of variable scope """ super(FaceModel, self).__init__(name=name) self.embedding_dim = decoder_config['hidden_size'] self.class_conditional = class_conditional self.num_classes = num_classes self.max_seq_length = max_seq_length self.decoder_cross_attention = decoder_cross_attention self.use_discrete_vertex_embeddings = use_discrete_vertex_embeddings self.quantization_bits = quantization_bits with self._enter_variable_scope(): self.decoder = TransformerDecoder(**decoder_config) self.encoder = TransformerEncoder(**encoder_config) @snt.reuse_variables def _embed_class_label(self, labels): """Embeds class label with learned embedding matrix.""" init_dict = {'embeddings': tf.glorot_uniform_initializer} return snt.Embed( vocab_size=self.num_classes, embed_dim=self.embedding_dim, initializers=init_dict, densify_gradients=True, name='class_label')(labels) @snt.reuse_variables def _prepare_context(self, context, is_training=False): """Prepare class label and vertex context.""" if self.class_conditional: global_context_embedding = self._embed_class_label(context['class_label']) else: global_context_embedding = None vertex_embeddings = self._embed_vertices( context['vertices'], context['vertices_mask'], is_training=is_training) if self.decoder_cross_attention: sequential_context_embeddings = ( vertex_embeddings * tf.pad(context['vertices_mask'], [[0, 0], [2, 0]], constant_values=1)[..., None]) else: sequential_context_embeddings = None return (vertex_embeddings, global_context_embedding, sequential_context_embeddings) @snt.reuse_variables def _embed_vertices(self, vertices, vertices_mask, is_training=False): """Embeds vertices with transformer encoder.""" # num_verts = tf.shape(vertices)[1] if self.use_discrete_vertex_embeddings: vertex_embeddings = 0. verts_quantized = quantize_verts(vertices, self.quantization_bits) for c in range(3): vertex_embeddings += snt.Embed( vocab_size=256, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_{}'.format(c))(verts_quantized[..., c]) else: vertex_embeddings = tf.layers.dense( vertices, self.embedding_dim, use_bias=True, name='vertex_embeddings') vertex_embeddings *= vertices_mask[..., None] # Pad vertex embeddings with learned embeddings for stopping and new face # tokens stopping_embeddings = tf.get_variable( 'stopping_embeddings', shape=[1, 2, self.embedding_dim]) stopping_embeddings = tf.tile(stopping_embeddings, [tf.shape(vertices)[0], 1, 1]) vertex_embeddings = tf.concat( [stopping_embeddings, vertex_embeddings], axis=1) # Pass through Transformer encoder vertex_embeddings = self.encoder(vertex_embeddings, is_training=is_training) return vertex_embeddings @snt.reuse_variables def _embed_inputs(self, faces_long, vertex_embeddings, global_context_embedding=None): """Embeds face sequences and adds within and between face positions.""" # Face value embeddings are gathered vertex embeddings face_embeddings = tf.gather(vertex_embeddings, faces_long, batch_dims=1) # Position embeddings pos_embeddings = snt.Embed( vocab_size=self.max_seq_length, embed_dim=self.embedding_dim, initializers={'embeddings': tf.glorot_uniform_initializer}, densify_gradients=True, name='coord_embeddings')(tf.range(tf.shape(faces_long)[1])) # Step zero embeddings batch_size = tf.shape(face_embeddings)[0] if global_context_embedding is None: zero_embed = tf.get_variable( 'embed_zero', shape=[1, 1, self.embedding_dim]) zero_embed_tiled = tf.tile(zero_embed, [batch_size, 1, 1]) else: zero_embed_tiled = global_context_embedding[:, None] # Aggregate embeddings embeddings = face_embeddings + pos_embeddings[None] embeddings = tf.concat([zero_embed_tiled, embeddings], axis=1) return embeddings @snt.reuse_variables def _project_to_pointers(self, inputs): """Projects transformer outputs to pointer vectors.""" return tf.layers.dense( inputs, self.embedding_dim, use_bias=True, kernel_initializer=tf.zeros_initializer(), name='project_to_pointers' ) @snt.reuse_variables def _create_dist(self, vertex_embeddings, vertices_mask, faces_long, global_context_embedding=None, sequential_context_embeddings=None, temperature=1., top_k=0, top_p=1., is_training=False, cache=None): """Outputs categorical dist for vertex indices.""" # Embed inputs decoder_inputs = self._embed_inputs( faces_long, vertex_embeddings, global_context_embedding) # Pass through Transformer decoder if cache is not None: decoder_inputs = decoder_inputs[:, -1:] decoder_outputs = self.decoder( decoder_inputs, cache=cache, sequential_context_embeddings=sequential_context_embeddings, is_training=is_training) # Get pointers pred_pointers = self._project_to_pointers(decoder_outputs) # Get logits and mask logits = tf.matmul(pred_pointers, vertex_embeddings, transpose_b=True) logits /= tf.sqrt(float(self.embedding_dim)) f_verts_mask = tf.pad( vertices_mask, [[0, 0], [2, 0]], constant_values=1.)[:, None] logits *= f_verts_mask logits -= (1. - f_verts_mask) * 1e9 logits /= temperature logits = top_k_logits(logits, top_k) logits = top_p_logits(logits, top_p) return tfd.Categorical(logits=logits) def _build(self, batch, is_training=False): """Pass batch through face model and get log probabilities. Args: batch: Dictionary containing: 'vertices_dequantized': Tensor of shape [batch_size, num_vertices, 3]. 'faces': int32 tensor of shape [batch_size, seq_length] with flattened faces. 'vertices_mask': float32 tensor with shape [batch_size, num_vertices] that masks padded elements in 'vertices'. is_training: If True, use dropout. Returns: pred_dist: tfd.Categorical predictive distribution with batch shape [batch_size, seq_length]. """ vertex_embeddings, global_context, seq_context = self._prepare_context( batch, is_training=is_training) pred_dist = self._create_dist( vertex_embeddings, batch['vertices_mask'], batch['faces'][:, :-1], global_context_embedding=global_context, sequential_context_embeddings=seq_context, is_training=is_training) return pred_dist def sample(self, context, max_sample_length=None, temperature=1., top_k=0, top_p=1., only_return_complete=True): """Sample from face model using caching. Args: context: Dictionary of context, including 'vertices' and 'vertices_mask'. See _prepare_context for details. max_sample_length: Maximum length of sampled vertex sequences. Sequences that do not complete are truncated. temperature: Scalar softmax temperature > 0. top_k: Number of tokens to keep for top-k sampling. top_p: Proportion of probability mass to keep for top-p sampling. only_return_complete: If True, only return completed samples. Otherwise return all samples along with completed indicator. Returns: outputs: Output dictionary with fields: 'completed': Boolean tensor of shape [num_samples]. If True then corresponding sample completed within max_sample_length. 'faces': Tensor of samples with shape [num_samples, num_verts, 3]. 'num_face_indices': Tensor indicating number of vertices for each example in padded vertex samples. """ vertex_embeddings, global_context, seq_context = self._prepare_context( context, is_training=False) num_samples = tf.shape(vertex_embeddings)[0] def _loop_body(i, samples, cache): """While-loop body for autoregression calculation.""" pred_dist = self._create_dist( vertex_embeddings, context['vertices_mask'], samples, global_context_embedding=global_context, sequential_context_embeddings=seq_context, cache=cache, temperature=temperature, top_k=top_k, top_p=top_p) next_sample = pred_dist.sample()[:, -1:] samples = tf.concat([samples, next_sample], axis=1) return i + 1, samples, cache def _stopping_cond(i, samples, cache): """Stopping conditions for autoregressive calculation.""" del i, cache # Unused return tf.reduce_any(tf.reduce_all(tf.not_equal(samples, 0), axis=-1)) # While loop sampling with caching samples = tf.zeros([num_samples, 0], dtype=tf.int32) max_sample_length = max_sample_length or self.max_seq_length cache, cache_shape_invariants = self.decoder.create_init_cache(num_samples) _, f, _ = tf.while_loop( cond=_stopping_cond, body=_loop_body, loop_vars=(0, samples, cache), shape_invariants=(tf.TensorShape([]), tf.TensorShape([None, None]), cache_shape_invariants), back_prop=False, parallel_iterations=1, maximum_iterations=max_sample_length) # Record completed samples complete_samples = tf.reduce_any(tf.equal(f, 0), axis=-1) # Find number of faces sample_length = tf.shape(f)[-1] # Get largest new face (1) index as stopping point for incomplete samples. max_one_ind = tf.reduce_max( tf.range(sample_length)[None] * tf.cast(tf.equal(f, 1), tf.int32), axis=-1) zero_inds = tf.cast( tf.argmax(tf.cast(tf.equal(f, 0), tf.int32), axis=-1), tf.int32) num_face_indices = tf.where(complete_samples, zero_inds, max_one_ind) + 1 # Mask faces beyond stopping token with zeros # This mask has a -1 in order to replace the last new face token with zero faces_mask = tf.cast( tf.range(sample_length)[None] < num_face_indices[:, None] - 1, tf.int32) f *= faces_mask # This is the real mask faces_mask = tf.cast( tf.range(sample_length)[None] < num_face_indices[:, None], tf.int32) # Pad to maximum size with zeros pad_size = max_sample_length - sample_length f = tf.pad(f, [[0, 0], [0, pad_size]]) if only_return_complete: f = tf.boolean_mask(f, complete_samples) num_face_indices = tf.boolean_mask(num_face_indices, complete_samples) context = tf.nest.map_structure( lambda x: tf.boolean_mask(x, complete_samples), context) complete_samples = tf.boolean_mask(complete_samples, complete_samples) # outputs outputs = { 'context': context, 'completed': complete_samples, 'faces': f, 'num_face_indices': num_face_indices, } return outputs
deepmind-research-master
polygen/modules.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Haiku module implementing hierarchical attention over memory.""" import functools import inspect from typing import Optional, NamedTuple import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np _EPSILON = 1e-3 class HierarchicalMemory(NamedTuple): """Structure of the hierarchical memory. Where 'B' is batch size, 'M' is number of memories, 'C' is chunk size, and 'D' is memory dimension. """ keys: jnp.ndarray # [B, M, D] contents: jnp.ndarray # [B, M, C, D] steps_since_last_write: jnp.ndarray # [B], steps since last memory write accumulator: jnp.ndarray # [B, C, D], accumulates experiences before write def sinusoid_position_encoding( sequence_length: int, hidden_size: int, min_timescale: float = 2., max_timescale: float = 1e4, ) -> jnp.ndarray: """Creates sinusoidal encodings. Args: sequence_length: length [L] of sequence to be position encoded. hidden_size: dimension [D] of the positional encoding vectors. min_timescale: minimum timescale for the frequency. max_timescale: maximum timescale for the frequency. Returns: An array of shape [L, D] """ freqs = np.arange(0, hidden_size, min_timescale) inv_freq = max_timescale**(-freqs / hidden_size) pos_seq = np.arange(sequence_length - 1, -1, -1.0) sinusoid_inp = np.einsum("i,j->ij", pos_seq, inv_freq) pos_emb = np.concatenate( [np.sin(sinusoid_inp), np.cos(sinusoid_inp)], axis=-1) return pos_emb class HierarchicalMemoryAttention(hk.Module): """Multi-head attention over hierarchical memory.""" def __init__(self, feature_size: int, k: int, num_heads: int = 1, memory_position_encoding: bool = True, init_scale: float = 2., name: Optional[str] = None) -> None: """Constructor. Args: feature_size: size of feature dimension of attention-over-memories embedding. k: number of memories to sample. num_heads: number of attention heads. memory_position_encoding: whether to add positional encodings to memories during within memory attention. init_scale: scale factor for Variance weight initializers. name: module name. """ super().__init__(name=name) self._size = feature_size self._k = k self._num_heads = num_heads self._weights = None self._memory_position_encoding = memory_position_encoding self._init_scale = init_scale @property def num_heads(self): return self._num_heads @hk.transparent def _singlehead_linear(self, inputs: jnp.ndarray, hidden_size: int, name: str): linear = hk.Linear( hidden_size, with_bias=False, w_init=hk.initializers.VarianceScaling(scale=self._init_scale), name=name) out = linear(inputs) return out def __call__( self, queries: jnp.ndarray, hm_memory: HierarchicalMemory, hm_mask: Optional[jnp.ndarray] = None) -> jnp.ndarray: """Do hierarchical attention over the stored memories. Args: queries: Tensor [B, Q, E] Query(ies) in, for batch size B, query length Q, and embedding dimension E. hm_memory: Hierarchical Memory. hm_mask: Optional boolean mask tensor of shape [B, Q, M]. Where false, the corresponding query timepoints cannot attend to the corresponding memory chunks. This can be used for enforcing causal attention on the learner, not attending to memories from prior episodes, etc. Returns: Value updates for each query slot: [B, Q, D] """ # some shape checks batch_size, query_length, _ = queries.shape (memory_batch_size, num_memories, memory_chunk_size, mem_embbedding_size) = hm_memory.contents.shape assert batch_size == memory_batch_size chex.assert_shape(hm_memory.keys, (batch_size, num_memories, mem_embbedding_size)) chex.assert_shape(hm_memory.accumulator, (memory_batch_size, memory_chunk_size, mem_embbedding_size)) chex.assert_shape(hm_memory.steps_since_last_write, (memory_batch_size,)) if hm_mask is not None: chex.assert_type(hm_mask, bool) chex.assert_shape(hm_mask, (batch_size, query_length, num_memories)) query_head = self._singlehead_linear(queries, self._size, "query") key_head = self._singlehead_linear( jax.lax.stop_gradient(hm_memory.keys), self._size, "key") # What times in the input [t] attend to what times in the memories [T]. logits = jnp.einsum("btd,bTd->btT", query_head, key_head) scaled_logits = logits / np.sqrt(self._size) # Mask last dimension, replacing invalid logits with large negative values. # This allows e.g. enforcing causal attention on learner, or blocking # attention across episodes if hm_mask is not None: masked_logits = jnp.where(hm_mask, scaled_logits, -1e6) else: masked_logits = scaled_logits # identify the top-k memories and their relevance weights top_k_logits, top_k_indices = jax.lax.top_k(masked_logits, self._k) weights = jax.nn.softmax(top_k_logits) # set up the within-memory attention assert self._size % self._num_heads == 0 mha_key_size = self._size // self._num_heads attention_layer = hk.MultiHeadAttention( key_size=mha_key_size, model_size=self._size, num_heads=self._num_heads, w_init_scale=self._init_scale, name="within_mem_attn") # position encodings augmented_contents = hm_memory.contents if self._memory_position_encoding: position_embs = sinusoid_position_encoding( memory_chunk_size, mem_embbedding_size) augmented_contents += position_embs[None, None, :, :] def _within_memory_attention(sub_inputs, sub_memory_contents, sub_weights, sub_top_k_indices): top_k_contents = sub_memory_contents[sub_top_k_indices, :, :] # Now we go deeper, with another vmap over **tokens**, because each token # can each attend to different memories. def do_attention(sub_sub_inputs, sub_sub_top_k_contents): tiled_inputs = jnp.tile(sub_sub_inputs[None, None, :], reps=(self._k, 1, 1)) sub_attention_results = attention_layer( query=tiled_inputs, key=sub_sub_top_k_contents, value=sub_sub_top_k_contents) return sub_attention_results do_attention = hk_vmap(do_attention, in_axes=0, split_rng=False) attention_results = do_attention(sub_inputs, top_k_contents) attention_results = jnp.squeeze(attention_results, axis=2) # Now collapse results across k memories attention_results = sub_weights[:, :, None] * attention_results attention_results = jnp.sum(attention_results, axis=1) return attention_results # vmap across batch batch_within_memory_attention = hk_vmap(_within_memory_attention, in_axes=0, split_rng=False) outputs = batch_within_memory_attention( queries, jax.lax.stop_gradient(augmented_contents), weights, top_k_indices) return outputs @functools.wraps(hk.vmap) def hk_vmap(*args, **kwargs): """Helper function to support older versions of Haiku.""" # Older versions of Haiku did not have split_rng, but the behavior has always # been equivalent to split_rng=False. if "split_rng" not in inspect.signature(hk.vmap).parameters: kwargs.setdefault("split_rng", False) if kwargs.get["split_rng"]: raise ValueError("The installed version of Haiku only supports " "`split_rng=False`, please upgrade Haiku.") del kwargs["split_rng"] return hk.vmap(*args, **kwargs)
deepmind-research-master
hierarchical_transformer_memory/hierarchical_attention/htm_attention.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for hierarchical_attention.htm_attention.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk import numpy as np from hierarchical_transformer_memory.hierarchical_attention import htm_attention def _build_queries_and_memory(query_length, num_memories, mem_chunk_size, batch_size=2, embedding_size=12): """Builds dummy queries + memory contents for tests.""" queries = np.random.random([batch_size, query_length, embedding_size]) memory_contents = np.random.random( [batch_size, num_memories, mem_chunk_size, embedding_size]) # summary key = average across chunk memory_keys = np.mean(memory_contents, axis=2) # to accumulate newest memories before writing memory_accumulator = np.zeros_like(memory_contents[:, -1, :, :]) memory = htm_attention.HierarchicalMemory( keys=memory_keys, contents=memory_contents, accumulator=memory_accumulator, steps_since_last_write=np.zeros([batch_size,], dtype=np.int32)) return queries, memory class HierarchicalAttentionTest(parameterized.TestCase): @parameterized.parameters([ { 'query_length': 1, 'num_memories': 7, 'mem_chunk_size': 5, 'mem_k': 4, }, { 'query_length': 9, 'num_memories': 7, 'mem_chunk_size': 5, 'mem_k': 4, }, ]) @hk.testing.transform_and_run def test_output_shapes(self, query_length, num_memories, mem_chunk_size, mem_k): np.random.seed(0) batch_size = 2 embedding_size = 12 num_heads = 3 queries, memory = _build_queries_and_memory( query_length=query_length, num_memories=num_memories, mem_chunk_size=mem_chunk_size, embedding_size=embedding_size) hm_att = htm_attention.HierarchicalMemoryAttention( feature_size=embedding_size, k=mem_k, num_heads=num_heads) results = hm_att(queries, memory) self.assertEqual(results.shape, (batch_size, query_length, embedding_size)) self.assertTrue(np.all(np.isfinite(results))) @hk.testing.transform_and_run def test_masking(self): np.random.seed(0) batch_size = 2 embedding_size = 12 num_heads = 3 query_length = 5 num_memories = 7 mem_chunk_size = 6 mem_k = 4 queries, memory = _build_queries_and_memory( query_length=query_length, num_memories=num_memories, mem_chunk_size=mem_chunk_size, embedding_size=embedding_size) hm_att = htm_attention.HierarchicalMemoryAttention( feature_size=embedding_size, k=mem_k, num_heads=num_heads) # get a random boolean mask mask = np.random.binomial( 1, 0.5, [batch_size, query_length, num_memories]).astype(bool) results = hm_att(queries, memory, hm_mask=mask) self.assertEqual(results.shape, (batch_size, query_length, embedding_size)) self.assertTrue(np.all(np.isfinite(results))) if __name__ == '__main__': absltest.main()
deepmind-research-master
hierarchical_transformer_memory/hierarchical_attention/htm_attention_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A pycolab environment for going to the ballet. A pycolab-based environment for testing memory for sequences of events. The environment contains some number of "dancer" characters in (implicit) 3 x 3 squares within a larger 9 x 9 room. The agent starts in the center of the room. At the beginning of an episode, the dancers each do a dance solo of a fixed length, separated by empty time of a fixed length. The agent's actions do nothing during the dances. After the last dance ends, the agent must go up to a dancer, identified using language describing the dance. The agent is rewarded +1 for approaching the correct dancer, 0 otherwise. The room is upsampled at a size of 9 pixels per square to render a view for the agent, which is cropped in egocentric perspective, i.e. the agent is always in the center of its view (see https://arxiv.org/abs/1910.00571). """ from absl import app from absl import flags from absl import logging import dm_env import numpy as np from pycolab import cropping from hierarchical_transformer_memory.pycolab_ballet import ballet_environment_core as ballet_core FLAGS = flags.FLAGS UPSAMPLE_SIZE = 9 # pixels per game square SCROLL_CROP_SIZE = 11 # in game squares DANCER_SHAPES = [ "triangle", "empty_square", "plus", "inverse_plus", "ex", "inverse_ex", "circle", "empty_circle", "tee", "upside_down_tee", "h", "u", "upside_down_u", "vertical_stripes", "horizontal_stripes" ] COLORS = { "red": np.array([255, 0, 0]), "green": np.array([0, 255, 0]), "blue": np.array([0, 0, 255]), "purple": np.array([128, 0, 128]), "orange": np.array([255, 165, 0]), "yellow": np.array([255, 255, 0]), "brown": np.array([128, 64, 0]), "pink": np.array([255, 64, 255]), "cyan": np.array([0, 255, 255]), "dark_green": np.array([0, 100, 0]), "dark_red": np.array([100, 0, 0]), "dark_blue": np.array([0, 0, 100]), "olive": np.array([100, 100, 0]), "teal": np.array([0, 100, 100]), "lavender": np.array([215, 200, 255]), "peach": np.array([255, 210, 170]), "rose": np.array([255, 205, 230]), "light_green": np.array([200, 255, 200]), "light_yellow": np.array([255, 255, 200]), } def _generate_template(object_name): """Generates a template object image, given a name with color and shape.""" object_color, object_type = object_name.split() template = np.zeros((UPSAMPLE_SIZE, UPSAMPLE_SIZE)) half = UPSAMPLE_SIZE // 2 if object_type == "triangle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if (j <= half and i >= 2 * (half - j)) or (j > half and i >= 2 * (j - half)): template[i, j] = 1. elif object_type == "square": template[:, :] = 1. elif object_type == "empty_square": template[:2, :] = 1. template[-2:, :] = 1. template[:, :2] = 1. template[:, -2:] = 1. elif object_type == "plus": template[:, half - 1:half + 2] = 1. template[half - 1:half + 2, :] = 1. elif object_type == "inverse_plus": template[:, :] = 1. template[:, half - 1:half + 2] = 0. template[half - 1:half + 2, :] = 0. elif object_type == "ex": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if abs(i - j) <= 1 or abs(UPSAMPLE_SIZE - 1 - j - i) <= 1: template[i, j] = 1. elif object_type == "inverse_ex": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if not (abs(i - j) <= 1 or abs(UPSAMPLE_SIZE - 1 - j - i) <= 1): template[i, j] = 1. elif object_type == "circle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if (i - half)**2 + (j - half)**2 <= half**2: template[i, j] = 1. elif object_type == "empty_circle": for i in range(UPSAMPLE_SIZE): for j in range(UPSAMPLE_SIZE): if abs((i - half)**2 + (j - half)**2 - half**2) < 6: template[i, j] = 1. elif object_type == "tee": template[:, half - 1:half + 2] = 1. template[:3, :] = 1. elif object_type == "upside_down_tee": template[:, half - 1:half + 2] = 1. template[-3:, :] = 1. elif object_type == "h": template[:, :3] = 1. template[:, -3:] = 1. template[half - 1:half + 2, :] = 1. elif object_type == "u": template[:, :3] = 1. template[:, -3:] = 1. template[-3:, :] = 1. elif object_type == "upside_down_u": template[:, :3] = 1. template[:, -3:] = 1. template[:3, :] = 1. elif object_type == "vertical_stripes": for j in range(half + UPSAMPLE_SIZE % 2): template[:, 2*j] = 1. elif object_type == "horizontal_stripes": for i in range(half + UPSAMPLE_SIZE % 2): template[2*i, :] = 1. else: raise ValueError("Unknown object: {}".format(object_type)) if object_color not in COLORS: raise ValueError("Unknown color: {}".format(object_color)) template = np.tensordot(template, COLORS[object_color], axes=0) return template # Agent and wall templates _CHAR_TO_TEMPLATE_BASE = { ballet_core.AGENT_CHAR: np.tensordot( np.ones([UPSAMPLE_SIZE, UPSAMPLE_SIZE]), np.array([255, 255, 255]), axes=0), ballet_core.WALL_CHAR: np.tensordot( np.ones([UPSAMPLE_SIZE, UPSAMPLE_SIZE]), np.array([40, 40, 40]), axes=0), } def get_scrolling_cropper(rows=9, cols=9, crop_pad_char=" "): return cropping.ScrollingCropper(rows=rows, cols=cols, to_track=[ballet_core.AGENT_CHAR], pad_char=crop_pad_char, scroll_margins=(None, None)) class BalletEnvironment(dm_env.Environment): """A Python environment API for pycolab ballet tasks.""" def __init__(self, num_dancers, dance_delay, max_steps, rng=None): """Construct a BalletEnvironment that wraps pycolab games for agent use. This class inherits from dm_env and has all the expected methods and specs. Args: num_dancers: The number of dancers to use, between 1 and 8 (inclusive). dance_delay: How long to delay between the dances. max_steps: The maximum number of steps to allow in an episode, after which it will terminate. rng: An optional numpy Random Generator, to set a fixed seed use e.g. `rng=np.random.default_rng(seed=...)` """ self._num_dancers = num_dancers self._dance_delay = dance_delay self._max_steps = max_steps # internal state if rng is None: rng = np.random.default_rng() self._rng = rng self._current_game = None # Current pycolab game instance. self._state = None # Current game step state. self._game_over = None # Whether the game has ended. self._char_to_template = None # Mapping of chars to sprite images. # rendering tools self._cropper = get_scrolling_cropper(SCROLL_CROP_SIZE, SCROLL_CROP_SIZE, " ") def _game_factory(self): """Samples dancers and positions, returns a pycolab core game engine.""" target_dancer_index = self._rng.integers(self._num_dancers) motions = list(ballet_core.DANCE_SEQUENCES.keys()) positions = ballet_core.DANCER_POSITIONS.copy() colors = list(COLORS.keys()) shapes = DANCER_SHAPES.copy() self._rng.shuffle(positions) self._rng.shuffle(motions) self._rng.shuffle(colors) self._rng.shuffle(shapes) dancers_and_properties = [] for dancer_i in range(self._num_dancers): if dancer_i == target_dancer_index: value = 1. else: value = 0. dancers_and_properties.append( (ballet_core.POSSIBLE_DANCER_CHARS[dancer_i], positions[dancer_i], motions[dancer_i], shapes[dancer_i], colors[dancer_i], value)) logging.info("Making level with dancers_and_properties: %s", dancers_and_properties) return ballet_core.make_game( dancers_and_properties=dancers_and_properties, dance_delay=self._dance_delay) def _render_observation(self, observation): """Renders from raw pycolab image observation to agent-usable ones.""" observation = self._cropper.crop(observation) obs_rows, obs_cols = observation.board.shape image = np.zeros([obs_rows * UPSAMPLE_SIZE, obs_cols * UPSAMPLE_SIZE, 3], dtype=np.float32) for i in range(obs_rows): for j in range(obs_cols): this_char = chr(observation.board[i, j]) if this_char != ballet_core.FLOOR_CHAR: image[ i * UPSAMPLE_SIZE:(i + 1) * UPSAMPLE_SIZE, j * UPSAMPLE_SIZE:(j + 1) * UPSAMPLE_SIZE] = self._char_to_template[ this_char] image /= 255. language = np.array(self._current_game.the_plot["instruction_string"]) full_observation = (image, language) return full_observation def reset(self): """Start a new episode.""" # Build a new game and retrieve its first set of state/reward/discount. self._current_game = self._game_factory() # set up rendering, cropping, and state for current game self._char_to_template = { k: _generate_template(v) for k, v in self._current_game.the_plot[ "char_to_color_shape"]} self._char_to_template.update(_CHAR_TO_TEMPLATE_BASE) self._cropper.set_engine(self._current_game) self._state = dm_env.StepType.FIRST # let's go! observation, _, _ = self._current_game.its_showtime() observation = self._render_observation(observation) return dm_env.TimeStep( step_type=self._state, reward=None, discount=None, observation=observation) def step(self, action): """Apply action, step the world forward, and return observations.""" # If needed, reset and start new episode. if self._state == dm_env.StepType.LAST: self._clear_state() if self._current_game is None: return self.reset() # Execute the action in pycolab. observation, reward, discount = self._current_game.play(action) self._game_over = self._is_game_over() reward = reward if reward is not None else 0. observation = self._render_observation(observation) # Check the current status of the game. if self._game_over: self._state = dm_env.StepType.LAST else: self._state = dm_env.StepType.MID return dm_env.TimeStep( step_type=self._state, reward=reward, discount=discount, observation=observation) @property def observation_spec(self): image_shape = (SCROLL_CROP_SIZE * UPSAMPLE_SIZE, SCROLL_CROP_SIZE * UPSAMPLE_SIZE, 3) return ( # vision dm_env.specs.Array( shape=image_shape, dtype=np.float32, name="image"), # language dm_env.specs.Array( shape=[], dtype=str, name="language"), ) @property def action_spec(self): return dm_env.specs.BoundedArray( shape=[], dtype="int32", minimum=0, maximum=7, name="grid_actions") def _is_game_over(self): """Returns whether it is game over, either from the engine or timeout.""" return (self._current_game.game_over or (self._current_game.the_plot.frame >= self._max_steps)) def _clear_state(self): """Clear all the internal information about the game.""" self._state = None self._current_game = None self._char_to_template = None self._game_over = None def simple_builder(level_name): """Simplifies building from fixed defs. Args: level_name: '{num_dancers}_delay{delay_length}', where each variable is an integer. The levels used in the paper were: ['2_delay16', '4_delay16', '8_delay16', '2_delay48', '4_delay48', '8_delay48'] Returns: A BalletEnvironment with the requested settings. """ num_dancers, dance_delay = level_name.split("_") num_dancers = int(num_dancers) dance_delay = int(dance_delay[5:]) max_steps = 320 if dance_delay == 16 else 1024 level_args = dict( num_dancers=num_dancers, dance_delay=dance_delay, max_steps=max_steps) return BalletEnvironment(**level_args) def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") env = simple_builder("4_delay16") for _ in range(3): obs = env.reset().observation for _ in range(300): obs = env.step(0).observation print(obs) if __name__ == "__main__": app.run(main)
deepmind-research-master
hierarchical_transformer_memory/pycolab_ballet/ballet_environment.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pycolab_ballet.ballet_environment_wrapper.""" from absl.testing import absltest from absl.testing import parameterized import numpy as np from hierarchical_transformer_memory.pycolab_ballet import ballet_environment from hierarchical_transformer_memory.pycolab_ballet import ballet_environment_core class BalletEnvironmentTest(parameterized.TestCase): def test_full_wrapper(self): env = ballet_environment.BalletEnvironment( num_dancers=1, dance_delay=16, max_steps=200, rng=np.random.default_rng(seed=0)) result = env.reset() self.assertIsNone(result.reward) level_size = ballet_environment_core.ROOM_SIZE upsample_size = ballet_environment.UPSAMPLE_SIZE # wait for dance to complete for i in range(30): result = env.step(0).observation self.assertEqual(result[0].shape, (level_size[0] * upsample_size, level_size[1] * upsample_size, 3)) self.assertEqual(str(result[1])[:5], np.array("watch")) for i in [1, 1, 1, 1]: # first gets eaten before agent can move result = env.step(i) self.assertEqual(result.observation[0].shape, (level_size[0] * upsample_size, level_size[1] * upsample_size, 3)) self.assertEqual(str(result.observation[1])[:11], np.array("up_and_down")) self.assertEqual(result.reward, 1.) # check egocentric scrolling is working, by checking object is in center np.testing.assert_array_almost_equal( result.observation[0][45:54, 45:54], ballet_environment._generate_template("orange plus") / 255.) @parameterized.parameters( "2_delay16", "4_delay16", "8_delay48", ) def test_simple_builder(self, level_name): dance_delay = int(level_name[-2:]) np.random.seed(0) env = ballet_environment.simple_builder(level_name) # check max steps are set to match paper settings self.assertEqual(env._max_steps, 320 if dance_delay == 16 else 1024) # test running a few steps of each env.reset() level_size = ballet_environment_core.ROOM_SIZE upsample_size = ballet_environment.UPSAMPLE_SIZE for i in range(8): result = env.step(i) # check all 8 movements work self.assertEqual(result.observation[0].shape, (level_size[0] * upsample_size, level_size[1] * upsample_size, 3)) self.assertEqual(str(result.observation[1])[:5], np.array("watch")) self.assertEqual(result.reward, 0.) if __name__ == "__main__": absltest.main()
deepmind-research-master
hierarchical_transformer_memory/pycolab_ballet/ballet_environment_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The pycolab core of the environment for going to the ballet. This builds the text-based (non-graphical) engine of the environment, and offers a UI which a human can play (for a fixed level). However, the logic of level creation, the graphics, and anything that is external to the pycolab engine itself is contained in ballet_environment.py. """ import curses import enum from absl import app from absl import flags from pycolab import ascii_art from pycolab import human_ui from pycolab.prefab_parts import sprites as prefab_sprites FLAGS = flags.FLAGS ROOM_SIZE = (11, 11) # one square around edge will be wall. DANCER_POSITIONS = [(2, 2), (2, 5), (2, 8), (5, 2), (5, 8), # space in center for agent (8, 2), (8, 5), (8, 8)] AGENT_START = (5, 5) AGENT_CHAR = "A" WALL_CHAR = "#" FLOOR_CHAR = " " RESERVED_CHARS = [AGENT_CHAR, WALL_CHAR, FLOOR_CHAR] POSSIBLE_DANCER_CHARS = [ chr(i) for i in range(65, 91) if chr(i) not in RESERVED_CHARS ] DANCE_SEQUENCE_LENGTHS = 16 # movement directions for dancers / actions for agent class DIRECTIONS(enum.IntEnum): N = 0 NE = 1 E = 2 SE = 3 S = 4 SW = 5 W = 6 NW = 7 DANCE_SEQUENCES = { "circle_cw": [ DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.N, DIRECTIONS.E ], "circle_ccw": [ DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.N, DIRECTIONS.W ], "up_and_down": [ DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.S, DIRECTIONS.N ], "left_and_right": [ DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E ], "diagonal_uldr": [ DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SE, DIRECTIONS.NW ], "diagonal_urdl": [ DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.NE ], "plus_cw": [ DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.W, DIRECTIONS.E ], "plus_ccw": [ DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.N, DIRECTIONS.S, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.S, DIRECTIONS.N, DIRECTIONS.E, DIRECTIONS.W ], "times_cw": [ DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.NW, DIRECTIONS.SE ], "times_ccw": [ DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.NE, DIRECTIONS.SW ], "zee": [ DIRECTIONS.NE, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.SW, DIRECTIONS.E, DIRECTIONS.E, DIRECTIONS.W, DIRECTIONS.W, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NE ], "chevron_down": [ DIRECTIONS.NW, DIRECTIONS.S, DIRECTIONS.SE, DIRECTIONS.NE, DIRECTIONS.N, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.S, DIRECTIONS.SW, DIRECTIONS.NW, DIRECTIONS.N, DIRECTIONS.SE, DIRECTIONS.NW, DIRECTIONS.SE ], "chevron_up": [ DIRECTIONS.SE, DIRECTIONS.N, DIRECTIONS.NW, DIRECTIONS.SW, DIRECTIONS.S, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.NE, DIRECTIONS.SW, DIRECTIONS.N, DIRECTIONS.NE, DIRECTIONS.SE, DIRECTIONS.S, DIRECTIONS.NW, DIRECTIONS.SE, DIRECTIONS.NW ], } class DancerSprite(prefab_sprites.MazeWalker): """A `Sprite` for dancers.""" def __init__(self, corner, position, character, motion, color, shape, value=0.): super(DancerSprite, self).__init__( corner, position, character, impassable="#") self.motion = motion self.dance_sequence = DANCE_SEQUENCES[motion].copy() self.color = color self.shape = shape self.value = value self.is_dancing = False def update(self, actions, board, layers, backdrop, things, the_plot): if the_plot["task_phase"] == "dance" and self.is_dancing: if not self.dance_sequence: raise ValueError( "Dance sequence is empty! Was this dancer repeated in the order?") dance_move = self.dance_sequence.pop(0) if dance_move == DIRECTIONS.N: self._north(board, the_plot) elif dance_move == DIRECTIONS.NE: self._northeast(board, the_plot) elif dance_move == DIRECTIONS.E: self._east(board, the_plot) elif dance_move == DIRECTIONS.SE: self._southeast(board, the_plot) elif dance_move == DIRECTIONS.S: self._south(board, the_plot) elif dance_move == DIRECTIONS.SW: self._southwest(board, the_plot) elif dance_move == DIRECTIONS.W: self._west(board, the_plot) elif dance_move == DIRECTIONS.NW: self._northwest(board, the_plot) if not self.dance_sequence: # done! self.is_dancing = False the_plot["time_until_next_dance"] = the_plot["dance_delay"] else: if self.position == things[AGENT_CHAR].position: # Award the player the appropriate amount of reward, and end episode. the_plot.add_reward(self.value) the_plot.terminate_episode() class PlayerSprite(prefab_sprites.MazeWalker): """The player / agent character. MazeWalker class methods handle basic movement and collision detection. """ def __init__(self, corner, position, character): super(PlayerSprite, self).__init__( corner, position, character, impassable="#") def update(self, actions, board, layers, backdrop, things, the_plot): if the_plot["task_phase"] == "dance": # agent's actions are ignored, this logic updates the dance phases. if the_plot["time_until_next_dance"] > 0: the_plot["time_until_next_dance"] -= 1 if the_plot["time_until_next_dance"] == 0: # next phase time! if the_plot["dance_order"]: # start the next dance! next_dancer = the_plot["dance_order"].pop(0) things[next_dancer].is_dancing = True else: # choice time! the_plot["task_phase"] = "choice" the_plot["instruction_string"] = the_plot[ "choice_instruction_string"] elif the_plot["task_phase"] == "choice": # agent can now move and make its choice if actions == DIRECTIONS.N: self._north(board, the_plot) elif actions == DIRECTIONS.NE: self._northeast(board, the_plot) elif actions == DIRECTIONS.E: self._east(board, the_plot) elif actions == DIRECTIONS.SE: self._southeast(board, the_plot) elif actions == DIRECTIONS.S: self._south(board, the_plot) elif actions == DIRECTIONS.SW: self._southwest(board, the_plot) elif actions == DIRECTIONS.W: self._west(board, the_plot) elif actions == DIRECTIONS.NW: self._northwest(board, the_plot) def make_game(dancers_and_properties, dance_delay=16): """Constructs an ascii map, then uses pycolab to make it a game. Args: dancers_and_properties: list of (character, (row, column), motion, shape, color, value), for placing objects in the world. dance_delay: how long to wait between dances. Returns: this_game: Pycolab engine running the specified game. """ num_rows, num_cols = ROOM_SIZE level_layout = [] # upper wall level_layout.append("".join([WALL_CHAR] * num_cols)) # room middle_string = "".join([WALL_CHAR] + [" "] * (num_cols - 2) + [WALL_CHAR]) level_layout.extend([middle_string for _ in range(num_rows - 2)]) # lower wall level_layout.append("".join([WALL_CHAR] * num_cols)) def _add_to_map(obj, loc): """Adds an ascii character to the level at the requested position.""" obj_row = level_layout[loc[0]] pre_string = obj_row[:loc[1]] post_string = obj_row[loc[1] + 1:] level_layout[loc[0]] = pre_string + obj + post_string _add_to_map(AGENT_CHAR, AGENT_START) sprites = {AGENT_CHAR: PlayerSprite} dance_order = [] char_to_color_shape = [] # add dancers to level for obj, loc, motion, shape, color, value in dancers_and_properties: _add_to_map(obj, loc) sprites[obj] = ascii_art.Partial( DancerSprite, motion=motion, color=color, shape=shape, value=value) char_to_color_shape.append((obj, color + " " + shape)) dance_order += obj if value > 0.: choice_instruction_string = motion this_game = ascii_art.ascii_art_to_game( art=level_layout, what_lies_beneath=" ", sprites=sprites, update_schedule=[[AGENT_CHAR], dance_order]) this_game.the_plot["task_phase"] = "dance" this_game.the_plot["instruction_string"] = "watch" this_game.the_plot["choice_instruction_string"] = choice_instruction_string this_game.the_plot["dance_order"] = dance_order this_game.the_plot["dance_delay"] = dance_delay this_game.the_plot["time_until_next_dance"] = 1 this_game.the_plot["char_to_color_shape"] = char_to_color_shape return this_game def main(argv): del argv # unused these_dancers_and_properties = [ (POSSIBLE_DANCER_CHARS[1], (2, 2), "chevron_up", "triangle", "red", 1), (POSSIBLE_DANCER_CHARS[2], (2, 5), "circle_ccw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[3], (2, 8), "plus_cw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[4], (5, 2), "plus_ccw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[5], (5, 8), "times_cw", "triangle", "red", 0), (POSSIBLE_DANCER_CHARS[6], (8, 2), "up_and_down", "plus", "blue", 0), (POSSIBLE_DANCER_CHARS[7], (8, 5), "left_and_right", "plus", "blue", 0), (POSSIBLE_DANCER_CHARS[8], (8, 8), "zee", "plus", "blue", 0), ] game = make_game(dancers_and_properties=these_dancers_and_properties) # Note that these colors are only for human UI fg_colours = { AGENT_CHAR: (999, 999, 999), # Agent is white WALL_CHAR: (300, 300, 300), # Wall, dark grey FLOOR_CHAR: (0, 0, 0), # Floor } for (c, _, _, _, col, _) in these_dancers_and_properties: fg_colours[c] = (999, 0, 0) if col == "red" else (0, 0, 999) bg_colours = { c: (0, 0, 0) for c in RESERVED_CHARS + POSSIBLE_DANCER_CHARS[1:8] } ui = human_ui.CursesUi( keys_to_actions={ # Basic movement. curses.KEY_UP: DIRECTIONS.N, curses.KEY_DOWN: DIRECTIONS.S, curses.KEY_LEFT: DIRECTIONS.W, curses.KEY_RIGHT: DIRECTIONS.E, -1: 8, # Do nothing. }, delay=500, colour_fg=fg_colours, colour_bg=bg_colours) ui.play(game) if __name__ == "__main__": app.run(main)
deepmind-research-master
hierarchical_transformer_memory/pycolab_ballet/ballet_environment_core.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Visualize physical planning games in Domain Explorer. """ import functools from absl import app from absl import flags from dm_control import composer from dm_control import viewer from dm_control.locomotion import walkers from physics_planning_games import board_games from physics_planning_games.mujoban.boxoban import boxoban_level_generator from physics_planning_games.mujoban.mujoban import Mujoban from physics_planning_games.mujoban.mujoban_level import MujobanLevel flags.DEFINE_enum('environment_name', 'mujoban', [ 'mujoban', 'go_7x7', 'tic_tac_toe_markers_features', 'tic_tac_toe_mixture_opponent_markers_features', 'tic_tac_toe_optimal_opponent_markers_features'], 'Name of an environment to load.') FLAGS = flags.FLAGS TIME_LIMIT = 1000 CONTROL_TIMESTEP = .1 def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') environment_name = FLAGS.environment_name if environment_name == 'mujoban': walker = walkers.JumpingBallWithHead(add_ears=True, camera_height=0.25) arena = MujobanLevel(boxoban_level_generator) task = Mujoban( walker=walker, maze=arena, control_timestep=CONTROL_TIMESTEP, top_camera_height=64, top_camera_width=48) env = composer.Environment( time_limit=TIME_LIMIT, task=task, strip_singleton_obs_buffer_dim=True) else: env = functools.partial( board_games.load, environment_name=environment_name) viewer.launch(env) if __name__ == '__main__': app.run(main)
deepmind-research-master
physics_planning_games/explore.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for Mujoban.""" from absl.testing import absltest from dm_control import composer from dm_control.locomotion import walkers import dm_env as environment import numpy as np from physics_planning_games.mujoban.mujoban import Mujoban from physics_planning_games.mujoban.mujoban_level import MujobanLevel TIME_LIMIT = 5 CONTROL_TIMESTEP = .1 class MujobanTest(absltest.TestCase): def test(self): walker = walkers.JumpingBallWithHead(add_ears=True, camera_height=0.25) arena = MujobanLevel() task = Mujoban( walker=walker, maze=arena, control_timestep=CONTROL_TIMESTEP, top_camera_height=64, top_camera_width=48) env = composer.Environment( time_limit=TIME_LIMIT, task=task, strip_singleton_obs_buffer_dim=True) time_step = env.reset() self.assertEqual( set([ 'pixel_layer', 'full_entity_layer', 'top_camera', 'walker/body_height', 'walker/end_effectors_pos', 'walker/joints_pos', 'walker/joints_vel', 'walker/sensors_accelerometer', 'walker/sensors_gyro', 'walker/sensors_touch', 'walker/sensors_velocimeter', 'walker/world_zaxis', 'walker/orientation', ]), set(time_step.observation.keys())) top_camera = time_step.observation['top_camera'] self.assertEqual(np.uint8, top_camera.dtype) self.assertEqual((64, 48, 3), top_camera.shape) all_step_types = [] # Run enough actions that we are guaranteed to have restarted the # episode at least once. for _ in range(int(2*TIME_LIMIT/CONTROL_TIMESTEP)): action = 2*np.random.random(env.action_spec().shape) - 1 time_step = env.step(action) all_step_types.append(time_step.step_type) self.assertEqual(set([environment.StepType.FIRST, environment.StepType.MID, environment.StepType.LAST]), set(all_step_types)) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/mujoban/mujoban_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A floor pad that is activated through touch.""" import weakref from dm_control import composer from dm_control import mjcf import numpy as np def _get_activator_box(pad_xpos, pad_size, boxes, tolerance=0.0): """Returns the activator box, if any. Otherwise returns None.""" # Ignore the height pad_min = pad_xpos[0:2] - pad_size[0:2] pad_max = pad_xpos[0:2] + pad_size[0:2] for box in boxes: box_xpos = np.array(box.xpos[0:2]) box_size = np.array(box.size[0:2]) min_ = pad_min + box_size - tolerance max_ = pad_max - box_size + tolerance in_range = np.logical_and(box_xpos >= min_, box_xpos <= max_).all() if in_range: return box # No activator box was found return None class MujobanPad(composer.Entity): """A less sensitive floor pad for Mujoban.""" def _build(self, rgba=None, pressed_rgba=None, size=1, height=0.02, detection_tolerance=0.0, name='mujoban_pad'): rgba = tuple(rgba or (1, 0, 0, 1)) pressed_rgba = tuple(pressed_rgba or (0.2, 0, 0, 1)) self._mjcf_root = mjcf.RootElement(model=name) self._site = self._mjcf_root.worldbody.add( 'site', type='box', name='site', pos=[0, 0, (height / 2 or -0.001)], size=[size / 2, size / 2, (height / 2 or 0.001)], rgba=rgba) self._activated = False self._rgba = np.array(rgba, dtype=np.float) self._pressed_rgba = np.array(pressed_rgba, dtype=np.float) self._activator = None self._detection_tolerance = detection_tolerance self._boxes = [] @property def rgba(self): return self._rgba @property def pressed_rgba(self): return self._pressed_rgba def register_box(self, box_entity): self._boxes.append(weakref.proxy(box_entity)) @property def site(self): return self._site @property def boxes(self): return self._boxes @property def activator(self): return self._activator if self._activated else None @property def mjcf_model(self): return self._mjcf_root def initialize_episode_mjcf(self, unused_random_state): self._activated = False def initialize_episode(self, physics, unused_random_state): self._update_activation(physics) def _update_activation(self, physics): # Note: we get the physically bound box, not an object from self._boxes. # That's because the generator expression below generates bound objects. box = _get_activator_box( pad_xpos=np.array(physics.bind(self._site).xpos), pad_size=np.array(physics.bind(self._site).size), boxes=(physics.bind(box.geom) for box in self._boxes), tolerance=self._detection_tolerance,) if box: self._activated = True self._activator = box else: self._activated = False self._activator = None if self._activated: physics.bind(self._site).rgba = self._pressed_rgba else: physics.bind(self._site).rgba = self._rgba def before_step(self, physics, unused_random_state): self._update_activation(physics) def after_substep(self, physics, unused_random_state): self._update_activation(physics) @property def activated(self): """Whether this floor pad is pressed at the moment.""" return self._activated def reset(self, physics): self._activated = False physics.bind(self._site).rgba = self._rgba
deepmind-research-master
physics_planning_games/mujoban/mujoban_pad.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module for generating Mujoban level. """ import labmaze BOX_CHAR = 'B' TARGET_CHAR = labmaze.defaults.OBJECT_TOKEN _DEFAULT_LEVEL = """ ##### # # #### # # # . .# # # . # # .## $## ## #$$ # ## $@# ## ### ####""" # The meaning of symbols here are the same as defined in # http://sneezingtiger.com/sokoban/levels/sasquatch5Text.html. These are the # same symbols as used by the Sokoban community. EMPTY_CELL = ' ' GOAL = '.' PLAYER = '@' PLAYER_ON_GOAL = '+' BOX = '$' BOX_ON_GOAL = '*' WALL = '#' _SOKOBAN_SYMBOLS = [ EMPTY_CELL, GOAL, PLAYER, PLAYER_ON_GOAL, BOX, BOX_ON_GOAL, WALL ] def single_level_generator(level=_DEFAULT_LEVEL): while True: yield level def _ascii_to_text_grid_level(ascii_level): """Goes from official Sokoban ASCII art to string understood by Mujoban. Args: ascii_level: a multiline string; each character is a location in a gridworld. Returns: A string. """ level = ascii_level if level.startswith('\n'): level = level[1:] level = level.replace('$', BOX_CHAR) level = level.replace('.', TARGET_CHAR) level = level.replace(' ', '.') level = level.replace('#', '*') level = level.replace('@', 'P') if level[-1] == '\n': level = level[:-1] # Pad all_rows = level.split('\n') width = max(len(row) for row in all_rows) padded_rows = [] for row in all_rows: row += '*' * (width - len(row)) padded_rows.append(row) level = '\n'.join(padded_rows) return level + '\n' class MujobanLevel(labmaze.BaseMaze): """A maze that represents a level in Mujoban.""" def __init__(self, ascii_level_generator=single_level_generator): """Constructor. Args: ascii_level_generator: a Python generator. At each iteration, this should return a string representing a level. The symbols in the string should be those of http://sneezingtiger.com/sokoban/levels/sasquatch5Text.html. These are the same symbols as used by the Sokoban community. """ self._level_iterator = ascii_level_generator() self.regenerate() def regenerate(self): """Regenerates the maze if required.""" level = next(self._level_iterator) self._entity_layer = labmaze.TextGrid(_ascii_to_text_grid_level(level)) self._variation_layer = self._entity_layer.copy() self._variation_layer[:] = '.' self._num_boxes = (self._entity_layer == BOX_CHAR).sum() num_targets = (self._entity_layer == TARGET_CHAR).sum() if num_targets != self._num_boxes: raise ValueError('Number of targets {} should equal number of boxes {}.' .format(num_targets, self._num_boxes)) @property def num_boxes(self): return self._num_boxes @property def num_targets(self): return self._num_boxes @property def entity_layer(self): return self._entity_layer @property def variations_layer(self): return self._variation_layer @property def height(self): return self._entity_layer.shape[0] @property def width(self): return self._entity_layer.shape[1]
deepmind-research-master
physics_planning_games/mujoban/mujoban_level.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Top-level module definitions for mujoban.""" from physics_planning_games.mujoban.mujoban import Mujoban from physics_planning_games.mujoban.mujoban_level import MujobanLevel
deepmind-research-master
physics_planning_games/mujoban/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for mujoban_level.""" from absl.testing import absltest from physics_planning_games.mujoban import mujoban_level _LEVEL = """ ##### # @#### # $. # ###$.# # # $.# # # #$. # # ### ######""" _GRID_LEVEL = """******** *..P**** *..BG..* ***BG*.* *..BG*.* *.*BG..* *....*** ******** """ class MujobanLevelTest(absltest.TestCase): def test_ascii_to_text_grid_level(self): grid_level = mujoban_level._ascii_to_text_grid_level(_LEVEL) self.assertEqual(_GRID_LEVEL, grid_level) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/mujoban/mujoban_level_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Box props used in Mujoban that the agent pushes. """ import itertools from dm_control import composer from dm_control.entities import props class Box(props.Primitive): """A class representing a box prop.""" def _build(self, half_lengths=None, mass=None, name='box'): half_lengths = half_lengths or [0.05, 0.1, 0.15] super(Box, self)._build(geom_type='box', size=half_lengths, mass=mass, name=name) class BoxWithSites(Box): """A class representing a box prop with sites on the corners.""" def _build(self, half_lengths=None, mass=None, name='box'): half_lengths = half_lengths or [0.05, 0.1, 0.15] super(BoxWithSites, self)._build(half_lengths=half_lengths, mass=mass, name=name) corner_positions = itertools.product([half_lengths[0], -half_lengths[0]], [half_lengths[1], -half_lengths[1]], [half_lengths[2], -half_lengths[2]]) corner_sites = [] for i, corner_pos in enumerate(corner_positions): corner_sites.append( self.mjcf_model.worldbody.add( 'site', type='sphere', name='corner_{}'.format(i), size=[0.1], pos=corner_pos, rgba=[1, 0, 0, 1.0], group=composer.SENSOR_SITES_GROUP)) self._corner_sites = tuple(corner_sites) @property def corner_sites(self): return self._corner_sites
deepmind-research-master
physics_planning_games/mujoban/props.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """MuJoban task. Mujoban is a single player puzzle-solving game embedded in the MuJoCo simulation environment. The puzzle is based on the 2D game of Sokoban, where an agent situated on a grid has to push boxes onto target locations. """ import collections from dm_control import composer from dm_control.composer.observation import observable as observable_lib from dm_control.locomotion.arenas import labmaze_textures from dm_control.locomotion.arenas.mazes import MazeWithTargets from dm_env import specs import numpy as np from six.moves import range from six.moves import zip from physics_planning_games.mujoban import mujoban_level from physics_planning_games.mujoban.mujoban_pad import MujobanPad from physics_planning_games.mujoban.props import BoxWithSites _FLOOR_GAP_CHAR = '#' _AMBIENT_HEADLIGHT = 0.8 _BOX_SIZE = 0.4 _BOX_HEIGHT = 0.15 _BOX_MASS = 2.5 _BOX_FRICTION = [0.5, 0.005, 0.0001] _BOX_RGBA = [173. / 255., 179. / 255., 60. / 255., 1.] _BOX_PRESSED_RGBA = [0, 0, 1, 1] _TARGET_RGBA = [1.0, 0., 0., 1.] _PRESSED_TARGET_RGBA = [0., 1., 0., 1.] _PEG_SIZE = 0.05 _PEG_HEIGHT = 0.25 _PEG_RGBA = [0.5, 0.5, 0.5, 1] _PEG_ANGLE = np.pi / 4 # Aliveness in [-1., 0.]. _ALIVE_THRESHOLD = -0.5 # Constants used by the full entity layer _WALL_LAYER = 0 _TARGET_LAYER = 1 _SOKOBAN_LAYER = 2 _BOX_LAYER = 3 def _round_positions(boxes, walker, last_round_walker): """Round float positions to snap objects to grid.""" round_walker = np.round(walker).astype('int32') round_boxes = [np.round(box).astype('int32') for box in boxes] for box in round_boxes: if np.array_equal(box, round_walker): round_walker = last_round_walker return round_boxes, round_walker class Mujoban(composer.Task): """Requires objects to be moved onto matching-colored floor pads. Agent only receives instantaneous rewards of +1 for the timestep in which a box first enters a target, and -1 for the timestep in which a box leaves the target. There is an additional reward of +10 when all the boxes are put on targets, at which point the episode terminates. """ def __init__(self, walker, maze, target_height=0, box_prop=None, box_size=None, box_mass=None, with_grid_pegs=False, detection_tolerance=0.0, physics_timestep=0.001, control_timestep=0.025, top_camera_height=128, top_camera_width=128, box_on_target_reward=1.0, level_solved_reward=10.0): """Initializes this task. Args: walker: A `Walker` object. maze: A `BaseMaze` object. target_height: The height of the target pads above the ground, in meters. box_prop: An optional `Primitive` prop to use as the box. box_size: An optional three element sequence defining the half lengths of the sides of the box. box_mass: Box mass. If this is a list or tuple, a random value is sampled from the truncated exponential distribution in [a, b) where a = box_mass[0] and b = box_mass[1], with scale factor box_mass[2] * (b - a). with_grid_pegs: Whether to add solid pegs at the corners of the maze grid cells. This helps to enforce the usual Sokoban rules where diagonal movements are forbidden. detection_tolerance: A maximum length scale (in metres) within which a box is allowed to stick outside a target pad while still activating it. For example, if this is set to 0.1 then a box will activate a pad if it sticks out of the pad by no more than 10 centimetres. physics_timestep: The time step of the physics simulation. control_timestep: Should be an integer multiple of the physics time step. top_camera_height: An int; the height of the top camera in the observation. Setting this to 0 will disable the top camera. top_camera_width: An int; the width of the top camera in the observation. Setting this to 0 will disable the top camera. box_on_target_reward: A float; reward for putting a box on a target. level_solved_reward: A float: reward for solving the level. """ skybox_texture = labmaze_textures.SkyBox(style='sky_03') wall_textures = labmaze_textures.WallTextures(style='style_01') floor_textures = labmaze_textures.FloorTextures(style='style_01') self._detection_tolerance = detection_tolerance self._box_prop = box_prop self._box_on_target_reward = box_on_target_reward self._level_solved_reward = level_solved_reward self._maze = maze self._arena = MazeWithTargets( maze=maze, xy_scale=1, z_height=1, skybox_texture=skybox_texture, wall_textures=wall_textures, floor_textures=floor_textures) self._walker = walker self._arena.mjcf_model.visual.headlight.ambient = [_AMBIENT_HEADLIGHT] * 3 self._arena.text_maze_regenerated_hook = self._regenerate_positions self._first_step = True # Targets. self._targets = [] self._target_positions = [] # Boxes. self._box_size = box_size or [_BOX_SIZE] * 2 + [_BOX_HEIGHT] self._box_mass = box_mass or _BOX_MASS self._boxes = [] self._box_positions = [] self._with_grid_pegs = with_grid_pegs self._peg_body = None self._last_walker_position = None # Create walkers and corresponding observables. self._walker.create_root_joints(self._arena.attach(self._walker)) enabled_observables = [self._walker.observables.sensors_touch, self._walker.observables.orientation] enabled_observables += self._walker.observables.proprioception enabled_observables += self._walker.observables.kinematic_sensors for observable in enabled_observables: observable.enabled = True if top_camera_width and top_camera_height: self._arena.observables.top_camera.enabled = True self._arena.observables.top_camera.width = top_camera_width self._arena.observables.top_camera.height = top_camera_height # symbolic entity repenstaion in labyrinth format. self._entity_layer = self._maze.entity_layer # pixel layer is same as pixel rendering of symbolic sokoban. self._pixel_layer = np.zeros(self._entity_layer.shape + (3,), dtype='uint8') self._full_entity_layer = np.zeros(self._entity_layer.shape + (4,), dtype='bool') pixel_layer_obs = observable_lib.Generic(lambda _: self._pixel_layer) pixel_layer_obs.enabled = True full_entity_layer_obs = observable_lib.Generic( lambda _: self._full_entity_layer) full_entity_layer_obs.enabled = True self._task_observables = collections.OrderedDict({ 'pixel_layer': pixel_layer_obs, 'full_entity_layer': full_entity_layer_obs, }) # Set time steps. self.set_timesteps( physics_timestep=physics_timestep, control_timestep=control_timestep) self._discount = 1. @property def name(self): return 'Mujoban' @property def root_entity(self): return self._arena def _regenerate_positions(self): self._object_positions = self._arena.find_token_grid_positions( [mujoban_level.TARGET_CHAR, mujoban_level.BOX_CHAR]) self._box_positions = self._arena.grid_to_world_positions( self._object_positions[mujoban_level.BOX_CHAR]) target_grid_positions = self._object_positions[mujoban_level.TARGET_CHAR] self._target_positions = self._arena.grid_to_world_positions( target_grid_positions) for idx in range(len(self._target_positions)): target_grid_position = target_grid_positions[idx] grid_y, grid_x = target_grid_position self._arena.maze.variations_layer[grid_y, grid_x] = _FLOOR_GAP_CHAR def initialize_episode_mjcf(self, random_state): self._arena.regenerate() # Clear existing targets and boxes for target in self._targets: target.detach() self._targets = [] for box in self._boxes: box.detach() self._boxes = [] self._arena.mjcf_model.contact.remove('pair') for _ in range(self._maze.num_targets): target = MujobanPad( size=self._arena.xy_scale, height=0, detection_tolerance=self._detection_tolerance) self._arena.attach(target) self._targets.append(target) for _ in range(self._maze.num_boxes): box = self._box_prop if not box: box = BoxWithSites(half_lengths=self._box_size) box.geom.mass = _BOX_MASS box.geom.rgba = [0, 0, 0, 1] # Will be randomized for each episode. frame = self._arena.attach(box) frame.add('joint', type='slide', axis=[1, 0, 0], name='x_slider') frame.add('joint', type='slide', axis=[0, 1, 0], name='y_slider') frame.add('joint', type='slide', axis=[0, 0, 1], name='z_slider') self._boxes.append(box) for target in self._targets: target.register_box(box) # Reduce the friction between box and ground. ground_geom = self._arena.mjcf_model.find('geom', 'ground') self._arena.mjcf_model.contact.add( 'pair', geom1=box.geom, geom2=ground_geom, condim=6, friction=[ _BOX_FRICTION[0], _BOX_FRICTION[0], _BOX_FRICTION[1], _BOX_FRICTION[2], _BOX_FRICTION[2] ]) # Set box masses. for box in self._boxes: box.geom.mass = _BOX_MASS box.geom.rgba[:] = _BOX_RGBA for target in self._targets: target.rgba[:] = _TARGET_RGBA target.pressed_rgba[:] = _PRESSED_TARGET_RGBA if self._with_grid_pegs: if self._peg_body is not None: self._peg_body.remove() self._peg_body = self._arena.mjcf_model.worldbody.add('body') for y in range(self._arena.maze.height - 1): for x in range(self._arena.maze.width - 1): peg_x, peg_y, _ = self._arena.grid_to_world_positions( [[x + 0.5, y + 0.5]])[0] self._peg_body.add( 'geom', type='box', size=[_PEG_SIZE / np.sqrt(2), _PEG_SIZE / np.sqrt(2), _PEG_HEIGHT / 2], pos=[peg_x, peg_y, _PEG_HEIGHT / 2], quat=[np.cos(_PEG_ANGLE / 2), 0, 0, np.sin(_PEG_ANGLE / 2)], rgba=_PEG_RGBA) def initialize_episode(self, physics, random_state): self._first_step = True self._was_activated = [False] * len(self._targets) self._is_solved = False self._discount = 1. self._walker.reinitialize_pose(physics, random_state) spawn_position = self._arena.spawn_positions[0] spawn_rotation = random_state.uniform(-np.pi, np.pi) spawn_quat = np.array( [np.cos(spawn_rotation / 2), 0, 0, np.sin(spawn_rotation / 2)]) self._walker.shift_pose( physics, [spawn_position[0], spawn_position[1], 0.0], spawn_quat) for box, box_xy_position in zip(self._boxes, self._box_positions): # Position at the middle of a maze cell. box_position = np.array( [box_xy_position[0], box_xy_position[1], self._box_size[2]]) # Commit the box's final pose. box.set_pose(physics, position=box_position, quaternion=[1., 0., 0., 0.]) for target, target_position in zip(self._targets, self._target_positions): target.set_pose(physics, position=target_position) target.reset(physics) self._update_entity_pixel_layers(physics) def before_step(self, physics, actions, random_state): if isinstance(actions, list): actions = np.concatenate(actions) super(Mujoban, self).before_step(physics, actions, random_state) if self._first_step: self._first_step = False else: self._was_activated = [target.activated for target in self._targets] def _get_object_positions_in_grid(self, physics): box_positions = self._arena.world_to_grid_positions( [physics.bind(box.geom).xpos for box in self._boxes]) walker_position = self._arena.world_to_grid_positions( [physics.bind(self._walker.root_body).xpos])[0] return box_positions, walker_position def _update_entity_pixel_layers(self, physics): """Updates the pixel observation and both layered representations. Mujoban offers 3 grid representations of the world: * the pixel layer: this is a grid representations with an RGB value at each grid point; * the entity layer: this is a grid representation with a character at each grid point. This representation hides information since if Sokoban or a box are over a target, then the target is occluded. This is the official entity layer used by arenas which is based on dm_control labmaze; * the full entity layer: this is a grid represention with a boolean vector of length 4 at each grid point. The first value is `True` iff there is a wall at this location. The second value is `True` iff there is a target at this location. The third value is for Sokoban, and fourth value is for boxes. Note that this is not a one-hot encoding since Sokoban or a box can share the same location as a target. Args: physics: a Mujoco physics object. Raises: RuntimeError: if a box or walker are overlapping with a wall. """ # The entity layer from the maze is a string that shows the maze at the # *beginning* of the level. This is fixed throughout an episode. entity_layer = self._maze.entity_layer.copy() box_positions, walker_position = self._get_object_positions_in_grid(physics) # round positions to snap to grid. box_positions, walker_position = _round_positions( box_positions, walker_position, self._last_walker_position) # setup pixel layer map_size = entity_layer.shape pixel_layer = np.ndarray(map_size + (3,), dtype='uint8') pixel_layer.fill(128) # setup full entity layer full_entity_layer = np.zeros(map_size + (4,), dtype='bool') # remove boxes and agent entity_layer[entity_layer == mujoban_level.BOX_CHAR] = '.' entity_layer[entity_layer == 'P'] = '.' # draw empty space and goals pixel_layer[entity_layer == '.'] = [0, 0, 0] pixel_layer[entity_layer == 'G'] = [255, 0, 0] full_entity_layer[:, :, _WALL_LAYER] = True full_entity_layer[:, :, _WALL_LAYER][entity_layer == '.'] = False full_entity_layer[:, :, _WALL_LAYER][entity_layer == 'G'] = False full_entity_layer[:, :, _TARGET_LAYER][entity_layer == 'G'] = True # update boxes for pos in box_positions: # to ensure we are not changing the walls. if entity_layer[pos[0], pos[1]] == '*': raise RuntimeError('Box and wall positions are overlapping and this ', 'should not happen. It requires investigation and ', 'and fixing.') # the entity layer has no representation of box on goal. entity_layer[pos[0], pos[1]] = mujoban_level.BOX_CHAR if np.array_equal(pixel_layer[pos[0], pos[1]], [255, 0, 0]): pixel_layer[pos[0], pos[1]] = [0, 255, 0] # box on goal else: pixel_layer[pos[0], pos[1]] = [255, 255, 0] full_entity_layer[pos[0], pos[1], _BOX_LAYER] = True # update player if entity_layer[walker_position[0], walker_position[1]] == '*': raise RuntimeError('Walker and wall positions are overlapping and this ', 'should have not happen. It requires investigation ', 'and fixing.') entity_layer[walker_position[0], walker_position[1]] = 'P' pixel_layer[walker_position[0], walker_position[1]] = 0, 0, 255 full_entity_layer[ walker_position[0], walker_position[1], _SOKOBAN_LAYER] = True self._last_walker_position = walker_position self._entity_layer = entity_layer self._pixel_layer = pixel_layer self._full_entity_layer = full_entity_layer def after_step(self, physics, random_state): super(Mujoban, self).after_step(physics, random_state) for box in self._boxes: physics.bind(box.geom).rgba = _BOX_RGBA for target in self._targets: if target.activated: target.activator.rgba = _BOX_PRESSED_RGBA self._update_entity_pixel_layers(physics) self._is_solved = all([target.activated for target in self._targets]) if self._is_solved: self._discount = 0. def get_reward(self, physics): reward = 0.0 for target, was_activated in zip(self._targets, self._was_activated): if target.activated and not was_activated: reward += self._box_on_target_reward elif was_activated and not target.activated: reward -= self._box_on_target_reward if self._is_solved: reward += self._level_solved_reward return reward def get_discount(self, physics): return self._discount def should_terminate_episode(self, physics): is_dead = self._walker.aliveness(physics) < _ALIVE_THRESHOLD return self._is_solved or is_dead def get_reward_spec(self): return specs.ArraySpec(shape=[], dtype=np.float32) @property def task_observables(self): return self._task_observables
deepmind-research-master
physics_planning_games/mujoban/mujoban.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Level generator for Mujoban based on levels from follwing dataset. https://github.com/deepmind/boxoban-levels/ """ import glob import os import zipfile import numpy as np import requests BOXOBAN_URL = "https://github.com/deepmind/boxoban-levels/archive/master.zip" def boxoban_level_generator(levels_set="unfiltered", data_split="valid"): env = Boxoban(levels_set=levels_set, data_split=data_split) while True: index = np.random.randint(0, env.num_levels-1) yield env.levels[index] class Boxoban(object): """Class for loading and generatting Boxoban levels.""" def __init__(self, levels_set="unfiltered", data_split="valid"): self._levels_set = levels_set self._data_split = data_split self._levels = [] data_file_path_local = os.path.join(os.path.dirname(__file__), "boxoban_cache", "{}_{}.npz".format(self._levels_set, self._data_split)) data_file_path_global = os.path.join("/tmp/boxoban_cache", "{}_{}.npz".format(self._levels_set, self._data_split)) if os.path.exists(data_file_path_local): self.levels = np.load(data_file_path_local)["levels"] elif os.path.exists(data_file_path_global): self.levels = np.load(data_file_path_global)["levels"] else: self.levels = self.get_data() self.num_levels = len(self.levels) def get_data(self): """Downloads and cache the data.""" try: cache_path = os.path.join( os.path.dirname(__file__), "boxoban_cache") os.makedirs(cache_path, exist_ok=True) except PermissionError: cache_path = os.path.join("/tmp/boxoban_cache") if not os.path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) # Get the zip file zip_file_path = os.path.join(cache_path, "master.zip") if not os.path.exists(zip_file_path): response = requests.get(BOXOBAN_URL, stream=True) handle = open(zip_file_path, "wb") for chunk in response.iter_content(chunk_size=512): if chunk: handle.write(chunk) handle.close() with zipfile.ZipFile(zip_file_path, "r") as zipref: zipref.extractall(cache_path) # convert to npz path = os.path.join(cache_path, "boxoban-levels-master", self._levels_set, self._data_split) files = glob.glob(path + "/*.txt") levels = "".join([open(f, "r").read() for f in files]) levels = levels.split("\n;") levels = ["\n".join(item.split("\n")[1:]) for item in levels] levels = np.asarray(levels) data_file_path = os.path.join( cache_path, "{}_{}.npz".format(self._levels_set, self._data_split)) np.savez(data_file_path, levels=levels) return levels
deepmind-research-master
physics_planning_games/mujoban/boxoban.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from absl.testing import absltest from absl.testing import parameterized import numpy as np from physics_planning_games.board_games import tic_tac_toe_logic class TicTacToeGameLogicTest(parameterized.TestCase): def setUp(self): super(TicTacToeGameLogicTest, self).setUp() self.logic = tic_tac_toe_logic.TicTacToeGameLogic() self.expected_board_state = np.zeros((3, 3, 3), dtype=bool) self.expected_board_state[..., 0] = True # All positions initially empty. def test_valid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = tic_tac_toe_logic.SingleMarkerAction(col=1, row=2) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 1] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = tic_tac_toe_logic.SingleMarkerAction(col=0, row=1) self.assertTrue(self.logic.apply(player=1, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 2] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) def test_invalid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = tic_tac_toe_logic.SingleMarkerAction(col=1, row=2) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 1] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) # Player 0 tries to move again in the same location. action = tic_tac_toe_logic.SingleMarkerAction(col=1, row=2) self.assertFalse(self.logic.apply(player=0, action=action), msg='Invalid action was accepted: {}'.format(action)) # Player 1 tries to move in the same location as player 0. self.assertFalse(self.logic.apply(player=1, action=action), msg='Invalid action was accepted: {}'.format(action)) # The board state should not have changed as a result of invalid actions. np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) @parameterized.named_parameters([ dict(testcase_name='player_0_win', move_sequence=((0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 2, 1), (0, 2, 0)), winner_id=0), dict(testcase_name='player_1_win', move_sequence=((0, 0, 0), (1, 0, 2), (0, 1, 0), (1, 1, 1), (0, 0, 1), (1, 2, 0)), winner_id=1), dict(testcase_name='draw', move_sequence=((0, 0, 0), (1, 1, 1), (0, 1, 0), (1, 2, 0), (0, 0, 2), (1, 0, 1), (0, 2, 1), (1, 2, 2), (0, 1, 2)), winner_id=None)]) def test_reward_and_termination(self, move_sequence, winner_id): for (player_id, row, col) in move_sequence: self.assertFalse(self.logic.is_game_over) self.assertDictEqual(self.logic.get_reward, {0: 0.0, 1: 0.0}) action = tic_tac_toe_logic.SingleMarkerAction(col=col, row=row) self.assertTrue(self.logic.apply(player=player_id, action=action), msg='Invalid action: {}'.format(action)) self.assertTrue(self.logic.is_game_over) rewards = self.logic.get_reward if winner_id is not None: loser_id = 1 - winner_id self.assertDictEqual(rewards, {winner_id: 1.0, loser_id: 0.0}) else: # Draw self.assertDictEqual(rewards, {0: 0.5, 1: 0.5}) def test_random_opponent_vs_optimal(self): """Play random v optimal opponents and check that optimal largely wins. """ rand_state = np.random.RandomState(42) optimal_opponent = tic_tac_toe_logic.TicTacToeOptimalOpponent() random_opponent = tic_tac_toe_logic.TicTacToeRandomOpponent() players = [optimal_opponent, random_opponent] optimal_returns = [] random_returns = [] for _ in range(20): logic = tic_tac_toe_logic.TicTacToeGameLogic() optimal_opponent.reset() random_opponent.reset() rand_state.shuffle(players) current_player_idx = 0 while not logic.is_game_over: current_player = players[current_player_idx] action = current_player.policy(logic, rand_state) self.assertTrue(logic.apply(current_player_idx, action), msg='Opponent {} selected invalid action {}'.format( current_player, action)) current_player_idx = (current_player_idx + 1) % 2 # Record the winner. reward = logic.get_reward if players[0] == optimal_opponent: optimal_return = reward[0] random_return = reward[1] else: optimal_return = reward[1] random_return = reward[0] optimal_returns.append(optimal_return) random_returns.append(random_return) mean_optimal_returns = np.mean(optimal_returns) mean_random_returns = np.mean(random_returns) self.assertGreater(mean_optimal_returns, 0.9) self.assertLess(mean_random_returns, 0.1) @parameterized.named_parameters([ dict(testcase_name='pos0', move_sequence=((0, 0, 1), (1, 1, 1), (0, 0, 2), (1, 1, 2)), optimal_move=(0, 0)), dict(testcase_name='pos1', move_sequence=((0, 0, 1), (1, 1, 2), (0, 0, 2), (1, 1, 1)), optimal_move=(0, 0)), dict(testcase_name='pos2', move_sequence=((0, 2, 1), (1, 1, 2), (0, 2, 2), (1, 1, 1)), optimal_move=(2, 0)), ]) def test_minimax_policy(self, move_sequence, optimal_move): rand_state = np.random.RandomState(42) for (player_id, row, col) in move_sequence: action = tic_tac_toe_logic.SingleMarkerAction(col=col, row=row) self.assertTrue(self.logic.apply(player=player_id, action=action), msg='Invalid action: {}'.format(action)) state = self.logic.open_spiel_state planner_action = tic_tac_toe_logic.tic_tac_toe_minimax(state, rand_state) self.assertEqual(planner_action, optimal_move) # Do the same but with np array as input self.logic = tic_tac_toe_logic.TicTacToeGameLogic() for (player_id, row, col) in move_sequence: action = tic_tac_toe_logic.SingleMarkerAction(col=col, row=row) self.assertTrue(self.logic.apply(player=player_id, action=action), msg='Invalid action: {}'.format(action)) board = self.logic.get_board_state() planner_action = tic_tac_toe_logic.tic_tac_toe_minimax(board, rand_state) self.assertEqual(planner_action, optimal_move) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/tic_tac_toe_logic_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """TicTacToe logic wrapper for use in manipulation tasks.""" import collections import itertools import numpy as np from physics_planning_games.board_games import logic_base from open_spiel.python.algorithms import minimax import pyspiel SingleMarkerAction = collections.namedtuple('SingleMarkerAction', ['row', 'col']) force_random_start_position = False class TicTacToeGameLogic(logic_base.OpenSpielBasedLogic): """Logic for TicTacToe game.""" def __init__(self): self.reset() def reset(self): """Resets the game state.""" # For now we always assume we are the starting player. game = pyspiel.load_game('tic_tac_toe') self._open_spiel_state = game.new_initial_state() if force_random_start_position: # For debugging purposes only, force some random moves rand_state = np.random.RandomState(46) rand_player = TicTacToeRandomOpponent() num_moves = 4 for _ in range(num_moves): action = rand_player.policy(self, rand_state) action_1d = np.ravel_multi_index(action, (3, 3)) self._open_spiel_state.apply_action(action_1d) def get_board_state(self): """Returns the logical board state as a numpy array. Returns: A boolean array of shape (H, W, C), where H=3, W=3 (height and width of the board) and C=3 for the 3 planes. The 3 planes are, in order, unmarked squares, x's (player 0) and y's (player 1). """ board_state = np.reshape( np.array(self._open_spiel_state.observation_tensor(0), dtype=np.bool), [3, 3, 3]) board_state = np.transpose(board_state, [1, 2, 0]) board_state = board_state[:, :, [0, 2, 1]] return board_state def apply(self, player, action): """Checks whether action is valid, and if so applies it to the game state. Args: player: Integer specifying the player ID; either 0 or 1. action: A `SingleMarkerAction` instance. Returns: True if the action was valid, else False. """ action_value = np.ravel_multi_index((action.row, action.col), (3, 3)) if self._open_spiel_state.current_player() != player: return False try: self._open_spiel_state.apply_action(action_value) was_valid_move = True except RuntimeError: was_valid_move = False return was_valid_move class TicTacToeRandomOpponent(logic_base.Opponent): """An easy opponent for TicTacToe.""" def __init__(self): pass def reset(self): """Resets the opponent's internal state (not implemented).""" pass def policy(self, game_logic, random_state): """Return a random, valid move. Args: game_logic: TicTacToeGameLogic state of the game. random_state: An instance of `np.random.RandomState` Returns: SingleMarkerAction of opponent. """ if game_logic.is_game_over: return None valid_moves = game_logic.open_spiel_state.legal_actions() assert valid_moves move = random_state.choice(valid_moves) row, col = np.unravel_index(move, shape=(3, 3)) return SingleMarkerAction(row=row, col=col) class TicTacToeMixtureOpponent(logic_base.Opponent): """A TicTacToe opponent which makes a mixture of optimal and random moves. The optimal mixture component uses minimax search. """ def __init__(self, mixture_p): """Initialize the mixture opponent. Args: mixture_p: The mixture probability. We choose moves from the random opponent with probability mixture_p and moves from the optimal opponent with probability 1 - mixture_p. """ self._random_opponent = TicTacToeRandomOpponent() self._optimal_opponent = TicTacToeOptimalOpponent() self._mixture_p = mixture_p def reset(self): pass def policy(self, game_logic, random_state): if random_state.rand() < self._mixture_p: return self._random_opponent.policy(game_logic, random_state) else: return self._optimal_opponent.policy(game_logic, random_state) class TicTacToeOptimalOpponent(logic_base.Opponent): """A TicTacToe opponent which makes perfect moves. Uses minimax search. """ def __init__(self): pass def reset(self): pass def policy(self, game_logic, random_state): action = tic_tac_toe_minimax(game_logic.open_spiel_state, random_state) return action def numpy_array_to_open_spiel_state(board_state): """Take a numpy observation [3x3x3] bool area and create an OpenSpiel state. Args: board_state: 3x3x3 bool array with [col, row, c] with c indexing, in order, empty squares, x moves, y moves. Returns: open_spiel_state: OpenSpiel state of this position. """ game = pyspiel.load_game('tic_tac_toe') open_spiel_state = game.new_initial_state() x_moves = np.flatnonzero(board_state[:, :, 1]) y_moves = np.flatnonzero(board_state[:, :, 2]) for x_m, y_m in itertools.zip_longest(x_moves, y_moves): if open_spiel_state.is_terminal(): break open_spiel_state.apply_action(x_m) if open_spiel_state.is_terminal(): break if y_m is not None: open_spiel_state.apply_action(y_m) return open_spiel_state def open_spiel_move_to_single_marker_action(action): row, col = np.unravel_index(action, shape=(3, 3)) return SingleMarkerAction(row=row, col=col) def tic_tac_toe_random_move(state, random_state): """Returns a legal move at random from current state. Args: state: World state of the game. Either an OpenSpiel state or a numpy encoding of the board. random_state: numpy random state used for choosing randomly if there is more than one optimal action. Returns: action: SingleMarkerAction of a random move. """ if isinstance(state, np.ndarray): spiel_state = numpy_array_to_open_spiel_state(state) else: spiel_state = state if spiel_state.is_terminal(): return False legal_actions = spiel_state.legal_actions() action = random_state.choice(legal_actions) return open_spiel_move_to_single_marker_action(action) def tic_tac_toe_minimax(state, random_state): """Tree search from the world_state in order to find the optimal action. Args: state: World state of the game. Either an OpenSpiel state or a numpy encoding of the board. random_state: numpy random state used for choosing randomly if there is more than one optimal action. Returns: action: SingleMarkerAction of an optimal move. """ if isinstance(state, np.ndarray): spiel_state = numpy_array_to_open_spiel_state(state) else: spiel_state = state if spiel_state.is_terminal(): return False current_player = spiel_state.current_player() legal_actions = spiel_state.legal_actions() best_actions = [] best_value = -100 for action in legal_actions: state_after_action = spiel_state.clone() state_after_action.apply_action(action) value, _ = minimax.expectiminimax(state_after_action, 100, None, current_player) if value > best_value: best_value = value best_actions = [action] elif value == best_value: best_actions.append(action) assert best_actions action = random_state.choice(best_actions) return open_spiel_move_to_single_marker_action(action)
deepmind-research-master
physics_planning_games/board_games/tic_tac_toe_logic.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Abstract base classes and utility functions for logical aspects of the games. """ import abc ABC = abc.ABCMeta('ABC', (object,), {'__slots__': ()}) class GameLogic(ABC): """Define the abstrat game logic class. """ @abc.abstractmethod def __init__(self): pass @abc.abstractmethod def reset(self): pass @abc.abstractproperty def is_game_over(self): """Boolean specifying whether the current game has ended.""" @abc.abstractproperty def get_reward(self): pass @abc.abstractmethod def get_board_state(self): """Returns the logical board state as a numpy array.""" @abc.abstractmethod def apply(self, player, action): """Checks whether action is valid, and if so applies it to the game state. Args: player: Integer specifying the player ID; either 0 or 1. action: A `GoMarkerAction` instance. Returns: True if the action was valid, else False. """ class OpenSpielBasedLogic(GameLogic): """GameLogic using OpenSpiel for tracking game state. """ @property def is_game_over(self): """Boolean specifying whether the current game has ended.""" return self._open_spiel_state.is_terminal() @property def get_reward(self): """Returns a dictionary that maps from `{player_id: player_reward}`.""" if self.is_game_over: player0_return = self._open_spiel_state.player_return(0) # Translate from OpenSpiel returns to 0.5 for draw, -1 for loss, # +1 for win. if player0_return == 0.: reward = {0: 0.5, 1: 0.5} elif player0_return == 1.: reward = {0: 1., 1: 0.} else: assert player0_return == -1. reward = {0: 0., 1: 1.} else: reward = {0: 0., 1: 0.} return reward @property def open_spiel_state(self): """OpenSpiel object representing the underlying game state.""" return self._open_spiel_state class Opponent(ABC): """Abstract Opponent class.""" @abc.abstractmethod def __init__(self): pass @abc.abstractmethod def reset(self): pass @abc.abstractmethod def policy(self, game_logic, random_state): """Return policy action. Args: game_logic: Go game logic state. random_state: Numpy random state object. Returns: NamedTuple indicating opponent move. """
deepmind-research-master
physics_planning_games/board_games/logic_base.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Shared base class for two-player Jaco arm board games. """ import functools from dm_control import composer from dm_control.composer import initializers from dm_control.composer.observation import observable from dm_control.composer.variation import distributions from dm_control.composer.variation import rotations from dm_control.entities.manipulators import base from dm_control.entities.manipulators import kinova import numpy as np from physics_planning_games.board_games._internal import arenas from physics_planning_games.board_games._internal import observations _ARM_Y_OFFSET = 0.4 _TCP_LOWER_BOUNDS = (-0.1, -0.1, 0.2) _TCP_UPPER_BOUNDS = (0.1, 0.1, 0.4) # Player IDs SELF = 0 OPPONENT = 1 def _uniform_downward_rotation(): angle = distributions.Uniform(-np.pi, np.pi, single_sample=True) quaternion = rotations.QuaternionFromAxisAngle(axis=(0., 0., 1.), angle=angle) return functools.partial(rotations.QuaternionPreMultiply(quaternion), initial_value=base.DOWN_QUATERNION) class JacoArmBoardGame(composer.Task): """Base class for two-player checker-like board games.""" def __init__(self, observation_settings, opponent, game_logic, board, markers): """Initializes the task. Args: observation_settings: An `observations.ObservationSettings` namedtuple specifying configuration options for each category of observation. opponent: Opponent used for generating opponent moves. game_logic: Logic for keeping track of the logical state of the board. board: Board to use. markers: Markers to use. """ self._game_logic = game_logic self._game_opponent = opponent arena = arenas.Standard(observable_options=observations.make_options( observation_settings, observations.ARENA_OBSERVABLES)) arena.attach(board) arm = kinova.JacoArm(observable_options=observations.make_options( observation_settings, observations.JACO_ARM_OBSERVABLES)) hand = kinova.JacoHand(observable_options=observations.make_options( observation_settings, observations.JACO_HAND_OBSERVABLES)) arm.attach(hand) arena.attach_offset(arm, offset=(0, _ARM_Y_OFFSET, 0)) arena.attach(markers) # Geoms belonging to the arm and hand are placed in a custom group in order # to disable their visibility to the top-down camera. NB: we assume that # there are no other geoms in ROBOT_GEOM_GROUP that don't belong to the # robot (this is usually the case since the default geom group is 0). If # there are then these will also be invisible to the top-down camera. for robot_geom in arm.mjcf_model.find_all('geom'): robot_geom.group = arenas.ROBOT_GEOM_GROUP self._arena = arena self._board = board self._arm = arm self._hand = hand self._markers = markers self._tcp_initializer = initializers.ToolCenterPointInitializer( hand=hand, arm=arm, position=distributions.Uniform(_TCP_LOWER_BOUNDS, _TCP_UPPER_BOUNDS), quaternion=_uniform_downward_rotation()) # Add an observable exposing the logical state of the board. board_state_observable = observable.Generic( lambda physics: self._game_logic.get_board_state()) board_state_observable.configure( **observation_settings.board_state._asdict()) self._task_observables = {'board_state': board_state_observable} @property def root_entity(self): return self._arena @property def arm(self): return self._arm @property def hand(self): return self._hand @property def task_observables(self): return self._task_observables def get_reward(self, physics): del physics # Unused. return self._game_logic.get_reward[SELF] def should_terminate_episode(self, physics): return self._game_logic.is_game_over def initialize_episode(self, physics, random_state): self._tcp_initializer(physics, random_state) self._game_logic.reset() self._game_opponent.reset() def before_step(self, physics, action, random_state): super(JacoArmBoardGame, self).before_step(physics, action, random_state) self._made_move_this_step = False def after_substep(self, physics, random_state): raise NotImplementedError('Subclass must implement after_substep.')
deepmind-research-master
physics_planning_games/board_games/jaco_arm_board_game.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Basic smoke test for board_games environments.""" from absl.testing import absltest from dm_env import test_utils from physics_planning_games import board_games class GoTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return board_games.load(environment_name='go_7x7', seed=0) class TicTacToeTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def make_object_under_test(self): return board_games.load( environment_name='tic_tac_toe_mixture_opponent_markers_features', seed=0) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/board_games_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Physically-grounded board game environments.""" from dm_control import composer as _composer from physics_planning_games.board_games import go as _go from physics_planning_games.board_games import tic_tac_toe as _tic_tac_toe from physics_planning_games.board_games._internal import registry as _registry _registry.done_importing_tasks() ALL = tuple(_registry.get_all_names()) TAGS = tuple(_registry.get_tags()) def get_environments_by_tag(tag): """Returns the names of all environments matching a given tag. Args: tag: A string from `TAGS`. Returns: A tuple of environment names. """ return tuple(_registry.get_names_by_tag(tag)) def load(environment_name, env_kwargs=None, seed=None, time_limit=float('inf'), strip_singleton_obs_buffer_dim=False): """Loads an environment from board_games. Args: environment_name: String, the name of the environment to load. Must be in `ALL`. env_kwargs: extra params to pass to task creation. seed: Optional, either an int seed or an `np.random.RandomState` object. If None (default), the random number generator will self-seed from a platform-dependent source of entropy. time_limit: (optional) A float, the time limit in seconds beyond which an episode is forced to terminate. strip_singleton_obs_buffer_dim: (optional) A boolean, if `True`, the array shape of observations with `buffer_size == 1` will not have a leading buffer dimension. Returns: An instance of `composer.Environment`. """ if env_kwargs is not None: task = _registry.get_constructor(environment_name)(**env_kwargs) else: task = _registry.get_constructor(environment_name)() return _composer.Environment( task=task, time_limit=time_limit, strip_singleton_obs_buffer_dim=strip_singleton_obs_buffer_dim, random_state=seed)
deepmind-research-master
physics_planning_games/board_games/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Logic for the Go Game.""" import abc import collections import enum import shutil import subprocess from absl import logging import numpy as np from dm_control.utils import io as resources from physics_planning_games.board_games import logic_base import pyspiel GNUGO_PATH = '/usr/games/gnugo' GoMarkerAction = collections.namedtuple('GoMarkerAction', ['row', 'col', 'pass_action']) # Note that there is no 'i' in these Go board coordinates # (cf https://senseis.xmp.net/?Coordinates) _X_CHARS = 'abcdefghjklmnopqrstuvwxyz' _X_MAP = {c: x for c, x in zip(_X_CHARS, range(len(_X_CHARS)))} def _go_marker_to_int(go_marker, board_size): """Convert GoMarkerAction into GoPoint integer encoding of move. Args: go_marker: GoMarkerAction. board_size: Board size of the go board (e.g. 9 or 19). Returns: GoPoint int value. """ if go_marker.pass_action: return board_size * board_size else: return int((go_marker.row) * board_size + go_marker.col) def _int_to_go_marker(move_int, board_size): """Decode the integer move encoding to a GoMarkerAction. Args: move_int: Integer encoding the go move. board_size: Board size of the go board (e.g. 9 or 19). Returns: GoMarkerAction encoding of move. """ if move_int == board_size * board_size: go_marker_action = GoMarkerAction(row=-1, col=-1, pass_action=True) else: row = move_int // board_size col = move_int % board_size go_marker_action = GoMarkerAction(row=row, col=col, pass_action=False) return go_marker_action def _go_marker_to_str(go_marker): if go_marker.pass_action: return 'PASS' else: move_str = _X_CHARS[go_marker.col] + str(go_marker.row + 1) return move_str def _str_to_go_marker(move_str): """Convert from a 2-letter Go move str (e.g. a3) to a GoMarker. Args: move_str: String describing the move (e.g. a3). Returns: GoMarkerAction encoding of move. """ move_str = move_str.lower() if move_str == 'pass': action = GoMarkerAction(row=-1, col=-1, pass_action=True) elif move_str == 'resign': raise NotImplementedError('Not dealing with resign') else: assert len(move_str) == 2 col, row = move_str[0], move_str[1] col = _X_MAP[col] row = int(row) - 1 action = GoMarkerAction(row=row, col=col, pass_action=False) return action def _get_gnugo_ref_config(level=1, binary_path=None): """Reference config for GnuGo. Args: level: GnuGo level binary_path: string pointing to GnuGo binary Returns: Config dict that can be passed to gtp engine """ try: gnugo_binary_path = resources.GetResourceFilename(binary_path) except FileNotFoundError: gnugo_binary_path = shutil.which('gnugo') if not gnugo_binary_path: raise FileNotFoundError('Not able to locate gnugo library. ', 'Try installing it by: apt install gnugo') gnugo_extra_flags = ['--mode', 'gtp'] gnugo_extra_flags += ['--chinese-rules', '--capture-all-dead'] gtp_player_cfg = { 'name': 'gnugo', 'binary_path': gnugo_binary_path, 'level': level, 'extra_flags': gnugo_extra_flags, } return gtp_player_cfg class Stone(enum.Enum): EMPTY = 1 WHITE = 2 BLACK = 3 def __lt__(self, other): value = int(self.value) return value < other.value def gtp_to_sgf_point(gtp_point, board_size): """Format a GTP point according to the SGF format.""" if gtp_point.lower() == 'pass' or gtp_point.lower() == 'resign': return 'tt' column, row = gtp_point[0], gtp_point[1:] # GTP doesn't use i, but SGF does, so we need to convert. gtp_columns = 'abcdefghjklmnopqrstuvwxyz' sgf_columns = 'abcdefghijklmnopqrstuvwxyz' x = gtp_columns.find(column.lower()) y = board_size - int(row) return '%s%s' % (sgf_columns[x], sgf_columns[y]) class Gtp(object): """Wrapper around Go playing program that communicates using GTP.""" __metaclass__ = abc.ABCMeta def __init__(self, checkpoint_file=None): self.stones = { '.': Stone.EMPTY, '+': Stone.EMPTY, 'O': Stone.WHITE, 'X': Stone.BLACK } self.moves = [] self.comments = [] self.handicap = 0 self.board_size = 19 self.komi = 0 self.free_handicap = None self.byo_yomi_time = None self.checkpoint_file = checkpoint_file self.stderr = None def set_board_size(self, size): self.board_size = size self.gtp_command('boardsize %d' % size) self.gtp_command('clear_board') def set_komi(self, komi): self.komi = komi self.gtp_command('komi %s' % komi) def set_free_handicap(self, vertices): self.free_handicap = vertices self.gtp_command('set_free_handicap %s' % vertices) def place_free_handicap(self, n): self.free_handicap = self.gtp_command('place_free_handicap %d' % n) return self.free_handicap def make_move(self, move, record=True): self.gtp_command('play %s' % move) if record: self._record_move(move) def set_byo_yomi_time(self, t): self.byo_yomi_time = t def num_moves(self): return len(self.moves) def clear_board(self): self.moves = [] self.comments = [] self.gtp_command('clear_board') def generate_move(self, color): if self.byo_yomi_time is not None: self.gtp_command('time_left %s %d 1' % (color, self.byo_yomi_time)) move = '%s %s' % (color, self.gtp_command( 'genmove %s' % color).split(' ')[-1].lower()) self._record_move(move, stderr=self.stderr) return move def board(self): raw_board = self.gtp_command('showboard', log=False)[1:].strip() rows = [line.strip().split(' ')[0] for line in raw_board.split('\n')][1:-1] rows = [''.join(row.split(' ')[1:-1]) for row in rows] return [[self.stones[cell] for cell in row] for row in rows] def quit(self): self.gtp_command('quit') def final_status(self, status): return self.gtp_command('final_status_list %s' % status)[2:].replace( '\n', ' ').split(' ') def fixed_handicap(self, handicap): self.handicap = handicap self.gtp_command('fixed_handicap %d' % handicap) def undo(self, num_moves): self.gtp_command('gg-undo %d' % num_moves) for _ in range(num_moves): self.moves.pop() self.comments.pop() def _record_move(self, move, stderr=None): self.moves.append(move) self.comments.append(stderr) if self.checkpoint_file: with open(self.checkpoint_file, 'w') as f: f.write(self.to_sgf()) def to_sgf(self): sgf = '(;PB[Black]PW[White]KM[%.1f]HA[%d]SZ[19]' % (self.komi, self.handicap) for i, move in enumerate(self.moves): sgf += '\n;' + self._format_sgf_move(move) if self.comments[i]: sgf += 'C[' + self._sgf_escape(self.comments[i]) + ']' return sgf + ')' def _format_sgf_move(self, move): """Format a move according to the SGF format.""" color, vertex = str(move).split(' ') return '%s[%s]' % (color[0].upper(), gtp_to_sgf_point(vertex, self.board_size)) def _sgf_escape(self, text): return ''.join(['\\' + t if t == ']' or t == '\\' else t for t in text]) @abc.abstractmethod def gtp_command(self, command, log=True): """Executes a GTP command and returns its response. Args: command: The GTP command to run, no trailing newline. log: Whether to log command and response to INFO. Returns: The GTP response. Raises: GtpError: if the response is not ok (doesn't start with '='). """ pass class GtpError(Exception): def __init__(self, response): super(GtpError, self).__init__() self.response = response def __str__(self): return self.response class GoEngine(Gtp): """GTP-based Go engine. Supports at least GnuGo and Pachi. For GnuGo, at least specify ['--mode', 'gtp'] in extra_flags. """ def __init__(self, command='', checkpoint_file=None, extra_flags=None): super(GoEngine, self).__init__(checkpoint_file) if extra_flags: command = [command] + extra_flags self.p = subprocess.Popen( command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True) def gtp_command(self, command, log=True): if log: logging.info('GTP: %s', command) self.p.stdin.write(command) self.p.stdin.write('\n') self.p.stdin.flush() response = [self.p.stdout.readline()] while response[-1] != '\n': response.append(self.p.stdout.readline()) response = ''.join(response).strip() if log: logging.info('GTP: %s', response) if response[0][0] != '=': raise GtpError(response) return response class GoGameLogic(logic_base.OpenSpielBasedLogic): """Logic for Go game.""" def __init__(self, board_size, gnugo_level=1, komi=5.5): self._board_size = board_size self._komi = komi gtp_player_cfg = _get_gnugo_ref_config( level=gnugo_level, binary_path=GNUGO_PATH) self._gtp_player = GoEngine( command=gtp_player_cfg['binary_path'], extra_flags=gtp_player_cfg['extra_flags']) self._gtp_player.set_board_size(board_size) self.reset() def board_size(self): return self._board_size def get_gtp_player(self): return self._gtp_player def reset(self): """Resets the game state.""" # For now we always assume we are the starting player and use a random # opponent. self._gtp_player.gtp_command('clear_board', log=False) self._gtp_player.set_board_size(self._board_size) self._gtp_player.set_komi(self._komi) game = pyspiel.load_game('go', {'board_size': self._board_size}) self._open_spiel_state = game.new_initial_state() self._moves = np.ones( (self._board_size * self._board_size * 2,), dtype=np.int32) * -1 self._move_id = 0 def show_board(self): self._gtp_player.gtp_command('showboard') def get_gtp_reward(self): self._gtp_player.gtp_command('final_score') def get_board_state(self): """Returns the logical board state as a numpy array. Returns: A boolean array of shape (H, W, C), where H=3, W=3 (height and width of the board) and C=4 for the 4 planes. The 4 planes are, in order, unmarked, black (player 0), white (player 1) and komi (this layer is always all the same value indicating whether white is to play). """ board_state = np.reshape( np.array(self._open_spiel_state.observation_tensor(0), dtype=np.bool), [4, self._board_size, self._board_size]) board_state = np.transpose(board_state, [1, 2, 0]) board_state = board_state[:, :, [2, 0, 1, 3]] return board_state def set_state_from_history(self, move_history): self.reset() move_history = np.squeeze(move_history.numpy()) for t in range(move_history.size): if move_history[t] < 0: break else: self.apply(t % 2, move_history[t]) # self.show_board() def get_move_history(self): """Returns the move history as padded numpy array.""" return self._moves def apply(self, player, action): """Checks whether action is valid, and if so applies it to the game state. Args: player: Integer specifying the player ID; either 0 or 1. action: A `GoMarkerAction` instance (or numpy.int32) which represent the action in the board of size `board_size`. Returns: True if the action was valid, else False. """ if isinstance(action, GoMarkerAction): action = _go_marker_to_int(action, self._board_size) if self._open_spiel_state.current_player() != player: return False legal_actions = self._open_spiel_state.legal_actions() if np.isin(action, legal_actions): self._open_spiel_state.apply_action(action) was_valid_move = True else: was_valid_move = False if not was_valid_move: return False self._moves[self._move_id] = action self._move_id += 1 # Apply to the Go program player_color = 'B' if player == 0 else 'W' action_str = _go_marker_to_str(_int_to_go_marker(action, self._board_size)) self._gtp_player.gtp_command('play {} {}'.format(player_color, action_str)) return was_valid_move def gen_move(game_logic, player): """Generate move from GTP player and game state defined in game_logic.""" player_color = 'B' if player == 0 else 'W' gtp_player = game_logic.get_gtp_player() move_str = gtp_player.gtp_command( 'reg_genmove {}'.format(player_color), log=True) move_str = move_str[2:].lower() action = _str_to_go_marker(move_str) return action def gen_random_move(game_logic, random_state): """Generate random move for current state in game logic.""" if game_logic.is_game_over: return None valid_moves = game_logic.open_spiel_state.legal_actions() assert valid_moves move = random_state.choice(valid_moves) go_action = _int_to_go_marker(move, board_size=game_logic.board_size()) return go_action class GoGTPOpponent(logic_base.Opponent): """Use external binary Pachi to generate opponent moves.""" def __init__(self, board_size, mixture_p=0.0): """Initialize Go opponent. Args: board_size: Go board size (int) mixture_p: Probability of playing a random move (amongst legal moves). """ self._board_size = board_size self._mixture_p = mixture_p def reset(self): pass def policy(self, game_logic, player, random_state): """Return policy action. Args: game_logic: Go game logic state. player: Integer specifying the player ID; either 0 or 1. random_state: Numpy random state object. Returns: GoMarkerAction indicating opponent move. """ if random_state.rand() < self._mixture_p: return gen_random_move(game_logic, random_state) else: return gen_move(game_logic, player) class GoRandomOpponent(logic_base.Opponent): """An easy opponent for Go.""" def __init__(self, board_size): self._board_size = board_size def reset(self): """Resets the opponent's internal state (not implemented).""" pass def policy(self, game_logic, player, random_state): """Return a random, valid move. Args: game_logic: TicTacToeGameLogic state of the game. player: Integer specifying the player ID; either 0 or 1. random_state: An instance of `np.random.RandomState` Returns: GoMarkerAction of opponent. """ return gen_random_move(game_logic, random_state)
deepmind-research-master
physics_planning_games/board_games/go_logic.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from absl.testing import absltest from absl.testing import parameterized import numpy as np from physics_planning_games.board_games import go_logic class GoGameLogicTest(parameterized.TestCase): def setUp(self): super(GoGameLogicTest, self).setUp() self.logic = go_logic.GoGameLogic(board_size=5) self.expected_board_state = np.zeros((5, 5, 4), dtype=bool) self.expected_board_state[:, :, 0] = True def test_valid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = go_logic.GoMarkerAction(col=1, row=2, pass_action=False) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) def test_pass(self): action = go_logic.GoMarkerAction(col=0, row=0, pass_action=True) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[:, :, 3] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) def test_invalid_move_sequence(self): np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = go_logic.GoMarkerAction(col=1, row=2, pass_action=False) self.assertTrue(self.logic.apply(player=0, action=action), msg='Invalid action: {}'.format(action)) self.expected_board_state[action.row, action.col, 0] = False self.expected_board_state[action.row, action.col, 1] = True self.expected_board_state[:, :, 3] = True np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) action = go_logic.GoMarkerAction(col=1, row=2, pass_action=False) self.assertFalse(self.logic.apply(player=0, action=action), msg='Invalid action was accepted: {}'.format(action)) # Player 1 tries to move in the same location as player 0. self.assertFalse(self.logic.apply(player=1, action=action), msg='Invalid action was accepted: {}'.format(action)) # The board state should not have changed as a result of invalid actions. np.testing.assert_array_equal(self.logic.get_board_state(), self.expected_board_state) def test_random_opponent_vs_gnugo(self): """Play random v gnugo opponents and check that optimal largely wins. """ board_size = 9 rand_state = np.random.RandomState(42) pachi_opponent = go_logic.GoGTPOpponent(board_size) random_opponent = go_logic.GoRandomOpponent(board_size) players = [pachi_opponent, random_opponent] pachi_returns = [] random_returns = [] for _ in range(3): logic = go_logic.GoGameLogic(board_size) pachi_opponent.reset() random_opponent.reset() rand_state.shuffle(players) current_player_idx = 0 while not logic.is_game_over: current_player = players[current_player_idx] action = current_player.policy(logic, current_player_idx, rand_state) valid_action = logic.apply(current_player_idx, action) self.assertTrue(valid_action, msg='Opponent {} selected invalid action {}'.format( current_player, action)) current_player_idx = (current_player_idx + 1) % 2 # Record the winner. reward = logic.get_reward if players[0] == pachi_opponent: pachi_return = reward[0] random_return = reward[1] else: pachi_return = reward[1] random_return = reward[0] pachi_returns.append(pachi_return) random_returns.append(random_return) mean_pachi_returns = np.mean(pachi_returns) mean_random_returns = np.mean(random_returns) self.assertGreater(mean_pachi_returns, 0.95) self.assertLess(mean_random_returns, 0.05) @parameterized.named_parameters([ dict(testcase_name='00', row=0, col=0), dict(testcase_name='01', row=1, col=0)]) def test_go_marker_to_int(self, row, col): go_marker = go_logic.GoMarkerAction(row=row, col=col, pass_action=False) int_action = go_logic._go_marker_to_int(go_marker, board_size=19) recovered_go_marker = go_logic._int_to_go_marker(int_action, board_size=19) self.assertEqual(go_marker, recovered_go_marker, msg='Initial go marker {}, recovered {}'.format( go_marker, recovered_go_marker)) @parameterized.named_parameters([ dict(testcase_name='00', row=0, col=0), dict(testcase_name='01', row=1, col=0)]) def test_go_marker_to_str(self, row, col): go_marker = go_logic.GoMarkerAction(row=row, col=col, pass_action=False) str_action = go_logic._go_marker_to_str(go_marker) recovered_go_marker = go_logic._str_to_go_marker(str_action) self.assertEqual(go_marker, recovered_go_marker, msg='Initial go marker {}, recovered {}, ' 'str_action {}'.format(go_marker, recovered_go_marker, str_action)) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/go_logic_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A Go board game.""" from dm_control.composer.observation import observable import numpy as np from physics_planning_games.board_games import go_logic from physics_planning_games.board_games import jaco_arm_board_game from physics_planning_games.board_games._internal import boards from physics_planning_games.board_games._internal import observations from physics_planning_games.board_games._internal import pieces from physics_planning_games.board_games._internal import registry from physics_planning_games.board_games._internal import tags _BLACK = (0., 0., 0., 0.75) _WHITE = (1., 1., 1., 0.75) _GO_PIECE_SIZE = 0.04 _DEFAULT_OPPONENT_MIXTURE = 0.2 class Go(jaco_arm_board_game.JacoArmBoardGame): """Single-player Go of configurable size.""" def __init__(self, board_size, observation_settings, opponent=None, reset_arm_after_move=True): """Initializes a `Go` task. Args: board_size: board size observation_settings: An `observations.ObservationSettings` namedtuple specifying configuration options for each category of observation. opponent: Go opponent to use for the opponent player actions. reset_arm_after_move: Whether to reset arm to random position after every piece being placed on the board. """ game_logic = go_logic.GoGameLogic(board_size=board_size) if opponent is None: opponent = go_logic.GoGTPOpponent(board_size=board_size, mixture_p=_DEFAULT_OPPONENT_MIXTURE) self._last_valid_move_is_pass = False super(Go, self).__init__(observation_settings=observation_settings, opponent=opponent, game_logic=game_logic, board=boards.GoBoard(boardsize=board_size), markers=pieces.Markers( player_colors=(_BLACK, _WHITE), halfwidth=_GO_PIECE_SIZE, num_per_player=board_size*board_size*2, observable_options=observations.make_options( observation_settings, observations.MARKER_OBSERVABLES), board_size=board_size)) self._reset_arm_after_move = reset_arm_after_move # Add an observable exposing the move history (to reconstruct game states) move_history_observable = observable.Generic( lambda physics: self._game_logic.get_move_history()) move_history_observable.configure( **observation_settings.board_state._asdict()) self._task_observables['move_history'] = move_history_observable @property def name(self): return 'Go' @property def control_timestep(self): return 0.05 def after_substep(self, physics, random_state): if not self._made_move_this_step: # which board square received the most contact pressure indices = self._board.get_contact_indices(physics) if not indices: return row, col = indices # Makes sure that contact with that board square involved a finger finger_touch = self._board.validate_finger_touch(physics, row, col, self._hand) if not finger_touch: return pass_action = True if (row == -1 and col == -1) else False if pass_action and self._last_valid_move_is_pass: # Don't allow two passes in a row (otherwise hard to only pass once) valid_move = False else: valid_move = self._game_logic.apply( player=jaco_arm_board_game.SELF, action=go_logic.GoMarkerAction(row=int(row), col=int(col), pass_action=pass_action)) if valid_move: self._made_move_this_step = True if not pass_action: self._last_valid_move_is_pass = False marker_pos = self._board.get_contact_pos( physics=physics, row=row, col=col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.SELF, pos=marker_pos, bpos=(row, col)) else: self._last_valid_move_is_pass = True if not self._game_logic.is_game_over: opponent_move = self._game_opponent.policy( game_logic=self._game_logic, player=jaco_arm_board_game.OPPONENT, random_state=random_state) assert opponent_move assert self._game_logic.apply(player=jaco_arm_board_game.OPPONENT, action=opponent_move) marker_pos = self._board.sample_pos_inside_touch_sensor( physics=physics, random_state=random_state, row=opponent_move.row, col=opponent_move.col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.OPPONENT, pos=marker_pos, bpos=(opponent_move.row, opponent_move.col)) if self._reset_arm_after_move: self._tcp_initializer(physics, random_state) # Redraw all markers that are on the board (after captures) self._markers.make_all_invisible(physics) board = self._game_logic.get_board_state() black_stones = np.transpose(np.nonzero(board[:, :, 1])) white_stones = np.transpose(np.nonzero(board[:, :, 2])) if black_stones.size > 0: self._markers.make_visible_by_bpos(physics, 0, black_stones) if white_stones.size > 0: self._markers.make_visible_by_bpos(physics, 1, white_stones) @registry.add(tags.EASY, tags.FEATURES) def go_7x7(): return Go(board_size=7, observation_settings=observations.PERFECT_FEATURES)
deepmind-research-master
physics_planning_games/board_games/go.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A Tic Tac Toe task.""" from physics_planning_games.board_games import jaco_arm_board_game from physics_planning_games.board_games import tic_tac_toe_logic from physics_planning_games.board_games._internal import boards from physics_planning_games.board_games._internal import observations from physics_planning_games.board_games._internal import pieces from physics_planning_games.board_games._internal import registry from physics_planning_games.board_games._internal import tags class TicTacToe(jaco_arm_board_game.JacoArmBoardGame): """Single-player Tic Tac Toe.""" def __init__(self, observation_settings, opponent=None, reset_arm_after_move=True): """Initializes a `TicTacToe` task. Args: observation_settings: An `observations.ObservationSettings` namedtuple specifying configuration options for each category of observation. opponent: TicTacToeOpponent used for generating opponent moves. reset_arm_after_move: Whether to reset arm to random position after every piece being placed on the board. """ game_logic = tic_tac_toe_logic.TicTacToeGameLogic() if opponent is None: opponent = tic_tac_toe_logic.TicTacToeRandomOpponent() markers = pieces.Markers(num_per_player=5, observable_options=observations.make_options( observation_settings, observations.MARKER_OBSERVABLES)) self._reset_arm_after_move = reset_arm_after_move super(TicTacToe, self).__init__(observation_settings=observation_settings, opponent=opponent, game_logic=game_logic, board=boards.CheckerBoard(), markers=markers) @property def control_timestep(self): return 0.05 def after_substep(self, physics, random_state): if not self._made_move_this_step: indices = self._board.get_contact_indices(physics) if not indices: return row, col = indices valid_move = self._game_logic.apply( player=jaco_arm_board_game.SELF, action=tic_tac_toe_logic.SingleMarkerAction(row=row, col=col)) if valid_move: self._made_move_this_step = True marker_pos = self._board.get_contact_pos( physics=physics, row=row, col=col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.SELF, pos=marker_pos) if not self._game_logic.is_game_over: opponent_move = self._game_opponent.policy( game_logic=self._game_logic, random_state=random_state) assert opponent_move assert self._game_logic.apply(player=jaco_arm_board_game.OPPONENT, action=opponent_move) marker_pos = self._board.sample_pos_inside_touch_sensor( physics=physics, random_state=random_state, row=opponent_move.row, col=opponent_move.col) self._markers.mark(physics=physics, player_id=jaco_arm_board_game.OPPONENT, pos=marker_pos) if self._reset_arm_after_move: self._tcp_initializer(physics, random_state) @registry.add(tags.EASY, tags.FEATURES) def tic_tac_toe_markers_features(**unused_kwargs): return TicTacToe(observation_settings=observations.PERFECT_FEATURES) @registry.add(tags.MED, tags.FEATURES) def tic_tac_toe_mixture_opponent_markers_features(mixture_p=0.25): print('Creating tictactoe task with random/optimal opponent mixture, p={}' .format(mixture_p)) return TicTacToe( observation_settings=observations.PERFECT_FEATURES, opponent=tic_tac_toe_logic.TicTacToeMixtureOpponent(mixture_p)) @registry.add(tags.HARD, tags.FEATURES) def tic_tac_toe_optimal_opponent_markers_features(**unused_kwargs): return TicTacToe(observation_settings=observations.PERFECT_FEATURES, opponent=tic_tac_toe_logic.TicTacToeOptimalOpponent())
deepmind-research-master
physics_planning_games/board_games/tic_tac_toe.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """String constants used to annotate task constructors.""" FEATURES = 'features' VISION = 'vision' EASY = 'easy' MED = 'medium' HARD = 'hard'
deepmind-research-master
physics_planning_games/board_games/_internal/tags.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A global registry of constructors for board game environments.""" from dm_control.utils import containers _ALL_CONSTRUCTORS = containers.TaggedTasks(allow_overriding_keys=False) add = _ALL_CONSTRUCTORS.add get_constructor = _ALL_CONSTRUCTORS.__getitem__ get_all_names = _ALL_CONSTRUCTORS.keys get_tags = _ALL_CONSTRUCTORS.tags get_names_by_tag = _ALL_CONSTRUCTORS.tagged # This disables the check that prevents the same task constructor name from # being added to the container more than once. This is done in order to allow # individual task modules to be reloaded without also reloading `registry.py` # first (e.g. when "hot-reloading" environments in domain explorer). def done_importing_tasks(): _ALL_CONSTRUCTORS.allow_overriding_keys = True
deepmind-research-master
physics_planning_games/board_games/_internal/registry.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Configuration for observations.""" import collections import numpy as np class ObservableSpec(collections.namedtuple( 'ObservableSpec', ['enabled', 'update_interval', 'buffer_size', 'delay', 'aggregator', 'corruptor'])): """Configuration options for generic observables.""" __slots__ = () class CameraObservableSpec(collections.namedtuple( 'CameraObservableSpec', ('height', 'width') + ObservableSpec._fields)): """Configuration options for camera observables.""" __slots__ = () class ObservationSettings(collections.namedtuple( 'ObservationSettings', ['proprio', 'ftt', 'prop_pose', 'board_state', 'camera'])): """Container of `ObservableSpecs` grouped by category.""" __slots__ = () class ObservableNames(collections.namedtuple( 'ObservableNames', ['proprio', 'ftt', 'prop_pose', 'board_state', 'camera'])): """Container that groups the names of observables by category.""" __slots__ = () def __new__(cls, proprio=(), ftt=(), prop_pose=(), board_state=(), camera=()): return super(ObservableNames, cls).__new__( cls, proprio=proprio, ftt=ftt, prop_pose=prop_pose, board_state=board_state, camera=camera) # Global defaults for "feature" observables (i.e. anything that isn't a camera). _DISABLED_FEATURE = ObservableSpec( enabled=False, update_interval=1, buffer_size=1, delay=0, aggregator=None, corruptor=None) _ENABLED_FEATURE = _DISABLED_FEATURE._replace(enabled=True) # Force, torque and touch-sensor readings are scaled using a symmetric # logarithmic transformation that handles 0 and negative values. _symlog1p = lambda x, random_state: np.sign(x) * np.log1p(abs(x)) _DISABLED_FTT = _DISABLED_FEATURE._replace(corruptor=_symlog1p) _ENABLED_FTT = _ENABLED_FEATURE._replace(corruptor=_symlog1p) # Global defaults for camera observables. _DISABLED_CAMERA = CameraObservableSpec( height=84, width=84, enabled=False, update_interval=1, buffer_size=1, delay=0, aggregator=None, corruptor=None) _ENABLED_CAMERA = _DISABLED_CAMERA._replace(enabled=True) # Predefined sets of configurations options to apply to each category of # observable. PERFECT_FEATURES = ObservationSettings( proprio=_ENABLED_FEATURE, ftt=_ENABLED_FTT, prop_pose=_ENABLED_FEATURE, board_state=_ENABLED_FEATURE, camera=_ENABLED_CAMERA) ARENA_OBSERVABLES = ObservableNames(camera=['front_camera', 'front_camera_2']) JACO_ARM_OBSERVABLES = ObservableNames( proprio=['joints_pos', 'joints_vel'], ftt=['joints_torque']) JACO_HAND_OBSERVABLES = ObservableNames( proprio=['joints_pos', 'joints_vel', 'pinch_site_pos', 'pinch_site_rmat']) MARKER_OBSERVABLES = ObservableNames(prop_pose=['position']) def make_options(obs_settings, obs_names): """Constructs a dict of configuration options for a set of named observables. Args: obs_settings: An `ObservationSettings` instance. obs_names: An `ObservableNames` instance. Returns: A nested dict containing `{observable_name: {option_name: value}}`. """ observable_options = {} for category, spec in obs_settings._asdict().items(): for observable_name in getattr(obs_names, category): observable_options[observable_name] = spec._asdict() return observable_options
deepmind-research-master
physics_planning_games/board_games/_internal/observations.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for physics_planning_games.board_games._internal.pieces.py.""" from absl.testing import absltest from dm_control import mjcf import numpy as np from physics_planning_games.board_games._internal import pieces class MarkersTest(absltest.TestCase): def test_position_observable(self): num_per_player = 3 markers = pieces.Markers(num_per_player=num_per_player) physics = mjcf.Physics.from_mjcf_model(markers.mjcf_model) all_positions = [ [(0, 1, 2), (3, 4, 5), (6, 7, 8)], # Player 0 [(-1, 2, -3), (4, -5, 6)], # Player 1 ] for player_id, positions in enumerate(all_positions): for marker_pos in positions: markers.mark(physics=physics, player_id=player_id, pos=marker_pos) expected_positions = np.zeros((2, num_per_player, 3), dtype=np.double) expected_positions[0, :len(all_positions[0])] = all_positions[0] expected_positions[1, :len(all_positions[1])] = all_positions[1] observed_positions = markers.observables.position(physics) np.testing.assert_array_equal( expected_positions.reshape(-1, 3), observed_positions) def test_invalid_player_id(self): markers = pieces.Markers(num_per_player=5) physics = mjcf.Physics.from_mjcf_model(markers.mjcf_model) invalid_player_id = 99 with self.assertRaisesWithLiteralMatch( ValueError, pieces._INVALID_PLAYER_ID.format(1, 99)): markers.mark(physics=physics, player_id=invalid_player_id, pos=(1, 2, 3)) def test_too_many_moves(self): num_per_player = 5 player_id = 0 markers = pieces.Markers(num_per_player=num_per_player) physics = mjcf.Physics.from_mjcf_model(markers.mjcf_model) for _ in range(num_per_player): markers.mark(physics=physics, player_id=player_id, pos=(1, 2, 3)) with self.assertRaisesWithLiteralMatch( RuntimeError, pieces._NO_MORE_MARKERS_AVAILABLE.format(num_per_player, player_id)): markers.mark(physics=physics, player_id=player_id, pos=(1, 2, 3)) if __name__ == '__main__': absltest.main()
deepmind-research-master
physics_planning_games/board_games/_internal/pieces_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Entities representing board game pieces.""" import itertools from dm_control import composer from dm_control import mjcf from dm_control.composer.observation import observable import numpy as np _VISIBLE_SITE_GROUP = 0 _INVISIBLE_SITE_GROUP = 3 _RED = (1., 0., 0., 0.5) _BLUE = (0., 0, 1., 0.5) _INVALID_PLAYER_ID = '`player_id` must be between 0 and {}, got {}.' _NO_MORE_MARKERS_AVAILABLE = ( 'All {} markers for player {} have already been placed.') class Markers(composer.Entity): """A collection of non-physical entities for marking board positions.""" def _build(self, num_per_player, player_colors=(_RED, _BLUE), halfwidth=0.025, height=0.01, board_size=7): """Builds a `Markers` entity. Args: num_per_player: Integer, the total number of markers to create per player. player_colors: Sequence of (R, G, B, A) values specifying the marker colors for each player. halfwidth: Scalar, the halfwidth of each marker. height: Scalar, height of each marker. board_size: Integer, optional if using the integer indexing. """ root = mjcf.RootElement(model='markers') root.default.site.set_attributes(type='cylinder', size=(halfwidth, height)) all_markers = [] for i, color in enumerate(player_colors): player_name = 'player_{}'.format(i) # TODO(alimuldal): Would look cool if these were textured. material = root.asset.add('material', name=player_name, rgba=color) player_markers = [] for j in range(num_per_player): player_markers.append( root.worldbody.add( 'site', name='player_{}_move_{}'.format(i, j), material=material)) all_markers.append(player_markers) self._num_players = len(player_colors) self._mjcf_model = root self._all_markers = all_markers self._move_counts = [0] * self._num_players # To go from integer position to marker index in the all_markers array self._marker_ids = np.zeros((2, board_size, board_size)) self._board_size = board_size def _build_observables(self): return MarkersObservables(self) @property def mjcf_model(self): """`mjcf.RootElement` for this entity.""" return self._mjcf_model @property def markers(self): """Marker sites belonging to all players. Returns: A nested list, where `markers[i][j]` contains the `mjcf.Element` corresponding to player i's jth marker. """ return self._all_markers def initialize_episode(self, physics, random_state): """Resets the markers at the start of an episode.""" del random_state # Unused. self._reset(physics) def _reset(self, physics): for player_markers in self._all_markers: for marker in player_markers: bound_marker = physics.bind(marker) bound_marker.pos = 0. # Markers are initially placed at the origin. bound_marker.group = _INVISIBLE_SITE_GROUP self._move_counts = [0] * self._num_players self._marker_ids = np.zeros((2, self._board_size, self._board_size), dtype=np.int32) def make_all_invisible(self, physics): for player_markers in self._all_markers: for marker in player_markers: bound_marker = physics.bind(marker) bound_marker.group = _INVISIBLE_SITE_GROUP def make_visible_by_bpos(self, physics, player_id, all_bpos): for bpos in all_bpos: marker_id = self._marker_ids[player_id][bpos[0]][bpos[1]] marker = self._all_markers[player_id][marker_id] bound_marker = physics.bind(marker) bound_marker.group = _VISIBLE_SITE_GROUP def mark(self, physics, player_id, pos, bpos=None): """Enables the visibility of a marker, moves it to the specified position. Args: physics: `mjcf.Physics` instance. player_id: Integer specifying the ID of the player whose marker to use. pos: Array-like object specifying the cartesian position of the marker. bpos: Board position, optional integer coordinates to index the markers. Raises: ValueError: If `player_id` is invalid. RuntimeError: If `player_id` has no more available markers. """ if not 0 <= player_id < self._num_players: raise ValueError( _INVALID_PLAYER_ID.format(self._num_players - 1, player_id)) markers = self._all_markers[player_id] move_count = self._move_counts[player_id] if move_count >= len(markers): raise RuntimeError( _NO_MORE_MARKERS_AVAILABLE.format(move_count, player_id)) bound_marker = physics.bind(markers[move_count]) bound_marker.pos = pos # TODO(alimuldal): Set orientation as well (random? same as contact frame?) bound_marker.group = _VISIBLE_SITE_GROUP self._move_counts[player_id] += 1 if bpos: self._marker_ids[player_id][bpos[0]][bpos[1]] = move_count class MarkersObservables(composer.Observables): """Observables for a `Markers` entity.""" @composer.observable def position(self): """Cartesian positions of all marker sites. Returns: An `observable.MJCFFeature` instance. When called with an instance of `physics` as the argument, this will return a numpy float64 array of shape (num_players * num_markers, 3) where each row contains the cartesian position of a marker. Unplaced markers will have position (0, 0, 0). """ return observable.MJCFFeature( 'xpos', list(itertools.chain.from_iterable(self._entity.markers)))
deepmind-research-master
physics_planning_games/board_games/_internal/pieces.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Composer entities corresponding to game boards.""" import copy import os from dm_control import composer from dm_control import mjcf import numpy as np from dm_control.utils import io as resources _TOUCH_THRESHOLD = 1e-3 # Activation threshold for touch sensors (N). # whether to display underlying sensors for Goboard (useful to align texture) _SHOW_DEBUG_GRID = False _TEXTURE_PATH = os.path.join(os.path.dirname(__file__), 'goboard_7x7.png') def _make_checkerboard(rows, columns, square_halfwidth, height=0.01, sensor_size=0.7, name='checkerboard'): """Builds a checkerboard with touch sensors centered on each square.""" root = mjcf.RootElement(model=name) black_mat = root.asset.add('material', name='black', rgba=(0.2, 0.2, 0.2, 1)) white_mat = root.asset.add('material', name='white', rgba=(0.8, 0.8, 0.8, 1)) sensor_mat = root.asset.add('material', name='sensor', rgba=(0, 1, 0, 0.3)) root.default.geom.set_attributes( type='box', size=(square_halfwidth, square_halfwidth, height)) root.default.site.set_attributes( type='box', size=(sensor_size * square_halfwidth,) * 2 + (0.5 * height,), material=sensor_mat, group=composer.SENSOR_SITES_GROUP) xpos = (np.arange(columns) - 0.5*(columns - 1)) * 2 * square_halfwidth ypos = (np.arange(rows) - 0.5*(rows - 1)) * 2 * square_halfwidth geoms = [] touch_sensors = [] for i in range(rows): for j in range(columns): geom_mat = black_mat if ((i % 2) == (j % 2)) else white_mat name = '{}_{}'.format(i, j) geoms.append( root.worldbody.add( 'geom', pos=(xpos[j], ypos[i], height), name=name, material=geom_mat)) site = root.worldbody.add('site', pos=(xpos[j], ypos[i], 2*height), name=name) touch_sensors.append(root.sensor.add('touch', site=site, name=name)) return root, geoms, touch_sensors def _make_goboard(boardsize, square_halfwidth, height=0.01, sensor_size=0.7, name='goboard'): """Builds a Go with touch sensors centered on each intersection.""" y_offset = -0.08 rows = boardsize columns = boardsize root = mjcf.RootElement(model=name) if _SHOW_DEBUG_GRID: black_mat = root.asset.add('material', name='black', rgba=(0.2, 0.2, 0.2, 0.5)) white_mat = root.asset.add('material', name='white', rgba=(0.8, 0.8, 0.8, 0.5)) else: transparent_mat = root.asset.add('material', name='intersection', rgba=(0, 1, 0, 0.0)) sensor_mat = root.asset.add('material', name='sensor', rgba=(0, 1, 0, 0.3)) contents = resources.GetResource(_TEXTURE_PATH) root.asset.add('texture', name='goboard', type='2d', file=mjcf.Asset(contents, '.png')) board_mat = root.asset.add( 'material', name='goboard', texture='goboard', texrepeat=[0.97, 0.97]) root.default.geom.set_attributes( type='box', size=(square_halfwidth, square_halfwidth, height)) root.default.site.set_attributes( type='box', size=(sensor_size * square_halfwidth,) * 2 + (0.5 * height,), material=sensor_mat, group=composer.SENSOR_SITES_GROUP) board_height = height if _SHOW_DEBUG_GRID: board_height = 0.5*height root.worldbody.add( 'geom', pos=(0, 0+y_offset, height), type='box', size=(square_halfwidth * boardsize,) * 2 + (board_height,), name=name, material=board_mat) xpos = (np.arange(columns) - 0.5*(columns - 1)) * 2 * square_halfwidth ypos = (np.arange(rows) - 0.5*(rows - 1)) * 2 * square_halfwidth + y_offset geoms = [] touch_sensors = [] for i in range(rows): for j in range(columns): name = '{}_{}'.format(i, j) if _SHOW_DEBUG_GRID: transparent_mat = black_mat if ((i % 2) == (j % 2)) else white_mat geoms.append( root.worldbody.add( 'geom', pos=(xpos[j], ypos[i], height), name=name, material=transparent_mat)) site = root.worldbody.add('site', pos=(xpos[j], ypos[i], 2*height), name=name) touch_sensors.append(root.sensor.add('touch', site=site, name=name)) pass_geom = root.worldbody.add( 'geom', pos=(0, y_offset, 0.0), size=(square_halfwidth*boardsize*2, square_halfwidth*boardsize) + (0.5 * height,), name='pass', material=transparent_mat) site = root.worldbody.add('site', pos=(0, y_offset, 0.0), size=(square_halfwidth*boardsize*2, square_halfwidth*boardsize) + (0.5 * height,), name='pass') pass_sensor = root.sensor.add('touch', site=site, name='pass') return root, geoms, touch_sensors, pass_geom, pass_sensor class CheckerBoard(composer.Entity): """An entity representing a checkerboard.""" def __init__(self, *args, **kwargs): super(CheckerBoard, self).__init__(*args, **kwargs) self._contact_from_before_substep = None def _build(self, rows=3, columns=3, square_halfwidth=0.05): """Builds a `CheckerBoard` entity. Args: rows: Integer, the number of rows. columns: Integer, the number of columns. square_halfwidth: Float, the halfwidth of the squares on the board. """ root, geoms, touch_sensors = _make_checkerboard( rows=rows, columns=columns, square_halfwidth=square_halfwidth) self._mjcf_model = root self._geoms = np.array(geoms).reshape(rows, columns) self._touch_sensors = np.array(touch_sensors).reshape(rows, columns) @property def mjcf_model(self): return self._mjcf_model def before_substep(self, physics, random_state): del random_state # Unused. # Cache a copy of the array of active contacts before each substep. self._contact_from_before_substep = [ copy.copy(c) for c in physics.data.contact ] def validate_finger_touch(self, physics, row, col, hand): # Geom for the board square geom_id = physics.bind(self._geoms[row, col]).element_id # finger geoms finger_geoms_ids = set(physics.bind(hand.finger_geoms).element_id) contacts = self._contact_from_before_substep set1, set2 = set([geom_id]), finger_geoms_ids for contact in contacts: finger_tile_contact = ((contact.geom1 in set1 and contact.geom2 in set2) or (contact.geom1 in set2 and contact.geom2 in set1)) if finger_tile_contact: return True return False def get_contact_pos(self, physics, row, col): geom_id = physics.bind(self._geoms[row, col]).element_id # Here we use the array of active contacts from the previous substep, rather # than the current values in `physics.data.contact`. This is because we use # touch sensors to detect when a square on the board is being pressed, and # the pressure readings are based on forces that were calculated at the end # of the previous substep. It's possible that `physics.data.contact` no # longer contains any active contacts involving the board geoms, even though # the touch sensors are telling us that one of the squares on the board is # being pressed. contacts = self._contact_from_before_substep relevant_contacts = [ c for c in contacts if c.geom1 == geom_id or c.geom2 == geom_id ] if relevant_contacts: # If there are multiple contacts involving this square of the board, just # pick the first one. return relevant_contacts[0].pos.copy() else: print("Touch sensor at ({},{}) doesn't have any active contacts!".format( row, col)) return False def get_contact_indices(self, physics): pressures = physics.bind(self._touch_sensors.ravel()).sensordata # If any of the touch sensors exceed the threshold, return the (row, col) # indices of the most strongly activated sensor. if np.any(pressures > _TOUCH_THRESHOLD): return np.unravel_index(np.argmax(pressures), self._touch_sensors.shape) else: return None def sample_pos_inside_touch_sensor(self, physics, random_state, row, col): bound_site = physics.bind(self._touch_sensors[row, col].site) jitter = bound_site.size * np.array([1., 1., 0.]) return bound_site.xpos + random_state.uniform(-jitter, jitter) class GoBoard(CheckerBoard): """An entity representing a Goboard.""" def _build(self, boardsize=7, square_halfwidth=0.05): """Builds a `GoBoard` entity. Args: boardsize: Integer, the size of the board (boardsize x boardsize). square_halfwidth: Float, the halfwidth of the squares on the board. """ if boardsize != 7: raise ValueError('Only boardsize of 7x7 is implemented at the moment') root, geoms, touch_sensors, pass_geom, pass_sensor = _make_goboard( boardsize=boardsize, square_halfwidth=square_halfwidth) self._mjcf_model = root self._geoms = np.array(geoms).reshape(boardsize, boardsize) self._touch_sensors = np.array(touch_sensors).reshape(boardsize, boardsize) self._pass_geom = pass_geom self._pass_sensor = pass_sensor def get_contact_indices(self, physics): pressures = physics.bind(self._touch_sensors.ravel()).sensordata # Deal with pass first pass_pressure = physics.bind(self._pass_sensor).sensordata if pass_pressure > np.max(pressures) and pass_pressure > _TOUCH_THRESHOLD: return -1, -1 # If any of the other touch sensors exceed the threshold, return the # (row, col) indices of the most strongly activated sensor. if np.any(pressures > _TOUCH_THRESHOLD): return np.unravel_index(np.argmax(pressures), self._touch_sensors.shape) else: return None def validate_finger_touch(self, physics, row, col, hand): # Geom for the board square if row == -1 and col == -1: geom_id = physics.bind(self._pass_geom).element_id else: geom_id = physics.bind(self._geoms[row, col]).element_id # finger geoms finger_geoms_ids = set(physics.bind(hand.finger_geoms).element_id) contacts = self._contact_from_before_substep set1, set2 = set([geom_id]), finger_geoms_ids for contact in contacts: finger_tile_contact = ((contact.geom1 in set1 and contact.geom2 in set2) or (contact.geom1 in set2 and contact.geom2 in set1)) if finger_tile_contact: return True return False def sample_pos_inside_touch_sensor(self, physics, random_state, row, col): bound_site = physics.bind(self._touch_sensors[row, col].site) jitter = bound_site.size * np.array([0.25, 0.25, 0.]) return bound_site.xpos + random_state.uniform(-jitter, jitter)
deepmind-research-master
physics_planning_games/board_games/_internal/boards.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Board game-specific arena classes.""" from dm_control import composer from dm_control.composer.observation import observable from dm_control.mujoco import wrapper # Robot geoms will be assigned to this group in order to disable their # visibility to the top-down camera. ROBOT_GEOM_GROUP = 1 class Standard(composer.Arena): """"Board game-specific arena class.""" def _build(self, name=None): """Initializes this arena. Args: name: (optional) A string, the name of this arena. If `None`, use the model name defined in the MJCF file. """ super(Standard, self)._build(name=name) # Add visual assets. self.mjcf_model.asset.add( 'texture', type='skybox', builtin='gradient', rgb1=(0.4, 0.6, 0.8), rgb2=(0., 0., 0.), width=100, height=100) groundplane_texture = self.mjcf_model.asset.add( 'texture', name='groundplane', type='2d', builtin='checker', rgb1=(0.2, 0.3, 0.4), rgb2=(0.1, 0.2, 0.3), width=300, height=300, mark='edge', markrgb=(.8, .8, .8)) groundplane_material = self.mjcf_model.asset.add( 'material', name='groundplane', texture=groundplane_texture, texrepeat=(5, 5), texuniform='true', reflectance=0.2) # Add ground plane. self.mjcf_model.worldbody.add( 'geom', name='ground', type='plane', material=groundplane_material, size=(1, 1, 0.1), friction=(0.4,), solimp=(0.95, 0.99, 0.001), solref=(0.002, 1)) # Add lighting self.mjcf_model.worldbody.add( 'light', pos=(0, 0, 1.5), dir=(0, 0, -1), diffuse=(0.7, 0.7, 0.7), specular=(.3, .3, .3), directional='false', castshadow='true') # Add some fixed cameras to the arena. self._front_camera = self.mjcf_model.worldbody.add( 'camera', name='front', pos=(0., -0.6, 0.75), xyaxes=(1., 0., 0., 0., 0.7, 0.75)) # Ensures a 7x7 go board fits into the view from camera self._front_camera_2 = self.mjcf_model.worldbody.add( 'camera', name='front_2', pos=(0., -0.65, 0.85), xyaxes=(1., 0., 0., 0., 0.85, 0.6)) self._top_down_camera = self.mjcf_model.worldbody.add( 'camera', name='top_down', pos=(0., 0., 0.5), xyaxes=(1., 0., 0., 0., 1., 0.)) # Always initialize the free camera so that it points at the origin. self.mjcf_model.statistic.center = (0., 0., 0.) def _build_observables(self): return ArenaObservables(self) @property def front_camera(self): return self._front_camera @property def front_camera_2(self): return self._front_camera_2 @property def top_down_camera(self): return self._top_down_camera def attach_offset(self, entity, offset, attach_site=None): """Attaches another entity at a position offset from the attachment site. Args: entity: The `Entity` to attach. offset: A length 3 array-like object representing the XYZ offset. attach_site: (optional) The site to which to attach the entity's model. If not set, defaults to self.attachment_site. Returns: The frame of the attached model. """ frame = self.attach(entity, attach_site=attach_site) frame.pos = offset return frame class ArenaObservables(composer.Observables): """Observables belonging to the arena.""" @composer.observable def front_camera(self): return observable.MJCFCamera(mjcf_element=self._entity.front_camera) @composer.observable def front_camera_2(self): return observable.MJCFCamera(mjcf_element=self._entity.front_camera_2) @composer.observable def top_down_camera(self): return observable.MJCFCamera(mjcf_element=self._entity.top_down_camera) @composer.observable def top_down_camera_invisible_robot(self): # Custom scene options for making robot geoms invisible. robot_geoms_invisible = wrapper.MjvOption() robot_geoms_invisible.geomgroup[ROBOT_GEOM_GROUP] = 0 return observable.MJCFCamera(mjcf_element=self._entity.top_down_camera, scene_option=robot_geoms_invisible)
deepmind-research-master
physics_planning_games/board_games/_internal/arenas.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model for CylinderFlow.""" import sonnet as snt import tensorflow.compat.v1 as tf from meshgraphnets import common from meshgraphnets import core_model from meshgraphnets import normalization class Model(snt.AbstractModule): """Model for fluid simulation.""" def __init__(self, learned_model, name='Model'): super(Model, self).__init__(name=name) with self._enter_variable_scope(): self._learned_model = learned_model self._output_normalizer = normalization.Normalizer( size=2, name='output_normalizer') self._node_normalizer = normalization.Normalizer( size=2+common.NodeType.SIZE, name='node_normalizer') self._edge_normalizer = normalization.Normalizer( size=3, name='edge_normalizer') # 2D coord + length def _build_graph(self, inputs, is_training): """Builds input graph.""" # construct graph nodes node_type = tf.one_hot(inputs['node_type'][:, 0], common.NodeType.SIZE) node_features = tf.concat([inputs['velocity'], node_type], axis=-1) # construct graph edges senders, receivers = common.triangles_to_edges(inputs['cells']) relative_mesh_pos = (tf.gather(inputs['mesh_pos'], senders) - tf.gather(inputs['mesh_pos'], receivers)) edge_features = tf.concat([ relative_mesh_pos, tf.norm(relative_mesh_pos, axis=-1, keepdims=True)], axis=-1) mesh_edges = core_model.EdgeSet( name='mesh_edges', features=self._edge_normalizer(edge_features, is_training), receivers=receivers, senders=senders) return core_model.MultiGraph( node_features=self._node_normalizer(node_features, is_training), edge_sets=[mesh_edges]) def _build(self, inputs): graph = self._build_graph(inputs, is_training=False) per_node_network_output = self._learned_model(graph) return self._update(inputs, per_node_network_output) @snt.reuse_variables def loss(self, inputs): """L2 loss on velocity.""" graph = self._build_graph(inputs, is_training=True) network_output = self._learned_model(graph) # build target velocity change cur_velocity = inputs['velocity'] target_velocity = inputs['target|velocity'] target_velocity_change = target_velocity - cur_velocity target_normalized = self._output_normalizer(target_velocity_change) # build loss node_type = inputs['node_type'][:, 0] loss_mask = tf.logical_or(tf.equal(node_type, common.NodeType.NORMAL), tf.equal(node_type, common.NodeType.OUTFLOW)) error = tf.reduce_sum((target_normalized - network_output)**2, axis=1) loss = tf.reduce_mean(error[loss_mask]) return loss def _update(self, inputs, per_node_network_output): """Integrate model outputs.""" velocity_update = self._output_normalizer.inverse(per_node_network_output) # integrate forward cur_velocity = inputs['velocity'] return cur_velocity + velocity_update
deepmind-research-master
meshgraphnets/cfd_model.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model for FlagSimple.""" import sonnet as snt import tensorflow.compat.v1 as tf from meshgraphnets import common from meshgraphnets import core_model from meshgraphnets import normalization class Model(snt.AbstractModule): """Model for static cloth simulation.""" def __init__(self, learned_model, name='Model'): super(Model, self).__init__(name=name) with self._enter_variable_scope(): self._learned_model = learned_model self._output_normalizer = normalization.Normalizer( size=3, name='output_normalizer') self._node_normalizer = normalization.Normalizer( size=3+common.NodeType.SIZE, name='node_normalizer') self._edge_normalizer = normalization.Normalizer( size=7, name='edge_normalizer') # 2D coord + 3D coord + 2*length = 7 def _build_graph(self, inputs, is_training): """Builds input graph.""" # construct graph nodes velocity = inputs['world_pos'] - inputs['prev|world_pos'] node_type = tf.one_hot(inputs['node_type'][:, 0], common.NodeType.SIZE) node_features = tf.concat([velocity, node_type], axis=-1) # construct graph edges senders, receivers = common.triangles_to_edges(inputs['cells']) relative_world_pos = (tf.gather(inputs['world_pos'], senders) - tf.gather(inputs['world_pos'], receivers)) relative_mesh_pos = (tf.gather(inputs['mesh_pos'], senders) - tf.gather(inputs['mesh_pos'], receivers)) edge_features = tf.concat([ relative_world_pos, tf.norm(relative_world_pos, axis=-1, keepdims=True), relative_mesh_pos, tf.norm(relative_mesh_pos, axis=-1, keepdims=True)], axis=-1) mesh_edges = core_model.EdgeSet( name='mesh_edges', features=self._edge_normalizer(edge_features, is_training), receivers=receivers, senders=senders) return core_model.MultiGraph( node_features=self._node_normalizer(node_features, is_training), edge_sets=[mesh_edges]) def _build(self, inputs): graph = self._build_graph(inputs, is_training=False) per_node_network_output = self._learned_model(graph) return self._update(inputs, per_node_network_output) @snt.reuse_variables def loss(self, inputs): """L2 loss on position.""" graph = self._build_graph(inputs, is_training=True) network_output = self._learned_model(graph) # build target acceleration cur_position = inputs['world_pos'] prev_position = inputs['prev|world_pos'] target_position = inputs['target|world_pos'] target_acceleration = target_position - 2*cur_position + prev_position target_normalized = self._output_normalizer(target_acceleration) # build loss loss_mask = tf.equal(inputs['node_type'][:, 0], common.NodeType.NORMAL) error = tf.reduce_sum((target_normalized - network_output)**2, axis=1) loss = tf.reduce_mean(error[loss_mask]) return loss def _update(self, inputs, per_node_network_output): """Integrate model outputs.""" acceleration = self._output_normalizer.inverse(per_node_network_output) # integrate forward cur_position = inputs['world_pos'] prev_position = inputs['prev|world_pos'] position = 2*cur_position + acceleration - prev_position return position
deepmind-research-master
meshgraphnets/cloth_model.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Runs the learner/evaluator.""" import pickle from absl import app from absl import flags from absl import logging import numpy as np import tensorflow.compat.v1 as tf from meshgraphnets import cfd_eval from meshgraphnets import cfd_model from meshgraphnets import cloth_eval from meshgraphnets import cloth_model from meshgraphnets import core_model from meshgraphnets import dataset FLAGS = flags.FLAGS flags.DEFINE_enum('mode', 'train', ['train', 'eval'], 'Train model, or run evaluation.') flags.DEFINE_enum('model', None, ['cfd', 'cloth'], 'Select model to run.') flags.DEFINE_string('checkpoint_dir', None, 'Directory to save checkpoint') flags.DEFINE_string('dataset_dir', None, 'Directory to load dataset from.') flags.DEFINE_string('rollout_path', None, 'Pickle file to save eval trajectories') flags.DEFINE_enum('rollout_split', 'valid', ['train', 'test', 'valid'], 'Dataset split to use for rollouts.') flags.DEFINE_integer('num_rollouts', 10, 'No. of rollout trajectories') flags.DEFINE_integer('num_training_steps', int(10e6), 'No. of training steps') PARAMETERS = { 'cfd': dict(noise=0.02, gamma=1.0, field='velocity', history=False, size=2, batch=2, model=cfd_model, evaluator=cfd_eval), 'cloth': dict(noise=0.003, gamma=0.1, field='world_pos', history=True, size=3, batch=1, model=cloth_model, evaluator=cloth_eval) } def learner(model, params): """Run a learner job.""" ds = dataset.load_dataset(FLAGS.dataset_dir, 'train') ds = dataset.add_targets(ds, [params['field']], add_history=params['history']) ds = dataset.split_and_preprocess(ds, noise_field=params['field'], noise_scale=params['noise'], noise_gamma=params['gamma']) inputs = tf.data.make_one_shot_iterator(ds).get_next() loss_op = model.loss(inputs) global_step = tf.train.create_global_step() lr = tf.train.exponential_decay(learning_rate=1e-4, global_step=global_step, decay_steps=int(5e6), decay_rate=0.1) + 1e-6 optimizer = tf.train.AdamOptimizer(learning_rate=lr) train_op = optimizer.minimize(loss_op, global_step=global_step) # Don't train for the first few steps, just accumulate normalization stats train_op = tf.cond(tf.less(global_step, 1000), lambda: tf.group(tf.assign_add(global_step, 1)), lambda: tf.group(train_op)) with tf.train.MonitoredTrainingSession( hooks=[tf.train.StopAtStepHook(last_step=FLAGS.num_training_steps)], checkpoint_dir=FLAGS.checkpoint_dir, save_checkpoint_secs=600) as sess: while not sess.should_stop(): _, step, loss = sess.run([train_op, global_step, loss_op]) if step % 1000 == 0: logging.info('Step %d: Loss %g', step, loss) logging.info('Training complete.') def evaluator(model, params): """Run a model rollout trajectory.""" ds = dataset.load_dataset(FLAGS.dataset_dir, FLAGS.rollout_split) ds = dataset.add_targets(ds, [params['field']], add_history=params['history']) inputs = tf.data.make_one_shot_iterator(ds).get_next() scalar_op, traj_ops = params['evaluator'].evaluate(model, inputs) tf.train.create_global_step() with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.checkpoint_dir, save_checkpoint_secs=None, save_checkpoint_steps=None) as sess: trajectories = [] scalars = [] for traj_idx in range(FLAGS.num_rollouts): logging.info('Rollout trajectory %d', traj_idx) scalar_data, traj_data = sess.run([scalar_op, traj_ops]) trajectories.append(traj_data) scalars.append(scalar_data) for key in scalars[0]: logging.info('%s: %g', key, np.mean([x[key] for x in scalars])) with open(FLAGS.rollout_path, 'wb') as fp: pickle.dump(trajectories, fp) def main(argv): del argv tf.enable_resource_variables() tf.disable_eager_execution() params = PARAMETERS[FLAGS.model] learned_model = core_model.EncodeProcessDecode( output_size=params['size'], latent_size=128, num_layers=2, message_passing_steps=15) model = params['model'].Model(learned_model) if FLAGS.mode == 'train': learner(model, params) elif FLAGS.mode == 'eval': evaluator(model, params) if __name__ == '__main__': app.run(main)
deepmind-research-master
meshgraphnets/run_model.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Core learned graph net model.""" import collections import functools import sonnet as snt import tensorflow.compat.v1 as tf EdgeSet = collections.namedtuple('EdgeSet', ['name', 'features', 'senders', 'receivers']) MultiGraph = collections.namedtuple('Graph', ['node_features', 'edge_sets']) class GraphNetBlock(snt.AbstractModule): """Multi-Edge Interaction Network with residual connections.""" def __init__(self, model_fn, name='GraphNetBlock'): super(GraphNetBlock, self).__init__(name=name) self._model_fn = model_fn def _update_edge_features(self, node_features, edge_set): """Aggregrates node features, and applies edge function.""" sender_features = tf.gather(node_features, edge_set.senders) receiver_features = tf.gather(node_features, edge_set.receivers) features = [sender_features, receiver_features, edge_set.features] with tf.variable_scope(edge_set.name+'_edge_fn'): return self._model_fn()(tf.concat(features, axis=-1)) def _update_node_features(self, node_features, edge_sets): """Aggregrates edge features, and applies node function.""" num_nodes = tf.shape(node_features)[0] features = [node_features] for edge_set in edge_sets: features.append(tf.math.unsorted_segment_sum(edge_set.features, edge_set.receivers, num_nodes)) with tf.variable_scope('node_fn'): return self._model_fn()(tf.concat(features, axis=-1)) def _build(self, graph): """Applies GraphNetBlock and returns updated MultiGraph.""" # apply edge functions new_edge_sets = [] for edge_set in graph.edge_sets: updated_features = self._update_edge_features(graph.node_features, edge_set) new_edge_sets.append(edge_set._replace(features=updated_features)) # apply node function new_node_features = self._update_node_features(graph.node_features, new_edge_sets) # add residual connections new_node_features += graph.node_features new_edge_sets = [es._replace(features=es.features + old_es.features) for es, old_es in zip(new_edge_sets, graph.edge_sets)] return MultiGraph(new_node_features, new_edge_sets) class EncodeProcessDecode(snt.AbstractModule): """Encode-Process-Decode GraphNet model.""" def __init__(self, output_size, latent_size, num_layers, message_passing_steps, name='EncodeProcessDecode'): super(EncodeProcessDecode, self).__init__(name=name) self._latent_size = latent_size self._output_size = output_size self._num_layers = num_layers self._message_passing_steps = message_passing_steps def _make_mlp(self, output_size, layer_norm=True): """Builds an MLP.""" widths = [self._latent_size] * self._num_layers + [output_size] network = snt.nets.MLP(widths, activate_final=False) if layer_norm: network = snt.Sequential([network, snt.LayerNorm()]) return network def _encoder(self, graph): """Encodes node and edge features into latent features.""" with tf.variable_scope('encoder'): node_latents = self._make_mlp(self._latent_size)(graph.node_features) new_edges_sets = [] for edge_set in graph.edge_sets: latent = self._make_mlp(self._latent_size)(edge_set.features) new_edges_sets.append(edge_set._replace(features=latent)) return MultiGraph(node_latents, new_edges_sets) def _decoder(self, graph): """Decodes node features from graph.""" with tf.variable_scope('decoder'): decoder = self._make_mlp(self._output_size, layer_norm=False) return decoder(graph.node_features) def _build(self, graph): """Encodes and processes a multigraph, and returns node features.""" model_fn = functools.partial(self._make_mlp, output_size=self._latent_size) latent_graph = self._encoder(graph) for _ in range(self._message_passing_steps): latent_graph = GraphNetBlock(model_fn)(latent_graph) return self._decoder(latent_graph)
deepmind-research-master
meshgraphnets/core_model.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utility functions for reading the datasets.""" import functools import json import os import tensorflow.compat.v1 as tf from meshgraphnets.common import NodeType def _parse(proto, meta): """Parses a trajectory from tf.Example.""" feature_lists = {k: tf.io.VarLenFeature(tf.string) for k in meta['field_names']} features = tf.io.parse_single_example(proto, feature_lists) out = {} for key, field in meta['features'].items(): data = tf.io.decode_raw(features[key].values, getattr(tf, field['dtype'])) data = tf.reshape(data, field['shape']) if field['type'] == 'static': data = tf.tile(data, [meta['trajectory_length'], 1, 1]) elif field['type'] == 'dynamic_varlen': length = tf.io.decode_raw(features['length_'+key].values, tf.int32) length = tf.reshape(length, [-1]) data = tf.RaggedTensor.from_row_lengths(data, row_lengths=length) elif field['type'] != 'dynamic': raise ValueError('invalid data format') out[key] = data return out def load_dataset(path, split): """Load dataset.""" with open(os.path.join(path, 'meta.json'), 'r') as fp: meta = json.loads(fp.read()) ds = tf.data.TFRecordDataset(os.path.join(path, split+'.tfrecord')) ds = ds.map(functools.partial(_parse, meta=meta), num_parallel_calls=8) ds = ds.prefetch(1) return ds def add_targets(ds, fields, add_history): """Adds target and optionally history fields to dataframe.""" def fn(trajectory): out = {} for key, val in trajectory.items(): out[key] = val[1:-1] if key in fields: if add_history: out['prev|'+key] = val[0:-2] out['target|'+key] = val[2:] return out return ds.map(fn, num_parallel_calls=8) def split_and_preprocess(ds, noise_field, noise_scale, noise_gamma): """Splits trajectories into frames, and adds training noise.""" def add_noise(frame): noise = tf.random.normal(tf.shape(frame[noise_field]), stddev=noise_scale, dtype=tf.float32) # don't apply noise to boundary nodes mask = tf.equal(frame['node_type'], NodeType.NORMAL)[:, 0] noise = tf.where(mask, noise, tf.zeros_like(noise)) frame[noise_field] += noise frame['target|'+noise_field] += (1.0 - noise_gamma) * noise return frame ds = ds.flat_map(tf.data.Dataset.from_tensor_slices) ds = ds.map(add_noise, num_parallel_calls=8) ds = ds.shuffle(10000) ds = ds.repeat(None) return ds.prefetch(10) def batch_dataset(ds, batch_size): """Batches input datasets.""" shapes = ds.output_shapes types = ds.output_types def renumber(buffer, frame): nodes, cells = buffer new_nodes, new_cells = frame return nodes + new_nodes, tf.concat([cells, new_cells+nodes], axis=0) def batch_accumulate(ds_window): out = {} for key, ds_val in ds_window.items(): initial = tf.zeros((0, shapes[key][1]), dtype=types[key]) if key == 'cells': # renumber node indices in cells num_nodes = ds_window['node_type'].map(lambda x: tf.shape(x)[0]) cells = tf.data.Dataset.zip((num_nodes, ds_val)) initial = (tf.constant(0, tf.int32), initial) _, out[key] = cells.reduce(initial, renumber) else: merge = lambda prev, cur: tf.concat([prev, cur], axis=0) out[key] = ds_val.reduce(initial, merge) return out if batch_size > 1: ds = ds.window(batch_size, drop_remainder=True) ds = ds.map(batch_accumulate, num_parallel_calls=8) return ds
deepmind-research-master
meshgraphnets/dataset.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Plots a cloth trajectory rollout.""" import pickle from absl import app from absl import flags from matplotlib import animation import matplotlib.pyplot as plt FLAGS = flags.FLAGS flags.DEFINE_string('rollout_path', None, 'Path to rollout pickle file') def main(unused_argv): with open(FLAGS.rollout_path, 'rb') as fp: rollout_data = pickle.load(fp) fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(111, projection='3d') skip = 10 num_steps = rollout_data[0]['gt_pos'].shape[0] num_frames = len(rollout_data) * num_steps // skip # compute bounds bounds = [] for trajectory in rollout_data: bb_min = trajectory['gt_pos'].min(axis=(0, 1)) bb_max = trajectory['gt_pos'].max(axis=(0, 1)) bounds.append((bb_min, bb_max)) def animate(num): step = (num*skip) % num_steps traj = (num*skip) // num_steps ax.cla() bound = bounds[traj] ax.set_xlim([bound[0][0], bound[1][0]]) ax.set_ylim([bound[0][1], bound[1][1]]) ax.set_zlim([bound[0][2], bound[1][2]]) pos = rollout_data[traj]['pred_pos'][step] faces = rollout_data[traj]['faces'][step] ax.plot_trisurf(pos[:, 0], pos[:, 1], faces, pos[:, 2], shade=True) ax.set_title('Trajectory %d Step %d' % (traj, step)) return fig, _ = animation.FuncAnimation(fig, animate, frames=num_frames, interval=100) plt.show(block=True) if __name__ == '__main__': app.run(main)
deepmind-research-master
meshgraphnets/plot_cloth.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Commonly used data structures and functions.""" import enum import tensorflow.compat.v1 as tf class NodeType(enum.IntEnum): NORMAL = 0 OBSTACLE = 1 AIRFOIL = 2 HANDLE = 3 INFLOW = 4 OUTFLOW = 5 WALL_BOUNDARY = 6 SIZE = 9 def triangles_to_edges(faces): """Computes mesh edges from triangles.""" # collect edges from triangles edges = tf.concat([faces[:, 0:2], faces[:, 1:3], tf.stack([faces[:, 2], faces[:, 0]], axis=1)], axis=0) # those edges are sometimes duplicated (within the mesh) and sometimes # single (at the mesh boundary). # sort & pack edges as single tf.int64 receivers = tf.reduce_min(edges, axis=1) senders = tf.reduce_max(edges, axis=1) packed_edges = tf.bitcast(tf.stack([senders, receivers], axis=1), tf.int64) # remove duplicates and unpack unique_edges = tf.bitcast(tf.unique(packed_edges)[0], tf.int32) senders, receivers = tf.unstack(unique_edges, axis=1) # create two-way connectivity return (tf.concat([senders, receivers], axis=0), tf.concat([receivers, senders], axis=0))
deepmind-research-master
meshgraphnets/common.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functions to build evaluation metrics for cloth data.""" import tensorflow.compat.v1 as tf from meshgraphnets.common import NodeType def _rollout(model, initial_state, num_steps): """Rolls out a model trajectory.""" mask = tf.equal(initial_state['node_type'][:, 0], NodeType.NORMAL) def step_fn(step, prev_pos, cur_pos, trajectory): prediction = model({**initial_state, 'prev|world_pos': prev_pos, 'world_pos': cur_pos}) # don't update kinematic nodes next_pos = tf.where(mask, prediction, cur_pos) trajectory = trajectory.write(step, cur_pos) return step+1, cur_pos, next_pos, trajectory _, _, _, output = tf.while_loop( cond=lambda step, last, cur, traj: tf.less(step, num_steps), body=step_fn, loop_vars=(0, initial_state['prev|world_pos'], initial_state['world_pos'], tf.TensorArray(tf.float32, num_steps)), parallel_iterations=1) return output.stack() def evaluate(model, inputs): """Performs model rollouts and create stats.""" initial_state = {k: v[0] for k, v in inputs.items()} num_steps = inputs['cells'].shape[0] prediction = _rollout(model, initial_state, num_steps) error = tf.reduce_mean((prediction - inputs['world_pos'])**2, axis=-1) scalars = {'mse_%d_steps' % horizon: tf.reduce_mean(error[1:horizon+1]) for horizon in [1, 10, 20, 50, 100, 200]} traj_ops = { 'faces': inputs['cells'], 'mesh_pos': inputs['mesh_pos'], 'gt_pos': inputs['world_pos'], 'pred_pos': prediction } return scalars, traj_ops
deepmind-research-master
meshgraphnets/cloth_eval.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Plots a CFD trajectory rollout.""" import pickle from absl import app from absl import flags from matplotlib import animation from matplotlib import tri as mtri import matplotlib.pyplot as plt FLAGS = flags.FLAGS flags.DEFINE_string('rollout_path', None, 'Path to rollout pickle file') def main(unused_argv): with open(FLAGS.rollout_path, 'rb') as fp: rollout_data = pickle.load(fp) fig, ax = plt.subplots(1, 1, figsize=(12, 8)) skip = 10 num_steps = rollout_data[0]['gt_velocity'].shape[0] num_frames = len(rollout_data) * num_steps // skip # compute bounds bounds = [] for trajectory in rollout_data: bb_min = trajectory['gt_velocity'].min(axis=(0, 1)) bb_max = trajectory['gt_velocity'].max(axis=(0, 1)) bounds.append((bb_min, bb_max)) def animate(num): step = (num*skip) % num_steps traj = (num*skip) // num_steps ax.cla() ax.set_aspect('equal') ax.set_axis_off() vmin, vmax = bounds[traj] pos = rollout_data[traj]['mesh_pos'][step] faces = rollout_data[traj]['faces'][step] velocity = rollout_data[traj]['pred_velocity'][step] triang = mtri.Triangulation(pos[:, 0], pos[:, 1], faces) ax.tripcolor(triang, velocity[:, 0], vmin=vmin[0], vmax=vmax[0]) ax.triplot(triang, 'ko-', ms=0.5, lw=0.3) ax.set_title('Trajectory %d Step %d' % (traj, step)) return fig, _ = animation.FuncAnimation(fig, animate, frames=num_frames, interval=100) plt.show(block=True) if __name__ == '__main__': app.run(main)
deepmind-research-master
meshgraphnets/plot_cfd.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functions to build evaluation metrics for CFD data.""" import tensorflow.compat.v1 as tf from meshgraphnets.common import NodeType def _rollout(model, initial_state, num_steps): """Rolls out a model trajectory.""" node_type = initial_state['node_type'][:, 0] mask = tf.logical_or(tf.equal(node_type, NodeType.NORMAL), tf.equal(node_type, NodeType.OUTFLOW)) def step_fn(step, velocity, trajectory): prediction = model({**initial_state, 'velocity': velocity}) # don't update boundary nodes next_velocity = tf.where(mask, prediction, velocity) trajectory = trajectory.write(step, velocity) return step+1, next_velocity, trajectory _, _, output = tf.while_loop( cond=lambda step, cur, traj: tf.less(step, num_steps), body=step_fn, loop_vars=(0, initial_state['velocity'], tf.TensorArray(tf.float32, num_steps)), parallel_iterations=1) return output.stack() def evaluate(model, inputs): """Performs model rollouts and create stats.""" initial_state = {k: v[0] for k, v in inputs.items()} num_steps = inputs['cells'].shape[0] prediction = _rollout(model, initial_state, num_steps) error = tf.reduce_mean((prediction - inputs['velocity'])**2, axis=-1) scalars = {'mse_%d_steps' % horizon: tf.reduce_mean(error[1:horizon+1]) for horizon in [1, 10, 20, 50, 100, 200]} traj_ops = { 'faces': inputs['cells'], 'mesh_pos': inputs['mesh_pos'], 'gt_velocity': inputs['velocity'], 'pred_velocity': prediction } return scalars, traj_ops
deepmind-research-master
meshgraphnets/cfd_eval.py
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Online data normalization.""" import sonnet as snt import tensorflow.compat.v1 as tf class Normalizer(snt.AbstractModule): """Feature normalizer that accumulates statistics online.""" def __init__(self, size, max_accumulations=10**6, std_epsilon=1e-8, name='Normalizer'): super(Normalizer, self).__init__(name=name) self._max_accumulations = max_accumulations self._std_epsilon = std_epsilon with self._enter_variable_scope(): self._acc_count = tf.Variable(0, dtype=tf.float32, trainable=False) self._num_accumulations = tf.Variable(0, dtype=tf.float32, trainable=False) self._acc_sum = tf.Variable(tf.zeros(size, tf.float32), trainable=False) self._acc_sum_squared = tf.Variable(tf.zeros(size, tf.float32), trainable=False) def _build(self, batched_data, accumulate=True): """Normalizes input data and accumulates statistics.""" update_op = tf.no_op() if accumulate: # stop accumulating after a million updates, to prevent accuracy issues update_op = tf.cond(self._num_accumulations < self._max_accumulations, lambda: self._accumulate(batched_data), tf.no_op) with tf.control_dependencies([update_op]): return (batched_data - self._mean()) / self._std_with_epsilon() @snt.reuse_variables def inverse(self, normalized_batch_data): """Inverse transformation of the normalizer.""" return normalized_batch_data * self._std_with_epsilon() + self._mean() def _accumulate(self, batched_data): """Function to perform the accumulation of the batch_data statistics.""" count = tf.cast(tf.shape(batched_data)[0], tf.float32) data_sum = tf.reduce_sum(batched_data, axis=0) squared_data_sum = tf.reduce_sum(batched_data**2, axis=0) return tf.group( tf.assign_add(self._acc_sum, data_sum), tf.assign_add(self._acc_sum_squared, squared_data_sum), tf.assign_add(self._acc_count, count), tf.assign_add(self._num_accumulations, 1.)) def _mean(self): safe_count = tf.maximum(self._acc_count, 1.) return self._acc_sum / safe_count def _std_with_epsilon(self): safe_count = tf.maximum(self._acc_count, 1.) std = tf.sqrt(self._acc_sum_squared / safe_count - self._mean()**2) return tf.math.maximum(std, self._std_epsilon)
deepmind-research-master
meshgraphnets/normalization.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TransformerBlock and MultiheadAttention modules used in the paper. "Effective gene expression prediction from sequence by integrating long-range interactions" Žiga Avsec1, Vikram Agarwal2,4, Daniel Visentin1,4, Joseph R. Ledsam1,3, Agnieszka Grabska-Barwinska1, Kyle R. Taylor1, Yannis Assael1, John Jumper1, Pushmeet Kohli1, David R. Kelley2* 1 DeepMind, London, UK 2 Calico Life Sciences, South San Francisco, CA, USA 3 Google, Tokyo, Japan 4 These authors contributed equally. * correspondence: [email protected], [email protected], [email protected] Example: ``` mha = MultiheadAttention( value_size=96, key_size=64, num_heads=8, relative_position_functions=['positional_features_sin_cos']) mha(tf.ones((2, 1024, 96*8)), is_training=True) # Transformer block as used in the paper transformer_block = TransformerBlock( channels=96 * 8, dropout_rate=0.4, attention_kwargs=dict( value_size=96, key_size=64, num_heads=8, relative_positions=True, relative_position_symmetric=False, num_relative_position_features=None, relative_position_functions=['positional_features_exponential', 'positional_features_central_mask', 'positional_features_gamma'], positional_dropout_rate=0.01, attention_dropout_rate=0.05, ) ) transformer_block(tf.ones((2, 1024, 96*8)), is_training=True) ``` """ from typing import Any, Dict, List, Optional import numpy as np import sonnet as snt import tensorflow as tf class TransformerBlock(snt.Module): """Full transformer module block.""" def __init__( self, channels: int, dropout_rate: float, attention_kwargs: Dict[str, Any], name: str = 'transformer_block', ): super().__init__(name=name) self.mha_ln = snt.LayerNorm(axis=-1, create_scale=True, create_offset=True) self.mha = MultiheadAttention(**attention_kwargs) self.mha_dropout = snt.Dropout(dropout_rate) self.mlp_ln = snt.LayerNorm(axis=-1, create_scale=True, create_offset=True) self.mlp_linear1 = snt.Linear(channels * 2) self.mlp_dropout1 = snt.Dropout(dropout_rate) self.mlp_linear2 = snt.Linear(channels) self.mlp_dropout2 = snt.Dropout(dropout_rate) def __call__(self, inputs: tf.Tensor, is_training: bool) -> tf.Tensor: x = self.mha_ln(inputs) x = self.mha(x, is_training=is_training) x = self.mha_dropout(x, is_training=is_training) x += inputs # Residual mha_output = x # MLP. x = self.mlp_ln(mha_output) x = self.mlp_linear1(x) x = self.mlp_dropout1(x, is_training=is_training) x = tf.nn.relu(x) x = self.mlp_linear2(x) x = self.mlp_dropout2(x, is_training=is_training) return x + mha_output class MultiheadAttention(snt.Module): """Multi-head attention.""" def __init__(self, value_size: int, key_size: int, num_heads: int, scaling: bool = True, attention_dropout_rate: float = 0.1, relative_positions: bool = False, relative_position_symmetric: bool = False, relative_position_functions: Optional[List[str]] = None, num_relative_position_features: Optional[int] = None, positional_dropout_rate: float = 0.1, zero_initialize: bool = True, initializer: Optional[snt.initializers.Initializer] = None, name: str = None): """Creates a MultiheadAttention module. Args: value_size: The size of each value embedding per head. key_size: The size of each key and query embedding per head. num_heads: The number of independent queries per timestep. scaling: Whether to scale the attention logits. attention_dropout_rate: Dropout rate for attention logits. relative_positions: Whether to use TransformerXL style relative attention. relative_position_symmetric: If True, the symmetric version of basis functions will be used. If False, a symmetric and asymmetric versions will be use. relative_position_functions: List of function names used for relative positional biases. num_relative_position_features: Number of relative positional features to compute. If None, `value_size * num_heads` is used. positional_dropout_rate: Dropout rate for the positional encodings if relative positions are used. zero_initialize: if True, the final linear layer will be 0 initialized. initializer: Initializer for the projection layers. If unspecified, VarianceScaling is used with scale = 2.0. name: Name of module. """ super().__init__(name=name) self._value_size = value_size self._key_size = key_size self._num_heads = num_heads self._attention_dropout_rate = attention_dropout_rate self._scaling = scaling self._relative_positions = relative_positions self._relative_position_symmetric = relative_position_symmetric self._relative_position_functions = relative_position_functions if num_relative_position_features is None: # num_relative_position_features needs to be divisible by the number of # relative positional functions *2 (for symmetric & asymmetric version). divisible_by = 2 * len(self._relative_position_functions) self._num_relative_position_features = ( (self._value_size // divisible_by) * divisible_by) else: self._num_relative_position_features = num_relative_position_features self._positional_dropout_rate = positional_dropout_rate self._initializer = initializer if self._initializer is None: self._initializer = snt.initializers.VarianceScaling(scale=2.0) key_proj_size = self._key_size * self._num_heads embedding_size = self._value_size * self._num_heads self._q_layer = snt.Linear( key_proj_size, name='q_layer', with_bias=False, w_init=self._initializer) self._k_layer = snt.Linear( key_proj_size, name='k_layer', with_bias=False, w_init=self._initializer) self._v_layer = snt.Linear( embedding_size, name='v_layer', with_bias=False, w_init=self._initializer) w_init = snt.initializers.Zeros() if zero_initialize else self._initializer self._embedding_layer = snt.Linear( embedding_size, name='embedding_layer', w_init=w_init) # Create additional layers if using relative positions. if self._relative_positions: self._r_k_layer = snt.Linear( key_proj_size, name='r_k_layer', with_bias=False, w_init=self._initializer) self._r_w_bias = tf.Variable( self._initializer([1, self._num_heads, 1, self._key_size], dtype=tf.float32), name='r_w_bias') self._r_r_bias = tf.Variable( self._initializer([1, self._num_heads, 1, self._key_size], dtype=tf.float32), name='r_r_bias') def _multihead_output(self, linear, inputs): """Applies a standard linear to inputs and returns multihead output.""" output = snt.BatchApply(linear)(inputs) # [B, T, H * KV] num_kv_channels = output.shape[-1] // self._num_heads # Split H * Channels into separate axes. output = snt.reshape(output, output_shape=[-1, self._num_heads, num_kv_channels]) # [B, T, H, KV] -> [B, H, T, KV] return tf.transpose(output, [0, 2, 1, 3]) def __call__(self, inputs, is_training=False): # Initialise the projection layers. embedding_size = self._value_size * self._num_heads seq_len = inputs.shape[1] # Compute q, k and v as multi-headed projections of the inputs. q = self._multihead_output(self._q_layer, inputs) # [B, H, T, K] k = self._multihead_output(self._k_layer, inputs) # [B, H, T, K] v = self._multihead_output(self._v_layer, inputs) # [B, H, T, V] # Scale the query by the square-root of key size. if self._scaling: q *= self._key_size**-0.5 if self._relative_positions: # For relative positions, we project positions to form relative keys. distances = tf.range(-seq_len + 1, seq_len, dtype=tf.float32)[tf.newaxis] positional_encodings = positional_features_all( positions=distances, feature_size=self._num_relative_position_features, seq_length=seq_len, feature_functions=self._relative_position_functions, symmetric=self._relative_position_symmetric) # [1, 2T-1, Cr] if is_training: positional_encodings = tf.nn.dropout( positional_encodings, rate=self._positional_dropout_rate) # [1, H, 2T-1, K] r_k = self._multihead_output(self._r_k_layer, positional_encodings) # Add shifted relative logits to content logits. # [B, H, T', T] content_logits = tf.matmul(q + self._r_w_bias, k, transpose_b=True) # [B, H, T', 2T-1] relative_logits = tf.matmul( q + self._r_r_bias, r_k, transpose_b=True) # [B, H, T', T] relative_logits = relative_shift(relative_logits) logits = content_logits + relative_logits else: # [B, H, T', T] logits = tf.matmul(q, k, transpose_b=True) weights = tf.nn.softmax(logits) # Dropout on the attention weights. if is_training: weights = tf.nn.dropout(weights, rate=self._attention_dropout_rate) # Transpose and reshape the output. output = tf.matmul(weights, v) # [B, H, T', V] output_transpose = tf.transpose(output, [0, 2, 1, 3]) # [B, T', H, V] # Final linear layer. attended_inputs = snt.reshape( output_transpose, output_shape=[embedding_size], preserve_dims=2) output = self._embedding_layer(attended_inputs) return output def relative_shift(x): """Shift the relative logits like in TransformerXL.""" # We prepend zeros on the final timescale dimension. to_pad = tf.zeros_like(x[..., :1]) x = tf.concat([to_pad, x], -1) _, num_heads, t1, t2 = x.shape x = tf.reshape(x, [-1, num_heads, t2, t1]) x = tf.slice(x, [0, 0, 1, 0], [-1, -1, -1, -1]) x = tf.reshape(x, [-1, num_heads, t1, t2 - 1]) x = tf.slice(x, [0, 0, 0, 0], [-1, -1, -1, (t2 + 1) // 2]) return x # Available feature functions: def get_positional_feature_function(name): """Returns positional feature functions.""" available = { 'positional_features_exponential': positional_features_exponential, 'positional_features_central_mask': positional_features_central_mask, 'positional_features_gamma': positional_features_gamma, 'positional_features_cosine': positional_features_cosine, 'positional_features_linear_masks': positional_features_linear_masks, 'positional_features_sin_cos': positional_features_sin_cos, } if name not in available: raise ValueError(f'Function {name} not available in {available.keys()}') return available[name] def positional_features_all(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, feature_functions: Optional[List[str]] = None, symmetric=False): """Compute relative positional encodings/features. Each positional feature function will compute/provide the same fraction of features, making up the total of feature_size. Args: positions: Tensor of relative positions of arbitrary shape. feature_size: Total number of basis functions. seq_length: Sequence length denoting the characteristic length that the individual positional features can use. This is required since the parametrization of the input features should be independent of `positions` while it could still require to use the total number of features. bin_size: Bin sized used to partition the sequence. This can be used to compute features on the absolute scale relative to the genome. feature_functions: List of different feature functions to use. Each function will take as argument: positions, sequence length and number of features to compute. symmetric: If True, the resulting features will be symmetric across the relative position of 0 (i.e. only absolute value of positions will matter). If false, then both the symmetric and asymmetric version (symmetric multiplied by sign(positions)) of the features will be used. Returns: Tensor of shape: `positions.shape + (feature_size,)`. """ if feature_functions is None: feature_functions = ['positional_features_exponential', 'positional_features_central_mask', 'positional_features_gamma'] num_components = len(feature_functions) # 1 per each basis function if not symmetric: num_components = 2 * num_components # For now, we do not allow odd sized embeddings. if feature_size % num_components != 0: raise ValueError( f'feature_size has to be divisible by {num_components}') feature_functions = [get_positional_feature_function(f) for f in feature_functions] num_basis_per_class = feature_size // num_components embeddings = tf.concat([f(tf.abs(positions), num_basis_per_class, seq_length, bin_size) for f in feature_functions], axis=-1) if not symmetric: embeddings = tf.concat([embeddings, tf.sign(positions)[..., tf.newaxis] * embeddings], axis=-1) tf.TensorShape(embeddings.shape).assert_is_compatible_with( positions.shape + [feature_size]) return embeddings def _prepend_dims(x, num_dims): return tf.reshape(x, shape=[1] * num_dims + x.shape) def positional_features_exponential(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, min_half_life: Optional[float] = 3.0): """Create exponentially decaying positional weights. Args: positions: Position tensor (arbitrary shape). feature_size: Number of basis functions to use. seq_length: Sequence length. bin_size: (unused). See `positional_features_all`. min_half_life: Smallest exponential half life in the grid of half lives. Returns: A Tensor with shape [2 * seq_length - 1, feature_size]. """ del bin_size # Unused. if seq_length is None: seq_length = tf.reduce_max(tf.abs(positions)) + 1 # Grid of half lifes from [3, seq_length / 2] with feature_size # distributed on the log scale. seq_length = tf.cast(seq_length, dtype=tf.float32) max_range = tf.math.log(seq_length) / tf.math.log(2.0) half_life = tf.pow(2.0, tf.linspace(min_half_life, max_range, feature_size)) half_life = _prepend_dims(half_life, positions.shape.rank) positions = tf.abs(positions) outputs = tf.exp(-tf.math.log(2.0) / half_life * positions[..., tf.newaxis]) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_central_mask(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None): """Positional features using a central mask (allow only central features).""" del seq_length # Unused. del bin_size # Unused. center_widths = tf.pow(2.0, tf.range(1, feature_size + 1, dtype=tf.float32)) center_widths = center_widths - 1 center_widths = _prepend_dims(center_widths, positions.shape.rank) outputs = tf.cast(center_widths > tf.abs(positions)[..., tf.newaxis], tf.float32) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def gamma_pdf(x, concentration, rate): """Gamma probability distribution function: p(x|concentration, rate).""" log_unnormalized_prob = tf.math.xlogy(concentration - 1., x) - rate * x log_normalization = (tf.math.lgamma(concentration) - concentration * tf.math.log(rate)) return tf.exp(log_unnormalized_prob - log_normalization) def positional_features_gamma(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, stddev=None, start_mean=None): """Positional features computed using the gamma distributions.""" del bin_size # Unused. if seq_length is None: seq_length = tf.reduce_max(tf.abs(positions)) + 1 if stddev is None: stddev = seq_length / (2 * feature_size) if start_mean is None: start_mean = seq_length / feature_size mean = tf.linspace(start_mean, seq_length, num=feature_size) mean = _prepend_dims(mean, positions.shape.rank) concentration = (mean / stddev)**2 rate = mean / stddev**2 probabilities = gamma_pdf( tf.abs(tf.cast(positions, dtype=tf.float32))[..., tf.newaxis], concentration, rate) probabilities += 1e-8 # To ensure numerical stability. outputs = probabilities / tf.reduce_max(probabilities, axis=1, keepdims=True) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_cosine(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None): """Cosine positional features.""" del bin_size # Unused. del seq_length # Unused. periodicity = 1.25 * tf.pow(2.0, tf.range(0, feature_size, dtype=tf.float32)) periodicity = _prepend_dims(periodicity, positions.shape.rank) outputs = tf.math.cos(2 * np.pi * positions[..., tf.newaxis] / periodicity) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_linear_masks(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None): """Exponentially increasing point focuses.""" del bin_size # Unused. del seq_length # Unused. distances = tf.range(0, feature_size, dtype=tf.float32) distances = _prepend_dims(distances, positions.shape.rank) outputs = tf.cast(distances == tf.abs(positions[..., tf.newaxis]), dtype=tf.float32) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs def positional_features_sin_cos(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, max_time=10000.0): """Sine/cosine positional encodings.""" del bin_size # Unused. del seq_length # Unused. if feature_size % 2 != 0: raise ValueError('feature_size needs to be divisible by 2.') i = tf.range(0, feature_size, 2, dtype=tf.float32) i = _prepend_dims(i, positions.shape.rank) # Concat sines and cosines and return. outputs = tf.concat([ tf.sin(positions[..., tf.newaxis] / max_time**(i / feature_size)), tf.cos(positions[..., tf.newaxis] / max_time**(i / feature_size))], -1) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs
deepmind-research-master
enformer/attention_module.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensorflow implementation of Enformer model. "Effective gene expression prediction from sequence by integrating long-range interactions" Žiga Avsec1, Vikram Agarwal2,4, Daniel Visentin1,4, Joseph R. Ledsam1,3, Agnieszka Grabska-Barwinska1, Kyle R. Taylor1, Yannis Assael1, John Jumper1, Pushmeet Kohli1, David R. Kelley2* 1 DeepMind, London, UK 2 Calico Life Sciences, South San Francisco, CA, USA 3 Google, Tokyo, Japan 4 These authors contributed equally. * correspondence: [email protected], [email protected], [email protected] """ import inspect from typing import Any, Callable, Dict, Optional, Text, Union, Iterable import attention_module import numpy as np import sonnet as snt import tensorflow as tf SEQUENCE_LENGTH = 196_608 BIN_SIZE = 128 TARGET_LENGTH = 896 class Enformer(snt.Module): """Main model.""" def __init__(self, channels: int = 1536, num_transformer_layers: int = 11, num_heads: int = 8, pooling_type: str = 'attention', name: str = 'enformer'): """Enformer model. Args: channels: Number of convolutional filters and the overall 'width' of the model. num_transformer_layers: Number of transformer layers. num_heads: Number of attention heads. pooling_type: Which pooling function to use. Options: 'attention' or max'. name: Name of sonnet module. """ super().__init__(name=name) # pylint: disable=g-complex-comprehension,g-long-lambda,cell-var-from-loop heads_channels = {'human': 5313, 'mouse': 1643} dropout_rate = 0.4 assert channels % num_heads == 0, ('channels needs to be divisible ' f'by {num_heads}') whole_attention_kwargs = { 'attention_dropout_rate': 0.05, 'initializer': None, 'key_size': 64, 'num_heads': num_heads, 'num_relative_position_features': channels // num_heads, 'positional_dropout_rate': 0.01, 'relative_position_functions': [ 'positional_features_exponential', 'positional_features_central_mask', 'positional_features_gamma' ], 'relative_positions': True, 'scaling': True, 'value_size': channels // num_heads, 'zero_initialize': True } trunk_name_scope = tf.name_scope('trunk') trunk_name_scope.__enter__() # lambda is used in Sequential to construct the module under tf.name_scope. def conv_block(filters, width=1, w_init=None, name='conv_block', **kwargs): return Sequential(lambda: [ snt.distribute.CrossReplicaBatchNorm( create_scale=True, create_offset=True, scale_init=snt.initializers.Ones(), moving_mean=snt.ExponentialMovingAverage(0.9), moving_variance=snt.ExponentialMovingAverage(0.9)), gelu, snt.Conv1D(filters, width, w_init=w_init, **kwargs) ], name=name) stem = Sequential(lambda: [ snt.Conv1D(channels // 2, 15), Residual(conv_block(channels // 2, 1, name='pointwise_conv_block')), pooling_module(pooling_type, pool_size=2), ], name='stem') filter_list = exponential_linspace_int(start=channels // 2, end=channels, num=6, divisible_by=128) conv_tower = Sequential(lambda: [ Sequential(lambda: [ conv_block(num_filters, 5), Residual(conv_block(num_filters, 1, name='pointwise_conv_block')), pooling_module(pooling_type, pool_size=2), ], name=f'conv_tower_block_{i}') for i, num_filters in enumerate(filter_list)], name='conv_tower') # Transformer. def transformer_mlp(): return Sequential(lambda: [ snt.LayerNorm(axis=-1, create_scale=True, create_offset=True), snt.Linear(channels * 2), snt.Dropout(dropout_rate), tf.nn.relu, snt.Linear(channels), snt.Dropout(dropout_rate)], name='mlp') transformer = Sequential(lambda: [ Sequential(lambda: [ Residual(Sequential(lambda: [ snt.LayerNorm(axis=-1, create_scale=True, create_offset=True, scale_init=snt.initializers.Ones()), attention_module.MultiheadAttention(**whole_attention_kwargs, name=f'attention_{i}'), snt.Dropout(dropout_rate)], name='mha')), Residual(transformer_mlp())], name=f'transformer_block_{i}') for i in range(num_transformer_layers)], name='transformer') crop_final = TargetLengthCrop1D(TARGET_LENGTH, name='target_input') final_pointwise = Sequential(lambda: [ conv_block(channels * 2, 1), snt.Dropout(dropout_rate / 8), gelu], name='final_pointwise') self._trunk = Sequential([stem, conv_tower, transformer, crop_final, final_pointwise], name='trunk') trunk_name_scope.__exit__(None, None, None) with tf.name_scope('heads'): self._heads = { head: Sequential( lambda: [snt.Linear(num_channels), tf.nn.softplus], name=f'head_{head}') for head, num_channels in heads_channels.items() } # pylint: enable=g-complex-comprehension,g-long-lambda,cell-var-from-loop @property def trunk(self): return self._trunk @property def heads(self): return self._heads def __call__(self, inputs: tf.Tensor, is_training: bool) -> Dict[str, tf.Tensor]: trunk_embedding = self.trunk(inputs, is_training=is_training) return { head: head_module(trunk_embedding, is_training=is_training) for head, head_module in self.heads.items() } @tf.function(input_signature=[ tf.TensorSpec([None, SEQUENCE_LENGTH, 4], tf.float32)]) def predict_on_batch(self, x): """Method for SavedModel.""" return self(x, is_training=False) class TargetLengthCrop1D(snt.Module): """Crop sequence to match the desired target length.""" def __init__(self, target_length: Optional[int], name: str = 'target_length_crop'): super().__init__(name=name) self._target_length = target_length def __call__(self, inputs): if self._target_length is None: return inputs trim = (inputs.shape[-2] - self._target_length) // 2 if trim < 0: raise ValueError('inputs longer than target length') elif trim == 0: return inputs else: return inputs[..., trim:-trim, :] class Sequential(snt.Module): """snt.Sequential automatically passing is_training where it exists.""" def __init__(self, layers: Optional[Union[Callable[[], Iterable[snt.Module]], Iterable[Callable[..., Any]]]] = None, name: Optional[Text] = None): super().__init__(name=name) if layers is None: self._layers = [] else: # layers wrapped in a lambda function to have a common namespace. if hasattr(layers, '__call__'): layers = layers() self._layers = [layer for layer in layers if layer is not None] def __call__(self, inputs: tf.Tensor, is_training: bool, **kwargs): outputs = inputs for _, mod in enumerate(self._layers): if accepts_is_training(mod): outputs = mod(outputs, is_training=is_training, **kwargs) else: outputs = mod(outputs, **kwargs) return outputs def pooling_module(kind, pool_size): """Pooling module wrapper.""" if kind == 'attention': return SoftmaxPooling1D(pool_size=pool_size, per_channel=True, w_init_scale=2.0) elif kind == 'max': return tf.keras.layers.MaxPool1D(pool_size=pool_size, padding='same') else: raise ValueError(f'Invalid pooling kind: {kind}.') class SoftmaxPooling1D(snt.Module): """Pooling operation with optional weights.""" def __init__(self, pool_size: int = 2, per_channel: bool = False, w_init_scale: float = 0.0, name: str = 'softmax_pooling'): """Softmax pooling. Args: pool_size: Pooling size, same as in Max/AvgPooling. per_channel: If True, the logits/softmax weights will be computed for each channel separately. If False, same weights will be used across all channels. w_init_scale: When 0.0 is equivalent to avg pooling, and when ~2.0 and `per_channel=False` it's equivalent to max pooling. name: Module name. """ super().__init__(name=name) self._pool_size = pool_size self._per_channel = per_channel self._w_init_scale = w_init_scale self._logit_linear = None @snt.once def _initialize(self, num_features): self._logit_linear = snt.Linear( output_size=num_features if self._per_channel else 1, with_bias=False, # Softmax is agnostic to shifts. w_init=snt.initializers.Identity(self._w_init_scale)) def __call__(self, inputs): _, length, num_features = inputs.shape self._initialize(num_features) inputs = tf.reshape( inputs, (-1, length // self._pool_size, self._pool_size, num_features)) return tf.reduce_sum( inputs * tf.nn.softmax(self._logit_linear(inputs), axis=-2), axis=-2) class Residual(snt.Module): """Residual block.""" def __init__(self, module: snt.Module, name='residual'): super().__init__(name=name) self._module = module def __call__(self, inputs: tf.Tensor, is_training: bool, *args, **kwargs) -> tf.Tensor: return inputs + self._module(inputs, is_training, *args, **kwargs) def gelu(x: tf.Tensor) -> tf.Tensor: """Applies the Gaussian error linear unit (GELU) activation function. Using approximiation in section 2 of the original paper: https://arxiv.org/abs/1606.08415 Args: x: Input tensor to apply gelu activation. Returns: Tensor with gelu activation applied to it. """ return tf.nn.sigmoid(1.702 * x) * x def one_hot_encode(sequence: str, alphabet: str = 'ACGT', neutral_alphabet: str = 'N', neutral_value: Any = 0, dtype=np.float32) -> np.ndarray: """One-hot encode sequence.""" def to_uint8(string): return np.frombuffer(string.encode('ascii'), dtype=np.uint8) hash_table = np.zeros((np.iinfo(np.uint8).max, len(alphabet)), dtype=dtype) hash_table[to_uint8(alphabet)] = np.eye(len(alphabet), dtype=dtype) hash_table[to_uint8(neutral_alphabet)] = neutral_value hash_table = hash_table.astype(dtype) return hash_table[to_uint8(sequence)] def exponential_linspace_int(start, end, num, divisible_by=1): """Exponentially increasing values of integers.""" def _round(x): return int(np.round(x / divisible_by) * divisible_by) base = np.exp(np.log(end / start) / (num - 1)) return [_round(start * base**i) for i in range(num)] def accepts_is_training(module): return 'is_training' in list(inspect.signature(module.__call__).parameters)
deepmind-research-master
enformer/enformer.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test enformer model by applying random sequence as input. Test: $ python enformer_test.py """ import random import unittest import enformer import numpy as np class TestEnformer(unittest.TestCase): def test_enformer(self): model = enformer.Enformer(channels=1536, num_transformer_layers=11) inputs = _get_random_input() outputs = model(inputs, is_training=True) self.assertEqual(outputs['human'].shape, (1, enformer.TARGET_LENGTH, 5313)) self.assertEqual(outputs['mouse'].shape, (1, enformer.TARGET_LENGTH, 1643)) def _get_random_input(): seq = ''.join( [random.choice('ACGT') for _ in range(enformer.SEQUENCE_LENGTH)]) return np.expand_dims(enformer.one_hot_encode(seq), 0).astype(np.float32) if __name__ == '__main__': unittest.main()
deepmind-research-master
enformer/enformer_test.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Tests for curl.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from curl import training class TrainingTest(absltest.TestCase): def testRunTraining(self): training.run_training( dataset='mnist', output_type='bernoulli', n_y=10, n_y_active=1, training_data_type='sequential', n_concurrent_classes=1, lr_init=1e-3, lr_factor=1., lr_schedule=[1], blend_classes=False, train_supervised=False, n_steps=1000, report_interval=1000, knn_values=[3], random_seed=1, encoder_kwargs={ 'encoder_type': 'multi', 'n_enc': [1200, 600, 300, 150], 'enc_strides': [1], }, decoder_kwargs={ 'decoder_type': 'single', 'n_dec': [500, 500], 'dec_up_strides': None, }, n_z=32, dynamic_expansion=True, ll_thresh=-200.0, classify_with_samples=False, gen_replay_type='fixed', use_supervised_replay=False, ) if __name__ == '__main__': absltest.main()
deepmind-research-master
curl/unit_test.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Runs the supervised CL benchmark experiments in the paper.""" from absl import app from absl import flags from curl import training flags.DEFINE_enum('dataset', 'mnist', ['mnist', 'omniglot'], 'Dataset.') FLAGS = flags.FLAGS def main(unused_argv): training.run_training( dataset=FLAGS.dataset, output_type='bernoulli', n_y=10, n_y_active=10, training_data_type='sequential', n_concurrent_classes=2, lr_init=1e-3, lr_factor=1., lr_schedule=[1], train_supervised=True, blend_classes=False, n_steps=100000, report_interval=10000, knn_values=[], random_seed=1, encoder_kwargs={ 'encoder_type': 'multi', 'n_enc': [400, 400], 'enc_strides': [1], }, decoder_kwargs={ 'decoder_type': 'single', 'n_dec': [400, 400], 'dec_up_strides': None, }, n_z=32, dynamic_expansion=False, ll_thresh=-10000.0, classify_with_samples=False, gen_replay_type='fixed', use_supervised_replay=False, ) if __name__ == '__main__': app.run(main)
deepmind-research-master
curl/train_sup.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Implementation of Continual Unsupervised Representation Learning model.""" from absl import logging import numpy as np import sonnet as snt import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from curl import layers from curl import utils tfc = tf.compat.v1 # pylint: disable=g-long-lambda # pylint: disable=redefined-outer-name class SharedEncoder(snt.AbstractModule): """The shared encoder module, mapping input x to hiddens.""" def __init__(self, encoder_type, n_enc, enc_strides, name='shared_encoder'): """The shared encoder function, mapping input x to hiddens. Args: encoder_type: str, type of encoder, either 'conv' or 'multi' n_enc: list, number of hidden units per layer in the encoder enc_strides: list, stride in each layer (only for 'conv' encoder_type) name: str, module name used for tf scope. """ super(SharedEncoder, self).__init__(name=name) self._encoder_type = encoder_type if encoder_type == 'conv': self.shared_encoder = layers.SharedConvModule( filters=n_enc, strides=enc_strides, kernel_size=3, activation=tf.nn.relu) elif encoder_type == 'multi': self.shared_encoder = snt.nets.MLP( name='mlp_shared_encoder', output_sizes=n_enc, activation=tf.nn.relu, activate_final=True) else: raise ValueError('Unknown encoder_type {}'.format(encoder_type)) def _build(self, x, is_training): if self._encoder_type == 'multi': self.conv_shapes = None x = snt.BatchFlatten()(x) return self.shared_encoder(x) else: output = self.shared_encoder(x) self.conv_shapes = self.shared_encoder.conv_shapes return output def cluster_encoder_fn(hiddens, n_y_active, n_y, is_training=True): """The cluster encoder function, modelling q(y | x). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. n_y_active: Tensor, the number of active components. n_y: int, number of maximum components allowed (used for tensor size) is_training: Boolean, whether to build the training graph or an evaluation graph. Returns: The distribution `q(y | x)`. """ del is_training # unused for now with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): lin = snt.Linear(n_y, name='mlp_cluster_encoder_final') logits = lin(hiddens) # Only use the first n_y_active components, and set the remaining to zero. if n_y > 1: probs = tf.nn.softmax(logits[:, :n_y_active]) logging.info('Cluster softmax active probs shape: %s', str(probs.shape)) paddings1 = tf.stack([tf.constant(0), tf.constant(0)], axis=0) paddings2 = tf.stack([tf.constant(0), n_y - n_y_active], axis=0) paddings = tf.stack([paddings1, paddings2], axis=1) probs = tf.pad(probs, paddings) + 0.0 * logits + 1e-12 else: probs = tf.ones_like(logits) logging.info('Cluster softmax probs shape: %s', str(probs.shape)) return tfp.distributions.OneHotCategorical(probs=probs) def latent_encoder_fn(hiddens, y, n_y, n_z, is_training=True): """The latent encoder function, modelling q(z | x, y). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. y: Categorical cluster variable, `Tensor` of size `[B, n_y]`. n_y: int, number of dims of y. n_z: int, number of dims of z. is_training: Boolean, whether to build the training graph or an evaluation graph. Returns: The Gaussian distribution `q(z | x, y)`. """ del is_training # unused for now with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): # Logits for both mean and variance n_logits = 2 * n_z all_logits = [] for k in range(n_y): lin = snt.Linear(n_logits, name='mlp_latent_encoder_' + str(k)) all_logits.append(lin(hiddens)) # Sum over cluster components. all_logits = tf.stack(all_logits) # [n_y, B, n_logits] logits = tf.einsum('ij,jik->ik', y, all_logits) # Compute distribution from logits. return utils.generate_gaussian( logits=logits, sigma_nonlin='softplus', sigma_param='var') def data_decoder_fn(z, y, output_type, output_shape, decoder_type, n_dec, dec_up_strides, n_x, n_y, shared_encoder_conv_shapes=None, is_training=True, test_local_stats=True): """The data decoder function, modelling p(x | z). Args: z: Latent variables, `Tensor` of size `[B, n_z]`. y: Categorical cluster variable, `Tensor` of size `[B, n_y]`. output_type: str, output distribution ('bernoulli' or 'quantized_normal'). output_shape: list, shape of output (not including batch dimension). decoder_type: str, 'single', 'multi', or 'deconv'. n_dec: list, number of hidden units per layer in the decoder dec_up_strides: list, stride in each layer (only for 'deconv' decoder_type). n_x: int, number of dims of x. n_y: int, number of dims of y. shared_encoder_conv_shapes: the shapes of the activations of the intermediate layers of the encoder, is_training: Boolean, whether to build the training graph or an evaluation graph. test_local_stats: Boolean, whether to use the test batch statistics at test time for batch norm (default) or the moving averages. Returns: The Bernoulli distribution `p(x | z)`. """ if output_type == 'bernoulli': output_dist = lambda x: tfp.distributions.Bernoulli(logits=x) n_out_factor = 1 out_shape = list(output_shape) else: raise NotImplementedError if len(z.shape) != 2: raise NotImplementedError('The data decoder function expects `z` to be ' '2D, but its shape was %s instead.' % str(z.shape)) if len(y.shape) != 2: raise NotImplementedError('The data decoder function expects `y` to be ' '2D, but its shape was %s instead.' % str(y.shape)) # Upsample layer (deconvolutional, bilinear, ..). if decoder_type == 'deconv': # First, check that the encoder is convolutional too (needed for batchnorm) if shared_encoder_conv_shapes is None: raise ValueError('Shared encoder does not contain conv_shapes.') num_output_channels = output_shape[-1] conv_decoder = UpsampleModule( filters=n_dec, kernel_size=3, activation=tf.nn.relu, dec_up_strides=dec_up_strides, enc_conv_shapes=shared_encoder_conv_shapes, n_c=num_output_channels * n_out_factor, method=decoder_type) logits = conv_decoder( z, is_training=is_training, test_local_stats=test_local_stats) logits = tf.reshape(logits, [-1] + out_shape) # n_out_factor in last dim # Multiple MLP decoders, one for each component. elif decoder_type == 'multi': all_logits = [] for k in range(n_y): mlp_decoding = snt.nets.MLP( name='mlp_latent_decoder_' + str(k), output_sizes=n_dec + [n_x * n_out_factor], activation=tf.nn.relu, activate_final=False) logits = mlp_decoding(z) all_logits.append(logits) all_logits = tf.stack(all_logits) logits = tf.einsum('ij,jik->ik', y, all_logits) logits = tf.reshape(logits, [-1] + out_shape) # Back to 4D # Single (shared among components) MLP decoder. elif decoder_type == 'single': mlp_decoding = snt.nets.MLP( name='mlp_latent_decoder', output_sizes=n_dec + [n_x * n_out_factor], activation=tf.nn.relu, activate_final=False) logits = mlp_decoding(z) logits = tf.reshape(logits, [-1] + out_shape) # Back to 4D else: raise ValueError('Unknown decoder_type {}'.format(decoder_type)) return output_dist(logits) def latent_decoder_fn(y, n_z, is_training=True): """The latent decoder function, modelling p(z | y). Args: y: Categorical cluster variable, `Tensor` of size `[B, n_y]`. n_z: int, number of dims of z. is_training: Boolean, whether to build the training graph or an evaluation graph. Returns: The Gaussian distribution `p(z | y)`. """ del is_training # Unused for now. if len(y.shape) != 2: raise NotImplementedError('The latent decoder function expects `y` to be ' '2D, but its shape was %s instead.' % str(y.shape)) lin_mu = snt.Linear(n_z, name='latent_prior_mu') lin_sigma = snt.Linear(n_z, name='latent_prior_sigma') mu = lin_mu(y) sigma = lin_sigma(y) logits = tf.concat([mu, sigma], axis=1) return utils.generate_gaussian( logits=logits, sigma_nonlin='softplus', sigma_param='var') class Curl(object): """CURL model class.""" def __init__(self, prior, latent_decoder, data_decoder, shared_encoder, cluster_encoder, latent_encoder, n_y_active, kly_over_batch=False, is_training=True, name='curl'): self.scope_name = name self._shared_encoder = shared_encoder self._prior = prior self._latent_decoder = latent_decoder self._data_decoder = data_decoder self._cluster_encoder = cluster_encoder self._latent_encoder = latent_encoder self._n_y_active = n_y_active self._kly_over_batch = kly_over_batch self._is_training = is_training self._cache = {} def sample(self, sample_shape=(), y=None, mean=False): """Draws a sample from the learnt distribution p(x). Args: sample_shape: `int` or 0D `Tensor` giving the number of samples to return. If empty tuple (default value), 1 sample will be returned. y: Optional, the one hot label on which to condition the sample. mean: Boolean, if True the expected value of the output distribution is returned, otherwise samples from the output distribution. Returns: Sample tensor of shape `[B * N, ...]` where `B` is the batch size of the prior, `N` is the number of samples requested, and `...` represents the shape of the observations. Raises: ValueError: If both `sample_shape` and `n` are provided. ValueError: If `sample_shape` has rank > 0 or if `sample_shape` is an int that is < 1. """ with tf.name_scope('{}_sample'.format(self.scope_name)): if y is None: y = tf.to_float(self.compute_prior().sample(sample_shape)) if y.shape.ndims > 2: y = snt.MergeDims(start=0, size=y.shape.ndims - 1, name='merge_y')(y) z = self._latent_decoder(y, is_training=self._is_training) if mean: samples = self.predict(z.sample(), y).mean() else: samples = self.predict(z.sample(), y).sample() return samples def reconstruct(self, x, use_mode=True, use_mean=False): """Reconstructs the given observations. Args: x: Observed `Tensor`. use_mode: Boolean, if true, take the argmax over q(y|x) use_mean: Boolean, if true, use pixel-mean for reconstructions. Returns: The reconstructed samples x ~ p(x | y~q(y|x), z~q(z|x, y)). """ hiddens = self._shared_encoder(x, is_training=self._is_training) qy = self.infer_cluster(hiddens) y_sample = qy.mode() if use_mode else qy.sample() y_sample = tf.to_float(y_sample) qz = self.infer_latent(hiddens, y_sample) p = self.predict(qz.sample(), y_sample) if use_mean: return p.mean() else: return p.sample() def log_prob(self, x): """Redirects to log_prob_elbo with a warning.""" logging.warn('log_prob is actually a lower bound') return self.log_prob_elbo(x) def log_prob_elbo(self, x): """Returns evidence lower bound.""" log_p_x, kl_y, kl_z = self.log_prob_elbo_components(x)[:3] return log_p_x - kl_y - kl_z def log_prob_elbo_components(self, x, y=None, reduce_op=tf.reduce_sum): """Returns the components used in calculating the evidence lower bound. Args: x: Observed variables, `Tensor` of size `[B, I]` where `I` is the size of a flattened input. y: Optional labels, `Tensor` of size `[B, I]` where `I` is the size of a flattened input. reduce_op: The op to use for reducing across non-batch dimensions. Typically either `tf.reduce_sum` or `tf.reduce_mean`. Returns: `log p(x|y,z)` of shape `[B]` where `B` is the batch size. `KL[q(y|x) || p(y)]` of shape `[B]` where `B` is the batch size. `KL[q(z|x,y) || p(z|y)]` of shape `[B]` where `B` is the batch size. """ cache_key = (x,) # Checks if the output graph for this inputs has already been computed. if cache_key in self._cache: return self._cache[cache_key] with tf.name_scope('{}_log_prob_elbo'.format(self.scope_name)): hiddens = self._shared_encoder(x, is_training=self._is_training) # 1) Compute KL[q(y|x) || p(y)] from x, and keep distribution q_y around kl_y, q_y = self._kl_and_qy(hiddens) # [B], distribution # For the next two terms, we need to marginalise over all y. # First, construct every possible y indexing (as a one hot) and repeat it # for every element in the batch [n_y_active, B, n_y]. # Note that the onehot have dimension of all y, while only the codes # corresponding to active components are instantiated bs, n_y = q_y.probs.shape all_y = tf.tile( tf.expand_dims(tf.one_hot(tf.range(self._n_y_active), n_y), axis=1), multiples=[1, bs, 1]) # 2) Compute KL[q(z|x,y) || p(z|y)] (for all possible y), and keep z's # around [n_y, B] and [n_y, B, n_z] kl_z_all, z_all = tf.map_fn( fn=lambda y: self._kl_and_z(hiddens, y), elems=all_y, dtype=(tf.float32, tf.float32), name='elbo_components_z_map') kl_z_all = tf.transpose(kl_z_all, name='kl_z_all') # Now take the expectation over y (scale by q(y|x)) y_logits = q_y.logits[:, :self._n_y_active] # [B, n_y] y_probs = q_y.probs[:, :self._n_y_active] # [B, n_y] y_probs = y_probs / tf.reduce_sum(y_probs, axis=1, keepdims=True) kl_z = tf.reduce_sum(y_probs * kl_z_all, axis=1) # 3) Evaluate logp and recon, i.e., log and mean of p(x|z,[y]) # (conditioning on y only in the `multi` decoder_type case, when # train_supervised is True). Here we take the reconstruction from each # possible component y and take its log prob. [n_y, B, Ix, Iy, Iz] log_p_x_all = tf.map_fn( fn=lambda val: self.predict(val[0], val[1]).log_prob(x), elems=(z_all, all_y), dtype=tf.float32, name='elbo_components_logpx_map') # Sum log probs over all dimensions apart from the first two (n_y, B), # i.e., over I. Use einsum to construct higher order multiplication. log_p_x_all = snt.BatchFlatten(preserve_dims=2)(log_p_x_all) # [n_y,B,I] # Note, this is E_{q(y|x)} [ log p(x | z, y)], i.e., we scale log_p_x_all # by q(y|x). log_p_x = tf.einsum('ij,jik->ik', y_probs, log_p_x_all) # [B, I] # We may also use a supervised loss for some samples [B, n_y] if y is not None: self.y_label = tf.one_hot(y, n_y) else: self.y_label = tfc.placeholder( shape=[bs, n_y], dtype=tf.float32, name='y_label') # This is computing log p(x | z, y=true_y)], which is basically equivalent # to indexing into the correct element of `log_p_x_all`. log_p_x_sup = tf.einsum('ij,jik->ik', self.y_label[:, :self._n_y_active], log_p_x_all) # [B, I] kl_z_sup = tf.einsum('ij,ij->i', self.y_label[:, :self._n_y_active], kl_z_all) # [B] # -log q(y=y_true | x) kl_y_sup = tf.nn.sparse_softmax_cross_entropy_with_logits( # [B] labels=tf.argmax(self.y_label[:, :self._n_y_active], axis=1), logits=y_logits) # Reduce over all dimension except batch. dims_x = [k for k in range(1, log_p_x.shape.ndims)] log_p_x = reduce_op(log_p_x, dims_x, name='log_p_x') log_p_x_sup = reduce_op(log_p_x_sup, dims_x, name='log_p_x_sup') # Store values needed externally self.q_y = q_y self.log_p_x_all = tf.transpose( reduce_op( log_p_x_all, -1, # [B, n_y] name='log_p_x_all')) self.kl_z_all = kl_z_all self.y_probs = y_probs self._cache[cache_key] = (log_p_x, kl_y, kl_z, log_p_x_sup, kl_y_sup, kl_z_sup) return log_p_x, kl_y, kl_z, log_p_x_sup, kl_y_sup, kl_z_sup def _kl_and_qy(self, hiddens): """Returns analytical or sampled KL div and the distribution q(y | x). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. Returns: Pair `(kl, y)`, where `kl` is the KL divergence (a `Tensor` with shape `[B]`, where `B` is the batch size), and `y` is a sample from the categorical encoding distribution. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): q = self.infer_cluster(hiddens) # q(y|x) p = self.compute_prior() # p(y) try: # Take the average proportions over whole batch then repeat it in each row # before computing the KL if self._kly_over_batch: probs = tf.reduce_mean( q.probs, axis=0, keepdims=True) * tf.ones_like(q.probs) qmean = tfp.distributions.OneHotCategorical(probs=probs) kl = tfp.distributions.kl_divergence(qmean, p) else: kl = tfp.distributions.kl_divergence(q, p) except NotImplementedError: y = q.sample(name='y_sample') logging.warn('Using sampling KLD for y') log_p_y = p.log_prob(y, name='log_p_y') log_q_y = q.log_prob(y, name='log_q_y') # Reduce over all dimension except batch. sum_axis_p = [k for k in range(1, log_p_y.get_shape().ndims)] log_p_y = tf.reduce_sum(log_p_y, sum_axis_p) sum_axis_q = [k for k in range(1, log_q_y.get_shape().ndims)] log_q_y = tf.reduce_sum(log_q_y, sum_axis_q) kl = log_q_y - log_p_y # Reduce over all dimension except batch. sum_axis_kl = [k for k in range(1, kl.get_shape().ndims)] kl = tf.reduce_sum(kl, sum_axis_kl, name='kl') return kl, q def _kl_and_z(self, hiddens, y): """Returns KL[q(z|y,x) || p(z|y)] and a sample for z from q(z|y,x). Returns the analytical KL divergence KL[q(z|y,x) || p(z|y)] if one is available (as registered with `kullback_leibler.RegisterKL`), or a sampled KL divergence otherwise (in this case the returned sample is the one used for the KL divergence). Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. y: Categorical cluster random variable, `Tensor` of size `[B, n_y]`. Returns: Pair `(kl, z)`, where `kl` is the KL divergence (a `Tensor` with shape `[B]`, where `B` is the batch size), and `z` is a sample from the encoding distribution. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): q = self.infer_latent(hiddens, y) # q(z|x,y) p = self.generate_latent(y) # p(z|y) z = q.sample(name='z') try: kl = tfp.distributions.kl_divergence(q, p) except NotImplementedError: logging.warn('Using sampling KLD for z') log_p_z = p.log_prob(z, name='log_p_z_y') log_q_z = q.log_prob(z, name='log_q_z_xy') # Reduce over all dimension except batch. sum_axis_p = [k for k in range(1, log_p_z.get_shape().ndims)] log_p_z = tf.reduce_sum(log_p_z, sum_axis_p) sum_axis_q = [k for k in range(1, log_q_z.get_shape().ndims)] log_q_z = tf.reduce_sum(log_q_z, sum_axis_q) kl = log_q_z - log_p_z # Reduce over all dimension except batch. sum_axis_kl = [k for k in range(1, kl.get_shape().ndims)] kl = tf.reduce_sum(kl, sum_axis_kl, name='kl') return kl, z def infer_latent(self, hiddens, y=None, use_mean_y=False): """Performs inference over the latent variable z. Args: hiddens: The shared encoder activations, 4D `Tensor` of size `[B, ...]`. y: Categorical cluster variable, `Tensor` of size `[B, ...]`. use_mean_y: Boolean, whether to take the mean encoding over all y. Returns: The distribution `q(z|x, y)`, which on sample produces tensors of size `[N, B, ...]` where `B` is the batch size of `x` and `y`, and `N` is the number of samples and `...` represents the shape of the latent variables. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): if y is None: y = tf.to_float(self.infer_cluster(hiddens).mode()) if use_mean_y: # If use_mean_y, then y must be probabilities all_y = tf.tile( tf.expand_dims(tf.one_hot(tf.range(y.shape[1]), y.shape[1]), axis=1), multiples=[1, y.shape[0], 1]) # Compute z KL from x (for all possible y), and keep z's around z_all = tf.map_fn( fn=lambda y: self._latent_encoder( hiddens, y, is_training=self._is_training).mean(), elems=all_y, dtype=tf.float32) return tf.einsum('ij,jik->ik', y, z_all) else: return self._latent_encoder(hiddens, y, is_training=self._is_training) def generate_latent(self, y): """Use the generative model to compute latent variable z, given a y. Args: y: Categorical cluster variable, `Tensor` of size `[B, ...]`. Returns: The distribution `p(z|y)`, which on sample produces tensors of size `[N, B, ...]` where `B` is the batch size of `x`, and `N` is the number of samples asked and `...` represents the shape of the latent variables. """ return self._latent_decoder(y, is_training=self._is_training) def get_shared_rep(self, x, is_training): """Gets the shared representation from a given input x. Args: x: Observed variables, `Tensor` of size `[B, I]` where `I` is the size of a flattened input. is_training: bool, whether this constitutes training data or not. Returns: `log p(x|y,z)` of shape `[B]` where `B` is the batch size. `KL[q(y|x) || p(y)]` of shape `[B]` where `B` is the batch size. `KL[q(z|x,y) || p(z|y)]` of shape `[B]` where `B` is the batch size. """ return self._shared_encoder(x, is_training) def infer_cluster(self, hiddens): """Performs inference over the categorical variable y. Args: hiddens: The shared encoder activations, 2D `Tensor` of size `[B, ...]`. Returns: The distribution `q(y|x)`, which on sample produces tensors of size `[N, B, ...]` where `B` is the batch size of `x`, and `N` is the number of samples asked and `...` represents the shape of the latent variables. """ with tf.control_dependencies([tfc.assert_rank(hiddens, 2)]): return self._cluster_encoder(hiddens, is_training=self._is_training) def predict(self, z, y): """Computes prediction over the observed variables. Args: z: Latent variables, `Tensor` of size `[B, ...]`. y: Categorical cluster variable, `Tensor` of size `[B, ...]`. Returns: The distribution `p(x|z)`, which on sample produces tensors of size `[N, B, ...]` where `N` is the number of samples asked. """ encoder_conv_shapes = getattr(self._shared_encoder, 'conv_shapes', None) return self._data_decoder( z, y, shared_encoder_conv_shapes=encoder_conv_shapes, is_training=self._is_training) def compute_prior(self): """Computes prior over the latent variables. Returns: The distribution `p(y)`, which on sample produces tensors of size `[N, ...]` where `N` is the number of samples asked and `...` represents the shape of the latent variables. """ return self._prior() class UpsampleModule(snt.AbstractModule): """Convolutional decoder. If `method` is 'deconv' apply transposed convolutions with stride 2, otherwise apply the `method` upsampling function and then smooth with a stride 1x1 convolution. Params: ------- filters: list, where the first element is the number of filters of the initial MLP layer and the remaining elements are the number of filters of the upsampling layers. kernel_size: the size of the convolutional kernels. The same size will be used in all convolutions. activation: an activation function, applied to all layers but the last. dec_up_strides: list, the upsampling factors of each upsampling convolutional layer. enc_conv_shapes: list, the shapes of the input and of all the intermediate feature maps of the convolutional layers in the encoder. n_c: the number of output channels. """ def __init__(self, filters, kernel_size, activation, dec_up_strides, enc_conv_shapes, n_c, method='nn', name='upsample_module'): super(UpsampleModule, self).__init__(name=name) assert len(filters) == len(dec_up_strides) + 1, ( 'The decoder\'s filters should contain one element more than the ' 'decoder\'s up stride list, but has %d elements instead of %d.\n' 'Decoder filters: %s\nDecoder up strides: %s' % (len(filters), len(dec_up_strides) + 1, str(filters), str(dec_up_strides))) self._filters = filters self._kernel_size = kernel_size self._activation = activation self._dec_up_strides = dec_up_strides self._enc_conv_shapes = enc_conv_shapes self._n_c = n_c if method == 'deconv': self._conv_layer = tf.layers.Conv2DTranspose self._method = method else: self._conv_layer = tf.layers.Conv2D self._method = getattr(tf.image.ResizeMethod, method.upper()) self._method_str = method.capitalize() def _build(self, z, is_training=True, test_local_stats=True, use_bn=False): batch_norm_args = { 'is_training': is_training, 'test_local_stats': test_local_stats } method = self._method # Cycle over the encoder shapes backwards, to build a symmetrical decoder. enc_conv_shapes = self._enc_conv_shapes[::-1] strides = self._dec_up_strides # We store the heights and widths of the encoder feature maps that are # unique, i.e., the ones right after a layer with stride != 1. These will be # used as a target to potentially crop the upsampled feature maps. unique_hw = np.unique([(el[1], el[2]) for el in enc_conv_shapes], axis=0) unique_hw = unique_hw.tolist()[::-1] unique_hw.pop() # Drop the initial shape # The first filter is an MLP. mlp_filter, conv_filters = self._filters[0], self._filters[1:] # The first shape is used after the MLP to go to 4D. layers = [z] # The shape of the first enc is used after the MLP to go back to 4D. dec_mlp = snt.nets.MLP( name='dec_mlp_projection', output_sizes=[mlp_filter, np.prod(enc_conv_shapes[0][1:])], use_bias=not use_bn, activation=self._activation, activate_final=True) upsample_mlp_flat = dec_mlp(z) if use_bn: upsample_mlp_flat = snt.BatchNorm(scale=True)(upsample_mlp_flat, **batch_norm_args) layers.append(upsample_mlp_flat) upsample = tf.reshape(upsample_mlp_flat, enc_conv_shapes[0]) layers.append(upsample) for i, (filter_i, stride_i) in enumerate(zip(conv_filters, strides), 1): if method != 'deconv' and stride_i > 1: upsample = tf.image.resize_images( upsample, [stride_i * el for el in upsample.shape.as_list()[1:3]], method=method, name='upsample_' + str(i)) upsample = self._conv_layer( filters=filter_i, kernel_size=self._kernel_size, padding='same', use_bias=not use_bn, activation=self._activation, strides=stride_i if method == 'deconv' else 1, name='upsample_conv_' + str(i))( upsample) if use_bn: upsample = snt.BatchNorm(scale=True)(upsample, **batch_norm_args) if stride_i > 1: hw = unique_hw.pop() upsample = utils.maybe_center_crop(upsample, hw) layers.append(upsample) # Final layer, no upsampling. x_logits = tf.layers.Conv2D( filters=self._n_c, kernel_size=self._kernel_size, padding='same', use_bias=not use_bn, activation=None, strides=1, name='logits')( upsample) if use_bn: x_logits = snt.BatchNorm(scale=True)(x_logits, **batch_norm_args) layers.append(x_logits) logging.info('%s upsampling module layer shapes', self._method_str) logging.info('\n'.join([str(v.shape.as_list()) for v in layers])) return x_logits
deepmind-research-master
curl/model.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Runs the unsupervised i.i.d benchmark experiments in the paper.""" from absl import app from absl import flags from curl import training flags.DEFINE_enum('dataset', 'mnist', ['mnist', 'omniglot'], 'Dataset.') FLAGS = flags.FLAGS def main(unused_argv): if FLAGS.dataset == 'mnist': n_y = 25 n_y_active = 1 n_z = 50 else: # omniglot n_y = 100 n_y_active = 1 n_z = 100 training.run_training( dataset=FLAGS.dataset, n_y=n_y, n_y_active=n_y_active, n_z=n_z, output_type='bernoulli', training_data_type='iid', n_concurrent_classes=1, lr_init=5e-4, lr_factor=1., lr_schedule=[1], blend_classes=False, train_supervised=False, n_steps=100000, report_interval=10000, knn_values=[3], random_seed=1, encoder_kwargs={ 'encoder_type': 'multi', 'n_enc': [500, 500], 'enc_strides': [1], }, decoder_kwargs={ 'decoder_type': 'single', 'n_dec': [500], 'dec_up_strides': None, }, dynamic_expansion=True, ll_thresh=-200.0, classify_with_samples=True, gen_replay_type=None, use_supervised_replay=False, ) if __name__ == '__main__': app.run(main)
deepmind-research-master
curl/train_unsup.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Some common utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import tensorflow.compat.v1 as tf import tensorflow_probability as tfp def generate_gaussian(logits, sigma_nonlin, sigma_param): """Generate a Gaussian distribution given a selected parameterisation.""" mu, sigma = tf.split(value=logits, num_or_size_splits=2, axis=1) if sigma_nonlin == 'exp': sigma = tf.exp(sigma) elif sigma_nonlin == 'softplus': sigma = tf.nn.softplus(sigma) else: raise ValueError('Unknown sigma_nonlin {}'.format(sigma_nonlin)) if sigma_param == 'var': sigma = tf.sqrt(sigma) elif sigma_param != 'std': raise ValueError('Unknown sigma_param {}'.format(sigma_param)) return tfp.distributions.Normal(loc=mu, scale=sigma) def construct_prior_probs(batch_size, n_y, n_y_active): """Construct the uniform prior probabilities. Args: batch_size: int, the size of the batch. n_y: int, the number of categorical cluster components. n_y_active: tf.Variable, the number of components that are currently in use. Returns: Tensor representing the prior probability matrix, size of [batch_size, n_y]. """ probs = tf.ones((batch_size, n_y_active)) / tf.cast( n_y_active, dtype=tf.float32) paddings1 = tf.stack([tf.constant(0), tf.constant(0)], axis=0) paddings2 = tf.stack([tf.constant(0), n_y - n_y_active], axis=0) paddings = tf.stack([paddings1, paddings2], axis=1) probs = tf.pad(probs, paddings, constant_values=1e-12) probs.set_shape((batch_size, n_y)) logging.info('Prior shape: %s', str(probs.shape)) return probs def maybe_center_crop(layer, target_hw): """Center crop the layer to match a target shape.""" l_height, l_width = layer.shape.as_list()[1:3] t_height, t_width = target_hw assert t_height <= l_height and t_width <= l_width if (l_height - t_height) % 2 != 0 or (l_width - t_width) % 2 != 0: logging.warn( 'It is impossible to center-crop [%d, %d] into [%d, %d].' ' Crop will be uneven.', t_height, t_width, l_height, l_width) border = int((l_height - t_height) / 2) x_0, x_1 = border, l_height - border border = int((l_width - t_width) / 2) y_0, y_1 = border, l_width - border layer_cropped = layer[:, x_0:x_1, y_0:y_1, :] return layer_cropped
deepmind-research-master
curl/utils.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Custom layers for CURL.""" from absl import logging import sonnet as snt import tensorflow.compat.v1 as tf tfc = tf.compat.v1 class ResidualStack(snt.AbstractModule): """A stack of ResNet V2 blocks.""" def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens, filter_size=3, initializers=None, data_format='NHWC', activation=tf.nn.relu, name='residual_stack'): """Instantiate a ResidualStack.""" super(ResidualStack, self).__init__(name=name) self._num_hiddens = num_hiddens self._num_residual_layers = num_residual_layers self._num_residual_hiddens = num_residual_hiddens self._filter_size = filter_size self._initializers = initializers self._data_format = data_format self._activation = activation def _build(self, h): for i in range(self._num_residual_layers): h_i = self._activation(h) h_i = snt.Conv2D( output_channels=self._num_residual_hiddens, kernel_shape=(self._filter_size, self._filter_size), stride=(1, 1), initializers=self._initializers, data_format=self._data_format, name='res_nxn_%d' % i)( h_i) h_i = self._activation(h_i) h_i = snt.Conv2D( output_channels=self._num_hiddens, kernel_shape=(1, 1), stride=(1, 1), initializers=self._initializers, data_format=self._data_format, name='res_1x1_%d' % i)( h_i) h += h_i return self._activation(h) class SharedConvModule(snt.AbstractModule): """Convolutional decoder.""" def __init__(self, filters, kernel_size, activation, strides, name='shared_conv_encoder'): super(SharedConvModule, self).__init__(name=name) self._filters = filters self._kernel_size = kernel_size self._activation = activation self.strides = strides assert len(strides) == len(filters) - 1 self.conv_shapes = None def _build(self, x, is_training=True): with tf.control_dependencies([tfc.assert_rank(x, 4)]): self.conv_shapes = [x.shape.as_list()] # Needed by deconv module conv = x for i, (filter_i, stride_i) in enumerate(zip(self._filters, self.strides), 1): conv = tf.layers.Conv2D( filters=filter_i, kernel_size=self._kernel_size, padding='same', activation=self._activation, strides=stride_i, name='enc_conv_%d' % i)( conv) self.conv_shapes.append(conv.shape.as_list()) conv_flat = snt.BatchFlatten()(conv) enc_mlp = snt.nets.MLP( name='enc_mlp', output_sizes=[self._filters[-1]], activation=self._activation, activate_final=True) h = enc_mlp(conv_flat) logging.info('Shared conv module layer shapes:') logging.info('\n'.join([str(el) for el in self.conv_shapes])) logging.info(h.shape.as_list()) return h
deepmind-research-master
curl/layers.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Training file to run most of the experiments in the paper. The default parameters corresponding to the first set of experiments in Section 4.2. For the expansion ablation, run with different ll_thresh values as in the paper. Note that n_y_active represents the number of *active* components at the start, and should be set to 1, while n_y represents the maximum number of components allowed, and should be set sufficiently high (eg. n_y = 100). For the MGR ablation, setting use_sup_replay = True switches to using SMGR, and the gen_replay_type flag can switch between fixed and dynamic replay. The generative snapshot period is set automatically in the train_curl.py file based on these settings (ie. the data_period variable), so the 0.1T runs can be reproduced by dividing this value by 10. """ from absl import app from absl import flags from curl import training flags.DEFINE_enum('dataset', 'mnist', ['mnist', 'omniglot'], 'Dataset.') FLAGS = flags.FLAGS def main(unused_argv): training.run_training( dataset=FLAGS.dataset, output_type='bernoulli', n_y=30, n_y_active=1, training_data_type='sequential', n_concurrent_classes=1, lr_init=1e-3, lr_factor=1., lr_schedule=[1], blend_classes=False, train_supervised=False, n_steps=100000, report_interval=10000, knn_values=[10], random_seed=1, encoder_kwargs={ 'encoder_type': 'multi', 'n_enc': [1200, 600, 300, 150], 'enc_strides': [1], }, decoder_kwargs={ 'decoder_type': 'single', 'n_dec': [500, 500], 'dec_up_strides': None, }, n_z=32, dynamic_expansion=True, ll_thresh=-200.0, classify_with_samples=False, gen_replay_type='fixed', use_supervised_replay=False, ) if __name__ == '__main__': app.run(main)
deepmind-research-master
curl/train_main.py
################################################################################ # Copyright 2019 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Script to train CURL.""" import collections import functools from absl import logging import numpy as np from sklearn import neighbors import sonnet as snt import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds import tensorflow_probability as tfp from curl import model from curl import utils tfc = tf.compat.v1 # pylint: disable=g-long-lambda MainOps = collections.namedtuple('MainOps', [ 'elbo', 'll', 'log_p_x', 'kl_y', 'kl_z', 'elbo_supervised', 'll_supervised', 'log_p_x_supervised', 'kl_y_supervised', 'kl_z_supervised', 'cat_probs', 'confusion', 'purity', 'latents' ]) DatasetTuple = collections.namedtuple('DatasetTuple', [ 'train_data', 'train_iter_for_clf', 'train_data_for_clf', 'valid_iter', 'valid_data', 'test_iter', 'test_data', 'ds_info' ]) def compute_purity(confusion): return np.sum(np.max(confusion, axis=0)).astype(float) / np.sum(confusion) def process_dataset(iterator, ops_to_run, sess, feed_dict=None, aggregation_ops=np.stack, processing_ops=None): """Process a dataset by computing ops and accumulating batch by batch. Args: iterator: iterator through the dataset. ops_to_run: dict, tf ops to run as part of dataset processing. sess: tf.Session to use. feed_dict: dict, required placeholders. aggregation_ops: fn or dict of fns, aggregation op to apply for each op. processing_ops: fn or dict of fns, extra processing op to apply for each op. Returns: Results accumulated over dataset. """ if not isinstance(ops_to_run, dict): raise TypeError('ops_to_run must be specified as a dict') if not isinstance(aggregation_ops, dict): aggregation_ops = {k: aggregation_ops for k in ops_to_run} if not isinstance(processing_ops, dict): processing_ops = {k: processing_ops for k in ops_to_run} out_results = collections.OrderedDict() sess.run(iterator.initializer) while True: # Iterate over the whole dataset and append the results to a per-key list. try: outs = sess.run(ops_to_run, feed_dict=feed_dict) for key, value in outs.items(): out_results.setdefault(key, []).append(value) except tf.errors.OutOfRangeError: # end of dataset iterator break # Aggregate and process results. for key, value in out_results.items(): if aggregation_ops[key]: out_results[key] = aggregation_ops[key](value) if processing_ops[key]: out_results[key] = processing_ops[key](out_results[key], axis=0) return out_results def get_data_sources(dataset, dataset_kwargs, batch_size, test_batch_size, training_data_type, n_concurrent_classes, image_key, label_key): """Create and return data sources for training, validation, and testing. Args: dataset: str, name of dataset ('mnist', 'omniglot', etc). dataset_kwargs: dict, kwargs used in tf dataset constructors. batch_size: int, batch size used for training. test_batch_size: int, batch size used for evaluation. training_data_type: str, how training data is seen ('iid', or 'sequential'). n_concurrent_classes: int, # classes seen at a time (ignored for 'iid'). image_key: str, name if image key in dataset. label_key: str, name of label key in dataset. Returns: A namedtuple containing all of the dataset iterators and batches. """ # Load training data sources ds_train, ds_info = tfds.load( name=dataset, split=tfds.Split.TRAIN, with_info=True, as_dataset_kwargs={'shuffle_files': False}, **dataset_kwargs) # Validate assumption that data is in [0, 255] assert ds_info.features[image_key].dtype == tf.uint8 n_classes = ds_info.features[label_key].num_classes num_train_examples = ds_info.splits['train'].num_examples def preprocess_data(x): """Convert images from uint8 in [0, 255] to float in [0, 1].""" x[image_key] = tf.image.convert_image_dtype(x[image_key], tf.float32) return x if training_data_type == 'sequential': c = None # The index of the class number, None for now and updated later if n_concurrent_classes == 1: filter_fn = lambda v: tf.equal(v[label_key], c) else: # Define the lowest and highest class number at each data period. assert n_classes % n_concurrent_classes == 0, ( 'Number of total classes must be divisible by ' 'number of concurrent classes') cmin = [] cmax = [] for i in range(int(n_classes / n_concurrent_classes)): for _ in range(n_concurrent_classes): cmin.append(i * n_concurrent_classes) cmax.append((i + 1) * n_concurrent_classes) filter_fn = lambda v: tf.logical_and( tf.greater_equal(v[label_key], cmin[c]), tf.less( v[label_key], cmax[c])) # Set up data sources/queues (one for each class). train_datasets = [] train_iterators = [] train_data = [] full_ds = ds_train.repeat().shuffle(num_train_examples, seed=0) full_ds = full_ds.map(preprocess_data) for c in range(n_classes): filtered_ds = full_ds.filter(filter_fn).batch( batch_size, drop_remainder=True) train_datasets.append(filtered_ds) train_iterators.append(train_datasets[-1].make_one_shot_iterator()) train_data.append(train_iterators[-1].get_next()) else: # not sequential full_ds = ds_train.repeat().shuffle(num_train_examples, seed=0) full_ds = full_ds.map(preprocess_data) train_datasets = full_ds.batch(batch_size, drop_remainder=True) train_data = train_datasets.make_one_shot_iterator().get_next() # Set up data source to get full training set for classifier training full_ds = ds_train.repeat(1).shuffle(num_train_examples, seed=0) full_ds = full_ds.map(preprocess_data) train_datasets_for_classifier = full_ds.batch( test_batch_size, drop_remainder=True) train_iter_for_classifier = ( train_datasets_for_classifier.make_initializable_iterator()) train_data_for_classifier = train_iter_for_classifier.get_next() # Load validation dataset. try: valid_dataset = tfds.load( name=dataset, split=tfds.Split.VALIDATION, **dataset_kwargs) num_valid_examples = ds_info.splits[tfds.Split.VALIDATION].num_examples assert (num_valid_examples % test_batch_size == 0), ('test_batch_size must be a divisor of %d' % num_valid_examples) valid_dataset = valid_dataset.repeat(1).batch( test_batch_size, drop_remainder=True) valid_dataset = valid_dataset.map(preprocess_data) valid_iter = valid_dataset.make_initializable_iterator() valid_data = valid_iter.get_next() except (KeyError, ValueError): logging.warning('No validation set!!') valid_iter = None valid_data = None # Load test dataset. test_dataset = tfds.load( name=dataset, split=tfds.Split.TEST, **dataset_kwargs) num_test_examples = ds_info.splits['test'].num_examples assert (num_test_examples % test_batch_size == 0), ('test_batch_size must be a divisor of %d' % num_test_examples) test_dataset = test_dataset.repeat(1).batch( test_batch_size, drop_remainder=True) test_dataset = test_dataset.map(preprocess_data) test_iter = test_dataset.make_initializable_iterator() test_data = test_iter.get_next() logging.info('Loaded %s data', dataset) return DatasetTuple(train_data, train_iter_for_classifier, train_data_for_classifier, valid_iter, valid_data, test_iter, test_data, ds_info) def setup_training_and_eval_graphs(x, label, y, n_y, curl_model, classify_with_samples, is_training, name): """Set up the graph and return ops for training or evaluation. Args: x: tf placeholder for image. label: tf placeholder for ground truth label. y: tf placeholder for some self-supervised label/prediction. n_y: int, dimensionality of discrete latent variable y. curl_model: snt.AbstractModule representing the CURL model. classify_with_samples: bool, whether to *sample* latents for classification. is_training: bool, whether this graph is the training graph. name: str, graph name. Returns: A namedtuple with the required graph ops to perform training or evaluation. """ # kl_y_supervised is -log q(y=y_true | x) (log_p_x, kl_y, kl_z, log_p_x_supervised, kl_y_supervised, kl_z_supervised) = curl_model.log_prob_elbo_components(x, y) ll = log_p_x - kl_y - kl_z elbo = -tf.reduce_mean(ll) # Supervised loss, either for SMGR, or adaptation to supervised benchmark. ll_supervised = log_p_x_supervised - kl_y_supervised - kl_z_supervised elbo_supervised = -tf.reduce_mean(ll_supervised) # Summaries kl_y = tf.reduce_mean(kl_y) kl_z = tf.reduce_mean(kl_z) log_p_x_supervised = tf.reduce_mean(log_p_x_supervised) kl_y_supervised = tf.reduce_mean(kl_y_supervised) kl_z_supervised = tf.reduce_mean(kl_z_supervised) # Evaluation. hiddens = curl_model.get_shared_rep(x, is_training=is_training) cat = curl_model.infer_cluster(hiddens) cat_probs = cat.probs confusion = tf.confusion_matrix(label, tf.argmax(cat_probs, axis=1), num_classes=n_y, name=name + '_confusion') purity = (tf.reduce_sum(tf.reduce_max(confusion, axis=0)) / tf.reduce_sum(confusion)) if classify_with_samples: latents = curl_model.infer_latent( hiddens=hiddens, y=tf.to_float(cat.sample())).sample() else: latents = curl_model.infer_latent( hiddens=hiddens, y=tf.to_float(cat.mode())).mean() return MainOps(elbo, ll, log_p_x, kl_y, kl_z, elbo_supervised, ll_supervised, log_p_x_supervised, kl_y_supervised, kl_z_supervised, cat_probs, confusion, purity, latents) def get_generated_data(sess, gen_op, y_input, gen_buffer_size, component_counts): """Get generated model data (in place of saving a model snapshot). Args: sess: tf.Session. gen_op: tf op representing a batch of generated data. y_input: tf placeholder for which mixture components to generate from. gen_buffer_size: int, number of data points to generate. component_counts: np.array, prior probabilities over components. Returns: A tuple of two numpy arrays The generated data The corresponding labels """ batch_size, n_y = y_input.shape.as_list() # Sample based on the history of all components used. cluster_sample_probs = component_counts.astype(float) cluster_sample_probs = np.maximum(1e-12, cluster_sample_probs) cluster_sample_probs = cluster_sample_probs / np.sum(cluster_sample_probs) # Now generate the data based on the specified cluster prior. gen_buffer_images = [] gen_buffer_labels = [] for _ in range(gen_buffer_size): gen_label = np.random.choice( np.arange(n_y), size=(batch_size,), replace=True, p=cluster_sample_probs) y_gen_posterior_vals = np.zeros((batch_size, n_y)) y_gen_posterior_vals[np.arange(batch_size), gen_label] = 1 gen_image = sess.run(gen_op, feed_dict={y_input: y_gen_posterior_vals}) gen_buffer_images.append(gen_image) gen_buffer_labels.append(gen_label) gen_buffer_images = np.vstack(gen_buffer_images) gen_buffer_labels = np.concatenate(gen_buffer_labels) return gen_buffer_images, gen_buffer_labels def setup_dynamic_ops(n_y): """Set up ops to move / copy mixture component weights for dynamic expansion. Args: n_y: int, dimensionality of discrete latent variable y. Returns: A dict containing all of the ops required for dynamic updating. """ # Set up graph ops to dynamically modify component params. graph = tf.get_default_graph() # 1) Ops to get and set latent encoder params (entire tensors) latent_enc_tensors = {} for k in range(n_y): latent_enc_tensors['latent_w_' + str(k)] = graph.get_tensor_by_name( 'latent_encoder/mlp_latent_encoder_{}/w:0'.format(k)) latent_enc_tensors['latent_b_' + str(k)] = graph.get_tensor_by_name( 'latent_encoder/mlp_latent_encoder_{}/b:0'.format(k)) latent_enc_assign_ops = {} latent_enc_phs = {} for key, tensor in latent_enc_tensors.items(): latent_enc_phs[key] = tfc.placeholder(tensor.dtype, tensor.shape) latent_enc_assign_ops[key] = tf.assign(tensor, latent_enc_phs[key]) # 2) Ops to get and set cluster encoder params (columns of a tensor) # We will be copying column ind_from to column ind_to. cluster_w = graph.get_tensor_by_name( 'cluster_encoder/mlp_cluster_encoder_final/w:0') cluster_b = graph.get_tensor_by_name( 'cluster_encoder/mlp_cluster_encoder_final/b:0') ind_from = tfc.placeholder(dtype=tf.int32) ind_to = tfc.placeholder(dtype=tf.int32) # Determine indices of cluster encoder weights and biases to be updated w_indices = tf.transpose( tf.stack([ tf.range(cluster_w.shape[0], dtype=tf.int32), ind_to * tf.ones(shape=(cluster_w.shape[0],), dtype=tf.int32) ])) b_indices = ind_to # Determine updates themselves cluster_w_updates = tf.squeeze( tf.slice(cluster_w, begin=(0, ind_from), size=(cluster_w.shape[0], 1))) cluster_b_updates = cluster_b[ind_from] # Create update ops cluster_w_update_op = tf.scatter_nd_update(cluster_w, w_indices, cluster_w_updates) cluster_b_update_op = tf.scatter_update(cluster_b, b_indices, cluster_b_updates) # 3) Ops to get and set latent prior params (columns of a tensor) # We will be copying column ind_from to column ind_to. latent_prior_mu_w = graph.get_tensor_by_name( 'latent_decoder/latent_prior_mu/w:0') latent_prior_sigma_w = graph.get_tensor_by_name( 'latent_decoder/latent_prior_sigma/w:0') mu_indices = tf.transpose( tf.stack([ ind_to * tf.ones(shape=(latent_prior_mu_w.shape[1],), dtype=tf.int32), tf.range(latent_prior_mu_w.shape[1], dtype=tf.int32) ])) mu_updates = tf.squeeze( tf.slice( latent_prior_mu_w, begin=(ind_from, 0), size=(1, latent_prior_mu_w.shape[1]))) mu_update_op = tf.scatter_nd_update(latent_prior_mu_w, mu_indices, mu_updates) sigma_indices = tf.transpose( tf.stack([ ind_to * tf.ones(shape=(latent_prior_sigma_w.shape[1],), dtype=tf.int32), tf.range(latent_prior_sigma_w.shape[1], dtype=tf.int32) ])) sigma_updates = tf.squeeze( tf.slice( latent_prior_sigma_w, begin=(ind_from, 0), size=(1, latent_prior_sigma_w.shape[1]))) sigma_update_op = tf.scatter_nd_update(latent_prior_sigma_w, sigma_indices, sigma_updates) dynamic_ops = { 'ind_from_ph': ind_from, 'ind_to_ph': ind_to, 'latent_enc_tensors': latent_enc_tensors, 'latent_enc_assign_ops': latent_enc_assign_ops, 'latent_enc_phs': latent_enc_phs, 'cluster_w_update_op': cluster_w_update_op, 'cluster_b_update_op': cluster_b_update_op, 'mu_update_op': mu_update_op, 'sigma_update_op': sigma_update_op } return dynamic_ops def copy_component_params(ind_from, ind_to, sess, ind_from_ph, ind_to_ph, latent_enc_tensors, latent_enc_assign_ops, latent_enc_phs, cluster_w_update_op, cluster_b_update_op, mu_update_op, sigma_update_op): """Copy parameters from component i to component j. Args: ind_from: int, component index to copy from. ind_to: int, component index to copy to. sess: tf.Session. ind_from_ph: tf placeholder for component to copy from. ind_to_ph: tf placeholder for component to copy to. latent_enc_tensors: dict, tensors in the latent posterior encoder. latent_enc_assign_ops: dict, assignment ops for latent posterior encoder. latent_enc_phs: dict, placeholders for assignment ops. cluster_w_update_op: op for updating weights of cluster encoder. cluster_b_update_op: op for updating biased of cluster encoder. mu_update_op: op for updating mu weights of latent prior. sigma_update_op: op for updating sigma weights of latent prior. """ update_ops = [] feed_dict = {} # Copy for latent encoder. new_w_val, new_b_val = sess.run([ latent_enc_tensors['latent_w_' + str(ind_from)], latent_enc_tensors['latent_b_' + str(ind_from)] ]) update_ops.extend([ latent_enc_assign_ops['latent_w_' + str(ind_to)], latent_enc_assign_ops['latent_b_' + str(ind_to)] ]) feed_dict.update({ latent_enc_phs['latent_w_' + str(ind_to)]: new_w_val, latent_enc_phs['latent_b_' + str(ind_to)]: new_b_val }) # Copy for cluster encoder softmax. update_ops.extend([cluster_w_update_op, cluster_b_update_op]) feed_dict.update({ind_from_ph: ind_from, ind_to_ph: ind_to}) # Copy for latent prior. update_ops.extend([mu_update_op, sigma_update_op]) feed_dict.update({ind_from_ph: ind_from, ind_to_ph: ind_to}) sess.run(update_ops, feed_dict) def run_training( dataset, training_data_type, n_concurrent_classes, blend_classes, train_supervised, n_steps, random_seed, lr_init, lr_factor, lr_schedule, output_type, n_y, n_y_active, n_z, encoder_kwargs, decoder_kwargs, dynamic_expansion, ll_thresh, classify_with_samples, report_interval, knn_values, gen_replay_type, use_supervised_replay): """Run training script. Args: dataset: str, name of the dataset. training_data_type: str, type of training run ('iid' or 'sequential'). n_concurrent_classes: int, # of classes seen at a time (ignored for 'iid'). blend_classes: bool, whether to blend in samples from the next class. train_supervised: bool, whether to use supervision during training. n_steps: int, number of total training steps. random_seed: int, seed for tf and numpy RNG. lr_init: float, initial learning rate. lr_factor: float, learning rate decay factor. lr_schedule: float, epochs at which the decay should be applied. output_type: str, output distribution (currently only 'bernoulli'). n_y: int, maximum possible dimensionality of discrete latent variable y. n_y_active: int, starting dimensionality of discrete latent variable y. n_z: int, dimensionality of continuous latent variable z. encoder_kwargs: dict, parameters to specify encoder. decoder_kwargs: dict, parameters to specify decoder. dynamic_expansion: bool, whether to perform dynamic expansion. ll_thresh: float, log-likelihood threshold below which to keep poor samples. classify_with_samples: bool, whether to sample latents when classifying. report_interval: int, number of steps after which to evaluate and report. knn_values: list of ints, k values for different k-NN classifiers to run (values of 3, 5, and 10 were used in different parts of the paper). gen_replay_type: str, 'fixed', 'dynamic', or None. use_supervised_replay: str, whether to use supervised replay (aka 'SMGR'). """ # Set tf random seed. tfc.set_random_seed(random_seed) np.set_printoptions(precision=2, suppress=True) # First set up the data source(s) and get dataset info. if dataset == 'mnist': batch_size = 100 test_batch_size = 1000 dataset_kwargs = {} image_key = 'image' label_key = 'label' elif dataset == 'omniglot': batch_size = 15 test_batch_size = 1318 dataset_kwargs = {} image_key = 'image' label_key = 'alphabet' else: raise NotImplementedError dataset_ops = get_data_sources(dataset, dataset_kwargs, batch_size, test_batch_size, training_data_type, n_concurrent_classes, image_key, label_key) train_data = dataset_ops.train_data train_data_for_clf = dataset_ops.train_data_for_clf valid_data = dataset_ops.valid_data test_data = dataset_ops.test_data output_shape = dataset_ops.ds_info.features[image_key].shape n_x = np.prod(output_shape) n_classes = dataset_ops.ds_info.features[label_key].num_classes num_train_examples = dataset_ops.ds_info.splits['train'].num_examples # Check that the number of classes is compatible with the training scenario assert n_classes % n_concurrent_classes == 0 assert n_steps % (n_classes / n_concurrent_classes) == 0 # Set specific params depending on the type of gen replay if gen_replay_type == 'fixed': data_period = data_period = int(n_steps / (n_classes / n_concurrent_classes)) gen_every_n = 2 # Blend in a gen replay batch every 2 steps gen_refresh_period = data_period # How often to refresh the batches of # generated data (equivalent to snapshotting a generative model) gen_refresh_on_expansion = False # Don't refresh on dyn expansion elif gen_replay_type == 'dynamic': gen_every_n = 2 # Blend in a gen replay batch every 2 steps gen_refresh_period = 1e8 # Never refresh generated data periodically gen_refresh_on_expansion = True # Refresh on dyn expansion instead elif gen_replay_type is None: gen_every_n = 0 # Don't use any gen replay batches gen_refresh_period = 1e8 # Never refresh generated data periodically gen_refresh_on_expansion = False # Don't refresh on dyn expansion else: raise NotImplementedError max_gen_batches = 5000 # Max num of gen batches (proxy for storing a model) # Set dynamic expansion parameters exp_wait_steps = 100 # Steps to wait after expansion before eligible again exp_burn_in = 100 # Steps to wait at start of learning before eligible exp_buffer_size = 100 # Size of the buffer of poorly explained data num_buffer_train_steps = 10 # Num steps to train component on buffer # Define a global tf variable for the number of active components. n_y_active_np = n_y_active n_y_active = tfc.get_variable( initializer=tf.constant(n_y_active_np, dtype=tf.int32), trainable=False, name='n_y_active', dtype=tf.int32) logging.info('Starting CURL script on %s data.', dataset) # Set up placeholders for training. x_train_raw = tfc.placeholder( dtype=tf.float32, shape=(batch_size,) + output_shape) label_train = tfc.placeholder(dtype=tf.int32, shape=(batch_size,)) def binarize_fn(x): """Binarize a Bernoulli by rounding the probabilities. Args: x: tf tensor, input image. Returns: A tf tensor with the binarized image """ return tf.cast(tf.greater(x, 0.5 * tf.ones_like(x)), tf.float32) if dataset == 'mnist': x_train = binarize_fn(x_train_raw) x_valid = binarize_fn(valid_data[image_key]) if valid_data else None x_test = binarize_fn(test_data[image_key]) x_train_for_clf = binarize_fn(train_data_for_clf[image_key]) elif 'cifar' in dataset or dataset == 'omniglot': x_train = x_train_raw x_valid = valid_data[image_key] if valid_data else None x_test = test_data[image_key] x_train_for_clf = train_data_for_clf[image_key] else: raise ValueError('Unknown dataset {}'.format(dataset)) label_valid = valid_data[label_key] if valid_data else None label_test = test_data[label_key] # Set up CURL modules. shared_encoder = model.SharedEncoder(name='shared_encoder', **encoder_kwargs) latent_encoder = functools.partial(model.latent_encoder_fn, n_y=n_y, n_z=n_z) latent_encoder = snt.Module(latent_encoder, name='latent_encoder') latent_decoder = functools.partial(model.latent_decoder_fn, n_z=n_z) latent_decoder = snt.Module(latent_decoder, name='latent_decoder') cluster_encoder = functools.partial( model.cluster_encoder_fn, n_y_active=n_y_active, n_y=n_y) cluster_encoder = snt.Module(cluster_encoder, name='cluster_encoder') data_decoder = functools.partial( model.data_decoder_fn, output_type=output_type, output_shape=output_shape, n_x=n_x, n_y=n_y, **decoder_kwargs) data_decoder = snt.Module(data_decoder, name='data_decoder') # Uniform prior over y. prior_train_probs = utils.construct_prior_probs(batch_size, n_y, n_y_active) prior_train = snt.Module( lambda: tfp.distributions.OneHotCategorical(probs=prior_train_probs), name='prior_unconditional_train') prior_test_probs = utils.construct_prior_probs(test_batch_size, n_y, n_y_active) prior_test = snt.Module( lambda: tfp.distributions.OneHotCategorical(probs=prior_test_probs), name='prior_unconditional_test') model_train = model.Curl( prior_train, latent_decoder, data_decoder, shared_encoder, cluster_encoder, latent_encoder, n_y_active, is_training=True, name='curl_train') model_eval = model.Curl( prior_test, latent_decoder, data_decoder, shared_encoder, cluster_encoder, latent_encoder, n_y_active, is_training=False, name='curl_test') # Set up training graph y_train = label_train if train_supervised else None y_valid = label_valid if train_supervised else None y_test = label_test if train_supervised else None train_ops = setup_training_and_eval_graphs( x_train, label_train, y_train, n_y, model_train, classify_with_samples, is_training=True, name='train') hiddens_for_clf = model_eval.get_shared_rep(x_train_for_clf, is_training=False) cat_for_clf = model_eval.infer_cluster(hiddens_for_clf) if classify_with_samples: latents_for_clf = model_eval.infer_latent( hiddens=hiddens_for_clf, y=tf.to_float(cat_for_clf.sample())).sample() else: latents_for_clf = model_eval.infer_latent( hiddens=hiddens_for_clf, y=tf.to_float(cat_for_clf.mode())).mean() # Set up validation graph if valid_data is not None: valid_ops = setup_training_and_eval_graphs( x_valid, label_valid, y_valid, n_y, model_eval, classify_with_samples, is_training=False, name='valid') # Set up test graph test_ops = setup_training_and_eval_graphs( x_test, label_test, y_test, n_y, model_eval, classify_with_samples, is_training=False, name='test') # Set up optimizer (with scheduler). global_step = tf.train.get_or_create_global_step() lr_schedule = [ tf.cast(el * num_train_examples / batch_size, tf.int64) for el in lr_schedule ] num_schedule_steps = tf.reduce_sum( tf.cast(global_step >= lr_schedule, tf.float32)) lr = float(lr_init) * float(lr_factor)**num_schedule_steps optimizer = tf.train.AdamOptimizer(learning_rate=lr) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): train_step = optimizer.minimize(train_ops.elbo) train_step_supervised = optimizer.minimize(train_ops.elbo_supervised) # For dynamic expansion, we want to train only new-component-related params cat_params = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, 'cluster_encoder/mlp_cluster_encoder_final') component_params = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, 'latent_encoder/mlp_latent_encoder_*') prior_params = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, 'latent_decoder/latent_prior*') train_step_expansion = optimizer.minimize( train_ops.elbo_supervised, var_list=cat_params+component_params+prior_params) # Set up ops for generative replay if gen_every_n > 0: # How many generative batches will we use each period? gen_buffer_size = min( int(gen_refresh_period / gen_every_n), max_gen_batches) # Class each sample should be drawn from (default to uniform prior) y_gen = tfp.distributions.OneHotCategorical( probs=np.ones((batch_size, n_y)) / n_y, dtype=tf.float32, name='extra_train_classes').sample() gen_samples = model_train.sample(y=y_gen, mean=True) if dataset == 'mnist' or dataset == 'omniglot': gen_samples = binarize_fn(gen_samples) # Set up ops to dynamically modify parameters (for dynamic expansion) dynamic_ops = setup_dynamic_ops(n_y) logging.info('Created computation graph.') n_steps_per_class = n_steps / n_classes # pylint: disable=invalid-name cumulative_component_counts = np.array([0] * n_y).astype(float) recent_component_counts = np.array([0] * n_y).astype(float) gen_buffer_ind = 0 # Buffer of poorly explained data (if we're doing dynamic expansion). poor_data_buffer = [] poor_data_labels = [] all_full_poor_data_buffers = [] all_full_poor_data_labels = [] has_expanded = False steps_since_expansion = 0 gen_buffer_ind = 0 eligible_for_expansion = False # Flag to ensure we wait a bit after expansion # Set up basic ops to run and quantities to log. ops_to_run = { 'train_ELBO': train_ops.elbo, 'train_log_p_x': train_ops.log_p_x, 'train_kl_y': train_ops.kl_y, 'train_kl_z': train_ops.kl_z, 'train_ll': train_ops.ll, 'train_batch_purity': train_ops.purity, 'train_probs': train_ops.cat_probs, 'n_y_active': n_y_active } if valid_data is not None: valid_ops_to_run = { 'valid_ELBO': valid_ops.elbo, 'valid_kl_y': valid_ops.kl_y, 'valid_kl_z': valid_ops.kl_z, 'valid_confusion': valid_ops.confusion } else: valid_ops_to_run = {} test_ops_to_run = { 'test_ELBO': test_ops.elbo, 'test_kl_y': test_ops.kl_y, 'test_kl_z': test_ops.kl_z, 'test_confusion': test_ops.confusion } to_log = ['train_batch_purity'] to_log_eval = ['test_purity', 'test_ELBO', 'test_kl_y', 'test_kl_z'] if valid_data is not None: to_log_eval += ['valid_ELBO', 'valid_purity'] if train_supervised: # Track supervised losses, train on supervised loss. ops_to_run.update({ 'train_ELBO_supervised': train_ops.elbo_supervised, 'train_log_p_x_supervised': train_ops.log_p_x_supervised, 'train_kl_y_supervised': train_ops.kl_y_supervised, 'train_kl_z_supervised': train_ops.kl_z_supervised, 'train_ll_supervised': train_ops.ll_supervised }) default_train_step = train_step_supervised to_log += [ 'train_ELBO_supervised', 'train_log_p_x_supervised', 'train_kl_y_supervised', 'train_kl_z_supervised' ] else: # Track unsupervised losses, train on unsupervised loss. ops_to_run.update({ 'train_ELBO': train_ops.elbo, 'train_kl_y': train_ops.kl_y, 'train_kl_z': train_ops.kl_z, 'train_ll': train_ops.ll }) default_train_step = train_step to_log += ['train_ELBO', 'train_kl_y', 'train_kl_z'] with tf.train.SingularMonitoredSession() as sess: for step in range(n_steps): feed_dict = {} # Use the default training loss, but vary it each step depending on the # training scenario (eg. for supervised gen replay, we alternate losses) ops_to_run['train_step'] = default_train_step ### 1) PERIODICALLY TAKE SNAPSHOTS FOR GENERATIVE REPLAY ### if (gen_refresh_period and step % gen_refresh_period == 0 and gen_every_n > 0): # First, increment cumulative count and reset recent probs count. cumulative_component_counts += recent_component_counts recent_component_counts = np.zeros(n_y) # Generate enough samples for the rest of the next period # (Functionally equivalent to storing and sampling from the model). gen_buffer_images, gen_buffer_labels = get_generated_data( sess=sess, gen_op=gen_samples, y_input=y_gen, gen_buffer_size=gen_buffer_size, component_counts=cumulative_component_counts) ### 2) DECIDE WHICH DATA SOURCE TO USE (GENERATIVE OR REAL DATA) ### periodic_refresh_started = ( gen_refresh_period and step >= gen_refresh_period) refresh_on_expansion_started = (gen_refresh_on_expansion and has_expanded) if ((periodic_refresh_started or refresh_on_expansion_started) and gen_every_n > 0 and step % gen_every_n == 1): # Use generated data for the training batch used_real_data = False s = gen_buffer_ind * batch_size e = (gen_buffer_ind + 1) * batch_size gen_data_array = { 'image': gen_buffer_images[s:e], 'label': gen_buffer_labels[s:e] } gen_buffer_ind = (gen_buffer_ind + 1) % gen_buffer_size # Feed it as x_train because it's already reshaped and binarized. feed_dict.update({ x_train: gen_data_array['image'], label_train: gen_data_array['label'] }) if use_supervised_replay: # Convert label to one-hot before feeding in. gen_label_onehot = np.eye(n_y)[gen_data_array['label']] feed_dict.update({model_train.y_label: gen_label_onehot}) ops_to_run['train_step'] = train_step_supervised else: # Else use the standard training data sources. used_real_data = True # Select appropriate data source for iid or sequential setup. if training_data_type == 'sequential': current_data_period = int( min(step / n_steps_per_class, len(train_data) - 1)) # If training supervised, set n_y_active directly based on how many # classes have been seen if train_supervised: assert not dynamic_expansion n_y_active_np = n_concurrent_classes * ( current_data_period // n_concurrent_classes +1) n_y_active.load(n_y_active_np, sess) train_data_array = sess.run(train_data[current_data_period]) # If we are blending classes, figure out where we are in the data # period and add some fraction of other samples. if blend_classes: # If in the first quarter, blend in examples from the previous class if (step % n_steps_per_class < n_steps_per_class / 4 and current_data_period > 0): other_train_data_array = sess.run( train_data[current_data_period - 1]) num_other = int( (n_steps_per_class / 2 - 2 * (step % n_steps_per_class)) * batch_size / n_steps_per_class) other_inds = np.random.permutation(batch_size)[:num_other] train_data_array[image_key][:num_other] = other_train_data_array[ image_key][other_inds] train_data_array[label_key][:num_other] = other_train_data_array[ label_key][other_inds] # If in the last quarter, blend in examples from the next class elif (step % n_steps_per_class > 3 * n_steps_per_class / 4 and current_data_period < n_classes - 1): other_train_data_array = sess.run(train_data[current_data_period + 1]) num_other = int( (2 * (step % n_steps_per_class) - 3 * n_steps_per_class / 2) * batch_size / n_steps_per_class) other_inds = np.random.permutation(batch_size)[:num_other] train_data_array[image_key][:num_other] = other_train_data_array[ image_key][other_inds] train_data_array['label'][:num_other] = other_train_data_array[ label_key][other_inds] # Otherwise, just use the current class else: train_data_array = sess.run(train_data) feed_dict.update({ x_train_raw: train_data_array[image_key], label_train: train_data_array[label_key] }) ### 3) PERFORM A GRADIENT STEP ### results = sess.run(ops_to_run, feed_dict=feed_dict) del results['train_step'] ### 4) COMPUTE ADDITIONAL DIAGNOSTIC OPS ON VALIDATION/TEST SETS. ### if (step+1) % report_interval == 0: if valid_data is not None: logging.info('Evaluating on validation and test set!') proc_ops = { k: (np.sum if 'confusion' in k else np.mean) for k in valid_ops_to_run } results.update( process_dataset( dataset_ops.valid_iter, valid_ops_to_run, sess, feed_dict=feed_dict, processing_ops=proc_ops)) results['valid_purity'] = compute_purity(results['valid_confusion']) else: logging.info('Evaluating on test set!') proc_ops = { k: (np.sum if 'confusion' in k else np.mean) for k in test_ops_to_run } results.update(process_dataset(dataset_ops.test_iter, test_ops_to_run, sess, feed_dict=feed_dict, processing_ops=proc_ops)) results['test_purity'] = compute_purity(results['test_confusion']) curr_to_log = to_log + to_log_eval else: curr_to_log = list(to_log) # copy to prevent in-place modifications ### 5) DYNAMIC EXPANSION ### if dynamic_expansion and used_real_data: # If we're doing dynamic expansion and below max capacity then add # poorly defined data points to a buffer. # First check whether the model is eligible for expansion (the model # becomes ineligible for a fixed time after each expansion, and when # it has hit max capacity). if (steps_since_expansion >= exp_wait_steps and step >= exp_burn_in and n_y_active_np < n_y): eligible_for_expansion = True steps_since_expansion += 1 if eligible_for_expansion: # Add poorly explained data samples to a buffer. poor_inds = results['train_ll'] < ll_thresh poor_data_buffer.extend(feed_dict[x_train_raw][poor_inds]) poor_data_labels.extend(feed_dict[label_train][poor_inds]) n_poor_data = len(poor_data_buffer) # If buffer is big enough, then add a new component and train just the # new component with several steps of gradient descent. # (We just feed in a onehot cluster vector to indicate which # component). if n_poor_data >= exp_buffer_size: # Dump the buffers so we can log them. all_full_poor_data_buffers.append(poor_data_buffer) all_full_poor_data_labels.append(poor_data_labels) # Take a new generative snapshot if specified. if gen_refresh_on_expansion and gen_every_n > 0: # Increment cumulative count and reset recent probs count. cumulative_component_counts += recent_component_counts recent_component_counts = np.zeros(n_y) gen_buffer_images, gen_buffer_labels = get_generated_data( sess=sess, gen_op=gen_samples, y_input=y_gen, gen_buffer_size=gen_buffer_size, component_counts=cumulative_component_counts) # Cull to a multiple of batch_size (keep the later data samples). n_poor_batches = int(n_poor_data / batch_size) poor_data_buffer = poor_data_buffer[-(n_poor_batches * batch_size):] poor_data_labels = poor_data_labels[-(n_poor_batches * batch_size):] # Find most probable component (on poor batch). poor_cprobs = [] for bs in range(n_poor_batches): poor_cprobs.append( sess.run( train_ops.cat_probs, feed_dict={ x_train_raw: poor_data_buffer[bs * batch_size:(bs + 1) * batch_size] })) best_cluster = np.argmax(np.sum(np.vstack(poor_cprobs), axis=0)) # Initialize parameters of the new component from most prob # existing. new_cluster = n_y_active_np copy_component_params(best_cluster, new_cluster, sess, **dynamic_ops) # Increment mixture component count n_y_active. n_y_active_np += 1 n_y_active.load(n_y_active_np, sess) # Perform a number of steps of gradient descent on the data buffer, # training only the new component (supervised loss). for _ in range(num_buffer_train_steps): for bs in range(n_poor_batches): x_batch = poor_data_buffer[bs * batch_size:(bs + 1) * batch_size] label_batch = [new_cluster] * batch_size label_onehot_batch = np.eye(n_y)[label_batch] _ = sess.run( train_step_expansion, feed_dict={ x_train_raw: x_batch, model_train.y_label: label_onehot_batch }) # Empty the buffer. poor_data_buffer = [] poor_data_labels = [] # Reset the threshold flag so we have a burn in before the next # component. eligible_for_expansion = False has_expanded = True steps_since_expansion = 0 # Accumulate counts. if used_real_data: train_cat_probs_vals = results['train_probs'] recent_component_counts += np.sum( train_cat_probs_vals, axis=0).astype(float) ### 6) LOGGING AND EVALUATION ### cleanup_for_print = lambda x: ', {}: %.{}f'.format( x.capitalize().replace('_', ' '), 3) log_str = 'Iteration %d' log_str += ''.join([cleanup_for_print(el) for el in curr_to_log]) log_str += ' n_active: %d' logging.info( log_str, *([step] + [results[el] for el in curr_to_log] + [n_y_active_np])) # Periodically perform evaluation if (step + 1) % report_interval == 0: # Report test purity and related measures logging.info( 'Iteration %d, Test purity: %.3f, Test ELBO: %.3f, Test ' 'KLy: %.3f, Test KLz: %.3f', step, results['test_purity'], results['test_ELBO'], results['test_kl_y'], results['test_kl_z']) # Flush data only once in a while to allow buffering of data for more # efficient writes. results['all_full_poor_data_buffers'] = all_full_poor_data_buffers results['all_full_poor_data_labels'] = all_full_poor_data_labels logging.info('Also training a classifier in latent space') # Perform knn classification from latents, to evaluate discriminability. # Get and encode training and test datasets. clf_train_vals = process_dataset( dataset_ops.train_iter_for_clf, { 'latents': latents_for_clf, 'labels': train_data_for_clf[label_key] }, sess, feed_dict, aggregation_ops=np.concatenate) clf_test_vals = process_dataset( dataset_ops.test_iter, { 'latents': test_ops.latents, 'labels': test_data[label_key] }, sess, aggregation_ops=np.concatenate) # Perform knn classification. knn_models = [] for nval in knn_values: # Fit training dataset. clf = neighbors.KNeighborsClassifier(n_neighbors=nval) clf.fit(clf_train_vals['latents'], clf_train_vals['labels']) knn_models.append(clf) results['train_' + str(nval) + 'nn_acc'] = clf.score( clf_train_vals['latents'], clf_train_vals['labels']) # Get test performance. results['test_' + str(nval) + 'nn_acc'] = clf.score( clf_test_vals['latents'], clf_test_vals['labels']) logging.info( 'Iteration %d %d-NN classifier accuracies, Training: ' '%.3f, Test: %.3f', step, nval, results['train_' + str(nval) + 'nn_acc'], results['test_' + str(nval) + 'nn_acc'])
deepmind-research-master
curl/training.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WideResNet and PreActResNet implementations in PyTorch.""" from typing import Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F CIFAR10_MEAN = (0.4914, 0.4822, 0.4465) CIFAR10_STD = (0.2471, 0.2435, 0.2616) CIFAR100_MEAN = (0.5071, 0.4865, 0.4409) CIFAR100_STD = (0.2673, 0.2564, 0.2762) class _Swish(torch.autograd.Function): """Custom implementation of swish.""" @staticmethod def forward(ctx, i): result = i * torch.sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_variables[0] sigmoid_i = torch.sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) class Swish(nn.Module): """Module using custom implementation.""" def forward(self, input_tensor): return _Swish.apply(input_tensor) class _Block(nn.Module): """WideResNet Block.""" def __init__(self, in_planes, out_planes, stride, activation_fn=nn.ReLU): super().__init__() self.batchnorm_0 = nn.BatchNorm2d(in_planes) self.relu_0 = activation_fn() # We manually pad to obtain the same effect as `SAME` (necessary when # `stride` is different than 1). self.conv_0 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=0, bias=False) self.batchnorm_1 = nn.BatchNorm2d(out_planes) self.relu_1 = activation_fn() self.conv_1 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.has_shortcut = in_planes != out_planes if self.has_shortcut: self.shortcut = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) else: self.shortcut = None self._stride = stride def forward(self, x): if self.has_shortcut: x = self.relu_0(self.batchnorm_0(x)) else: out = self.relu_0(self.batchnorm_0(x)) v = x if self.has_shortcut else out if self._stride == 1: v = F.pad(v, (1, 1, 1, 1)) elif self._stride == 2: v = F.pad(v, (0, 1, 0, 1)) else: raise ValueError('Unsupported `stride`.') out = self.conv_0(v) out = self.relu_1(self.batchnorm_1(out)) out = self.conv_1(out) out = torch.add(self.shortcut(x) if self.has_shortcut else x, out) return out class _BlockGroup(nn.Module): """WideResNet block group.""" def __init__(self, num_blocks, in_planes, out_planes, stride, activation_fn=nn.ReLU): super().__init__() block = [] for i in range(num_blocks): block.append( _Block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, activation_fn=activation_fn)) self.block = nn.Sequential(*block) def forward(self, x): return self.block(x) class WideResNet(nn.Module): """WideResNet.""" def __init__(self, num_classes: int = 10, depth: int = 28, width: int = 10, activation_fn: nn.Module = nn.ReLU, mean: Union[Tuple[float, ...], float] = CIFAR10_MEAN, std: Union[Tuple[float, ...], float] = CIFAR10_STD, padding: int = 0, num_input_channels: int = 3): super().__init__() self.mean = torch.tensor(mean).view(num_input_channels, 1, 1) self.std = torch.tensor(std).view(num_input_channels, 1, 1) self.mean_cuda = None self.std_cuda = None self.padding = padding num_channels = [16, 16 * width, 32 * width, 64 * width] assert (depth - 4) % 6 == 0 num_blocks = (depth - 4) // 6 self.init_conv = nn.Conv2d(num_input_channels, num_channels[0], kernel_size=3, stride=1, padding=1, bias=False) self.layer = nn.Sequential( _BlockGroup(num_blocks, num_channels[0], num_channels[1], 1, activation_fn=activation_fn), _BlockGroup(num_blocks, num_channels[1], num_channels[2], 2, activation_fn=activation_fn), _BlockGroup(num_blocks, num_channels[2], num_channels[3], 2, activation_fn=activation_fn)) self.batchnorm = nn.BatchNorm2d(num_channels[3]) self.relu = activation_fn() self.logits = nn.Linear(num_channels[3], num_classes) self.num_channels = num_channels[3] def forward(self, x): if self.padding > 0: x = F.pad(x, (self.padding,) * 4) if x.is_cuda: if self.mean_cuda is None: self.mean_cuda = self.mean.cuda() self.std_cuda = self.std.cuda() out = (x - self.mean_cuda) / self.std_cuda else: out = (x - self.mean) / self.std out = self.init_conv(out) out = self.layer(out) out = self.relu(self.batchnorm(out)) out = F.avg_pool2d(out, 8) out = out.view(-1, self.num_channels) return self.logits(out) class _PreActBlock(nn.Module): """Pre-activation ResNet Block.""" def __init__(self, in_planes, out_planes, stride, activation_fn=nn.ReLU): super().__init__() self._stride = stride self.batchnorm_0 = nn.BatchNorm2d(in_planes) self.relu_0 = activation_fn() # We manually pad to obtain the same effect as `SAME` (necessary when # `stride` is different than 1). self.conv_2d_1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=0, bias=False) self.batchnorm_1 = nn.BatchNorm2d(out_planes) self.relu_1 = activation_fn() self.conv_2d_2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.has_shortcut = stride != 1 or in_planes != out_planes if self.has_shortcut: self.shortcut = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=0, bias=False) def _pad(self, x): if self._stride == 1: x = F.pad(x, (1, 1, 1, 1)) elif self._stride == 2: x = F.pad(x, (0, 1, 0, 1)) else: raise ValueError('Unsupported `stride`.') return x def forward(self, x): out = self.relu_0(self.batchnorm_0(x)) shortcut = self.shortcut(self._pad(x)) if self.has_shortcut else x out = self.conv_2d_1(self._pad(out)) out = self.conv_2d_2(self.relu_1(self.batchnorm_1(out))) return out + shortcut class PreActResNet(nn.Module): """Pre-activation ResNet.""" def __init__(self, num_classes: int = 10, depth: int = 18, width: int = 0, # Used to make the constructor consistent. activation_fn: nn.Module = nn.ReLU, mean: Union[Tuple[float, ...], float] = CIFAR10_MEAN, std: Union[Tuple[float, ...], float] = CIFAR10_STD, padding: int = 0, num_input_channels: int = 3): super().__init__() if width != 0: raise ValueError('Unsupported `width`.') self.mean = torch.tensor(mean).view(num_input_channels, 1, 1) self.std = torch.tensor(std).view(num_input_channels, 1, 1) self.mean_cuda = None self.std_cuda = None self.padding = padding self.conv_2d = nn.Conv2d(num_input_channels, 64, kernel_size=3, stride=1, padding=1, bias=False) if depth == 18: num_blocks = (2, 2, 2, 2) elif depth == 34: num_blocks = (3, 4, 6, 3) else: raise ValueError('Unsupported `depth`.') self.layer_0 = self._make_layer(64, 64, num_blocks[0], 1, activation_fn) self.layer_1 = self._make_layer(64, 128, num_blocks[1], 2, activation_fn) self.layer_2 = self._make_layer(128, 256, num_blocks[2], 2, activation_fn) self.layer_3 = self._make_layer(256, 512, num_blocks[3], 2, activation_fn) self.batchnorm = nn.BatchNorm2d(512) self.relu = activation_fn() self.logits = nn.Linear(512, num_classes) def _make_layer(self, in_planes, out_planes, num_blocks, stride, activation_fn): layers = [] for i, stride in enumerate([stride] + [1] * (num_blocks - 1)): layers.append( _PreActBlock(i == 0 and in_planes or out_planes, out_planes, stride, activation_fn)) return nn.Sequential(*layers) def forward(self, x): if self.padding > 0: x = F.pad(x, (self.padding,) * 4) if x.is_cuda: if self.mean_cuda is None: self.mean_cuda = self.mean.cuda() self.std_cuda = self.std.cuda() out = (x - self.mean_cuda) / self.std_cuda else: out = (x - self.mean) / self.std out = self.conv_2d(out) out = self.layer_0(out) out = self.layer_1(out) out = self.layer_2(out) out = self.layer_3(out) out = self.relu(self.batchnorm(out)) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) return self.logits(out)
deepmind-research-master
adversarial_robustness/pytorch/model_zoo.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluates a PyTorch checkpoint on CIFAR-10/100 or MNIST.""" from absl import app from absl import flags import torch from torch.utils import data from torchvision import datasets from torchvision import transforms import tqdm from adversarial_robustness.pytorch import model_zoo _CKPT = flags.DEFINE_string( 'ckpt', None, 'Path to checkpoint.') _DATASET = flags.DEFINE_enum( 'dataset', 'cifar10', ['cifar10', 'cifar100', 'mnist'], 'Dataset on which the checkpoint is evaluated.') _WIDTH = flags.DEFINE_integer( 'width', 16, 'Width of WideResNet (if set to zero uses a PreActResNet).') _DEPTH = flags.DEFINE_integer( 'depth', 70, 'Depth of WideResNet or PreActResNet.') _USE_CUDA = flags.DEFINE_boolean( 'use_cuda', True, 'Whether to use CUDA.') _BATCH_SIZE = flags.DEFINE_integer( 'batch_size', 100, 'Batch size.') _NUM_BATCHES = flags.DEFINE_integer( 'num_batches', 0, 'Number of batches to evaluate (zero means the whole dataset).') def main(unused_argv): print(f'Loading "{_CKPT.value}"') # Create model and dataset. if _WIDTH.value == 0: print(f'Using a PreActResNet with depth {_DEPTH.value}.') model_ctor = model_zoo.PreActResNet else: print(f'Using a WideResNet with depth {_DEPTH.value} and width ' f'{_WIDTH.value}.') model_ctor = model_zoo.WideResNet if _DATASET.value == 'mnist': model = model_ctor( num_classes=10, depth=_DEPTH.value, width=_WIDTH.value, activation_fn=model_zoo.Swish, mean=.5, std=.5, padding=2, num_input_channels=1) dataset_fn = datasets.MNIST elif _DATASET.value == 'cifar10': model = model_ctor( num_classes=10, depth=_DEPTH.value, width=_WIDTH.value, activation_fn=model_zoo.Swish, mean=model_zoo.CIFAR10_MEAN, std=model_zoo.CIFAR10_STD) dataset_fn = datasets.CIFAR10 else: assert _DATASET.value == 'cifar100' model = model_ctor( num_classes=100, depth=_DEPTH.value, width=_WIDTH.value, activation_fn=model_zoo.Swish, mean=model_zoo.CIFAR100_MEAN, std=model_zoo.CIFAR100_STD) dataset_fn = datasets.CIFAR100 # Load model. if _CKPT.value != 'dummy': params = torch.load(_CKPT.value) model.load_state_dict(params) if _USE_CUDA.value: model.cuda() model.eval() print('Successfully loaded.') # Load dataset. transform_chain = transforms.Compose([transforms.ToTensor()]) ds = dataset_fn(root='/tmp/data', train=False, transform=transform_chain, download=True) test_loader = data.DataLoader(ds, batch_size=_BATCH_SIZE.value, shuffle=False, num_workers=0) # Evaluation. correct = 0 total = 0 batch_count = 0 total_batches = min((10_000 - 1) // _BATCH_SIZE.value + 1, _NUM_BATCHES.value) with torch.no_grad(): for images, labels in tqdm.tqdm(test_loader, total=total_batches): outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() batch_count += 1 if _NUM_BATCHES.value > 0 and batch_count >= _NUM_BATCHES.value: break print(f'Accuracy on the {total} test images: {100 * correct / total:.2f}%') if __name__ == '__main__': flags.mark_flag_as_required('ckpt') app.run(main)
deepmind-research-master
adversarial_robustness/pytorch/eval.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WideResNet implementation in JAX using Haiku.""" from typing import Any, Dict, Optional import chex import haiku as hk import jax import jax.numpy as jnp class _WideResNetBlock(hk.Module): """Block of a WideResNet.""" def __init__(self, num_filters, stride=1, projection_shortcut=False, activation=jax.nn.relu, norm_args=None, name=None): super().__init__(name=name) num_bottleneck_layers = 1 self._activation = activation if norm_args is None: norm_args = { 'create_offset': False, 'create_scale': True, 'decay_rate': .99, } self._bn_modules = [] self._conv_modules = [] for i in range(num_bottleneck_layers + 1): s = stride if i == 0 else 1 self._bn_modules.append(hk.BatchNorm( name='batchnorm_{}'.format(i), **norm_args)) self._conv_modules.append(hk.Conv2D( output_channels=num_filters, padding='SAME', kernel_shape=(3, 3), stride=s, with_bias=False, name='conv_{}'.format(i))) # pytype: disable=not-callable if projection_shortcut: self._shortcut = hk.Conv2D( output_channels=num_filters, kernel_shape=(1, 1), stride=stride, with_bias=False, name='shortcut') # pytype: disable=not-callable else: self._shortcut = None def __call__(self, inputs, **norm_kwargs): x = inputs orig_x = inputs for i, (bn, conv) in enumerate(zip(self._bn_modules, self._conv_modules)): x = bn(x, **norm_kwargs) x = self._activation(x) if self._shortcut is not None and i == 0: orig_x = x x = conv(x) if self._shortcut is not None: shortcut_x = self._shortcut(orig_x) x += shortcut_x else: x += orig_x return x class WideResNet(hk.Module): """WideResNet designed for CIFAR-10.""" def __init__(self, num_classes: int = 10, depth: int = 28, width: int = 10, activation: str = 'relu', norm_args: Optional[Dict[str, Any]] = None, name: Optional[str] = None): super(WideResNet, self).__init__(name=name) if (depth - 4) % 6 != 0: raise ValueError('depth should be 6n+4.') self._activation = getattr(jax.nn, activation) if norm_args is None: norm_args = { 'create_offset': True, 'create_scale': True, 'decay_rate': .99, } self._conv = hk.Conv2D( output_channels=16, kernel_shape=(3, 3), stride=1, with_bias=False, name='init_conv') # pytype: disable=not-callable self._bn = hk.BatchNorm( name='batchnorm', **norm_args) self._linear = hk.Linear( num_classes, w_init=jnp.zeros, name='logits') blocks_per_layer = (depth - 4) // 6 filter_sizes = [width * n for n in [16, 32, 64]] self._blocks = [] for layer_num, filter_size in enumerate(filter_sizes): blocks_of_layer = [] for i in range(blocks_per_layer): stride = 2 if (layer_num != 0 and i == 0) else 1 projection_shortcut = (i == 0) blocks_of_layer.append(_WideResNetBlock( num_filters=filter_size, stride=stride, projection_shortcut=projection_shortcut, activation=self._activation, norm_args=norm_args, name='resnet_lay_{}_block_{}'.format(layer_num, i))) self._blocks.append(blocks_of_layer) def __call__(self, inputs: chex.Array, **norm_kwargs) -> chex.Array: net = inputs net = self._conv(net) # Blocks. for blocks_of_layer in self._blocks: for block in blocks_of_layer: net = block(net, **norm_kwargs) net = self._bn(net, **norm_kwargs) net = self._activation(net) net = jnp.mean(net, axis=[1, 2]) return self._linear(net)
deepmind-research-master
adversarial_robustness/jax/model_zoo.py
# Copyright 2021 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Quick script to test that experiment can import and run.""" from absl import app import jax import jax.numpy as jnp from jaxline import utils as jl_utils from adversarial_robustness.jax import experiment @jl_utils.disable_pmap_jit def test_experiment(unused_argv): """Tests the main experiment.""" config = experiment.get_config() exp_config = config.experiment_kwargs.config exp_config.dry_run = True exp_config.emulated_workers = 0 exp_config.training.batch_size = 2 exp_config.evaluation.batch_size = 2 exp_config.model.kwargs.depth = 10 exp_config.model.kwargs.width = 1 xp = experiment.Experiment('train', exp_config, jax.random.PRNGKey(0)) bcast = jax.pmap(lambda x: x) global_step = bcast(jnp.zeros(jax.local_device_count())) rng = bcast(jnp.stack([jax.random.PRNGKey(0)] * jax.local_device_count())) print('Taking a single experiment step for test purposes!') result = xp.step(global_step, rng) print(f'Step successfully taken, resulting metrics are {result}') if __name__ == '__main__': app.run(test_experiment)
deepmind-research-master
adversarial_robustness/jax/experiment_test.py
# Copyright 2021 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Datasets.""" from typing import Sequence import chex import jax import jax.numpy as jnp import numpy as np import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds _CIFAR10_MEAN = (0.4914, 0.4822, 0.4465) _CIFAR10_STD = (0.2471, 0.2435, 0.2616) _CIFAR100_MEAN = (0.5071, 0.4865, 0.4409) _CIFAR100_STD = (0.2673, 0.2564, 0.2762) _DATA_URL = 'https://storage.googleapis.com/dm-adversarial-robustness/' _ALLOWED_FILES = ('cifar10_ddpm.npz',) _WEBPAGE = ('https://github.com/deepmind/deepmind-research/tree/master/' 'adversarial_robustness') def cifar10_preprocess(mode: str = 'train'): """Preprocessing functions for CIFAR-10.""" def _preprocess_fn_train(example): """Preprocessing of CIFAR-10 images for training.""" image = example['image'] image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = _random_jitter(image, pad=4, crop=32) image = tf.image.random_flip_left_right(image) label = tf.cast(example['label'], tf.int32) return {'image': image, 'label': label} def _preprocess_fn_test(example): """Preprocessing of CIFAR-10 images for testing.""" image = example['image'] image = tf.image.convert_image_dtype(image, dtype=tf.float32) label = tf.cast(example['label'], tf.int32) return {'image': image, 'label': label} return _preprocess_fn_train if mode == 'train' else _preprocess_fn_test def cifar10_normalize(image: chex.Array) -> chex.Array: means = jnp.array(_CIFAR10_MEAN, dtype=image.dtype) stds = jnp.array(_CIFAR10_STD, dtype=image.dtype) return (image - means) / stds def mnist_normalize(image: chex.Array) -> chex.Array: image = jnp.pad(image, ((0, 0), (2, 2), (2, 2), (0, 0)), 'constant', constant_values=0) return (image - .5) * 2. def cifar100_normalize(image: chex.Array) -> chex.Array: means = jnp.array(_CIFAR100_MEAN, dtype=image.dtype) stds = jnp.array(_CIFAR100_STD, dtype=image.dtype) return (image - means) / stds def load_cifar10(batch_sizes: Sequence[int], subset: str = 'train', is_training: bool = True, drop_remainder: bool = True, repeat: int = 1) -> tf.data.Dataset: """Loads CIFAR-10.""" if subset == 'train': ds = tfds.load(name='cifar10', split=tfds.Split.TRAIN) # In Gowal et al. (https://arxiv.org/abs/2010.03593) and Rebuffi et al. # (https://arxiv.org/abs/2103.01946), we also keep a separate validation # subset for early stopping and would run: ds = ds.skip(1_024). elif subset == 'test': ds = tfds.load(name='cifar10', split=tfds.Split.TEST) else: raise ValueError('Unknown subset: "{}"'.format(subset)) ds = ds.cache() if is_training: ds = ds.repeat() ds = ds.shuffle(buffer_size=50_000, seed=0) ds = _repeat_batch(batch_sizes, ds, repeat=repeat) ds = ds.map(cifar10_preprocess('train' if is_training else 'test'), num_parallel_calls=tf.data.AUTOTUNE) for batch_size in reversed(batch_sizes): ds = ds.batch(batch_size, drop_remainder=drop_remainder) return ds.prefetch(tf.data.AUTOTUNE) def load_extra(batch_sizes: Sequence[int], path_npz: str, is_training: bool = True, drop_remainder: bool = True) -> tf.data.Dataset: """Loads extra data from a given path.""" if not tf.io.gfile.exists(path_npz): if path_npz in _ALLOWED_FILES: path_npz = tf.keras.utils.get_file(path_npz, _DATA_URL + path_npz) else: raise ValueError(f'Extra data not found ({path_npz}). See {_WEBPAGE} for ' 'more details.') with tf.io.gfile.GFile(path_npz, 'rb') as fp: npzfile = np.load(fp) data = {'image': npzfile['image'], 'label': npzfile['label']} with tf.device('/device:cpu:0'): # Prevent allocation to happen on GPU. ds = tf.data.Dataset.from_tensor_slices(data) ds = ds.cache() if is_training: ds = ds.repeat() ds = ds.shuffle(buffer_size=50_000, seed=jax.host_id()) ds = ds.map(cifar10_preprocess('train' if is_training else 'test'), num_parallel_calls=tf.data.AUTOTUNE) for batch_size in reversed(batch_sizes): ds = ds.batch(batch_size, drop_remainder=drop_remainder) return ds.prefetch(tf.data.AUTOTUNE) def load_dummy_data(batch_sizes: Sequence[int], is_training: bool = True, **unused_kwargs) -> tf.data.Dataset: """Loads fictive data (use this function when testing).""" ds = tf.data.Dataset.from_tensor_slices({ 'image': np.zeros((1, 32, 32, 3), np.float32), 'label': np.zeros((1,), np.int32), }) ds = ds.repeat() if not is_training: total_batch_size = np.prod(batch_sizes) ds = ds.take(total_batch_size) ds = ds.map(cifar10_preprocess('train' if is_training else 'test'), num_parallel_calls=tf.data.AUTOTUNE) for batch_size in reversed(batch_sizes): ds = ds.batch(batch_size, drop_remainder=True) return ds.prefetch(tf.data.AUTOTUNE) def _random_jitter(image: tf.Tensor, pad: int, crop: int) -> tf.Tensor: shape = image.shape.as_list() image = tf.pad(image, [[pad, pad], [pad, pad], [0, 0]]) image = tf.image.random_crop(image, size=[crop, crop, shape[2]]) return image def _repeat_batch(batch_sizes: Sequence[int], ds: tf.data.Dataset, repeat: int = 1) -> tf.data.Dataset: """Tiles the inner most batch dimension.""" if repeat <= 1: return ds if batch_sizes[-1] % repeat != 0: raise ValueError(f'The last element of `batch_sizes` ({batch_sizes}) must ' f'be divisible by `repeat` ({repeat}).') # Perform regular batching with reduced number of elements. for i, batch_size in enumerate(reversed(batch_sizes)): ds = ds.batch(batch_size // repeat if i == 0 else batch_size, drop_remainder=True) # Repeat batch. fn = lambda x: tf.repeat(x, repeats=repeat, axis=len(batch_sizes) - 1) def repeat_inner_batch(example): return jax.tree_map(fn, example) ds = ds.map(repeat_inner_batch, num_parallel_calls=tf.data.AUTOTUNE) # Unbatch. for _ in batch_sizes: ds = ds.unbatch() return ds
deepmind-research-master
adversarial_robustness/jax/datasets.py
# Copyright 2021 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """JAXline experiment to perform robust adversarial training.""" import functools import os from typing import Callable, Optional, Tuple from absl import flags from absl import logging import chex import haiku as hk import jax import jax.numpy as jnp from jaxline import base_config from jaxline import experiment from jaxline import utils as jl_utils from ml_collections import config_dict import numpy as np import optax import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds from adversarial_robustness.jax import attacks from adversarial_robustness.jax import datasets from adversarial_robustness.jax import model_zoo from adversarial_robustness.jax import utils FLAGS = flags.FLAGS def get_config(): """Return config object for training.""" config = base_config.get_base_config() # Batch size, training steps and data. num_classes = 10 num_epochs = 400 # Gowal et al. (2020) and Rebuffi et al. (2021) use 1024 as batch size. # Reducing this batch size may require further adjustments to the batch # normalization decay or the learning rate. If you have to use a batch size # of 256, reduce the number of emulated workers to 1 (it should match the # results of using a batch size of 1024 with 4 workers). train_batch_size = 1024 def steps_from_epochs(n): return max(int(n * 50_000 / train_batch_size), 1) num_steps = steps_from_epochs(num_epochs) test_batch_size = train_batch_size # Specify the path to the downloaded data. You can download data from # https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness. # If the path is set to "cifar10_ddpm.npz" and is not found in the current # directory, the corresponding data will be downloaded. extra_npz = 'cifar10_ddpm.npz' # Can be `None`. # Learning rate. learning_rate = .1 * max(train_batch_size / 256, 1.) learning_rate_warmup = steps_from_epochs(10) use_cosine_schedule = True if use_cosine_schedule: learning_rate_fn = utils.get_cosine_schedule(learning_rate, num_steps, learning_rate_warmup) else: learning_rate_fn = utils.get_step_schedule(learning_rate, num_steps, learning_rate_warmup) # Model definition. model_ctor = model_zoo.WideResNet model_kwargs = dict( num_classes=num_classes, depth=28, width=10, activation='swish') # Attack used during training (can be None). epsilon = 8 / 255 train_attack = attacks.UntargetedAttack( attacks.PGD( attacks.Adam(optax.piecewise_constant_schedule( init_value=.1, boundaries_and_scales={5: .1})), num_steps=10, initialize_fn=attacks.linf_initialize_fn(epsilon), project_fn=attacks.linf_project_fn(epsilon, bounds=(0., 1.))), loss_fn=attacks.untargeted_kl_divergence) # Attack used during evaluation (can be None). eval_attack = attacks.UntargetedAttack( attacks.PGD( attacks.Adam(learning_rate_fn=optax.piecewise_constant_schedule( init_value=.1, boundaries_and_scales={20: .1, 30: .01})), num_steps=40, initialize_fn=attacks.linf_initialize_fn(epsilon), project_fn=attacks.linf_project_fn(epsilon, bounds=(0., 1.))), loss_fn=attacks.untargeted_margin) config.experiment_kwargs = config_dict.ConfigDict(dict(config=dict( epsilon=epsilon, num_classes=num_classes, # Results from various publications use 4 worker machines, which results # in slight differences when using less worker machines. To compensate for # such discrepancies, we emulate these additional workers. Set to zero, # when using more than 4 workers. emulated_workers=4, dry_run=False, save_final_checkpoint_as_npy=True, model=dict( constructor=model_ctor, kwargs=model_kwargs), training=dict( batch_size=train_batch_size, learning_rate=learning_rate_fn, weight_decay=5e-4, swa_decay=.995, use_cutmix=False, supervised_batch_ratio=.3 if extra_npz is not None else 1., extra_data_path=extra_npz, extra_label_smoothing=.1, attack=train_attack), evaluation=dict( # If `interval` is positive, synchronously evaluate at regular # intervals. Setting it to zero will not evaluate while training, # unless `--jaxline_mode` is set to `train_eval_multithreaded`, which # asynchronously evaluates checkpoints. interval=steps_from_epochs(40), batch_size=test_batch_size, attack=eval_attack), ))) config.checkpoint_dir = '/tmp/jaxline/robust' config.train_checkpoint_all_hosts = False config.training_steps = num_steps config.interval_type = 'steps' config.log_train_data_interval = steps_from_epochs(.5) config.log_tensors_interval = steps_from_epochs(.5) config.save_checkpoint_interval = steps_from_epochs(40) config.eval_specific_checkpoint_dir = '' return config class Experiment(experiment.AbstractExperiment): """CIFAR-10 experiment.""" CHECKPOINT_ATTRS = { '_params': 'params', '_avg_params': 'avg_params', '_opt_state': 'opt_state', '_state': 'state', } def __init__(self, mode, config, init_rng): super().__init__(mode=mode) self.config = config self._params = None # Network weights. self._avg_params = None # Averaged network weights. self._state = None # Network state (e.g., batch statistics). self._opt_state = None # Optimizer state. # Build model. self.model = hk.transform_with_state(self._get_model()) if mode == 'train': self._initialize_training(init_rng) if self.config.evaluation.interval > 0: self._last_evaluation_scalars = {} self._initialize_evaluation() elif mode == 'eval': self._initialize_evaluation() elif mode == 'train_eval_multithreaded': self._initialize_training(init_rng) self._initialize_evaluation() else: raise ValueError(f'Unknown mode: "{mode}"') # _ _ # | |_ _ __ __ _(_)_ __ # | __| '__/ _` | | '_ \ # | |_| | | (_| | | | | | # \__|_| \__,_|_|_| |_| # def step(self, global_step, rng, *unused_args, **unused_kwargs): # Get next inputs. supervised_inputs = next(self.supervised_train_input) if self.extra_train_input is None: extra_inputs = None else: extra_inputs = next(self.extra_train_input) # Perform step. (self._params, self._avg_params, self._state, self._opt_state, scalars) = self.train_fn( params=self._params, avg_params=self._avg_params, state=self._state, opt_state=self._opt_state, global_step=global_step, supervised_inputs=supervised_inputs, extra_inputs=extra_inputs, rng=rng) scalars = jl_utils.get_first(scalars) # Save final checkpoint. if self.config.save_final_checkpoint_as_npy and not self.config.dry_run: global_step_value = jl_utils.get_first(global_step) if global_step_value == FLAGS.config.get('training_steps', 1) - 1: f_np = lambda x: np.array(jax.device_get(jl_utils.get_first(x))) np_params = jax.tree_map(f_np, self._avg_params or self._params) np_state = jax.tree_map(f_np, self._state) path_npy = os.path.join(FLAGS.config.checkpoint_dir, 'checkpoint.npy') with tf.io.gfile.GFile(path_npy, 'wb') as fp: np.save(fp, (np_params, np_state)) logging.info('Saved final checkpoint at %s', path_npy) # Run synchronous evaluation. if self.config.evaluation.interval <= 0: return scalars global_step_value = jl_utils.get_first(global_step) if (global_step_value % self.config.evaluation.interval != 0 and global_step_value != FLAGS.config.get('training_steps', 1) - 1): return _merge_eval_scalars(scalars, self._last_evaluation_scalars) logging.info('Running synchronous evaluation...') eval_scalars = self.evaluate(global_step, rng) f_list = lambda x: x.tolist() if isinstance(x, jnp.ndarray) else x self._last_evaluation_scalars = jax.tree_map(f_list, eval_scalars) logging.info('(eval) global_step: %d, %s', global_step_value, self._last_evaluation_scalars) return _merge_eval_scalars(scalars, self._last_evaluation_scalars) def _train_fn(self, params, avg_params, state, opt_state, global_step, supervised_inputs, extra_inputs, rng): scalars = {} images, labels, target_probs = self.concatenate(supervised_inputs, extra_inputs) # Apply CutMix. if self.config.training.use_cutmix: aug_rng, rng = jax.random.split(rng) images, target_probs = utils.cutmix(aug_rng, images, target_probs, split=self._repeat_batch) # Perform adversarial attack. if self.config.training.attack is None: adv_images = None grad_fn = jax.grad(self._cross_entropy_loss_fn, has_aux=True) else: attack = self.config.training.attack attack_rng, rng = jax.random.split(rng) def logits_fn(x): x = self.normalize_fn(x) return self.model.apply(params, state, rng, x, is_training=False, test_local_stats=True)[0] if attack.expects_labels(): if self.config.training.use_cutmix: raise ValueError('Use `untargeted_kl_divergence` when using CutMix.') target_labels = labels else: assert attack.expects_probabilities() if self.config.training.use_cutmix: # When using CutMix, regress the attack away from mixed labels. target_labels = target_probs else: target_labels = jax.nn.softmax(logits_fn(images)) adv_images = attack(logits_fn, attack_rng, images, target_labels) grad_fn = jax.grad(self._trades_loss_fn, has_aux=True) # Compute loss and gradients. scaled_grads, (state, loss_scalars) = grad_fn( params, state, images, adv_images, labels, target_probs, rng) grads = jax.lax.psum(scaled_grads, axis_name='i') scalars.update(loss_scalars) updates, opt_state = self.optimizer.update(grads, opt_state, params) params = optax.apply_updates(params, updates) # Stochastic weight averaging. if self.config.training.swa_decay > 0: avg_params = utils.ema_update(global_step, avg_params, params, decay_rate=self.config.training.swa_decay) learning_rate = self.config.training.learning_rate(global_step) scalars['learning_rate'] = learning_rate scalars = jax.lax.pmean(scalars, axis_name='i') return params, avg_params, state, opt_state, scalars def _cross_entropy_loss_fn(self, params, state, images, adv_images, labels, target_probs, rng): scalars = {} images = self.normalize_fn(images) logits, state = self.model.apply( params, state, rng, images, is_training=True) loss = jnp.mean(utils.cross_entropy(logits, target_probs)) loss += self.config.training.weight_decay * utils.weight_decay(params) if not self.config.training.use_cutmix: scalars['top_1_acc'] = utils.accuracy(logits, labels) scalars['train_loss'] = loss scaled_loss = loss / jax.device_count() return scaled_loss, (state, scalars) def _trades_loss_fn(self, params, state, images, adv_images, labels, target_probs, rng, beta=6.): """Calculates TRADES loss (https://arxiv.org/pdf/1901.08573).""" scalars = {} def apply_fn(x, **norm_kwargs): x = self.normalize_fn(x) return self.model.apply(params, state, rng, x, **norm_kwargs) # Clean images. clean_logits, _ = apply_fn(images, is_training=False, test_local_stats=True) if not self.config.training.use_cutmix: scalars['top_1_acc'] = utils.accuracy(clean_logits, labels) # Adversarial images. Update BN stats with adversarial images. adv_logits, state = apply_fn(adv_images, is_training=True) if not self.config.training.use_cutmix: scalars['top_1_adv_acc'] = utils.accuracy(adv_logits, labels) # Compute loss. clean_loss = jnp.mean(utils.cross_entropy(clean_logits, target_probs)) adv_loss = jnp.mean(utils.kl_divergence(adv_logits, clean_logits)) reg_loss = self.config.training.weight_decay * utils.weight_decay(params) loss = clean_loss + beta * adv_loss + reg_loss scalars['train_loss'] = loss scaled_loss = loss / jax.device_count() return scaled_loss, (state, scalars) # _ # _____ ____ _| | # / _ \ \ / / _` | | # | __/\ V / (_| | | # \___| \_/ \__,_|_| # def evaluate(self, global_step, rng, *unused_args, **unused_kwargs): scalars = self.eval_epoch(self._params, self._state, rng) if self._avg_params: avg_scalars = self.eval_epoch(self._avg_params or self._params, self._state, rng) for k, v in avg_scalars.items(): scalars[k + '_swa'] = v return scalars def eval_epoch(self, params, state, rng): host_id = jax.host_id() num_samples = 0 batch_axis = 1 summed_scalars = None # Converting to numpy here allows us to reset the generator. eval_input = tfds.as_numpy(self.eval_input) for all_inputs in eval_input: # The inputs are send to multiple workers. inputs = jax.tree_map(lambda x: x[host_id], all_inputs) num_samples += jax.device_count() * inputs['image'].shape[batch_axis] scalars = jl_utils.get_first(self.eval_fn(params, state, inputs, rng)) # Accumulate the sum of scalars for each step. scalars = jax.tree_map(lambda x: jnp.sum(x, axis=0), scalars) if summed_scalars is None: summed_scalars = scalars else: summed_scalars = jax.tree_map(jnp.add, summed_scalars, scalars) mean_scalars = jax.tree_map(lambda x: x / num_samples, summed_scalars) return mean_scalars def _eval_fn(self, params, state, inputs, rng): images = inputs['image'] labels = inputs['label'] attack_rng, rng = jax.random.split(rng) def logits_fn(x): x = self.normalize_fn(x) return self.model.apply(params, state, rng, x, is_training=False, test_local_stats=False)[0] # Clean accuracy. logits = logits_fn(images) predicted_label = jnp.argmax(logits, axis=-1) correct = jnp.equal(predicted_label, labels).astype(jnp.float32) scalars = {'top_1_acc': correct} # Adversarial accuracy. if self.config.evaluation.attack is not None: attack = self.config.evaluation.attack assert attack.expects_labels() adv_images = attack(logits_fn, attack_rng, images, labels) adv_logits = logits_fn(adv_images) predicted_label = jnp.argmax(adv_logits, axis=-1) correct = jnp.equal(predicted_label, labels).astype(jnp.float32) scalars['top_1_adv_acc'] = correct # Returned values will be summed and finally divided by num_samples. return jax.lax.psum(scalars, axis_name='i') def _initialize_training(self, rng): # Initialize inputs. if self.config.emulated_workers > 0: per_device_workers, ragged = divmod(self.config.emulated_workers, jax.host_count()) if ragged: raise ValueError('Number of emulated workers must be divisible by the ' 'number of physical workers `jax.host_count()`.') self._repeat_batch = per_device_workers else: self._repeat_batch = 1 self.supervised_train_input = jl_utils.py_prefetch( self._supervised_train_dataset) if self.config.training.extra_data_path is None: self.extra_train_input = None else: self.extra_train_input = jl_utils.py_prefetch( self._extra_train_dataset) self.normalize_fn = datasets.cifar10_normalize # Optimizer. self.optimizer = utils.sgd_momentum(self.config.training.learning_rate, momentum=.9, nesterov=True) # Initialize parameters. if self._params is None: logging.info('Initializing parameters randomly rather than restoring ' 'from checkpoint.') # Create inputs to initialize the network state. images, _, _ = jax.pmap(self.concatenate)( next(self.supervised_train_input), next(self.extra_train_input) if self.extra_train_input is not None else None) images = jax.pmap(self.normalize_fn)(images) # Initialize weights and biases. init_net = jax.pmap( lambda *a: self.model.init(*a, is_training=True), axis_name='i') init_rng = jl_utils.bcast_local_devices(rng) self._params, self._state = init_net(init_rng, images) # Setup weight averaging. if self.config.training.swa_decay > 0: self._avg_params = self._params else: self._avg_params = None # Initialize optimizer state. init_opt = jax.pmap(self.optimizer.init, axis_name='i') self._opt_state = init_opt(self._params) # Initialize step function. self.train_fn = jax.pmap(self._train_fn, axis_name='i', donate_argnums=(0, 1, 2, 3)) def _initialize_evaluation(self): load_fn = (datasets.load_dummy_data if self.config.dry_run else datasets.load_cifar10) self.eval_input = _dataset( functools.partial(load_fn, subset='test'), is_training=False, total_batch_size=self.config.evaluation.batch_size) self.normalize_fn = datasets.cifar10_normalize self.eval_fn = jax.pmap(self._eval_fn, axis_name='i') def _supervised_train_dataset(self) -> tfds.typing.Tree[np.ndarray]: """Creates the training dataset.""" load_fn = (datasets.load_dummy_data if self.config.dry_run else datasets.load_cifar10) load_fn = functools.partial(load_fn, subset='train', repeat=self._repeat_batch) ds = _dataset(load_fn, is_training=True, repeat=self._repeat_batch, total_batch_size=self.config.training.batch_size, ratio=self.config.training.supervised_batch_ratio) return tfds.as_numpy(ds) def _extra_train_dataset(self) -> tfds.typing.Tree[np.ndarray]: """Creates the training dataset.""" load_extra_fn = (self.config.training.get('load_extra_fn', None) or datasets.load_extra) load_fn = datasets.load_dummy_data if self.config.dry_run else load_extra_fn load_fn = functools.partial( load_fn, path_npz=self.config.training.extra_data_path) ds = _dataset( load_fn, is_training=True, repeat=self._repeat_batch, total_batch_size=self.config.training.batch_size, one_minus_ratio=self.config.training.supervised_batch_ratio) return tfds.as_numpy(ds) def _get_model(self) -> Callable[..., chex.Array]: config = self.config.model def forward_fn(inputs, **norm_kwargs): model_instance = config.constructor(**config.kwargs.to_dict()) return model_instance(inputs, **norm_kwargs) return forward_fn def concatenate( self, supervised_inputs: chex.ArrayTree, extra_inputs: chex.ArrayTree ) -> Tuple[chex.Array, chex.Array, chex.Array]: """Concatenate inputs.""" num_classes = self.config.num_classes supervised_images = supervised_inputs['image'] supervised_labels = supervised_inputs['label'] if extra_inputs is None: images = supervised_images labels = supervised_labels target_probs = hk.one_hot(labels, num_classes) else: extra_images = extra_inputs['image'] images = jnp.concatenate([supervised_images, extra_images], axis=0) extra_labels = extra_inputs['label'] labels = jnp.concatenate([supervised_labels, extra_labels], axis=0) supervised_one_hot_labels = hk.one_hot(supervised_labels, num_classes) extra_one_hot_labels = hk.one_hot(extra_labels, num_classes) if self.config.training.extra_label_smoothing > 0: pos = 1. - self.config.training.extra_label_smoothing neg = self.config.training.extra_label_smoothing / num_classes extra_one_hot_labels = pos * extra_one_hot_labels + neg target_probs = jnp.concatenate( [supervised_one_hot_labels, extra_one_hot_labels], axis=0) return images, labels, target_probs def _dataset(load_fn, is_training: bool, total_batch_size: int, ratio: Optional[float] = None, one_minus_ratio: Optional[float] = None, repeat: int = 1) -> tf.data.Dataset: """Creates a dataset.""" num_devices = jax.device_count() per_device_batch_size, ragged = divmod(total_batch_size, num_devices) if ragged: raise ValueError( f'Global batch size {total_batch_size} must be divisible by the ' f'total number of devices {num_devices}') if repeat > 1: if per_device_batch_size % repeat: raise ValueError( f'Per device batch size {per_device_batch_size} must be divisible ' f'by the number of repeated batches {repeat}') per_device_batch_size //= repeat if ratio is None and one_minus_ratio is None: pass # Use full batch size. elif one_minus_ratio is None: per_device_batch_size = max( 1, min(round(per_device_batch_size * ratio), per_device_batch_size - 1)) elif ratio is None: batch_size = max(1, min(round(per_device_batch_size * one_minus_ratio), per_device_batch_size - 1)) per_device_batch_size = per_device_batch_size - batch_size else: raise ValueError('Only one of `ratio` or `one_minus_ratio` must be ' 'specified') if repeat > 1: per_device_batch_size *= repeat # When testing, we need to batch data across all devices (not just local # devices). num_local_devices = jax.local_device_count() if is_training: batch_sizes = [num_local_devices, per_device_batch_size] else: num_hosts = jax.host_count() assert num_hosts * num_local_devices == num_devices batch_sizes = [num_hosts, num_local_devices, per_device_batch_size] return load_fn(batch_sizes, is_training=is_training) def _merge_eval_scalars(a, b): if b is None: return a for k, v in b.items(): a['eval_' + k] = v return a
deepmind-research-master
adversarial_robustness/jax/experiment.py
# Copyright 2021 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions.""" import re from typing import Optional, Sequence, Tuple import chex import einops import haiku as hk import jax import jax.numpy as jnp import optax def get_cosine_schedule( max_learning_rate: float, total_steps: int, warmup_steps: int = 0) -> optax.Schedule: """Builds a cosine decay schedule with initial warm-up.""" if total_steps < warmup_steps: return optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps) return optax.join_schedules([ optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps), optax.cosine_decay_schedule(init_value=max_learning_rate, decay_steps=total_steps - warmup_steps), ], [warmup_steps]) def get_step_schedule( max_learning_rate: float, total_steps: int, warmup_steps: int = 0) -> optax.Schedule: """Builds a step schedule with initial warm-up.""" if total_steps < warmup_steps: return optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps) return optax.join_schedules([ optax.linear_schedule(init_value=0., end_value=max_learning_rate, transition_steps=warmup_steps), optax.piecewise_constant_schedule( init_value=max_learning_rate, boundaries_and_scales={total_steps * 2 // 3: .1}), ], [warmup_steps]) def sgd_momentum(learning_rate_fn: optax.Schedule, momentum: float = 0., nesterov: bool = False) -> optax.GradientTransformation: return optax.chain( optax.trace(decay=momentum, nesterov=nesterov), optax.scale_by_schedule(learning_rate_fn), optax.scale(-1.)) def cross_entropy(logits: chex.Array, labels: chex.Array) -> chex.Array: return -jnp.sum(labels * jax.nn.log_softmax(logits), axis=-1) def kl_divergence(q_logits: chex.Array, p_logits: chex.Array) -> chex.Array: """Compute the KL divergence.""" p_probs = jax.nn.softmax(p_logits) return cross_entropy(q_logits, p_probs) - cross_entropy(p_logits, p_probs) def accuracy(logits: chex.Array, labels: chex.Array) -> chex.Array: predicted_label = jnp.argmax(logits, axis=-1) correct = jnp.equal(predicted_label, labels).astype(jnp.float32) return jnp.sum(correct, axis=0) / logits.shape[0] def weight_decay(params: hk.Params, regex_match: Optional[Sequence[str]] = None, regex_ignore: Optional[Sequence[str]] = None) -> chex.Array: """Computes the L2 regularization loss.""" if regex_match is None: regex_match = ('.*w$', '.*b$') if regex_ignore is None: regex_ignore = ('.*batchnorm.*',) l2_norm = 0. for mod_name, mod_params in params.items(): for param_name, param in mod_params.items(): name = '/'.join([mod_name, param_name]) if (regex_match and all(not re.match(regex, name) for regex in regex_match)): continue if (regex_ignore and any(re.match(regex, name) for regex in regex_ignore)): continue l2_norm += jnp.sum(jnp.square(param)) return .5 * l2_norm def ema_update(step: chex.Array, avg_params: chex.ArrayTree, new_params: chex.ArrayTree, decay_rate: float = 0.99, warmup_steps: int = 0, dynamic_decay: bool = True) -> chex.ArrayTree: """Applies an exponential moving average.""" factor = (step >= warmup_steps).astype(jnp.float32) if dynamic_decay: # Uses TF-style EMA. delta = step - warmup_steps decay = jnp.minimum(decay_rate, (1. + delta) / (10. + delta)) else: decay = decay_rate decay *= factor def _weighted_average(p1, p2): d = decay.astype(p1.dtype) return (1 - d) * p1 + d * p2 return jax.tree_map(_weighted_average, new_params, avg_params) def cutmix(rng: chex.PRNGKey, images: chex.Array, labels: chex.Array, alpha: float = 1., beta: float = 1., split: int = 1) -> Tuple[chex.Array, chex.Array]: """Composing two images by inserting a patch into another image.""" batch_size, height, width, _ = images.shape split_batch_size = batch_size // split if split > 1 else batch_size # Masking bounding box. box_rng, lam_rng, rng = jax.random.split(rng, num=3) lam = jax.random.beta(lam_rng, a=alpha, b=beta, shape=()) cut_rat = jnp.sqrt(1. - lam) cut_w = jnp.array(width * cut_rat, dtype=jnp.int32) cut_h = jnp.array(height * cut_rat, dtype=jnp.int32) box_coords = _random_box(box_rng, height, width, cut_h, cut_w) # Adjust lambda. lam = 1. - (box_coords[2] * box_coords[3] / (height * width)) idx = jax.random.permutation(rng, split_batch_size) def _cutmix(x, y): images_a = x images_b = x[idx, :, :, :] y = lam * y + (1. - lam) * y[idx, :] x = _compose_two_images(images_a, images_b, box_coords) return x, y if split <= 1: return _cutmix(images, labels) # Apply CutMix separately on each sub-batch. This reverses the effect of # `repeat` in datasets. images = einops.rearrange(images, '(b1 b2) ... -> b1 b2 ...', b2=split) labels = einops.rearrange(labels, '(b1 b2) ... -> b1 b2 ...', b2=split) images, labels = jax.vmap(_cutmix, in_axes=1, out_axes=1)(images, labels) images = einops.rearrange(images, 'b1 b2 ... -> (b1 b2) ...', b2=split) labels = einops.rearrange(labels, 'b1 b2 ... -> (b1 b2) ...', b2=split) return images, labels def _random_box(rng: chex.PRNGKey, height: chex.Numeric, width: chex.Numeric, cut_h: chex.Array, cut_w: chex.Array) -> chex.Array: """Sample a random box of shape [cut_h, cut_w].""" height_rng, width_rng = jax.random.split(rng) i = jax.random.randint( height_rng, shape=(), minval=0, maxval=height, dtype=jnp.int32) j = jax.random.randint( width_rng, shape=(), minval=0, maxval=width, dtype=jnp.int32) bby1 = jnp.clip(i - cut_h // 2, 0, height) bbx1 = jnp.clip(j - cut_w // 2, 0, width) h = jnp.clip(i + cut_h // 2, 0, height) - bby1 w = jnp.clip(j + cut_w // 2, 0, width) - bbx1 return jnp.array([bby1, bbx1, h, w]) def _compose_two_images(images: chex.Array, image_permutation: chex.Array, bbox: chex.Array) -> chex.Array: """Inserting the second minibatch into the first at the target locations.""" def _single_compose_two_images(image1, image2): height, width, _ = image1.shape mask = _window_mask(bbox, (height, width)) return image1 * (1. - mask) + image2 * mask return jax.vmap(_single_compose_two_images)(images, image_permutation) def _window_mask(destination_box: chex.Array, size: Tuple[int, int]) -> jnp.ndarray: """Mask a part of the image.""" height_offset, width_offset, h, w = destination_box h_range = jnp.reshape(jnp.arange(size[0]), [size[0], 1, 1]) w_range = jnp.reshape(jnp.arange(size[1]), [1, size[1], 1]) return jnp.logical_and( jnp.logical_and(height_offset <= h_range, h_range < height_offset + h), jnp.logical_and(width_offset <= w_range, w_range < width_offset + w)).astype(jnp.float32)
deepmind-research-master
adversarial_robustness/jax/utils.py
# Copyright 2021 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs a JAXline experiment to perform robust adversarial training.""" import functools from absl import app from absl import flags from jaxline import platform import tensorflow.compat.v2 as tf from adversarial_robustness.jax import experiment if __name__ == '__main__': flags.mark_flag_as_required('config') try: tf.config.set_visible_devices([], 'GPU') # Prevent TF from using the GPU. except tf.errors.NotFoundError: pass app.run(functools.partial(platform.main, experiment.Experiment))
deepmind-research-master
adversarial_robustness/jax/train.py
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluates a JAX checkpoint on CIFAR-10/100 or MNIST.""" import functools from absl import app from absl import flags import haiku as hk import numpy as np import optax import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds import tqdm from adversarial_robustness.jax import attacks from adversarial_robustness.jax import datasets from adversarial_robustness.jax import model_zoo _CKPT = flags.DEFINE_string( 'ckpt', None, 'Path to checkpoint.') _DATASET = flags.DEFINE_enum( 'dataset', 'cifar10', ['cifar10', 'cifar100', 'mnist'], 'Dataset on which the checkpoint is evaluated.') _WIDTH = flags.DEFINE_integer( 'width', 16, 'Width of WideResNet.') _DEPTH = flags.DEFINE_integer( 'depth', 70, 'Depth of WideResNet.') _BATCH_SIZE = flags.DEFINE_integer( 'batch_size', 100, 'Batch size.') _NUM_BATCHES = flags.DEFINE_integer( 'num_batches', 0, 'Number of batches to evaluate (zero means the whole dataset).') def main(unused_argv): print(f'Loading "{_CKPT.value}"') print(f'Using a WideResNet with depth {_DEPTH.value} and width ' f'{_WIDTH.value}.') # Create dataset. if _DATASET.value == 'mnist': _, data_test = tf.keras.datasets.mnist.load_data() normalize_fn = datasets.mnist_normalize elif _DATASET.value == 'cifar10': _, data_test = tf.keras.datasets.cifar10.load_data() normalize_fn = datasets.cifar10_normalize else: assert _DATASET.value == 'cifar100' _, data_test = tf.keras.datasets.cifar100.load_data() normalize_fn = datasets.cifar100_normalize # Create model. @hk.transform_with_state def model_fn(x, is_training=False): model = model_zoo.WideResNet( num_classes=10, depth=_DEPTH.value, width=_WIDTH.value, activation='swish') return model(normalize_fn(x), is_training=is_training) # Build dataset. images, labels = data_test samples = (images.astype(np.float32) / 255., np.squeeze(labels, axis=-1).astype(np.int64)) data = tf.data.Dataset.from_tensor_slices(samples).batch(_BATCH_SIZE.value) test_loader = tfds.as_numpy(data) # Load model parameters. rng_seq = hk.PRNGSequence(0) if _CKPT.value == 'dummy': for images, _ in test_loader: break params, state = model_fn.init(next(rng_seq), images, is_training=True) # Reset iterator. test_loader = tfds.as_numpy(data) else: params, state = np.load(_CKPT.value, allow_pickle=True) # Create adversarial attack. We run a PGD-40 attack with margin loss. epsilon = 8 / 255 eval_attack = attacks.UntargetedAttack( attacks.PGD( attacks.Adam(learning_rate_fn=optax.piecewise_constant_schedule( init_value=.1, boundaries_and_scales={20: .1, 30: .01})), num_steps=40, initialize_fn=attacks.linf_initialize_fn(epsilon), project_fn=attacks.linf_project_fn(epsilon, bounds=(0., 1.))), loss_fn=attacks.untargeted_margin) def logits_fn(x, rng): return model_fn.apply(params, state, rng, x)[0] # Evaluation. correct = 0 adv_correct = 0 total = 0 batch_count = 0 total_batches = min((10_000 - 1) // _BATCH_SIZE.value + 1, _NUM_BATCHES.value) for images, labels in tqdm.tqdm(test_loader, total=total_batches): rng = next(rng_seq) loop_logits_fn = functools.partial(logits_fn, rng=rng) # Clean examples. outputs = loop_logits_fn(images) correct += (np.argmax(outputs, 1) == labels).sum().item() # Adversarial examples. adv_images = eval_attack(loop_logits_fn, next(rng_seq), images, labels) outputs = loop_logits_fn(adv_images) predicted = np.argmax(outputs, 1) adv_correct += (predicted == labels).sum().item() total += labels.shape[0] batch_count += 1 if _NUM_BATCHES.value > 0 and batch_count >= _NUM_BATCHES.value: break print(f'Accuracy on the {total} test images: {100 * correct / total:.2f}%') print(f'Robust accuracy: {100 * adv_correct / total:.2f}%') if __name__ == '__main__': flags.mark_flag_as_required('ckpt') try: tf.config.set_visible_devices([], 'GPU') # Prevent TF from using the GPU. except tf.errors.NotFoundError: pass app.run(main)
deepmind-research-master
adversarial_robustness/jax/eval.py
# Copyright 2021 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Adversarial attacks. This file contains all the code necessary to create untargeted adversarial attacks in JAX (within an l-infinity ball). For example, to create an untargeted FGSM attack (with a single step), one can do the following: ``` import attacks epsilon = 8/255 # Perturbation radius for inputs between 0 and 1. fgsm_attack = attacks.UntargetedAttack( attacks.PGD( attacks.IteratedFGSM(epsilon), num_steps=1, initialize_fn=attacks.linf_initialize_fn(epsilon), project_fn=attacks.linf_project_fn(epsilon, bounds=(0., 1.))), loss_fn=attacks.untargeted_cross_entropy) ``` Just as elegantly, one can specify an adversarial attack on KL-divergence to a target distribution (using 10 steps with Adam and a piecewise constant step schedule): ``` kl_attack_with_adam = attacks.UntargetedAttack( attacks.PGD( attacks.Adam(optax.piecewise_constant_schedule( init_value=.1, boundaries_and_scales={5: .1})), num_steps=10, initialize_fn=attacks.linf_initialize_fn(epsilon), project_fn=attacks.linf_project_fn(epsilon, bounds=(0., 1.))), loss_fn=attacks.untargeted_kl_divergence) ``` The attack instances can be used later on to build adversarial examples: ``` my_model = ... # Model. We assume that 'my_model(.)' returns logits. clean_images, image_labels = ... # Batch of images and associated labels. rng = jax.random.PRNGKey(0) # A random generator state. adversarial_images = fgsm_attack(my_model, rng, clean_images, image_labels) ``` See `experiment.py` or `eval.py` for more examples. This file contains the following components: * Losses: * untargeted_cross_entropy: minimizes the likelihood of the label class. * untargeted_kl_divergence: maximizes the KL-divergence of the predictions with a target distribution. * untargeted_margin: maximizes the margin loss (distance from the highest non-true logits to the label class logit) * Step optimizers: * SGD: Stochastic Gradient Descent. * IteratedFGSM: Also called BIM (see https://arxiv.org/pdf/1607.02533). * Adam: See https://arxiv.org/pdf/1412.6980. * Initialization and projection functions: * linf_initialize_fn: Initialize function for l-infinity attacks. * linf_project_fn: Projection function for l-infinity attacks. * Projected Gradient Descent (PGD): * PGD: Runs Projected Gradient Descent using the specified optimizer, initialization and projection functions for a given number of steps. * Untargeted attack: * UntargetedAttack: Combines PGD and a specific loss function to find adversarial examples. """ import functools import inspect from typing import Callable, Optional, Tuple, Union import chex import haiku as hk import jax import jax.numpy as jnp import optax ModelFn = Callable[[chex.Array], chex.Array] LossFn = Callable[[chex.Array], chex.Array] ClassificationLossFn = Callable[[chex.Array, chex.Array], chex.Array] OptimizeFn = Callable[[LossFn, chex.PRNGKey, chex.Array], chex.Array] NormalizeFn = Callable[[chex.Array], chex.Array] InitializeFn = Callable[[chex.PRNGKey, chex.Array], chex.Array] ProjectFn = Callable[[chex.Array, chex.Array], chex.Array] def untargeted_cross_entropy(logits: chex.Array, labels: chex.Array) -> chex.Array: """Maximize the cross-entropy of the true class (make it less likely).""" num_classes = logits.shape[-1] log_probs = jax.nn.log_softmax(logits) return jnp.sum( hk.one_hot(labels, num_classes).astype(logits.dtype) * log_probs, axis=-1) def untargeted_kl_divergence(logits: chex.Array, label_probs: chex.Array) -> chex.Array: """Maximize the KL divergence between logits and label distribution.""" # We are explicitly maximizing the cross-entropy, as this is equivalent to # maximizing the KL divergence (when `label_probs` does not depend # on the values that produce `logits`). log_probs = jax.nn.log_softmax(logits) return jnp.sum(label_probs * log_probs, axis=-1) def untargeted_margin(logits: chex.Array, labels: chex.Array) -> chex.Array: """Make the highest non-correct logits higher than the true class logits.""" batch_size = logits.shape[0] num_classes = logits.shape[-1] label_logits = logits[jnp.arange(batch_size), labels] logit_mask = hk.one_hot(labels, num_classes).astype(logits.dtype) highest_logits = jnp.max(logits - 1e8 * logit_mask, axis=-1) return label_logits - highest_logits class UntargetedAttack: """Performs an untargeted attack.""" def __init__(self, optimize_fn: OptimizeFn, loss_fn: ClassificationLossFn = untargeted_cross_entropy): """Creates an untargeted attack. Args: optimize_fn: An `Optimizer` instance or any callable that takes a loss function and an initial input and outputs a new input that minimizes the loss function. loss_fn: `loss_fn` is a surrogate loss. Its goal should be make the true class less likely than any other class. Typical options for `loss_fn` are `untargeted_cross_entropy` or `untargeted_margin`. """ self._optimize_fn = optimize_fn self._loss_fn = loss_fn def __call__(self, logits_fn: ModelFn, rng: chex.PRNGKey, inputs: chex.Array, labels: chex.Array) -> chex.Array: """Returns adversarial inputs.""" def _loss_fn(x): return self._loss_fn(logits_fn(x), labels) return self._optimize_fn(_loss_fn, rng, inputs) # Convenience functions to detect the type of inputs required by the loss. def expects_labels(self): return 'labels' in inspect.getfullargspec(self._loss_fn).args def expects_probabilities(self): return 'label_probs' in inspect.getfullargspec(self._loss_fn).args class StepOptimizer: """Makes a single gradient step that minimizes a loss function.""" def __init__(self, gradient_transformation: optax.GradientTransformation): self._gradient_transformation = gradient_transformation def init(self, loss_fn: LossFn, x: chex.Array) -> optax.OptState: self._loss_fn = loss_fn return self._gradient_transformation.init(x) def minimize( self, x: chex.Array, state: optax.OptState) -> Tuple[chex.Array, chex.Array, optax.OptState]: """Performs a single minimization step.""" g, loss = gradients_fn(self._loss_fn, x) if g is None: raise ValueError('loss_fn does not depend on input.') updates, state = self._gradient_transformation.update(g, state, x) return optax.apply_updates(x, updates), loss, state class SGD(StepOptimizer): """Vanilla gradient descent optimizer.""" def __init__(self, learning_rate_fn: Union[float, int, optax.Schedule], normalize_fn: Optional[NormalizeFn] = None): # Accept schedules, as well as scalar values. if isinstance(learning_rate_fn, (float, int)): lr = float(learning_rate_fn) learning_rate_fn = lambda _: lr # Normalization. def update_fn(updates, state, params=None): del params updates = jax.tree_map(normalize_fn or (lambda x: x), updates) return updates, state gradient_transformation = optax.chain( optax.GradientTransformation(lambda _: optax.EmptyState(), update_fn), optax.scale_by_schedule(learning_rate_fn), optax.scale(-1.)) super(SGD, self).__init__(gradient_transformation) class IteratedFGSM(SGD): """L-infinity normalized steps.""" def __init__(self, learning_rate_fn: Union[float, int, optax.Schedule]): super(IteratedFGSM, self).__init__(learning_rate_fn, jnp.sign) class Adam(StepOptimizer): """The Adam optimizer defined in https://arxiv.org/abs/1412.6980.""" def __init__( self, learning_rate_fn: Union[float, int, optax.Schedule], normalize_fn: Optional[NormalizeFn] = None, beta1: float = .9, beta2: float = .999, epsilon: float = 1e-9): # Accept schedules, as well as scalar values. if isinstance(learning_rate_fn, (float, int)): lr = float(learning_rate_fn) learning_rate_fn = lambda _: lr # Normalization. def update_fn(updates, state, params=None): del params updates = jax.tree_map(normalize_fn or (lambda x: x), updates) return updates, state gradient_transformation = optax.chain( optax.GradientTransformation(lambda _: optax.EmptyState(), update_fn), optax.scale_by_adam(b1=beta1, b2=beta2, eps=epsilon), optax.scale_by_schedule(learning_rate_fn), optax.scale(-1.)) super(Adam, self).__init__(gradient_transformation) class PGD: """Runs Project Gradient Descent (see https://arxiv.org/pdf/1706.06083).""" def __init__(self, optimizer: StepOptimizer, num_steps: int, initialize_fn: Optional[InitializeFn] = None, project_fn: Optional[ProjectFn] = None): self._optimizer = optimizer if initialize_fn is None: initialize_fn = lambda rng, x: x self._initialize_fn = initialize_fn if project_fn is None: project_fn = lambda x, origin_x: x self._project_fn = project_fn self._num_steps = num_steps def __call__(self, loss_fn: LossFn, rng: chex.PRNGKey, x: chex.Array) -> chex.Array: def _optimize(rng, x): """Optimizes loss_fn when keep_best is False.""" def body_fn(_, inputs): opt_state, current_x = inputs current_x, _, opt_state = self._optimizer.minimize(current_x, opt_state) current_x = self._project_fn(current_x, x) return opt_state, current_x opt_state = self._optimizer.init(loss_fn, x) current_x = self._project_fn(self._initialize_fn(rng, x), x) _, current_x = jax.lax.fori_loop(0, self._num_steps, body_fn, (opt_state, current_x)) return current_x return jax.lax.stop_gradient(_optimize(rng, x)) def linf_project_fn(epsilon: float, bounds: Tuple[float, float]) -> ProjectFn: def project_fn(x, origin_x): dx = jnp.clip(x - origin_x, -epsilon, epsilon) return jnp.clip(origin_x + dx, bounds[0], bounds[1]) return project_fn def linf_initialize_fn(epsilon: float) -> InitializeFn: def initialize_fn(rng, x): return x + jax.random.uniform(rng, x.shape, minval=-epsilon, maxval=epsilon).astype(x.dtype) return initialize_fn def gradients_fn(loss_fn: LossFn, x: chex.Array) -> Tuple[chex.Array, chex.Array]: """Returns the analytical gradient as computed by `jax.grad`.""" @functools.partial(jax.grad, has_aux=True) def grad_reduced_loss_fn(x): loss = loss_fn(x) return jnp.sum(loss), loss return grad_reduced_loss_fn(x)
deepmind-research-master
adversarial_robustness/jax/attacks.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training and evaluation loops for an experiment.""" import time from typing import Any, Mapping, Text, Type, Union from absl import app from absl import flags from absl import logging import jax import numpy as np from byol import byol_experiment from byol import eval_experiment from byol.configs import byol as byol_config from byol.configs import eval as eval_config flags.DEFINE_string('experiment_mode', 'pretrain', 'The experiment, pretrain or linear-eval') flags.DEFINE_string('worker_mode', 'train', 'The mode, train or eval') flags.DEFINE_string('worker_tpu_driver', '', 'The tpu driver to use') flags.DEFINE_integer('pretrain_epochs', 1000, 'Number of pre-training epochs') flags.DEFINE_integer('batch_size', 4096, 'Total batch size') flags.DEFINE_string('checkpoint_root', '/tmp/byol', 'The directory to save checkpoints to.') flags.DEFINE_integer('log_tensors_interval', 60, 'Log tensors every n seconds.') FLAGS = flags.FLAGS Experiment = Union[ Type[byol_experiment.ByolExperiment], Type[eval_experiment.EvalExperiment]] def train_loop(experiment_class: Experiment, config: Mapping[Text, Any]): """The main training loop. This loop periodically saves a checkpoint to be evaluated in the eval_loop. Args: experiment_class: the constructor for the experiment (either byol_experiment or eval_experiment). config: the experiment config. """ experiment = experiment_class(**config) rng = jax.random.PRNGKey(0) step = 0 host_id = jax.host_id() last_logging = time.time() if config['checkpointing_config']['use_checkpointing']: checkpoint_data = experiment.load_checkpoint() if checkpoint_data is None: step = 0 else: step, rng = checkpoint_data local_device_count = jax.local_device_count() while step < config['max_steps']: step_rng, rng = tuple(jax.random.split(rng)) # Broadcast the random seeds across the devices step_rng_device = jax.random.split(step_rng, num=jax.device_count()) step_rng_device = step_rng_device[ host_id * local_device_count:(host_id + 1) * local_device_count] step_device = np.broadcast_to(step, [local_device_count]) # Perform a training step and get scalars to log. scalars = experiment.step(global_step=step_device, rng=step_rng_device) # Checkpointing and logging. if config['checkpointing_config']['use_checkpointing']: experiment.save_checkpoint(step, rng) current_time = time.time() if current_time - last_logging > FLAGS.log_tensors_interval: logging.info('Step %d: %s', step, scalars) last_logging = current_time step += 1 logging.info('Saving final checkpoint') logging.info('Step %d: %s', step, scalars) experiment.save_checkpoint(step, rng) def eval_loop(experiment_class: Experiment, config: Mapping[Text, Any]): """The main evaluation loop. This loop periodically loads a checkpoint and evaluates its performance on the test set, by calling experiment.evaluate. Args: experiment_class: the constructor for the experiment (either byol_experiment or eval_experiment). config: the experiment config. """ experiment = experiment_class(**config) last_evaluated_step = -1 while True: checkpoint_data = experiment.load_checkpoint() if checkpoint_data is None: logging.info('No checkpoint found. Waiting for 10s.') time.sleep(10) continue step, _ = checkpoint_data if step <= last_evaluated_step: logging.info('Checkpoint at step %d already evaluated, waiting.', step) time.sleep(10) continue host_id = jax.host_id() local_device_count = jax.local_device_count() step_device = np.broadcast_to(step, [local_device_count]) scalars = experiment.evaluate(global_step=step_device) if host_id == 0: # Only perform logging in one host. logging.info('Evaluation at step %d: %s', step, scalars) last_evaluated_step = step if last_evaluated_step >= config['max_steps']: return def main(_): if FLAGS.worker_tpu_driver: jax.config.update('jax_xla_backend', 'tpu_driver') jax.config.update('jax_backend_target', FLAGS.worker_tpu_driver) logging.info('Backend: %s %r', FLAGS.worker_tpu_driver, jax.devices()) if FLAGS.experiment_mode == 'pretrain': experiment_class = byol_experiment.ByolExperiment config = byol_config.get_config(FLAGS.pretrain_epochs, FLAGS.batch_size) elif FLAGS.experiment_mode == 'linear-eval': experiment_class = eval_experiment.EvalExperiment config = eval_config.get_config(f'{FLAGS.checkpoint_root}/pretrain.pkl', FLAGS.batch_size) else: raise ValueError(f'Unknown experiment mode: {FLAGS.experiment_mode}') config['checkpointing_config']['checkpoint_dir'] = FLAGS.checkpoint_root # pytype: disable=unsupported-operands # dict-kwargs if FLAGS.worker_mode == 'train': train_loop(experiment_class, config) elif FLAGS.worker_mode == 'eval': eval_loop(experiment_class, config) if __name__ == '__main__': app.run(main)
deepmind-research-master
byol/main_loop.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BYOL pre-training implementation. Use this experiment to pre-train a self-supervised representation. """ import functools from typing import Any, Generator, Mapping, NamedTuple, Text, Tuple, Union from absl import logging from acme.jax import utils as acme_utils import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax from byol.utils import augmentations from byol.utils import checkpointing from byol.utils import dataset from byol.utils import helpers from byol.utils import networks from byol.utils import optimizers from byol.utils import schedules # Type declarations. LogsDict = Mapping[Text, jnp.ndarray] class _ByolExperimentState(NamedTuple): """Byol's model and optimization parameters and state.""" online_params: hk.Params target_params: hk.Params online_state: hk.State target_state: hk.State opt_state: optimizers.LarsState class ByolExperiment: """Byol's training and evaluation component definition.""" def __init__( self, random_seed: int, num_classes: int, batch_size: int, max_steps: int, enable_double_transpose: bool, base_target_ema: float, network_config: Mapping[Text, Any], optimizer_config: Mapping[Text, Any], lr_schedule_config: Mapping[Text, Any], evaluation_config: Mapping[Text, Any], checkpointing_config: Mapping[Text, Any]): """Constructs the experiment. Args: random_seed: the random seed to use when initializing network weights. num_classes: the number of classes; used for the online evaluation. batch_size: the total batch size; should be a multiple of the number of available accelerators. max_steps: the number of training steps; used for the lr/target network ema schedules. enable_double_transpose: see dataset.py; only has effect on TPU. base_target_ema: the initial value for the ema decay rate of the target network. network_config: the configuration for the network. optimizer_config: the configuration for the optimizer. lr_schedule_config: the configuration for the learning rate schedule. evaluation_config: the evaluation configuration. checkpointing_config: the configuration for checkpointing. """ self._random_seed = random_seed self._enable_double_transpose = enable_double_transpose self._num_classes = num_classes self._lr_schedule_config = lr_schedule_config self._batch_size = batch_size self._max_steps = max_steps self._base_target_ema = base_target_ema self._optimizer_config = optimizer_config self._evaluation_config = evaluation_config # Checkpointed experiment state. self._byol_state = None # Input pipelines. self._train_input = None self._eval_input = None # build the transformed ops forward_fn = functools.partial(self._forward, **network_config) self.forward = hk.without_apply_rng(hk.transform_with_state(forward_fn)) # training can handle multiple devices, thus the pmap self.update_pmap = jax.pmap(self._update_fn, axis_name='i') # evaluation can only handle single device self.eval_batch_jit = jax.jit(self._eval_batch) self._checkpointer = checkpointing.Checkpointer(**checkpointing_config) def _forward( self, inputs: dataset.Batch, projector_hidden_size: int, projector_output_size: int, predictor_hidden_size: int, encoder_class: Text, encoder_config: Mapping[Text, Any], bn_config: Mapping[Text, Any], is_training: bool, ) -> Mapping[Text, jnp.ndarray]: """Forward application of byol's architecture. Args: inputs: A batch of data, i.e. a dictionary, with either two keys, (`images` and `labels`) or three keys (`view1`, `view2`, `labels`). projector_hidden_size: hidden size of the projector MLP. projector_output_size: output size of the projector and predictor MLPs. predictor_hidden_size: hidden size of the predictor MLP. encoder_class: type of the encoder (should match a class in utils/networks). encoder_config: passed to the encoder constructor. bn_config: passed to the hk.BatchNorm constructors. is_training: Training or evaluating the model? When True, inputs must contain keys `view1` and `view2`. When False, inputs must contain key `images`. Returns: All outputs of the model, i.e. a dictionary with projection, prediction and logits keys, for either the two views, or the image. """ encoder = getattr(networks, encoder_class) net = encoder( num_classes=None, # Don't build the final linear layer bn_config=bn_config, **encoder_config) projector = networks.MLP( name='projector', hidden_size=projector_hidden_size, output_size=projector_output_size, bn_config=bn_config) predictor = networks.MLP( name='predictor', hidden_size=predictor_hidden_size, output_size=projector_output_size, bn_config=bn_config) classifier = hk.Linear( output_size=self._num_classes, name='classifier') def apply_once_fn(images: jnp.ndarray, suffix: Text = ''): images = dataset.normalize_images(images) embedding = net(images, is_training=is_training) proj_out = projector(embedding, is_training) pred_out = predictor(proj_out, is_training) # Note the stop_gradient: label information is not leaked into the # main network. classif_out = classifier(jax.lax.stop_gradient(embedding)) outputs = {} outputs['projection' + suffix] = proj_out outputs['prediction' + suffix] = pred_out outputs['logits' + suffix] = classif_out return outputs if is_training: outputs_view1 = apply_once_fn(inputs['view1'], '_view1') outputs_view2 = apply_once_fn(inputs['view2'], '_view2') return {**outputs_view1, **outputs_view2} else: return apply_once_fn(inputs['images'], '') def _optimizer(self, learning_rate: float) -> optax.GradientTransformation: """Build optimizer from config.""" return optimizers.lars( learning_rate, weight_decay_filter=optimizers.exclude_bias_and_norm, lars_adaptation_filter=optimizers.exclude_bias_and_norm, **self._optimizer_config) def loss_fn( self, online_params: hk.Params, target_params: hk.Params, online_state: hk.State, target_state: hk.Params, rng: jnp.ndarray, inputs: dataset.Batch, ) -> Tuple[jnp.ndarray, Tuple[Mapping[Text, hk.State], LogsDict]]: """Compute BYOL's loss function. Args: online_params: parameters of the online network (the loss is later differentiated with respect to the online parameters). target_params: parameters of the target network. online_state: internal state of online network. target_state: internal state of target network. rng: random number generator state. inputs: inputs, containing two batches of crops from the same images, view1 and view2 and labels Returns: BYOL's loss, a mapping containing the online and target networks updated states after processing inputs, and various logs. """ if self._should_transpose_images(): inputs = dataset.transpose_images(inputs) inputs = augmentations.postprocess(inputs, rng) labels = inputs['labels'] online_network_out, online_state = self.forward.apply( params=online_params, state=online_state, inputs=inputs, is_training=True) target_network_out, target_state = self.forward.apply( params=target_params, state=target_state, inputs=inputs, is_training=True) # Representation loss # The stop_gradient is not necessary as we explicitly take the gradient with # respect to online parameters only in `optax.apply_updates`. We leave it to # indicate that gradients are not backpropagated through the target network. repr_loss = helpers.regression_loss( online_network_out['prediction_view1'], jax.lax.stop_gradient(target_network_out['projection_view2'])) repr_loss = repr_loss + helpers.regression_loss( online_network_out['prediction_view2'], jax.lax.stop_gradient(target_network_out['projection_view1'])) repr_loss = jnp.mean(repr_loss) # Classification loss (with gradient flows stopped from flowing into the # ResNet). This is used to provide an evaluation of the representation # quality during training. classif_loss = helpers.softmax_cross_entropy( logits=online_network_out['logits_view1'], labels=jax.nn.one_hot(labels, self._num_classes)) top1_correct = helpers.topk_accuracy( online_network_out['logits_view1'], inputs['labels'], topk=1, ) top5_correct = helpers.topk_accuracy( online_network_out['logits_view1'], inputs['labels'], topk=5, ) top1_acc = jnp.mean(top1_correct) top5_acc = jnp.mean(top5_correct) classif_loss = jnp.mean(classif_loss) loss = repr_loss + classif_loss logs = dict( loss=loss, repr_loss=repr_loss, classif_loss=classif_loss, top1_accuracy=top1_acc, top5_accuracy=top5_acc, ) return loss, (dict(online_state=online_state, target_state=target_state), logs) def _should_transpose_images(self): """Should we transpose images (saves host-to-device time on TPUs).""" return (self._enable_double_transpose and jax.local_devices()[0].platform == 'tpu') def _update_fn( self, byol_state: _ByolExperimentState, global_step: jnp.ndarray, rng: jnp.ndarray, inputs: dataset.Batch, ) -> Tuple[_ByolExperimentState, LogsDict]: """Update online and target parameters. Args: byol_state: current BYOL state. global_step: current training step. rng: current random number generator inputs: inputs, containing two batches of crops from the same images, view1 and view2 and labels Returns: Tuple containing the updated Byol state after processing the inputs, and various logs. """ online_params = byol_state.online_params target_params = byol_state.target_params online_state = byol_state.online_state target_state = byol_state.target_state opt_state = byol_state.opt_state # update online network grad_fn = jax.grad(self.loss_fn, argnums=0, has_aux=True) grads, (net_states, logs) = grad_fn(online_params, target_params, online_state, target_state, rng, inputs) # cross-device grad and logs reductions grads = jax.tree_map(lambda v: jax.lax.pmean(v, axis_name='i'), grads) logs = jax.tree_map(lambda x: jax.lax.pmean(x, axis_name='i'), logs) learning_rate = schedules.learning_schedule( global_step, batch_size=self._batch_size, total_steps=self._max_steps, **self._lr_schedule_config) updates, opt_state = self._optimizer(learning_rate).update( grads, opt_state, online_params) online_params = optax.apply_updates(online_params, updates) # update target network tau = schedules.target_ema( global_step, base_ema=self._base_target_ema, max_steps=self._max_steps) target_params = jax.tree_map(lambda x, y: x + (1 - tau) * (y - x), target_params, online_params) logs['tau'] = tau logs['learning_rate'] = learning_rate return _ByolExperimentState( online_params=online_params, target_params=target_params, online_state=net_states['online_state'], target_state=net_states['target_state'], opt_state=opt_state), logs def _make_initial_state( self, rng: jnp.ndarray, dummy_input: dataset.Batch, ) -> _ByolExperimentState: """BYOL's _ByolExperimentState initialization. Args: rng: random number generator used to initialize parameters. If working in a multi device setup, this need to be a ShardedArray. dummy_input: a dummy image, used to compute intermediate outputs shapes. Returns: Initial Byol state. """ rng_online, rng_target = jax.random.split(rng) if self._should_transpose_images(): dummy_input = dataset.transpose_images(dummy_input) # Online and target parameters are initialized using different rngs, # in our experiments we did not notice a significant different with using # the same rng for both. online_params, online_state = self.forward.init( rng_online, dummy_input, is_training=True, ) target_params, target_state = self.forward.init( rng_target, dummy_input, is_training=True, ) opt_state = self._optimizer(0).init(online_params) return _ByolExperimentState( online_params=online_params, target_params=target_params, opt_state=opt_state, online_state=online_state, target_state=target_state, ) def step(self, *, global_step: jnp.ndarray, rng: jnp.ndarray) -> Mapping[Text, np.ndarray]: """Performs a single training step.""" if self._train_input is None: self._initialize_train() inputs = next(self._train_input) self._byol_state, scalars = self.update_pmap( self._byol_state, global_step=global_step, rng=rng, inputs=inputs, ) return helpers.get_first(scalars) def save_checkpoint(self, step: int, rng: jnp.ndarray): self._checkpointer.maybe_save_checkpoint( self._byol_state, step=step, rng=rng, is_final=step >= self._max_steps) def load_checkpoint(self) -> Union[Tuple[int, jnp.ndarray], None]: checkpoint_data = self._checkpointer.maybe_load_checkpoint() if checkpoint_data is None: return None self._byol_state, step, rng = checkpoint_data return step, rng def _initialize_train(self): """Initialize train. This includes initializing the input pipeline and Byol's state. """ self._train_input = acme_utils.prefetch(self._build_train_input()) # Check we haven't already restored params if self._byol_state is None: logging.info( 'Initializing parameters rather than restoring from checkpoint.') # initialize Byol and setup optimizer state inputs = next(self._train_input) init_byol = jax.pmap(self._make_initial_state, axis_name='i') # Init uses the same RNG key on all hosts+devices to ensure everyone # computes the same initial state and parameters. init_rng = jax.random.PRNGKey(self._random_seed) init_rng = helpers.bcast_local_devices(init_rng) self._byol_state = init_byol(rng=init_rng, dummy_input=inputs) def _build_train_input(self) -> Generator[dataset.Batch, None, None]: """Loads the (infinitely looping) dataset iterator.""" num_devices = jax.device_count() global_batch_size = self._batch_size per_device_batch_size, ragged = divmod(global_batch_size, num_devices) if ragged: raise ValueError( f'Global batch size {global_batch_size} must be divisible by ' f'num devices {num_devices}') return dataset.load( dataset.Split.TRAIN_AND_VALID, preprocess_mode=dataset.PreprocessMode.PRETRAIN, transpose=self._should_transpose_images(), batch_dims=[jax.local_device_count(), per_device_batch_size]) def _eval_batch( self, params: hk.Params, state: hk.State, batch: dataset.Batch, ) -> Mapping[Text, jnp.ndarray]: """Evaluates a batch. Args: params: Parameters of the model to evaluate. Typically Byol's online parameters. state: State of the model to evaluate. Typically Byol's online state. batch: Batch of data to evaluate (must contain keys images and labels). Returns: Unreduced evaluation loss and top1 accuracy on the batch. """ if self._should_transpose_images(): batch = dataset.transpose_images(batch) outputs, _ = self.forward.apply(params, state, batch, is_training=False) logits = outputs['logits'] labels = hk.one_hot(batch['labels'], self._num_classes) loss = helpers.softmax_cross_entropy(logits, labels, reduction=None) top1_correct = helpers.topk_accuracy(logits, batch['labels'], topk=1) top5_correct = helpers.topk_accuracy(logits, batch['labels'], topk=5) # NOTE: Returned values will be summed and finally divided by num_samples. return { 'eval_loss': loss, 'top1_accuracy': top1_correct, 'top5_accuracy': top5_correct, } def _eval_epoch(self, subset: Text, batch_size: int): """Evaluates an epoch.""" num_samples = 0. summed_scalars = None params = helpers.get_first(self._byol_state.online_params) state = helpers.get_first(self._byol_state.online_state) split = dataset.Split.from_string(subset) dataset_iterator = dataset.load( split, preprocess_mode=dataset.PreprocessMode.EVAL, transpose=self._should_transpose_images(), batch_dims=[batch_size]) for inputs in dataset_iterator: num_samples += inputs['labels'].shape[0] scalars = self.eval_batch_jit(params, state, inputs) # Accumulate the sum of scalars for each step. scalars = jax.tree_map(lambda x: jnp.sum(x, axis=0), scalars) if summed_scalars is None: summed_scalars = scalars else: summed_scalars = jax.tree_map(jnp.add, summed_scalars, scalars) mean_scalars = jax.tree_map(lambda x: x / num_samples, summed_scalars) return mean_scalars def evaluate(self, global_step, **unused_args): """Thin wrapper around _eval_epoch.""" global_step = np.array(helpers.get_first(global_step)) scalars = jax.device_get(self._eval_epoch(**self._evaluation_config)) logging.info('[Step %d] Eval scalars: %s', global_step, scalars) return scalars
deepmind-research-master
byol/byol_experiment.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for BYOL's main training loop.""" from absl import flags from absl.testing import absltest import tensorflow_datasets as tfds from byol import byol_experiment from byol import eval_experiment from byol import main_loop from byol.configs import byol as byol_config from byol.configs import eval as eval_config FLAGS = flags.FLAGS class MainLoopTest(absltest.TestCase): def test_pretrain(self): config = byol_config.get_config(num_epochs=40, batch_size=4) temp_dir = self.create_tempdir().full_path # Override some config fields to make test lighter. config['network_config']['encoder_class'] = 'TinyResNet' config['network_config']['projector_hidden_size'] = 256 config['network_config']['predictor_hidden_size'] = 256 config['checkpointing_config']['checkpoint_dir'] = temp_dir config['evaluation_config']['batch_size'] = 16 config['max_steps'] = 16 with tfds.testing.mock_data(num_examples=64): experiment_class = byol_experiment.ByolExperiment main_loop.train_loop(experiment_class, config) main_loop.eval_loop(experiment_class, config) def test_linear_eval(self): config = eval_config.get_config(checkpoint_to_evaluate=None, batch_size=4) temp_dir = self.create_tempdir().full_path # Override some config fields to make test lighter. config['network_config']['encoder_class'] = 'TinyResNet' config['allow_train_from_scratch'] = True config['checkpointing_config']['checkpoint_dir'] = temp_dir config['evaluation_config']['batch_size'] = 16 config['max_steps'] = 16 with tfds.testing.mock_data(num_examples=64): experiment_class = eval_experiment.EvalExperiment main_loop.train_loop(experiment_class, config) main_loop.eval_loop(experiment_class, config) def test_pipeline(self): b_config = byol_config.get_config(num_epochs=40, batch_size=4) temp_dir = self.create_tempdir().full_path # Override some config fields to make test lighter. b_config['network_config']['encoder_class'] = 'TinyResNet' b_config['network_config']['projector_hidden_size'] = 256 b_config['network_config']['predictor_hidden_size'] = 256 b_config['checkpointing_config']['checkpoint_dir'] = temp_dir b_config['evaluation_config']['batch_size'] = 16 b_config['max_steps'] = 16 with tfds.testing.mock_data(num_examples=64): main_loop.train_loop(byol_experiment.ByolExperiment, b_config) e_config = eval_config.get_config( checkpoint_to_evaluate=f'{temp_dir}/pretrain.pkl', batch_size=4) # Override some config fields to make test lighter. e_config['network_config']['encoder_class'] = 'TinyResNet' e_config['allow_train_from_scratch'] = True e_config['checkpointing_config']['checkpoint_dir'] = temp_dir e_config['evaluation_config']['batch_size'] = 16 e_config['max_steps'] = 16 with tfds.testing.mock_data(num_examples=64): main_loop.train_loop(eval_experiment.EvalExperiment, e_config) if __name__ == '__main__': absltest.main()
deepmind-research-master
byol/main_loop_test.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup BYOL for pip package.""" import setuptools setuptools.setup( name='byol', description='Bootstrap Your Own Latents', long_description=open('README.md').read(), author='DeepMind', author_email='[email protected]', url='https://github.com/deepmind/deepmind-research/byol', install_requires=[ 'chex', 'dm-acme', 'dm-haiku', 'dm-tree', 'jax', 'jaxlib', 'numpy>=1.16', 'optax', 'tensorflow', 'tensorflow-datasets', ], package_dir={'byol': ''}, py_modules=[ 'byol.byol_experiment', 'byol.eval_experiment', 'byol.main_loop' ], packages=['byol.configs', 'byol.utils'])
deepmind-research-master
byol/setup.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Linear evaluation or fine-tuning pipeline. Use this experiment to evaluate a checkpoint from byol_experiment. """ import functools from typing import Any, Generator, Mapping, NamedTuple, Optional, Text, Tuple, Union from absl import logging from acme.jax import utils as acme_utils import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax from byol.utils import checkpointing from byol.utils import dataset from byol.utils import helpers from byol.utils import networks from byol.utils import schedules # Type declarations. OptState = Tuple[optax.TraceState, optax.ScaleByScheduleState, optax.ScaleState] LogsDict = Mapping[Text, jnp.ndarray] class _EvalExperimentState(NamedTuple): backbone_params: hk.Params classif_params: hk.Params backbone_state: hk.State backbone_opt_state: Union[None, OptState] classif_opt_state: OptState class EvalExperiment: """Linear evaluation experiment.""" def __init__( self, random_seed: int, num_classes: int, batch_size: int, max_steps: int, enable_double_transpose: bool, checkpoint_to_evaluate: Optional[Text], allow_train_from_scratch: bool, freeze_backbone: bool, network_config: Mapping[Text, Any], optimizer_config: Mapping[Text, Any], lr_schedule_config: Mapping[Text, Any], evaluation_config: Mapping[Text, Any], checkpointing_config: Mapping[Text, Any]): """Constructs the experiment. Args: random_seed: the random seed to use when initializing network weights. num_classes: the number of classes; used for the online evaluation. batch_size: the total batch size; should be a multiple of the number of available accelerators. max_steps: the number of training steps; used for the lr/target network ema schedules. enable_double_transpose: see dataset.py; only has effect on TPU. checkpoint_to_evaluate: the path to the checkpoint to evaluate. allow_train_from_scratch: whether to allow training without specifying a checkpoint to evaluate (training from scratch). freeze_backbone: whether the backbone resnet should remain frozen (linear evaluation) or be trainable (fine-tuning). network_config: the configuration for the network. optimizer_config: the configuration for the optimizer. lr_schedule_config: the configuration for the learning rate schedule. evaluation_config: the evaluation configuration. checkpointing_config: the configuration for checkpointing. """ self._random_seed = random_seed self._enable_double_transpose = enable_double_transpose self._num_classes = num_classes self._lr_schedule_config = lr_schedule_config self._batch_size = batch_size self._max_steps = max_steps self._checkpoint_to_evaluate = checkpoint_to_evaluate self._allow_train_from_scratch = allow_train_from_scratch self._freeze_backbone = freeze_backbone self._optimizer_config = optimizer_config self._evaluation_config = evaluation_config # Checkpointed experiment state. self._experiment_state = None # Input pipelines. self._train_input = None self._eval_input = None backbone_fn = functools.partial(self._backbone_fn, **network_config) self.forward_backbone = hk.without_apply_rng( hk.transform_with_state(backbone_fn)) self.forward_classif = hk.without_apply_rng(hk.transform(self._classif_fn)) self.update_pmap = jax.pmap(self._update_func, axis_name='i') self.eval_batch_jit = jax.jit(self._eval_batch) self._is_backbone_training = not self._freeze_backbone self._checkpointer = checkpointing.Checkpointer(**checkpointing_config) def _should_transpose_images(self): """Should we transpose images (saves host-to-device time on TPUs).""" return (self._enable_double_transpose and jax.local_devices()[0].platform == 'tpu') def _backbone_fn( self, inputs: dataset.Batch, encoder_class: Text, encoder_config: Mapping[Text, Any], bn_decay_rate: float, is_training: bool, ) -> jnp.ndarray: """Forward of the encoder (backbone).""" bn_config = {'decay_rate': bn_decay_rate} encoder = getattr(networks, encoder_class) model = encoder( None, bn_config=bn_config, **encoder_config) if self._should_transpose_images(): inputs = dataset.transpose_images(inputs) images = dataset.normalize_images(inputs['images']) return model(images, is_training=is_training) def _classif_fn( self, embeddings: jnp.ndarray, ) -> jnp.ndarray: classifier = hk.Linear(output_size=self._num_classes) return classifier(embeddings) # _ _ # | |_ _ __ __ _(_)_ __ # | __| '__/ _` | | '_ \ # | |_| | | (_| | | | | | # \__|_| \__,_|_|_| |_| # def step(self, *, global_step: jnp.ndarray, rng: jnp.ndarray) -> Mapping[Text, np.ndarray]: """Performs a single training step.""" if self._train_input is None: self._initialize_train(rng) inputs = next(self._train_input) self._experiment_state, scalars = self.update_pmap( self._experiment_state, global_step, inputs) scalars = helpers.get_first(scalars) return scalars def save_checkpoint(self, step: int, rng: jnp.ndarray): self._checkpointer.maybe_save_checkpoint( self._experiment_state, step=step, rng=rng, is_final=step >= self._max_steps) def load_checkpoint(self) -> Union[Tuple[int, jnp.ndarray], None]: checkpoint_data = self._checkpointer.maybe_load_checkpoint() if checkpoint_data is None: return None self._experiment_state, step, rng = checkpoint_data return step, rng def _initialize_train(self, rng): """BYOL's _ExperimentState initialization. Args: rng: random number generator used to initialize parameters. If working in a multi device setup, this need to be a ShardedArray. dummy_input: a dummy image, used to compute intermediate outputs shapes. Returns: Initial EvalExperiment state. Raises: RuntimeError: invalid or empty checkpoint. """ self._train_input = acme_utils.prefetch(self._build_train_input()) # Check we haven't already restored params if self._experiment_state is None: inputs = next(self._train_input) if self._checkpoint_to_evaluate is not None: # Load params from checkpoint checkpoint_data = checkpointing.load_checkpoint( self._checkpoint_to_evaluate) if checkpoint_data is None: raise RuntimeError('Invalid checkpoint.') backbone_params = checkpoint_data['experiment_state'].online_params backbone_state = checkpoint_data['experiment_state'].online_state backbone_params = helpers.bcast_local_devices(backbone_params) backbone_state = helpers.bcast_local_devices(backbone_state) else: if not self._allow_train_from_scratch: raise ValueError( 'No checkpoint specified, but `allow_train_from_scratch` ' 'set to False') # Initialize with random parameters logging.info( 'No checkpoint specified, initializing the networks from scratch ' '(dry run mode)') backbone_params, backbone_state = jax.pmap( functools.partial(self.forward_backbone.init, is_training=True), axis_name='i')(rng=rng, inputs=inputs) init_experiment = jax.pmap(self._make_initial_state, axis_name='i') # Init uses the same RNG key on all hosts+devices to ensure everyone # computes the same initial state and parameters. init_rng = jax.random.PRNGKey(self._random_seed) init_rng = helpers.bcast_local_devices(init_rng) self._experiment_state = init_experiment( rng=init_rng, dummy_input=inputs, backbone_params=backbone_params, backbone_state=backbone_state) # Clear the backbone optimizer's state when the backbone is frozen. if self._freeze_backbone: self._experiment_state = _EvalExperimentState( backbone_params=self._experiment_state.backbone_params, classif_params=self._experiment_state.classif_params, backbone_state=self._experiment_state.backbone_state, backbone_opt_state=None, classif_opt_state=self._experiment_state.classif_opt_state, ) def _make_initial_state( self, rng: jnp.ndarray, dummy_input: dataset.Batch, backbone_params: hk.Params, backbone_state: hk.Params, ) -> _EvalExperimentState: """_EvalExperimentState initialization.""" # Initialize the backbone params # Always create the batchnorm weights (is_training=True), they will be # overwritten when loading the checkpoint. embeddings, _ = self.forward_backbone.apply( backbone_params, backbone_state, dummy_input, is_training=True) backbone_opt_state = self._optimizer(0.).init(backbone_params) # Initialize the classifier params and optimizer_state classif_params = self.forward_classif.init(rng, embeddings) classif_opt_state = self._optimizer(0.).init(classif_params) return _EvalExperimentState( backbone_params=backbone_params, classif_params=classif_params, backbone_state=backbone_state, backbone_opt_state=backbone_opt_state, classif_opt_state=classif_opt_state, ) def _build_train_input(self) -> Generator[dataset.Batch, None, None]: """See base class.""" num_devices = jax.device_count() global_batch_size = self._batch_size per_device_batch_size, ragged = divmod(global_batch_size, num_devices) if ragged: raise ValueError( f'Global batch size {global_batch_size} must be divisible by ' f'num devices {num_devices}') return dataset.load( dataset.Split.TRAIN_AND_VALID, preprocess_mode=dataset.PreprocessMode.LINEAR_TRAIN, transpose=self._should_transpose_images(), batch_dims=[jax.local_device_count(), per_device_batch_size]) def _optimizer(self, learning_rate: float): """Build optimizer from config.""" return optax.sgd(learning_rate, **self._optimizer_config) def _loss_fn( self, backbone_params: hk.Params, classif_params: hk.Params, backbone_state: hk.State, inputs: dataset.Batch, ) -> Tuple[jnp.ndarray, Tuple[jnp.ndarray, hk.State]]: """Compute the classification loss function. Args: backbone_params: parameters of the encoder network. classif_params: parameters of the linear classifier. backbone_state: internal state of encoder network. inputs: inputs, containing `images` and `labels`. Returns: The classification loss and various logs. """ embeddings, backbone_state = self.forward_backbone.apply( backbone_params, backbone_state, inputs, is_training=not self._freeze_backbone) logits = self.forward_classif.apply(classif_params, embeddings) labels = hk.one_hot(inputs['labels'], self._num_classes) loss = helpers.softmax_cross_entropy(logits, labels, reduction='mean') scaled_loss = loss / jax.device_count() return scaled_loss, (loss, backbone_state) def _update_func( self, experiment_state: _EvalExperimentState, global_step: jnp.ndarray, inputs: dataset.Batch, ) -> Tuple[_EvalExperimentState, LogsDict]: """Applies an update to parameters and returns new state.""" # This function computes the gradient of the first output of loss_fn and # passes through the other arguments unchanged. # Gradient of the first output of _loss_fn wrt the backbone (arg 0) and the # classifier parameters (arg 1). The auxiliary outputs are returned as-is. grad_loss_fn = jax.grad(self._loss_fn, has_aux=True, argnums=(0, 1)) grads, aux_outputs = grad_loss_fn( experiment_state.backbone_params, experiment_state.classif_params, experiment_state.backbone_state, inputs, ) backbone_grads, classifier_grads = grads train_loss, new_backbone_state = aux_outputs classifier_grads = jax.lax.psum(classifier_grads, axis_name='i') # Compute the decayed learning rate learning_rate = schedules.learning_schedule( global_step, batch_size=self._batch_size, total_steps=self._max_steps, **self._lr_schedule_config) # Compute and apply updates via our optimizer. classif_updates, new_classif_opt_state = \ self._optimizer(learning_rate).update( classifier_grads, experiment_state.classif_opt_state) new_classif_params = optax.apply_updates(experiment_state.classif_params, classif_updates) if self._freeze_backbone: del backbone_grads, new_backbone_state # Unused # The backbone is not updated. new_backbone_params = experiment_state.backbone_params new_backbone_opt_state = None new_backbone_state = experiment_state.backbone_state else: backbone_grads = jax.lax.psum(backbone_grads, axis_name='i') # Compute and apply updates via our optimizer. backbone_updates, new_backbone_opt_state = \ self._optimizer(learning_rate).update( backbone_grads, experiment_state.backbone_opt_state) new_backbone_params = optax.apply_updates( experiment_state.backbone_params, backbone_updates) experiment_state = _EvalExperimentState( new_backbone_params, new_classif_params, new_backbone_state, new_backbone_opt_state, new_classif_opt_state, ) # Scalars to log (note: we log the mean across all hosts/devices). scalars = {'train_loss': train_loss} scalars = jax.lax.pmean(scalars, axis_name='i') return experiment_state, scalars # _ # _____ ____ _| | # / _ \ \ / / _` | | # | __/\ V / (_| | | # \___| \_/ \__,_|_| # def evaluate(self, global_step, **unused_args): """See base class.""" global_step = np.array(helpers.get_first(global_step)) scalars = jax.device_get(self._eval_epoch(**self._evaluation_config)) logging.info('[Step %d] Eval scalars: %s', global_step, scalars) return scalars def _eval_batch( self, backbone_params: hk.Params, classif_params: hk.Params, backbone_state: hk.State, inputs: dataset.Batch, ) -> LogsDict: """Evaluates a batch.""" embeddings, backbone_state = self.forward_backbone.apply( backbone_params, backbone_state, inputs, is_training=False) logits = self.forward_classif.apply(classif_params, embeddings) labels = hk.one_hot(inputs['labels'], self._num_classes) loss = helpers.softmax_cross_entropy(logits, labels, reduction=None) top1_correct = helpers.topk_accuracy(logits, inputs['labels'], topk=1) top5_correct = helpers.topk_accuracy(logits, inputs['labels'], topk=5) # NOTE: Returned values will be summed and finally divided by num_samples. return { 'eval_loss': loss, 'top1_accuracy': top1_correct, 'top5_accuracy': top5_correct } def _eval_epoch(self, subset: Text, batch_size: int): """Evaluates an epoch.""" num_samples = 0. summed_scalars = None backbone_params = helpers.get_first(self._experiment_state.backbone_params) classif_params = helpers.get_first(self._experiment_state.classif_params) backbone_state = helpers.get_first(self._experiment_state.backbone_state) split = dataset.Split.from_string(subset) dataset_iterator = dataset.load( split, preprocess_mode=dataset.PreprocessMode.EVAL, transpose=self._should_transpose_images(), batch_dims=[batch_size]) for inputs in dataset_iterator: num_samples += inputs['labels'].shape[0] scalars = self.eval_batch_jit( backbone_params, classif_params, backbone_state, inputs, ) # Accumulate the sum of scalars for each step. scalars = jax.tree_map(lambda x: jnp.sum(x, axis=0), scalars) if summed_scalars is None: summed_scalars = scalars else: summed_scalars = jax.tree_map(jnp.add, summed_scalars, scalars) mean_scalars = jax.tree_map(lambda x: x / num_samples, summed_scalars) return mean_scalars
deepmind-research-master
byol/eval_experiment.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
deepmind-research-master
byol/utils/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of LARS Optimizer with optax.""" from typing import Any, Callable, List, NamedTuple, Optional, Tuple import jax import jax.numpy as jnp import optax import tree as nest # A filter function takes a path and a value as input and outputs True for # variable to apply update and False not to apply the update FilterFn = Callable[[Tuple[Any], jnp.ndarray], jnp.ndarray] def exclude_bias_and_norm(path: Tuple[Any], val: jnp.ndarray) -> jnp.ndarray: """Filter to exclude biaises and normalizations weights.""" del val if path[-1] == "b" or "norm" in path[-2]: return False return True def _partial_update(updates: optax.Updates, new_updates: optax.Updates, params: optax.Params, filter_fn: Optional[FilterFn] = None) -> optax.Updates: """Returns new_update for params which filter_fn is True else updates.""" if filter_fn is None: return new_updates wrapped_filter_fn = lambda x, y: jnp.array(filter_fn(x, y)) params_to_filter = nest.map_structure_with_path(wrapped_filter_fn, params) def _update_fn(g: jnp.ndarray, t: jnp.ndarray, m: jnp.ndarray) -> jnp.ndarray: m = m.astype(g.dtype) return g * (1. - m) + t * m return jax.tree_map(_update_fn, updates, new_updates, params_to_filter) class ScaleByLarsState(NamedTuple): mu: jnp.ndarray def scale_by_lars( momentum: float = 0.9, eta: float = 0.001, filter_fn: Optional[FilterFn] = None) -> optax.GradientTransformation: """Rescales updates according to the LARS algorithm. Does not include weight decay. References: [You et al, 2017](https://arxiv.org/abs/1708.03888) Args: momentum: momentum coeficient. eta: LARS coefficient. filter_fn: an optional filter function. Returns: An (init_fn, update_fn) tuple. """ def init_fn(params: optax.Params) -> ScaleByLarsState: mu = jax.tree_map(jnp.zeros_like, params) # momentum return ScaleByLarsState(mu=mu) def update_fn(updates: optax.Updates, state: ScaleByLarsState, params: optax.Params) -> Tuple[optax.Updates, ScaleByLarsState]: def lars_adaptation( update: jnp.ndarray, param: jnp.ndarray, ) -> jnp.ndarray: param_norm = jnp.linalg.norm(param) update_norm = jnp.linalg.norm(update) return update * jnp.where( param_norm > 0., jnp.where(update_norm > 0, (eta * param_norm / update_norm), 1.0), 1.0) adapted_updates = jax.tree_map(lars_adaptation, updates, params) adapted_updates = _partial_update(updates, adapted_updates, params, filter_fn) mu = jax.tree_map(lambda g, t: momentum * g + t, state.mu, adapted_updates) return mu, ScaleByLarsState(mu=mu) return optax.GradientTransformation(init_fn, update_fn) class AddWeightDecayState(NamedTuple): """Stateless transformation.""" def add_weight_decay( weight_decay: float, filter_fn: Optional[FilterFn] = None) -> optax.GradientTransformation: """Adds a weight decay to the update. Args: weight_decay: weight_decay coeficient. filter_fn: an optional filter function. Returns: An (init_fn, update_fn) tuple. """ def init_fn(_) -> AddWeightDecayState: return AddWeightDecayState() def update_fn( updates: optax.Updates, state: AddWeightDecayState, params: optax.Params, ) -> Tuple[optax.Updates, AddWeightDecayState]: new_updates = jax.tree_map(lambda g, p: g + weight_decay * p, updates, params) new_updates = _partial_update(updates, new_updates, params, filter_fn) return new_updates, state return optax.GradientTransformation(init_fn, update_fn) LarsState = List # Type for the lars optimizer def lars( learning_rate: float, weight_decay: float = 0., momentum: float = 0.9, eta: float = 0.001, weight_decay_filter: Optional[FilterFn] = None, lars_adaptation_filter: Optional[FilterFn] = None, ) -> optax.GradientTransformation: """Creates lars optimizer with weight decay. References: [You et al, 2017](https://arxiv.org/abs/1708.03888) Args: learning_rate: learning rate coefficient. weight_decay: weight decay coefficient. momentum: momentum coefficient. eta: LARS coefficient. weight_decay_filter: optional filter function to only apply the weight decay on a subset of parameters. The filter function takes as input the parameter path (as a tuple) and its associated update, and return a True for params to apply the weight decay and False for params to not apply the weight decay. When weight_decay_filter is set to None, the weight decay is not applied to the bias, i.e. when the variable name is 'b', and the weight decay is not applied to nornalization params, i.e. the panultimate path contains 'norm'. lars_adaptation_filter: similar to weight decay filter but for lars adaptation Returns: An optax.GradientTransformation, i.e. a (init_fn, update_fn) tuple. """ if weight_decay_filter is None: weight_decay_filter = lambda *_: True if lars_adaptation_filter is None: lars_adaptation_filter = lambda *_: True return optax.chain( add_weight_decay( weight_decay=weight_decay, filter_fn=weight_decay_filter), scale_by_lars( momentum=momentum, eta=eta, filter_fn=lars_adaptation_filter), optax.scale(-learning_rate), )
deepmind-research-master
byol/utils/optimizers.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ImageNet dataset with typical pre-processing.""" import enum from typing import Generator, Mapping, Optional, Sequence, Text, Tuple import jax import jax.numpy as jnp import numpy as np import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds Batch = Mapping[Text, np.ndarray] class Split(enum.Enum): """Imagenet dataset split.""" TRAIN = 1 TRAIN_AND_VALID = 2 VALID = 3 TEST = 4 @classmethod def from_string(cls, name: Text) -> 'Split': return { 'TRAIN': Split.TRAIN, 'TRAIN_AND_VALID': Split.TRAIN_AND_VALID, 'VALID': Split.VALID, 'VALIDATION': Split.VALID, 'TEST': Split.TEST }[name.upper()] @property def num_examples(self): return { Split.TRAIN_AND_VALID: 1281167, Split.TRAIN: 1271167, Split.VALID: 10000, Split.TEST: 50000 }[self] class PreprocessMode(enum.Enum): """Preprocessing modes for the dataset.""" PRETRAIN = 1 # Generates two augmented views (random crop + augmentations). LINEAR_TRAIN = 2 # Generates a single random crop. EVAL = 3 # Generates a single center crop. def normalize_images(images: jnp.ndarray) -> jnp.ndarray: """Normalize the image using ImageNet statistics.""" mean_rgb = (0.485, 0.456, 0.406) stddev_rgb = (0.229, 0.224, 0.225) normed_images = images - jnp.array(mean_rgb).reshape((1, 1, 1, 3)) normed_images = normed_images / jnp.array(stddev_rgb).reshape((1, 1, 1, 3)) return normed_images def load(split: Split, *, preprocess_mode: PreprocessMode, batch_dims: Sequence[int], transpose: bool = False, allow_caching: bool = False) -> Generator[Batch, None, None]: """Loads the given split of the dataset.""" start, end = _shard(split, jax.host_id(), jax.host_count()) total_batch_size = np.prod(batch_dims) tfds_split = tfds.core.ReadInstruction( _to_tfds_split(split), from_=start, to=end, unit='abs') ds = tfds.load( 'imagenet2012:5.*.*', split=tfds_split, decoders={'image': tfds.decode.SkipDecoding()}) options = tf.data.Options() options.experimental_threading.private_threadpool_size = 48 options.experimental_threading.max_intra_op_parallelism = 1 if preprocess_mode is not PreprocessMode.EVAL: options.experimental_deterministic = False if jax.host_count() > 1 and allow_caching: # Only cache if we are reading a subset of the dataset. ds = ds.cache() ds = ds.repeat() ds = ds.shuffle(buffer_size=10 * total_batch_size, seed=0) else: if split.num_examples % total_batch_size != 0: raise ValueError(f'Test/valid must be divisible by {total_batch_size}') ds = ds.with_options(options) def preprocess_pretrain(example): view1 = _preprocess_image(example['image'], mode=preprocess_mode) view2 = _preprocess_image(example['image'], mode=preprocess_mode) label = tf.cast(example['label'], tf.int32) return {'view1': view1, 'view2': view2, 'labels': label} def preprocess_linear_train(example): image = _preprocess_image(example['image'], mode=preprocess_mode) label = tf.cast(example['label'], tf.int32) return {'images': image, 'labels': label} def preprocess_eval(example): image = _preprocess_image(example['image'], mode=preprocess_mode) label = tf.cast(example['label'], tf.int32) return {'images': image, 'labels': label} if preprocess_mode is PreprocessMode.PRETRAIN: ds = ds.map( preprocess_pretrain, num_parallel_calls=tf.data.experimental.AUTOTUNE) elif preprocess_mode is PreprocessMode.LINEAR_TRAIN: ds = ds.map( preprocess_linear_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) else: ds = ds.map( preprocess_eval, num_parallel_calls=tf.data.experimental.AUTOTUNE) def transpose_fn(batch): # We use the double-transpose-trick to improve performance for TPUs. Note # that this (typically) requires a matching HWCN->NHWC transpose in your # model code. The compiler cannot make this optimization for us since our # data pipeline and model are compiled separately. batch = dict(**batch) if preprocess_mode is PreprocessMode.PRETRAIN: batch['view1'] = tf.transpose(batch['view1'], (1, 2, 3, 0)) batch['view2'] = tf.transpose(batch['view2'], (1, 2, 3, 0)) else: batch['images'] = tf.transpose(batch['images'], (1, 2, 3, 0)) return batch for i, batch_size in enumerate(reversed(batch_dims)): ds = ds.batch(batch_size) if i == 0 and transpose: ds = ds.map(transpose_fn) # NHWC -> HWCN ds = ds.prefetch(tf.data.experimental.AUTOTUNE) yield from tfds.as_numpy(ds) def _to_tfds_split(split: Split) -> tfds.Split: """Returns the TFDS split appropriately sharded.""" # NOTE: Imagenet did not release labels for the test split used in the # competition, we consider the VALID split the TEST split and reserve # 10k images from TRAIN for VALID. if split in (Split.TRAIN, Split.TRAIN_AND_VALID, Split.VALID): return tfds.Split.TRAIN else: assert split == Split.TEST return tfds.Split.VALIDATION def _shard(split: Split, shard_index: int, num_shards: int) -> Tuple[int, int]: """Returns [start, end) for the given shard index.""" assert shard_index < num_shards arange = np.arange(split.num_examples) shard_range = np.array_split(arange, num_shards)[shard_index] start, end = shard_range[0], (shard_range[-1] + 1) if split == Split.TRAIN: # Note that our TRAIN=TFDS_TRAIN[10000:] and VALID=TFDS_TRAIN[:10000]. offset = Split.VALID.num_examples start += offset end += offset return start, end def _preprocess_image( image_bytes: tf.Tensor, mode: PreprocessMode, ) -> tf.Tensor: """Returns processed and resized images.""" if mode is PreprocessMode.PRETRAIN: image = _decode_and_random_crop(image_bytes) # Random horizontal flipping is optionally done in augmentations.preprocess. elif mode is PreprocessMode.LINEAR_TRAIN: image = _decode_and_random_crop(image_bytes) image = tf.image.random_flip_left_right(image) else: image = _decode_and_center_crop(image_bytes) # NOTE: Bicubic resize (1) casts uint8 to float32 and (2) resizes without # clamping overshoots. This means values returned will be outside the range # [0.0, 255.0] (e.g. we have observed outputs in the range [-51.1, 336.6]). assert image.dtype == tf.uint8 image = tf.image.resize(image, [224, 224], tf.image.ResizeMethod.BICUBIC) image = tf.clip_by_value(image / 255., 0., 1.) return image def _decode_and_random_crop(image_bytes: tf.Tensor) -> tf.Tensor: """Make a random crop of 224.""" img_size = tf.image.extract_jpeg_shape(image_bytes) area = tf.cast(img_size[1] * img_size[0], tf.float32) target_area = tf.random.uniform([], 0.08, 1.0, dtype=tf.float32) * area log_ratio = (tf.math.log(3 / 4), tf.math.log(4 / 3)) aspect_ratio = tf.math.exp( tf.random.uniform([], *log_ratio, dtype=tf.float32)) w = tf.cast(tf.round(tf.sqrt(target_area * aspect_ratio)), tf.int32) h = tf.cast(tf.round(tf.sqrt(target_area / aspect_ratio)), tf.int32) w = tf.minimum(w, img_size[1]) h = tf.minimum(h, img_size[0]) offset_w = tf.random.uniform((), minval=0, maxval=img_size[1] - w + 1, dtype=tf.int32) offset_h = tf.random.uniform((), minval=0, maxval=img_size[0] - h + 1, dtype=tf.int32) crop_window = tf.stack([offset_h, offset_w, h, w]) image = tf.io.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) return image def transpose_images(batch: Batch): """Transpose images for TPU training..""" new_batch = dict(batch) # Avoid mutating in place. if 'images' in batch: new_batch['images'] = jnp.transpose(batch['images'], (3, 0, 1, 2)) else: new_batch['view1'] = jnp.transpose(batch['view1'], (3, 0, 1, 2)) new_batch['view2'] = jnp.transpose(batch['view2'], (3, 0, 1, 2)) return new_batch def _decode_and_center_crop( image_bytes: tf.Tensor, jpeg_shape: Optional[tf.Tensor] = None, ) -> tf.Tensor: """Crops to center of image with padding then scales.""" if jpeg_shape is None: jpeg_shape = tf.image.extract_jpeg_shape(image_bytes) image_height = jpeg_shape[0] image_width = jpeg_shape[1] padded_center_crop_size = tf.cast( ((224 / (224 + 32)) * tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 crop_window = tf.stack([ offset_height, offset_width, padded_center_crop_size, padded_center_crop_size ]) image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) return image
deepmind-research-master
byol/utils/dataset.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Networks used in BYOL.""" from typing import Any, Mapping, Optional, Sequence, Text import haiku as hk import jax import jax.numpy as jnp class MLP(hk.Module): """One hidden layer perceptron, with normalization.""" def __init__( self, name: Text, hidden_size: int, output_size: int, bn_config: Mapping[Text, Any], ): super().__init__(name=name) self._hidden_size = hidden_size self._output_size = output_size self._bn_config = bn_config def __call__(self, inputs: jnp.ndarray, is_training: bool) -> jnp.ndarray: out = hk.Linear(output_size=self._hidden_size, with_bias=True)(inputs) out = hk.BatchNorm(**self._bn_config)(out, is_training=is_training) out = jax.nn.relu(out) out = hk.Linear(output_size=self._output_size, with_bias=False)(out) return out def check_length(length, value, name): if len(value) != length: raise ValueError(f'`{name}` must be of length 4 not {len(value)}') class ResNetTorso(hk.Module): """ResNet model.""" def __init__( self, blocks_per_group: Sequence[int], num_classes: Optional[int] = None, bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, bottleneck: bool = True, channels_per_group: Sequence[int] = (256, 512, 1024, 2048), use_projection: Sequence[bool] = (True, True, True, True), width_multiplier: int = 1, name: Optional[str] = None, ): """Constructs a ResNet model. Args: blocks_per_group: A sequence of length 4 that indicates the number of blocks created in each group. num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of three elements, `decay_rate`, `eps`, and `cross_replica_axis`, to be passed on to the `BatchNorm` layers. By default the `decay_rate` is `0.9` and `eps` is `1e-5`, and the axis is `None`. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. bottleneck: Whether the block should bottleneck or not. Defaults to True. channels_per_group: A sequence of length 4 that indicates the number of channels used for each block in each group. use_projection: A sequence of length 4 that indicates whether each residual block should use projection. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(name=name) self.resnet_v2 = resnet_v2 bn_config = dict(bn_config or {}) bn_config.setdefault('decay_rate', 0.9) bn_config.setdefault('eps', 1e-5) bn_config.setdefault('create_scale', True) bn_config.setdefault('create_offset', True) # Number of blocks in each group for ResNet. check_length(4, blocks_per_group, 'blocks_per_group') check_length(4, channels_per_group, 'channels_per_group') self.initial_conv = hk.Conv2D( output_channels=64 * width_multiplier, kernel_shape=7, stride=2, with_bias=False, padding='SAME', name='initial_conv') if not self.resnet_v2: self.initial_batchnorm = hk.BatchNorm(name='initial_batchnorm', **bn_config) self.block_groups = [] strides = (1, 2, 2, 2) for i in range(4): self.block_groups.append( hk.nets.ResNet.BlockGroup( channels=width_multiplier * channels_per_group[i], num_blocks=blocks_per_group[i], stride=strides[i], bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=bottleneck, use_projection=use_projection[i], name='block_group_%d' % (i))) if self.resnet_v2: self.final_batchnorm = hk.BatchNorm(name='final_batchnorm', **bn_config) self.logits = hk.Linear(num_classes, w_init=jnp.zeros, name='logits') def __call__(self, inputs, is_training, test_local_stats=False): out = inputs out = self.initial_conv(out) if not self.resnet_v2: out = self.initial_batchnorm(out, is_training, test_local_stats) out = jax.nn.relu(out) out = hk.max_pool(out, window_shape=(1, 3, 3, 1), strides=(1, 2, 2, 1), padding='SAME') for block_group in self.block_groups: out = block_group(out, is_training, test_local_stats) if self.resnet_v2: out = self.final_batchnorm(out, is_training, test_local_stats) out = jax.nn.relu(out) out = jnp.mean(out, axis=[1, 2]) return out class TinyResNet(ResNetTorso): """Tiny resnet for local runs and tests.""" def __init__(self, num_classes: Optional[int] = None, bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, width_multiplier: int = 1, name: Optional[str] = None): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(blocks_per_group=(1, 1, 1, 1), channels_per_group=(8, 8, 8, 8), num_classes=num_classes, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=False, width_multiplier=width_multiplier, name=name) class ResNet18(ResNetTorso): """ResNet18.""" def __init__(self, num_classes: Optional[int] = None, bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, width_multiplier: int = 1, name: Optional[str] = None): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(blocks_per_group=(2, 2, 2, 2), num_classes=num_classes, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=False, channels_per_group=(64, 128, 256, 512), width_multiplier=width_multiplier, name=name) class ResNet34(ResNetTorso): """ResNet34.""" def __init__(self, num_classes: Optional[int], bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, width_multiplier: int = 1, name: Optional[str] = None): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(blocks_per_group=(3, 4, 6, 3), num_classes=num_classes, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=False, channels_per_group=(64, 128, 256, 512), width_multiplier=width_multiplier, name=name) class ResNet50(ResNetTorso): """ResNet50.""" def __init__(self, num_classes: Optional[int] = None, bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, width_multiplier: int = 1, name: Optional[str] = None): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(blocks_per_group=(3, 4, 6, 3), num_classes=num_classes, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=True, width_multiplier=width_multiplier, name=name) class ResNet101(ResNetTorso): """ResNet101.""" def __init__(self, num_classes: Optional[int], bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, width_multiplier: int = 1, name: Optional[str] = None): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(blocks_per_group=(3, 4, 23, 3), num_classes=num_classes, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=True, width_multiplier=width_multiplier, name=name) class ResNet152(ResNetTorso): """ResNet152.""" def __init__(self, num_classes: Optional[int], bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, width_multiplier: int = 1, name: Optional[str] = None): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(blocks_per_group=(3, 8, 36, 3), num_classes=num_classes, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=True, width_multiplier=width_multiplier, name=name) class ResNet200(ResNetTorso): """ResNet200.""" def __init__(self, num_classes: Optional[int], bn_config: Optional[Mapping[str, float]] = None, resnet_v2: bool = False, width_multiplier: int = 1, name: Optional[str] = None): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, `decay_rate` and `eps` to be passed on to the `BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to False. width_multiplier: An integer multiplying the number of channels per group. name: Name of the module. """ super().__init__(blocks_per_group=(3, 24, 36, 3), num_classes=num_classes, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=True, width_multiplier=width_multiplier, name=name)
deepmind-research-master
byol/utils/networks.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions.""" from typing import Optional, Text from absl import logging import jax import jax.numpy as jnp def topk_accuracy( logits: jnp.ndarray, labels: jnp.ndarray, topk: int, ignore_label_above: Optional[int] = None, ) -> jnp.ndarray: """Top-num_codes accuracy.""" assert len(labels.shape) == 1, 'topk expects 1d int labels.' assert len(logits.shape) == 2, 'topk expects 2d logits.' if ignore_label_above is not None: logits = logits[labels < ignore_label_above, :] labels = labels[labels < ignore_label_above] prds = jnp.argsort(logits, axis=1)[:, ::-1] prds = prds[:, :topk] total = jnp.any(prds == jnp.tile(labels[:, jnp.newaxis], [1, topk]), axis=1) return total def softmax_cross_entropy( logits: jnp.ndarray, labels: jnp.ndarray, reduction: Optional[Text] = 'mean', ) -> jnp.ndarray: """Computes softmax cross entropy given logits and one-hot class labels. Args: logits: Logit output values. labels: Ground truth one-hot-encoded labels. reduction: Type of reduction to apply to loss. Returns: Loss value. If `reduction` is `none`, this has the same shape as `labels`; otherwise, it is scalar. Raises: ValueError: If the type of `reduction` is unsupported. """ loss = -jnp.sum(labels * jax.nn.log_softmax(logits), axis=-1) if reduction == 'sum': return jnp.sum(loss) elif reduction == 'mean': return jnp.mean(loss) elif reduction == 'none' or reduction is None: return loss else: raise ValueError(f'Incorrect reduction mode {reduction}') def l2_normalize( x: jnp.ndarray, axis: Optional[int] = None, epsilon: float = 1e-12, ) -> jnp.ndarray: """l2 normalize a tensor on an axis with numerical stability.""" square_sum = jnp.sum(jnp.square(x), axis=axis, keepdims=True) x_inv_norm = jax.lax.rsqrt(jnp.maximum(square_sum, epsilon)) return x * x_inv_norm def l2_weight_regularizer(params): """Helper to do lasso on weights. Args: params: the entire param set. Returns: Scalar of the l2 norm of the weights. """ l2_norm = 0. for mod_name, mod_params in params.items(): if 'norm' not in mod_name: for param_k, param_v in mod_params.items(): if param_k != 'b' not in param_k: # Filter out biases l2_norm += jnp.sum(jnp.square(param_v)) else: logging.warning('Excluding %s/%s from optimizer weight decay!', mod_name, param_k) else: logging.warning('Excluding %s from optimizer weight decay!', mod_name) return 0.5 * l2_norm def regression_loss(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray: """Byol's regression loss. This is a simple cosine similarity.""" normed_x, normed_y = l2_normalize(x, axis=-1), l2_normalize(y, axis=-1) return jnp.sum((normed_x - normed_y)**2, axis=-1) def bcast_local_devices(value): """Broadcasts an object to all local devices.""" devices = jax.local_devices() def _replicate(x): """Replicate an object on each device.""" x = jnp.array(x) return jax.device_put_sharded(len(devices) * [x], devices) return jax.tree_util.tree_map(_replicate, value) def get_first(xs): """Gets values from the first device.""" return jax.tree_map(lambda x: x[0], xs)
deepmind-research-master
byol/utils/helpers.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data preprocessing and augmentation.""" import functools from typing import Any, Mapping, Text import jax import jax.numpy as jnp # typing JaxBatch = Mapping[Text, jnp.ndarray] ConfigDict = Mapping[Text, Any] augment_config = dict( view1=dict( random_flip=True, # Random left/right flip color_transform=dict( apply_prob=1.0, # Range of jittering brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, # Probability of applying color jittering color_jitter_prob=0.8, # Probability of converting to grayscale to_grayscale_prob=0.2, # Shuffle the order of color transforms shuffle=True), gaussian_blur=dict( apply_prob=1.0, # Kernel size ~ image_size / blur_divider blur_divider=10., # Kernel distribution sigma_min=0.1, sigma_max=2.0), solarize=dict(apply_prob=0.0, threshold=0.5), ), view2=dict( random_flip=True, color_transform=dict( apply_prob=1.0, brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, color_jitter_prob=0.8, to_grayscale_prob=0.2, shuffle=True), gaussian_blur=dict( apply_prob=0.1, blur_divider=10., sigma_min=0.1, sigma_max=2.0), solarize=dict(apply_prob=0.2, threshold=0.5), )) def postprocess(inputs: JaxBatch, rng: jnp.ndarray): """Apply the image augmentations to crops in inputs (view1 and view2).""" def _postprocess_image( images: jnp.ndarray, rng: jnp.ndarray, presets: ConfigDict, ) -> JaxBatch: """Applies augmentations in post-processing. Args: images: an NHWC tensor (with C=3), with float values in [0, 1]. rng: a single PRNGKey. presets: a dict of presets for the augmentations. Returns: A batch of augmented images with shape NHWC, with keys view1, view2 and labels. """ flip_rng, color_rng, blur_rng, solarize_rng = jax.random.split(rng, 4) out = images if presets['random_flip']: out = random_flip(out, flip_rng) if presets['color_transform']['apply_prob'] > 0: out = color_transform(out, color_rng, **presets['color_transform']) if presets['gaussian_blur']['apply_prob'] > 0: out = gaussian_blur(out, blur_rng, **presets['gaussian_blur']) if presets['solarize']['apply_prob'] > 0: out = solarize(out, solarize_rng, **presets['solarize']) out = jnp.clip(out, 0., 1.) return jax.lax.stop_gradient(out) rng1, rng2 = jax.random.split(rng, num=2) view1 = _postprocess_image(inputs['view1'], rng1, augment_config['view1']) view2 = _postprocess_image(inputs['view2'], rng2, augment_config['view2']) return dict(view1=view1, view2=view2, labels=inputs['labels']) def _maybe_apply(apply_fn, inputs, rng, apply_prob): should_apply = jax.random.uniform(rng, shape=()) <= apply_prob return jax.lax.cond(should_apply, inputs, apply_fn, inputs, lambda x: x) def _depthwise_conv2d(inputs, kernel, strides, padding): """Computes a depthwise conv2d in Jax. Args: inputs: an NHWC tensor with N=1. kernel: a [H", W", 1, C] tensor. strides: a 2d tensor. padding: "SAME" or "VALID". Returns: The depthwise convolution of inputs with kernel, as [H, W, C]. """ return jax.lax.conv_general_dilated( inputs, kernel, strides, padding, feature_group_count=inputs.shape[-1], dimension_numbers=('NHWC', 'HWIO', 'NHWC')) def _gaussian_blur_single_image(image, kernel_size, padding, sigma): """Applies gaussian blur to a single image, given as NHWC with N=1.""" radius = int(kernel_size / 2) kernel_size_ = 2 * radius + 1 x = jnp.arange(-radius, radius + 1).astype(jnp.float32) blur_filter = jnp.exp(-x**2 / (2. * sigma**2)) blur_filter = blur_filter / jnp.sum(blur_filter) blur_v = jnp.reshape(blur_filter, [kernel_size_, 1, 1, 1]) blur_h = jnp.reshape(blur_filter, [1, kernel_size_, 1, 1]) num_channels = image.shape[-1] blur_h = jnp.tile(blur_h, [1, 1, 1, num_channels]) blur_v = jnp.tile(blur_v, [1, 1, 1, num_channels]) expand_batch_dim = len(image.shape) == 3 if expand_batch_dim: image = image[jnp.newaxis, ...] blurred = _depthwise_conv2d(image, blur_h, strides=[1, 1], padding=padding) blurred = _depthwise_conv2d(blurred, blur_v, strides=[1, 1], padding=padding) blurred = jnp.squeeze(blurred, axis=0) return blurred def _random_gaussian_blur(image, rng, kernel_size, padding, sigma_min, sigma_max, apply_prob): """Applies a random gaussian blur.""" apply_rng, transform_rng = jax.random.split(rng) def _apply(image): sigma_rng, = jax.random.split(transform_rng, 1) sigma = jax.random.uniform( sigma_rng, shape=(), minval=sigma_min, maxval=sigma_max, dtype=jnp.float32) return _gaussian_blur_single_image(image, kernel_size, padding, sigma) return _maybe_apply(_apply, image, apply_rng, apply_prob) def rgb_to_hsv(r, g, b): """Converts R, G, B values to H, S, V values. Reference TF implementation: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/adjust_saturation_op.cc Only input values between 0 and 1 are guaranteed to work properly, but this function complies with the TF implementation outside of this range. Args: r: A tensor representing the red color component as floats. g: A tensor representing the green color component as floats. b: A tensor representing the blue color component as floats. Returns: H, S, V values, each as tensors of shape [...] (same as the input without the last dimension). """ vv = jnp.maximum(jnp.maximum(r, g), b) range_ = vv - jnp.minimum(jnp.minimum(r, g), b) sat = jnp.where(vv > 0, range_ / vv, 0.) norm = jnp.where(range_ != 0, 1. / (6. * range_), 1e9) hr = norm * (g - b) hg = norm * (b - r) + 2. / 6. hb = norm * (r - g) + 4. / 6. hue = jnp.where(r == vv, hr, jnp.where(g == vv, hg, hb)) hue = hue * (range_ > 0) hue = hue + (hue < 0) return hue, sat, vv def hsv_to_rgb(h, s, v): """Converts H, S, V values to an R, G, B tuple. Reference TF implementation: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/adjust_saturation_op.cc Only input values between 0 and 1 are guaranteed to work properly, but this function complies with the TF implementation outside of this range. Args: h: A float tensor of arbitrary shape for the hue (0-1 values). s: A float tensor of the same shape for the saturation (0-1 values). v: A float tensor of the same shape for the value channel (0-1 values). Returns: An (r, g, b) tuple, each with the same dimension as the inputs. """ c = s * v m = v - c dh = (h % 1.) * 6. fmodu = dh % 2. x = c * (1 - jnp.abs(fmodu - 1)) hcat = jnp.floor(dh).astype(jnp.int32) rr = jnp.where( (hcat == 0) | (hcat == 5), c, jnp.where( (hcat == 1) | (hcat == 4), x, 0)) + m gg = jnp.where( (hcat == 1) | (hcat == 2), c, jnp.where( (hcat == 0) | (hcat == 3), x, 0)) + m bb = jnp.where( (hcat == 3) | (hcat == 4), c, jnp.where( (hcat == 2) | (hcat == 5), x, 0)) + m return rr, gg, bb def adjust_brightness(rgb_tuple, delta): return jax.tree_map(lambda x: x + delta, rgb_tuple) def adjust_contrast(image, factor): def _adjust_contrast_channel(channel): mean = jnp.mean(channel, axis=(-2, -1), keepdims=True) return factor * (channel - mean) + mean return jax.tree_map(_adjust_contrast_channel, image) def adjust_saturation(h, s, v, factor): return h, jnp.clip(s * factor, 0., 1.), v def adjust_hue(h, s, v, delta): # Note: this method exactly matches TF"s adjust_hue (combined with the hsv/rgb # conversions) when running on GPU. When running on CPU, the results will be # different if all RGB values for a pixel are outside of the [0, 1] range. return (h + delta) % 1.0, s, v def _random_brightness(rgb_tuple, rng, max_delta): delta = jax.random.uniform(rng, shape=(), minval=-max_delta, maxval=max_delta) return adjust_brightness(rgb_tuple, delta) def _random_contrast(rgb_tuple, rng, max_delta): factor = jax.random.uniform( rng, shape=(), minval=1 - max_delta, maxval=1 + max_delta) return adjust_contrast(rgb_tuple, factor) def _random_saturation(rgb_tuple, rng, max_delta): h, s, v = rgb_to_hsv(*rgb_tuple) factor = jax.random.uniform( rng, shape=(), minval=1 - max_delta, maxval=1 + max_delta) return hsv_to_rgb(*adjust_saturation(h, s, v, factor)) def _random_hue(rgb_tuple, rng, max_delta): h, s, v = rgb_to_hsv(*rgb_tuple) delta = jax.random.uniform(rng, shape=(), minval=-max_delta, maxval=max_delta) return hsv_to_rgb(*adjust_hue(h, s, v, delta)) def _to_grayscale(image): rgb_weights = jnp.array([0.2989, 0.5870, 0.1140]) grayscale = jnp.tensordot(image, rgb_weights, axes=(-1, -1))[..., jnp.newaxis] return jnp.tile(grayscale, (1, 1, 3)) # Back to 3 channels. def _color_transform_single_image(image, rng, brightness, contrast, saturation, hue, to_grayscale_prob, color_jitter_prob, apply_prob, shuffle): """Applies color jittering to a single image.""" apply_rng, transform_rng = jax.random.split(rng) perm_rng, b_rng, c_rng, s_rng, h_rng, cj_rng, gs_rng = jax.random.split( transform_rng, 7) # Whether the transform should be applied at all. should_apply = jax.random.uniform(apply_rng, shape=()) <= apply_prob # Whether to apply grayscale transform. should_apply_gs = jax.random.uniform(gs_rng, shape=()) <= to_grayscale_prob # Whether to apply color jittering. should_apply_color = jax.random.uniform(cj_rng, shape=()) <= color_jitter_prob # Decorator to conditionally apply fn based on an index. def _make_cond(fn, idx): def identity_fn(x, unused_rng, unused_param): return x def cond_fn(args, i): def clip(args): return jax.tree_map(lambda arg: jnp.clip(arg, 0., 1.), args) out = jax.lax.cond(should_apply & should_apply_color & (i == idx), args, lambda a: clip(fn(*a)), args, lambda a: identity_fn(*a)) return jax.lax.stop_gradient(out) return cond_fn random_brightness_cond = _make_cond(_random_brightness, idx=0) random_contrast_cond = _make_cond(_random_contrast, idx=1) random_saturation_cond = _make_cond(_random_saturation, idx=2) random_hue_cond = _make_cond(_random_hue, idx=3) def _color_jitter(x): rgb_tuple = tuple(jax.tree_map(jnp.squeeze, jnp.split(x, 3, axis=-1))) if shuffle: order = jax.random.permutation(perm_rng, jnp.arange(4, dtype=jnp.int32)) else: order = range(4) for idx in order: if brightness > 0: rgb_tuple = random_brightness_cond((rgb_tuple, b_rng, brightness), idx) if contrast > 0: rgb_tuple = random_contrast_cond((rgb_tuple, c_rng, contrast), idx) if saturation > 0: rgb_tuple = random_saturation_cond((rgb_tuple, s_rng, saturation), idx) if hue > 0: rgb_tuple = random_hue_cond((rgb_tuple, h_rng, hue), idx) return jnp.stack(rgb_tuple, axis=-1) out_apply = _color_jitter(image) out_apply = jax.lax.cond(should_apply & should_apply_gs, out_apply, _to_grayscale, out_apply, lambda x: x) return jnp.clip(out_apply, 0., 1.) def _random_flip_single_image(image, rng): _, flip_rng = jax.random.split(rng) should_flip_lr = jax.random.uniform(flip_rng, shape=()) <= 0.5 image = jax.lax.cond(should_flip_lr, image, jnp.fliplr, image, lambda x: x) return image def random_flip(images, rng): rngs = jax.random.split(rng, images.shape[0]) return jax.vmap(_random_flip_single_image)(images, rngs) def color_transform(images, rng, brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2, color_jitter_prob=0.8, to_grayscale_prob=0.2, apply_prob=1.0, shuffle=True): """Applies color jittering and/or grayscaling to a batch of images. Args: images: an NHWC tensor, with C=3. rng: a single PRNGKey. brightness: the range of jitter on brightness. contrast: the range of jitter on contrast. saturation: the range of jitter on saturation. hue: the range of jitter on hue. color_jitter_prob: the probability of applying color jittering. to_grayscale_prob: the probability of converting the image to grayscale. apply_prob: the probability of applying the transform to a batch element. shuffle: whether to apply the transforms in a random order. Returns: A NHWC tensor of the transformed images. """ rngs = jax.random.split(rng, images.shape[0]) jitter_fn = functools.partial( _color_transform_single_image, brightness=brightness, contrast=contrast, saturation=saturation, hue=hue, color_jitter_prob=color_jitter_prob, to_grayscale_prob=to_grayscale_prob, apply_prob=apply_prob, shuffle=shuffle) return jax.vmap(jitter_fn)(images, rngs) def gaussian_blur(images, rng, blur_divider=10., sigma_min=0.1, sigma_max=2.0, apply_prob=1.0): """Applies gaussian blur to a batch of images. Args: images: an NHWC tensor, with C=3. rng: a single PRNGKey. blur_divider: the blurring kernel will have size H / blur_divider. sigma_min: the minimum value for sigma in the blurring kernel. sigma_max: the maximum value for sigma in the blurring kernel. apply_prob: the probability of applying the transform to a batch element. Returns: A NHWC tensor of the blurred images. """ rngs = jax.random.split(rng, images.shape[0]) kernel_size = images.shape[1] / blur_divider blur_fn = functools.partial( _random_gaussian_blur, kernel_size=kernel_size, padding='SAME', sigma_min=sigma_min, sigma_max=sigma_max, apply_prob=apply_prob) return jax.vmap(blur_fn)(images, rngs) def _solarize_single_image(image, rng, threshold, apply_prob): def _apply(image): return jnp.where(image < threshold, image, 1. - image) return _maybe_apply(_apply, image, rng, apply_prob) def solarize(images, rng, threshold=0.5, apply_prob=1.0): """Applies solarization. Args: images: an NHWC tensor (with C=3). rng: a single PRNGKey. threshold: the solarization threshold. apply_prob: the probability of applying the transform to a batch element. Returns: A NHWC tensor of the transformed images. """ rngs = jax.random.split(rng, images.shape[0]) solarize_fn = functools.partial( _solarize_single_image, threshold=threshold, apply_prob=apply_prob) return jax.vmap(solarize_fn)(images, rngs)
deepmind-research-master
byol/utils/augmentations.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learning rate schedules.""" import jax.numpy as jnp def target_ema(global_step: jnp.ndarray, base_ema: float, max_steps: int) -> jnp.ndarray: decay = _cosine_decay(global_step, max_steps, 1.) return 1. - (1. - base_ema) * decay def learning_schedule(global_step: jnp.ndarray, batch_size: int, base_learning_rate: float, total_steps: int, warmup_steps: int) -> float: """Cosine learning rate scheduler.""" # Compute LR & Scaled LR scaled_lr = base_learning_rate * batch_size / 256. learning_rate = ( global_step.astype(jnp.float32) / int(warmup_steps) * scaled_lr if warmup_steps > 0 else scaled_lr) # Cosine schedule after warmup. return jnp.where( global_step < warmup_steps, learning_rate, _cosine_decay(global_step - warmup_steps, total_steps - warmup_steps, scaled_lr)) def _cosine_decay(global_step: jnp.ndarray, max_steps: int, initial_value: float) -> jnp.ndarray: """Simple implementation of cosine decay from TF1.""" global_step = jnp.minimum(global_step, max_steps) cosine_decay_value = 0.5 * (1 + jnp.cos(jnp.pi * global_step / max_steps)) decayed_learning_rate = initial_value * cosine_decay_value return decayed_learning_rate
deepmind-research-master
byol/utils/schedules.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Checkpoint saving and restoring utilities.""" import os import time from typing import Mapping, Text, Tuple, Union from absl import logging import dill import jax import jax.numpy as jnp from byol.utils import helpers class Checkpointer: """A checkpoint saving and loading class.""" def __init__( self, use_checkpointing: bool, checkpoint_dir: Text, save_checkpoint_interval: int, filename: Text): if (not use_checkpointing or checkpoint_dir is None or save_checkpoint_interval <= 0): self._checkpoint_enabled = False return self._checkpoint_enabled = True self._checkpoint_dir = checkpoint_dir os.makedirs(self._checkpoint_dir, exist_ok=True) self._filename = filename self._checkpoint_path = os.path.join(self._checkpoint_dir, filename) self._last_checkpoint_time = 0 self._checkpoint_every = save_checkpoint_interval def maybe_save_checkpoint( self, experiment_state: Mapping[Text, jnp.ndarray], step: int, rng: jnp.ndarray, is_final: bool): """Saves a checkpoint if enough time has passed since the previous one.""" current_time = time.time() if (not self._checkpoint_enabled or jax.host_id() != 0 or # Only checkpoint the first worker. (not is_final and current_time - self._last_checkpoint_time < self._checkpoint_every)): return checkpoint_data = dict( experiment_state=jax.tree_map( lambda x: jax.device_get(x[0]), experiment_state), step=step, rng=rng) with open(self._checkpoint_path + '_tmp', 'wb') as checkpoint_file: dill.dump(checkpoint_data, checkpoint_file, protocol=2) try: os.rename(self._checkpoint_path, self._checkpoint_path + '_old') remove_old = True except FileNotFoundError: remove_old = False # No previous checkpoint to remove os.rename(self._checkpoint_path + '_tmp', self._checkpoint_path) if remove_old: os.remove(self._checkpoint_path + '_old') self._last_checkpoint_time = current_time def maybe_load_checkpoint( self) -> Union[Tuple[Mapping[Text, jnp.ndarray], int, jnp.ndarray], None]: """Loads a checkpoint if any is found.""" checkpoint_data = load_checkpoint(self._checkpoint_path) if checkpoint_data is None: logging.info('No existing checkpoint found at %s', self._checkpoint_path) return None step = checkpoint_data['step'] rng = checkpoint_data['rng'] experiment_state = jax.tree_map( helpers.bcast_local_devices, checkpoint_data['experiment_state']) del checkpoint_data return experiment_state, step, rng def load_checkpoint(checkpoint_path): try: with open(checkpoint_path, 'rb') as checkpoint_file: checkpoint_data = dill.load(checkpoint_file) logging.info('Loading checkpoint from %s, saved at step %d', checkpoint_path, checkpoint_data['step']) return checkpoint_data except FileNotFoundError: return None
deepmind-research-master
byol/utils/checkpointing.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
deepmind-research-master
byol/configs/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for BYOL experiment.""" from byol.utils import dataset # Preset values for certain number of training epochs. _LR_PRESETS = {40: 0.45, 100: 0.45, 300: 0.3, 1000: 0.2} _WD_PRESETS = {40: 1e-6, 100: 1e-6, 300: 1e-6, 1000: 1.5e-6} _EMA_PRESETS = {40: 0.97, 100: 0.99, 300: 0.99, 1000: 0.996} def get_config(num_epochs: int, batch_size: int): """Return config object, containing all hyperparameters for training.""" train_images_per_epoch = dataset.Split.TRAIN_AND_VALID.num_examples assert num_epochs in [40, 100, 300, 1000] config = dict( random_seed=0, num_classes=1000, batch_size=batch_size, max_steps=num_epochs * train_images_per_epoch // batch_size, enable_double_transpose=True, base_target_ema=_EMA_PRESETS[num_epochs], network_config=dict( projector_hidden_size=4096, projector_output_size=256, predictor_hidden_size=4096, encoder_class='ResNet50', # Should match a class in utils/networks. encoder_config=dict( resnet_v2=False, width_multiplier=1), bn_config={ 'decay_rate': .9, 'eps': 1e-5, # Accumulate batchnorm statistics across devices. # This should be equal to the `axis_name` argument passed # to jax.pmap. 'cross_replica_axis': 'i', 'create_scale': True, 'create_offset': True, }), optimizer_config=dict( weight_decay=_WD_PRESETS[num_epochs], eta=1e-3, momentum=.9, ), lr_schedule_config=dict( base_learning_rate=_LR_PRESETS[num_epochs], warmup_steps=10 * train_images_per_epoch // batch_size, ), evaluation_config=dict( subset='test', batch_size=100, ), checkpointing_config=dict( use_checkpointing=True, checkpoint_dir='/tmp/byol', save_checkpoint_interval=300, filename='pretrain.pkl' ), ) return config
deepmind-research-master
byol/configs/byol.py
# Copyright 2020 DeepMind Technologies Limited. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Config file for evaluation experiment.""" from typing import Text from byol.utils import dataset def get_config(checkpoint_to_evaluate: Text, batch_size: int): """Return config object for training.""" train_images_per_epoch = dataset.Split.TRAIN_AND_VALID.num_examples config = dict( random_seed=0, enable_double_transpose=True, max_steps=80 * train_images_per_epoch // batch_size, num_classes=1000, batch_size=batch_size, checkpoint_to_evaluate=checkpoint_to_evaluate, # If True, allows training without loading a checkpoint. allow_train_from_scratch=False, # Whether the backbone should be frozen (linear evaluation) or # trainable (fine-tuning). freeze_backbone=True, optimizer_config=dict( momentum=0.9, nesterov=True, ), lr_schedule_config=dict( base_learning_rate=0.2, warmup_steps=0, ), network_config=dict( # Should match the evaluated checkpoint encoder_class='ResNet50', # Should match a class in utils/networks. encoder_config=dict( resnet_v2=False, width_multiplier=1), bn_decay_rate=0.9, ), evaluation_config=dict( subset='test', batch_size=100, ), checkpointing_config=dict( use_checkpointing=True, checkpoint_dir='/tmp/byol', save_checkpoint_interval=300, filename='linear-eval.pkl' ), ) return config
deepmind-research-master
byol/configs/eval.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trains a graph-based network to predict particle mobilities in glasses.""" import os from absl import app from absl import flags from glassy_dynamics import train as train_using_tf from glassy_dynamics import train_using_jax FLAGS = flags.FLAGS flags.DEFINE_string( 'data_directory', '', 'Directory which contains the train and test datasets.') flags.DEFINE_integer( 'time_index', 9, 'The time index of the target mobilities.') flags.DEFINE_integer( 'max_files_to_load', None, 'The maximum number of files to load from the train and test datasets.') flags.DEFINE_string( 'checkpoint_path', None, 'Path used to store a checkpoint of the best model.') flags.DEFINE_boolean( 'use_jax', False, 'Uses jax to train model.') def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') train_file_pattern = os.path.join(FLAGS.data_directory, 'train/aggregated*') test_file_pattern = os.path.join(FLAGS.data_directory, 'test/aggregated*') train = train_using_jax if FLAGS.use_jax else train_using_tf train.train_model( train_file_pattern=train_file_pattern, test_file_pattern=test_file_pattern, max_files_to_load=FLAGS.max_files_to_load, time_index=FLAGS.time_index, checkpoint_path=FLAGS.checkpoint_path) if __name__ == '__main__': app.run(main)
deepmind-research-master
glassy_dynamics/train_binary.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A graph neural network based model to predict particle mobilities. The architecture and performance of this model is described in our publication: "Unveiling the predictive power of static structure in glassy systems". """ import functools from typing import Any, Dict, Text, Tuple, Optional from graph_nets import graphs from graph_nets import modules as gn_modules from graph_nets import utils_tf import sonnet as snt import tensorflow.compat.v1 as tf def make_graph_from_static_structure( positions: tf.Tensor, types: tf.Tensor, box: tf.Tensor, edge_threshold: float) -> graphs.GraphsTuple: """Returns graph representing the static structure of the glass. Each particle is represented by a node in the graph. The particle type is stored as a node feature. Two particles at a distance less than the threshold are connected by an edge. The relative distance vector is stored as an edge feature. Args: positions: particle positions with shape [n_particles, 3]. types: particle types with shape [n_particles]. box: dimensions of the cubic box that contains the particles with shape [3]. edge_threshold: particles at distance less than threshold are connected by an edge. """ # Calculate pairwise relative distances between particles: shape [n, n, 3]. cross_positions = positions[tf.newaxis, :, :] - positions[:, tf.newaxis, :] # Enforces periodic boundary conditions. box_ = box[tf.newaxis, tf.newaxis, :] cross_positions += tf.cast(cross_positions < -box_ / 2., tf.float32) * box_ cross_positions -= tf.cast(cross_positions > box_ / 2., tf.float32) * box_ # Calculates adjacency matrix in a sparse format (indices), based on the given # distances and threshold. distances = tf.norm(cross_positions, axis=-1) indices = tf.where(distances < edge_threshold) # Defines graph. nodes = types[:, tf.newaxis] senders = indices[:, 0] receivers = indices[:, 1] edges = tf.gather_nd(cross_positions, indices) return graphs.GraphsTuple( nodes=tf.cast(nodes, tf.float32), n_node=tf.reshape(tf.shape(nodes)[0], [1]), edges=tf.cast(edges, tf.float32), n_edge=tf.reshape(tf.shape(edges)[0], [1]), globals=tf.zeros((1, 1), dtype=tf.float32), receivers=tf.cast(receivers, tf.int32), senders=tf.cast(senders, tf.int32) ) def apply_random_rotation(graph: graphs.GraphsTuple) -> graphs.GraphsTuple: """Returns randomly rotated graph representation. The rotation is an element of O(3) with rotation angles multiple of pi/2. This function assumes that the relative particle distances are stored in the edge features. Args: graph: The graphs tuple as defined in `graph_nets.graphs`. """ # Transposes edge features, so that the axes are in the first dimension. # Outputs a tensor of shape [3, n_particles]. xyz = tf.transpose(graph.edges) # Random pi/2 rotation(s) permutation = tf.random.shuffle(tf.constant([0, 1, 2], dtype=tf.int32)) xyz = tf.gather(xyz, permutation) # Random reflections. symmetry = tf.random_uniform([3], minval=0, maxval=2, dtype=tf.int32) symmetry = 1 - 2 * tf.cast(tf.reshape(symmetry, [3, 1]), tf.float32) xyz = xyz * symmetry edges = tf.transpose(xyz) return graph.replace(edges=edges) class GraphBasedModel(snt.AbstractModule): """Graph based model which predicts particle mobilities from their positions. This network encodes the nodes and edges of the input graph independently, and then performs message-passing on this graph, updating its edges based on their associated nodes, then updating the nodes based on the input nodes' features and their associated updated edge features. This update is repeated several times. Afterwards the resulting node embeddings are decoded to predict the particle mobility. """ def __init__(self, n_recurrences: int, mlp_sizes: Tuple[int], mlp_kwargs: Optional[Dict[Text, Any]] = None, name='Graph'): """Creates a new GraphBasedModel object. Args: n_recurrences: the number of message passing steps in the graph network. mlp_sizes: the number of neurons in each layer of the MLP. mlp_kwargs: additional keyword aguments passed to the MLP. name: the name of the Sonnet module. """ super(GraphBasedModel, self).__init__(name=name) self._n_recurrences = n_recurrences if mlp_kwargs is None: mlp_kwargs = {} model_fn = functools.partial( snt.nets.MLP, output_sizes=mlp_sizes, activate_final=True, **mlp_kwargs) final_model_fn = functools.partial( snt.nets.MLP, output_sizes=mlp_sizes + (1,), activate_final=False, **mlp_kwargs) with self._enter_variable_scope(): self._encoder = gn_modules.GraphIndependent( node_model_fn=model_fn, edge_model_fn=model_fn) if self._n_recurrences > 0: self._propagation_network = gn_modules.GraphNetwork( node_model_fn=model_fn, edge_model_fn=model_fn, # We do not use globals, hence we just pass the identity function. global_model_fn=lambda: lambda x: x, reducer=tf.unsorted_segment_sum, edge_block_opt=dict(use_globals=False), node_block_opt=dict(use_globals=False), global_block_opt=dict(use_globals=False)) self._decoder = gn_modules.GraphIndependent( node_model_fn=final_model_fn, edge_model_fn=model_fn) def _build(self, graphs_tuple: graphs.GraphsTuple) -> tf.Tensor: """Connects the model into the tensorflow graph. Args: graphs_tuple: input graph tensor as defined in `graphs_tuple.graphs`. Returns: tensor with shape [n_particles] containing the predicted particle mobilities. """ encoded = self._encoder(graphs_tuple) outputs = encoded for _ in range(self._n_recurrences): # Adds skip connections. inputs = utils_tf.concat([outputs, encoded], axis=-1) outputs = self._propagation_network(inputs) decoded = self._decoder(outputs) return tf.squeeze(decoded.nodes, axis=-1)
deepmind-research-master
glassy_dynamics/graph_model.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for train.""" import os import numpy as np import tensorflow.compat.v1 as tf from glassy_dynamics import train class TrainTest(tf.test.TestCase): def test_get_targets(self): initial_positions = np.array([[0, 0, 0], [1, 2, 3]]) trajectory_target_positions = [ np.array([[1, 0, 0], [1, 2, 4]]), np.array([[0, 1, 0], [1, 0, 3]]), np.array([[0, 0, 5], [1, 2, 3]]), ] expected_targets = np.array([7.0 / 3.0, 1.0]) targets = train.get_targets(initial_positions, trajectory_target_positions) np.testing.assert_almost_equal(expected_targets, targets) def test_load_data(self): file_pattern = os.path.join(os.path.dirname(__file__), 'testdata', 'test_small.pickle') with self.subTest('ContentAndShapesAreAsExpected'): data = train.load_data(file_pattern, 0) self.assertEqual(len(data), 1) element = data[0] self.assertTupleEqual(element.positions.shape, (20, 3)) self.assertTupleEqual(element.box.shape, (3,)) self.assertTupleEqual(element.targets.shape, (20,)) self.assertTupleEqual(element.types.shape, (20,)) with self.subTest('TargetsGrowAsAFunctionOfTime'): previous_mean_target = 0.0 # Time index 9 refers to 1/e = 0.36 in the IS, and therefore it is between # Time index 5 (0.4) and time index 6 (0.3). for time_index in [0, 1, 2, 3, 4, 5, 9, 6, 7, 8]: data = train.load_data(file_pattern, time_index)[0] current_mean_target = data.targets.mean() self.assertGreater(current_mean_target, previous_mean_target) previous_mean_target = current_mean_target class TensorflowTrainTest(tf.test.TestCase): def test_get_loss_op(self): """Tests the correct calculation of the loss operations.""" prediction = tf.constant([0.0, 1.0, 2.0, 1.0, 2.0], dtype=tf.float32) target = tf.constant([1.0, 25.0, 0.0, 4.0, 2.0], dtype=tf.float32) types = tf.constant([0, 1, 0, 0, 0], dtype=tf.int32) loss_ops = train.get_loss_ops(prediction, target, types) loss = self.evaluate(loss_ops) self.assertAlmostEqual(loss.l1_loss, 1.5) self.assertAlmostEqual(loss.l2_loss, 14.0 / 4.0) self.assertAlmostEqual(loss.correlation, -0.15289416) def test_get_minimize_op(self): """Tests the minimize operation by minimizing a single variable.""" var = tf.Variable([1.0], name='test') loss = var**2 minimize = train.get_minimize_op(loss, 1e-1) with self.session(): tf.global_variables_initializer().run() for _ in range(100): minimize.run() value = var.eval() self.assertLess(abs(value[0]), 0.01) def test_train_model(self): """Tests if we can overfit to a small test dataset.""" file_pattern = os.path.join(os.path.dirname(__file__), 'testdata', 'test_small.pickle') best_correlation_value = train.train_model( train_file_pattern=file_pattern, test_file_pattern=file_pattern, n_epochs=1000, augment_data_using_rotations=False, learning_rate=1e-4, n_recurrences=2, edge_threshold=5, mlp_sizes=(32, 32), measurement_store_interval=1000) # The test dataset contains only a single sample with 20 particles. # Therefore we expect the model to be able to memorize the targets perfectly # if the model works correctly. self.assertGreater(best_correlation_value, 0.99) def test_apply_model(self): """Tests if we can apply a model to a small test dataset.""" checkpoint_path = os.path.join(os.path.dirname(__file__), 'checkpoints', 't044_s09.ckpt') file_pattern = os.path.join(os.path.dirname(__file__), 'testdata', 'test_large.pickle') predictions = train.apply_model(checkpoint_path=checkpoint_path, file_pattern=file_pattern, time_index=0) data = train.load_data(file_pattern, 0) targets = data[0].targets correlation_value = np.corrcoef(predictions[0], targets)[0, 1] self.assertGreater(correlation_value, 0.5) if __name__ == '__main__': tf.test.main()
deepmind-research-master
glassy_dynamics/train_test.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for graph_model.""" import itertools from absl.testing import parameterized from graph_nets import graphs import numpy as np import tensorflow.compat.v1 as tf from glassy_dynamics import graph_model class GraphModelTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): """Initializes a small tractable test (particle) system.""" super(GraphModelTest, self).setUp() # Fixes random seed to ensure deterministic outputs. tf.random.set_random_seed(1234) # In this test we use a small tractable set of particles covering all corner # cases: # a) eight particles with different types, # b) periodic box is not cubic, # c) three disjoint cluster of particles separated by a threshold > 2, # d) first two clusters overlap with the periodic boundary, # e) first cluster is not fully connected, # f) second cluster is fully connected, # g) and third cluster is a single isolated particle. # # The formatting of the code below separates the three clusters by # adding linebreaks after each cluster. self._positions = np.array( [[0.0, 0.0, 0.0], [2.5, 0.0, 0.0], [0.0, 1.5, 0.0], [0.0, 0.0, 9.0], [0.0, 5.0, 0.0], [0.0, 5.0, 1.0], [3.0, 5.0, 0.0], [2.0, 3.0, 3.0]]) self._types = np.array([0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0]) self._box = np.array([4.0, 10.0, 10.0]) # Creates the corresponding graph elements, assuming a threshold of 2 and # the conventions described in `graph_nets.graphs`. self._edge_threshold = 2 self._nodes = np.array( [[0.0], [0.0], [1.0], [0.0], [0.0], [1.0], [0.0], [0.0]]) self._edges = np.array( [[0.0, 0.0, 0.0], [-1.5, 0.0, 0.0], [0.0, 1.5, 0.0], [0.0, 0.0, -1.0], [1.5, 0.0, 0.0], [0.0, 0.0, 0.0], [1.5, 0.0, -1.0], [0.0, -1.5, 0.0], [0.0, 0.0, 0.0], [0.0, -1.5, -1.0], [0.0, 0.0, 1.0], [-1.5, 0.0, 1.0], [0.0, 1.5, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [-1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [-1.0, 0.0, -1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) self._receivers = np.array( [0, 1, 2, 3, 0, 1, 3, 0, 2, 3, 0, 1, 2, 3, 4, 5, 6, 4, 5, 6, 4, 5, 6, 7]) self._senders = np.array( [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7]) def _get_graphs_tuple(self): """Returns a GraphsTuple containing a graph based on the test system.""" return graphs.GraphsTuple( nodes=tf.constant(self._nodes, dtype=tf.float32), edges=tf.constant(self._edges, dtype=tf.float32), globals=tf.constant(np.array([[0.0]]), dtype=tf.float32), receivers=tf.constant(self._receivers, dtype=tf.int32), senders=tf.constant(self._senders, dtype=tf.int32), n_node=tf.constant([len(self._nodes)], dtype=tf.int32), n_edge=tf.constant([len(self._edges)], dtype=tf.int32)) def test_make_graph_from_static_structure(self): graphs_tuple_op = graph_model.make_graph_from_static_structure( tf.constant(self._positions, dtype=tf.float32), tf.constant(self._types, dtype=tf.int32), tf.constant(self._box, dtype=tf.float32), self._edge_threshold) graphs_tuple = self.evaluate(graphs_tuple_op) self.assertLen(self._nodes, graphs_tuple.n_node) self.assertLen(self._edges, graphs_tuple.n_edge) np.testing.assert_almost_equal(graphs_tuple.nodes, self._nodes) np.testing.assert_equal(graphs_tuple.senders, self._senders) np.testing.assert_equal(graphs_tuple.receivers, self._receivers) np.testing.assert_almost_equal(graphs_tuple.globals, np.array([[0.0]])) np.testing.assert_almost_equal(graphs_tuple.edges, self._edges) def _is_equal_up_to_rotation(self, x, y): for axes in itertools.permutations([0, 1, 2]): for mirrors in itertools.product([1, -1], repeat=3): if np.allclose(x, y[:, axes] * mirrors): return True return False def test_apply_random_rotation(self): graphs_tuple = self._get_graphs_tuple() rotated_graphs_tuple_op = graph_model.apply_random_rotation(graphs_tuple) rotated_graphs_tuple = self.evaluate(rotated_graphs_tuple_op) np.testing.assert_almost_equal(rotated_graphs_tuple.nodes, self._nodes) np.testing.assert_almost_equal(rotated_graphs_tuple.senders, self._senders) np.testing.assert_almost_equal( rotated_graphs_tuple.receivers, self._receivers) np.testing.assert_almost_equal( rotated_graphs_tuple.globals, np.array([[0.0]])) self.assertTrue(self._is_equal_up_to_rotation(rotated_graphs_tuple.edges, self._edges)) @parameterized.named_parameters(('no_propagation', 0, (30,)), ('multi_propagation', 5, (15,)), ('multi_layer', 1, (20, 30))) def test_GraphModel(self, n_recurrences, mlp_sizes): graphs_tuple = self._get_graphs_tuple() output_op = graph_model.GraphBasedModel(n_recurrences=n_recurrences, mlp_sizes=mlp_sizes)(graphs_tuple) self.assertListEqual(output_op.shape.as_list(), [len(self._types)]) # Tests if the model runs without crashing. with self.session(): tf.global_variables_initializer().run() output_op.eval() if __name__ == '__main__': tf.test.main()
deepmind-research-master
glassy_dynamics/graph_model_test.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training pipeline for the prediction of particle mobilities in glasses.""" import collections import enum import pickle from typing import Any, Dict, List, Optional, Text, Tuple, Sequence from absl import logging import numpy as np import tensorflow.compat.v1 as tf import tensorflow_probability as tfp from glassy_dynamics import graph_model tf.enable_resource_variables() LossCollection = collections.namedtuple('LossCollection', 'l1_loss, l2_loss, correlation') GlassSimulationData = collections.namedtuple('GlassSimulationData', 'positions, targets, types, box') class ParticleType(enum.IntEnum): """The simulation contains two particle types, identified as type A and B. The dataset encodes the particle type in an integer. - 0 corresponds to particle type A. - 1 corresponds to particle type B. """ A = 0 B = 1 def get_targets( initial_positions: np.ndarray, trajectory_target_positions: Sequence[np.ndarray]) -> np.ndarray: """Returns the averaged particle mobilities from the sampled trajectories. Args: initial_positions: the initial positions of the particles with shape [n_particles, 3]. trajectory_target_positions: the absolute positions of the particles at the target time for all sampled trajectories, each with shape [n_particles, 3]. """ targets = np.mean([np.linalg.norm(t - initial_positions, axis=-1) for t in trajectory_target_positions], axis=0) return targets.astype(np.float32) def load_data( file_pattern: Text, time_index: int, max_files_to_load: Optional[int] = None) -> List[GlassSimulationData]: """Returns a dictionary containing the training or test dataset. The dictionary contains: `positions`: `np.ndarray` containing the particle positions with shape [n_particles, 3]. `targets`: `np.ndarray` containing particle mobilities with shape [n_particles]. `types`: `np.ndarray` containing the particle types with shape with shape [n_particles]. `box`: `np.ndarray` containing the dimensions of the periodic box with shape [3]. Args: file_pattern: pattern matching the files with the simulation data. time_index: the time index of the targets. max_files_to_load: the maximum number of files to load. """ filenames = tf.io.gfile.glob(file_pattern) if max_files_to_load: filenames = filenames[:max_files_to_load] static_structures = [] for filename in filenames: with tf.io.gfile.GFile(filename, 'rb') as f: data = pickle.load(f) static_structures.append(GlassSimulationData( positions=data['positions'].astype(np.float32), targets=get_targets( data['positions'], data['trajectory_target_positions'][time_index]), types=data['types'].astype(np.int32), box=data['box'].astype(np.float32))) return static_structures def get_loss_ops( prediction: tf.Tensor, target: tf.Tensor, types: tf.Tensor) -> LossCollection: """Returns L1/L2 loss and correlation for type A particles. Args: prediction: tensor with shape [n_particles] containing the predicted particle mobilities. target: tensor with shape [n_particles] containing the true particle mobilities. types: tensor with shape [n_particles] containing the particle types. """ # Considers only type A particles. mask = tf.equal(types, ParticleType.A) prediction = tf.boolean_mask(prediction, mask) target = tf.boolean_mask(target, mask) return LossCollection( l1_loss=tf.reduce_mean(tf.abs(prediction - target)), l2_loss=tf.reduce_mean((prediction - target)**2), correlation=tf.squeeze(tfp.stats.correlation( prediction[:, tf.newaxis], target[:, tf.newaxis]))) def get_minimize_op( loss: tf.Tensor, learning_rate: float, grad_clip: Optional[float] = None) -> tf.Tensor: """Returns minimization operation. Args: loss: the loss tensor which is minimized. learning_rate: the learning rate used by the optimizer. grad_clip: all gradients are clipped to the given value if not None or 0. """ optimizer = tf.train.AdamOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(loss) if grad_clip: grads, _ = tf.clip_by_global_norm([g for g, _ in grads_and_vars], grad_clip) grads_and_vars = [(g, pair[1]) for g, pair in zip(grads, grads_and_vars)] minimize = optimizer.apply_gradients(grads_and_vars) return minimize def _log_stats_and_return_mean_correlation( label: Text, stats: Sequence[LossCollection]) -> float: """Logs performance statistics and returns mean correlation. Args: label: label printed before the combined statistics e.g. train or test. stats: statistics calculated for each batch in a dataset. Returns: mean correlation """ for key in LossCollection._fields: values = [getattr(s, key) for s in stats] mean = np.mean(values) std = np.std(values) logging.info('%s: %s: %.4f +/- %.4f', label, key, mean, std) return np.mean([s.correlation for s in stats]) def train_model(train_file_pattern: Text, test_file_pattern: Text, max_files_to_load: Optional[int] = None, n_epochs: int = 1000, time_index: int = 9, augment_data_using_rotations: bool = True, learning_rate: float = 1e-4, grad_clip: Optional[float] = 1.0, n_recurrences: int = 7, mlp_sizes: Tuple[int] = (64, 64), mlp_kwargs: Optional[Dict[Text, Any]] = None, edge_threshold: float = 2.0, measurement_store_interval: int = 1000, checkpoint_path: Optional[Text] = None) -> float: # pytype: disable=annotation-type-mismatch """Trains GraphModel using tensorflow. Args: train_file_pattern: pattern matching the files with the training data. test_file_pattern: pattern matching the files with the test data. max_files_to_load: the maximum number of train and test files to load. If None, all files will be loaded. n_epochs: the number of passes through the training dataset (epochs). time_index: the time index (0-9) of the target mobilities. augment_data_using_rotations: data is augemented by using random rotations. learning_rate: the learning rate used by the optimizer. grad_clip: all gradients are clipped to the given value. n_recurrences: the number of message passing steps in the graphnet. mlp_sizes: the number of neurons in each layer of the MLP. mlp_kwargs: additional keyword aguments passed to the MLP. edge_threshold: particles at distance less than threshold are connected by an edge. measurement_store_interval: number of steps between storing objective values (loss and correlation). checkpoint_path: path used to store the checkpoint with the highest correlation on the test set. Returns: Correlation on the test dataset of best model encountered during training. """ if mlp_kwargs is None: mlp_kwargs = dict(initializers=dict(w=tf.variance_scaling_initializer(1.0), b=tf.variance_scaling_initializer(0.1))) # Loads train and test dataset. dataset_kwargs = dict( time_index=time_index, max_files_to_load=max_files_to_load) training_data = load_data(train_file_pattern, **dataset_kwargs) test_data = load_data(test_file_pattern, **dataset_kwargs) # Defines wrapper functions, which can directly be passed to the # tf.data.Dataset.map function. def _make_graph_from_static_structure(static_structure): """Converts static structure to graph, targets and types.""" return (graph_model.make_graph_from_static_structure( static_structure.positions, static_structure.types, static_structure.box, edge_threshold), static_structure.targets, static_structure.types) def _apply_random_rotation(graph, targets, types): """Applies random rotations to the graph and forwards targets and types.""" return graph_model.apply_random_rotation(graph), targets, types # Defines data-pipeline based on tf.data.Dataset following the official # guideline: https://www.tensorflow.org/guide/datasets#consuming_numpy_arrays. # We use initializable iterators to avoid embedding the training and test data # directly into the graph. # Instead we feed the data to the iterators during the initalization of the # iterators before the main training loop. placeholders = GlassSimulationData._make( tf.placeholder(s.dtype, (None,) + s.shape) for s in training_data[0]) dataset = tf.data.Dataset.from_tensor_slices(placeholders) dataset = dataset.map(_make_graph_from_static_structure) dataset = dataset.cache() dataset = dataset.shuffle(400) # Augments data. This has to be done after calling dataset.cache! if augment_data_using_rotations: dataset = dataset.map(_apply_random_rotation) dataset = dataset.repeat() train_iterator = dataset.make_initializable_iterator() dataset = tf.data.Dataset.from_tensor_slices(placeholders) dataset = dataset.map(_make_graph_from_static_structure) dataset = dataset.cache() dataset = dataset.repeat() test_iterator = dataset.make_initializable_iterator() # Creates tensorflow graph. # Note: We decouple the training and test datasets from the input pipeline # by creating a new iterator from a string-handle placeholder with the same # output types and shapes as the training dataset. dataset_handle = tf.placeholder(tf.string, shape=[]) iterator = tf.data.Iterator.from_string_handle( dataset_handle, train_iterator.output_types, train_iterator.output_shapes) graph, targets, types = iterator.get_next() model = graph_model.GraphBasedModel( n_recurrences, mlp_sizes, mlp_kwargs) prediction = model(graph) # Defines loss and minimization operations. loss_ops = get_loss_ops(prediction, targets, types) minimize_op = get_minimize_op(loss_ops.l2_loss, learning_rate, grad_clip) best_so_far = -1 train_stats = [] test_stats = [] saver = tf.train.Saver() with tf.train.SingularMonitoredSession() as session: # Initializes train and test iterators with the training and test datasets. # The obtained training and test string-handles can be passed to the # dataset_handle placeholder to select the dataset. train_handle = session.run(train_iterator.string_handle()) test_handle = session.run(test_iterator.string_handle()) feed_dict = {p: [x[i] for x in training_data] for i, p in enumerate(placeholders)} session.run(train_iterator.initializer, feed_dict=feed_dict) feed_dict = {p: [x[i] for x in test_data] for i, p in enumerate(placeholders)} session.run(test_iterator.initializer, feed_dict=feed_dict) # Trains model using stochatic gradient descent on the training dataset. n_training_steps = len(training_data) * n_epochs for i in range(n_training_steps): feed_dict = {dataset_handle: train_handle} train_loss, _ = session.run((loss_ops, minimize_op), feed_dict=feed_dict) train_stats.append(train_loss) if (i+1) % measurement_store_interval == 0: # Evaluates model on test dataset. for _ in range(len(test_data)): feed_dict = {dataset_handle: test_handle} test_stats.append(session.run(loss_ops, feed_dict=feed_dict)) # Outputs performance statistics on training and test dataset. _log_stats_and_return_mean_correlation('Train', train_stats) correlation = _log_stats_and_return_mean_correlation('Test', test_stats) train_stats = [] test_stats = [] # Updates best model based on the observed correlation on the test # dataset. if correlation > best_so_far: best_so_far = correlation if checkpoint_path: saver.save(session.raw_session(), checkpoint_path) return best_so_far def apply_model(checkpoint_path: Text, file_pattern: Text, max_files_to_load: Optional[int] = None, time_index: int = 9) -> List[np.ndarray]: """Applies trained GraphModel using tensorflow. Args: checkpoint_path: path from which the model is loaded. file_pattern: pattern matching the files with the data. max_files_to_load: the maximum number of files to load. If None, all files will be loaded. time_index: the time index (0-9) of the target mobilities. Returns: Predictions of the model for all files. """ dataset_kwargs = dict( time_index=time_index, max_files_to_load=max_files_to_load) data = load_data(file_pattern, **dataset_kwargs) tf.reset_default_graph() saver = tf.train.import_meta_graph(checkpoint_path + '.meta') graph = tf.get_default_graph() placeholders = GlassSimulationData( positions=graph.get_tensor_by_name('Placeholder:0'), targets=graph.get_tensor_by_name('Placeholder_1:0'), types=graph.get_tensor_by_name('Placeholder_2:0'), box=graph.get_tensor_by_name('Placeholder_3:0')) prediction_tensor = graph.get_tensor_by_name('Graph_1/Squeeze:0') correlation_tensor = graph.get_tensor_by_name('Squeeze:0') dataset_handle = graph.get_tensor_by_name('Placeholder_4:0') test_initalizer = graph.get_operation_by_name('MakeIterator_1') test_string_handle = graph.get_tensor_by_name('IteratorToStringHandle_1:0') with tf.Session() as session: saver.restore(session, checkpoint_path) handle = session.run(test_string_handle) feed_dict = {p: [x[i] for x in data] for i, p in enumerate(placeholders)} session.run(test_initalizer, feed_dict=feed_dict) predictions = [] correlations = [] for _ in range(len(data)): p, c = session.run((prediction_tensor, correlation_tensor), feed_dict={dataset_handle: handle}) predictions.append(p) correlations.append(c) logging.info('Correlation: %.4f +/- %.4f', np.mean(correlations), np.std(correlations)) return predictions
deepmind-research-master
glassy_dynamics/train.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Applies a graph-based network to predict particle mobilities in glasses.""" import os from absl import app from absl import flags from glassy_dynamics import train FLAGS = flags.FLAGS flags.DEFINE_string( 'data_directory', '', 'Directory which contains the train or test datasets.') flags.DEFINE_integer( 'time_index', 9, 'The time index of the target mobilities.') flags.DEFINE_integer( 'max_files_to_load', None, 'The maximum number of files to load.') flags.DEFINE_string( 'checkpoint_path', 'checkpoints/t044_s09.ckpt', 'Path used to load the model.') def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') file_pattern = os.path.join(FLAGS.data_directory, 'aggregated*') train.apply_model( checkpoint_path=FLAGS.checkpoint_path, file_pattern=file_pattern, max_files_to_load=FLAGS.max_files_to_load, time_index=FLAGS.time_index) if __name__ == '__main__': app.run(main)
deepmind-research-master
glassy_dynamics/apply_binary.py
# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training pipeline for the prediction of particle mobilities in glasses.""" import enum import functools import logging import pickle import random import haiku as hk import jax import jax.numpy as jnp import jraph import numpy as np import optax # Only used for file operations. # You can use glob.glob and python's open function to replace the tf usage below # on most platforms. import tensorflow.compat.v1 as tf class ParticleType(enum.IntEnum): """The simulation contains two particle types, identified as type A and B. The dataset encodes the particle type in an integer. - 0 corresponds to particle type A. - 1 corresponds to particle type B. """ A = 0 B = 1 def make_graph_from_static_structure(positions, types, box, edge_threshold): """Returns graph representing the static structure of the glass. Each particle is represented by a node in the graph. The particle type is stored as a node feature. Two particles at a distance less than the threshold are connected by an edge. The relative distance vector is stored as an edge feature. Args: positions: particle positions with shape [n_particles, 3]. types: particle types with shape [n_particles]. box: dimensions of the cubic box that contains the particles with shape [3]. edge_threshold: particles at distance less than threshold are connected by an edge. """ # Calculate pairwise relative distances between particles: shape [n, n, 3]. cross_positions = positions[None, :, :] - positions[:, None, :] # Enforces periodic boundary conditions. box_ = box[None, None, :] cross_positions += (cross_positions < -box_ / 2.).astype(np.float32) * box_ cross_positions -= (cross_positions > box_ / 2.).astype(np.float32) * box_ # Calculates adjacency matrix in a sparse format (indices), based on the given # distances and threshold. distances = np.linalg.norm(cross_positions, axis=-1) indices = np.where(distances < edge_threshold) # Defines graph. nodes = types[:, None] senders = indices[0] receivers = indices[1] edges = cross_positions[indices] return jraph.pad_with_graphs(jraph.GraphsTuple( nodes=nodes.astype(np.float32), n_node=np.reshape(nodes.shape[0], [1]), edges=edges.astype(np.float32), n_edge=np.reshape(edges.shape[0], [1]), globals=np.zeros((1, 1), dtype=np.float32), receivers=receivers.astype(np.int32), senders=senders.astype(np.int32) ), n_node=4097, n_edge=200000) def get_targets(initial_positions, trajectory_target_positions): """Returns the averaged particle mobilities from the sampled trajectories. Args: initial_positions: the initial positions of the particles with shape [n_particles, 3]. trajectory_target_positions: the absolute positions of the particles at the target time for all sampled trajectories, each with shape [n_particles, 3]. """ targets = np.mean([np.linalg.norm(t - initial_positions, axis=-1) for t in trajectory_target_positions], axis=0) return targets.astype(np.float32) def load_data(file_pattern, time_index, max_files_to_load=None): """Returns a graphs and targets of the training or test dataset. Args: file_pattern: pattern matching the files with the simulation data. time_index: the time index of the targets. max_files_to_load: the maximum number of files to load. """ filenames = tf.io.gfile.glob(file_pattern) if max_files_to_load: filenames = filenames[:max_files_to_load] graphs_and_targets = [] for filename in filenames: with tf.io.gfile.GFile(filename, 'rb') as f: data = pickle.load(f) mask = (data['types'] == ParticleType.A).astype(np.int32) # Mask dummy node due to padding mask = np.concatenate([mask, np.zeros((1,), dtype=np.int32)], axis=-1) targets = get_targets( data['positions'], data['trajectory_target_positions'][time_index]) targets = np.concatenate( [targets, np.zeros((1,), dtype=np.float32)], axis=-1) graphs_and_targets.append( (make_graph_from_static_structure( data['positions'].astype(np.float32), data['types'].astype(np.int32), data['box'].astype(np.float32), edge_threshold=2.0), targets, mask)) return graphs_and_targets def apply_random_rotation(graph): """Returns randomly rotated graph representation. The rotation is an element of O(3) with rotation angles multiple of pi/2. This function assumes that the relative particle distances are stored in the edge features. Args: graph: The graphs tuple as defined in `graph_nets.graphs`. """ # Transposes edge features, so that the axes are in the first dimension. # Outputs a tensor of shape [3, n_particles]. xyz = np.transpose(graph.edges) # Random pi/2 rotation(s) permutation = np.array([0, 1, 2], dtype=np.int32) np.random.shuffle(permutation) xyz = xyz[permutation] # Random reflections. symmetry = np.random.randint(0, 2, [3]) symmetry = 1 - 2 * np.reshape(symmetry, [3, 1]).astype(np.float32) xyz = xyz * symmetry edges = np.transpose(xyz) return graph._replace(edges=edges) def network_definition(graph): """Defines a graph neural network. Args: graph: Graphstuple the network processes. Returns: Decoded nodes. """ model_fn = functools.partial( hk.nets.MLP, w_init=hk.initializers.VarianceScaling(1.0), b_init=hk.initializers.VarianceScaling(1.0)) mlp_sizes = (64, 64) num_message_passing_steps = 7 node_encoder = model_fn(output_sizes=mlp_sizes, activate_final=True) edge_encoder = model_fn(output_sizes=mlp_sizes, activate_final=True) node_decoder = model_fn(output_sizes=mlp_sizes + (1,), activate_final=False) node_encoding = node_encoder(graph.nodes) edge_encoding = edge_encoder(graph.edges) graph = graph._replace(nodes=node_encoding, edges=edge_encoding) update_edge_fn = jraph.concatenated_args( model_fn(output_sizes=mlp_sizes, activate_final=True)) update_node_fn = jraph.concatenated_args( model_fn(output_sizes=mlp_sizes, activate_final=True)) gn = jraph.InteractionNetwork( update_edge_fn=update_edge_fn, update_node_fn=update_node_fn, include_sent_messages_in_node_update=True) for _ in range(num_message_passing_steps): graph = graph._replace( nodes=jnp.concatenate([graph.nodes, node_encoding], axis=-1), edges=jnp.concatenate([graph.edges, edge_encoding], axis=-1)) graph = gn(graph) return jnp.squeeze(node_decoder(graph.nodes), axis=-1) def train_model(train_file_pattern, test_file_pattern, max_files_to_load=None, n_epochs=1000, time_index=9, learning_rate=1e-4, grad_clip=1.0, measurement_store_interval=1000, checkpoint_path=None): """Trains GraphModel using tensorflow. Args: train_file_pattern: pattern matching the files with the training data. test_file_pattern: pattern matching the files with the test data. max_files_to_load: the maximum number of train and test files to load. If None, all files will be loaded. n_epochs: the number of passes through the training dataset (epochs). time_index: the time index (0-9) of the target mobilities. learning_rate: the learning rate used by the optimizer. grad_clip: all gradients are clipped to the given value. measurement_store_interval: number of steps between storing objective values (loss and correlation). checkpoint_path: ignored by this implementation. """ if checkpoint_path: logging.warning('The checkpoint_path argument is ignored.') random.seed(42) np.random.seed(42) # Loads train and test dataset. dataset_kwargs = dict( time_index=time_index, max_files_to_load=max_files_to_load) logging.info('Load training data') training_data = load_data(train_file_pattern, **dataset_kwargs) logging.info('Load test data') test_data = load_data(test_file_pattern, **dataset_kwargs) logging.info('Finished loading data') network = hk.without_apply_rng(hk.transform(network_definition)) params = network.init(jax.random.PRNGKey(42), training_data[0][0]) opt_init, opt_update = optax.chain( optax.clip_by_global_norm(grad_clip), optax.scale_by_adam(0.9, 0.999, 1e-8), optax.scale(-learning_rate)) opt_state = opt_init(params) network_apply = jax.jit(network.apply) @jax.jit def loss_fn(params, graph, targets, mask): decoded_nodes = network_apply(params, graph) * mask return (jnp.sum((decoded_nodes - targets)**2 * mask) / jnp.sum(mask)) @jax.jit def update(params, opt_state, graph, targets, mask): loss, grads = jax.value_and_grad(loss_fn)(params, graph, targets, mask) updates, opt_state = opt_update(grads, opt_state) return optax.apply_updates(params, updates), opt_state, loss train_stats = [] i = 0 logging.info('Start training') for epoch in range(n_epochs): logging.info('Start epoch %r', epoch) random.shuffle(training_data) for graph, targets, mask in training_data: graph = apply_random_rotation(graph) params, opt_state, loss = update(params, opt_state, graph, targets, mask) train_stats.append(loss) if (i+1) % measurement_store_interval == 0: logging.info('Start evaluation run') test_stats = [] for test_graph, test_targets, test_mask in test_data: predictions = network_apply(params, test_graph) test_stats.append(np.corrcoef( predictions[test_mask == 1], test_targets[test_mask == 1])[0, 1]) logging.info('Train loss %r', np.mean(train_stats)) logging.info('Test correlation %r', np.mean(test_stats)) train_stats = [] i += 1
deepmind-research-master
glassy_dynamics/train_using_jax.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to compute human-normalized Atari scores. The data used in this module is human and random performance data on Atari-57. It comprises of evaluation scores (undiscounted returns), each averaged over at least 3 episode runs, on each of the 57 Atari games. Each episode begins with the environment already stepped with a uniform random number (between 1 and 30 inclusive) of noop actions. The two agents are: * 'random' (agent choosing its actions uniformly randomly on each step) * 'human' (professional human game tester) Scores are obtained by averaging returns over the episodes played by each agent, with episode length capped to 108,000 frames (i.e. timeout after 30 minutes). The term 'human-normalized' here means a linear per-game transformation of a game score in such a way that 0 corresponds to random performance and 1 corresponds to human performance. """ import math # Game: score-tuple dictionary. Each score tuple contains # 0: score random (float) and 1: score human (float). _ATARI_DATA = { 'alien': (227.8, 7127.7), 'amidar': (5.8, 1719.5), 'assault': (222.4, 742.0), 'asterix': (210.0, 8503.3), 'asteroids': (719.1, 47388.7), 'atlantis': (12850.0, 29028.1), 'bank_heist': (14.2, 753.1), 'battle_zone': (2360.0, 37187.5), 'beam_rider': (363.9, 16926.5), 'berzerk': (123.7, 2630.4), 'bowling': (23.1, 160.7), 'boxing': (0.1, 12.1), 'breakout': (1.7, 30.5), 'centipede': (2090.9, 12017.0), 'chopper_command': (811.0, 7387.8), 'crazy_climber': (10780.5, 35829.4), 'defender': (2874.5, 18688.9), 'demon_attack': (152.1, 1971.0), 'double_dunk': (-18.6, -16.4), 'enduro': (0.0, 860.5), 'fishing_derby': (-91.7, -38.7), 'freeway': (0.0, 29.6), 'frostbite': (65.2, 4334.7), 'gopher': (257.6, 2412.5), 'gravitar': (173.0, 3351.4), 'hero': (1027.0, 30826.4), 'ice_hockey': (-11.2, 0.9), 'jamesbond': (29.0, 302.8), 'kangaroo': (52.0, 3035.0), 'krull': (1598.0, 2665.5), 'kung_fu_master': (258.5, 22736.3), 'montezuma_revenge': (0.0, 4753.3), 'ms_pacman': (307.3, 6951.6), 'name_this_game': (2292.3, 8049.0), 'phoenix': (761.4, 7242.6), 'pitfall': (-229.4, 6463.7), 'pong': (-20.7, 14.6), 'private_eye': (24.9, 69571.3), 'qbert': (163.9, 13455.0), 'riverraid': (1338.5, 17118.0), 'road_runner': (11.5, 7845.0), 'robotank': (2.2, 11.9), 'seaquest': (68.4, 42054.7), 'skiing': (-17098.1, -4336.9), 'solaris': (1236.3, 12326.7), 'space_invaders': (148.0, 1668.7), 'star_gunner': (664.0, 10250.0), 'surround': (-10.0, 6.5), 'tennis': (-23.8, -8.3), 'time_pilot': (3568.0, 5229.2), 'tutankham': (11.4, 167.6), 'up_n_down': (533.4, 11693.2), 'venture': (0.0, 1187.5), # Note the random agent score on Video Pinball is sometimes greater than the # human score under other evaluation methods. 'video_pinball': (16256.9, 17667.9), 'wizard_of_wor': (563.5, 4756.5), 'yars_revenge': (3092.9, 54576.9), 'zaxxon': (32.5, 9173.3), } _RANDOM_COL = 0 _HUMAN_COL = 1 ATARI_GAMES = tuple(sorted(_ATARI_DATA.keys())) def get_human_normalized_score(game: str, raw_score: float) -> float: """Converts game score to human-normalized score.""" game_scores = _ATARI_DATA.get(game, (math.nan, math.nan)) random, human = game_scores[_RANDOM_COL], game_scores[_HUMAN_COL] return (raw_score - random) / (human - random)
deepmind-research-master
tandem_dqn/atari_data.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DQN agent network components and implementation.""" import typing from typing import Any, Callable, Tuple, Union import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np Network = hk.Transformed Params = hk.Params NetworkFn = Callable[..., Any] class QNetworkOutputs(typing.NamedTuple): q_values: jnp.ndarray class QRNetworkOutputs(typing.NamedTuple): q_values: jnp.ndarray q_dist: jnp.ndarray NUM_QUANTILES = 201 def _dqn_default_initializer( num_input_units: int) -> hk.initializers.Initializer: """Default initialization scheme inherited from past implementations of DQN. This scheme was historically used to initialize all weights and biases in convolutional and linear layers of DQN-type agents' networks. It initializes each weight as an independent uniform sample from [`-c`, `c`], where `c = 1 / np.sqrt(num_input_units)`, and `num_input_units` is the number of input units affecting a single output unit in the given layer, i.e. the total number of inputs in the case of linear (dense) layers, and `num_input_channels * kernel_width * kernel_height` in the case of convolutional layers. Args: num_input_units: number of input units to a single output unit of the layer. Returns: Haiku weight initializer. """ max_val = np.sqrt(1 / num_input_units) return hk.initializers.RandomUniform(-max_val, max_val) def make_quantiles(): """Quantiles for QR-DQN.""" return (jnp.arange(0, NUM_QUANTILES) + 0.5) / float(NUM_QUANTILES) def conv( num_features: int, kernel_shape: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]], name=None, ) -> NetworkFn: """Convolutional layer with DQN's legacy weight initialization scheme.""" def net_fn(inputs): """Function representing conv layer with DQN's legacy initialization.""" num_input_units = inputs.shape[-1] * kernel_shape[0] * kernel_shape[1] initializer = _dqn_default_initializer(num_input_units) layer = hk.Conv2D( num_features, kernel_shape=kernel_shape, stride=stride, w_init=initializer, b_init=initializer, padding='VALID', name=name) return layer(inputs) return net_fn def linear(num_outputs: int, with_bias=True, name=None) -> NetworkFn: """Linear layer with DQN's legacy weight initialization scheme.""" def net_fn(inputs): """Function representing linear layer with DQN's legacy initialization.""" initializer = _dqn_default_initializer(inputs.shape[-1]) layer = hk.Linear( num_outputs, with_bias=with_bias, w_init=initializer, b_init=initializer, name=name) return layer(inputs) return net_fn def linear_with_shared_bias(num_outputs: int, name=None) -> NetworkFn: """Linear layer with single shared bias instead of one bias per output.""" def layer_fn(inputs): """Function representing a linear layer with single shared bias.""" initializer = _dqn_default_initializer(inputs.shape[-1]) bias_free_linear = hk.Linear( num_outputs, with_bias=False, w_init=initializer, name=name) linear_output = bias_free_linear(inputs) bias = hk.get_parameter('b', [1], inputs.dtype, init=initializer) bias = jnp.broadcast_to(bias, linear_output.shape) return linear_output + bias return layer_fn def dqn_torso() -> NetworkFn: """DQN convolutional torso. Includes scaling from [`0`, `255`] (`uint8`) to [`0`, `1`] (`float32`)`. Returns: Network function that `haiku.transform` can be called on. """ def net_fn(inputs): """Function representing convolutional torso for a DQN Q-network.""" network = hk.Sequential([ lambda x: x.astype(jnp.float32) / 255., conv(32, kernel_shape=(8, 8), stride=(4, 4), name='conv1'), jax.nn.relu, conv(64, kernel_shape=(4, 4), stride=(2, 2), name='conv2'), jax.nn.relu, conv(64, kernel_shape=(3, 3), stride=(1, 1), name='conv3'), jax.nn.relu, hk.Flatten(), ]) return network(inputs) return net_fn def dqn_value_head(num_actions: int, shared_bias: bool = False) -> NetworkFn: """Regular DQN Q-value head with single hidden layer.""" last_layer = linear_with_shared_bias if shared_bias else linear def net_fn(inputs): """Function representing value head for a DQN Q-network.""" network = hk.Sequential([ linear(512, name='linear1'), jax.nn.relu, last_layer(num_actions, name='output'), ]) return network(inputs) return net_fn def qr_atari_network(num_actions: int, quantiles: jnp.ndarray) -> NetworkFn: """QR-DQN network, expects `uint8` input.""" chex.assert_rank(quantiles, 1) num_quantiles = len(quantiles) def net_fn(inputs): """Function representing QR-DQN Q-network.""" network = hk.Sequential([ dqn_torso(), dqn_value_head(num_quantiles * num_actions), ]) network_output = network(inputs) q_dist = jnp.reshape(network_output, (-1, num_quantiles, num_actions)) q_values = jnp.mean(q_dist, axis=1) q_values = jax.lax.stop_gradient(q_values) return QRNetworkOutputs(q_dist=q_dist, q_values=q_values) return net_fn def double_dqn_atari_network(num_actions: int) -> NetworkFn: """DQN network with shared bias in final layer, expects `uint8` input.""" def net_fn(inputs): """Function representing DQN Q-network with shared bias output layer.""" network = hk.Sequential([ dqn_torso(), dqn_value_head(num_actions, shared_bias=True), ]) return QNetworkOutputs(q_values=network(inputs)) return net_fn def make_network(network_type: str, num_actions: int) -> Network: """Constructs network.""" if network_type == 'double_q': network_fn = double_dqn_atari_network(num_actions) elif network_type == 'qr': quantiles = make_quantiles() network_fn = qr_atari_network(num_actions, quantiles) else: raise ValueError('Unknown network "{}"'.format(network_type)) return hk.transform(network_fn)
deepmind-research-master
tandem_dqn/networks.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Replay components for DQN-type agents.""" import collections import typing from typing import Any, Callable, Generic, Iterable, List, Mapping, Optional, Sequence, Text, Tuple, TypeVar import dm_env import numpy as np import snappy from tandem_dqn import parts CompressedArray = Tuple[bytes, Tuple, np.dtype] # Generic replay structure: Any flat named tuple. ReplayStructure = TypeVar('ReplayStructure', bound=Tuple[Any, ...]) class Transition(typing.NamedTuple): s_tm1: Optional[np.ndarray] a_tm1: Optional[parts.Action] r_t: Optional[float] discount_t: Optional[float] s_t: Optional[np.ndarray] a_t: Optional[parts.Action] = None mc_return_tm1: Optional[float] = None class TransitionReplay(Generic[ReplayStructure]): """Uniform replay, with circular buffer storage for flat named tuples.""" def __init__(self, capacity: int, structure: ReplayStructure, random_state: np.random.RandomState, encoder: Optional[Callable[[ReplayStructure], Any]] = None, decoder: Optional[Callable[[Any], ReplayStructure]] = None): self._capacity = capacity self._structure = structure self._random_state = random_state self._encoder = encoder or (lambda s: s) self._decoder = decoder or (lambda s: s) self._storage = [None] * capacity self._num_added = 0 def add(self, item: ReplayStructure) -> None: """Adds single item to replay.""" self._storage[self._num_added % self._capacity] = self._encoder(item) self._num_added += 1 def get(self, indices: Sequence[int]) -> List[ReplayStructure]: """Retrieves items by indices.""" return [self._decoder(self._storage[i]) for i in indices] def sample(self, size: int) -> ReplayStructure: """Samples batch of items from replay uniformly, with replacement.""" indices = self._random_state.choice(self.size, size=size, replace=True) samples = self.get(indices) transposed = zip(*samples) stacked = [np.stack(xs, axis=0) for xs in transposed] return type(self._structure)(*stacked) # pytype: disable=not-callable @property def size(self) -> int: """Number of items currently contained in replay.""" return min(self._num_added, self._capacity) @property def capacity(self) -> int: """Total capacity of replay (max number of items stored at any one time).""" return self._capacity def get_state(self) -> Mapping[Text, Any]: """Retrieves replay state as a dictionary (e.g. for serialization).""" return { 'storage': self._storage, 'num_added': self._num_added, } def set_state(self, state: Mapping[Text, Any]) -> None: """Sets replay state from a (potentially de-serialized) dictionary.""" self._storage = state['storage'] self._num_added = state['num_added'] class TransitionAccumulatorWithMCReturn: """Accumulates timesteps to transitions with MC returns.""" def __init__(self): self._transitions = collections.deque() self.reset() def step(self, timestep_t: dm_env.TimeStep, a_t: parts.Action) -> Iterable[Transition]: """Accumulates timestep and resulting action, maybe yields transitions.""" if timestep_t.first(): self.reset() # There are no transitions on the first timestep. if self._timestep_tm1 is None: assert self._a_tm1 is None if not timestep_t.first(): raise ValueError('Expected FIRST timestep, got %s.' % str(timestep_t)) self._timestep_tm1 = timestep_t self._a_tm1 = a_t return # Empty iterable. self._transitions.append( Transition( s_tm1=self._timestep_tm1.observation, a_tm1=self._a_tm1, r_t=timestep_t.reward, discount_t=timestep_t.discount, s_t=timestep_t.observation, a_t=a_t, mc_return_tm1=None, )) self._timestep_tm1 = timestep_t self._a_tm1 = a_t if timestep_t.last(): # Annotate all episode transitions with their MC returns. mc_return = 0 mc_transitions = [] while self._transitions: transition = self._transitions.pop() mc_return = transition.discount_t * mc_return + transition.r_t mc_transitions.append(transition._replace(mc_return_tm1=mc_return)) for transition in reversed(mc_transitions): yield transition else: # Wait for episode end before yielding anything. return def reset(self) -> None: """Resets the accumulator. Following timestep is expected to be FIRST.""" self._transitions.clear() self._timestep_tm1 = None self._a_tm1 = None def compress_array(array: np.ndarray) -> CompressedArray: """Compresses a numpy array with snappy.""" return snappy.compress(array), array.shape, array.dtype def uncompress_array(compressed: CompressedArray) -> np.ndarray: """Uncompresses a numpy array with snappy given its shape and dtype.""" compressed_array, shape, dtype = compressed byte_string = snappy.uncompress(compressed_array) return np.frombuffer(byte_string, dtype=dtype).reshape(shape)
deepmind-research-master
tandem_dqn/replay.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tandem DQN agent class.""" import typing from typing import Any, Callable, Mapping, Set, Text from absl import logging import dm_env import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax import rlax from tandem_dqn import losses from tandem_dqn import parts from tandem_dqn import processors from tandem_dqn import replay as replay_lib class TandemTuple(typing.NamedTuple): active: Any passive: Any def tandem_map(fn: Callable[..., Any], *args): return TandemTuple( active=fn(*[a.active for a in args]), passive=fn(*[a.passive for a in args])) def replace_module_params(source, target, modules): """Replace selected module params in target by corresponding source values.""" source, _ = hk.data_structures.partition( lambda module, name, value: module in modules, source) return hk.data_structures.merge(target, source) class TandemDqn(parts.Agent): """Tandem DQN agent.""" def __init__( self, preprocessor: processors.Processor, sample_network_input: jnp.ndarray, network: TandemTuple, optimizer: TandemTuple, loss: TandemTuple, transition_accumulator: Any, replay: replay_lib.TransitionReplay, batch_size: int, exploration_epsilon: Callable[[int], float], min_replay_capacity_fraction: float, learn_period: int, target_network_update_period: int, tied_layers: Set[str], rng_key: parts.PRNGKey, ): self._preprocessor = preprocessor self._replay = replay self._transition_accumulator = transition_accumulator self._batch_size = batch_size self._exploration_epsilon = exploration_epsilon self._min_replay_capacity = min_replay_capacity_fraction * replay.capacity self._learn_period = learn_period self._target_network_update_period = target_network_update_period # Initialize network parameters and optimizer. self._rng_key, network_rng_key_active, network_rng_key_passive = ( jax.random.split(rng_key, 3)) active_params = network.active.init( network_rng_key_active, sample_network_input[None, ...]) passive_params = network.passive.init( network_rng_key_passive, sample_network_input[None, ...]) self._online_params = TandemTuple( active=active_params, passive=passive_params) self._target_params = self._online_params self._opt_state = tandem_map( lambda optim, params: optim.init(params), optimizer, self._online_params) # Other agent state: last action, frame count, etc. self._action = None self._frame_t = -1 # Current frame index. # Stats. stats = [ 'loss_active', 'loss_passive', 'frac_diff_argmax', 'mc_error_active', 'mc_error_passive', 'mc_error_abs_active', 'mc_error_abs_passive', ] self._statistics = {k: np.nan for k in stats} # Define jitted loss, update, and policy functions here instead of as # class methods, to emphasize that these are meant to be pure functions # and should not access the agent object's state via `self`. def network_outputs(rng_key, online_params, target_params, transitions): """Compute all potentially needed outputs of active and passive net.""" _, *apply_keys = jax.random.split(rng_key, 4) outputs_tm1 = tandem_map( lambda net, param: net.apply(param, apply_keys[0], transitions.s_tm1), network, online_params) outputs_t = tandem_map( lambda net, param: net.apply(param, apply_keys[1], transitions.s_t), network, online_params) outputs_target_t = tandem_map( lambda net, param: net.apply(param, apply_keys[2], transitions.s_t), network, target_params) return outputs_tm1, outputs_t, outputs_target_t # Helper functions to define active and passive losses. # Active and passive losses are allowed to depend on all active and passive # outputs, but stop-gradient is used to prevent gradients from flowing # from active loss to passive network params and vice versa. def sg_active(x): return TandemTuple( active=jax.lax.stop_gradient(x.active), passive=x.passive) def sg_passive(x): return TandemTuple( active=x.active, passive=jax.lax.stop_gradient(x.passive)) def compute_loss(online_params, target_params, transitions, rng_key): rng_key, apply_key = jax.random.split(rng_key) outputs_tm1, outputs_t, outputs_target_t = network_outputs( apply_key, online_params, target_params, transitions) _, loss_key_active, loss_key_passive = jax.random.split(rng_key, 3) loss_active = loss.active( sg_passive(outputs_tm1), sg_passive(outputs_t), outputs_target_t, transitions, loss_key_active) loss_passive = loss.passive( sg_active(outputs_tm1), sg_active(outputs_t), outputs_target_t, transitions, loss_key_passive) # Logging stuff. a_tm1 = transitions.a_tm1 mc_return_tm1 = transitions.mc_return_tm1 q_values = TandemTuple( active=outputs_tm1.active.q_values, passive=outputs_tm1.passive.q_values) mc_error = jax.tree_map( lambda q: losses.batch_mc_learning(q, a_tm1, mc_return_tm1), q_values) mc_error_abs = jax.tree_map(jnp.abs, mc_error) q_argmax = jax.tree_map(lambda q: jnp.argmax(q, axis=-1), q_values) argmax_diff = jnp.not_equal(q_argmax.active, q_argmax.passive) batch_mean = lambda x: jnp.mean(x, axis=0) logs = { 'loss_active': loss_active, 'loss_passive': loss_passive } logs.update(jax.tree_map(batch_mean, { 'frac_diff_argmax': argmax_diff, 'mc_error_active': mc_error.active, 'mc_error_passive': mc_error.passive, 'mc_error_abs_active': mc_error_abs.active, 'mc_error_abs_passive': mc_error_abs.passive, })) return loss_active + loss_passive, logs def optim_update(optim, online_params, d_loss_d_params, opt_state): updates, new_opt_state = optim.update(d_loss_d_params, opt_state) new_online_params = optax.apply_updates(online_params, updates) return new_opt_state, new_online_params def compute_loss_grad(rng_key, online_params, target_params, transitions): rng_key, grad_key = jax.random.split(rng_key) (_, logs), d_loss_d_params = jax.value_and_grad( compute_loss, has_aux=True)( online_params, target_params, transitions, grad_key) return rng_key, logs, d_loss_d_params def update_active(rng_key, opt_state, online_params, target_params, transitions): """Applies learning update for active network only.""" rng_key, logs, d_loss_d_params = compute_loss_grad( rng_key, online_params, target_params, transitions) new_opt_state_active, new_online_params_active = optim_update( optimizer.active, online_params.active, d_loss_d_params.active, opt_state.active) new_opt_state = opt_state._replace( active=new_opt_state_active) new_online_params = online_params._replace( active=new_online_params_active) return rng_key, new_opt_state, new_online_params, logs self._update_active = jax.jit(update_active) def update_passive(rng_key, opt_state, online_params, target_params, transitions): """Applies learning update for passive network only.""" rng_key, logs, d_loss_d_params = compute_loss_grad( rng_key, online_params, target_params, transitions) new_opt_state_passive, new_online_params_passive = optim_update( optimizer.passive, online_params.passive, d_loss_d_params.passive, opt_state.passive) new_opt_state = opt_state._replace( passive=new_opt_state_passive) new_online_params = online_params._replace( passive=new_online_params_passive) return rng_key, new_opt_state, new_online_params, logs self._update_passive = jax.jit(update_passive) def update_active_passive(rng_key, opt_state, online_params, target_params, transitions): """Applies learning update for both active & passive networks.""" rng_key, logs, d_loss_d_params = compute_loss_grad( rng_key, online_params, target_params, transitions) new_opt_state_active, new_online_params_active = optim_update( optimizer.active, online_params.active, d_loss_d_params.active, opt_state.active) new_opt_state_passive, new_online_params_passive = optim_update( optimizer.passive, online_params.passive, d_loss_d_params.passive, opt_state.passive) new_opt_state = TandemTuple(active=new_opt_state_active, passive=new_opt_state_passive) new_online_params = TandemTuple(active=new_online_params_active, passive=new_online_params_passive) return rng_key, new_opt_state, new_online_params, logs self._update_active_passive = jax.jit(update_active_passive) self._update = None # set_training_mode needs to be called to set this. def sync_tied_layers(online_params): """Set tied layer params of passive to respective values of active.""" new_online_params_passive = replace_module_params( source=online_params.active, target=online_params.passive, modules=tied_layers) return online_params._replace(passive=new_online_params_passive) self._sync_tied_layers = jax.jit(sync_tied_layers) def select_action(rng_key, network_params, s_t, exploration_epsilon): """Samples action from eps-greedy policy wrt Q-values at given state.""" rng_key, apply_key, policy_key = jax.random.split(rng_key, 3) q_t = network.active.apply(network_params, apply_key, s_t[None, ...]).q_values[0] a_t = rlax.epsilon_greedy().sample(policy_key, q_t, exploration_epsilon) return rng_key, a_t self._select_action = jax.jit(select_action) def step(self, timestep: dm_env.TimeStep) -> parts.Action: """Selects action given timestep and potentially learns.""" self._frame_t += 1 timestep = self._preprocessor(timestep) if timestep is None: # Repeat action. action = self._action else: action = self._action = self._act(timestep) for transition in self._transition_accumulator.step(timestep, action): self._replay.add(transition) if self._replay.size < self._min_replay_capacity: return action if self._frame_t % self._learn_period == 0: self._learn() if self._frame_t % self._target_network_update_period == 0: self._target_params = self._online_params return action def reset(self) -> None: """Resets the agent's episodic state such as frame stack and action repeat. This method should be called at the beginning of every episode. """ self._transition_accumulator.reset() processors.reset(self._preprocessor) self._action = None def _act(self, timestep) -> parts.Action: """Selects action given timestep, according to epsilon-greedy policy.""" s_t = timestep.observation network_params = self._online_params.active self._rng_key, a_t = self._select_action( self._rng_key, network_params, s_t, self.exploration_epsilon) return parts.Action(jax.device_get(a_t)) def _learn(self) -> None: """Samples a batch of transitions from replay and learns from it.""" logging.log_first_n(logging.INFO, 'Begin learning', 1) transitions = self._replay.sample(self._batch_size) self._rng_key, self._opt_state, self._online_params, logs = self._update( self._rng_key, self._opt_state, self._online_params, self._target_params, transitions, ) self._online_params = self._sync_tied_layers(self._online_params) self._statistics.update(jax.device_get(logs)) def set_training_mode(self, mode: str): """Sets training mode to one of 'active', 'passive', or 'active_passive'.""" if mode == 'active': self._update = self._update_active elif mode == 'passive': self._update = self._update_passive elif mode == 'active_passive': self._update = self._update_active_passive @property def online_params(self) -> TandemTuple: """Returns current parameters of Q-network.""" return self._online_params @property def statistics(self) -> Mapping[Text, float]: """Returns current agent statistics as a dictionary.""" # Check for DeviceArrays in values as this can be very slow. assert all(not isinstance(x, jax.Array) for x in self._statistics.values()) return self._statistics @property def exploration_epsilon(self) -> float: """Returns epsilon value currently used by (eps-greedy) behavior policy.""" return self._exploration_epsilon(self._frame_t) def get_state(self) -> Mapping[Text, Any]: """Retrieves agent state as a dictionary (e.g. for serialization).""" state = { 'rng_key': self._rng_key, 'frame_t': self._frame_t, 'opt_state_active': self._opt_state.active, 'online_params_active': self._online_params.active, 'target_params_active': self._target_params.active, 'opt_state_passive': self._opt_state.passive, 'online_params_passive': self._online_params.passive, 'target_params_passive': self._target_params.passive, 'replay': self._replay.get_state(), } return state def set_state(self, state: Mapping[Text, Any]) -> None: """Sets agent state from a (potentially de-serialized) dictionary.""" self._rng_key = state['rng_key'] self._frame_t = state['frame_t'] self._opt_state = TandemTuple( active=jax.device_put(state['opt_state_active']), passive=jax.device_put(state['opt_state_passive'])) self._online_params = TandemTuple( active=jax.device_put(state['online_params_active']), passive=jax.device_put(state['online_params_passive'])) self._target_params = TandemTuple( active=jax.device_put(state['target_params_active']), passive=jax.device_put(state['target_params_passive'])) self._replay.set_state(state['replay'])
deepmind-research-master
tandem_dqn/agent.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Components for DQN.""" import abc import collections import csv import os import timeit from typing import Any, Iterable, Mapping, Optional, Text, Tuple, Union import dm_env import jax import jax.numpy as jnp import numpy as np import rlax from tandem_dqn import networks from tandem_dqn import processors Action = int Network = networks.Network NetworkParams = networks.Params PRNGKey = jnp.ndarray # A size 2 array. class Agent(abc.ABC): """Agent interface.""" @abc.abstractmethod def step(self, timestep: dm_env.TimeStep) -> Action: """Selects action given timestep and potentially learns.""" @abc.abstractmethod def reset(self) -> None: """Resets the agent's episodic state such as frame stack and action repeat. This method should be called at the beginning of every episode. """ @abc.abstractmethod def get_state(self) -> Mapping[Text, Any]: """Retrieves agent state as a dictionary (e.g. for serialization).""" @abc.abstractmethod def set_state(self, state: Mapping[Text, Any]) -> None: """Sets agent state from a (potentially de-serialized) dictionary.""" @property @abc.abstractmethod def statistics(self) -> Mapping[Text, float]: """Returns current agent statistics as a dictionary.""" def run_loop( agent: Agent, environment: dm_env.Environment, max_steps_per_episode: int = 0, yield_before_reset: bool = False, ) -> Iterable[Tuple[dm_env.Environment, Optional[dm_env.TimeStep], Agent, Optional[Action]]]: """Repeatedly alternates step calls on environment and agent. At time `t`, `t + 1` environment timesteps and `t + 1` agent steps have been seen in the current episode. `t` resets to `0` for the next episode. Args: agent: Agent to be run, has methods `step(timestep)` and `reset()`. environment: Environment to run, has methods `step(action)` and `reset()`. max_steps_per_episode: If positive, when time t reaches this value within an episode, the episode is truncated. yield_before_reset: Whether to additionally yield `(environment, None, agent, None)` before the agent and environment is reset at the start of each episode. Yields: Tuple `(environment, timestep_t, agent, a_t)` where `a_t = agent.step(timestep_t)`. """ while True: # For each episode. if yield_before_reset: yield environment, None, agent, None, t = 0 agent.reset() timestep_t = environment.reset() # timestep_0. while True: # For each step in the current episode. a_t = agent.step(timestep_t) yield environment, timestep_t, agent, a_t # Update t after one environment step and agent step and relabel. t += 1 a_tm1 = a_t timestep_t = environment.step(a_tm1) if max_steps_per_episode > 0 and t >= max_steps_per_episode: assert t == max_steps_per_episode timestep_t = timestep_t._replace(step_type=dm_env.StepType.LAST) if timestep_t.last(): unused_a_t = agent.step(timestep_t) # Extra agent step, action ignored. yield environment, timestep_t, agent, None break def generate_statistics( trackers: Iterable[Any], timestep_action_sequence: Iterable[Tuple[dm_env.Environment, Optional[dm_env.TimeStep], Agent, Optional[Action]]] ) -> Mapping[Text, Any]: """Generates statistics from a sequence of timestep and actions.""" # Only reset at the start, not between episodes. for tracker in trackers: tracker.reset() for environment, timestep_t, agent, a_t in timestep_action_sequence: for tracker in trackers: tracker.step(environment, timestep_t, agent, a_t) # Merge all statistics dictionaries into one. statistics_dicts = (tracker.get() for tracker in trackers) return dict(collections.ChainMap(*statistics_dicts)) class EpisodeTracker: """Tracks episode return and other statistics.""" def __init__(self): self._num_steps_since_reset = None self._num_steps_over_episodes = None self._episode_returns = None self._current_episode_rewards = None self._current_episode_step = None def step( self, environment: Optional[dm_env.Environment], timestep_t: dm_env.TimeStep, agent: Optional[Agent], a_t: Optional[Action], ) -> None: """Accumulates statistics from timestep.""" del (environment, agent, a_t) if timestep_t.first(): if self._current_episode_rewards: raise ValueError('Current episode reward list should be empty.') if self._current_episode_step != 0: raise ValueError('Current episode step should be zero.') else: # First reward is invalid, all other rewards are appended. self._current_episode_rewards.append(timestep_t.reward) self._num_steps_since_reset += 1 self._current_episode_step += 1 if timestep_t.last(): self._episode_returns.append(sum(self._current_episode_rewards)) self._current_episode_rewards = [] self._num_steps_over_episodes += self._current_episode_step self._current_episode_step = 0 def reset(self) -> None: """Resets all gathered statistics, not to be called between episodes.""" self._num_steps_since_reset = 0 self._num_steps_over_episodes = 0 self._episode_returns = [] self._current_episode_step = 0 self._current_episode_rewards = [] def get(self) -> Mapping[Text, Union[int, float, None]]: """Aggregates statistics and returns as a dictionary. Here the convention is `episode_return` is set to `current_episode_return` if a full episode has not been encountered. Otherwise it is set to `mean_episode_return` which is the mean return of complete episodes only. If no steps have been taken at all, `episode_return` is set to `NaN`. Returns: A dictionary of aggregated statistics. """ if self._episode_returns: mean_episode_return = np.array(self._episode_returns).mean() current_episode_return = sum(self._current_episode_rewards) episode_return = mean_episode_return else: mean_episode_return = np.nan if self._num_steps_since_reset > 0: current_episode_return = sum(self._current_episode_rewards) else: current_episode_return = np.nan episode_return = current_episode_return return { 'mean_episode_return': mean_episode_return, 'current_episode_return': current_episode_return, 'episode_return': episode_return, 'num_episodes': len(self._episode_returns), 'num_steps_over_episodes': self._num_steps_over_episodes, 'current_episode_step': self._current_episode_step, 'num_steps_since_reset': self._num_steps_since_reset, } class StepRateTracker: """Tracks step rate, number of steps taken and duration since last reset.""" def __init__(self): self._num_steps_since_reset = None self._start = None def step( self, environment: Optional[dm_env.Environment], timestep_t: Optional[dm_env.TimeStep], agent: Optional[Agent], a_t: Optional[Action], ) -> None: del (environment, timestep_t, agent, a_t) self._num_steps_since_reset += 1 def reset(self) -> None: self._num_steps_since_reset = 0 self._start = timeit.default_timer() def get(self) -> Mapping[Text, float]: duration = timeit.default_timer() - self._start if self._num_steps_since_reset > 0: step_rate = self._num_steps_since_reset / duration else: step_rate = np.nan return { 'step_rate': step_rate, 'num_steps': self._num_steps_since_reset, 'duration': duration, } class UnbiasedExponentialWeightedAverageAgentTracker: """'Unbiased Constant-Step-Size Trick' from the Sutton and Barto RL book.""" def __init__(self, step_size: float, initial_agent: Agent): self._initial_statistics = dict(initial_agent.statistics) self._step_size = step_size self.trace = 0. self._statistics = dict(self._initial_statistics) def step( self, environment: Optional[dm_env.Environment], timestep_t: Optional[dm_env.TimeStep], agent: Agent, a_t: Optional[Action], ) -> None: """Accumulates agent statistics.""" del (environment, timestep_t, a_t) self.trace = (1 - self._step_size) * self.trace + self._step_size final_step_size = self._step_size / self.trace assert 0 <= final_step_size <= 1 if final_step_size == 1: # Since the self._initial_statistics is likely to be NaN and # 0 * NaN == NaN just replace self._statistics on the first step. self._statistics = dict(agent.statistics) else: self._statistics = jax.tree_map( lambda s, x: (1 - final_step_size) * s + final_step_size * x, self._statistics, agent.statistics) def reset(self) -> None: """Resets statistics and internal state.""" self.trace = 0. # get() may be called before step() so ensure statistics are initialized. self._statistics = dict(self._initial_statistics) def get(self) -> Mapping[Text, float]: """Returns current accumulated statistics.""" return self._statistics def make_default_trackers(initial_agent: Agent): return [ EpisodeTracker(), StepRateTracker(), UnbiasedExponentialWeightedAverageAgentTracker( step_size=1e-3, initial_agent=initial_agent), ] class EpsilonGreedyActor(Agent): """Agent that acts with a given set of Q-network parameters and epsilon. Network parameters are set on the actor. The actor can be serialized, ensuring determinism of execution (e.g. when checkpointing). """ def __init__( self, preprocessor: processors.Processor, network: Network, exploration_epsilon: float, rng_key: PRNGKey, ): self._preprocessor = preprocessor self._rng_key = rng_key self._action = None self.network_params = None # Nest of arrays (haiku.Params), set externally. def select_action(rng_key, network_params, s_t): """Samples action from eps-greedy policy wrt Q-values at given state.""" rng_key, apply_key, policy_key = jax.random.split(rng_key, 3) q_t = network.apply(network_params, apply_key, s_t[None, ...]).q_values[0] a_t = rlax.epsilon_greedy().sample(policy_key, q_t, exploration_epsilon) return rng_key, a_t self._select_action = jax.jit(select_action) def step(self, timestep: dm_env.TimeStep) -> Action: """Selects action given a timestep.""" timestep = self._preprocessor(timestep) if timestep is None: # Repeat action. return self._action s_t = timestep.observation self._rng_key, a_t = self._select_action(self._rng_key, self.network_params, s_t) self._action = Action(jax.device_get(a_t)) return self._action def reset(self) -> None: """Resets the agent's episodic state such as frame stack and action repeat. This method should be called at the beginning of every episode. """ processors.reset(self._preprocessor) self._action = None def get_state(self) -> Mapping[Text, Any]: """Retrieves agent state as a dictionary (e.g. for serialization).""" # State contains network params to make agent easy to run from a checkpoint. return { 'rng_key': self._rng_key, 'network_params': self.network_params, } def set_state(self, state: Mapping[Text, Any]) -> None: """Sets agent state from a (potentially de-serialized) dictionary.""" self._rng_key = state['rng_key'] self.network_params = state['network_params'] @property def statistics(self) -> Mapping[Text, float]: return {} class LinearSchedule: """Linear schedule, used for exploration epsilon in DQN agents.""" def __init__(self, begin_value, end_value, begin_t, end_t=None, decay_steps=None): if (end_t is None) == (decay_steps is None): raise ValueError('Exactly one of end_t, decay_steps must be provided.') self._decay_steps = decay_steps if end_t is None else end_t - begin_t self._begin_t = begin_t self._begin_value = begin_value self._end_value = end_value def __call__(self, t): """Implements a linear transition from a begin to an end value.""" frac = min(max(t - self._begin_t, 0), self._decay_steps) / self._decay_steps return (1 - frac) * self._begin_value + frac * self._end_value class NullWriter: """A placeholder logging object that does nothing.""" def write(self, *args, **kwargs) -> None: pass def close(self) -> None: pass class CsvWriter: """A logging object writing to a CSV file. Each `write()` takes a `OrderedDict`, creating one column in the CSV file for each dictionary key on the first call. Successive calls to `write()` must contain the same dictionary keys. """ def __init__(self, fname: Text): """Initializes a `CsvWriter`. Args: fname: File name (path) for file to be written to. """ dirname = os.path.dirname(fname) if not os.path.exists(dirname): os.makedirs(dirname) self._fname = fname self._header_written = False self._fieldnames = None def write(self, values: collections.OrderedDict) -> None: """Appends given values as new row to CSV file.""" if self._fieldnames is None: self._fieldnames = values.keys() # Open a file in 'append' mode, so we can continue logging safely to the # same file after e.g. restarting from a checkpoint. with open(self._fname, 'a') as file: # Always use same fieldnames to create writer, this way a consistency # check is performed automatically on each write. writer = csv.DictWriter(file, fieldnames=self._fieldnames) # Write a header if this is the very first write. if not self._header_written: writer.writeheader() self._header_written = True writer.writerow(values) def close(self) -> None: """Closes the `CsvWriter`.""" pass def get_state(self) -> Mapping[Text, Any]: """Retrieves `CsvWriter` state as a `dict` (e.g. for serialization).""" return { 'header_written': self._header_written, 'fieldnames': self._fieldnames } def set_state(self, state: Mapping[Text, Any]) -> None: """Sets `CsvWriter` state from a (potentially de-serialized) dictionary.""" self._header_written = state['header_written'] self._fieldnames = state['fieldnames'] class NullCheckpoint: """A placeholder checkpointing object that does nothing. Can be used as a substitute for an actual checkpointing object when checkpointing is disabled. """ def __init__(self): self.state = AttributeDict() def save(self) -> None: pass def can_be_restored(self) -> bool: return False def restore(self) -> None: pass class AttributeDict(dict): """A `dict` that supports getting, setting, deleting keys via attributes.""" def __getattr__(self, key): return self[key] def __setattr__(self, key, value): self[key] = value def __delattr__(self, key): del self[key]
deepmind-research-master
tandem_dqn/parts.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Losses for TandemDQN.""" from typing import Any, Callable import chex import jax import jax.numpy as jnp import rlax from tandem_dqn import networks # Batch variants of double_q_learning and SARSA. batch_double_q_learning = jax.vmap(rlax.double_q_learning) batch_sarsa_learning = jax.vmap(rlax.sarsa) # Batch variant of quantile_q_learning with fixed tau input across batch. batch_quantile_q_learning = jax.vmap( rlax.quantile_q_learning, in_axes=(0, None, 0, 0, 0, 0, 0, None)) def _mc_learning( q_tm1: chex.Array, a_tm1: chex.Numeric, mc_return_tm1: chex.Array, ) -> chex.Numeric: """Calculates the MC return error.""" chex.assert_rank([q_tm1, a_tm1], [1, 0]) chex.assert_type([q_tm1, a_tm1], [float, int]) return mc_return_tm1 - q_tm1[a_tm1] # Batch variant of MC learning. batch_mc_learning = jax.vmap(_mc_learning) def _qr_loss(q_tm1, q_t, q_target_t, transitions, rng_key): """Calculates QR-Learning loss from network outputs and transitions.""" del q_t, rng_key # Unused. # Compute Q value distributions. huber_param = 1. quantiles = networks.make_quantiles() losses = batch_quantile_q_learning( q_tm1.q_dist, quantiles, transitions.a_tm1, transitions.r_t, transitions.discount_t, q_target_t.q_dist, # No double Q-learning here. q_target_t.q_dist, huber_param, ) loss = jnp.mean(losses) return loss def _sarsa_loss(q_tm1, q_t, transitions, rng_key): """Calculates SARSA loss from network outputs and transitions.""" del rng_key # Unused. grad_error_bound = 1. / 32 td_errors = batch_sarsa_learning( q_tm1.q_values, transitions.a_tm1, transitions.r_t, transitions.discount_t, q_t.q_values, transitions.a_t ) td_errors = rlax.clip_gradient(td_errors, -grad_error_bound, grad_error_bound) losses = rlax.l2_loss(td_errors) loss = jnp.mean(losses) return loss def _mc_loss(q_tm1, transitions, rng_key): """Calculates Monte-Carlo return loss, i.e. regression towards MC return.""" del rng_key # Unused. errors = batch_mc_learning(q_tm1.q_values, transitions.a_tm1, transitions.mc_return_tm1) loss = jnp.mean(rlax.l2_loss(errors)) return loss def _double_q_loss(q_tm1, q_t, q_target_t, transitions, rng_key): """Calculates Double Q-Learning loss from network outputs and transitions.""" del rng_key # Unused. grad_error_bound = 1. / 32 td_errors = batch_double_q_learning( q_tm1.q_values, transitions.a_tm1, transitions.r_t, transitions.discount_t, q_target_t.q_values, q_t.q_values, ) td_errors = rlax.clip_gradient(td_errors, -grad_error_bound, grad_error_bound) losses = rlax.l2_loss(td_errors) loss = jnp.mean(losses) return loss def _q_regression_loss(q_tm1, q_tm1_target): """Loss for regression of all action values towards targets.""" errors = q_tm1.q_values - jax.lax.stop_gradient(q_tm1_target.q_values) loss = jnp.mean(rlax.l2_loss(errors)) return loss def make_loss_fn(loss_type: str, active: bool) -> Callable[..., Any]: """Create active or passive loss function of given type.""" if active: primary = lambda x: x.active secondary = lambda x: x.passive else: primary = lambda x: x.passive secondary = lambda x: x.active def sarsa_loss_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """SARSA loss using own networks.""" del q_t # Unused. return _sarsa_loss(primary(q_tm1), primary(q_target_t), transitions, rng_key) def mc_loss_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """MonteCarlo loss.""" del q_t, q_target_t return _mc_loss(primary(q_tm1), transitions, rng_key) def double_q_loss_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """Regular DoubleQ loss using own networks.""" return _double_q_loss(primary(q_tm1), primary(q_t), primary(q_target_t), transitions, rng_key) def double_q_loss_v_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """DoubleQ loss using other network's (target) value function.""" return _double_q_loss(primary(q_tm1), primary(q_t), secondary(q_target_t), transitions, rng_key) def double_q_loss_p_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """DoubleQ loss using other network's (online) argmax policy.""" return _double_q_loss(primary(q_tm1), secondary(q_t), primary(q_target_t), transitions, rng_key) def double_q_loss_pv_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """DoubleQ loss using other network's argmax policy & target value fn.""" return _double_q_loss(primary(q_tm1), secondary(q_t), secondary(q_target_t), transitions, rng_key) # Pure regression. def q_regression_loss_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """Pure regression of q_tm1(self) towards q_tm1(other).""" del q_t, q_target_t, transitions, rng_key # Unused. return _q_regression_loss(primary(q_tm1), secondary(q_tm1)) # QR loss. def qr_loss_fn(q_tm1, q_t, q_target_t, transitions, rng_key): """QR-Q loss using own networks.""" return _qr_loss(primary(q_tm1), primary(q_t), primary(q_target_t), transitions, rng_key) if loss_type == 'double_q': return double_q_loss_fn elif loss_type == 'sarsa': return sarsa_loss_fn elif loss_type == 'mc_return': return mc_loss_fn elif loss_type == 'double_q_v': return double_q_loss_v_fn elif loss_type == 'double_q_p': return double_q_loss_p_fn elif loss_type == 'double_q_pv': return double_q_loss_pv_fn elif loss_type == 'q_regression': return q_regression_loss_fn elif loss_type == 'qr': return qr_loss_fn else: raise ValueError('Unknown loss "{}"'.format(loss_type))
deepmind-research-master
tandem_dqn/losses.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """dm_env environment wrapper around Gym Atari configured to be like Xitari. Gym Atari is built on the Arcade Learning Environment (ALE), whereas Xitari is an old fork of the ALE. """ # pylint: disable=g-bad-import-order from typing import Optional, Tuple import atari_py # pylint: disable=unused-import for gym to load Atari games. import dm_env from dm_env import specs import gym import numpy as np from tandem_dqn import atari_data _GYM_ID_SUFFIX = '-xitari-v1' _SA_SUFFIX = '-sa' def _game_id(game, sticky_actions): return game + (_SA_SUFFIX if sticky_actions else '') + _GYM_ID_SUFFIX def _register_atari_environments(): """Registers Atari environments in Gym to be as similar to Xitari as possible. Main difference from PongNoFrameSkip-v4, etc. is max_episode_steps is unset and only the usual 57 Atari games are registered. Additionally, sticky-actions variants of the environments are registered with an '-sa' suffix. """ for sticky_actions in [False, True]: for game in atari_data.ATARI_GAMES: repeat_action_probability = 0.25 if sticky_actions else 0.0 gym.envs.registration.register( id=_game_id(game, sticky_actions), entry_point='gym.envs.atari:AtariEnv', kwargs={ # Explicitly set all known arguments. 'game': game, 'mode': None, # Not necessarily the same as 0. 'difficulty': None, # Not necessarily the same as 0. 'obs_type': 'image', 'frameskip': 1, # Get every frame. 'repeat_action_probability': repeat_action_probability, 'full_action_space': False, }, max_episode_steps=None, # No time limit, handled in run loop. nondeterministic=False, # Xitari is deterministic. ) _register_atari_environments() class GymAtari(dm_env.Environment): """Gym Atari with a `dm_env.Environment` interface.""" def __init__(self, game, sticky_actions, seed): self._gym_env = gym.make(_game_id(game, sticky_actions)) self._gym_env.seed(seed) self._start_of_episode = True def reset(self) -> dm_env.TimeStep: """Resets the environment and starts a new episode.""" observation = self._gym_env.reset() lives = np.int32(self._gym_env.ale.lives()) timestep = dm_env.restart((observation, lives)) self._start_of_episode = False return timestep def step(self, action: np.int32) -> dm_env.TimeStep: """Updates the environment given an action and returns a timestep.""" # If the previous timestep was LAST then we call reset() on the Gym # environment, otherwise step(). Although Gym environments allow you to step # through episode boundaries (similar to dm_env) they emit a warning. if self._start_of_episode: step_type = dm_env.StepType.FIRST observation = self._gym_env.reset() discount = None reward = None done = False else: observation, reward, done, info = self._gym_env.step(action) if done: assert 'TimeLimit.truncated' not in info, 'Should never truncate.' step_type = dm_env.StepType.LAST discount = 0. else: step_type = dm_env.StepType.MID discount = 1. lives = np.int32(self._gym_env.ale.lives()) timestep = dm_env.TimeStep( step_type=step_type, observation=(observation, lives), reward=reward, discount=discount, ) self._start_of_episode = done return timestep def observation_spec(self) -> Tuple[specs.Array, specs.Array]: space = self._gym_env.observation_space return (specs.Array(shape=space.shape, dtype=space.dtype, name='rgb'), specs.Array(shape=(), dtype=np.int32, name='lives')) def action_spec(self) -> specs.DiscreteArray: space = self._gym_env.action_space return specs.DiscreteArray( num_values=space.n, dtype=np.int32, name='action') def close(self): self._gym_env.close() class RandomNoopsEnvironmentWrapper(dm_env.Environment): """Adds a random number of noop actions at the beginning of each episode.""" def __init__(self, environment: dm_env.Environment, max_noop_steps: int, min_noop_steps: int = 0, noop_action: int = 0, seed: Optional[int] = None): """Initializes the random noops environment wrapper.""" self._environment = environment if max_noop_steps < min_noop_steps: raise ValueError('max_noop_steps must be greater or equal min_noop_steps') self._min_noop_steps = min_noop_steps self._max_noop_steps = max_noop_steps self._noop_action = noop_action self._rng = np.random.RandomState(seed) def reset(self): """Begins new episode. This method resets the wrapped environment and applies a random number of noop actions before returning the last resulting observation as the first episode timestep. Intermediate timesteps emitted by the inner environment (including all rewards and discounts) are discarded. Returns: First episode timestep corresponding to the timestep after a random number of noop actions are applied to the inner environment. Raises: RuntimeError: if an episode end occurs while the inner environment is being stepped through with the noop action. """ return self._apply_random_noops(initial_timestep=self._environment.reset()) def step(self, action): """Steps environment given action. If beginning a new episode then random noops are applied as in `reset()`. Args: action: action to pass to environment conforming to action spec. Returns: `Timestep` from the inner environment unless beginning a new episode, in which case this is the timestep after a random number of noop actions are applied to the inner environment. """ timestep = self._environment.step(action) if timestep.first(): return self._apply_random_noops(initial_timestep=timestep) else: return timestep def _apply_random_noops(self, initial_timestep): assert initial_timestep.first() num_steps = self._rng.randint(self._min_noop_steps, self._max_noop_steps + 1) timestep = initial_timestep for _ in range(num_steps): timestep = self._environment.step(self._noop_action) if timestep.last(): raise RuntimeError('Episode ended while applying %s noop actions.' % num_steps) # We make sure to return a FIRST timestep, i.e. discard rewards & discounts. return dm_env.restart(timestep.observation) ## All methods except for reset and step redirect to the underlying env. def observation_spec(self): return self._environment.observation_spec() def action_spec(self): return self._environment.action_spec() def reward_spec(self): return self._environment.reward_spec() def discount_spec(self): return self._environment.discount_spec() def close(self): return self._environment.close()
deepmind-research-master
tandem_dqn/gym_atari.py