python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch import nn from fairseq.models import FairseqEncoder class CTCDecoder(FairseqEncoder): def __init__(self, dictionary, in_dim): super().__init__(dictionary) self.proj = nn.Linear(in_dim, len(dictionary)) def forward(self, src_tokens, src_lengths=None, **kwargs): encoder_out = self.proj(src_tokens) return {"encoder_out": encoder_out}
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_speech/modules/ctc_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from fairseq.models import FairseqEncoder from fairseq.modules import LayerNorm, TransformerEncoderLayer class TransformerEncoderNoEmb(FairseqEncoder): """Transformer encoder without token embeddings.""" def __init__(self, args): super().__init__(None) self.layers = nn.ModuleList( [TransformerEncoderLayer(args) for _ in range(args.encoder_layers)] ) if args.encoder_normalize_before: self.layer_norm = LayerNorm(args.encoder_embed_dim) else: self.layer_norm = None def forward(self, x, encoder_padding_mask, return_all_hiddens=False): encoder_states = [] for layer in self.layers: x = layer(x, encoder_padding_mask) if return_all_hiddens: encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask] if encoder_padding_mask is not None and encoder_padding_mask.any() else [], # B x T "encoder_embedding": [], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = ( [] if len(encoder_out["encoder_out"]) == 0 else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]] ) new_encoder_padding_mask = ( [] if len(encoder_out["encoder_padding_mask"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"] ] ) new_encoder_embedding = ( [] if len(encoder_out["encoder_embedding"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_embedding"] ] ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], # B x T "src_lengths": [], # B x 1 }
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_speech/modules/transformer_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from fairseq.models.transformer import Linear class StackedEmbedding(nn.Embedding): """Embedding module that supports stacked units -> single embedding""" def __init__(self, num_embeddings, embed_dim, padding_idx, num_stacked=1): super().__init__(num_embeddings, embed_dim, padding_idx) # follow transformer.Embedding nn.init.normal_(self.weight, mean=0, std=embed_dim**-0.5) nn.init.constant_(self.weight[padding_idx], 0) self.offset = ( 4 # skip <bos>, <pad>, <eos>, <unk>, specific to fairseq dictionary ) self.vocab_size = num_embeddings - self.offset self.num_stacked = num_stacked if self.num_stacked > 1: self.project_in_dim = Linear(embed_dim * num_stacked, embed_dim, bias=False) def forward(self, input): if self.num_stacked == 1: return super().forward(input) # expand input indices mask = input >= self.offset stacked_input = [] cum_input = input.new_zeros(input.shape) for i in range(1, self.num_stacked + 1): div = pow(self.vocab_size, i) next_input = torch.remainder(input - self.offset - cum_input, div) cum_input += next_input next_input = torch.floor_divide(next_input, div // self.vocab_size) stacked_input.append((next_input + self.offset) * mask + input * ~mask) stacked_input = torch.stack(stacked_input[::-1], dim=2) embed = super().forward(stacked_input).view(input.size(0), input.size(1), -1) embed = self.project_in_dim(embed) return embed
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_speech/modules/stacked_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional from torch import Tensor from fairseq.models.transformer import Linear from fairseq.models.transformer.transformer_decoder_aug import AugTransformerDecoder class AugTransformerUnitDecoder(AugTransformerDecoder): """Based on Transformer decoder, with support to decoding stacked units""" def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, output_projection=None, ): super().__init__( args, dictionary, embed_tokens, no_encoder_attn, output_projection ) self.n_frames_per_step = args.n_frames_per_step self.out_proj_n_frames = ( Linear( self.output_embed_dim, self.output_embed_dim * self.n_frames_per_step, bias=False, ) if self.n_frames_per_step > 1 else None ) def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, encoder_out_aug: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention, should be of size T x B x C incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, encoder_out_aug=encoder_out_aug, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) if not features_only: bsz, seq_len, d = x.size() if self.out_proj_n_frames: x = self.out_proj_n_frames(x) x = self.output_layer(x.view(bsz, seq_len, self.n_frames_per_step, d)) x = x.view(bsz, seq_len * self.n_frames_per_step, -1) if ( incremental_state is None and self.n_frames_per_step > 1 ): # teacher-forcing mode in training x = x[ :, : -(self.n_frames_per_step - 1), : ] # remove extra frames after <eos> return x, extra def upgrade_state_dict_named(self, state_dict, name): if self.n_frames_per_step > 1: move_keys = [ ( f"{name}.project_in_dim.weight", f"{name}.embed_tokens.project_in_dim.weight", ) ] for from_k, to_k in move_keys: if from_k in state_dict and to_k not in state_dict: state_dict[to_k] = state_dict[from_k] del state_dict[from_k]
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_speech/modules/transformer_decoder_aug.py
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_speech/modules/__init__.py
#!/usr/bin/env python3 import math import torch import torch.nn as nn from fairseq.data.data_utils import compute_mask_indices from fairseq.models import FairseqEncoder from fairseq.models.wav2vec import ConvFeatureExtractionModel from fairseq.modules import GradMultiply, LayerNorm, SamePad, TransformerEncoderLayer # Transformer encoder with wave input, it is adopted from wav2vec 2.0 Encoder. # use wav input # use trained position embedding so it is easier to match with text input class SpeechWavTransformerEncoder(FairseqEncoder): # extra parameters for speech encoder besides those defined in transformermodel @staticmethod def add_args(parser): parser.add_argument( "--dropout-input", type=float, metavar="D", help="dropout to apply to the input (after feat extr)", ) parser.add_argument( "--dropout-features", type=float, metavar="D", help="dropout to apply to the unmasked features (after feat extr)", ) parser.add_argument( "--speech-extractor-mode", type=str, default="layer_norm", choices=["default", "layer_norm"], help="feature extractor norm", ) parser.add_argument( "--speech-conv-bias", action="store_true", help="include bias in speech conv encoder", ) parser.add_argument( "--conv-feature-layers", default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]", help="string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]", ) parser.add_argument( "--speech-mask-length", type=int, help="repeat the mask indices multiple times", ) parser.add_argument( "--speech-mask-prob", type=float, help="probability of replacing a token with mask", ) parser.add_argument( "--speech-mask-selection", type=str, choices=["static", "uniform", "normal", "poisson"], help="how to choose masks", ) parser.add_argument( "--speech-mask-other", type=float, help="stdev of the mask length in case of 'normal' selection strategy", ) parser.add_argument( "--speech-no-mask-overlap", action="store_true", help="whether to allow masks to overlap", ) parser.add_argument( "--speech-mask-min-space", type=int, help="min space between spans (if no overlap is enabled)", ) parser.add_argument( "--speech-mask-channel-length", type=int, help="repeat the mask indices multiple times", ) parser.add_argument( "--speech-mask-channel-prob", type=float, help="probability of replacing a token with mask", ) parser.add_argument( "--speech-mask-channel-selection", type=str, choices=["static", "uniform", "normal", "poisson"], help="how to choose masks", ) parser.add_argument( "--speech-mask-channel-other", type=float, help="stdev of the mask length in case of 'normal' selection strategy", ) parser.add_argument( "--speech-no-mask-channel-overlap", action="store_true", help="whether to allow masks to overlap", ) parser.add_argument( "--no-scale-feature", action="store_true", help="no scale for the calculated features", ) parser.add_argument( "--speech-mask-channel-min-space", type=int, help="min space between spans (if no overlap is enabled)", ) parser.add_argument( "--feature-grad-mult", type=float, help="reset feature grad mult in wav2vec 2.0 to this", ) # positional embeddings parser.add_argument( "--conv-pos", type=int, default=128, help="number of filters for convolutional positional embeddings", ) parser.add_argument( "--conv-pos-groups", type=int, default=16, help="number of groups for convolutional positional embedding", ) # model configures parser.add_argument( "--speech-encoder-layers", type=int, help="number of speech encoder layers", ) parser.add_argument( "--text-encoder-layers", type=int, help="number of text encoder layers", ) def __init__(self, args, alway_mask=False): super().__init__(args) self.args = args self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.feat_scale = math.sqrt(args.encoder_embed_dim) if args.no_scale_feature: self.feat_scale = 1.0 subsample = ConvFeatureExtractionModel( conv_layers=eval(args.conv_feature_layers), dropout=0.0, mode=args.speech_extractor_mode, # default, layer_norm conv_bias=args.speech_conv_bias, ) self.feature_enc_layers = eval(args.conv_feature_layers) self.subsample = subsample self.feat_proj = ( nn.Linear(self.feature_enc_layers[-1][0], self.embedding_dim) if self.feature_enc_layers[-1][0] != self.embedding_dim else None ) self.feat_layer_norm = LayerNorm(self.feature_enc_layers[-1][0]) self.embed_positions = nn.Conv1d( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) std = math.sqrt(4 / (args.conv_pos * self.embedding_dim)) nn.init.normal_(self.embed_positions.weight, mean=0, std=std) nn.init.constant_(self.embed_positions.bias, 0) self.embed_positions = nn.utils.weight_norm( self.embed_positions, name="weight", dim=2 ) self.embed_positions = nn.Sequential( self.embed_positions, SamePad(args.conv_pos), nn.GELU() ) self.mask_prob = args.speech_mask_prob self.mask_selection = args.speech_mask_selection self.mask_other = args.speech_mask_other self.mask_length = args.speech_mask_length self.no_mask_overlap = args.speech_no_mask_overlap self.mask_min_space = args.speech_mask_min_space self.mask_channel_prob = args.speech_mask_channel_prob self.mask_channel_selection = args.speech_mask_channel_selection self.mask_channel_other = args.speech_mask_channel_other self.mask_channel_length = args.speech_mask_channel_length self.no_mask_channel_overlap = args.speech_no_mask_channel_overlap self.mask_channel_min_space = args.speech_mask_channel_min_space self.dropout_input = nn.Dropout(args.dropout_input) self.dropout_features = nn.Dropout(args.dropout_features) self.feature_grad_mult = args.feature_grad_mult self.mask_emb = nn.Parameter( torch.FloatTensor(args.encoder_embed_dim).uniform_() ) self.layers = nn.ModuleList( [TransformerEncoderLayer(args) for _ in range(args.encoder_layers)] ) self.layer_norm = LayerNorm(args.encoder_embed_dim) self.normalize_before = args.encoder_normalize_before self.alway_mask = alway_mask def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): return torch.floor((input_length - kernel_size) / stride + 1) for i in range(len(self.feature_enc_layers)): input_lengths = _conv_out_length( input_lengths, self.feature_enc_layers[i][1], self.feature_enc_layers[i][2], ) return input_lengths.to(torch.long) def apply_mask(self, x, padding_mask): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def forward( self, src_tokens, src_lengths, return_all_hiddens=False, padding_mask=None, features_only=True, ): mask = self.training or self.alway_mask if self.feature_grad_mult > 0 and self.training: features = self.subsample(src_tokens) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.subsample(src_tokens) features = features.transpose(1, 2) features = self.feat_layer_norm(features) if self.feat_proj is not None: features = self.feat_proj(features) if padding_mask is not None: input_lengths = (1 - padding_mask.long()).sum(-1) else: input_lengths = src_lengths # apply conv formula to get real output_lengths output_lengths = self._get_feat_extract_output_lengths(input_lengths) padding_mask = torch.zeros( features.shape[:2], dtype=features.dtype, device=features.device ) # these two operations makes sure that all values # before the output lengths indices are attended to padding_mask[ ( torch.arange(padding_mask.shape[0], device=padding_mask.device), output_lengths - 1, ) ] = 1 padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool() features = self.feat_scale * features if self.feat_scale != 1.0 else features unmasked_features = features.clone() features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) if mask: x, mask_indices = self.apply_mask(features, padding_mask) else: x = features mask_indices = None def cal_transformer_layers(x, encoder_padding_mask, return_all_hiddens=False): # x: B x T x C positions = self.embed_positions(x.transpose(1, 2)).transpose(1, 2) x = x + positions if not self.normalize_before: x = self.layer_norm(x) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] for layer in self.layers: x = layer(x, encoder_padding_mask) if return_all_hiddens: encoder_states.append(x) if self.normalize_before: x = self.layer_norm(x) return x, encoder_states x, encoder_states = cal_transformer_layers(x, padding_mask, return_all_hiddens) if features_only: return { "encoder_out": [x], # [T x B x C] "encoder_padding_mask": [padding_mask] if padding_mask is not None else [], # B x T "encoder_embedding": [], # "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], "mask_indices": [mask_indices], } x_unmasked = x if self.mask_prob > 0 or self.mask_channel_prob > 0: x_unmasked, _ = cal_transformer_layers(unmasked_features, padding_mask) return { "encoder_out": [x], # [T x B x C] "encoder_unmasked_out": [x_unmasked], # [T x B x C] "encoder_padding_mask": [padding_mask] if padding_mask is not None else [], # B x T "encoder_embedding": [], # "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], "mask_indices": [mask_indices] if mask_indices is not None else [], # B X T } def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = ( [] if len(encoder_out["encoder_out"]) == 0 else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]] ) new_encoder_padding_mask = ( [] if len(encoder_out["encoder_padding_mask"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"] ] ) new_encoder_embedding = ( [] if len(encoder_out["encoder_embedding"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_embedding"] ] ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], # B x T "src_lengths": [], # B x 1 } class StackedSpeechWavTransformerEncoder(FairseqEncoder): def __init__(self, speech_enc, text_enc_layers, text_layer_norm): super().__init__(None) self.speech_encoder = speech_enc self.text_encoder_layers = text_enc_layers self.final_layer_norm = text_layer_norm def forward( self, src_tokens, src_lengths=None, return_all_hiddens=False, padding_mask=None, features_only=True, ): out = self.speech_encoder.forward( src_tokens, src_lengths, return_all_hiddens, padding_mask=padding_mask, features_only=features_only, ) x = out["encoder_out"][0] encoder_padding_mask = None if len(out["encoder_padding_mask"]) > 0: encoder_padding_mask = out["encoder_padding_mask"][0] def cal_text_layers(x, padding_mask, return_all_hiddens=False): encoder_states = [] for layer in self.text_encoder_layers: x = layer(x, padding_mask) if return_all_hiddens: encoder_states.append(x) if self.final_layer_norm is not None: x = self.final_layer_norm(x) return x, encoder_states x, encoder_states = cal_text_layers(x, encoder_padding_mask, return_all_hiddens) if features_only: return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask] if encoder_padding_mask is not None else [], # B x T "encoder_embedding": [], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } x_u = out["encoder_unmasked_out"][0] x_u, _ = cal_text_layers(x_u, encoder_padding_mask) return { "encoder_out": [x], # [T x B x C] "encoder_unmasked_out": [x_u], # [T x B x C] "encoder_padding_mask": [encoder_padding_mask] if encoder_padding_mask is not None else [], # B x T "encoder_embedding": [], # "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], "mask_indices": out["mask_indices"], # B X T } def reorder_encoder_out(self, encoder_out, new_order): return self.speech_encoder.reorder_encoder_out(encoder_out, new_order)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/s2t_wav_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from fairseq import checkpoint_utils, utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.models.speech_to_text.modules.convolution import infer_conv_output_dim from fairseq.models.transformer import Embedding, TransformerDecoder from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerEncoderLayer logger = logging.getLogger(__name__) @register_model("convtransformer") class ConvTransformerModel(FairseqEncoderDecoderModel): """ Transformer-based Speech translation model from ESPNet-ST https://arxiv.org/abs/2004.10234 """ def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--input-feat-per-channel", type=int, metavar="N", help="encoder input dimension per input channel", ) parser.add_argument( "--activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--activation-dropout", "--relu-dropout", type=float, metavar="D", help="dropout probability after activation in FFN.", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads", ) parser.add_argument( "--decoder-normalize-before", action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--decoder-output-dim", type=int, metavar="N", help="decoder output dimension (extra linear layer if different from decoder embed dim)", ) parser.add_argument( "--share-decoder-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--layernorm-embedding", action="store_true", help="add layernorm to embedding", ) parser.add_argument( "--no-scale-embedding", action="store_true", help="if True, dont scale embeddings", ) parser.add_argument( "--load-pretrained-encoder-from", type=str, metavar="STR", help="model to take encoder weights from (for initialization)", ) parser.add_argument( "--load-pretrained-decoder-from", type=str, metavar="STR", help="model to take decoder weights from (for initialization)", ) parser.add_argument( "--conv-out-channels", type=int, metavar="INT", help="the number of output channels of conv layer", ) @classmethod def build_encoder(cls, args): encoder = ConvTransformerEncoder(args) if getattr(args, "load_pretrained_encoder_from", None) is not None: encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) return encoder @classmethod def build_decoder(cls, args, task, embed_tokens): decoder = TransformerDecoderNoExtra(args, task.target_dictionary, embed_tokens) if getattr(args, "load_pretrained_decoder_from", None) is not None: decoder = checkpoint_utils.load_pretrained_component_from_model( component=decoder, checkpoint=args.load_pretrained_decoder_from ) return decoder @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() return Embedding(num_embeddings, embed_dim, padding_idx) decoder_embed_tokens = build_embedding( task.target_dictionary, args.decoder_embed_dim ) encoder = cls.build_encoder(args) decoder = cls.build_decoder(args, task, decoder_embed_tokens) return cls(encoder, decoder) @staticmethod @torch.jit.unused def set_batch_first(lprobs): lprobs.batch_first = True def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample) if self.training: self.set_batch_first(lprobs) return lprobs def output_layout(self): return "BTD" """ The forward method inherited from the base class has a **kwargs argument in its input, which is not supported in torchscript. This method overrites the forward method definition without **kwargs. """ def forward(self, src_tokens, src_lengths, prev_output_tokens): encoder_out = self.encoder(src_tokens=src_tokens, src_lengths=src_lengths) decoder_out = self.decoder( prev_output_tokens=prev_output_tokens, encoder_out=encoder_out ) return decoder_out class ConvTransformerEncoder(FairseqEncoder): """Conv + Transformer encoder""" def __init__(self, args): """Construct an Encoder object.""" super().__init__(None) self.dropout = args.dropout self.embed_scale = ( 1.0 if args.no_scale_embedding else math.sqrt(args.encoder_embed_dim) ) self.padding_idx = 1 self.in_channels = 1 self.input_dim = args.input_feat_per_channel self.conv = torch.nn.Sequential( torch.nn.Conv2d(1, args.conv_out_channels, 3, stride=2, padding=3 // 2), torch.nn.ReLU(), torch.nn.Conv2d( args.conv_out_channels, args.conv_out_channels, 3, stride=2, padding=3 // 2, ), torch.nn.ReLU(), ) transformer_input_dim = infer_conv_output_dim( self.in_channels, self.input_dim, args.conv_out_channels ) self.out = torch.nn.Linear(transformer_input_dim, args.encoder_embed_dim) self.embed_positions = PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, self.padding_idx, learned=False, ) self.transformer_layers = nn.ModuleList([]) self.transformer_layers.extend( [TransformerEncoderLayer(args) for i in range(args.encoder_layers)] ) if args.encoder_normalize_before: self.layer_norm = LayerNorm(args.encoder_embed_dim) else: self.layer_norm = None def pooling_ratio(self): return 4 def forward(self, src_tokens, src_lengths): """Encode input sequence. :param torch.Tensor xs: input tensor :param torch.Tensor masks: input mask :return: position embedded tensor and mask :rtype Tuple[torch.Tensor, torch.Tensor]: """ bsz, max_seq_len, _ = src_tokens.size() x = ( src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim) .transpose(1, 2) .contiguous() ) x = self.conv(x) bsz, _, output_seq_len, _ = x.size() x = x.transpose(1, 2).transpose(0, 1).contiguous().view(output_seq_len, bsz, -1) x = self.out(x) x = self.embed_scale * x subsampling_factor = int(max_seq_len * 1.0 / output_seq_len + 0.5) input_len_0 = (src_lengths.float() / subsampling_factor).ceil().long() input_len_1 = x.size(0) * torch.ones([src_lengths.size(0)]).long().to( input_len_0.device ) input_lengths = torch.min(input_len_0, input_len_1) encoder_padding_mask = lengths_to_padding_mask(input_lengths) positions = self.embed_positions(encoder_padding_mask).transpose(0, 1) x += positions x = F.dropout(x, p=self.dropout, training=self.training) for layer in self.transformer_layers: x = layer(x, encoder_padding_mask) if not encoder_padding_mask.any(): maybe_encoder_padding_mask = None else: maybe_encoder_padding_mask = encoder_padding_mask return { "encoder_out": [x], "encoder_padding_mask": [maybe_encoder_padding_mask] if maybe_encoder_padding_mask is not None else [], "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ (encoder_out["encoder_padding_mask"][0]).index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ (encoder_out["encoder_embedding"][0]).index_select(0, new_order) ] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, "encoder_padding_mask": new_encoder_padding_mask, "encoder_embedding": new_encoder_embedding, "encoder_states": encoder_states, "src_tokens": [], "src_lengths": [], } class TransformerDecoderNoExtra(TransformerDecoder): def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): # call scriptable method from parent class x, _ = self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) return x, None @register_model_architecture(model_name="convtransformer", arch_name="convtransformer") def base_architecture(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.max_source_positions = getattr(args, "max_source_positions", 3000) args.max_target_positions = getattr(args, "max_target_positions", 1024) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.conv_out_channels = getattr(args, "conv_out_channels", args.encoder_embed_dim) @register_model_architecture("convtransformer", "convtransformer_espnet") def convtransformer_espnet(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/convtransformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import logging from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn from torch import Tensor from fairseq import checkpoint_utils, utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqEncoderModel, FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.speech_to_speech.modules.ctc_decoder import CTCDecoder from fairseq.models.speech_to_text.hub_interface import S2THubInterface from fairseq.models.transformer import ( Embedding, TransformerDecoder, TransformerModelBase, ) from fairseq.models.wav2vec import Wav2VecEncoder from fairseq.modules.layer_norm import LayerNorm logger = logging.getLogger(__name__) def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() return Embedding(num_embeddings, embed_dim, padding_idx) class Conv1dAdaptor(nn.Module): def __init__( self, in_dim, out_dim, n_layers=3, kernel_size=3, stride=2, layerdrop=0.0, layernorm=False, proj=False, ): super().__init__() self.proj, self.proj_ln = None, None self.post_proj, self.post_proj_ln = None, None if proj: self.proj = nn.Sequential( nn.Linear(in_dim, in_dim * 4), nn.ReLU(), nn.Linear(in_dim * 4, in_dim) ) self.proj_ln = LayerNorm(in_dim) self.post_proj = nn.Sequential( nn.Linear(out_dim, out_dim * 4), nn.ReLU(), nn.Linear(out_dim * 4, out_dim), ) self.post_proj_ln = LayerNorm(out_dim) self.layers = nn.ModuleList( nn.Conv1d( in_dim if i == 0 else out_dim, out_dim * 2, kernel_size, stride=stride, padding=kernel_size // 2, ) for i in range(n_layers) ) self.stride = stride self.layerdrop = layerdrop self.layernorm = LayerNorm(in_dim) if layernorm else None @classmethod def add_args(cls, parser): parser.add_argument("--adaptor-n-layers", type=int) parser.add_argument("--adaptor-kernel-size", type=int) parser.add_argument("--adaptor-stride", type=int) parser.add_argument("--adaptor-layerdrop", type=float) parser.add_argument("--adaptor-layernorm", action="store_true") parser.add_argument("--adaptor-proj", action="store_true") def forward(self, x, padding_mask: Optional[torch.Tensor]): if self.layernorm is not None: x = self.layernorm(x) if self.proj is not None: x = x + 0.5 * self.proj(x) x = self.proj_ln(x) if padding_mask is not None: x = utils.index_put(x, padding_mask.T, 0) # T x B x C -> B x C x T x = x.transpose(0, 1).transpose(1, 2) out_lens = None if padding_mask is not None: out_lens = (~padding_mask).sum(1).float() for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): x = nn.functional.glu(layer(x), dim=1) if padding_mask is not None: out_lens = ((out_lens - 1) / self.stride + 1).floor() # B x C x T -> T x B x C x = x.transpose(1, 2).transpose(0, 1) if self.post_proj is not None: x = x + 0.5 * self.post_proj(x) x = self.post_proj_ln(x) out_padding_mask = None if padding_mask is not None: out_padding_mask = lengths_to_padding_mask(out_lens.long()) x = utils.index_put(x, out_padding_mask.T, 0) return x, out_padding_mask def add_wav2vec_asr_args(parser): parser.add_argument("--w2v-path", help="path to wav2vec 2.0 model") parser.add_argument( "--no-pretrained-weights", action="store_true", help="if true, does not load pretrained weights", ) parser.add_argument( "--dropout-input", type=float, metavar="D", help="dropout to apply to the input (after feat extr)", ) parser.add_argument( "--final-dropout", type=float, metavar="D", help="dropout after transformer and before final projection", ) parser.add_argument( "--apply-mask", action="store_true", help="apply masking during fine-tuning" ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability inside wav2vec 2.0 model", ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights inside wav2vec 2.0 model", ) parser.add_argument( "--activation-dropout", "--relu-dropout", type=float, metavar="D", help="dropout probability after activation in FFN inside wav2vec 2.0 model", ) parser.add_argument( "--mask-length", type=int, help="repeat the mask indices multiple times" ) parser.add_argument( "--mask-prob", type=float, help="probability of replacing a token with mask" ) parser.add_argument( "--mask-selection", type=str, choices=["static", "uniform", "normal", "poisson"], help="how to choose masks", ) parser.add_argument( "--mask-other", type=float, help="stdev of the mask length in case of 'normal' selection strategy", ) parser.add_argument( "--no-mask-overlap", action="store_true", help="whether to allow masks to overlap", ) parser.add_argument( "--mask-channel-length", type=int, help="repeat the mask indices multiple times" ) parser.add_argument( "--mask-channel-prob", type=float, help="probability of replacing a token with mask", ) parser.add_argument( "--mask-channel-selection", type=str, choices=["static", "uniform", "normal", "poisson"], help="how to choose masks", ) parser.add_argument( "--mask-channel-other", type=float, help="stdev of the mask length in case of 'normal' selection strategy", ) parser.add_argument( "--no-mask-channel-overlap", action="store_true", help="whether to allow masks to overlap", ) parser.add_argument( "--freeze-finetune-updates", type=int, metavar="N", help="dont finetune wav2vec for this many updates", ) parser.add_argument( "--feature-grad-mult", type=float, metavar="D", help="reset feature grad mult in wav2vec 2.0 to this", ) parser.add_argument( "--layerdrop", type=float, metavar="D", help="probability of dropping a layer in wav2vec 2.0", ) parser.add_argument( "--max-positions", type=int, metavar="N", help="Max input positions to be used in the conformer encoder in wav2vec 2.0", ) parser.add_argument("--encoder-proj", action="store_true") parser.add_argument("--w2v-args", default=None) parser.add_argument( "--remove-weight-norm", action="store_true", help="if set, then the weight-norm (in one pos_conv layer) is removed from the model", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension to be used when w2v_path is None and no encoder_proj is set", ) def need_finetuning(ft_params, param_name): if ft_params == "all": return True ft_params_list = ft_params.split(",") for ft_param in ft_params_list: if ft_param in param_name: return True return False class Wav2VecEncoderWithAdaptor(FairseqEncoder): def build_adaptor(self, args): adaptor = None if args.adaptor_n_layers > 0: adaptor = Conv1dAdaptor( args.decoder_embed_dim, args.decoder_embed_dim, n_layers=args.adaptor_n_layers, kernel_size=args.adaptor_kernel_size, stride=args.adaptor_stride, layerdrop=args.adaptor_layerdrop, layernorm=args.adaptor_layernorm, proj=args.adaptor_proj, ) return adaptor def __init__(self, args): super().__init__(None) self.w2v_encoder = Wav2VecEncoder(args) self.is_v0_arch = not args.adaptor_proj self.w2v_proj_ln = None if not self.is_v0_arch and self.w2v_encoder.proj is not None: self.w2v_proj_ln = LayerNorm(args.decoder_embed_dim) self.adaptor = self.build_adaptor(args) self.num_updates = 0 self.freezing_updates = args.w2v_freezing_updates self.finetuning_params = args.finetune_w2v_params for k, p in self.w2v_encoder.w2v_model.named_parameters(): p.requires_grad = need_finetuning(self.finetuning_params, k) @classmethod def add_args(cls, parser): """Add model-specific arguments to the parser.""" add_wav2vec_asr_args(parser) parser.add_argument( "--normalize", action="store_true", help="if set, normalizes input to have 0 mean and unit variance", ) parser.add_argument( "--finetune-w2v-params", type=str, metavar="STR", help="comma-separated param strings to finetune.", ) parser.add_argument("--w2v-freezing-updates", type=int) parser.add_argument("--load-pretrained-encoder-from", type=str, metavar="STR") Conv1dAdaptor.add_args(parser) def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, src_tokens, src_lengths=None, **kwargs): if ( self.freezing_updates is not None and self.num_updates > self.freezing_updates ): for p in self.w2v_encoder.w2v_model.parameters(): p.requires_grad = True padding_mask = lengths_to_padding_mask(src_lengths) out = self.w2v_encoder.forward(src_tokens, padding_mask, tbc=True) x, padding_mask = out["encoder_out"], out["padding_mask"] if self.w2v_proj_ln is not None: x = self.w2v_proj_ln(x) if self.adaptor is not None: x, padding_mask = self.adaptor(x, padding_mask) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [] if padding_mask is None else [padding_mask], # B x T "encoder_embedding": [], # B x T x C "encoder_states": [], # List[T x B x C] "src_tokens": [], "src_lengths": [], } def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = ( [] if len(encoder_out["encoder_out"]) == 0 else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]] ) new_encoder_padding_mask = ( [] if len(encoder_out["encoder_padding_mask"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"] ] ) new_encoder_embedding = ( [] if len(encoder_out["encoder_embedding"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_embedding"] ] ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], # B x T "src_lengths": [], # B x 1 } def add_decoder_args(parser): parser.add_argument( "--activation-fn", type=str, default="relu", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--decoder-dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--decoder-attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--decoder-activation-dropout", type=float, metavar="D", help="dropout probability after activation in FFN.", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension" ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads", ) parser.add_argument( "--decoder-normalize-before", action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--layernorm-embedding", action="store_true", help="add layernorm to embedding" ) parser.add_argument( "--decoder-layerdrop", type=float, metavar="D", help="layerdrop probability for decoder", ) parser.add_argument( "--decoder-learned-pos", action="store_true", help="learn positional embedding in decoder", ) parser.add_argument( "--share-decoder-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--no-scale-embedding", action="store_true", help="if True, dont scale embeddings", ) parser.add_argument( "--load-pretrained-decoder-from", type=str, metavar="STR", help="model to take decoder weights from (for initialization)", ) parser.add_argument( "--finetune-decoder-params", type=str, metavar="STR", help="comma-separated param strings to finetune.", ) def remove_weight_norm_from_model(model): from functools import reduce layers_with_wn = [] for param_name, _ in model.named_parameters(): if param_name.endswith("_g"): # retrieve the module with this param_name module_names = param_name.split(".")[ :-1 ] # exclude the actual parameter name wn_module = reduce(getattr, module_names, model) layers_with_wn.append(wn_module) for wn_module in layers_with_wn: torch.nn.utils.remove_weight_norm(wn_module) logger.warning(f"Weight norm removed from module with {wn_module}\n") @register_model("xm_transformer") class XMTransformerModel(FairseqEncoderDecoderModel): @classmethod def hub_models(cls): base_url = "http://dl.fbaipublicfiles.com/fairseq/s2t" model_ids = [ "xm_transformer_600m-es_en-multi_domain", "xm_transformer_600m-ru_en-multi_domain", "xm_transformer_600m-fr_en-multi_domain", "xm_transformer_600m-en_es-multi_domain", "xm_transformer_600m-en_ru-multi_domain", "xm_transformer_600m-en_fr-multi_domain", "xm_transformer_600m-en_zh-multi_domain", "xm_transformer_600m-en_ar-multi_domain", "xm_transformer_600m-en_tr-multi_domain", "xm_transformer_600m-en_vi-multi_domain", "xm_transformer-21_en-xls_r_300m", "xm_transformer-en_15-xls_r_300m", "xm_transformer-21_en-xls_r_1b", "xm_transformer-en_15-xls_r_1b", "xm_transformer-21_en-xls_r_2b", "xm_transformer-en_15-xls_r_2b", "xm_transformer-22_16-xls_r_2b", "xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022", "xm_transformer_s2ut_800m-en-es-st_plus_asr", "xm_transformer_s2ut_800m-hk-en-h1_2022", "xm_transformer_s2ut_800m-en-hk-h1_2022", ] return {i: f"{base_url}/{i}.tar.gz" for i in model_ids} @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", config_yaml="config.yaml", task="speech_to_text", generation_args=None, **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), config_yaml=config_yaml, task=task, generation_args=generation_args, **kwargs, ) return S2THubInterface(x["args"], x["task"], x["models"][0]) def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def add_args(cls, parser): """Add model-specific arguments to the parser.""" Wav2VecEncoderWithAdaptor.add_args(parser) add_decoder_args(parser) parser.add_argument("--checkpoint-activations", action="store_true") parser.add_argument("--offload-activations", action="store_true") parser.add_argument("--min-params-to-wrap", type=int, metavar="N") @classmethod def maybe_load_pretrained(cls, component, checkpoint: Optional[str] = None): if checkpoint is None: return component _load = checkpoint_utils.load_pretrained_component_from_model try: return _load(component, checkpoint) except RuntimeError as e: logger.warning(e) return _load(component, checkpoint, strict=False) @classmethod def build_encoder(cls, args): _args = copy.deepcopy(args) if not args.adaptor_proj and not args.encoder_proj: # V0 arch if args.w2v_path: state = checkpoint_utils.load_checkpoint_to_cpu(args.w2v_path) if state.get("cfg") is not None: encoder_embed_dim = state["cfg"]._content["model"][ "encoder_embed_dim" ] elif state.get("args") is not None: encoder_embed_dim = state["args"].encoder_embed_dim else: raise ValueError(f"Invalid config in {args.w2v_path}") _args.decoder_embed_dim = encoder_embed_dim del state else: _args.decoder_embed_dim = args.encoder_embed_dim encoder = Wav2VecEncoderWithAdaptor(_args) encoder = cls.maybe_load_pretrained( encoder, getattr(args, "load_pretrained_encoder_from", None) ) if args.remove_weight_norm: # remove the wn for EMA usage logger.warning("Removing weight norm from wav2vec encoder") remove_weight_norm_from_model(encoder) return encoder @classmethod def get_decoder_args_from_checkpoint(cls, ckpt_args): assert "model" in ckpt_args, "Model args not found in checkpoint cfg!" decoder_args = {} for k, v in ckpt_args["model"].__dict__.items(): if "decoder" in k: decoder_args[k] = v return decoder_args @classmethod def override_decoder_args(cls, cli_args, decoder_args_dict): for k, v in decoder_args_dict.items(): if v != getattr(cli_args, k, None): logger.warning( f"Overriding decoder arg {k}: from {getattr(cli_args, k, None)} to {v}" ) setattr(cli_args, k, v) return cli_args @classmethod def build_decoder(cls, args, task, embed_tokens): _args = copy.deepcopy(args) if args.adaptor_proj or args.encoder_proj: # not V0 arch _args.encoder_embed_dim = _args.decoder_embed_dim _args.dropout = args.decoder_dropout _args.attention_dropout = args.decoder_attention_dropout _args.activation_dropout = args.decoder_activation_dropout _args.layerdrop = _args.decoder_layerdrop decoder = TransformerDecoder(_args, task.target_dictionary, embed_tokens) decoder = cls.maybe_load_pretrained( decoder, getattr(args, "load_pretrained_decoder_from", None) ) for k, p in decoder.named_parameters(): p.requires_grad = need_finetuning(args.finetune_decoder_params, k) return decoder @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if getattr(args, "load_pretrained_decoder_from", None) is not None: ckpt = torch.load(getattr(args, "load_pretrained_decoder_from", None)) decoder_args_dict = cls.get_decoder_args_from_checkpoint(ckpt["cfg"]) args = cls.override_decoder_args(args, decoder_args_dict) decoder_embed_tokens = build_embedding( task.target_dictionary, args.decoder_embed_dim ) encoder = cls.build_encoder(args) decoder = cls.build_decoder(args, task, decoder_embed_tokens) base_model = cls(encoder, decoder) # set up multitask decoders base_model.multitask_decoders = {} for i, (task_name, task_obj) in enumerate(task.multitask_tasks.items()): # dummy auxiliary decoder if task_obj.args.get_loss_weight(0) == 0: continue task_decoder = cls.build_multitask_decoder( args, task_obj.args, task_obj.target_dictionary, args.decoder_embed_dim ) setattr(base_model, f"{task_name}_decoder", task_decoder) decoder_model_cls = ( FairseqEncoderModel if task_obj.args.decoder_type == "ctc" else FairseqLanguageModel ) base_model.multitask_decoders[task_name] = decoder_model_cls( getattr(base_model, f"{task_name}_decoder") ) return base_model @classmethod def build_multitask_decoder( cls, args, mtl_args, tgt_dict, in_dim, is_first_pass_decoder=False, ): decoder_args = mtl_args.decoder_args decoder_args.encoder_embed_dim = in_dim if mtl_args.decoder_type == "transformer": if is_first_pass_decoder: task_decoder = cls.build_text_decoder(args, tgt_dict) else: from fairseq.models.speech_to_speech import ( base_multitask_text_transformer_decoder_arch, ) base_multitask_text_transformer_decoder_arch(decoder_args) # 2L task_decoder = TransformerDecoder( decoder_args, tgt_dict, embed_tokens=TransformerModelBase.build_embedding( decoder_args, tgt_dict, decoder_args.decoder_embed_dim, ), ) elif mtl_args.decoder_type == "ctc": task_decoder = CTCDecoder( dictionary=tgt_dict, in_dim=in_dim, ) else: raise NotImplementedError( "currently only support multitask decoder_type 'transformer', 'ctc'" ) return task_decoder def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): return self.get_normalized_probs_scriptable(net_output, log_probs, sample) def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens=False, **kwargs, ): """ The forward method inherited from the base class has a **kwargs argument in its input, which is not supported in torchscript. This method overwrites the forward method definition without **kwargs. """ encoder_out = self.encoder( src_tokens=src_tokens, src_lengths=src_lengths, **kwargs ) decoder_out = self.decoder( prev_output_tokens=prev_output_tokens, encoder_out=encoder_out ) if return_all_hiddens: decoder_out[-1]["encoder_states"] = encoder_out["encoder_out"] # NOTE: from the top layer decoder_out[-1]["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ] return decoder_out def upgrade_state_dict(self, state_dict): for k, _ in state_dict.items(): if "adaptor.layers" in state_dict: new = k.replace("adaptor.layers", "adaptor_layers") state_dict[new] = state_dict[k] del state_dict[k] def set_default_w2v_encoder_args(args): args.no_pretrained_weights = getattr(args, "no_pretrained_weights", False) args.dropout_input = getattr(args, "dropout_input", 0) args.final_dropout = getattr(args, "final_dropout", 0) args.apply_mask = getattr(args, "apply_mask", False) args.dropout = getattr(args, "dropout", 0) args.attention_dropout = getattr(args, "attention_dropout", 0) args.activation_dropout = getattr(args, "activation_dropout", 0) args.encoder_proj = getattr(args, "encoder_proj", False) args.remove_weight_norm = getattr(args, "remove_weight_norm", False) args.mask_length = getattr(args, "mask_length", 10) args.mask_prob = getattr(args, "mask_prob", 0.5) args.mask_selection = getattr(args, "mask_selection", "static") args.mask_other = getattr(args, "mask_other", 0) args.no_mask_overlap = getattr(args, "no_mask_overlap", False) args.mask_channel_length = getattr(args, "mask_channel_length", 10) args.mask_channel_prob = getattr(args, "mask_channel_prob", 0.5) args.mask_channel_before = getattr(args, "mask_channel_before", False) args.mask_channel_selection = getattr(args, "mask_channel_selection", "static") args.mask_channel_other = getattr(args, "mask_channel_other", 0) args.no_mask_channel_overlap = getattr(args, "no_mask_channel_overlap", False) args.freeze_finetune_updates = getattr(args, "freeze_finetune_updates", 0) args.feature_grad_mult = 0.1 args.layerdrop = getattr(args, "layerdrop", 0.0) args.normalize = getattr(args, "normalize", False) args.finetune_w2v_params = getattr(args, "finetune_w2v_params", "all") args.w2v_freezing_updates = getattr(args, "w2v_freezing_updates", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) def set_default_adaptor_args(args): args.adaptor_n_layers = getattr(args, "adaptor_n_layers", 3) args.adaptor_kernel_size = getattr(args, "adaptor_kernel_size", 3) args.adaptor_stride = getattr(args, "adaptor_stride", 2) args.adaptor_layerdrop = getattr(args, "adaptor_layerdrop", 0.0) args.adaptor_layernorm = getattr(args, "adaptor_layernorm", False) args.adaptor_proj = getattr(args, "adaptor_proj", False) def set_default_transformer_decoder_args(args): args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4 * 1024) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.adaptive_input = getattr(args, "adaptive_input", False) args.decoder_attention_dropout = getattr(args, "decoder_attention_dropout", 0.0) args.decoder_activation_dropout = getattr(args, "decoder_activation_dropout", 0.0) args.decoder_dropout = getattr(args, "decoder_dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.finetune_decoder_params = getattr(args, "finetune_decoder_params", "all") def set_default_general_args(args): args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) args.min_params_to_wrap = getattr(args, "min_params_to_wrap", int(1e8)) args.max_positions = getattr(args, "max_positions", 3000) @register_model_architecture(model_name="xm_transformer", arch_name="xm_transformer") def base_architecture(args): set_default_general_args(args) set_default_w2v_encoder_args(args) set_default_adaptor_args(args) set_default_transformer_decoder_args(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/xm_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from pathlib import Path import torch from fairseq import checkpoint_utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import FairseqEncoder, register_model, register_model_architecture from fairseq.models.speech_to_text.modules.convolution import ( Conv1dSubsampler, Conv2dSubsampler, ) from fairseq.models.speech_to_text.s2t_transformer import ( S2TTransformerEncoder, S2TTransformerModel, ) from fairseq.models.speech_to_text.s2t_transformer import ( base_architecture as transformer_base_architecture, ) from fairseq.modules import PositionalEmbedding, RelPositionalEncoding from fairseq.modules.conformer_layer import ConformerEncoderLayer logger = logging.getLogger(__name__) class S2TConformerEncoder(FairseqEncoder): """Conformer Encoder for speech translation based on https://arxiv.org/abs/2005.08100""" def __init__(self, args): super().__init__(None) self.encoder_freezing_updates = args.encoder_freezing_updates self.num_updates = 0 self.embed_scale = math.sqrt(args.encoder_embed_dim) if args.no_scale_embedding: self.embed_scale = 1.0 self.padding_idx = 1 self.conv_version = args.conv_version if self.conv_version == "s2t_transformer": self.subsample = Conv1dSubsampler( args.input_feat_per_channel * args.input_channels, args.conv_channels, args.encoder_embed_dim, [int(k) for k in args.conv_kernel_sizes.split(",")], ) elif self.conv_version == "convtransformer": self.subsample = Conv2dSubsampler( args.input_channels, args.input_feat_per_channel, args.conv_out_channels, args.encoder_embed_dim, ) self.pos_enc_type = args.pos_enc_type if self.pos_enc_type == "rel_pos": self.embed_positions = RelPositionalEncoding( args.max_source_positions, args.encoder_embed_dim ) elif self.pos_enc_type == "rope": self.embed_positions = None else: # Use absolute positional embedding self.pos_enc_type = "abs" self.embed_positions = PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, self.padding_idx ) self.linear = torch.nn.Linear(args.encoder_embed_dim, args.encoder_embed_dim) self.dropout = torch.nn.Dropout(args.dropout) self.conformer_layers = torch.nn.ModuleList( [ ConformerEncoderLayer( embed_dim=args.encoder_embed_dim, ffn_embed_dim=args.encoder_ffn_embed_dim, attention_heads=args.encoder_attention_heads, dropout=args.dropout, depthwise_conv_kernel_size=args.depthwise_conv_kernel_size, attn_type=args.attn_type, pos_enc_type=self.pos_enc_type, use_fp16=args.fp16, ) for _ in range(args.encoder_layers) ] ) def _forward(self, src_tokens, src_lengths, return_all_hiddens=False): """ Args: src_tokens: Input source tokens Tensor of shape B X T X C src_lengths: Lengths Tensor corresponding to input source tokens return_all_hiddens: If true will append the self attention states to the encoder states Returns: encoder_out: Tensor of shape B X T X C encoder_padding_mask: Optional Tensor with mask encoder_embedding: Optional Tensor. Always empty here encoder_states: List of Optional Tensors wih self attention states src_tokens: Optional Tensor. Always empty here src_lengths: Optional Tensor. Always empty here """ x, input_lengths = self.subsample(src_tokens, src_lengths) # returns T X B X C encoder_padding_mask = lengths_to_padding_mask(input_lengths) x = self.embed_scale * x if self.pos_enc_type == "rel_pos": positions = self.embed_positions(x) elif self.pos_enc_type == "rope": positions = None else: positions = self.embed_positions(encoder_padding_mask).transpose(0, 1) x += positions positions = None x = self.linear(x) x = self.dropout(x) encoder_states = [] # x is T X B X C for layer in self.conformer_layers: x, _ = layer(x, encoder_padding_mask, positions) if return_all_hiddens: encoder_states.append(x) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask] if encoder_padding_mask.any() else [], # B x T "encoder_embedding": [], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } def forward(self, src_tokens, src_lengths, return_all_hiddens=False): if self.num_updates < self.encoder_freezing_updates: with torch.no_grad(): x = self._forward( src_tokens, src_lengths, return_all_hiddens=return_all_hiddens, ) else: x = self._forward( src_tokens, src_lengths, return_all_hiddens=return_all_hiddens, ) return x def reorder_encoder_out(self, encoder_out, new_order): """Required method for a FairseqEncoder. Calls the method from the parent class""" return S2TTransformerEncoder.reorder_encoder_out(self, encoder_out, new_order) def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self.num_updates = num_updates @register_model("s2t_conformer") class S2TConformerModel(S2TTransformerModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): S2TTransformerModel.add_args(parser) parser.add_argument( "--input-feat-per-channel", type=int, metavar="N", help="dimension of input features per channel", ) parser.add_argument( "--input-channels", type=int, metavar="N", help="number of chennels of input features", ) parser.add_argument( "--depthwise-conv-kernel-size", type=int, metavar="N", help="kernel size of depthwise convolution layers", ) parser.add_argument( "--attn-type", type=str, metavar="STR", help="If not specified uses fairseq MHA. Other valid option is espnet", ) parser.add_argument( "--pos-enc-type", type=str, metavar="STR", help="Must be specified in addition to attn-type=espnet for rel_pos and rope", ) @classmethod def build_encoder(cls, args): encoder = S2TConformerEncoder(args) pretraining_path = getattr(args, "load_pretrained_encoder_from", None) if pretraining_path is not None: if not Path(pretraining_path).exists(): logger.warning( f"skipped pretraining because {pretraining_path} does not exist" ) else: encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=pretraining_path ) logger.info(f"loaded pretrained encoder from: {pretraining_path}") return encoder @register_model_architecture("s2t_conformer", "s2t_conformer") def conformer_base_architecture(args): args.attn_type = getattr(args, "attn_type", None) args.pos_enc_type = getattr(args, "pos_enc_type", "abs") args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.input_channels = getattr(args, "input_channels", 1) args.max_source_positions = getattr(args, "max_source_positions", 6000) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.dropout = getattr(args, "dropout", 0.1) args.encoder_layers = getattr(args, "encoder_layers", 16) args.depthwise_conv_kernel_size = getattr(args, "depthwise_conv_kernel_size", 31) transformer_base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/s2t_conformer.py
#!/usr/bin/env python3 from ast import literal_eval from typing import List, Tuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq import checkpoint_utils, utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) @register_model("s2t_berard") class BerardModel(FairseqEncoderDecoderModel): """Implementation of a model similar to https://arxiv.org/abs/1802.04200 Paper title: End-to-End Automatic Speech Translation of Audiobooks An implementation is available in tensorflow at https://github.com/eske/seq2seq Relevant files in this implementation are the config (https://github.com/eske/seq2seq/blob/master/config/LibriSpeech/AST.yaml) and the model code (https://github.com/eske/seq2seq/blob/master/translate/models.py). The encoder and decoder try to be close to the original implementation. The attention is an MLP as in Bahdanau et al. (https://arxiv.org/abs/1409.0473). There is no state initialization by averaging the encoder outputs. """ def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): parser.add_argument( "--input-layers", type=str, metavar="EXPR", help="List of linear layer dimensions. These " "layers are applied to the input features and " "are followed by tanh and possibly dropout.", ) parser.add_argument( "--dropout", type=float, metavar="D", help="Dropout probability to use in the encoder/decoder. " "Note that this parameters control dropout in various places, " "there is no fine-grained control for dropout for embeddings " "vs LSTM layers for example.", ) parser.add_argument( "--in-channels", type=int, metavar="N", help="Number of encoder input channels. " "Typically value is 1.", ) parser.add_argument( "--conv-layers", type=str, metavar="EXPR", help="List of conv layers " "(format: (channels, kernel, stride)).", ) parser.add_argument( "--num-blstm-layers", type=int, metavar="N", help="Number of encoder bi-LSTM layers.", ) parser.add_argument( "--lstm-size", type=int, metavar="N", help="LSTM hidden size." ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="Embedding dimension of the decoder target tokens.", ) parser.add_argument( "--decoder-hidden-dim", type=int, metavar="N", help="Decoder LSTM hidden dimension.", ) parser.add_argument( "--decoder-num-layers", type=int, metavar="N", help="Number of decoder LSTM layers.", ) parser.add_argument( "--attention-dim", type=int, metavar="N", help="Hidden layer dimension in MLP attention.", ) parser.add_argument( "--output-layer-dim", type=int, metavar="N", help="Hidden layer dim for linear layer prior to output projection.", ) parser.add_argument( "--load-pretrained-encoder-from", type=str, metavar="STR", help="model to take encoder weights from (for initialization)", ) parser.add_argument( "--load-pretrained-decoder-from", type=str, metavar="STR", help="model to take decoder weights from (for initialization)", ) @classmethod def build_encoder(cls, args, task): encoder = BerardEncoder( input_layers=literal_eval(args.input_layers), conv_layers=literal_eval(args.conv_layers), in_channels=args.input_channels, input_feat_per_channel=args.input_feat_per_channel, num_blstm_layers=args.num_blstm_layers, lstm_size=args.lstm_size, dropout=args.dropout, ) if getattr(args, "load_pretrained_encoder_from", None) is not None: encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) return encoder @classmethod def build_decoder(cls, args, task): decoder = LSTMDecoder( dictionary=task.target_dictionary, embed_dim=args.decoder_embed_dim, num_layers=args.decoder_num_layers, hidden_size=args.decoder_hidden_dim, dropout=args.dropout, encoder_output_dim=2 * args.lstm_size, # bidirectional attention_dim=args.attention_dim, output_layer_dim=args.output_layer_dim, ) if getattr(args, "load_pretrained_decoder_from", None) is not None: decoder = checkpoint_utils.load_pretrained_component_from_model( component=decoder, checkpoint=args.load_pretrained_decoder_from ) return decoder @classmethod def build_model(cls, args, task): """Build a new model instance.""" encoder = cls.build_encoder(args, task) decoder = cls.build_decoder(args, task) return cls(encoder, decoder) def get_normalized_probs(self, net_output, log_probs, sample=None): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = super().get_normalized_probs(net_output, log_probs, sample) # lprobs is a (B, T, D) tensor lprobs.batch_first = True return lprobs class BerardEncoder(FairseqEncoder): def __init__( self, input_layers: List[int], conv_layers: List[Tuple[int]], in_channels: int, input_feat_per_channel: int, num_blstm_layers: int, lstm_size: int, dropout: float, ): """ Args: input_layers: list of linear layer dimensions. These layers are applied to the input features and are followed by tanh and possibly dropout. conv_layers: list of conv2d layer configurations. A configuration is a tuple (out_channels, conv_kernel_size, stride). in_channels: number of input channels. input_feat_per_channel: number of input features per channel. These are speech features, typically 40 or 80. num_blstm_layers: number of bidirectional LSTM layers. lstm_size: size of the LSTM hidden (and cell) size. dropout: dropout probability. Dropout can be applied after the linear layers and LSTM layers but not to the convolutional layers. """ super().__init__(None) self.input_layers = nn.ModuleList() in_features = input_feat_per_channel for out_features in input_layers: if dropout > 0: self.input_layers.append( nn.Sequential( nn.Linear(in_features, out_features), nn.Dropout(p=dropout) ) ) else: self.input_layers.append(nn.Linear(in_features, out_features)) in_features = out_features self.in_channels = in_channels self.input_dim = input_feat_per_channel self.conv_kernel_sizes_and_strides = [] self.conv_layers = nn.ModuleList() lstm_input_dim = input_layers[-1] for conv_layer in conv_layers: out_channels, conv_kernel_size, conv_stride = conv_layer self.conv_layers.append( nn.Conv2d( in_channels, out_channels, conv_kernel_size, stride=conv_stride, padding=conv_kernel_size // 2, ) ) self.conv_kernel_sizes_and_strides.append((conv_kernel_size, conv_stride)) in_channels = out_channels lstm_input_dim //= conv_stride lstm_input_dim *= conv_layers[-1][0] self.lstm_size = lstm_size self.num_blstm_layers = num_blstm_layers self.lstm = nn.LSTM( input_size=lstm_input_dim, hidden_size=lstm_size, num_layers=num_blstm_layers, dropout=dropout, bidirectional=True, ) self.output_dim = 2 * lstm_size # bidirectional if dropout > 0: self.dropout = nn.Dropout(p=dropout) else: self.dropout = None def forward(self, src_tokens, src_lengths=None, **kwargs): """ Args src_tokens: padded tensor (B, T, C * feat) src_lengths: tensor of original lengths of input utterances (B,) """ bsz, max_seq_len, _ = src_tokens.size() # (B, C, T, feat) x = ( src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim) .transpose(1, 2) .contiguous() ) for input_layer in self.input_layers: x = input_layer(x) x = torch.tanh(x) for conv_layer in self.conv_layers: x = conv_layer(x) bsz, _, output_seq_len, _ = x.size() # (B, C, T, feat) -> (B, T, C, feat) -> (T, B, C, feat) -> # (T, B, C * feat) x = x.transpose(1, 2).transpose(0, 1).contiguous().view(output_seq_len, bsz, -1) input_lengths = src_lengths.clone() for k, s in self.conv_kernel_sizes_and_strides: p = k // 2 input_lengths = (input_lengths.float() + 2 * p - k) / s + 1 input_lengths = input_lengths.floor().long() packed_x = nn.utils.rnn.pack_padded_sequence(x, input_lengths) h0 = x.new(2 * self.num_blstm_layers, bsz, self.lstm_size).zero_() c0 = x.new(2 * self.num_blstm_layers, bsz, self.lstm_size).zero_() packed_outs, _ = self.lstm(packed_x, (h0, c0)) # unpack outputs and apply dropout x, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_outs) if self.dropout is not None: x = self.dropout(x) encoder_padding_mask = ( lengths_to_padding_mask(output_lengths).to(src_tokens.device).t() ) return { "encoder_out": x, # (T, B, C) "encoder_padding_mask": encoder_padding_mask, # (T, B) } def reorder_encoder_out(self, encoder_out, new_order): encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(1, new_order) return encoder_out class MLPAttention(nn.Module): """The original attention from Badhanau et al. (2014) https://arxiv.org/abs/1409.0473, based on a Multi-Layer Perceptron. The attention score between position i in the encoder and position j in the decoder is: alpha_ij = V_a * tanh(W_ae * enc_i + W_ad * dec_j + b_a) """ def __init__(self, decoder_hidden_state_dim, context_dim, attention_dim): super().__init__() self.context_dim = context_dim self.attention_dim = attention_dim # W_ae and b_a self.encoder_proj = nn.Linear(context_dim, self.attention_dim, bias=True) # W_ad self.decoder_proj = nn.Linear( decoder_hidden_state_dim, self.attention_dim, bias=False ) # V_a self.to_scores = nn.Linear(self.attention_dim, 1, bias=False) def forward(self, decoder_state, source_hids, encoder_padding_mask): """The expected input dimensions are: decoder_state: bsz x decoder_hidden_state_dim source_hids: src_len x bsz x context_dim encoder_padding_mask: src_len x bsz """ src_len, bsz, _ = source_hids.size() # (src_len*bsz) x context_dim (to feed through linear) flat_source_hids = source_hids.view(-1, self.context_dim) # (src_len*bsz) x attention_dim encoder_component = self.encoder_proj(flat_source_hids) # src_len x bsz x attention_dim encoder_component = encoder_component.view(src_len, bsz, self.attention_dim) # 1 x bsz x attention_dim decoder_component = self.decoder_proj(decoder_state).unsqueeze(0) # Sum with broadcasting and apply the non linearity # src_len x bsz x attention_dim hidden_att = torch.tanh( (decoder_component + encoder_component).view(-1, self.attention_dim) ) # Project onto the reals to get attentions scores (src_len x bsz) attn_scores = self.to_scores(hidden_att).view(src_len, bsz) # Mask + softmax (src_len x bsz) if encoder_padding_mask is not None: attn_scores = ( attn_scores.float() .masked_fill_(encoder_padding_mask, float("-inf")) .type_as(attn_scores) ) # FP16 support: cast to float and back # srclen x bsz normalized_masked_attn_scores = F.softmax(attn_scores, dim=0) # Sum weighted sources (bsz x context_dim) attn_weighted_context = ( source_hids * normalized_masked_attn_scores.unsqueeze(2) ).sum(dim=0) return attn_weighted_context, normalized_masked_attn_scores class LSTMDecoder(FairseqIncrementalDecoder): def __init__( self, dictionary, embed_dim, num_layers, hidden_size, dropout, encoder_output_dim, attention_dim, output_layer_dim, ): """ Args: dictionary: target text dictionary. embed_dim: embedding dimension for target tokens. num_layers: number of LSTM layers. hidden_size: hidden size for LSTM layers. dropout: dropout probability. Dropout can be applied to the embeddings, the LSTM layers, and the context vector. encoder_output_dim: encoder output dimension (hidden size of encoder LSTM). attention_dim: attention dimension for MLP attention. output_layer_dim: size of the linear layer prior to output projection. """ super().__init__(dictionary) self.num_layers = num_layers self.hidden_size = hidden_size num_embeddings = len(dictionary) padding_idx = dictionary.pad() self.embed_tokens = nn.Embedding(num_embeddings, embed_dim, padding_idx) if dropout > 0: self.dropout = nn.Dropout(p=dropout) else: self.dropout = None self.layers = nn.ModuleList() for layer_id in range(num_layers): input_size = embed_dim if layer_id == 0 else encoder_output_dim self.layers.append( nn.LSTMCell(input_size=input_size, hidden_size=hidden_size) ) self.context_dim = encoder_output_dim self.attention = MLPAttention( decoder_hidden_state_dim=hidden_size, context_dim=encoder_output_dim, attention_dim=attention_dim, ) self.deep_output_layer = nn.Linear( hidden_size + encoder_output_dim + embed_dim, output_layer_dim ) self.output_projection = nn.Linear(output_layer_dim, num_embeddings) def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): encoder_padding_mask = encoder_out["encoder_padding_mask"] encoder_outs = encoder_out["encoder_out"] if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] bsz, seqlen = prev_output_tokens.size() srclen = encoder_outs.size(0) # embed tokens embeddings = self.embed_tokens(prev_output_tokens) x = embeddings if self.dropout is not None: x = self.dropout(x) # B x T x C -> T x B x C x = x.transpose(0, 1) # initialize previous states (or get from cache during incremental # generation) cached_state = utils.get_incremental_state( self, incremental_state, "cached_state" ) if cached_state is not None: prev_hiddens, prev_cells = cached_state else: prev_hiddens = [encoder_out["encoder_out"].mean(dim=0)] * self.num_layers prev_cells = [x.new_zeros(bsz, self.hidden_size)] * self.num_layers attn_scores = x.new_zeros(bsz, srclen) attention_outs = [] outs = [] for j in range(seqlen): input = x[j, :, :] attention_out = None for i, layer in enumerate(self.layers): # the previous state is one layer below except for the bottom # layer where the previous state is the state emitted by the # top layer hidden, cell = layer( input, ( prev_hiddens[(i - 1) % self.num_layers], prev_cells[(i - 1) % self.num_layers], ), ) if self.dropout is not None: hidden = self.dropout(hidden) prev_hiddens[i] = hidden prev_cells[i] = cell if attention_out is None: attention_out, attn_scores = self.attention( hidden, encoder_outs, encoder_padding_mask ) if self.dropout is not None: attention_out = self.dropout(attention_out) attention_outs.append(attention_out) input = attention_out # collect the output of the top layer outs.append(hidden) # cache previous states (no-op except during incremental generation) utils.set_incremental_state( self, incremental_state, "cached_state", (prev_hiddens, prev_cells) ) # collect outputs across time steps x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size) attention_outs_concat = torch.cat(attention_outs, dim=0).view( seqlen, bsz, self.context_dim ) # T x B x C -> B x T x C x = x.transpose(0, 1) attention_outs_concat = attention_outs_concat.transpose(0, 1) # concat LSTM output, attention output and embedding # before output projection x = torch.cat((x, attention_outs_concat, embeddings), dim=2) x = self.deep_output_layer(x) x = torch.tanh(x) if self.dropout is not None: x = self.dropout(x) # project back to size of vocabulary x = self.output_projection(x) # to return the full attn_scores tensor, we need to fix the decoder # to account for subsampling input frames # return x, attn_scores return x, None def reorder_incremental_state(self, incremental_state, new_order): super().reorder_incremental_state(incremental_state, new_order) cached_state = utils.get_incremental_state( self, incremental_state, "cached_state" ) if cached_state is None: return def reorder_state(state): if isinstance(state, list): return [reorder_state(state_i) for state_i in state] return state.index_select(0, new_order) new_state = tuple(map(reorder_state, cached_state)) utils.set_incremental_state(self, incremental_state, "cached_state", new_state) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard") def berard(args): """The original version: "End-to-End Automatic Speech Translation of Audiobooks" (https://arxiv.org/abs/1802.04200) """ args.input_layers = getattr(args, "input_layers", "[256, 128]") args.conv_layers = getattr(args, "conv_layers", "[(16, 3, 2), (16, 3, 2)]") args.num_blstm_layers = getattr(args, "num_blstm_layers", 3) args.lstm_size = getattr(args, "lstm_size", 256) args.dropout = getattr(args, "dropout", 0.2) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128) args.decoder_num_layers = getattr(args, "decoder_num_layers", 2) args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 512) args.attention_dim = getattr(args, "attention_dim", 512) args.output_layer_dim = getattr(args, "output_layer_dim", 128) args.load_pretrained_encoder_from = getattr( args, "load_pretrained_encoder_from", None ) args.load_pretrained_decoder_from = getattr( args, "load_pretrained_decoder_from", None ) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_256_3_3") def berard_256_3_3(args): """Used in * "Harnessing Indirect Training Data for End-to-End Automatic Speech Translation: Tricks of the Trade" (https://arxiv.org/abs/1909.06515) * "CoVoST: A Diverse Multilingual Speech-To-Text Translation Corpus" (https://arxiv.org/pdf/2002.01320.pdf) * "Self-Supervised Representations Improve End-to-End Speech Translation" (https://arxiv.org/abs/2006.12124) """ args.decoder_num_layers = getattr(args, "decoder_num_layers", 3) berard(args) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_512_3_2") def berard_512_3_2(args): args.num_blstm_layers = getattr(args, "num_blstm_layers", 3) args.lstm_size = getattr(args, "lstm_size", 512) args.dropout = getattr(args, "dropout", 0.3) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_num_layers = getattr(args, "decoder_num_layers", 2) args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 1024) args.attention_dim = getattr(args, "attention_dim", 512) args.output_layer_dim = getattr(args, "output_layer_dim", 256) berard(args) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_512_5_3") def berard_512_5_3(args): args.num_blstm_layers = getattr(args, "num_blstm_layers", 5) args.lstm_size = getattr(args, "lstm_size", 512) args.dropout = getattr(args, "dropout", 0.3) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_num_layers = getattr(args, "decoder_num_layers", 3) args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 1024) args.attention_dim = getattr(args, "attention_dim", 512) args.output_layer_dim = getattr(args, "output_layer_dim", 256) berard(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/berard.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .berard import * # noqa from .convtransformer import * # noqa from .multi_modality_model import * # noqa from .s2t_conformer import * # noqa from .s2t_transformer import * # noqa from .s2t_wav_transformer import * # noqa from .xm_transformer import * # noqa from .xm_transformer_unity import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from pathlib import Path from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn from torch import Tensor from fairseq import checkpoint_utils, utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.models.speech_to_text.hub_interface import S2THubInterface from fairseq.models.speech_to_text.modules.convolution import ( Conv1dSubsampler, Conv2dSubsampler, ) from fairseq.models.transformer import Embedding, TransformerDecoder from fairseq.modules import ( FairseqDropout, LayerNorm, PositionalEmbedding, TransformerEncoderLayer, ) logger = logging.getLogger(__name__) @register_model("s2t_transformer") class S2TTransformerModel(FairseqEncoderDecoderModel): """Adapted Transformer model (https://arxiv.org/abs/1706.03762) for speech-to-text tasks. The Transformer encoder/decoder remains the same. A trainable input subsampler is prepended to the Transformer encoder to project inputs into the encoder dimension as well as downsample input sequence for computational efficiency.""" @classmethod def hub_models(cls): base_url = "http://dl.fbaipublicfiles.com/fairseq/s2t" model_ids = [ "s2t_transformer_s-en-asr-librispeech", "s2t_transformer_m-en-asr-librispeech", "s2t_transformer_l-en-asr-librispeech", ] return {i: f"{base_url}/{i}.tar.gz" for i in model_ids} @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", config_yaml="config.yaml", **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), config_yaml=config_yaml, **kwargs, ) return S2THubInterface(x["args"], x["task"], x["models"][0]) def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # input parser.add_argument( "--conv-kernel-sizes", type=str, metavar="STR", help="kernel sizes of Conv1d (s2t_transformer) subsampling layers", ) parser.add_argument( "--conv-channels", type=int, metavar="N", help="# of channels in Conv1d (s2t_transformer) subsampling layers", ) parser.add_argument( "--conv-out-channels", type=int, metavar="N", help="# of channels in Conv2d (convtransformer) subsampling layers", ) parser.add_argument( "--conv-version", type=str, default="s2t_transformer", choices=["s2t_transformer", "convtransformer"], help="version of frontend convolutional layers", ) # Transformer parser.add_argument( "--activation-fn", type=str, default="relu", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--activation-dropout", "--relu-dropout", type=float, metavar="D", help="dropout probability after activation in FFN.", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads", ) parser.add_argument( "--decoder-normalize-before", action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--share-decoder-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--layernorm-embedding", action="store_true", help="add layernorm to embedding", ) parser.add_argument( "--no-scale-embedding", action="store_true", help="if True, dont scale embeddings", ) parser.add_argument( "--load-pretrained-encoder-from", type=str, metavar="STR", help="model to take encoder weights from (for initialization)", ) parser.add_argument( "--encoder-freezing-updates", type=int, metavar="N", help="freeze encoder for first N updates", ) @classmethod def build_encoder(cls, args): encoder = S2TTransformerEncoder(args) pretraining_path = getattr(args, "load_pretrained_encoder_from", None) if pretraining_path is not None: if not Path(pretraining_path).exists(): logger.warning( f"skipped pretraining because {pretraining_path} does not exist" ) else: encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=pretraining_path ) logger.info(f"loaded pretrained encoder from: {pretraining_path}") return encoder @classmethod def build_decoder(cls, args, task, embed_tokens): return TransformerDecoderScriptable(args, task.target_dictionary, embed_tokens) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() return Embedding(num_embeddings, embed_dim, padding_idx) decoder_embed_tokens = build_embedding( task.target_dictionary, args.decoder_embed_dim ) args.tgt_dict_size = len(task.target_dictionary) encoder = cls.build_encoder(args) decoder = cls.build_decoder(args, task, decoder_embed_tokens) return cls(encoder, decoder) def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample) lprobs.batch_first = True return lprobs def get_ctc_target(self, sample: Optional[Dict[str, Tensor]]): return sample["target"], sample["target_lengths"] def get_ctc_output( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], sample: Optional[Dict[str, Tensor]], ): encoder_out = net_output[1]["encoder_out"]["encoder_out"][0] logits = self.encoder.ctc_proj(encoder_out) # T x B x C out = utils.log_softmax(logits.float(), dim=-1) padding_mask = net_output[1]["encoder_out"]["encoder_padding_mask"] lens = out.new_full((out.shape[1],), out.shape[0]).long() if len(padding_mask) > 0: lens -= padding_mask[0].sum(dim=-1) return out, lens def forward(self, src_tokens, src_lengths, prev_output_tokens): """ The forward method inherited from the base class has a **kwargs argument in its input, which is not supported in torchscript. This method overwrites the forward method definition without **kwargs. """ encoder_out = self.encoder(src_tokens=src_tokens, src_lengths=src_lengths) decoder_out = self.decoder( prev_output_tokens=prev_output_tokens, encoder_out=encoder_out ) return decoder_out class S2TTransformerEncoder(FairseqEncoder): """Speech-to-text Transformer encoder that consists of input subsampler and Transformer encoder.""" def __init__(self, args): super().__init__(None) self.encoder_freezing_updates = args.encoder_freezing_updates self.num_updates = 0 self.dropout_module = FairseqDropout( p=args.dropout, module_name=self.__class__.__name__ ) self.embed_scale = math.sqrt(args.encoder_embed_dim) if args.no_scale_embedding: self.embed_scale = 1.0 self.padding_idx = 1 self.conv_version = args.conv_version if self.conv_version == "s2t_transformer": self.subsample = Conv1dSubsampler( args.input_feat_per_channel * args.input_channels, args.conv_channels, args.encoder_embed_dim, [int(k) for k in args.conv_kernel_sizes.split(",")], ) elif self.conv_version == "convtransformer": self.subsample = Conv2dSubsampler( args.input_channels, args.input_feat_per_channel, args.conv_out_channels, args.encoder_embed_dim, ) self.embed_positions = PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, self.padding_idx ) self.transformer_layers = nn.ModuleList( [TransformerEncoderLayer(args) for _ in range(args.encoder_layers)] ) if args.encoder_normalize_before: self.layer_norm = LayerNorm(args.encoder_embed_dim) else: self.layer_norm = None self.ctc_proj = None if getattr(args, "ctc_weight", 0.0) > 0.0: self.ctc_proj = nn.Linear(args.encoder_embed_dim, args.tgt_dict_size) def _forward(self, src_tokens, src_lengths, return_all_hiddens=False): x, input_lengths = self.subsample(src_tokens, src_lengths) x = self.embed_scale * x encoder_padding_mask = lengths_to_padding_mask(input_lengths) positions = self.embed_positions(encoder_padding_mask).transpose(0, 1) x += positions x = self.dropout_module(x) encoder_states = [] for layer in self.transformer_layers: x = layer(x, encoder_padding_mask) if return_all_hiddens: encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask] if encoder_padding_mask.any() else [], # B x T "encoder_embedding": [], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } def forward(self, src_tokens, src_lengths, return_all_hiddens=False): if self.num_updates < self.encoder_freezing_updates: with torch.no_grad(): x = self._forward( src_tokens, src_lengths, return_all_hiddens=return_all_hiddens ) else: x = self._forward( src_tokens, src_lengths, return_all_hiddens=return_all_hiddens ) return x def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = ( [] if len(encoder_out["encoder_out"]) == 0 else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]] ) new_encoder_padding_mask = ( [] if len(encoder_out["encoder_padding_mask"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"] ] ) new_encoder_embedding = ( [] if len(encoder_out["encoder_embedding"]) == 0 else [ x.index_select(0, new_order) for x in encoder_out["encoder_embedding"] ] ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], # B x T "src_lengths": [], # B x 1 } def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self.num_updates = num_updates class TransformerDecoderScriptable(TransformerDecoder): def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): # call scriptable method from parent class x, _ = self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) extra = {"encoder_out": encoder_out} if incremental_state is None else None return x, extra @register_model_architecture(model_name="s2t_transformer", arch_name="s2t_transformer") def base_architecture(args): args.encoder_freezing_updates = getattr(args, "encoder_freezing_updates", 0) # Convolutional subsampler args.input_channels = getattr(args, "input_channels", 1) args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "5,5") # for Conv1d args.conv_channels = getattr(args, "conv_channels", 1024) # for Conv1d args.conv_out_channels = getattr(args, "conv_out_channels", 256) # for Conv2d args.conv_version = getattr(args, "conv_version", "s2t_transformer") # Transformer args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", args.dropout) args.activation_dropout = getattr(args, "activation_dropout", args.dropout) args.activation_fn = getattr(args, "activation_fn", "relu") args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) @register_model_architecture("s2t_transformer", "s2t_transformer_s") def s2t_transformer_s(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 8) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.dropout = getattr(args, "dropout", 0.1) base_architecture(args) @register_model_architecture("s2t_transformer", "s2t_transformer_xs") def s2t_transformer_xs(args): args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_layers = getattr(args, "decoder_layers", 3) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 4) args.dropout = getattr(args, "dropout", 0.3) s2t_transformer_s(args) @register_model_architecture("s2t_transformer", "s2t_transformer_sp") def s2t_transformer_sp(args): args.encoder_layers = getattr(args, "encoder_layers", 16) s2t_transformer_s(args) @register_model_architecture("s2t_transformer", "s2t_transformer_m") def s2t_transformer_m(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 512 * 4) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.dropout = getattr(args, "dropout", 0.15) base_architecture(args) @register_model_architecture("s2t_transformer", "s2t_transformer_mp") def s2t_transformer_mp(args): args.encoder_layers = getattr(args, "encoder_layers", 16) s2t_transformer_m(args) @register_model_architecture("s2t_transformer", "s2t_transformer_l") def s2t_transformer_l(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024 * 4) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.2) base_architecture(args) @register_model_architecture("s2t_transformer", "s2t_transformer_lp") def s2t_transformer_lp(args): args.encoder_layers = getattr(args, "encoder_layers", 16) s2t_transformer_l(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/s2t_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models import FairseqDecoder, FairseqEncoder # a container for different encoders with training samples from different modality # each time, only one encoder is selected class MultiModalityEncoder(FairseqEncoder): def __init__(self, dictionary): super().__init__(dictionary) def select_encoder(self, mode, **kwargs): raise NotImplementedError("Model must implement the select_encoder method") return None, kwargs # def post_encoder(self, encoder_out, src_tokens, src_lengths, mode, **kwargs): # # Default do nothing # return encoder_out # get sample data from JointSpeechTextDataset def forward(self, src_tokens, src_lengths=None, mode="", **kwargs): encoder, kwargs = self.select_encoder(mode, **kwargs) # return self.post_encoder(encoder(src_tokens, src_lengths, **kwargs), src_tokens, src_lengths, mode, **kwargs) return encoder(src_tokens, src_lengths, **kwargs) # a container for different decoders with training samples from different modality # each time, only one decoder is selected class MultiInputDecoder(FairseqDecoder): def __init__(self, dictionary): super().__init__(dictionary) def select_decoder(self, mode, **kwargs): raise NotImplementedError("Model must implement the select_decoder method") return None, kwargs def forward( self, prev_output_tokens, encoder_out, incremental_state=None, mode="", **kwargs ): decoder, kwargs = self.select_decoder(mode, **kwargs) return decoder( prev_output_tokens, encoder_out, incremental_state=incremental_state, **kwargs )
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/multi_modality_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import logging from fairseq.models import ( FairseqEncoderModel, FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.speech_to_speech.modules.ctc_decoder import CTCDecoder from fairseq.models.speech_to_speech.modules.transformer_encoder import ( TransformerEncoderNoEmb, ) from fairseq.models.speech_to_text.xm_transformer import XMTransformerModel from fairseq.models.speech_to_text.xm_transformer import ( base_architecture as xm_t_base_architecture, ) from fairseq.models.speech_to_text.xm_transformer import ( build_embedding, need_finetuning, set_default_adaptor_args, set_default_general_args, set_default_transformer_decoder_args, set_default_w2v_encoder_args, ) from fairseq.models.transformer import Linear, TransformerDecoder, TransformerModelBase from fairseq.models.transformer.transformer_decoder_aug import AugTransformerDecoder logger = logging.getLogger(__name__) def unit_transformer_decoder_arch_base( args, decoder_layers=6, decoder_embed_dim=768, decoder_attention_heads=12 ): args.encoder_layers = decoder_layers args.decoder_layers = decoder_layers args.decoder_embed_dim = decoder_embed_dim args.decoder_ffn_embed_dim = decoder_embed_dim * 4 args.decoder_attention_heads = decoder_attention_heads args.encoder_embed_dim = args.decoder_embed_dim args.decoder_output_dim = decoder_embed_dim args.decoder_input_dim = decoder_embed_dim def unit_transformer_decoder_arch_large( args, decoder_layers=12, decoder_embed_dim=1024, decoder_attention_heads=16 ): args.encoder_layers = decoder_layers args.decoder_layers = decoder_layers args.decoder_embed_dim = decoder_embed_dim args.decoder_ffn_embed_dim = decoder_embed_dim * 4 args.decoder_attention_heads = decoder_attention_heads args.encoder_embed_dim = args.decoder_embed_dim args.decoder_output_dim = decoder_embed_dim args.decoder_input_dim = decoder_embed_dim @register_model("unity_xm_transformer") class XMTransformerModelUnitY(XMTransformerModel): @classmethod def hub_models(cls): base_url = "http://dl.fbaipublicfiles.com/fairseq/s2t" model_ids = [] return {i: f"{base_url}/{i}.tar.gz" for i in model_ids} def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def add_args(cls, parser): """Add model-specific arguments to the parser.""" XMTransformerModel.add_args(parser) parser.add_argument( "--translation-decoder-layers", type=int, default=4, metavar="N", help="num decoder layers in the first-pass translation module", ) parser.add_argument( "--synthesizer-encoder-layers", type=int, default=0, metavar="N", help="num encoder layers in the second-pass synthesizer module", ) parser.add_argument( "--synthesizer-augmented-cross-attention", action="store_true", default=False, help="augmented cross-attention over speech encoder output", ) parser.add_argument( "--load-pretrained-aux-decoder-from", type=str, metavar="STR", help="model to take decoder weights from (for initialization)", ) @classmethod def build_text_decoder(cls, args, tgt_dict): _args = copy.deepcopy(args) if args.adaptor_proj or args.encoder_proj: # not V0 arch _args.encoder_embed_dim = _args.decoder_embed_dim _args.dropout = args.decoder_dropout _args.attention_dropout = args.decoder_attention_dropout _args.activation_dropout = args.decoder_activation_dropout _args.layerdrop = _args.decoder_layerdrop _args.decoder_layers = _args.translation_decoder_layers embed_tokens = build_embedding(tgt_dict, _args.decoder_embed_dim) decoder = TransformerDecoder(_args, tgt_dict, embed_tokens) if getattr(args, "load_pretrained_aux_decoder_from", None) is not None: decoder = cls.maybe_load_pretrained( decoder, getattr(args, "load_pretrained_aux_decoder_from", None) ) for k, p in decoder.named_parameters(): p.requires_grad = need_finetuning(args.finetune_decoder_params, k) return decoder @classmethod def build_decoder(cls, args, task, aug_attn=False): _args = copy.deepcopy(args) _args.layerdrop = 0.0 # turn off layerdrop for shallow layers _args.encoder_embed_dim = args.decoder_embed_dim proj = None if args.decoder_embed_dim != _args.decoder_embed_dim: proj = Linear(args.decoder_embed_dim, _args.decoder_embed_dim) embed_tokens = build_embedding(task.target_dictionary, _args.decoder_embed_dim) decoder_cls = AugTransformerDecoder if aug_attn else TransformerDecoder decoder = decoder_cls(_args, task.target_dictionary, embed_tokens) if getattr(args, "load_pretrained_decoder_from", None) is not None: # load all layers first and then discard the bottom layers embed_tokens = build_embedding( task.target_dictionary, _args.decoder_embed_dim ) decoder_tmp = decoder_cls(_args, task.target_dictionary, embed_tokens) decoder_tmp = cls.maybe_load_pretrained( decoder_tmp, getattr(_args, "load_pretrained_decoder_from", None) ) state_dict = decoder_tmp.state_dict() for k, p in decoder.named_parameters(): p.data = state_dict[k].data p.requires_grad = need_finetuning(_args.finetune_decoder_params, k) decoder.layers = decoder.layers[-_args.decoder_layers :] return decoder, proj, _args @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models xm_t_base_architecture(args) encoder = cls.build_encoder(args) decoder, proj, unit_args = cls.build_decoder( args, task, aug_attn=getattr(args, "synthesizer_augmented_cross_attention", False), ) base_model = cls(encoder, decoder) setattr(base_model, "proj", proj) base_model.t2u_augmented_cross_attn = getattr( args, "synthesizer_augmented_cross_attention", False ) # set up multitask decoders base_model.mt_task_name = None base_model.multitask_decoders = {} has_first_pass_decoder = False for task_name, task_obj in task.multitask_tasks.items(): if task_obj.is_first_pass_decoder: has_first_pass_decoder = True base_model.mt_task_name = task_name task_decoder = cls.build_multitask_decoder( args, task_obj.args, task_obj.target_dictionary, args.decoder_embed_dim, task_obj.is_first_pass_decoder, ) setattr(base_model, f"{task_name}_decoder", task_decoder) decoder_model_cls = ( FairseqEncoderModel if task_obj.args.decoder_type == "ctc" else FairseqLanguageModel ) base_model.multitask_decoders[task_name] = decoder_model_cls( getattr(base_model, f"{task_name}_decoder") ) assert has_first_pass_decoder, "set at least one intermediate non-CTC decoder" # set up encoder on top of the auxiliary MT decoder if getattr(args, "synthesizer_encoder_layers", 0) > 0: base_model.synthesizer_encoder = cls.build_t2u_encoder(unit_args) else: base_model.synthesizer_encoder = None return base_model @classmethod def build_t2u_encoder(cls, args): _args = copy.deepcopy(args) _args.encoder_layers = _args.synthesizer_encoder_layers _args.encoder_embed_dim = args.decoder_embed_dim _args.encoder_ffn_embed_dim = args.decoder_ffn_embed_dim _args.encoder_attention_heads = args.decoder_attention_heads _args.encoder_normalize_before = True return TransformerEncoderNoEmb(_args) def forward( self, src_tokens, src_lengths, prev_output_tokens, prev_output_tokens_mt, return_all_hiddens=False, tgt_speaker=None, **kwargs, ): """ The forward method inherited from the base class has a **kwargs argument in its input, which is not supported in torchscript. This method overwrites the forward method definition without **kwargs. """ encoder_out = self.encoder( src_tokens=src_tokens, src_lengths=src_lengths, **kwargs ) # 1. MT decoder mt_decoder = getattr(self, f"{self.mt_task_name}_decoder") mt_decoder_out = mt_decoder( prev_output_tokens_mt, encoder_out=encoder_out, ) x = mt_decoder_out[1]["inner_states"][-1] if mt_decoder.layer_norm is not None: x = mt_decoder.layer_norm(x) if self.proj is not None: x = self.proj(x) mt_decoder_padding_mask = None if prev_output_tokens_mt.eq(mt_decoder.padding_idx).any(): mt_decoder_padding_mask = prev_output_tokens_mt.eq(mt_decoder.padding_idx) # 2. T2U encoder if self.synthesizer_encoder is not None: t2u_encoder_out = self.synthesizer_encoder( x, mt_decoder_padding_mask, ) else: t2u_encoder_out = { "encoder_out": [x], # T x B x C "encoder_padding_mask": [mt_decoder_padding_mask], # B x T } # 3. T2U decoder if self.t2u_augmented_cross_attn: decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, encoder_out_aug=t2u_encoder_out, ) else: decoder_out = self.decoder( prev_output_tokens, encoder_out=t2u_encoder_out, ) if return_all_hiddens: decoder_out[-1]["encoder_states"] = encoder_out["encoder_out"] # NOTE: from the top layer decoder_out[-1]["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ] decoder_out[-1]["mt_decoder_out"] = mt_decoder_out return decoder_out @register_model_architecture( model_name="unity_xm_transformer", arch_name="unity_xm_transformer" ) def base_architecture_unity(args): set_default_general_args(args) set_default_w2v_encoder_args(args) set_default_adaptor_args(args) set_default_transformer_decoder_args(args) args.layernorm_embedding = False args.decoder_learned_pos = False # for old models @register_model_architecture( model_name="unity_xm_transformer", arch_name="xm_transformer_t2" ) def base_architecture_unity_legacy(args): base_architecture_unity(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/xm_transformer_unity.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import logging from collections.abc import Iterable from itertools import repeat from typing import List, Optional, Tuple import torch from torch import Tensor # ------------------------------------------------------------------------------ # assert_equal() # ------------------------------------------------------------------------------ def assert_equal(value1, value2, name1=None, name2=None): """Asserts two values are equal otherwise raise an error.""" str_name1 = "" if name1 is None else "{} ".format(name1) str_name2 = "" if name2 is None else "{} ".format(name2) if value1 != value2: str_value1 = "{}" if name1 is None else "({})" str_value1 = str_value1.format(value1) str_value2 = "{}" if name2 is None else "({})" str_value2 = str_value2.format(value2) raise ValueError( "Expected {}{} == {}{}".format(str_name1, str_value1, str_name2, str_value2) ) def fill_config(config, key, value): if value is not None: if key not in config or config[key] is None: config[key] = value assert_equal(value, config[key], "value", f'config["{key}"]') # ------------------------------------------------------------------------------ # check_and_return_expected() # ------------------------------------------------------------------------------ def check_and_return_expected(value, undefined_value, expected_value, name=None): """ Return the expected value while checking if the given value is undefined or equal to the expected value. """ if (undefined_value is None and value is None) or (undefined_value == value): return expected_value if value != expected_value: str_name = "" if name is None else "{} ".format(name) str_value = "{}" if name is None else "({})" str_value = str_value.format(value) raise ValueError( "Expected {}{} == {}".format(str_name, str_value, expected_value) ) return expected_value # ------------------------------------------------------------------------------ # get_time_axis() # ------------------------------------------------------------------------------ def get_time_axis(layout): """ Extract the time axis from the layout, for example for breaking sequence into segments. """ if layout in ["TB", "TBD"]: return 0 if layout in ["BT", "BTD"]: return 1 if layout in ["BCTD"]: return 2 raise ValueError("Unsupported layout = {}".format(layout)) # ------------------------------------------------------------------------------ # get_batch_axis() # ------------------------------------------------------------------------------ def get_batch_axis(layout): """ Extract the batch axis from the layout """ if layout in ["TB", "TBD"]: return 1 if layout in ["BT", "BTD", "BCTD"]: return 0 raise ValueError("Unsupported layout = {}".format(layout)) # ------------------------------------------------------------------------------ # monotonically_increasing_and_bounded() # ------------------------------------------------------------------------------ def monotonically_increasing_and_bounded(iterable, min=None, max=None): """ Check if the elements in the given iterable are monotonically increasing and bounded by upper/lower bounds. """ if not isinstance(iterable, Iterable): raise TypeError( "Expected iterable to be of type Iterable, got ({})".format( iterable.__class__.__name__ ) ) for i in range(len(iterable)): if min is not None and iterable[i] < min: return False if max is not None and iterable[i] > max: return False if i > 0 and iterable[i] <= iterable[i - 1]: return False return True # ------------------------------------------------------------------------------ # to_pair() # ------------------------------------------------------------------------------ def to_pair(value, name): """Make a pair (of type tuple) of given value.""" if isinstance(value, Iterable): if len(value) != 2: raise ValueError( "Expected `{}` to have exactly 2 elements, got: ({})".format( name, value ) ) return value return tuple(repeat(value, 2)) # ------------------------------------------------------------------------------ # infer_conv_output_attrs() # ------------------------------------------------------------------------------ # TODO(cfyeh): figure out if we can get `output_dim` without calling the module. def infer_conv_output_attrs( module, input_channels, input_dim, batch_size=1, max_length=8 ): """Get output attributes of a module with input.""" input = torch.randn(batch_size, input_channels, max_length, input_dim) output = module(input) output_channels = output.shape[1] output_dim = output.shape[-1] return output_channels, output_dim # ------------------------------------------------------------------------------ # NoOp # ------------------------------------------------------------------------------ class NoOp(torch.nn.Module): """ NoOp simply passes the input as the output. """ def __init__(self): super().__init__() def forward(self, input: Tensor) -> Tensor: return input # ------------------------------------------------------------------------------ # Permute: a torch.nn.Module applies permutation on the input tensor. # ------------------------------------------------------------------------------ class Permute(torch.nn.Module): def __init__(self, dims): super().__init__() self.dims = dims def forward(self, input: Tensor) -> Tensor: return input.permute(self.dims).contiguous() # ------------------------------------------------------------------------------ # lengths_to_padding_mask() # ------------------------------------------------------------------------------ def lengths_to_padding_mask(lengths: Tensor) -> Tensor: """Convert lengths of shape (B, ) to padding mask.""" batch_size = lengths.shape[0] max_length = int(torch.max(lengths).item()) padding_mask = torch.arange( # [0, ..., T-1] max_length, device=lengths.device, dtype=lengths.dtype ).expand(batch_size, max_length) >= lengths.unsqueeze(1) return padding_mask # ------------------------------------------------------------------------------ # lengths_to_attention_mask() # ------------------------------------------------------------------------------ def lengths_to_attention_mask( lengths: Tensor, left_context: Optional[int] = None, right_context: Optional[int] = None, ) -> Optional[Tensor]: """ Generate attention mask based on (lengths, left_context, right_context). left_context is None means unlimited left context. right_context is None means unlimited right context. """ if left_context is None and right_context is None: return None max_length = int(torch.max(lengths).item()) # For example, with `max_length` == 5, # indices = tensor([ # [ 0, 1, 2, 3, 4, 5], # [-1, 0, 1, 2, 3, 4], # [-2, -1, 0, 1, 2, 3], # [-3, -2, -1, 0, 1, 2], # [-4, -3, -2, -1, 0, 1], # [-5, -4, -3, -2, -1, 0], # ]) # In some cases the second torch.arange is created on cpu which causes a # failure. Adding the device option to guard against it. indices = torch.arange( max_length, device=lengths.device, dtype=lengths.dtype ).expand(max_length, max_length) - torch.arange( max_length, device=lengths.device ).view( max_length, -1 ) # For example, with `max_length` == 5, # bool_mask = tensor([ # [True, True, True, True, True], # [True, True, True, True, True], # [True, True, True, True, True], # [True, True, True, True, True], # [True, True, True, True, True], # ]) bool_mask = ( torch.tensor([True]).to(device=lengths.device).expand(max_length, max_length) ) # For example, with `max_length` == 5, left_context == 2 # left_mask = tensor([ # [ True, True, True, True, True], # [ True, True, True, True, True], # [ True, True, True, True, True], # [False, True, True, True, True], # [False, False, True, True, True], # ]) if left_context is not None: left_mask = indices >= -left_context bool_mask = bool_mask & left_mask # For example, with `max_length` == 5, right_context == 1 # right_mask = tensor([ # [True, True, False, False, False], # [True, True, True, False, False], # [True, True, True, True, False], # [True, True, True, True, True], # [True, True, True, True, True], # ]) if right_context is not None: right_mask = indices <= right_context bool_mask = bool_mask & right_mask bool_mask = (~bool_mask).to(device=lengths.device) return bool_mask # ------------------------------------------------------------------------------ # infer_output_norm() # ------------------------------------------------------------------------------ def infer_output_norm(module, output_norm=None): """ Infer the output norm (string and module) needed on the module gvien desired output normalization. """ if output_norm == module.output_norm(): # output_norm already matches module.output_norm(). return (None, NoOp()) if output_norm is None and module.output_norm() is not None: logger = logging.getLogger("infer_output_norm()") logger.warning( "trying to set output_norm ({}) ".format(output_norm) + "but got module.output_norm() ({}), ".format(module.output_norm()) + "the combined output_norm() will be ({})".format(module.output_norm()) ) return (None, NoOp()) if output_norm == "log_softmax": if module.output_norm() is not None: raise ValueError( "incompatible output_norm ({}) ".format(output_norm) + "and module.output_norm() ({})".format(module.output_norm()) ) else: return ("log_softmax", torch.nn.LogSoftmax(dim=-1)) if output_norm == "softmax": if module.output_norm() is not None: raise ValueError( "incompatible output_norm ({}) ".format(output_norm) + "and module.output_norm() ({})".format(module.output_norm()) ) else: return ("softmax", torch.nn.Softmax(dim=-1)) raise ValueError( "output_norm ({}) not in ".format(output_norm) + "supported list = [None, softmax, log_softmax]" ) # ------------------------------------------------------------------------------ # infer_channels_from_layout() # ------------------------------------------------------------------------------ def infer_channels_from_layout(layout, channels): """Extract the number of channels from the layout.""" if layout in ("TBD", "BTD"): if channels is not None and channels != 1: raise ValueError( "Expected channels ({}) to be 1 for layout = {}".format( channels, layout ) ) if channels is None: return 1 return channels # ------------------------------------------------------------------------------ # pad_sequence() # ------------------------------------------------------------------------------ @torch.jit.export def pad_sequence( sequence: Tensor, time_axis: int, extra_left_context: int = 0, extra_right_context: int = 0, ) -> Tensor: """Pad extra left/right contexts to the sequence.""" if extra_left_context == 0 and extra_right_context == 0: return sequence tensors_to_concat = [] if extra_left_context: size = (extra_left_context,) fill_value = 0 indices = torch.full( size=size, fill_value=fill_value, dtype=torch.long, device=sequence.device, ) left_padding = torch.index_select(sequence, time_axis, indices) tensors_to_concat.append(left_padding) tensors_to_concat.append(sequence) # NOTE(cfyeh): for efficiency reason we pad 0 instead of the last frame for # extra right contexts. if extra_right_context: size = list(sequence.shape) size[time_axis] = extra_right_context right_padding = torch.zeros(size, dtype=sequence.dtype, device=sequence.device) tensors_to_concat.append(right_padding) padded_sequence = torch.cat(tensors_to_concat, dim=time_axis) return padded_sequence # ------------------------------------------------------------------------------ # sequence_to_segments() # ------------------------------------------------------------------------------ @torch.jit.export def sequence_to_segments( sequence: Tensor, time_axis: int, lengths: Tensor, segment_size: Optional[int] = None, extra_left_context: int = 0, extra_right_context: int = 0, ) -> List[Tuple[Tensor, Tensor]]: """Breaks sequence into segments.""" sequence = pad_sequence( sequence=sequence, time_axis=time_axis, extra_left_context=extra_left_context, extra_right_context=extra_right_context, ) lengths = lengths + extra_left_context + extra_right_context segments: List[Tuple[Tensor, Tensor]] = [] if segment_size is None: segments.append((sequence, lengths)) return segments offset = 0 end = sequence.shape[time_axis] step = segment_size size = extra_left_context + segment_size + extra_right_context while offset + extra_left_context + extra_right_context < end: clamped_size = min(size, end - offset) segment_lengths = torch.clamp(lengths - offset, min=0, max=clamped_size) indices = torch.arange( start=offset, end=(offset + clamped_size), step=1, dtype=torch.long, device=sequence.device, ) segment_tensor = torch.index_select(sequence, time_axis, indices) segments.append((segment_tensor, segment_lengths)) offset = offset + step return segments # ------------------------------------------------------------------------------ # segments_to_sequence() # ------------------------------------------------------------------------------ @torch.jit.export def segments_to_sequence( segments: List[Tuple[Tensor, Tensor]], time_axis: int ) -> Tuple[Tensor, Tensor]: """Concatenate segments into a full sequence.""" if len(segments) == 1: return segments[0] tensors_to_concat: List[Tensor] = [] lengths_to_stack: List[Tensor] = [] for tensor, lengths in segments: tensors_to_concat.append(tensor) lengths_to_stack.append(lengths) sequence = torch.cat(tensors_to_concat, dim=time_axis) lengths = torch.stack(lengths_to_stack, dim=0) lengths = torch.sum(lengths, dim=0) return sequence, lengths def lengths_to_encoder_padding_mask(lengths, batch_first: bool = False): """ convert lengths (a 1-D Long/Int tensor) to 2-D binary tensor Args: lengths: a (B, )-shaped tensor batch_first: whether to return a (B, T) tensor Return: max_length: maximum length of B sequences encoder_padding_mask: a (max_length, B) binary mask, where [t, b] = False for t < lengths[b] and True otherwise TODO: kernelize this function if benchmarking shows this function is slow """ max_lengths = torch.max(lengths).item() bsz = lengths.size(0) encoder_padding_mask = torch.arange( max_lengths ).to( # a (T, ) tensor with [0, ..., T-1] lengths.device ).view( # move to the right device 1, max_lengths ).expand( # reshape to (1, T)-shaped tensor bsz, -1 ) > lengths.view( # expand to (B, T)-shaped tensor bsz, 1 ).expand( -1, max_lengths ) if not batch_first: return encoder_padding_mask.t(), max_lengths else: return encoder_padding_mask, max_lengths # ------------------------------------------------------------------------------ # attention suppression # ------------------------------------------------------------------------------ def attention_suppression(attention_weights: Tensor, scale: float): # B, H, qlen, klen -> B, H, qlen, 1 attention_prob = torch.nn.functional.softmax(attention_weights.float(), dim=-1) attention_nozeros = attention_prob.to(torch.bool) nozeros_sum = torch.sum(attention_nozeros.to(torch.float), dim=-1, keepdim=True) # For very sparse situation, we need get round about 0s key_sum = torch.sum(attention_prob, dim=-1, keepdim=True) # nozeros_sum should > 1 key_mean = key_sum / (nozeros_sum + 1e-8) # std calculation dis = (attention_prob - key_mean) * (attention_prob - key_mean) # if attention_prob[i] < threshold, then dis_masked[i] = 0; for all i dis_masked = torch.where( attention_nozeros, dis, attention_prob.new_zeros(attention_prob.size()) ) key_var = torch.sum(dis_masked, dim=-1, keepdim=True) key_var = key_var / (nozeros_sum - 1.0 + 1e-8) key_std = torch.sqrt(key_var) key_thread = key_mean - scale * key_std # if attention_prob[i] >= key_thread, then attention_prob[i] # , otherwise "-inf" inf_tensor = attention_prob.new_zeros(attention_prob.size()).detach() inf_tensor[:] = float("-inf") attention_weights_float = torch.where( attention_prob < key_thread, inf_tensor, attention_weights.float(), ) return attention_weights_float.type_as(attention_weights) def layer_norm_backward_hook(module, grad_input, grad_output, clamp_value): return tuple(torch.clamp(v, min=-clamp_value, max=clamp_value) for v in grad_input)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from argparse import Namespace from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import fairseq.data.audio.feature_transforms.utterance_cmvn as utt_cmvn from fairseq.data import encoders from fairseq.data.audio.audio_utils import convert_waveform as convert_wav from fairseq.data.audio.audio_utils import get_fbank from fairseq.data.audio.audio_utils import get_waveform as get_wav from fairseq.data.audio.speech_to_text_dataset import SpeechToTextDataset logger = logging.getLogger(__name__) class S2THubInterface(nn.Module): def __init__(self, cfg, task, model): super().__init__() self.cfg = cfg self.task = task self.model = model self.model.eval() self.generator = self.task.build_generator([self.model], self.cfg.generation) @classmethod def get_model_input(cls, task, audio: Union[str, torch.Tensor]): input_type = task.data_cfg.hub.get("input_type", "fbank80") if input_type == "fbank80_w_utt_cmvn": if isinstance(audio, str): feat = utt_cmvn.UtteranceCMVN()(get_fbank(audio)) feat = feat.unsqueeze(0) # T x D -> 1 x T x D else: import torchaudio.compliance.kaldi as kaldi feat = kaldi.fbank(audio, num_mel_bins=80).numpy() # 1 x T x D elif input_type in {"waveform", "standardized_waveform"}: if isinstance(audio, str): feat, sr = get_wav(audio) # C x T feat, _ = convert_wav( feat, sr, to_sample_rate=16_000, to_mono=True ) # C x T -> 1 x T else: feat = audio.numpy() else: raise ValueError(f"Unknown value: input_type = {input_type}") src_lengths = torch.Tensor([feat.shape[1]]).long() src_tokens = torch.from_numpy(feat) # 1 x T (x D) if input_type == "standardized_waveform": with torch.no_grad(): src_tokens = F.layer_norm(src_tokens, src_tokens.shape) return { "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, "prev_output_tokens": None, }, "target_lengths": None, "speaker": None, } @classmethod def detokenize(cls, task, tokens): text = task.tgt_dict.string(tokens) tkn_cfg = task.data_cfg.bpe_tokenizer tokenizer = encoders.build_bpe(Namespace(**tkn_cfg)) return text if tokenizer is None else tokenizer.decode(text) @classmethod def get_prefix_token(cls, task, lang): prefix_size = int(task.data_cfg.prepend_tgt_lang_tag) prefix_tokens = None if prefix_size > 0: assert lang is not None lang_tag = SpeechToTextDataset.get_lang_tag_idx(lang, task.tgt_dict) prefix_tokens = torch.Tensor([lang_tag]).long().unsqueeze(0) return prefix_tokens @classmethod def get_prediction( cls, task, model, generator, sample, tgt_lang=None, synthesize_speech=False ) -> Union[str, Tuple[str, Tuple[torch.Tensor, int]]]: _tgt_lang = tgt_lang or task.data_cfg.hub.get("tgt_lang", None) prefix = cls.get_prefix_token(task, _tgt_lang) pred_tokens = generator.generate([model], sample, prefix_tokens=prefix) pred = cls.detokenize(task, pred_tokens[0][0]["tokens"]) eos_token = task.data_cfg.config.get("eos_token", None) if eos_token: pred = " ".join(pred.split(" ")[:-1]) if synthesize_speech: pfx = f"{_tgt_lang}_" if task.data_cfg.prepend_tgt_lang_tag else "" tts_model_id = task.data_cfg.hub.get(f"{pfx}tts_model_id", None) speaker = task.data_cfg.hub.get(f"{pfx}speaker", None) if tts_model_id is None: logger.warning("TTS model configuration not found") else: _repo, _id = tts_model_id.split(":") tts_model = torch.hub.load(_repo, _id, verbose=False) pred = (pred, tts_model.predict(pred, speaker=speaker)) return pred def predict( self, audio: Union[str, torch.Tensor], tgt_lang: Optional[str] = None, synthesize_speech: bool = False, ) -> Union[str, Tuple[str, Tuple[torch.Tensor, int]]]: # `audio` is either a file path or a 1xT Tensor # return either text or (text, synthetic speech) sample = self.get_model_input(self.task, audio) return self.get_prediction( self.task, self.model, self.generator, sample, tgt_lang=tgt_lang, synthesize_speech=synthesize_speech, )
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch import torch.nn as nn class Conv1dSubsampler(nn.Module): """Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__( self, in_channels: int, mid_channels: int, out_channels: int, kernel_sizes: List[int] = (3, 3), ): super(Conv1dSubsampler, self).__init__() self.n_layers = len(kernel_sizes) self.conv_layers = nn.ModuleList( nn.Conv1d( in_channels if i == 0 else mid_channels // 2, mid_channels if i < self.n_layers - 1 else out_channels * 2, k, stride=2, padding=k // 2, ) for i, k in enumerate(kernel_sizes) ) def get_out_seq_lens_tensor(self, in_seq_lens_tensor): out = in_seq_lens_tensor.clone() for _ in range(self.n_layers): out = ((out.float() - 1) / 2 + 1).floor().long() return out def forward(self, src_tokens, src_lengths): bsz, in_seq_len, _ = src_tokens.size() # B x T x (C x D) x = src_tokens.transpose(1, 2).contiguous() # -> B x (C x D) x T for conv in self.conv_layers: x = conv(x) x = nn.functional.glu(x, dim=1) _, _, out_seq_len = x.size() x = x.transpose(1, 2).transpose(0, 1).contiguous() # -> T x B x (C x D) return x, self.get_out_seq_lens_tensor(src_lengths) def infer_conv_output_dim(in_channels, input_dim, out_channels): sample_seq_len = 200 sample_bsz = 10 x = torch.randn(sample_bsz, in_channels, sample_seq_len, input_dim) x = torch.nn.Conv2d(in_channels, out_channels, 3, stride=2, padding=3 // 2)(x) x = torch.nn.Conv2d(out_channels, out_channels, 3, stride=2, padding=3 // 2)(x) x = x.transpose(1, 2) mb, seq = x.size()[:2] return x.contiguous().view(mb, seq, -1).size(-1) class Conv2dSubsampler(nn.Module): """Convolutional subsampler: a stack of 2D convolution based on ESPnet implementation (https://github.com/espnet/espnet) Args: input_channels (int): the number of input channels input_feat_per_channel (int): encoder input dimension per input channel conv_out_channels (int): the number of output channels of conv layer encoder_embed_dim (int): encoder dimentions """ def __init__( self, input_channels: int, input_feat_per_channel: int, conv_out_channels: int, encoder_embed_dim: int, ): super().__init__() assert input_channels == 1, input_channels self.conv = torch.nn.Sequential( torch.nn.Conv2d( input_channels, conv_out_channels, 3, stride=2, padding=3 // 2 ), torch.nn.ReLU(), torch.nn.Conv2d( conv_out_channels, conv_out_channels, 3, stride=2, padding=3 // 2, ), torch.nn.ReLU(), ) transformer_input_dim = infer_conv_output_dim( input_channels, input_feat_per_channel, conv_out_channels ) self.out = torch.nn.Linear(transformer_input_dim, encoder_embed_dim) def forward(self, src_tokens, src_lengths): B, T_i, C = src_tokens.size() x = src_tokens.view(B, T_i, 1, C).transpose(1, 2).contiguous() x = self.conv(x) B, _, T_o, _ = x.size() x = x.transpose(1, 2).transpose(0, 1).contiguous().view(T_o, B, -1) x = self.out(x) subsampling_factor = int(T_i * 1.0 / T_o + 0.5) input_len_0 = (src_lengths.float() / subsampling_factor).ceil().long() input_len_1 = x.size(0) * torch.ones([src_lengths.size(0)]).long().to( input_len_0.device ) input_lengths = torch.min(input_len_0, input_len_1) return x, input_lengths
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/modules/convolution.py
#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import math import re from functools import partial from typing import List, Optional, Tuple import torch import torch.nn as nn from torch import Tensor from torch import device as Device from fairseq.models import FairseqEncoder from fairseq.models.speech_to_text.utils import ( NoOp, attention_suppression, layer_norm_backward_hook, lengths_to_padding_mask, segments_to_sequence, ) try: import torch.ao.quantization as quantization from torch.ao.quantization.qconfig import ( default_dynamic_qconfig, per_channel_dynamic_qconfig, ) except ImportError: import torch.quantization as quantization from torch.quantization.qconfig import ( default_dynamic_qconfig, per_channel_dynamic_qconfig, ) class RelativePositionEmbedding(nn.Module): """ Implementation according to https://arxiv.org/abs/1803.02155 """ def __init__(self, head_dim, max_position, norm_init=True): super().__init__() self.head_dim = head_dim self.max_position = max_position self.embeddings = nn.Parameter(torch.Tensor(max_position * 2 + 1, head_dim)) if norm_init: nn.init.xavier_normal_(self.embeddings) else: nn.init.xavier_uniform_(self.embeddings) def forward(self, input: Tensor): output = nn.functional.embedding(input.long(), self.embeddings) return output class Fp32LayerNorm(nn.Module): def __init__( self, input_dim, clamp_grad=True, max_grad_value=256, eps=1e-5, elementwise_affine=True, ): super().__init__() self.torch_module = torch.nn.LayerNorm( input_dim, eps=eps, elementwise_affine=elementwise_affine ) if clamp_grad: hook = partial(layer_norm_backward_hook, clamp_value=max_grad_value) self.torch_module.register_backward_hook(hook) def forward(self, input): output = torch.nn.functional.layer_norm( input.float(), self.torch_module.normalized_shape, self.torch_module.weight.float() if self.torch_module.weight is not None else None, self.torch_module.bias.float() if self.torch_module.bias is not None else None, self.torch_module.eps, ).type_as(input) return output # ------------------------------------------------------------------------------ # PositionwiseFF # ------------------------------------------------------------------------------ class PositionwiseFF(nn.Module): """ FFN layer in transformer. Args: input_dim: input embedding dimension ffn_dim: FFN layer inner dimension dropout_on_fc1: dropout for first linear layer dropout_on_fc2: dropout fr second linear layer activation_fn: activation function used after first linear layer. \ Only relu or gelu is supported. """ def __init__( self, input_dim, ffn_dim, dropout_on_fc1, dropout_on_fc2, activation_fn ): super(PositionwiseFF, self).__init__() self.input_dim = input_dim self.ffn_dim = ffn_dim if activation_fn == "relu": ac = nn.ReLU() elif activation_fn == "gelu": ac = nn.GELU() else: raise ValueError("Unsupported activation_fn = ({})".format(activation_fn)) # fc1 -> ac -> dropout -> fc2 -> dropout self.module = nn.Sequential( nn.Linear(input_dim, ffn_dim), ac, nn.Dropout(dropout_on_fc1), nn.Linear(ffn_dim, input_dim), nn.Dropout(dropout_on_fc2), ) self.layer_norm = Fp32LayerNorm(input_dim) def forward(self, input): module_out = self.module(self.layer_norm(input)) output = module_out + input return output def quantize_(self, params=None): if params and "per_channel" in params and params["per_channel"]: qconfig = per_channel_dynamic_qconfig else: qconfig = default_dynamic_qconfig quantization.quantize_dynamic( self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True ) return self # ------------------------------------------------------------------------------ # SummarizationLayer # ------------------------------------------------------------------------------ class SummarizationLayer(nn.Module): def __init__(self, method, segment_size, embedding_dim): super(SummarizationLayer, self).__init__() self.segment_size = segment_size self.embedding_dim = embedding_dim nonlin_match = re.match(r"nonlinear\((?P<act>[a-z]+),(?P<dim>[0-9]+)\)", method) self.method = method if method == "mean": self.module = nn.AvgPool1d( kernel_size=segment_size, stride=segment_size, ceil_mode=True, ) elif method == "max": self.module = nn.MaxPool1d( kernel_size=segment_size, stride=segment_size, ceil_mode=True, ) elif method == "linear": self.module = nn.Linear(segment_size, 1) elif nonlin_match: nonlin_args = nonlin_match.groupdict() act_type = nonlin_args["act"] hid_dim = int(nonlin_args["dim"]) if act_type == "relu": act = nn.ReLU() elif act_type == "gelu": act = nn.GELU() else: raise ValueError("Unsupported activation_fn = ({})".format(act_type)) self.module = nn.Sequential( nn.Linear(segment_size, hid_dim), act, nn.Linear(hid_dim, 1), ) else: raise ValueError("Unsupported summarization method = ({})".format(method)) def forward(self, input): # T, B, D -> B, D, T input = input.permute(1, 2, 0) if self.method == "mean" or self.method == "max": output = self.module(input) output = output.permute(2, 0, 1) return output full_seg_length = input.size(2) // self.segment_size * self.segment_size if full_seg_length > 0: # at least one seg is full B = input.size(0) D = input.size(1) input_todo = ( input[:, :, :full_seg_length] .contiguous() .view(B, -1, self.segment_size) ) output = self.module(input_todo) output = output.view(B, D, -1) else: output = input.new_zeros(input.size(0), input.size(1), 0) left = input.size(2) - full_seg_length if left > 0: # when last seg is not full, use zeros as last memory placeholder zeros = input.new_zeros(input.size(0), input.size(1), 1) output = torch.cat([output, zeros], dim=2) output = output.permute(2, 0, 1) return output # ------------------------------------------------------------------------------ # NoSegAugmentedMemoryMultiheadAttentionBmm # ------------------------------------------------------------------------------ class NoSegAugmentedMemoryMultiheadAttentionBmm(nn.Module): """ Whole utterance augmented memory multihead attention using BMM. Different with previous augmented memory multihead attention where the utterance is chunked into segments. Here we use attention mask achieve so. The input embedding [right_context, utterance, summary] is a concatenation of right context, utterance and summary. Right context block is the concatenation of all the right context for each segments. [right_context_0, right_context_1, ..., right_context_n] For example, if we have utterance = [v0, v1, v2, ...., v20]. segment size 8, right_context size 4. Then the right context blocks = [v8, v9, v10, v11, v16, v17, v18, v19, 0, 0, 0, 0], where v8, v9, v10, and v11 are the right context for first segment. v16, v17, v18 and v19 are the right context for second segment. 0, 0, 0 and 0 are right context for the last segment. utterance is corresponding to input embedding sequence summary is concatenation of average of each segments. [summary_0, summary_1, ..., ]. In augmented memory multihead attention, the query is [right_context, utterance, summary], key is [memory, right_context, utterance]. Different with AugmentedMemoryMultiheadAttentionBmm, memory here is passed from previous attention layer. For the first attention layer, memory is average of each segment. Memory is a concatenation of memory from each segments in previous attention layer. For example, current layer is i, then memory is [m_0, m_1, ..., m_n]. Each m_k is the output from seg_k in layer i-1. args: input_dim: input embedding dimension num_heads: number of heads in multihead self-attention dropout: attention dropout std_scale: if std_scale is not None. The weak attention suppression is turned on. For std_scale = 0.5, all the attention smaller than mean + 0.5 * std will be suppressed. scaled_init: whether to use scaled init for linear weight tanh_on_mem: whether to use tanh on memory output use_mem: whether to use memory or not. When max_memory_size is 0, then we don't have memory anymore. layer_index: current self-attention layer index that is used in depth initialization max_relative_position: max relative position used in relative position embedding rpe_old_option: To be compatible with previous model. The previous model was trained with attention += attention + rpe. The correct equation should be attention = attention + rpe """ def __init__( self, input_dim, num_heads, dropout=0.0, std_scale=None, scaled_init=False, tanh_on_mem=False, use_mem=True, mini_batches=False, negative_inf="-inf", layer_index=-1, max_relative_position=0, rpe_old_option=True, ): if input_dim % num_heads: raise ValueError( "input_dim ({}) must be divisible by num_heads ({})".format( input_dim, num_heads ) ) super().__init__() embed_dim = input_dim self.e2h_kv = torch.nn.Linear(input_dim, 2 * input_dim, bias=True) self.e2h_q = torch.nn.Linear(input_dim, input_dim, bias=True) self.rpe_old_option = rpe_old_option if max_relative_position > 0: self.use_rpe = True self.rpe_k = RelativePositionEmbedding( head_dim=input_dim // num_heads, max_position=max_relative_position, ) self.rpe_v = RelativePositionEmbedding( head_dim=input_dim // num_heads, max_position=max_relative_position, ) else: self.use_rpe = False self.rpe_k = None self.rpe_v = None if scaled_init: if layer_index == -1: gain = 1.0 / math.sqrt(2) else: # https://arxiv.org/abs/2005.09684 depthwise initialization # stablize the training greatly. Use depthwise initialization to # replace incremental loss. gain = 1.0 / math.sqrt(layer_index + 1) torch.nn.init.xavier_uniform_(self.e2h_kv.weight, gain=gain) torch.nn.init.xavier_uniform_(self.e2h_q.weight, gain=gain) self.out_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.scaling = self.head_dim**-0.5 self.std_scale = std_scale self.use_mem = use_mem self.mini_batches = mini_batches self.negative_inf = negative_inf if tanh_on_mem: self.squash_mem = torch.tanh self.nonlinear_squash_mem = True else: self.squash_mem = NoOp() self.nonlinear_squash_mem = False def prepare_qkv( self, input: Tensor, mems: Tensor, lengths: Tensor, summary_length: int, lc_length: int, ): # T: right_context length + utterance_length + summary_length T, B, D = input.shape mem_length = mems.size(0) utterance_length = torch.max(lengths) right_context_blocks_length = T - utterance_length - summary_length rc_block = input[:right_context_blocks_length, :, :] utterance_block = input[right_context_blocks_length : T - summary_length, :, :] if B == 1: padding_mask = None else: klengths = lengths + mem_length + right_context_blocks_length + lc_length padding_mask = lengths_to_padding_mask(lengths=klengths) mem_rc_input = torch.cat([mems, rc_block, utterance_block], dim=0) # In training lc_length = 0 key_length = mem_rc_input.size(0) + lc_length rc_input_sum = input q = self.e2h_q(rc_input_sum) kv = self.e2h_kv(mem_rc_input) k, v = kv.chunk(chunks=2, dim=2) result_qkv = (q, k, v) input_shape = (T, B, D) result_lengths_info = ( mem_length, utterance_length, right_context_blocks_length, key_length, ) if padding_mask is not None: assert padding_mask.size(0) == B assert padding_mask.size(1) == key_length return result_qkv, input_shape, result_lengths_info, padding_mask def prepare_attention_weights( self, q: Tensor, new_k: Tensor, new_v: Tensor, input_shape: Tuple[int, int, int], rpe: Optional[Tensor], ) -> Tuple[Tensor, Tensor, Tensor]: T, B, D = input_shape q = ( q.contiguous().view(-1, B * self.num_heads, self.head_dim).transpose(0, 1) * self.scaling ) k = ( new_k.contiguous() .view(-1, B * self.num_heads, self.head_dim) .transpose(0, 1) ) v = ( new_v.contiguous() .view(-1, B * self.num_heads, self.head_dim) .transpose(0, 1) ) attention_weights = torch.bmm(q, k.transpose(1, 2)) if self.use_rpe and rpe is not None and self.rpe_v is not None: r_k = self.rpe_k(rpe) # [q, B*h, d] * [q, k, d] -> [B*h, q, k] attention_weights_rpe = torch.matmul( q.transpose(0, 1), r_k.transpose(1, 2) ).transpose(0, 1) attention_weights = attention_weights + attention_weights_rpe attention_weights_float = attention_weights.float() return attention_weights, attention_weights_float, v def prepare_attention_output( self, attention_weights: Tensor, attention_weights_float: Tensor, v: Tensor, input_shape: Tuple[int, int, int], key_length: int, padding_mask: Optional[Tensor], rpe: Optional[Tensor], ) -> Tensor: T, B, D = input_shape if padding_mask is not None: attention_weights_float = attention_weights_float.view( B, self.num_heads, T, key_length ) attention_weights_float = attention_weights_float.masked_fill( padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") ) attention_weights_float = attention_weights_float.view( B * self.num_heads, T, key_length ) if self.std_scale is not None: attention_weights_float = attention_suppression( attention_weights_float, self.std_scale ) attention_weights_float = torch.nn.functional.softmax( attention_weights_float, dim=-1 ) attention_weights = attention_weights_float.type_as(attention_weights) attention_probs = torch.nn.functional.dropout( attention_weights, p=self.dropout, training=self.training ) # [T, key_length, B, n_head]+ [key_length, B, n_head, d_head] # -> [T, B, n_head, d_head] attention = torch.bmm(attention_probs, v) if self.use_rpe and rpe is not None and self.rpe_v is not None: r_v = self.rpe_v(rpe) attention_rpe = torch.matmul( attention_probs.transpose(0, 1), r_v ).transpose(0, 1) if self.rpe_old_option: attention += attention + attention_rpe else: attention = attention + attention_rpe assert list(attention.shape) == [B * self.num_heads, T, self.head_dim] attention = attention.transpose(0, 1).contiguous().view(T, B, self.embed_dim) rc_output_memory = self.out_proj(attention) return rc_output_memory @torch.jit.unused def forward( self, input: Tensor, lengths: Tensor, mems: Tensor, attention_mask: Tensor, pre_mems: Optional[Tensor] = None, left_context_key: Optional[Tensor] = None, left_context_val: Optional[Tensor] = None, rpe: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """ forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in training. args: input: formed in the following way [right_context_0, right_contex_1, ..., seg_0, seg_1, ..., summary_0, summary_1,..] lengths: the length of query which is [seg_0, seg_1, ....] mems: [mem_0, mem_1, ...]. attention_mask: attention mask for query = [right_context, query, summary] key = [mem, right_context, query]. This is only used for traing. """ if self.use_mem: mem_length = mems.size(0) summary_length = mem_length + 1 if pre_mems is not None: mems = torch.cat([pre_mems, mems], dim=0) else: mem_length = 0 summary_length = 0 # In training, lc_length = 0 if left_context_key is not None: lc_length = left_context_key.size(0) else: lc_length = 0 results = self.prepare_qkv( input=input, mems=mems, lengths=lengths, summary_length=summary_length, lc_length=lc_length, ) result_qkv, input_shape, result_lengths_info, padding_mask = results q, k, v = result_qkv ( mem_length, utterance_length, right_context_blocks_length, key_length, ) = result_lengths_info if left_context_key is not None: # add the cache key and value new_k = torch.cat( [ k[: mem_length + right_context_blocks_length, :, :], left_context_key, k[-utterance_length:, :, :], ], dim=0, ) new_v = torch.cat( [ v[: mem_length + right_context_blocks_length, :, :], left_context_val, v[-utterance_length:, :, :], ], dim=0, ) next_k = new_k[mem_length + right_context_blocks_length :, :, :] next_v = new_v[mem_length + right_context_blocks_length :, :, :] else: new_k = k new_v = v next_k = None next_v = None attention_weights, attention_weights_float, v = self.prepare_attention_weights( q=q, new_k=new_k, new_v=new_v, input_shape=input_shape, rpe=rpe, ) # mask attention attention_mask = attention_mask.unsqueeze(0) attention_weights_float = attention_weights_float.masked_fill( attention_mask, float(self.negative_inf) ) rc_output_memory = self.prepare_attention_output( attention_weights=attention_weights, attention_weights_float=attention_weights_float, v=v, input_shape=input_shape, key_length=key_length, padding_mask=padding_mask, rpe=rpe, ) if self.use_mem: # next_m length equals to summary length - 1 # last memory is ignored if self.mini_batches: next_m = rc_output_memory[-summary_length:] else: next_m = rc_output_memory[-summary_length:-1] next_m = self.squash_mem(next_m) # rc and output rc_output = rc_output_memory[:-summary_length] if not self.nonlinear_squash_mem: next_m = torch.clamp(next_m, min=-10, max=10) else: next_m = mems rc_output = rc_output_memory return rc_output, next_m, next_k, next_v @torch.jit.export def forward_jit( self, input: Tensor, lengths: Tensor, mems: Tensor, left_context_key: Tensor, left_context_val: Tensor, rpe: Optional[Tensor], ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """ forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in decoding. args: input: formed in the following way [right_context_0, right_contex_1, ..., seg_0, seg_1, ..., summary_0, summary_1,..] lengths: the length of query which is [seg_0, seg_1, ....] mems: [mem_0, mem_1, ...]. left_context_key: left_context for key part. This is only used for online decoding. In training, this is empty tensor left_context_val: left_context for value part. This is only used for online decoding. In training, this is empty tensor """ lc_length = left_context_key.size(0) # In decoding, summary_length = 1 or 0 if self.use_mem: summary_length = 1 else: summary_length = 0 results = self.prepare_qkv( input=input, mems=mems, lengths=lengths, summary_length=summary_length, lc_length=lc_length, ) result_qkv, input_shape, result_lengths_info, padding_mask = results q, k, v = result_qkv ( mem_length, utterance_length, right_context_blocks_length, key_length, ) = result_lengths_info # add the cache key and value new_k = torch.cat( [ k[: mem_length + right_context_blocks_length, :, :], left_context_key, k[-utterance_length:, :, :], ], dim=0, ) new_v = torch.cat( [ v[: mem_length + right_context_blocks_length, :, :], left_context_val, v[-utterance_length:, :, :], ], dim=0, ) next_k = new_k[mem_length + right_context_blocks_length :, :, :] next_v = new_v[mem_length + right_context_blocks_length :, :, :] attention_weights, attention_weights_float, v = self.prepare_attention_weights( q=q, new_k=new_k, new_v=new_v, input_shape=input_shape, rpe=rpe, ) # In online decoding, we don't have attention mask. But we still need # to disable the attention from summary query to memory attention_weights_float[:, -1, :mem_length] = float(self.negative_inf) rc_output_memory = self.prepare_attention_output( attention_weights=attention_weights, attention_weights_float=attention_weights_float, v=v, input_shape=input_shape, key_length=key_length, padding_mask=padding_mask, rpe=rpe, ) # In decoding, summary length is 1 if self.use_mem: next_m = rc_output_memory[-1:] next_m = self.squash_mem(next_m) # rc and output rc_output = rc_output_memory[:-1] if not self.nonlinear_squash_mem: next_m = torch.clamp(next_m, min=-10, max=10) else: rc_output = rc_output_memory # empty tensor as input mems next_m = mems return rc_output, next_m, next_k, next_v def quantize_(self, params=None): if params and "per_channel" in params and params["per_channel"]: qconfig = per_channel_dynamic_qconfig else: qconfig = default_dynamic_qconfig quantization.quantize_dynamic( self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True ) return self class NoSegAugmentedMemoryTransformer(nn.Module): """ Whole utterance augmented memory transformer. This is not pyspeech nn layer. It is used as a module in a master layer where multiple transformers is used. """ def __init__( self, input_dim, num_heads, ffn_dim, dropout_in_attn=0.0, dropout_on_attn=None, dropout_on_fc1=None, dropout_on_fc2=None, activation_fn="relu", tanh_on_mem=False, std_scale=None, scaled_init=False, segment_size=128, use_mem=True, mini_batches=False, negative_inf="-inf", layer_index=-1, summarization_method="mean", max_relative_position=0, rpe_old_option=True, ): super(NoSegAugmentedMemoryTransformer, self).__init__() self.attention = NoSegAugmentedMemoryMultiheadAttentionBmm( input_dim=input_dim, num_heads=num_heads, dropout=dropout_in_attn, scaled_init=scaled_init, tanh_on_mem=tanh_on_mem, std_scale=std_scale, use_mem=use_mem, mini_batches=mini_batches, negative_inf=negative_inf, layer_index=layer_index, max_relative_position=max_relative_position, ) self.dropout = nn.Dropout(dropout_on_attn) self.pos_ff = PositionwiseFF( input_dim=input_dim, ffn_dim=ffn_dim, dropout_on_fc1=dropout_on_fc1, dropout_on_fc2=dropout_on_fc2, activation_fn=activation_fn, ) self.layer_norm_pre = Fp32LayerNorm(input_dim) self.layer_norm = Fp32LayerNorm(input_dim) self.segment_size = segment_size self.use_mem = use_mem self.memory_op = SummarizationLayer( summarization_method, segment_size, input_dim ) def set_mini_batches(self, mini_batches): self.attention.mini_batches = mini_batches def gen_summary_queries(self, input): sum_input = self.memory_op(input) return sum_input def pre_attention_ops(self, input, right_context_blocks): rc_length = right_context_blocks.size(0) input_length = input.size(0) rc_and_input = torch.cat([right_context_blocks, input], dim=0) residual_input = rc_and_input rc_and_input = self.layer_norm_pre(rc_and_input) query_input = rc_and_input[-input_length:, :, :] return rc_length, input_length, residual_input, query_input, rc_and_input def after_attention_ops(self, attention_output, residual_input): output = self.dropout(attention_output) output = output + residual_input output = self.pos_ff(output) output = self.layer_norm(output) return output @torch.jit.export def forward_jit( self, input: Tensor, lengths: Tensor, mems: Tensor, left_context_key: Tensor, left_context_val: Tensor, right_context_blocks: Tensor, rpe: Optional[Tensor], ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: results = self.pre_attention_ops(input, right_context_blocks) rc_length, input_length, residual_input, query_input, rc_and_input = results # In online decoding, the summary query size is always 1 or 0 if self.use_mem: summary_query = self.gen_summary_queries(query_input) summary_query = summary_query[0:1, :, :] rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0) else: rc_qu_su = rc_and_input rc_output, next_m, next_k, next_v = self.attention.forward_jit( input=rc_qu_su, lengths=lengths, mems=mems, left_context_key=left_context_key, left_context_val=left_context_val, rpe=rpe, ) rc_output = self.after_attention_ops(rc_output, residual_input) results = ( rc_output[-input_length:, :, :], next_m, rc_output[0:rc_length, :, :], next_k, next_v, ) return results @torch.jit.unused def forward( self, input, lengths, mems, right_context_blocks, attention_mask, pre_mems, left_context_key, left_context_val, rpe, ): results = self.pre_attention_ops(input, right_context_blocks) rc_length, input_length, residual_input, query_input, rc_and_input = results if self.use_mem: summary_query = self.gen_summary_queries(query_input) rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0) else: rc_qu_su = rc_and_input rc_output, next_m, next_k, next_v = self.attention( input=rc_qu_su, lengths=lengths, mems=mems, attention_mask=attention_mask, pre_mems=pre_mems, left_context_key=left_context_key, left_context_val=left_context_val, rpe=rpe, ) # [TODO] Note memory did not go through pos_ff. What happen if we pass # memory through the pos_ff as well? rc_output = self.after_attention_ops(rc_output, residual_input) results = ( rc_output[-input_length:, :, :], next_m, rc_output[0:rc_length, :, :], next_k, next_v, ) return results class NoSegAugmentedMemoryTransformerEncoderLayer(FairseqEncoder): """ Whole utterance augmented memory transformer encoder layer. This is a master layer where we can define multiple augmented memory transformers. There are two reasons to setup the master layer. 1. We only need to define once about the attention mask. All the layers in the master layer share the same mask. 2. pyspeech nn layer has special input and output format. Defining one master layer is easier to passing memory between different layes inside the master layer args: input_dim: input embedding dimension num_heads: number of heads in multihead self-attention ffn_dim: ffn dimension in FFN layer num_layers: number of augmented memory transformer layers dropout_in_attn: dropout used in multi-head self-attention dropout_on_attn: dropout used for output from te multihead self-attention dropout_on_fc1: dropout used in FFN layer for the first linear layer dropout_on_fc2: dropout used in FFN layer for the second linear layer segment_size: segment size for each segment context_config: (left_context_size, right_context_size) defines the surround context size for each segment max_memory_size: maximum memory size used for each segment scaled_init: whether use scaled init for weight initialization in attention layer std_scale: if std_scale is not None. The weak attention suppression is turned on. For std_scale = 0.5, all the attention smaller than mean + 0.5 * std will be suppressed. activation_fn: activation function used in FFN layer. [ReLU, GELU] supported tanh_on_mem: whether use tanh on memory mini_batches: use mini-btach training negative_inf: the negative infinity value used in attention masking. default is "-inf". For some situation, e.g. LM. it is better to use "-1e8" to avoid nan issue. summarization_method: method to generate segment summrization embedding max_relative_position: max relatie position for relative position embedding rpe_old_option: To be compatible with previous model. The previous model was trained with attention += attention + rpe. The correct equation should be attention = attention + rpe [TODO]: remove the rpe_old_option by the end of 2021 Q1. """ def __init__( self, input_dim, num_heads, ffn_dim, num_layers=1, dropout_in_attn=0.0, dropout_on_attn=0.0, dropout_on_fc1=0.0, dropout_on_fc2=0.0, segment_size=128, context_config=(0, 0), max_memory_size=0, scaled_init=True, std_scale=None, activation_fn="relu", tanh_on_mem=False, mini_batches=False, negative_inf="-inf", deep_init=True, summarization_method="mean", max_relative_position=0, rpe_old_option=True, ): super().__init__(None) if input_dim % num_heads: raise ValueError( "input_dim ({}) must be divisible by num_heads ({})".format( input_dim, num_heads ) ) # we used to support growing memory size. However, it will cause # cross stream batching failure. Now we need to have exact max memory size if max_memory_size < 0: raise ValueError("max_memory_size must be >= 0") # Only assign right_context. In decoding, left context will be cached. # No need to let the online decoder to re-assign the left context self.left_context, self.right_context = context_config self.segment_size = segment_size self.memory_dim = input_dim self.max_memory_size = max_memory_size self.mini_batches = mini_batches if self.max_memory_size != 0: self.use_mem = True else: self.use_mem = False self.memory_op = SummarizationLayer( summarization_method, segment_size, input_dim ) self.layers = torch.nn.ModuleList() self.num_layers = num_layers self.max_relative_position = max_relative_position if self.max_relative_position > 0: self.use_rpe = True else: self.use_rpe = False for i in range(self.num_layers): if deep_init: layer_index = i else: layer_index = -1 self.layers.append( NoSegAugmentedMemoryTransformer( num_heads=num_heads, input_dim=input_dim, ffn_dim=ffn_dim, dropout_in_attn=dropout_in_attn, dropout_on_attn=dropout_on_attn, dropout_on_fc1=dropout_on_fc1, dropout_on_fc2=dropout_on_fc2, segment_size=segment_size, std_scale=std_scale, activation_fn=activation_fn, tanh_on_mem=tanh_on_mem, scaled_init=scaled_init, use_mem=self.use_mem, mini_batches=mini_batches, negative_inf=negative_inf, layer_index=layer_index, summarization_method=summarization_method, max_relative_position=max_relative_position, rpe_old_option=rpe_old_option, ) ) def set_mini_batches(self, mini_batches): # handy function only used for unit test self.mini_batches = mini_batches for layer in self.layers: layer.set_mini_batches(mini_batches) def _get_relative_position( self, input: Tensor, max_relative_position: int, left_context_length: int, past_length: int, is_decoding: bool, ): # For training, we copy the right context to the start of the utterance # First dimension in distance is corresponding to query. # [right context, utterance, summary vector] # Second dimension in distance is corresponding to key. # [Memory bank, right context, utterance] # For summary vector in query part, the distance with # all other position is 2*max_position. For memory bank in key, # the distance with all other positions is 0. T, B, D = input.shape num_segs = math.ceil((T - self.right_context) / self.segment_size) # utterance u_st = past_length * self.segment_size u_ed = u_st + T utterance_ranges = torch.arange(u_st, u_ed - self.right_context) # left context. Only in minibatch or decoding left_context_ranges = torch.arange(u_st - left_context_length, u_st) # Right context block # right context + utterance right_context_blocks = [] for i in range(0, num_segs - 1): st = (i + 1) * self.segment_size + u_st ed = st + self.right_context assert ed < u_ed temp = torch.arange(st, ed) right_context_blocks.append(temp) right_context_blocks.append(torch.arange(u_ed - self.right_context, u_ed)) right_context_ranges = torch.cat(right_context_blocks) if self.use_mem: # Memory bank # The position for memory -n, .., -1 if is_decoding: memory_size = min(past_length, self.max_memory_size) else: memory_size = num_segs + past_length - 1 memory_bank_ranges = torch.arange( -max_relative_position - 1, -max_relative_position - 1 - memory_size, -1 ) # summary vector # The position for summary vector as the T+max_relative_position+1. # After the clamping, the relative position is max_relative_position summary_pos_st = u_ed + max_relative_position + 1 summary_vector_ranges = torch.arange( summary_pos_st, summary_pos_st + num_segs ) key_ranges = torch.cat( [ memory_bank_ranges, right_context_ranges, left_context_ranges, utterance_ranges, ] ) query_ranges = torch.cat( [right_context_ranges, utterance_ranges, summary_vector_ranges] ) else: key_ranges = torch.cat( [right_context_ranges, left_context_ranges, utterance_ranges] ) query_ranges = torch.cat([right_context_ranges, utterance_ranges]) distance = key_ranges[None, :] - query_ranges[:, None] distance_clamp = ( torch.clamp(distance, -max_relative_position, max_relative_position) + max_relative_position ) distance_clamp = distance_clamp.to(input.device).long().detach() return distance_clamp def _get_attention_mask(self, input, past_length=0, left_context_cache=0): # attention mask for each query contains three parts: # 1. memory part # 2. left_context + segment # 3. right_context_block # so for each segment and its correspoinding right context block, # the attention matrix is formed by 9 parts: # [0, m, 0, 0, right_context, 0, 0, seg, 0] # [before memory, memory, after memory, before right context, right_context, # after right context, before seg, seg, after seg] # # Query is formed in the way as [right_context_blocks, utterance, summary] # # Note: put m and right_context before segment is convenient # for padding_mask operation. # Key lengths = m_length + right_context_block_length + lengths utterance_length, batch_size, _ = input.shape summary_length = math.ceil(utterance_length / self.segment_size) num_segs = summary_length rc_length = self.right_context * num_segs rc = self.right_context lc = self.left_context # using mini-batches, there is left context cache available for current # sequence. lcc = left_context_cache # max_memory_size is 0 then we don't have memory and summary # past_length is the memory carry from previous sequence if self.use_mem: mem_length = num_segs - 1 + past_length else: mem_length = 0 rc_mask = [] query_mask = [] summary_mask = [] for j in range(0, num_segs): ssize = min(self.segment_size, utterance_length - j * self.segment_size) rc_size = rc rc_mat = [] q_mat = [] s_mat = [] m_start = max(j + past_length - self.max_memory_size, 0) # max_memory_size is 0, then we don't use memory if self.use_mem: # part 0: before memory rc_mat.append(input.new_zeros(rc_size, m_start)) q_mat.append(input.new_zeros(ssize, m_start)) s_mat.append(input.new_zeros(1, m_start)) # part 1: memory col_1 = j + past_length - m_start rc_mat.append(torch.ones(rc_size, col_1, device=input.device)) q_mat.append(torch.ones(ssize, col_1, device=input.device)) # based on D22875746, disable summary query attention # on memeory is better for long form utterance s_mat.append(input.new_zeros(1, col_1)) # part 2: after memory col_2 = mem_length - (j + past_length) rc_mat.append(input.new_zeros(rc_size, col_2)) q_mat.append(input.new_zeros(ssize, col_2)) s_mat.append(input.new_zeros(1, col_2)) # part 3: before right context rc_start = j * rc rc_mat.append(input.new_zeros(rc_size, rc_start)) q_mat.append(input.new_zeros(ssize, rc_start)) s_mat.append(input.new_zeros(1, rc_start)) # part 4: right context rc_end = rc_start + rc col_4 = rc rc_mat.append(torch.ones(rc_size, col_4, device=input.device)) q_mat.append(torch.ones(ssize, col_4, device=input.device)) s_mat.append(torch.ones(1, col_4, device=input.device)) # part 5: after right context col_5 = rc_length - rc_end rc_mat.append(input.new_zeros(rc_size, col_5)) q_mat.append(input.new_zeros(ssize, col_5)) s_mat.append(input.new_zeros(1, col_5)) # part 6: before query segment seg_start = max(j * self.segment_size + lcc - lc, 0) rc_mat.append(input.new_zeros(rc_size, seg_start)) q_mat.append(input.new_zeros(ssize, seg_start)) s_mat.append(input.new_zeros(1, seg_start)) # part 7: query segment # note: right context is put in right context block # here we only need to consider about left context seg_end = min((j + 1) * self.segment_size + lcc, utterance_length + lcc) col_7 = seg_end - seg_start rc_mat.append(torch.ones(rc_size, col_7, device=input.device)) q_mat.append(torch.ones(ssize, col_7, device=input.device)) s_mat.append(torch.ones(1, col_7, device=input.device)) # part 8: after query segment col_8 = utterance_length + lcc - seg_end rc_mat.append(input.new_zeros(rc_size, col_8)) q_mat.append(input.new_zeros(ssize, col_8)) s_mat.append(input.new_zeros(1, col_8)) rc_mask.append(torch.cat(rc_mat, dim=1)) query_mask.append(torch.cat(q_mat, dim=1)) summary_mask.append(torch.cat(s_mat, dim=1)) # no memory, then we don't need summary either if self.use_mem: attention_mask = ( 1 - torch.cat( [ torch.cat(rc_mask, dim=0), torch.cat(query_mask, dim=0), torch.cat(summary_mask, dim=0), ], dim=0, ) ).to(torch.bool) else: attention_mask = ( 1 - torch.cat( [torch.cat(rc_mask, dim=0), torch.cat(query_mask, dim=0)], dim=0 ) ).to(torch.bool) return attention_mask @torch.jit.export def init_state( self, batch_size: int, device: Optional[Device] = None ) -> List[Tensor]: empty_memory = torch.zeros( self.num_layers, self.max_memory_size, batch_size, self.memory_dim, device=device, ) left_context_key = torch.zeros( self.num_layers, self.left_context, batch_size, self.memory_dim, device=device, ) left_context_val = torch.zeros( self.num_layers, self.left_context, batch_size, self.memory_dim, device=device, ) past_length = torch.zeros(1, batch_size, dtype=torch.int32, device=device) return [empty_memory, left_context_key, left_context_val, past_length] @torch.jit.export def batch_state(self, states: List[List[Tensor]]) -> List[Tensor]: if len(states) == 0: return [] batched_m = [] batched_lc_key = [] batched_lc_val = [] batched_past_length = [] for state in states: if len(state) == 0: continue m, lc_key, lc_val, past_length = state batched_m.append(m) batched_lc_key.append(lc_key) batched_lc_val.append(lc_val) batched_past_length.append(past_length) if ( (len(batched_m) == 0) or (len(batched_lc_key) == 0) or (len(batched_lc_val) == 0) or (len(batched_past_length) == 0) ): return [ torch.tensor([]), torch.tensor([]), torch.tensor([]), torch.tensor([]), ] batched_m = torch.cat(batched_m, dim=2) batched_lc_key = torch.cat(batched_lc_key, dim=2) batched_lc_val = torch.cat(batched_lc_val, dim=2) batched_past_length = torch.cat(batched_past_length, dim=1) return [batched_m, batched_lc_key, batched_lc_val, batched_past_length] @torch.jit.export def reorder_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]: if len(state) == 0: return [] m, lc_key, lc_val, past_length = state indices = indices.to(device=m.device) reord_m = torch.index_select(m, 2, indices) reord_lc_key = torch.index_select(lc_key, 2, indices) reord_lc_val = torch.index_select(lc_val, 2, indices) reord_past_length = torch.index_select(past_length, 1, indices) return [reord_m, reord_lc_key, reord_lc_val, reord_past_length] @torch.jit.export def reset_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]: m, lc_key, lc_val, past_length = state m = m.index_fill(dim=2, index=indices, value=0.0) lc_key = lc_key.index_fill(dim=2, index=indices, value=0.0) lc_val = lc_val.index_fill(dim=2, index=indices, value=0.0) past_length = past_length.index_fill(dim=1, index=indices, value=0) return [m, lc_key, lc_val, past_length] @torch.jit.export def state_size(self) -> int: return 4 @torch.jit.export def batch_size_in_state( self, state: Optional[List[Tensor]], sloppy: bool = True ) -> Optional[int]: if state is None: return None return state[0].size(2) def gen_summary_queries(self, input): sum_input = self.memory_op(input) return sum_input def _gen_right_context_padded_input(self, input): # This function deals with input that is already # padded with right context (e.g. minibatch training) right_context_blocks = [] T, B, D = input.shape num_segs = math.ceil((T - self.right_context) / self.segment_size) for i in range(0, num_segs - 1): st = (i + 1) * self.segment_size ed = st + self.right_context assert ed < T temp = input[st:ed, :, :] right_context_blocks.append(temp) # last segment right context is already available right_context_blocks.append(input[T - self.right_context :, :, :]) return torch.cat(right_context_blocks, dim=0) def _gen_segs_right_context(self, input, lengths): segments = [] T, B, D = input.size() nT = T - self.right_context # assume input is right context padded num_segs = math.ceil(nT / self.segment_size) # pad zeros to the utterance to make sure each # segment has the same right context. For the for i in range(0, num_segs - 1): st = i * self.segment_size ed = min(T, st + self.segment_size + self.right_context) temp = input[st:ed, :, :] rest_lengths = torch.clamp( lengths - self.segment_size, min=0, max=nT - (i + 1) * self.segment_size ) segments.append((temp, lengths - rest_lengths + self.right_context)) lengths = rest_lengths last_seg = input[st + self.segment_size :, :, :] segments.append((last_seg, rest_lengths + self.right_context)) return segments @torch.jit.unused def forward( self, input: Tensor, padding_masks: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]: # Xutai: originally the second argument is lengths. lengths = (~padding_masks).sum(dim=1).long() # mini batch training. if self.mini_batches: return self.forward_mini_batches(input, lengths, state) # regular full sequence training. Note, assume the right context in provided # in the input. T, B, D = input.size() right_context_blocks = self._gen_right_context_padded_input(input) # generate the relative positional embedding if self.use_rpe: rpe = self._get_relative_position( input=input, max_relative_position=self.max_relative_position, left_context_length=0, past_length=0, is_decoding=False, ) else: rpe = None input = input[: T - self.right_context, :, :] attention_mask = self._get_attention_mask(input) # firt layer use each segment mean as memory # ignore the last one seg average if self.use_mem: mems = self.gen_summary_queries(input)[:-1, :, :] else: mems = torch.zeros(0, input.size(1), input.size(2), device=input.device) mems = mems.type_as(input) output = input all_outputs = [] for layer in self.layers: output, mems, right_context_blocks, _, _ = layer( input=output, lengths=lengths, attention_mask=attention_mask, mems=mems, right_context_blocks=right_context_blocks, pre_mems=None, left_context_key=None, left_context_val=None, rpe=rpe, ) all_outputs.append(output) return output, padding_masks, [], all_outputs def forward_jit_mini_batch_init( self, seg: Tensor, state: Optional[List[Tensor]] = None, is_decoding: bool = False, ): # Prepare state. In whole sequence training, state is ignored. # For minibatch training, we need to prepare state if state is None: state = self.init_state(batch_size=seg.size(1), device=seg.device) if seg.dtype == torch.half: state = [state[0].half(), state[1].half(), state[2].half(), state[3]] if self.use_mem: # note input average only on seg, not on right context # first layer use each segmetn mean as memory. the last # one segment average is used in state full_mems = self.gen_summary_queries(seg) if is_decoding: mems = full_mems[0:1, :, :] state_mems = torch.cat([state[0][0], mems], dim=0) else: mems = full_mems[:-1, :, :] state_mems = torch.cat([state[0][0], full_mems], dim=0) else: mems = state[0][0] state_mems = mems # track processed segment number or memory number # the same batch as the same bumber of past length past_length = state[3][0][0].item() past_left_context = min(past_length * self.segment_size, self.left_context) past_length = min(self.max_memory_size, past_length) return state, mems, state_mems, past_length, past_left_context def state_update_before( self, layer: int, state: List[Tensor], past_length: int, past_left_context: int ): pre_mems = state[0][layer][self.max_memory_size - past_length :, :, :] lc_key = state[1][layer][self.left_context - past_left_context :, :, :] lc_val = state[2][layer][self.left_context - past_left_context :, :, :] return pre_mems, lc_key, lc_val def state_update_after( self, layer: int, state: List[Tensor], mems: Tensor, next_key: Tensor, next_val: Tensor, mems_list: List[Tensor], lc_key_list: List[Tensor], lc_val_list: List[Tensor], ): # mems is used for next layer if layer < self.num_layers - 1: state_mems = torch.cat([state[0][layer + 1], mems], dim=0) mems_list.append(state_mems[-self.max_memory_size :, :, :]) # when mems pass to next sequence, we need the last memory. when mems # use for the next layer, we can ignore the last memory mems = mems[:-1, :, :] # note state[1][i] and state[2][i] original length equals to self.left_context new_k = torch.cat([state[1][layer], next_key], dim=0) new_v = torch.cat([state[2][layer], next_val], dim=0) lc_key_list.append(new_k[-self.left_context :, :, :]) lc_val_list.append(new_v[-self.left_context :, :, :]) return mems_list, lc_key_list, lc_val_list, mems def state_update_after_loop( self, state: List[Tensor], mems_list: List[Tensor], lc_key_list: List[Tensor], lc_val_list: List[Tensor], update_length: int, ): state[0] = torch.stack(mems_list, dim=0) state[1] = torch.stack(lc_key_list, dim=0) state[2] = torch.stack(lc_val_list, dim=0) state[3] = state[3] + update_length return state @torch.jit.unused def forward_mini_batches( self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]: T, B, D = input.size() # input without right context seg = input[: T - self.right_context, :, :] # get right context blocks right_context_blocks = self._gen_right_context_padded_input(input) mems_list = [] lc_key_list = [] lc_val_list = [] results = self.forward_jit_mini_batch_init(seg, state, False) state, mems, state_mems, past_length, past_left_context = results # relative position embedding if self.use_rpe: rpe = self._get_relative_position( input=input, max_relative_position=self.max_relative_position, left_context_length=past_left_context, past_length=past_length, is_decoding=False, ) else: rpe = None # get attention mask based on seg (not include right context) and available # left context attention_mask = self._get_attention_mask(seg, past_length, past_left_context) mems_list.append(state_mems[-self.max_memory_size :, :, :]) output = seg i = 0 all_outputs = [] for layer in self.layers: # In order to make cross stream batching work, mem, left context key # and left context value in the state should always be the same shape. # We use the past length to track the processed segment number. In this # way, we take out the essential memory, left context key and left # context val from the state. After finish the forward for current segment # we add the new memory, left context key and left context value into the # staate and trim out the oldest part to keep the shape consistent. pre_mems, lc_key, lc_val = self.state_update_before( i, state, past_length, past_left_context ) output, mems, right_context_blocks, next_key, next_val = layer.forward( input=output, lengths=lengths, attention_mask=attention_mask, mems=mems, right_context_blocks=right_context_blocks, pre_mems=pre_mems, left_context_key=lc_key, left_context_val=lc_val, rpe=rpe, ) all_outputs.append(output) mems_list, lc_key_list, lc_val_list, mems = self.state_update_after( layer=i, state=state, mems=mems, next_key=next_key, next_val=next_val, mems_list=mems_list, lc_key_list=lc_key_list, lc_val_list=lc_val_list, ) i += 1 # update state update_length = math.ceil((T - self.right_context) / self.segment_size) state = self.state_update_after_loop( state=state, mems_list=mems_list, lc_key_list=lc_key_list, lc_val_list=lc_val_list, update_length=update_length, ) return output, lengths, state, all_outputs def forward_jit_test( self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor]]: """ This one simulate sequence encoder forward jit. This is for unit test purpose. It is not used in training or decoding. Note, extra_right_context is set in the model. In unit test, input = [utterance, right_context], lengths = [utterance_length]. args: input: input utterance lengths: utterance input length state: None here. input is whole utterance """ # [TODO] sequence_to_segment has bug in lengths. seg_src_tokens_lengths = self._gen_segs_right_context(input, lengths) seg_enc_tokens_lengths: List[Tuple[Tensor, Tensor]] = [] state: Optional[List[Tensor]] = None for seg_src_tokens, seg_src_lengths in seg_src_tokens_lengths: seg_enc_tokens, seg_enc_lengths, state = self.forward_jit( input=seg_src_tokens, lengths=seg_src_lengths, state=state ) seg_enc_tokens_lengths.append((seg_enc_tokens, seg_enc_lengths)) enc_tokens, enc_lengths = segments_to_sequence( segments=seg_enc_tokens_lengths, time_axis=0 ) state = [] # returns trivial state return enc_tokens, enc_lengths, state @torch.jit.export def forward_jit( self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None ) -> Tuple[Tensor, Tensor, List[Tensor]]: """ Forward helper for online decoding. args: input: [seg, right_context]. We assume in online we always padding the right context to the preset right context size. For the last segment, we may have short segment size, but right context size is the same as other segments lengths: utterance input length is the utterance segment length and right context size state: [memory, left_context_key, left_context_val]. To improve throughput, in addition to memory, we also cache key and value for left_context in multihead self-attention """ # In online decoding, input = [segment, right_context] # Lengths = [segment_length, right_context_length] # so we need strip right context in output T, B, D = input.size() rc_str = T - self.right_context rc_end = T right_context_blocks = input[rc_str:rc_end, :, :] seg = input[:rc_str, :, :] lengths = torch.clamp(lengths - self.right_context, min=0) mems_list = [] lc_key_list = [] lc_val_list = [] results = self.forward_jit_mini_batch_init(seg, state, True) state, mems, state_mems, past_length, past_left_context = results # relative position embedding if self.use_rpe: rpe = self._get_relative_position( input=input, max_relative_position=self.max_relative_position, left_context_length=past_left_context, past_length=past_length, is_decoding=True, ) else: rpe = None # memory for first layer. mems_list.append(state_mems[-self.max_memory_size :, :, :]) output = seg i = 0 for layer in self.layers: # In order to make cross stream batching work, mem, left context key # and left context value in the state should always be the same shape. # We use the past length to track the processed segment number. In this # way, we take out the essential memory, left context key and left # context val from the state. After finish the forward for current segment # we add the new memory, left context key and left context value into the # staate and trim out the oldest part to keep the shape consistent. true_mems, lc_key, lc_val = self.state_update_before( layer=i, state=state, past_length=past_length, past_left_context=past_left_context, ) output, mems, right_context_blocks, next_key, next_val = layer.forward_jit( input=output, lengths=lengths, mems=true_mems, right_context_blocks=right_context_blocks, left_context_key=lc_key, left_context_val=lc_val, rpe=rpe, ) # mems is used for next layer mems_list, lc_key_list, lc_val_list, _ = self.state_update_after( layer=i, state=state, mems_list=mems_list, mems=mems, next_key=next_key, next_val=next_val, lc_key_list=lc_key_list, lc_val_list=lc_val_list, ) i += 1 # update state state = self.state_update_after_loop( state=state, mems_list=mems_list, lc_key_list=lc_key_list, lc_val_list=lc_val_list, update_length=1, ) return output, lengths, state def quantize_(self, params=None): if params and "per_channel" in params and params["per_channel"]: qconfig = per_channel_dynamic_qconfig else: qconfig = default_dynamic_qconfig quantization.quantize_dynamic( self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True ) return self # ------------------------------------------------------------------------------ # Emformer encoder for seq2seq model # This is a wrapper over the original emformer # ------------------------------------------------------------------------------ def emformer_encoder(klass): class SpeechEncoder(klass): def __init__(self, args): super().__init__(args) stride = SpeechEncoder.conv_layer_stride(args) trf_left_context = args.segment_left_context // stride trf_right_context = args.segment_right_context // stride context_config = [trf_left_context, trf_right_context] self.transformer_layers = nn.ModuleList( [ NoSegAugmentedMemoryTransformerEncoderLayer( input_dim=args.encoder_embed_dim, num_heads=args.encoder_attention_heads, ffn_dim=args.encoder_ffn_embed_dim, num_layers=args.encoder_layers, dropout_in_attn=args.dropout, dropout_on_attn=args.dropout, dropout_on_fc1=args.dropout, dropout_on_fc2=args.dropout, activation_fn=args.activation_fn, context_config=context_config, segment_size=args.segment_length, max_memory_size=args.max_memory_size, scaled_init=True, # TODO: use constant for now. tanh_on_mem=args.amtrf_tanh_on_mem, ) ] ) def forward(self, src_tokens, src_lengths): encoder_out = super().forward(src_tokens, src_lengths) output = encoder_out["encoder_out"][0] encoder_padding_masks = encoder_out["encoder_padding_mask"][0] # This is because that in the original implementation # the output didn't consider the last segment as right context. encoder_padding_masks = encoder_padding_masks[:, : output.size(0)] return { "encoder_out": [output], "encoder_padding_mask": [encoder_padding_masks], "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], } @staticmethod def conv_layer_stride(args): # TODO: make it configurable from the args return 4 SpeechEncoder.__name__ = klass.__name__ return SpeechEncoder
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/modules/emformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Tuple import torch import torch.nn.functional as F from torch import Tensor, nn from fairseq.models import FairseqEncoder from fairseq.models.speech_to_text import ConvTransformerEncoder from fairseq.models.speech_to_text.utils import ( attention_suppression, lengths_to_encoder_padding_mask, segments_to_sequence, sequence_to_segments, ) from fairseq.modules import MultiheadAttention, TransformerEncoderLayer # ------------------------------------------------------------------------------ # AugmentedMemoryConvTransformerEncoder # ------------------------------------------------------------------------------ class AugmentedMemoryConvTransformerEncoder(ConvTransformerEncoder): def __init__(self, args): super().__init__(args) args.encoder_stride = self.stride() self.left_context = args.left_context // args.encoder_stride self.right_context = args.right_context // args.encoder_stride self.left_context_after_stride = args.left_context // args.encoder_stride self.right_context_after_stride = args.right_context // args.encoder_stride self.transformer_layers = nn.ModuleList([]) self.transformer_layers.extend( [ AugmentedMemoryTransformerEncoderLayer(args) for i in range(args.encoder_layers) ] ) def stride(self): # Hard coded here. Should infer from convs in future stride = 4 return stride def forward(self, src_tokens, src_lengths, states=None): """Encode input sequence. :param torch.Tensor xs: input tensor :param torch.Tensor masks: input mask :return: position embedded tensor and mask :rtype Tuple[torch.Tensor, torch.Tensor]: """ bsz, max_seq_len, _ = src_tokens.size() x = ( src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim) .transpose(1, 2) .contiguous() ) x = self.conv(x) bsz, _, output_seq_len, _ = x.size() x = x.transpose(1, 2).transpose(0, 1).contiguous().view(output_seq_len, bsz, -1) x = self.out(x) x = self.embed_scale * x subsampling_factor = 1.0 * max_seq_len / output_seq_len input_lengths = torch.max( (src_lengths.float() / subsampling_factor).ceil().long(), x.size(0) * src_lengths.new_ones([src_lengths.size(0)]).long(), ) encoder_padding_mask, _ = lengths_to_encoder_padding_mask( input_lengths, batch_first=True ) # TODO: fix positional embedding positions = self.embed_positions(encoder_padding_mask).transpose(0, 1) x += positions x = F.dropout(x, p=self.dropout, training=self.training) # State to store memory banks etc. if states is None: states = [ {"memory_banks": None, "encoder_states": None} for i in range(len(self.transformer_layers)) ] for i, layer in enumerate(self.transformer_layers): # x size: # (self.left_size + self.segment_size + self.right_size) # / self.stride, num_heads, dim # TODO: Consider mask here x = layer(x, states[i]) states[i]["encoder_states"] = x[ self.left_context_after_stride : -self.right_context_after_stride ] lengths = ( ( ~encoder_padding_mask[ :, self.left_context_after_stride : -self.right_context_after_stride ] ) .sum(dim=1, keepdim=True) .long() ) return states[-1]["encoder_states"], lengths, states # ------------------------------------------------------------------------------ # AugmentedMemoryTransformerEncoderLayer # ------------------------------------------------------------------------------ class AugmentedMemoryTransformerEncoderLayer(TransformerEncoderLayer): def __init__(self, args): super().__init__(args) self.left_context = args.left_context // args.encoder_stride self.right_context = args.right_context // args.encoder_stride def forward(self, x, state): length, batch_size, x_dim = x.size() residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) # init_state if state.get("memory_banks", None) is None: state["memory_banks"] = [] # TODO reseach new sum_query method seg_start = self.left_context seg_end = length - self.right_context if seg_start < seg_end: summarization_query = torch.mean(x[seg_start:seg_end], keepdim=True, dim=0) else: summarization_query = x.new_zeros(1, batch_size, x_dim) x = torch.cat([x, summarization_query], dim=0) x = self.self_attn(input_and_summary=x, state=state) x = self.dropout_module(x) x = residual + x if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = residual + x if not self.normalize_before: x = self.final_layer_norm(x) return x def build_self_attention(self, embed_dim, args): return AugmentedMemoryMultiheadAttention( embed_dim=embed_dim, num_heads=args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, tanh_on_mem=True, max_memory_size=args.max_memory_size, ) # ------------------------------------------------------------------------------ # AugmentedMemoryMultiheadAttention # ------------------------------------------------------------------------------ class AugmentedMemoryMultiheadAttention(MultiheadAttention): """ Augmented Memory Attention from Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory https://arxiv.org/abs/2005.08042 """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, tanh_on_mem=False, memory_dim=None, std_scale=0.5, # 0.5 based on https://arxiv.org/abs/2005.09137 max_memory_size=-1, disable_mem_on_mem_attn=True, ): super().__init__( embed_dim, num_heads, kdim, vdim, dropout, bias, add_bias_kv, add_zero_attn, self_attention, encoder_decoder_attention, q_noise, qn_block_size, ) self.memory_dim = memory_dim if memory_dim is not None else embed_dim self.std_scale = std_scale self.disable_mem_on_mem_attn = disable_mem_on_mem_attn # This Operator was used for factorization in PySpeech self.v2e = lambda x: x if tanh_on_mem: self.squash_mem = torch.tanh self.nonlinear_squash_mem = True else: self.squash_mem = lambda x: x self.nonlinear_squash_mem = False self.max_memory_size = max_memory_size def forward(self, input_and_summary, state): """ input: Encoder states of current segment with left or right context, plus one summarization query """ length, batch_size, _ = input_and_summary.shape length = length - 1 # not include sum_query, last index memory = state["memory_banks"] # TODO: positional embedding on memory if self.max_memory_size > -1 and len(memory) > self.max_memory_size: # TODO: need to fix here if self.max_memory_size == 0: memory = memory.new_zeros(1, memory.size(1), self.memory_dim) else: memory = memory[-self.max_memory_size :] memory_and_input = torch.cat(memory + [input_and_summary[:-1]], dim=0) input_and_sum_query = input_and_summary q = self.q_proj(self.v2e(input_and_sum_query)) k = self.k_proj(self.v2e(memory_and_input)) v = self.v_proj(self.v2e(memory_and_input)) q = ( q.contiguous() .view(-1, batch_size * self.num_heads, self.head_dim) .transpose(0, 1) * self.scaling ) k = ( k.contiguous() .view(-1, batch_size * self.num_heads, self.head_dim) .transpose(0, 1) ) v = ( v.contiguous() .view(-1, batch_size * self.num_heads, self.head_dim) .transpose(0, 1) ) attention_weights = torch.bmm(q, k.transpose(1, 2)) if self.disable_mem_on_mem_attn: attention_weights = self.suppress_mem_on_mem_attention( batch_size, self.num_heads, len(memory), attention_weights ) if self.std_scale is not None: attention_weights = attention_suppression(attention_weights, self.std_scale) assert list(attention_weights.shape) == [ batch_size * self.num_heads, length + 1, length + len(memory), ] attention_weights = torch.nn.functional.softmax( attention_weights.float(), dim=-1 ).type_as(attention_weights) attention_probs = self.dropout_module(attention_weights) # [T, T, B, n_head] + [T, B, n_head, d_head] -> [T, B, n_head, d_head] attention = torch.bmm(attention_probs, v) assert list(attention.shape) == [ batch_size * self.num_heads, length + 1, self.head_dim, ] attention = ( attention.transpose(0, 1) .contiguous() .view(length + 1, batch_size, self.embed_dim) ) output_and_memory = self.out_proj(attention) next_m = output_and_memory[-1:] next_m = self.squash_mem(next_m) output = output_and_memory[:-1] state["memory_banks"].append(next_m) return output def suppress_mem_on_mem_attention( self, B: int, num_heads: int, mem_size: int, attention_weight: Tensor ): """ Arguments: - B: batch size - num_heads: number of attention heads - mem_size: size of memory bank - attention_weight: a [B*num_heads, T + 1, T + mem_size] vector Return: modified attention_weight with [B*num_heads, -1, :mem_size] = -inf """ attention_weight[:, -1, :mem_size] = float("-inf") return attention_weight # ------------------------------------------------------------------------------ # SequenceEncoder # ------------------------------------------------------------------------------ class SequenceEncoder(FairseqEncoder): """ SequenceEncoder encodes sequences. More specifically, `src_tokens` and `src_lengths` in `forward()` should describe a batch of "complete" sequences rather than segments. Segment-by-segment inference can be triggered by `segment_size`: 1) `segment_size` is None: SequenceEncoder treats the input sequence as one single segment. 2) `segment_size` is not None (some int instead): SequenceEncoder does the following: 1. breaks the input sequence into several segments 2. inference on each segment and collect the outputs 3. concatanete segment outputs into the output sequence. Note that `segment_size` here shouldn't include additional left/right contexts needed, for example if we wish to infer with LC-BLSTM where the middle chunk size is 100 and right context is 20, `segment_size` should be 100. """ def __init__(self, args, module): super().__init__(None) self.module = module self.input_time_axis = 1 self.output_time_axis = 0 self.segment_size = args.segment_size self.left_context = args.left_context self.right_context = args.right_context def forward( self, src_tokens: Tensor, src_lengths: Tensor, states=None, ): seg_src_tokens_lengths = sequence_to_segments( sequence=src_tokens, time_axis=self.input_time_axis, lengths=src_lengths, segment_size=self.segment_size, extra_left_context=self.left_context, extra_right_context=self.right_context, ) seg_encoder_states_lengths: List[Tuple[Tensor, Tensor]] = [] for seg_src_tokens, seg_src_lengths in seg_src_tokens_lengths: (seg_encoder_states, seg_enc_lengths, states) = self.module( seg_src_tokens, seg_src_lengths, states=states, ) seg_encoder_states_lengths.append((seg_encoder_states, seg_enc_lengths)) encoder_out, enc_lengths = segments_to_sequence( segments=seg_encoder_states_lengths, time_axis=self.output_time_axis ) encoder_padding_mask, _ = lengths_to_encoder_padding_mask( enc_lengths, batch_first=True ) if not encoder_padding_mask.any(): encoder_padding_mask = None return { "encoder_out": [encoder_out], "encoder_padding_mask": [encoder_padding_mask], "encoder_embedding": [], "encoder_states": [states], "src_tokens": [], "src_lengths": [], } def incremental_encode( self, seg_src_tokens: Tensor, seg_src_lengths: Tensor, states=None, ): """ Different from forward function, this function takes segmented speech as input, and append encoder states to previous states """ (seg_encoder_states, seg_enc_lengths, states) = self.module( seg_src_tokens, seg_src_lengths, states=states, ) return seg_encoder_states, seg_enc_lengths, states # ------------------------------------------------------------------------------ # Augmented memory model decorator # ------------------------------------------------------------------------------ def augmented_memory(klass): class StreamSeq2SeqModel(klass): @staticmethod def add_args(parser): super(StreamSeq2SeqModel, StreamSeq2SeqModel).add_args(parser) parser.add_argument( "--segment-size", type=int, required=True, help="Length of the segment." ) parser.add_argument( "--left-context", type=int, default=0, help="Left context for the segment.", ) parser.add_argument( "--right-context", type=int, default=0, help="Right context for the segment.", ) parser.add_argument( "--max-memory-size", type=int, default=-1, help="Right context for the segment.", ) StreamSeq2SeqModel.__name__ = klass.__name__ return StreamSeq2SeqModel
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/modules/augmented_memory_attention.py
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_to_text/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .hubert import * # noqa from .hubert_asr import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/hubert/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import copy import logging import math from argparse import Namespace from dataclasses import dataclass, field from typing import Any, Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from omegaconf import II, MISSING, open_dict from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.models import ( BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, ) from fairseq.models.hubert.hubert import MASKING_DISTRIBUTION_CHOICES from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer from fairseq.tasks import FairseqTask logger = logging.getLogger(__name__) @dataclass class HubertAsrConfig(FairseqDataclass): w2v_path: str = field(default=MISSING, metadata={"help": "path to hubert model"}) no_pretrained_weights: bool = field( default=False, metadata={"help": "if true, does not load pretrained weights"}, ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) final_dropout: float = field( default=0.0, metadata={"help": "dropout after transformer and before final projection"}, ) dropout: float = field( default=0.0, metadata={"help": "dropout probability inside hubert model"}, ) attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights " "inside hubert model" }, ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN " "inside hubert model" }, ) encoder_embed_dim: Optional[int] = field( default=768, metadata={"help": "encoder embedding dimension"} ) # masking apply_mask: bool = field( default=False, metadata={"help": "apply masking during fine-tuning"} ) mask_length: int = field( default=10, metadata={"help": "repeat the mask indices multiple times"} ) mask_prob: float = field( default=0.5, metadata={ "help": "probability of replacing a token with mask " "(normalized by length)" }, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose masks"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"}, ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"}, ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"}, ) freeze_finetune_updates: int = field( default=0, metadata={"help": "dont finetune hubert for this many updates"}, ) feature_grad_mult: float = field( default=0.0, metadata={"help": "reset feature grad mult in hubert to this"}, ) layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a layer in hubert"}, ) normalize: bool = II("task.normalize") data: str = II("task.data") # this holds the loaded hubert args w2v_args: Any = None @dataclass class HubertCtcConfig(HubertAsrConfig): pass @register_model("hubert_ctc", dataclass=HubertCtcConfig) class HubertCtc(BaseFairseqModel): def __init__(self, cfg: HubertCtcConfig, w2v_encoder: BaseFairseqModel): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: HubertCtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = HubertEncoder(cfg, task) return cls(cfg, w2v_encoder) def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out"] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def get_logits(self, net_output): logits = net_output["encoder_out"] padding = net_output["encoder_padding_mask"] if padding is not None and padding.any(): padding = padding.T logits[padding][..., 0] = 0 logits[padding][..., 1:] = float("-inf") return logits def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x @dataclass class HubertSeq2SeqConfig(HubertAsrConfig): decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"}) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) autoregressive: bool = II("task.autoregressive") seq2seq_path: str = field( default="", metadata={"help": "reset_dict"}, ) reset_dict: bool = field( default=False, metadata={"help": "reset_dict"}, ) @register_model("hubert_seq2seq", dataclass=HubertSeq2SeqConfig) class HubertSeq2SeqModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, cfg: HubertSeq2SeqConfig, task: FairseqTask): """Build a new model instance.""" assert ( cfg.autoregressive ), "Please set task.autoregressive=true for seq2seq asr models" src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) return emb decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) encoder = cls.build_encoder(cfg, task) decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens) model = HubertSeq2SeqModel(encoder, decoder) if cfg["seq2seq_path"]: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.seq2seq_path) state = state["model"] if cfg["reset_dict"]: del state["decoder.embed_out"] del state["decoder.embed_tokens.weight"] model.load_state_dict(state, strict=False) return model @classmethod def build_encoder(cls, cfg: HubertAsrConfig, task): return HubertEncoder(cfg, task) @classmethod def build_decoder(cls, cfg: HubertSeq2SeqConfig, tgt_dict, embed_tokens): return TransformerDecoder(cfg, tgt_dict, embed_tokens) def forward(self, **kwargs): encoder_out = self.encoder(**kwargs) decoder_out = self.decoder(encoder_out=encoder_out, **kwargs) return decoder_out def upgrade_state_dict_named(self, state_dict, name): return state_dict def load_state_dict( self, state_dict, strict=True, model_cfg=None, args: Optional[Namespace] = None, ): if model_cfg.reset_dict: logger.warn("Overriding loading strict state dict!") del state_dict["decoder.embed_out"] del state_dict["decoder.embed_tokens.weight"] return super().load_state_dict(state_dict, False, model_cfg, args) return super().load_state_dict(state_dict, strict, model_cfg, args) class HubertEncoder(FairseqEncoder): def __init__(self, cfg: HubertAsrConfig, task): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) assert cfg.normalize == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for " "both pre-training and here" ) w2v_args.task.data = cfg.data pretrain_task = tasks.setup_task(w2v_args.task) if state is not None and "task_state" in state: # This will load the stored "dictionaries" object pretrain_task.load_state_dict(state["task_state"]) else: pretrain_task.load_state_dict(task.state_dict()) model = pretrain_task.build_model(w2v_args.model, from_checkpoint=True) if state is not None and not cfg.no_pretrained_weights: # set strict=False because we omit some modules model.load_state_dict(state["model"], strict=False) model.remove_pretraining_modules() super().__init__(pretrain_task.source_dictionary) d = w2v_args.model.encoder_embed_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 if task.target_dictionary is not None and not cfg.autoregressive: self.proj = Linear(d, len(task.target_dictionary)) elif getattr(cfg, "decoder_embed_dim", d) != d: self.proj = Linear(d, cfg.decoder_embed_dim) else: self.proj = None def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, source, padding_mask, tbc=True, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_features(**w2v_args) if tbc: # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj: x = self.proj(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask, # B x T "padding_mask": padding_mask, } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) if encoder_out["padding_mask"] is not None: encoder_out["padding_mask"] = encoder_out["padding_mask"].index_select( 0, new_order ) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg: HubertSeq2SeqConfig, dictionary, embed_tokens, no_encoder_attn=False, ): super().__init__(dictionary) self.dropout = cfg.decoder_dropout self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder_embed_dim self.output_embed_dim = cfg.decoder_embed_dim self.layerdrop = cfg.decoder_layerdrop self.padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( cfg.max_target_positions, embed_dim, self.padding_idx, learned=cfg.decoder_learned_pos, ) if not cfg.no_token_positional_embeddings else None ) # TODO: update this when transformer gets converted to dataclass configs transformer_cfg = copy.deepcopy(cfg) with open_dict(transformer_cfg): transformer_cfg.dropout = transformer_cfg.decoder_dropout transformer_cfg.attention_dropout = ( transformer_cfg.decoder_attention_dropout ) transformer_cfg.activation_dropout = ( transformer_cfg.decoder_activation_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerDecoderLayer(transformer_cfg, no_encoder_attn) for _ in range(transformer_cfg.decoder_layers) ] ) if not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim**-0.5) if transformer_cfg.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ if type(prev_output_tokens) == list: max_len = max((len(x) for x in prev_output_tokens)) tmp = torch.zeros( [len(prev_output_tokens), max_len], device=prev_output_tokens[0].device ) for (i, p) in enumerate(prev_output_tokens): tmp[i, : len(p)] = p prev_output_tokens = tmp prev_output_tokens = prev_output_tokens.long() x, extra = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers self_attn_padding_mask = None if prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) for layer in self.layers: dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, attn, _ = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["padding_mask"] if encoder_out is not None else None, incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, self_attn_padding_mask=self_attn_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
EXA-1-master
exa/libraries/fairseq/fairseq/models/hubert/hubert_asr.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn from omegaconf import II from fairseq import utils from fairseq.data.data_utils import compute_mask_indices from fairseq.data.dictionary import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.models.wav2vec.wav2vec2 import ( EXTRACTOR_MODE_CHOICES, MASKING_DISTRIBUTION_CHOICES, LAYER_TYPE_CHOICES, ConvFeatureExtractionModel, TransformerEncoder, ) from fairseq.modules import GradMultiply, LayerNorm from fairseq.tasks.hubert_pretraining import ( HubertPretrainingConfig, HubertPretrainingTask, ) logger = logging.getLogger(__name__) @dataclass class HubertConfig(FairseqDataclass): label_rate: float = II("task.label_rate") extractor_mode: EXTRACTOR_MODE_CHOICES = field( default="default", metadata={ "help": "mode for feature extractor. default has a single group " "norm with d groups in the first conv block, whereas layer_norm " "has layer norms in every block (meant to use with normalize=True)" }, ) encoder_layers: int = field( default=12, metadata={"help": "num encoder layers in the transformer"} ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension"} ) encoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_attention_heads: int = field( default=12, metadata={"help": "num encoder attention heads"} ) activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) layer_type: LAYER_TYPE_CHOICES = field( default="transformer", metadata={"help": "layer type in encoder"} ) # dropouts dropout: float = field( default=0.1, metadata={"help": "dropout probability for the transformer"}, ) attention_dropout: float = field( default=0.1, metadata={"help": "dropout probability for attention weights"}, ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"}, ) encoder_layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"}, ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features (after feat extr)"}, ) final_dim: int = field( default=0, metadata={ "help": "project final representations and targets to this many " "dimensions. set to encoder_embed_dim is <= 0" }, ) untie_final_proj: bool = field( default=False, metadata={"help": "use separate projection for each target"}, ) layer_norm_first: bool = field( default=False, metadata={"help": "apply layernorm first in the transformer"}, ) conv_feature_layers: str = field( default="[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2", metadata={ "help": "string describing convolutional feature extraction " "layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" }, ) conv_bias: bool = field( default=False, metadata={"help": "include bias in conv encoder"} ) logit_temp: float = field( default=0.1, metadata={"help": "temperature to divide logits by"} ) target_glu: bool = field( default=False, metadata={"help": "adds projection + glu to targets"} ) feature_grad_mult: float = field( default=1.0, metadata={"help": "multiply feature extractor var grads by this"}, ) # masking mask_length: int = field(default=10, metadata={"help": "mask length"}) mask_prob: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"}, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"}, ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"}, ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"}, ) mask_channel_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # positional embeddings conv_pos: int = field( default=128, metadata={"help": "number of filters for convolutional positional embeddings"}, ) conv_pos_groups: int = field( default=16, metadata={"help": "number of groups for convolutional positional embedding"}, ) latent_temp: Tuple[float, float, float] = field( default=(2, 0.5, 0.999995), metadata={"help": "legacy (to be removed)"}, ) # loss computation skip_masked: bool = field( default=False, metadata={"help": "skip computing losses over masked frames"}, ) skip_nomask: bool = field( default=False, metadata={"help": "skip computing losses over unmasked frames"}, ) checkpoint_activations: bool = field( default=False, metadata={"help": "recompute activations and save memory for extra compute"}, ) # FP16 optimization required_seq_len_multiple: int = field( default=2, metadata={ "help": "pad the input to encoder such that the sequence length is divisible by multiple" }, ) # Conformer depthwise_conv_kernel_size: int = field( default=31, metadata={ "help": "depthwise-conv-kernel-size for convolution in conformer layer" }, ) attn_type: str = field( default="", metadata={"help": "if espnet use ESPNET MHA"}, ) pos_enc_type: str = field( default="abs", metadata={"help": "Positional encoding type to use in conformer"}, ) fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"}) @register_model("hubert", dataclass=HubertConfig) class HubertModel(BaseFairseqModel): def __init__( self, cfg: HubertConfig, task_cfg: HubertPretrainingConfig, dictionaries: List[Dictionary], ) -> None: super().__init__() logger.info(f"HubertModel Config: {cfg}") feature_enc_layers = eval(cfg.conv_feature_layers) # noqa self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers]) self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.logit_temp = cfg.logit_temp self.skip_masked = cfg.skip_masked self.skip_nomask = cfg.skip_nomask final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.untie_final_proj = cfg.untie_final_proj if self.untie_final_proj: self.final_proj = nn.Linear( cfg.encoder_embed_dim, final_dim * len(dictionaries) ) else: self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) # modules below are not needed during fine-tuning if any([d is None for d in dictionaries]): logger.info("cannot find dictionary. assume will be used for fine-tuning") else: self.num_classes = [len(d) for d in dictionaries] self.label_embs_concat = nn.Parameter( torch.FloatTensor(sum(self.num_classes), final_dim) ) nn.init.uniform_(self.label_embs_concat) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: HubertConfig, task: HubertPretrainingTask): """Build a new model instance.""" model = HubertModel(cfg, task.cfg, task.dictionaries) return model def apply_mask(self, x, padding_mask, target_list): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def compute_nce(self, x, pos, negs): neg_is_pos = (pos == negs).all(-1) pos = pos.unsqueeze(0) targets = torch.cat([pos, negs], dim=0) logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x) logits /= self.logit_temp if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") logits = logits.transpose(0, 1) # (num_x, num_cls+1) return logits def forward_features(self, source: torch.Tensor) -> torch.Tensor: if self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(source) return features def forward_targets( self, features: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_list = [t[:, target_inds.long()] for t in target_list] return features, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) padding_mask = padding_mask.all(-1) return padding_mask def forward( self, source: torch.Tensor, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: """output layer is 1-based""" features = self.forward_features(source) if target_list is not None: features, target_list = self.forward_targets(features, target_list) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) if mask: x, mask_indices = self.apply_mask(features, padding_mask, target_list) else: x = features mask_indices = None # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, _ = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1, ) if features_only: return {"x": x, "padding_mask": padding_mask, "features": features} def compute_pred(proj_x, target, label_embs): # compute logits for the i-th label set y = torch.index_select(label_embs, 0, target.long()) negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1) if self.target_glu: y = self.target_glu(y) negs = self.target_glu(negs) # proj_x: (S, D) # y: (S, D) # negs: (Neg, S, D) return self.compute_nce(proj_x, y, negs) label_embs_list = self.label_embs_concat.split(self.num_classes, 0) if not self.skip_masked: masked_indices = torch.logical_and(~padding_mask, mask_indices) proj_x_m = self.final_proj(x[masked_indices]) if self.untie_final_proj: proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1) else: proj_x_m_list = [proj_x_m for _ in range(len(target_list))] logit_m_list = [ compute_pred(proj_x_m, t[masked_indices], label_embs_list[i]) for i, (proj_x_m, t) in enumerate(zip(proj_x_m_list, target_list)) ] else: logit_m_list = [None for _ in target_list] if not self.skip_nomask: nomask_indices = torch.logical_and(~padding_mask, ~mask_indices) proj_x_u = self.final_proj(x[nomask_indices]) if self.untie_final_proj: proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1) else: proj_x_u_list = [proj_x_u for _ in range(len(target_list))] logit_u_list = [ compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i]) for i, (proj_x_u, t) in enumerate(zip(proj_x_u_list, target_list)) ] else: logit_u_list = [None for _ in target_list] result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, "features_pen": features_pen, } return result def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: res = self.forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) feature = res["features"] if ret_conv else res["x"] return feature, res["padding_mask"] def get_logits(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] logits_list = [x.float() for x in logits_list if x is not None] return logits_list def get_targets(self, net_output, is_masked=True): logits_list = self.get_logits(net_output, is_masked) targets_list = [x.new_zeros(x.size(0), dtype=torch.long) for x in logits_list] return targets_list def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") return extra_losses, names def remove_pretraining_modules(self): self.target_glu = None self.final_proj = None
EXA-1-master
exa/libraries/fairseq/fairseq/models/hubert/hubert.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re from dataclasses import dataclass, field, fields from typing import List, Optional from omegaconf import II from fairseq import utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.utils import safe_getattr, safe_hasattr DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) _NAME_PARSER = r"(decoder|encoder|quant_noise)_(.*)" @dataclass class EncDecBaseConfig(FairseqDataclass): embed_path: Optional[str] = field( default=None, metadata={"help": "path to pre-trained embedding"} ) embed_dim: Optional[int] = field( default=512, metadata={"help": "embedding dimension"} ) ffn_embed_dim: int = field( default=2048, metadata={"help": "embedding dimension for FFN"} ) layers: int = field(default=6, metadata={"help": "number of layers"}) attention_heads: int = field( default=8, metadata={"help": "number of attention heads"} ) normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each block"} ) learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings"} ) # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) layerdrop: float = field(default=0, metadata={"help": "LayerDrop probability"}) layers_to_keep: Optional[List[int]] = field( default=None, metadata={"help": "which layers to *keep* when pruning"} ) xformers_att_config: Optional[str] = field( default=None, metadata={ "help": "config for xFormers attention, defined in xformers.components.attention.AttentionConfig" }, ) @dataclass class DecoderConfig(EncDecBaseConfig): input_dim: int = II("model.decoder.embed_dim") output_dim: int = field( default=II("model.decoder.embed_dim"), metadata={ "help": "decoder output dimension (extra linear layer if different from decoder embed dim)" }, ) def __post_init__(self): # II doesn't work if we are just creating the object outside of hydra so fix that if self.input_dim == II("model.decoder.embed_dim"): self.input_dim = self.embed_dim if self.output_dim == II("model.decoder.embed_dim"): self.output_dim = self.embed_dim @dataclass class QuantNoiseConfig(FairseqDataclass): pq: float = field( default=0.0, metadata={"help": "iterative PQ quantization noise at training time"}, ) pq_block_size: int = field( default=8, metadata={"help": "block size of quantization noise at training time"}, ) scalar: float = field( default=0.0, metadata={ "help": "scalar quantization noise and scalar quantization at training time" }, ) @dataclass class TransformerConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"}, ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN.", "alias": "--relu-dropout", }, ) adaptive_input: bool = False encoder: EncDecBaseConfig = EncDecBaseConfig() # TODO should really be in the encoder config max_source_positions: int = field( default=DEFAULT_MAX_SOURCE_POSITIONS, metadata={"help": "Maximum input length supported by the encoder"}, ) decoder: DecoderConfig = DecoderConfig() # TODO should really be in the decoder config max_target_positions: int = field( default=DEFAULT_MAX_TARGET_POSITIONS, metadata={"help": "Maximum output length supported by the decoder"}, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) share_all_embeddings: bool = field( default=False, metadata={ "help": "share encoder, decoder and output embeddings (requires shared dictionary and embed dim)" }, ) merge_src_tgt_embed: bool = field( default=False, metadata={ "help": "if true then the source and target embedding table is " "merged into one table. This is going to make the model smaller but " "it might hurt performance." }, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if True, disables positional embeddings (outside self attention)" }, ) adaptive_softmax_cutoff: Optional[List[int]] = field( default=None, metadata={ "help": "list of adaptive softmax cutoff points. Must be used with adaptive_loss criterion" }, ) adaptive_softmax_dropout: float = field( default=0.0, metadata={"help": "sets adaptive softmax dropout for the tail projections"}, ) adaptive_softmax_factor: float = field( default=4, metadata={"help": "adaptive input factor"} ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) tie_adaptive_weights: bool = field( default=False, metadata={ "help": "if set, ties the weights of adaptive softmax and adaptive input" }, ) tie_adaptive_proj: bool = field( default=False, metadata={ "help": "if set, ties the projection weights of adaptive softmax and adaptive input" }, ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={ "help": "checkpoint activations at each layer, which saves GPU memory usage at the cost of some additional compute" }, ) offload_activations: bool = field( default=False, metadata={ "help": "checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations." }, ) # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) no_cross_attention: bool = field( default=False, metadata={"help": "do not perform cross-attention"} ) cross_self_attention: bool = field( default=False, metadata={"help": "perform cross+self-attention"} ) # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) quant_noise: QuantNoiseConfig = field(default=QuantNoiseConfig()) min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." }, ) # DEPRECATED field, but some old checkpoints might have it char_inputs: bool = field( default=False, metadata={"help": "if set, model takes character ids as input"} ) relu_dropout: float = 0.0 # config for "BASE Layers: Simplifying Training of Large, Sparse Models" base_layers: Optional[int] = field( default=0, metadata={"help": "number of BASE layers in total"} ) base_sublayers: Optional[int] = field( default=1, metadata={"help": "number of sublayers in each BASE layer"} ) base_shuffle: Optional[int] = field( default=1, metadata={"help": "shuffle tokens between workers before computing assignment"}, ) export: bool = field( default=False, metadata={"help": "make the layernorm exportable with torchscript."}, ) # copied from transformer_lm but expected in transformer_decoder: no_decoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last decoder block"}, ) # We need to make this hierarchical dataclass like the flat namespace # __getattr__ and __setattr__ here allow backward compatibility # for subclasses of Transformer(Legacy) that depend on read/write on # the flat namespace. def __getattr__(self, name): match = re.match(_NAME_PARSER, name) if match: sub = safe_getattr(self, match[1]) return safe_getattr(sub, match[2]) raise AttributeError(f"invalid argument {name}.") def __setattr__(self, name, value): match = re.match(_NAME_PARSER, name) if match: sub = safe_getattr(self, match[1]) setattr(sub, match[2], value) else: super().__setattr__(name, value) @staticmethod def _copy_keys(args, cls, prefix, seen): """ copy the prefixed keys (decoder_embed_dim) to the DC fields: decoder.embed_dim """ cfg = cls() for fld in fields(cls): # for all the fields in the DC, find the fields (e.g. embed_dim) # in the namespace with the prefix (e.g. decoder) # and set it on the dc. args_key = f"{prefix}_{fld.name}" if safe_hasattr(args, args_key): seen.add(args_key) setattr(cfg, fld.name, safe_getattr(args, args_key)) if safe_hasattr(args, fld.name): seen.add(fld.name) setattr(cfg, fld.name, safe_getattr(args, fld.name)) return cfg @classmethod def from_namespace(cls, args): if args is None: return None if not isinstance(args, cls): seen = set() config = cls() # currently, we can go generically from DC fields to args hierarchically # but we can't easily deconstruct a flat namespace to a hierarchical # DC. Mostly because we could have a sub-dc called `decoder-foo` that should not # go to the sub struct called `decoder`. There are ways to go around this, but let's keep it simple # for now. for fld in fields(cls): # concretelly, the transformer_config know what sub-dc it has, so we go through all the dc fields # and if it's one that has a sub-dc, we build that sub-dc with `copy_keys()` if fld.name == "decoder": if safe_hasattr(args, "decoder"): # in some cases, the args we receive is already structured (as DictConfigs), so let's just build the correct DC seen.add("decoder") config.decoder = DecoderConfig(**args.decoder) else: config.decoder = cls._copy_keys( args, DecoderConfig, "decoder", seen ) elif fld.name == "encoder": # same but for encoder if safe_hasattr(args, "encoder"): seen.add("encoder") config.encoder = EncDecBaseConfig(**args.encoder) else: config.encoder = cls._copy_keys( args, EncDecBaseConfig, "encoder", seen ) elif fld.name == "quant_noise": # same but for quant_noise if safe_hasattr(args, "quant_noise"): seen.add("quant_noise") config.quant_noise = QuantNoiseConfig(**args.quant_noise) else: config.quant_noise = cls._copy_keys( args, QuantNoiseConfig, "quant_noise", seen ) elif safe_hasattr(args, fld.name): # if it's not a structure field, it's just a normal field, copy it over seen.add(fld.name) setattr(config, fld.name, safe_getattr(args, fld.name)) # we got all the fields defined in the dataclass, but # the argparse namespace might have extra args for two reasons: # - we are in a legacy class so all the args are not declared in the dataclass. Ideally once everyone has defined a dataclass for their model, we won't need this # - some places expect args to be there but never define them args_dict = ( args._asdict() if safe_hasattr(args, "_asdict") else vars(args) if safe_hasattr(args, "__dict__") else {} ) # namedtupled doesn't have __dict__ :-/ for key, value in args_dict.items(): if key not in seen: setattr(config, key, value) return config else: return args
EXA-1-master
exa/libraries/fairseq/fairseq/models/transformer/transformer_config.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.dataclass.utils import gen_parser_from_dataclass from fairseq.models import ( register_model, register_model_architecture, ) from fairseq.models.transformer.transformer_config import ( TransformerConfig, DEFAULT_MAX_SOURCE_POSITIONS, DEFAULT_MAX_TARGET_POSITIONS, DEFAULT_MIN_PARAMS_TO_WRAP, ) from fairseq.models.transformer.transformer_base import ( TransformerModelBase, ) @register_model("transformer") class TransformerModel(TransformerModelBase): """ This is the legacy implementation of the transformer model that uses argparse for configuration. """ @classmethod def hub_models(cls): # fmt: off def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } def moses_fastbpe(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'fastbpe', } def spm(path): return { 'path': path, 'bpe': 'sentencepiece', 'tokenizer': 'space', } return { 'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'), 'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2', 'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'), 'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'), 'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'), 'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'), 'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'), 'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'), 'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'), 'transformer.wmt20.en-ta': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-ta.single.tar.gz'), 'transformer.wmt20.en-iu.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.news.single.tar.gz'), 'transformer.wmt20.en-iu.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.nh.single.tar.gz'), 'transformer.wmt20.ta-en': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.ta-en.single.tar.gz'), 'transformer.wmt20.iu-en.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.news.single.tar.gz'), 'transformer.wmt20.iu-en.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.nh.single.tar.gz'), 'transformer.flores101.mm100.615M': spm('https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz'), 'transformer.flores101.mm100.175M': spm('https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_175M.tar.gz'), } # fmt: on def __init__(self, args, encoder, decoder): cfg = TransformerConfig.from_namespace(args) super().__init__(cfg, encoder, decoder) self.args = args @classmethod def add_args(cls, parser): """Add model-specific arguments to the parser.""" # we want to build the args recursively in this case. # do not set defaults so that settings defaults from various architectures still works gen_parser_from_dataclass( parser, TransformerConfig(), delete_default=True, with_prefix="" ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) args.share_decoder_input_output_embed = True if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing if not args.share_all_embeddings: args.min_params_to_wrap = getattr( args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP ) cfg = TransformerConfig.from_namespace(args) return super().build_model(cfg, task) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): return super().build_embedding( TransformerConfig.from_namespace(args), dictionary, embed_dim, path ) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return super().build_encoder( TransformerConfig.from_namespace(args), src_dict, embed_tokens ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return super().build_decoder( TransformerConfig.from_namespace(args), tgt_dict, embed_tokens ) # architectures @register_model_architecture("transformer", "transformer_tiny") def tiny_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 64) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 64) args.encoder_layers = getattr(args, "encoder_layers", 2) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2) args.decoder_layers = getattr(args, "decoder_layers", 2) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2) return base_architecture(args) @register_model_architecture("transformer", "transformer") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.merge_src_tgt_embed = getattr(args, "merge_src_tgt_embed", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) @register_model_architecture("transformer", "transformer_iwslt_de_en") def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_architecture(args) @register_model_architecture("transformer", "transformer_wmt_en_de") def transformer_wmt_en_de(args): base_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big") def transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) base_architecture(args) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big") def transformer_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) @register_model_architecture("transformer", "transformer_wmt_en_de_big") def transformer_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t") def transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/transformer/transformer_legacy.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from fairseq import utils from fairseq.distributed import fsdp_wrap from fairseq.models import FairseqEncoder from fairseq.models.transformer import TransformerConfig from fairseq.modules import ( FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, transformer_layer, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ # rewrite name for backward compatibility in `make_generation_fast_` def module_name_fordropout(module_name: str) -> str: if module_name == "TransformerEncoderBase": return "TransformerEncoder" else: return module_name class TransformerEncoderBase(FairseqEncoder): """ Transformer encoder consisting of *cfg.encoder.layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, cfg, dictionary, embed_tokens, return_fc=False): self.cfg = cfg super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( cfg.dropout, module_name=module_name_fordropout(self.__class__.__name__) ) self.encoder_layerdrop = cfg.encoder.layerdrop self.return_fc = return_fc embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = cfg.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( cfg.max_source_positions, embed_dim, self.padding_idx, learned=cfg.encoder.learned_pos, ) if not cfg.no_token_positional_embeddings else None ) if cfg.layernorm_embedding: self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export) else: self.layernorm_embedding = None if not cfg.adaptive_input and cfg.quant_noise.pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), cfg.quant_noise.pq, cfg.quant_noise.pq_block_size, ) else: self.quant_noise = None if self.encoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.encoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [self.build_encoder_layer(cfg) for i in range(cfg.encoder.layers)] ) self.num_layers = len(self.layers) if cfg.encoder.normalize_before: self.layer_norm = LayerNorm(embed_dim, export=cfg.export) else: self.layer_norm = None def build_encoder_layer(self, cfg): layer = transformer_layer.TransformerEncoderLayerBase( cfg, return_fc=self.return_fc ) checkpoint = cfg.checkpoint_activations if checkpoint: offload_to_cpu = cfg.offload_activations layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) if self.quant_noise is not None: x = self.quant_noise(x) return x, embed def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ return self.forward_scriptable( src_tokens, src_lengths, return_all_hiddens, token_embeddings ) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = ( torch.tensor(src_tokens.device.type == "xla") or encoder_padding_mask.any() ) # Torchscript doesn't handle bool Tensor correctly, so we need to work around. if torch.jit.is_scripting(): has_pads = torch.tensor(1) if has_pads else torch.tensor(0) x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # account for padding while computing the representation x = x * ( 1 - encoder_padding_mask.unsqueeze(-1).type_as(x) * has_pads.type_as(x) ) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] fc_results = [] if return_all_hiddens: encoder_states.append(x) # encoder layers for layer in self.layers: lr = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None ) if isinstance(lr, tuple) and len(lr) == 2: x, fc_result = lr else: x = lr fc_result = None if return_all_hiddens and not torch.jit.is_scripting(): assert encoder_states is not None encoder_states.append(x) fc_results.append(fc_result) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. src_lengths = ( src_tokens.ne(self.padding_idx) .sum(dim=1, dtype=torch.int32) .reshape(-1, 1) .contiguous() ) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "fc_results": fc_results, # List[T x B x C] "src_tokens": [], "src_lengths": [src_lengths], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } @torch.jit.export def _reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """Dummy re-order function for beamable enc-dec attention""" return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerEncoder(TransformerEncoderBase): def __init__(self, args, dictionary, embed_tokens, return_fc=False): self.args = args super().__init__( TransformerConfig.from_namespace(args), dictionary, embed_tokens, return_fc=return_fc, ) def build_encoder_layer(self, args): return super().build_encoder_layer( TransformerConfig.from_namespace(args), )
EXA-1-master
exa/libraries/fairseq/fairseq/models/transformer/transformer_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from fairseq import utils from fairseq.distributed import fsdp_wrap from fairseq.models.transformer import TransformerConfig from fairseq.models.transformer.transformer_decoder import TransformerDecoderBase from fairseq.modules import ( LayerDropModuleList, SinusoidalPositionalEmbedding, transformer_layer_aug, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper class AugTransformerDecoderBase(TransformerDecoderBase): """ Transformer decoder augmented with an additional cross-attention. Each layer is a :class:`AugTransformerDecoderLayerBase`. Args: cfg (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding encoder_attn_merge_type (str, optional): the way to combine outputs from two cross-attention modules. If "sequential" is set, two cross-attention modules are stacked sequentially. If "parallel" is set, they are processed in parallel and combined before feeding it to FFN (default: sequential). dropnet_ratio (float, optional): a probability to drop each cross-attention module during training (default: 0.0). """ def __init__( self, cfg, dictionary, embed_tokens, output_projection=None, encoder_attn_merge_type="sequential", dropnet_ratio=0.0, ): super().__init__( cfg, dictionary, embed_tokens, no_encoder_attn=False, output_projection=output_projection, ) # assert cfg.cross_self_attention self.cross_self_attention = cfg.cross_self_attention if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(cfg, encoder_attn_merge_type, dropnet_ratio) for _ in range(cfg.decoder.layers) ] ) def build_decoder_layer( self, cfg, encoder_attn_merge_type="sequential", dropnet_ratio=0, ): layer = transformer_layer_aug.AugTransformerDecoderLayerBase( cfg, no_encoder_attn=False, encoder_attn_merge_type=encoder_attn_merge_type, dropnet_ratio=dropnet_ratio, ) checkpoint = cfg.checkpoint_activations if checkpoint: offload_to_cpu = cfg.offload_activations layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, encoder_out_aug: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention, should be of size T x B x C incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, encoder_out_aug=encoder_out_aug, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], encoder_out_aug: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, encoder_out_aug, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], encoder_out_aug: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ bs, slen = prev_output_tokens.size() if alignment_layer is None: alignment_layer = self.num_layers - 1 enc: Optional[Tensor] = None padding_mask: Optional[Tensor] = None if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: enc = encoder_out["encoder_out"][0] if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: padding_mask = encoder_out["encoder_padding_mask"][0] enc_aug: Optional[Tensor] = None padding_mask_aug: Optional[Tensor] = None if encoder_out_aug is not None and len(encoder_out_aug["encoder_out"]) > 0: enc_aug = encoder_out_aug["encoder_out"][0] if ( encoder_out_aug is not None and len(encoder_out_aug["encoder_padding_mask"]) > 0 ): padding_mask_aug = encoder_out_aug["encoder_padding_mask"][0] # embed positions positions = None if self.embed_positions is not None: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # Prevent torchscript exporting issue for dynamic quant embedding prev_output_tokens = prev_output_tokens.contiguous() # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None attn_aug: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, layer_attn_aug, _ = layer( x, enc, padding_mask, enc_aug, padding_mask_aug, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if layer_attn_aug is not None and idx == alignment_layer: attn_aug = layer_attn_aug.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if attn_aug is not None: if alignment_heads is not None: attn_aug = attn_aug[:alignment_heads] # average probabilities over heads attn_aug = attn_aug.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "attn_aug": [attn_aug], "inner_states": inner_states} def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) if f"{name}.output_projection.weight" not in state_dict: if self.share_input_output_embed: embed_out_key = f"{name}.embed_tokens.weight" else: embed_out_key = f"{name}.embed_out" if embed_out_key in state_dict: state_dict[f"{name}.output_projection.weight"] = state_dict[ embed_out_key ] if not self.share_input_output_embed: del state_dict[embed_out_key] for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "encoder_attn_layer_norm2", "3": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class AugTransformerDecoder(AugTransformerDecoderBase): def __init__( self, args, dictionary, embed_tokens, output_projection=None, ): self.args = args super().__init__( TransformerConfig.from_namespace(args), dictionary, embed_tokens, no_encoder_attn=False, output_projection=output_projection, encoder_attn_merge_type=getattr( args, "synthesizer_augmented_cross_attention_merge_type", "sequential" ), dropnet_ratio=getattr(args, "dropnet_ratio", 0), ) def build_output_projection(self, args, dictionary, embed_tokens): super().build_output_projection( TransformerConfig.from_namespace(args), dictionary, embed_tokens ) def build_decoder_layer( self, args, encoder_attn_merge_type="sequential", dropnet_ratio=0, ): return super().build_decoder_layer( TransformerConfig.from_namespace(args), no_encoder_attn=False, encoder_attn_merge_type=encoder_attn_merge_type, dropnet_ratio=dropnet_ratio, )
EXA-1-master
exa/libraries/fairseq/fairseq/models/transformer/transformer_decoder_aug.py
# Copyright (c) Facebook Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .transformer_config import ( TransformerConfig, DEFAULT_MAX_SOURCE_POSITIONS, DEFAULT_MAX_TARGET_POSITIONS, DEFAULT_MIN_PARAMS_TO_WRAP, ) from .transformer_decoder import TransformerDecoder, TransformerDecoderBase, Linear from .transformer_encoder import TransformerEncoder, TransformerEncoderBase from .transformer_legacy import ( TransformerModel, base_architecture, tiny_architecture, transformer_iwslt_de_en, transformer_wmt_en_de, transformer_vaswani_wmt_en_de_big, transformer_vaswani_wmt_en_fr_big, transformer_wmt_en_de_big, transformer_wmt_en_de_big_t2t, ) from .transformer_base import TransformerModelBase, Embedding __all__ = [ "TransformerModelBase", "TransformerConfig", "TransformerDecoder", "TransformerDecoderBase", "TransformerEncoder", "TransformerEncoderBase", "TransformerModel", "Embedding", "Linear", "base_architecture", "tiny_architecture", "transformer_iwslt_de_en", "transformer_wmt_en_de", "transformer_vaswani_wmt_en_de_big", "transformer_vaswani_wmt_en_fr_big", "transformer_wmt_en_de_big", "transformer_wmt_en_de_big_t2t", "DEFAULT_MAX_SOURCE_POSITIONS", "DEFAULT_MAX_TARGET_POSITIONS", "DEFAULT_MIN_PARAMS_TO_WRAP", ]
EXA-1-master
exa/libraries/fairseq/fairseq/models/transformer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from fairseq import utils from fairseq.distributed import fsdp_wrap from fairseq.models import FairseqIncrementalDecoder from fairseq.models.transformer import TransformerConfig from fairseq.modules import ( AdaptiveSoftmax, BaseLayer, FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, transformer_layer, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ # rewrite name for backward compatibility in `make_generation_fast_` def module_name_fordropout(module_name: str) -> str: if module_name == "TransformerDecoderBase": return "TransformerDecoder" else: return module_name class TransformerDecoderBase(FairseqIncrementalDecoder): """ Transformer decoder consisting of *cfg.decoder.layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: cfg (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg, dictionary, embed_tokens, no_encoder_attn=False, output_projection=None, ): self.cfg = cfg super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = FairseqDropout( cfg.dropout, module_name=module_name_fordropout(self.__class__.__name__) ) self.decoder_layerdrop = cfg.decoder.layerdrop self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder.embed_dim self.embed_dim = embed_dim self.output_embed_dim = cfg.decoder.output_dim self.padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim) if not cfg.adaptive_input and cfg.quant_noise.pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), cfg.quant_noise.pq, cfg.quant_noise.pq_block_size, ) else: self.quant_noise = None self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( self.max_target_positions, embed_dim, self.padding_idx, learned=cfg.decoder.learned_pos, ) if not cfg.no_token_positional_embeddings else None ) if cfg.layernorm_embedding: self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export) else: self.layernorm_embedding = None self.cross_self_attention = cfg.cross_self_attention if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(cfg, no_encoder_attn) for _ in range(cfg.decoder.layers) ] ) self.num_layers = len(self.layers) if cfg.decoder.normalize_before and not cfg.no_decoder_final_norm: self.layer_norm = LayerNorm(embed_dim, export=cfg.export) else: self.layer_norm = None self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not cfg.tie_adaptive_weights else None ) self.adaptive_softmax = None self.output_projection = output_projection if self.output_projection is None: self.build_output_projection(cfg, dictionary, embed_tokens) def build_output_projection(self, cfg, dictionary, embed_tokens): if cfg.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, utils.eval_str_list(cfg.adaptive_softmax_cutoff, type=int), dropout=cfg.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if cfg.tie_adaptive_weights else None, factor=cfg.adaptive_softmax_factor, tie_proj=cfg.tie_adaptive_proj, ) elif self.share_input_output_embed: self.output_projection = nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = nn.Linear( self.output_embed_dim, len(dictionary), bias=False ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.output_embed_dim**-0.5 ) num_base_layers = cfg.base_layers for i in range(num_base_layers): self.layers.insert( ((i + 1) * cfg.decoder.layers) // (num_base_layers + 1), BaseLayer(cfg), ) def build_decoder_layer(self, cfg, no_encoder_attn=False): layer = transformer_layer.TransformerDecoderLayerBase(cfg, no_encoder_attn) checkpoint = cfg.checkpoint_activations if checkpoint: offload_to_cpu = cfg.offload_activations layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention, should be of size T x B x C incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ bs, slen = prev_output_tokens.size() if alignment_layer is None: alignment_layer = self.num_layers - 1 enc: Optional[Tensor] = None padding_mask: Optional[Tensor] = None if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: enc = encoder_out["encoder_out"][0] if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: padding_mask = encoder_out["encoder_padding_mask"][0] # embed positions positions = None if self.embed_positions is not None: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # Prevent torchscript exporting issue for dynamic quant embedding prev_output_tokens = prev_output_tokens.contiguous() # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, _ = layer( x, enc, padding_mask, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states} def output_layer(self, features): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary return self.output_projection(features) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 ) self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) if f"{name}.output_projection.weight" not in state_dict: if self.share_input_output_embed: embed_out_key = f"{name}.embed_tokens.weight" else: embed_out_key = f"{name}.embed_out" if embed_out_key in state_dict: state_dict[f"{name}.output_projection.weight"] = state_dict[ embed_out_key ] if not self.share_input_output_embed: del state_dict[embed_out_key] for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m class TransformerDecoder(TransformerDecoderBase): def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, output_projection=None, ): self.args = args super().__init__( TransformerConfig.from_namespace(args), dictionary, embed_tokens, no_encoder_attn=no_encoder_attn, output_projection=output_projection, ) def build_output_projection(self, args, dictionary, embed_tokens): super().build_output_projection( TransformerConfig.from_namespace(args), dictionary, embed_tokens ) def build_decoder_layer(self, args, no_encoder_attn=False): return super().build_decoder_layer( TransformerConfig.from_namespace(args), no_encoder_attn=no_encoder_attn )
EXA-1-master
exa/libraries/fairseq/fairseq/models/transformer/transformer_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn from torch import Tensor import logging from fairseq import utils from fairseq.dataclass.utils import gen_parser_from_dataclass from fairseq.distributed import fsdp_wrap from fairseq.models import FairseqEncoderDecoderModel from fairseq.models.transformer import ( TransformerConfig, TransformerDecoderBase, TransformerEncoderBase, ) logger = logging.getLogger(__name__) class TransformerModelBase(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ def __init__(self, cfg, encoder, decoder): super().__init__(encoder, decoder) self.cfg = cfg self.supports_align_args = True @classmethod def add_args(cls, parser): """Add model-specific arguments to the parser.""" # we want to build the args recursively in this case. gen_parser_from_dataclass( parser, TransformerConfig(), delete_default=False, with_prefix="" ) @classmethod def build_model(cls, cfg, task): """Build a new model instance.""" # -- TODO T96535332 # bug caused by interaction between OmegaConf II and argparsing cfg.decoder.input_dim = int(cfg.decoder.input_dim) cfg.decoder.output_dim = int(cfg.decoder.output_dim) # -- if cfg.encoder.layers_to_keep: cfg.encoder.layers = len(cfg.encoder.layers_to_keep.split(",")) if cfg.decoder.layers_to_keep: cfg.decoder.layers = len(cfg.decoder.layers_to_keep.split(",")) src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if cfg.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if cfg.encoder.embed_dim != cfg.decoder.embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if cfg.decoder.embed_path and ( cfg.decoder.embed_path != cfg.encoder.embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( cfg, src_dict, cfg.encoder.embed_dim, cfg.encoder.embed_path ) decoder_embed_tokens = encoder_embed_tokens cfg.share_decoder_input_output_embed = True elif cfg.merge_src_tgt_embed: logger.info(f"source dict size: {len(src_dict)}") logger.info(f"target dict size: {len(tgt_dict)}") src_dict.update(tgt_dict) task.src_dict = src_dict task.tgt_dict = src_dict logger.info(f"merged dict size: {len(src_dict)}") encoder_embed_tokens = cls.build_embedding( cfg, src_dict, cfg.encoder.embed_dim ) decoder_embed_tokens = encoder_embed_tokens cfg.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( cfg, src_dict, cfg.encoder.embed_dim, cfg.encoder.embed_path ) decoder_embed_tokens = cls.build_embedding( cfg, tgt_dict, cfg.decoder.embed_dim, cfg.decoder.embed_path ) if cfg.offload_activations: cfg.checkpoint_activations = True # offloading implies checkpointing encoder = cls.build_encoder(cfg, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens) return cls(cfg, encoder, decoder) @classmethod def build_embedding(cls, cfg, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, cfg, src_dict, embed_tokens): return TransformerEncoderBase(cfg, src_dict, embed_tokens) @classmethod def build_decoder(cls, cfg, tgt_dict, embed_tokens): return TransformerDecoderBase( cfg, tgt_dict, embed_tokens, no_encoder_attn=cfg.no_cross_attention, ) # TorchScript doesn't support optional arguments with variable length (**kwargs). # Current workaround is to add union of all arguments in child classes. def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = True, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Run the forward pass for an encoder-decoder model. Copied from the base class, but without ``**kwargs``, which are not supported by TorchScript. """ encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens ) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) return decoder_out # Since get_normalized_probs is in the Fairseq Model which is not scriptable, # I rewrite the get_normalized_probs from Base Class to call the # helper function in the Base Class. @torch.jit.export def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(m.weight[padding_idx], 0) return m
EXA-1-master
exa/libraries/fairseq/fairseq/models/transformer/transformer_base.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq.utils import new_arange # -------------- Helper Functions --------------------------------------------------- # def load_libnat(): try: from fairseq import libnat_cuda return libnat_cuda, True except ImportError as e: print(str(e) + "... fall back to CPU version") try: from fairseq import libnat return libnat, False except ImportError as e: import sys sys.stderr.write( "ERROR: missing libnat_cuda. run `python setup.py build_ext --inplace`\n" ) raise e def _get_ins_targets(in_tokens, out_tokens, padding_idx, unk_idx): libnat, use_cuda = load_libnat() def _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx): in_masks = in_tokens.ne(padding_idx) out_masks = out_tokens.ne(padding_idx) mask_ins_targets, masked_tgt_masks = libnat.generate_insertion_labels( out_tokens.int(), libnat.levenshtein_distance( in_tokens.int(), out_tokens.int(), in_masks.sum(1).int(), out_masks.sum(1).int(), ), ) masked_tgt_masks = masked_tgt_masks.bool() & out_masks mask_ins_targets = mask_ins_targets.type_as(in_tokens)[ :, 1 : in_masks.size(1) ].masked_fill_(~in_masks[:, 1:], 0) masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx) return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets def _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx): in_seq_len, out_seq_len = in_tokens.size(1), out_tokens.size(1) in_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist()) ] out_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(out_tokens.tolist()) ] full_labels = libnat.suggested_ed2_path( in_tokens_list, out_tokens_list, padding_idx ) mask_inputs = [ [len(c) if c[0] != padding_idx else 0 for c in a[:-1]] for a in full_labels ] # generate labels masked_tgt_masks = [] for mask_input in mask_inputs: mask_label = [] for beam_size in mask_input[1:-1]: # HACK 1:-1 mask_label += [0] + [1 for _ in range(beam_size)] masked_tgt_masks.append( mask_label + [0 for _ in range(out_seq_len - len(mask_label))] ) mask_ins_targets = [ mask_input[1:-1] + [0 for _ in range(in_seq_len - 1 - len(mask_input[1:-1]))] for mask_input in mask_inputs ] # transform to tensor masked_tgt_masks = torch.tensor( masked_tgt_masks, device=out_tokens.device ).bool() mask_ins_targets = torch.tensor(mask_ins_targets, device=in_tokens.device) masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx) return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets if use_cuda: return _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx) return _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx) def _get_del_targets(in_tokens, out_tokens, padding_idx): libnat, use_cuda = load_libnat() def _get_del_targets_cuda(in_tokens, out_tokens, padding_idx): in_masks = in_tokens.ne(padding_idx) out_masks = out_tokens.ne(padding_idx) word_del_targets = libnat.generate_deletion_labels( in_tokens.int(), libnat.levenshtein_distance( in_tokens.int(), out_tokens.int(), in_masks.sum(1).int(), out_masks.sum(1).int(), ), ) word_del_targets = word_del_targets.type_as(in_tokens).masked_fill_( ~in_masks, 0 ) return word_del_targets def _get_del_targets_cpu(in_tokens, out_tokens, padding_idx): out_seq_len = out_tokens.size(1) with torch.cuda.device_of(in_tokens): in_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist()) ] out_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(out_tokens.tolist()) ] full_labels = libnat.suggested_ed2_path( in_tokens_list, out_tokens_list, padding_idx ) word_del_targets = [b[-1] for b in full_labels] word_del_targets = [ labels + [0 for _ in range(out_seq_len - len(labels))] for labels in word_del_targets ] # transform to tensor word_del_targets = torch.tensor(word_del_targets, device=out_tokens.device) return word_del_targets if use_cuda: return _get_del_targets_cuda(in_tokens, out_tokens, padding_idx) return _get_del_targets_cpu(in_tokens, out_tokens, padding_idx) def _apply_ins_masks( in_tokens, in_scores, mask_ins_pred, padding_idx, unk_idx, eos_idx ): in_masks = in_tokens.ne(padding_idx) in_lengths = in_masks.sum(1) # HACK: hacky way to shift all the paddings to eos first. in_tokens.masked_fill_(~in_masks, eos_idx) mask_ins_pred.masked_fill_(~in_masks[:, 1:], 0) out_lengths = in_lengths + mask_ins_pred.sum(1) out_max_len = out_lengths.max() out_masks = new_arange(out_lengths, out_max_len)[None, :] < out_lengths[:, None] reordering = (mask_ins_pred + in_masks[:, 1:].long()).cumsum(1) out_tokens = ( in_tokens.new_zeros(in_tokens.size(0), out_max_len) .fill_(padding_idx) .masked_fill_(out_masks, unk_idx) ) out_tokens[:, 0] = in_tokens[:, 0] out_tokens.scatter_(1, reordering, in_tokens[:, 1:]) out_scores = None if in_scores is not None: in_scores.masked_fill_(~in_masks, 0) out_scores = in_scores.new_zeros(*out_tokens.size()) out_scores[:, 0] = in_scores[:, 0] out_scores.scatter_(1, reordering, in_scores[:, 1:]) return out_tokens, out_scores def _apply_ins_words(in_tokens, in_scores, word_ins_pred, word_ins_scores, unk_idx): word_ins_masks = in_tokens.eq(unk_idx) out_tokens = in_tokens.masked_scatter(word_ins_masks, word_ins_pred[word_ins_masks]) if in_scores is not None: out_scores = in_scores.masked_scatter( word_ins_masks, word_ins_scores[word_ins_masks] ) else: out_scores = None return out_tokens, out_scores def _apply_del_words( in_tokens, in_scores, in_attn, word_del_pred, padding_idx, bos_idx, eos_idx ): # apply deletion to a tensor in_masks = in_tokens.ne(padding_idx) bos_eos_masks = in_tokens.eq(bos_idx) | in_tokens.eq(eos_idx) max_len = in_tokens.size(1) word_del_pred.masked_fill_(~in_masks, 1) word_del_pred.masked_fill_(bos_eos_masks, 0) reordering = new_arange(in_tokens).masked_fill_(word_del_pred, max_len).sort(1)[1] out_tokens = in_tokens.masked_fill(word_del_pred, padding_idx).gather(1, reordering) out_scores = None if in_scores is not None: out_scores = in_scores.masked_fill(word_del_pred, 0).gather(1, reordering) out_attn = None if in_attn is not None: _mask = word_del_pred[:, :, None].expand_as(in_attn) _reordering = reordering[:, :, None].expand_as(in_attn) out_attn = in_attn.masked_fill(_mask, 0.0).gather(1, _reordering) return out_tokens, out_scores, out_attn def _skip(x, mask): """ Getting sliced (dim=0) tensor by mask. Supporting tensor and list/dict of tensors. """ if isinstance(x, int): return x if x is None: return None if isinstance(x, torch.Tensor): if x.size(0) == mask.size(0): return x[mask] elif x.size(1) == mask.size(0): return x[:, mask] if isinstance(x, list): return [_skip(x_i, mask) for x_i in x] if isinstance(x, dict): return {k: _skip(v, mask) for k, v in x.items()} raise NotImplementedError def _skip_encoder_out(encoder, encoder_out, mask): if not mask.any(): return encoder_out else: return encoder.reorder_encoder_out( encoder_out, mask.nonzero(as_tuple=False).squeeze() ) def _fill(x, mask, y, padding_idx): """ Filling tensor x with y at masked positions (dim=0). """ if x is None: return y assert x.dim() == y.dim() and mask.size(0) == x.size(0) assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2)) n_selected = mask.sum() assert n_selected == y.size(0) if n_selected == x.size(0): return y if x.size(1) < y.size(1): dims = [x.size(0), y.size(1) - x.size(1)] if x.dim() == 3: dims.append(x.size(2)) x = torch.cat([x, x.new_zeros(*dims).fill_(padding_idx)], 1) x[mask] = y elif x.size(1) > y.size(1): x[mask] = padding_idx if x.dim() == 2: x[mask, : y.size(1)] = y else: x[mask, : y.size(1), :] = y else: x[mask] = y return x
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/levenshtein_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel def _sequential_poisoning(s, V, beta=0.33, bos=2, eos=3, pad=1): # s: input batch # V: vocabulary size rand_words = torch.randint(low=4, high=V, size=s.size(), device=s.device) choices = torch.rand(size=s.size(), device=s.device) choices.masked_fill_((s == pad) | (s == bos) | (s == eos), 1) replace = choices < beta / 3 repeat = (choices >= beta / 3) & (choices < beta * 2 / 3) swap = (choices >= beta * 2 / 3) & (choices < beta) safe = choices >= beta for i in range(s.size(1) - 1): rand_word = rand_words[:, i] next_word = s[:, i + 1] self_word = s[:, i] replace_i = replace[:, i] swap_i = swap[:, i] & (next_word != 3) repeat_i = repeat[:, i] & (next_word != 3) safe_i = safe[:, i] | ((next_word == 3) & (~replace_i)) s[:, i] = ( self_word * (safe_i | repeat_i).long() + next_word * swap_i.long() + rand_word * replace_i.long() ) s[:, i + 1] = ( next_word * (safe_i | replace_i).long() + self_word * (swap_i | repeat_i).long() ) return s def gumbel_noise(input, TINY=1e-8): return ( input.new_zeros(*input.size()) .uniform_() .add_(TINY) .log_() .neg_() .add_(TINY) .log_() .neg_() ) @register_model("iterative_nonautoregressive_transformer") class IterNATransformerModel(NATransformerModel): @staticmethod def add_args(parser): NATransformerModel.add_args(parser) parser.add_argument( "--train-step", type=int, help="number of refinement iterations during training", ) parser.add_argument( "--dae-ratio", type=float, help="the probability of switching to the denoising auto-encoder loss", ) parser.add_argument( "--stochastic-approx", action="store_true", help="sampling from the decoder as the inputs for next iteration", ) @classmethod def build_model(cls, args, task): model = super().build_model(args, task) model.train_step = getattr(args, "train_step", 4) model.dae_ratio = getattr(args, "dae_ratio", 0.5) model.stochastic_approx = getattr(args, "stochastic_approx", False) return model def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): B, T = prev_output_tokens.size() # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_outs, word_ins_tgts, word_ins_masks = [], [], [] for t in range(self.train_step): word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, step=t, ) word_ins_tgt = tgt_tokens word_ins_mask = word_ins_tgt.ne(self.pad) word_ins_outs.append(word_ins_out) word_ins_tgts.append(word_ins_tgt) word_ins_masks.append(word_ins_mask) if t < (self.train_step - 1): # prediction for next iteration if self.stochastic_approx: word_ins_prediction = ( word_ins_out + gumbel_noise(word_ins_out) ).max(-1)[1] else: word_ins_prediction = word_ins_out.max(-1)[1] prev_output_tokens = prev_output_tokens.masked_scatter( word_ins_mask, word_ins_prediction[word_ins_mask] ) if self.dae_ratio > 0: # we do not perform denoising for the first iteration corrputed = ( torch.rand(size=(B,), device=prev_output_tokens.device) < self.dae_ratio ) corrputed_tokens = _sequential_poisoning( tgt_tokens[corrputed], len(self.tgt_dict), 0.33, self.bos, self.eos, self.pad, ) prev_output_tokens[corrputed] = corrputed_tokens # concat everything word_ins_out = torch.cat(word_ins_outs, 0) word_ins_tgt = torch.cat(word_ins_tgts, 0) word_ins_mask = torch.cat(word_ins_masks, 0) return { "word_ins": { "out": word_ins_out, "tgt": word_ins_tgt, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } @register_model_architecture( "iterative_nonautoregressive_transformer", "iterative_nonautoregressive_transformer" ) def inat_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.ngram_predictor = getattr(args, "ngram_predictor", 1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) args.train_step = getattr(args, "train_step", 4) args.dae_ratio = getattr(args, "dae_ratio", 0.5) args.stochastic_approx = getattr(args, "stochastic_approx", False) @register_model_architecture( "iterative_nonautoregressive_transformer", "iterative_nonautoregressive_transformer_wmt_en_de", ) def iter_nat_wmt_en_de(args): inat_base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/iterative_nonautoregressive_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, ) from fairseq.modules.transformer_sentence_encoder import init_bert_params def ensemble_encoder(func): def wrapper(self, *args, **kwargs): if self.ensemble_models is None or len(self.ensemble_models) == 1: return func(self, *args, **kwargs) encoder_outs = [ func(model, *args, **kwargs, return_all_hiddens=True) for model in self.ensemble_models ] _encoder_out = encoder_outs[0].copy() def stack(key): outs = [e[key][0] for e in encoder_outs] return [torch.stack(outs, -1) if outs[0] is not None else None] _encoder_out["encoder_out"] = stack("encoder_out") _encoder_out["encoder_embedding"] = stack("encoder_embedding") num_layers = len(_encoder_out["encoder_states"]) if num_layers > 0: _encoder_out["encoder_states"] = [ torch.stack([e["encoder_states"][i] for e in encoder_outs], -1) for i in range(num_layers) ] return _encoder_out return wrapper def ensemble_decoder(func): def wrapper(self, normalize=False, encoder_out=None, *args, **kwargs): if self.ensemble_models is None or len(self.ensemble_models) == 1: return func( self, normalize=normalize, encoder_out=encoder_out, *args, **kwargs ) def _replace(encoder_out, new_val): new_encoder_out = encoder_out.copy() new_encoder_out["encoder_out"] = [new_val] return new_encoder_out action_outs = [ func( model, normalize=normalize, encoder_out=_replace( encoder_out, encoder_out["encoder_out"][0][:, :, :, i] ), *args, **kwargs ) for i, model in enumerate(self.ensemble_models) ] if not isinstance(action_outs[0], tuple): # return multiple values action_outs = [[a] for a in action_outs] else: action_outs = [list(a) for a in action_outs] ensembled_outs = [] for i in range(len(action_outs[0])): if i == 0 and normalize: ensembled_outs += [ torch.logsumexp( torch.stack([a[i] for a in action_outs], -1), dim=-1 ) - math.log(len(self.ensemble_models)) ] elif action_outs[0][i] is not None: ensembled_outs += [torch.stack([a[i] for a in action_outs], -1)] else: ensembled_outs += [None] if len(ensembled_outs) == 1: return ensembled_outs[0] return tuple(ensembled_outs) return wrapper class FairseqNATModel(TransformerModel): """ Abstract class for all nonautoregressive-based models """ def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) self.tgt_dict = decoder.dictionary self.bos = decoder.dictionary.bos() self.eos = decoder.dictionary.eos() self.pad = decoder.dictionary.pad() self.unk = decoder.dictionary.unk() self.ensemble_models = None @property def allow_length_beam(self): return False @property def allow_ensemble(self): return True def enable_ensemble(self, models): self.encoder.ensemble_models = [m.encoder for m in models] self.decoder.ensemble_models = [m.decoder for m in models] @staticmethod def add_args(parser): TransformerModel.add_args(parser) parser.add_argument( "--apply-bert-init", action="store_true", help="use custom param initialization for BERT", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = FairseqNATDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder @classmethod def build_encoder(cls, args, src_dict, embed_tokens): encoder = FairseqNATEncoder(args, src_dict, embed_tokens) if getattr(args, "apply_bert_init", False): encoder.apply(init_bert_params) return encoder def forward_encoder(self, encoder_inputs): return self.encoder(*encoder_inputs) def forward_decoder(self, *args, **kwargs): return NotImplementedError def initialize_output_tokens(self, *args, **kwargs): return NotImplementedError def forward(self, *args, **kwargs): return NotImplementedError class FairseqNATEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) self.ensemble_models = None @ensemble_encoder def forward(self, *args, **kwargs): return super().forward(*args, **kwargs) class FairseqNATDecoder(TransformerDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn) self.ensemble_models = None
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/fairseq_nat_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .fairseq_nat_model import * from .nonautoregressive_transformer import * from .nat_crf_transformer import * from .iterative_nonautoregressive_transformer import * from .cmlm_transformer import * from .levenshtein_transformer import * from .insertion_transformer import *
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq.iterative_refinement_generator import DecoderOut from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder from fairseq.models.transformer import Embedding from fairseq.modules import TransformerDecoderLayer from fairseq.modules.transformer_sentence_encoder import init_bert_params from .levenshtein_utils import ( _apply_del_words, _apply_ins_masks, _apply_ins_words, _fill, _get_del_targets, _get_ins_targets, _skip, _skip_encoder_out, ) @register_model("levenshtein_transformer") class LevenshteinTransformerModel(FairseqNATModel): @property def allow_length_beam(self): return False @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) parser.add_argument( "--early-exit", default="6,6,6", type=str, help="number of decoder layers before word_del, mask_ins, word_ins", ) parser.add_argument( "--no-share-discriminator", action="store_true", help="separate parameters for discriminator", ) parser.add_argument( "--no-share-maskpredictor", action="store_true", help="separate parameters for mask-predictor", ) parser.add_argument( "--share-discriminator-maskpredictor", action="store_true", help="share the parameters for both mask-predictor and discriminator", ) parser.add_argument( "--sampling-for-deletion", action="store_true", help="instead of argmax, use sampling to predict the tokens", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = LevenshteinTransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert tgt_tokens is not None, "forward function only supports training." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # generate training labels for insertion masked_tgt_masks, masked_tgt_tokens, mask_ins_targets = _get_ins_targets( prev_output_tokens, tgt_tokens, self.pad, self.unk ) mask_ins_targets = mask_ins_targets.clamp(min=0, max=255) # for safe prediction mask_ins_masks = prev_output_tokens[:, 1:].ne(self.pad) mask_ins_out, _ = self.decoder.forward_mask_ins( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_out, _ = self.decoder.forward_word_ins( normalize=False, prev_output_tokens=masked_tgt_tokens, encoder_out=encoder_out, ) # make online prediction if self.decoder.sampling_for_deletion: word_predictions = torch.multinomial( F.softmax(word_ins_out, -1).view(-1, word_ins_out.size(-1)), 1 ).view(word_ins_out.size(0), -1) else: word_predictions = F.log_softmax(word_ins_out, dim=-1).max(2)[1] word_predictions.masked_scatter_( ~masked_tgt_masks, tgt_tokens[~masked_tgt_masks] ) # generate training labels for deletion word_del_targets = _get_del_targets(word_predictions, tgt_tokens, self.pad) word_del_out, _ = self.decoder.forward_word_del( normalize=False, prev_output_tokens=word_predictions, encoder_out=encoder_out, ) word_del_masks = word_predictions.ne(self.pad) return { "mask_ins": { "out": mask_ins_out, "tgt": mask_ins_targets, "mask": mask_ins_masks, "ls": 0.01, }, "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": masked_tgt_masks, "ls": self.args.label_smoothing, "nll_loss": True, }, "word_del": { "out": word_del_out, "tgt": word_del_targets, "mask": word_del_masks, }, } def forward_decoder( self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs ): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores attn = decoder_out.attn history = decoder_out.history bsz = output_tokens.size(0) if max_ratio is None: max_lens = torch.zeros_like(output_tokens).fill_(255) else: if not encoder_out["encoder_padding_mask"]: max_src_len = encoder_out["encoder_out"].size(0) src_lens = encoder_out["encoder_out"].new(bsz).fill_(max_src_len) else: src_lens = (~encoder_out["encoder_padding_mask"][0]).sum(1) max_lens = (src_lens * max_ratio).clamp(min=10).long() # delete words # do not delete tokens if it is <s> </s> can_del_word = output_tokens.ne(self.pad).sum(1) > 2 if can_del_word.sum() != 0: # we cannot delete, skip word_del_score, word_del_attn = self.decoder.forward_word_del( normalize=True, prev_output_tokens=_skip(output_tokens, can_del_word), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_del_word), ) word_del_pred = word_del_score.max(-1)[1].bool() _tokens, _scores, _attn = _apply_del_words( output_tokens[can_del_word], output_scores[can_del_word], word_del_attn, word_del_pred, self.pad, self.bos, self.eos, ) output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad) output_scores = _fill(output_scores, can_del_word, _scores, 0) attn = _fill(attn, can_del_word, _attn, 0.0) if history is not None: history.append(output_tokens.clone()) # insert placeholders can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens if can_ins_mask.sum() != 0: mask_ins_score, _ = self.decoder.forward_mask_ins( normalize=True, prev_output_tokens=_skip(output_tokens, can_ins_mask), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_mask), ) if eos_penalty > 0.0: mask_ins_score[:, :, 0] = mask_ins_score[:, :, 0] - eos_penalty mask_ins_pred = mask_ins_score.max(-1)[1] mask_ins_pred = torch.min( mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred) ) _tokens, _scores = _apply_ins_masks( output_tokens[can_ins_mask], output_scores[can_ins_mask], mask_ins_pred, self.pad, self.unk, self.eos, ) output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_mask, _scores, 0) if history is not None: history.append(output_tokens.clone()) # insert words can_ins_word = output_tokens.eq(self.unk).sum(1) > 0 if can_ins_word.sum() != 0: word_ins_score, word_ins_attn = self.decoder.forward_word_ins( normalize=True, prev_output_tokens=_skip(output_tokens, can_ins_word), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_word), ) word_ins_score, word_ins_pred = word_ins_score.max(-1) _tokens, _scores = _apply_ins_words( output_tokens[can_ins_word], output_scores[can_ins_word], word_ins_pred, word_ins_score, self.unk, ) output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_word, _scores, 0) attn = _fill(attn, can_ins_word, word_ins_attn, 0.0) if history is not None: history.append(output_tokens.clone()) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] attn = None if attn is None else attn[:, :cut_off, :] return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=attn, history=history, ) def initialize_output_tokens(self, encoder_out, src_tokens): initial_output_tokens = src_tokens.new_zeros(src_tokens.size(0), 2) initial_output_tokens[:, 0] = self.bos initial_output_tokens[:, 1] = self.eos initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(encoder_out["encoder_out"][0]) return DecoderOut( output_tokens=initial_output_tokens, output_scores=initial_output_scores, attn=None, step=0, max_step=0, history=None, ) class LevenshteinTransformerDecoder(FairseqNATDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) self.embed_mask_ins = Embedding(256, self.output_embed_dim * 2, None) self.embed_word_del = Embedding(2, self.output_embed_dim, None) # del_word, ins_mask, ins_word self.early_exit = [int(i) for i in args.early_exit.split(",")] assert len(self.early_exit) == 3 # copy layers for mask-predict/deletion self.layers_msk = None if getattr(args, "no_share_maskpredictor", False): self.layers_msk = nn.ModuleList( [ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(self.early_exit[1]) ] ) self.layers_del = None if getattr(args, "no_share_discriminator", False): self.layers_del = nn.ModuleList( [ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(self.early_exit[0]) ] ) if getattr(args, "share_discriminator_maskpredictor", False): assert getattr( args, "no_share_discriminator", False ), "must set saperate discriminator" self.layers_msk = self.layers_del def extract_features( self, prev_output_tokens, encoder_out=None, early_exit=None, layers=None, **unused ): """ Similar to *forward* but only return features. Inputs: prev_output_tokens: Tensor(B, T) encoder_out: a dictionary of hidden states and masks Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs the LevenshteinTransformer decoder has full-attention to all generated tokens """ # embed positions positions = ( self.embed_positions(prev_output_tokens) if self.embed_positions is not None else None ) # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers decoder_padding_mask = prev_output_tokens.eq(self.padding_idx) layers = self.layers if layers is None else layers early_exit = len(layers) if early_exit is None else early_exit for _, layer in enumerate(layers[:early_exit]): x, attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, self_attn_mask=None, self_attn_padding_mask=decoder_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": attn, "inner_states": inner_states} @ensemble_decoder def forward_mask_ins(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[1], layers=self.layers_msk, **unused ) features_cat = torch.cat([features[:, :-1, :], features[:, 1:, :]], 2) decoder_out = F.linear(features_cat, self.embed_mask_ins.weight) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @ensemble_decoder def forward_word_ins(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[2], layers=self.layers, **unused ) decoder_out = self.output_layer(features) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @ensemble_decoder def forward_word_del(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[0], layers=self.layers_del, **unused ) decoder_out = F.linear(features, self.embed_word_del.weight) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @register_model_architecture("levenshtein_transformer", "levenshtein_transformer") def levenshtein_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.early_exit = getattr(args, "early_exit", "6,6,6") args.no_share_discriminator = getattr(args, "no_share_discriminator", False) args.no_share_maskpredictor = getattr(args, "no_share_maskpredictor", False) args.share_discriminator_maskpredictor = getattr( args, "share_discriminator_maskpredictor", False ) args.no_share_last_layer = getattr(args, "no_share_last_layer", False) @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_wmt_en_de" ) def levenshtein_transformer_wmt_en_de(args): levenshtein_base_architecture(args) # similar parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_vaswani_wmt_en_de_big" ) def levenshtein_transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) levenshtein_base_architecture(args) # default parameters used in tensor2tensor implementation @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_wmt_en_de_big" ) def levenshtein_transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) levenshtein_transformer_vaswani_wmt_en_de_big(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/levenshtein_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq.models.nat import ( _apply_del_words, _apply_ins_masks, _apply_ins_words, _fill, _skip, _skip_encoder_out, ) class _EnsembleModelEncoder(object): def __init__(self, models): self.models = models def reorder_encoder_out(self, encoder_outs, new_order): encoder_outs = [ model.encoder.reorder_encoder_out(encoder_out, new_order) for model, encoder_out in zip(self.models, encoder_outs) ] return encoder_outs class BasicEnsembleModel(torch.nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models = torch.nn.ModuleList(models) self.bos = self.models[0].decoder.dictionary.bos() self.eos = self.models[0].decoder.dictionary.eos() self.pad = self.models[0].decoder.dictionary.pad() self.unk = self.models[0].decoder.dictionary.unk() self.encoder = _EnsembleModelEncoder(self.models) def has_encoder(self): return hasattr(self.models[0], "encoder") def max_decoder_positions(self): return min(m.max_decoder_positions() for m in self.models) @torch.no_grad() def forward_encoder(self, encoder_input): if not self.has_encoder(): return None return [model.forward_encoder(encoder_input) for model in self.models] @torch.no_grad() def forward_decoder(self, *inputs): raise NotImplementedError def initialize_output_tokens(self, *inputs): raise NotImplementedError class EnsembleLevT(BasicEnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) @torch.no_grad() def forward_decoder( self, decoder_out, encoder_outs, eos_penalty=0.0, max_ratio=None, **kwargs ): # LevT ensembling # A pipeline of three steps: deletion, placeholder, and word insertion. # We need to average scores in each step in a pipeline way because of dependence. # deletion output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores attn = decoder_out.attn bsz = output_tokens.size(0) if max_ratio is None: max_lens = output_tokens.new().fill_(255) else: if not encoder_outs[0]["encoder_padding_mask"]: src_lens = ( encoder_outs[0]["encoder_out"][0] .new(bsz) .fill_(encoder_outs[0]["encoder_out"][0].size(1)) ) else: src_lens = (~encoder_outs[0]["encoder_padding_mask"][0]).sum(1) max_lens = (src_lens * max_ratio).clamp(min=10).long() # delete words # do not delete tokens if it is <s> </s> can_del_word = output_tokens.ne(self.pad).sum(1) > 2 if can_del_word.sum() != 0: # we cannot delete, skip output_tokens, output_scores, attn = self.forward_word_del( encoder_outs, output_tokens, output_scores, attn, can_del_word, ) # insert placeholders can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens if can_ins_mask.sum() != 0: output_tokens, output_scores = self.forward_mask_ins( encoder_outs, output_tokens, output_scores, can_ins_mask, eos_penalty, max_lens, ) # insert words can_ins_word = output_tokens.eq(self.unk).sum(1) > 0 if can_ins_word.sum() != 0: output_tokens, output_scores, attn = self.forward_word_ins( encoder_outs, output_tokens, output_scores, attn, can_ins_word, ) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] attn = None if attn is None else attn[:, :cut_off, :] return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=attn, history=None, ) def forward_word_del( self, encoder_outs, output_tokens, output_scores, attn, can_del_word ): word_del_score_avg = [] word_del_attn_avg = [] for model, encoder_out in zip(self.models, encoder_outs): word_del_out, word_del_attn = model.decoder.forward_word_del( _skip(output_tokens, can_del_word), _skip_encoder_out(model.encoder, encoder_out, can_del_word), ) word_del_score = F.log_softmax(word_del_out, 2) word_del_score_avg.append(word_del_score) word_del_attn_avg.append(word_del_attn) word_del_score_avg = torch.logsumexp( torch.stack(word_del_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) word_del_pred = word_del_score_avg.max(-1)[1].bool() if word_del_attn_avg[0] is not None: word_del_attn_avg = torch.stack(word_del_attn_avg, dim=0) / len(self.models) else: word_del_attn_avg = None _tokens, _scores, _attn = _apply_del_words( output_tokens[can_del_word], output_scores[can_del_word], word_del_attn_avg, word_del_pred, self.pad, self.bos, self.eos, ) output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad) output_scores = _fill(output_scores, can_del_word, _scores, 0) attn = _fill(attn, can_del_word, _attn, 0.0) return output_tokens, output_scores, attn def forward_mask_ins( self, encoder_outs, output_tokens, output_scores, can_ins_mask, eos_penalty, max_lens, ): mask_ins_score_avg = [] for model, encoder_out in zip(self.models, encoder_outs): mask_ins_out, _ = model.decoder.forward_mask_ins( _skip(output_tokens, can_ins_mask), _skip_encoder_out(model.encoder, encoder_out, can_ins_mask), ) mask_ins_score = F.log_softmax(mask_ins_out, 2) if eos_penalty > 0.0: mask_ins_score[:, :, 0] -= eos_penalty mask_ins_score_avg.append(mask_ins_score) mask_ins_score_avg = torch.logsumexp( torch.stack(mask_ins_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) mask_ins_pred = mask_ins_score_avg.max(-1)[1] mask_ins_pred = torch.min( mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred) ) _tokens, _scores = _apply_ins_masks( output_tokens[can_ins_mask], output_scores[can_ins_mask], mask_ins_pred, self.pad, self.unk, self.eos, ) output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_mask, _scores, 0) return output_tokens, output_scores def forward_word_ins( self, encoder_outs, output_tokens, output_scores, attn, can_ins_word ): word_ins_score_avg = [] word_ins_attn_avg = [] for model, encoder_out in zip(self.models, encoder_outs): word_ins_out, word_ins_attn = model.decoder.forward_word_ins( _skip(output_tokens, can_ins_word), _skip_encoder_out(model.encoder, encoder_out, can_ins_word), ) word_ins_score = F.log_softmax(word_ins_out, 2) word_ins_score_avg.append(word_ins_score) word_ins_attn_avg.append(word_ins_attn) word_ins_score_avg = torch.logsumexp( torch.stack(word_ins_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) if word_ins_attn_avg[0] is not None: word_ins_attn_avg = torch.stack(word_ins_attn_avg, dim=0) / len(self.models) else: word_ins_attn_avg = None word_ins_score_max, word_ins_pred = word_ins_score_avg.max(-1) _tokens, _scores = _apply_ins_words( output_tokens[can_ins_word], output_scores[can_ins_word], word_ins_pred, word_ins_score_max, self.unk, ) output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_word, _scores, 0) attn = _fill(attn, can_ins_word, word_ins_attn, 0.0) return output_tokens, output_scores, attn def initialize_output_tokens(self, encoder_outs, src_tokens): # LevT doesn't do length prediction. return self.models[0].initialize_output_tokens(encoder_outs[0], src_tokens)
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/nonautoregressive_ensembles.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from fairseq import utils from fairseq.iterative_refinement_generator import DecoderOut from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder from fairseq.models.transformer import Embedding from fairseq.modules.transformer_sentence_encoder import init_bert_params def _mean_pooling(enc_feats, src_masks): # enc_feats: T x B x C # src_masks: B x T or None if src_masks is None: enc_feats = enc_feats.mean(0) else: src_masks = (~src_masks).transpose(0, 1).type_as(enc_feats) enc_feats = ( (enc_feats / src_masks.sum(0)[None, :, None]) * src_masks[:, :, None] ).sum(0) return enc_feats def _argmax(x, dim): return (x == x.max(dim, keepdim=True)[0]).type_as(x) def _uniform_assignment(src_lens, trg_lens): max_trg_len = trg_lens.max() steps = (src_lens.float() - 1) / (trg_lens.float() - 1) # step-size # max_trg_len index_t = utils.new_arange(trg_lens, max_trg_len).float() index_t = steps[:, None] * index_t[None, :] # batch_size X max_trg_len index_t = torch.round(index_t).long().detach() return index_t @register_model("nonautoregressive_transformer") class NATransformerModel(FairseqNATModel): @property def allow_length_beam(self): return True @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) # length prediction parser.add_argument( "--src-embedding-copy", action="store_true", help="copy encoder word embeddings as the initial input of the decoder", ) parser.add_argument( "--pred-length-offset", action="store_true", help="predicting the length difference between the target and source sentences", ) parser.add_argument( "--sg-length-pred", action="store_true", help="stop the gradients back-propagated from the length predictor", ) parser.add_argument( "--length-loss-factor", type=float, help="weights on the length prediction loss", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = NATransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) return { "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": tgt_tokens.ne(self.pad), "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): step = decoder_out.step output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder output_masks = output_tokens.ne(self.pad) _scores, _tokens = self.decoder( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out, step=step, ).max(-1) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) def initialize_output_tokens(self, encoder_out, src_tokens): # length prediction length_tgt = self.decoder.forward_length_prediction( self.decoder.forward_length(normalize=True, encoder_out=encoder_out), encoder_out=encoder_out, ) max_length = length_tgt.clamp_(min=2).max() idx_length = utils.new_arange(src_tokens, max_length) initial_output_tokens = src_tokens.new_zeros( src_tokens.size(0), max_length ).fill_(self.pad) initial_output_tokens.masked_fill_( idx_length[None, :] < length_tgt[:, None], self.unk ) initial_output_tokens[:, 0] = self.bos initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos) initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(encoder_out["encoder_out"][0]) return DecoderOut( output_tokens=initial_output_tokens, output_scores=initial_output_scores, attn=None, step=0, max_step=0, history=None, ) def regenerate_length_beam(self, decoder_out, beam_size): output_tokens = decoder_out.output_tokens length_tgt = output_tokens.ne(self.pad).sum(1) length_tgt = ( length_tgt[:, None] + utils.new_arange(length_tgt, 1, beam_size) - beam_size // 2 ) length_tgt = length_tgt.view(-1).clamp_(min=2) max_length = length_tgt.max() idx_length = utils.new_arange(length_tgt, max_length) initial_output_tokens = output_tokens.new_zeros( length_tgt.size(0), max_length ).fill_(self.pad) initial_output_tokens.masked_fill_( idx_length[None, :] < length_tgt[:, None], self.unk ) initial_output_tokens[:, 0] = self.bos initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos) initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(decoder_out.output_scores) return decoder_out._replace( output_tokens=initial_output_tokens, output_scores=initial_output_scores ) class NATransformerDecoder(FairseqNATDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.encoder_embed_dim = args.encoder_embed_dim self.sg_length_pred = getattr(args, "sg_length_pred", False) self.pred_length_offset = getattr(args, "pred_length_offset", False) self.length_loss_factor = getattr(args, "length_loss_factor", 0.1) self.src_embedding_copy = getattr(args, "src_embedding_copy", False) self.embed_length = Embedding(256, self.encoder_embed_dim, None) @ensemble_decoder def forward(self, normalize, encoder_out, prev_output_tokens, step=0, **unused): features, _ = self.extract_features( prev_output_tokens, encoder_out=encoder_out, embedding_copy=(step == 0) & self.src_embedding_copy, ) decoder_out = self.output_layer(features) return F.log_softmax(decoder_out, -1) if normalize else decoder_out @ensemble_decoder def forward_length(self, normalize, encoder_out): enc_feats = encoder_out["encoder_out"][0] # T x B x C if len(encoder_out["encoder_padding_mask"]) > 0: src_masks = encoder_out["encoder_padding_mask"][0] # B x T else: src_masks = None enc_feats = _mean_pooling(enc_feats, src_masks) if self.sg_length_pred: enc_feats = enc_feats.detach() length_out = F.linear(enc_feats, self.embed_length.weight) return F.log_softmax(length_out, -1) if normalize else length_out def extract_features( self, prev_output_tokens, encoder_out=None, early_exit=None, embedding_copy=False, **unused ): """ Similar to *forward* but only return features. Inputs: prev_output_tokens: Tensor(B, T) encoder_out: a dictionary of hidden states and masks Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs the LevenshteinTransformer decoder has full-attention to all generated tokens """ # embedding if embedding_copy: src_embd = encoder_out["encoder_embedding"][0] if len(encoder_out["encoder_padding_mask"]) > 0: src_mask = encoder_out["encoder_padding_mask"][0] else: src_mask = None src_mask = ( ~src_mask if src_mask is not None else prev_output_tokens.new_ones(*src_embd.size()[:2]).bool() ) x, decoder_padding_mask = self.forward_embedding( prev_output_tokens, self.forward_copying_source( src_embd, src_mask, prev_output_tokens.ne(self.padding_idx) ), ) else: x, decoder_padding_mask = self.forward_embedding(prev_output_tokens) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for i, layer in enumerate(self.layers): # early exit from the decoder. if (early_exit is not None) and (i >= early_exit): break x, attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, self_attn_mask=None, self_attn_padding_mask=decoder_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": attn, "inner_states": inner_states} def forward_embedding(self, prev_output_tokens, states=None): # embed positions positions = ( self.embed_positions(prev_output_tokens) if self.embed_positions is not None else None ) # embed tokens and positions if states is None: x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) else: x = states if positions is not None: x += positions x = self.dropout_module(x) decoder_padding_mask = prev_output_tokens.eq(self.padding_idx) return x, decoder_padding_mask def forward_copying_source(self, src_embeds, src_masks, tgt_masks): length_sources = src_masks.sum(1) length_targets = tgt_masks.sum(1) mapped_inputs = _uniform_assignment(length_sources, length_targets).masked_fill( ~tgt_masks, 0 ) copied_embedding = torch.gather( src_embeds, 1, mapped_inputs.unsqueeze(-1).expand( *mapped_inputs.size(), src_embeds.size(-1) ), ) return copied_embedding def forward_length_prediction(self, length_out, encoder_out, tgt_tokens=None): enc_feats = encoder_out["encoder_out"][0] # T x B x C if len(encoder_out["encoder_padding_mask"]) > 0: src_masks = encoder_out["encoder_padding_mask"][0] # B x T else: src_masks = None if self.pred_length_offset: if src_masks is None: src_lengs = enc_feats.new_ones(enc_feats.size(1)).fill_( enc_feats.size(0) ) else: src_lengs = (~src_masks).transpose(0, 1).type_as(enc_feats).sum(0) src_lengs = src_lengs.long() if tgt_tokens is not None: # obtain the length target tgt_lengs = tgt_tokens.ne(self.padding_idx).sum(1).long() if self.pred_length_offset: length_tgt = tgt_lengs - src_lengs + 128 else: length_tgt = tgt_lengs length_tgt = length_tgt.clamp(min=0, max=255) else: # predict the length target (greedy for now) # TODO: implementing length-beam pred_lengs = length_out.max(-1)[1] if self.pred_length_offset: length_tgt = pred_lengs - 128 + src_lengs else: length_tgt = pred_lengs return length_tgt @register_model_architecture( "nonautoregressive_transformer", "nonautoregressive_transformer" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) @register_model_architecture( "nonautoregressive_transformer", "nonautoregressive_transformer_wmt_en_de" ) def nonautoregressive_transformer_wmt_en_de(args): base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/nonautoregressive_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This file implements: Ghazvininejad, Marjan, et al. "Constant-time machine translation with conditional masked language models." arXiv preprint arXiv:1904.09324 (2019). """ from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel from fairseq.utils import new_arange def _skeptical_unmasking(output_scores, output_masks, p): sorted_index = output_scores.sort(-1)[1] boundary_len = ( (output_masks.sum(1, keepdim=True).type_as(output_scores) - 2) * p ).long() skeptical_mask = new_arange(output_masks) < boundary_len return skeptical_mask.scatter(1, sorted_index, skeptical_mask) @register_model("cmlm_transformer") class CMLMNATransformerModel(NATransformerModel): @staticmethod def add_args(parser): NATransformerModel.add_args(parser) def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert not self.decoder.src_embedding_copy, "do not support embedding copy." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_mask = prev_output_tokens.eq(self.unk) return { "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): step = decoder_out.step max_step = decoder_out.max_step output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder output_masks = output_tokens.eq(self.unk) _scores, _tokens = self.decoder( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out, ).max(-1) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) # skeptical decoding (depend on the maximum decoding steps.) if (step + 1) < max_step: skeptical_mask = _skeptical_unmasking( output_scores, output_tokens.ne(self.pad), 1 - (step + 1) / max_step ) output_tokens.masked_fill_(skeptical_mask, self.unk) output_scores.masked_fill_(skeptical_mask, 0.0) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) @register_model_architecture("cmlm_transformer", "cmlm_transformer") def cmlm_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", True) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.ngram_predictor = getattr(args, "ngram_predictor", 1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) @register_model_architecture("cmlm_transformer", "cmlm_transformer_wmt_en_de") def cmlm_wmt_en_de(args): cmlm_base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/cmlm_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel, base_architecture from fairseq.modules import DynamicCRF @register_model("nacrf_transformer") class NACRFTransformerModel(NATransformerModel): def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) self.crf_layer = DynamicCRF( num_embedding=len(self.tgt_dict), low_rank=args.crf_lowrank_approx, beam_size=args.crf_beam_approx, ) @property def allow_ensemble(self): return False @staticmethod def add_args(parser): NATransformerModel.add_args(parser) parser.add_argument( "--crf-lowrank-approx", type=int, help="the dimension of low-rank approximation of transition", ) parser.add_argument( "--crf-beam-approx", type=int, help="the beam size for apporixmating the normalizing factor", ) parser.add_argument( "--word-ins-loss-factor", type=float, help="weights on NAT loss used to co-training with CRF loss.", ) def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_tgt, word_ins_mask = tgt_tokens, tgt_tokens.ne(self.pad) # compute the log-likelihood of CRF crf_nll = -self.crf_layer(word_ins_out, word_ins_tgt, word_ins_mask) crf_nll = (crf_nll / word_ins_mask.type_as(crf_nll).sum(-1)).mean() return { "word_ins": { "out": word_ins_out, "tgt": word_ins_tgt, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, "factor": self.args.word_ins_loss_factor, }, "word_crf": {"loss": crf_nll}, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder and get emission scores output_masks = output_tokens.ne(self.pad) word_ins_out = self.decoder( normalize=False, prev_output_tokens=output_tokens, encoder_out=encoder_out ) # run viterbi decoding through CRF _scores, _tokens = self.crf_layer.forward_decoder(word_ins_out, output_masks) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) @register_model_architecture("nacrf_transformer", "nacrf_transformer") def nacrf_base_architecture(args): args.crf_lowrank_approx = getattr(args, "crf_lowrank_approx", 32) args.crf_beam_approx = getattr(args, "crf_beam_approx", 64) args.word_ins_loss_factor = getattr(args, "word_ins_loss_factor", 0.5) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/nat_crf_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn.functional as F from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import ( FairseqNATModel, LevenshteinTransformerDecoder, LevenshteinTransformerModel, ensemble_decoder, ) from fairseq.models.transformer import Linear from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.utils import new_arange class NegativeDistanceScore(object): def __init__(self): # pre-compute some values self.scores = {} self.scores[0.5] = self.compute_score_full(50, 0.5) self.scores[1.0] = self.compute_score_full(50, 1.0) self.scores[2.0] = self.compute_score_full(50, 2.0) def __call__(self, i, L, tau): if (tau is None) or (tau > 1000): return 1 / L if tau in self.scores: if L < self.scores[tau].shape[0]: return self.scores[tau][L - 1, i] return self.compute_score(L, tau)[i] def compute_score(self, L, tau): s = np.array([-abs(L / 2 - i) / tau for i in range(L)]) s = np.exp(s - s.max()) return s / s.sum() def compute_score_full(self, L, tau): s = -abs(np.arange(0, L - 1)[:, None] / 2 - np.arange(L)[None, :]) / tau s = np.tril(s, 0) + np.triu(s - float("inf"), 1) s = np.exp(s - s.max(1, keepdims=True)) return s / s.sum(1, keepdims=True) neg_scorer = NegativeDistanceScore() def _get_ins_targets(in_tokens, out_tokens, padding_idx, unk_idx, vocab_size, tau=None): try: from fairseq import libnat except ImportError as e: import sys sys.stderr.write("ERROR: missing libnat. run `pip install --editable .`\n") raise e B = in_tokens.size(0) T = in_tokens.size(1) V = vocab_size with torch.cuda.device_of(in_tokens): in_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist()) ] out_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(out_tokens.tolist()) ] full_labels = libnat.suggested_ed2_path( in_tokens_list, out_tokens_list, padding_idx ) insert_labels = [a[:-1] for a in full_labels] # numericalize1 insert_label_tensors = in_tokens.new_zeros(B * (T - 1) * V).float() insert_index, insert_labels = zip( *[ (w + (j + i * (T - 1)) * V, neg_scorer(k, len(label), tau)) for i, labels in enumerate(insert_labels) for j, label in enumerate(labels[1:-1]) for k, w in enumerate(label) ] ) # HACK 1:-1 insert_index, insert_labels = [ torch.tensor(list(a), device=in_tokens.device) for a in [insert_index, insert_labels] ] insert_label_tensors.scatter_(0, insert_index.long(), insert_labels) insert_label_tensors = insert_label_tensors.view(B, T - 1, V) return insert_label_tensors def _apply_ins_words(in_tokens, in_scores, word_ins_pred, word_ins_scores, padding_idx): padding_masks = in_tokens[:, 1:].eq(padding_idx) word_ins_scores.masked_fill_(padding_masks, 0.0) word_ins_pred.masked_fill_(padding_masks, padding_idx) in_coords = new_arange(in_tokens).type_as(in_scores) # shift all padding predictions to infinite out_coords = (in_coords[:, 1:] - 0.5).masked_fill( word_ins_pred.eq(padding_idx), float("inf") ) out_coords = torch.cat([in_coords, out_coords], 1).sort(-1)[1] out_tokens = torch.cat([in_tokens, word_ins_pred], 1).gather(1, out_coords) out_scores = torch.cat([in_scores, word_ins_scores], 1).gather(1, out_coords) return out_tokens, out_scores @register_model("insertion_transformer") class InsertionTransformerModel(LevenshteinTransformerModel): def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) parser.add_argument("--label-tau", default=None, type=float) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = InsertionTransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert tgt_tokens is not None, "forward function only supports training." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # generate training labels for insertion word_ins_out = self.decoder.forward_word_ins( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_tgt = _get_ins_targets( prev_output_tokens, tgt_tokens, self.pad, self.unk, len(self.tgt_dict), tau=self.decoder.label_tau, ).type_as(word_ins_out) word_ins_masks = prev_output_tokens[:, 1:].ne(self.pad) return { "word_ins": { "out": word_ins_out, "tgt": word_ins_tgt, "mask": word_ins_masks, "ls": self.args.label_smoothing, "nll_loss": True, } } def forward_decoder( self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs ): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # TODO: decoding for InsertionTransformer word_ins_score = self.decoder.forward_word_ins( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out ) if eos_penalty > 0.0: word_ins_score[:, :, self.pad] -= eos_penalty word_ins_score, word_ins_pred = word_ins_score.max(-1) output_tokens, output_scores = _apply_ins_words( output_tokens, output_scores, word_ins_pred, word_ins_score, self.pad ) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) class InsertionTransformerDecoder(LevenshteinTransformerDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): # use the TransformerDecoder's __init__ super(LevenshteinTransformerDecoder, self).__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.pool_out = Linear(self.output_embed_dim * 2, self.output_embed_dim) self.label_tau = getattr(args, "label_tau", None) @ensemble_decoder def forward_word_ins(self, normalize, encoder_out, prev_output_tokens): features = self.extract_features(prev_output_tokens, encoder_out=encoder_out)[0] features = self.pool_out( torch.cat([features[:, :-1, :], features[:, 1:, :]], 2) ) decoder_out = self.output_layer(features) return F.log_softmax(decoder_out, -1) if normalize else decoder_out def forward_mask_ins(self, *args, **kwargs): raise NotImplementedError def forward_word_del(self, *args, **kwargs): raise NotImplementedError @register_model_architecture("insertion_transformer", "insertion_transformer") def insertion_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # special for insertion transformer args.label_tau = getattr(args, "label_tau", None)
EXA-1-master
exa/libraries/fairseq/fairseq/models/nat/insertion_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .hub_interface import * # noqa from .model import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/bart/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension """ import logging from typing import Optional import torch import torch.nn as nn from fairseq import utils from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import TransformerModel from fairseq.modules.transformer_sentence_encoder import init_bert_params from .hub_interface import BARTHubInterface logger = logging.getLogger(__name__) @register_model("bart") class BARTModel(TransformerModel): __jit_unused_properties__ = ["supported_targets"] @classmethod def hub_models(cls): return { "bart.base": "http://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz", "bart.large": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz", "bart.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz", "bart.large.cnn": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz", "bart.large.xsum": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz", } def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) # We follow BERT's random weight initialization self.apply(init_bert_params) self.classification_heads = nn.ModuleDict() if hasattr(self.encoder, "dictionary"): self.eos: int = self.encoder.dictionary.eos() @staticmethod def add_args(parser): super(BARTModel, BARTModel).add_args(parser) parser.add_argument( "--pooler-dropout", type=float, metavar="D", help="dropout probability in the masked_lm pooler layers", ) parser.add_argument( "--pooler-activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use for pooler layer", ) parser.add_argument( "--spectral-norm-classification-head", action="store_true", help="Apply spectral normalization on the classification head", ) @property def supported_targets(self): return {"self"} def forward( self, src_tokens, src_lengths, prev_output_tokens, features_only: bool = False, classification_head_name: Optional[str] = None, token_embeddings: Optional[torch.Tensor] = None, return_all_hiddens: bool = True, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): if classification_head_name is not None: features_only = True encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, token_embeddings=token_embeddings, return_all_hiddens=return_all_hiddens, ) x, extra = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) eos: int = self.eos if classification_head_name is not None: sentence_representation = x[src_tokens.eq(eos), :].view( x.size(0), -1, x.size(-1) )[:, -1, :] for k, head in self.classification_heads.items(): # for torch script only supports iteration if k == classification_head_name: x = head(sentence_representation) break return x, extra @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="gpt2", sample_break_mode="eos", **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, sample_break_mode=sample_break_mode, **kwargs, ) return BARTHubInterface(x["args"], x["task"], x["models"][0]) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" logger.info("Registering classification head: {0}".format(name)) if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = BARTClassificationHead( input_dim=self.args.encoder_embed_dim, inner_dim=inner_dim or self.args.encoder_embed_dim, num_classes=num_classes, activation_fn=self.args.pooler_activation_fn, pooler_dropout=self.args.pooler_dropout, do_spectral_norm=getattr( self.args, "spectral_norm_classification_head", False ), ) def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) prefix = name + "." if name != "" else "" current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) # Handle new classification heads present in the state dict. keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] def truncate_emb(key): if key in state_dict: state_dict[key] = state_dict[key][:-1, :] # When finetuning on translation task, remove last row of # embedding matrix that corresponds to mask_idx token. loaded_dict_size = state_dict["encoder.embed_tokens.weight"].size(0) if ( loaded_dict_size == len(self.encoder.dictionary) + 1 and "<mask>" not in self.encoder.dictionary ): truncate_emb("encoder.embed_tokens.weight") truncate_emb("decoder.embed_tokens.weight") truncate_emb("encoder.output_projection.weight") truncate_emb("decoder.output_projection.weight") # When continued pretraining on new set of languages for mbart, # add extra lang embeddings at the end of embed_tokens. # Note: newly added languages are assumed to have been added at the end. if self.args.task == "multilingual_denoising" and loaded_dict_size < len( self.encoder.dictionary ): logger.info( "Adding extra language embeddings not found in pretrained model for " "continued pretraining of MBART on new set of languages." ) loaded_mask_token_embedding = state_dict["encoder.embed_tokens.weight"][ -1, : ] num_langids_to_add = len(self.encoder.dictionary) - loaded_dict_size embed_dim = state_dict["encoder.embed_tokens.weight"].size(1) new_lang_embed_to_add = torch.zeros(num_langids_to_add, embed_dim) nn.init.normal_(new_lang_embed_to_add, mean=0, std=embed_dim**-0.5) new_lang_embed_to_add = new_lang_embed_to_add.to( dtype=state_dict["encoder.embed_tokens.weight"].dtype, ) state_dict["encoder.embed_tokens.weight"] = torch.cat( [ state_dict["encoder.embed_tokens.weight"][ : loaded_dict_size - 1, : ], new_lang_embed_to_add, loaded_mask_token_embedding.unsqueeze(0), ] ) state_dict["decoder.embed_tokens.weight"] = torch.cat( [ state_dict["decoder.embed_tokens.weight"][ : loaded_dict_size - 1, : ], new_lang_embed_to_add, loaded_mask_token_embedding.unsqueeze(0), ] ) # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v def set_beam_size(self, beam): """Set beam size for efficient beamable enc-dec attention.""" beamable = False for layer in self.decoder.layers: if layer.encoder_attn is not None: if hasattr(layer.encoder_attn, "set_beam_size"): layer.encoder_attn.set_beam_size(beam) beamable = True if beamable: self.encoder.reorder_encoder_out = self.encoder._reorder_encoder_out class BARTClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, do_spectral_norm=False, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) if do_spectral_norm: self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) def forward(self, features, **kwargs): x = features x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x @register_model_architecture("bart", "bart_large") def bart_large_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.relu_dropout = getattr(args, "relu_dropout", 0.0) args.dropout = getattr(args, "dropout", 0.1) args.max_target_positions = getattr(args, "max_target_positions", 1024) args.max_source_positions = getattr(args, "max_source_positions", 1024) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", True ) args.share_all_embeddings = getattr(args, "share_all_embeddings", True) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) @register_model_architecture("bart", "bart_base") def bart_base_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) bart_large_architecture(args) @register_model_architecture("bart", "mbart_large") def mbart_large_architecture(args): args.no_scale_embedding = getattr(args, "no_scale_embedding", False) bart_large_architecture(args) @register_model_architecture("bart", "mbart_base") def mbart_base_architecture(args): args.no_scale_embedding = getattr(args, "no_scale_embedding", False) bart_base_architecture(args) @register_model_architecture("bart", "mbart_base_wmt20") def mbart_base_wmt20_architecture(args): args.layernorm_embedding = getattr(args, "layernorm_embedding", False) mbart_base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/bart/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import logging from typing import Dict, List import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.data import encoders from fairseq.hub_utils import GeneratorHubInterface from omegaconf import open_dict logger = logging.getLogger(__name__) class BARTHubInterface(GeneratorHubInterface): """A simple PyTorch Hub interface to BART. Usage: https://github.com/pytorch/fairseq/tree/main/examples/bart """ def __init__(self, cfg, task, model): super().__init__(cfg, task, [model]) self.model = self.models[0] def encode( self, sentence: str, *addl_sentences, no_separator=True ) -> torch.LongTensor: """ BPE-encode a sentence (or multiple sentences). Every sequence begins with a beginning-of-sentence (`<s>`) symbol. Every sentence ends with an end-of-sentence (`</s>`). Example (single sentence): `<s> a b c </s>` Example (sentence pair): `<s> d e f </s> 1 2 3 </s>` The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE requires leading spaces. For example:: >>> bart.encode('Hello world').tolist() [0, 31414, 232, 2] >>> bart.encode(' world').tolist() [0, 232, 2] >>> bart.encode('world').tolist() [0, 8331, 2] """ tokens = self.bpe.encode(sentence) if len(tokens.split(" ")) > min(self.max_positions) - 2: tokens = " ".join(tokens.split(" ")[: min(self.max_positions) - 2]) bpe_sentence = "<s> " + tokens + " </s>" for s in addl_sentences: bpe_sentence += " </s>" if not no_separator else "" bpe_sentence += " " + self.bpe.encode(s) + " </s>" tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False) return tokens.long() def decode(self, tokens: torch.LongTensor): assert tokens.dim() == 1 tokens = tokens.cpu().numpy() if tokens[0] == self.task.source_dictionary.bos(): tokens = tokens[1:] # remove <s> eos_mask = tokens == self.task.source_dictionary.eos() doc_mask = eos_mask[1:] & eos_mask[:-1] sentences = np.split(tokens, doc_mask.nonzero()[0] + 1) sentences = [ self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences ] if len(sentences) == 1: return sentences[0] return sentences def _build_sample(self, src_tokens: List[torch.LongTensor]): # assert torch.is_tensor(src_tokens) dataset = self.task.build_dataset_for_inference( src_tokens, [x.numel() for x in src_tokens], ) sample = dataset.collater(dataset) sample = utils.apply_to_sample(lambda tensor: tensor.to(self.device), sample) return sample def generate( self, tokenized_sentences: List[torch.LongTensor], *args, inference_step_args=None, skip_invalid_size_inputs=False, **kwargs ) -> List[List[Dict[str, torch.Tensor]]]: inference_step_args = inference_step_args or {} if "prefix_tokens" in inference_step_args: raise NotImplementedError("prefix generation not implemented for BART") res = [] for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs): src_tokens = batch["net_input"]["src_tokens"] inference_step_args["prefix_tokens"] = src_tokens.new_full( (src_tokens.size(0), 1), fill_value=self.task.source_dictionary.bos() ).to(device=self.device) results = super().generate( src_tokens, *args, inference_step_args=inference_step_args, skip_invalid_size_inputs=skip_invalid_size_inputs, **kwargs ) for id, hypos in zip(batch["id"].tolist(), results): res.append((id, hypos)) res = [hypos for _, hypos in sorted(res, key=lambda x: x[0])] return res def extract_features( self, tokens: torch.LongTensor, return_all_hiddens: bool = False ) -> torch.Tensor: if tokens.dim() == 1: tokens = tokens.unsqueeze(0) if tokens.size(-1) > min(self.model.max_positions()): raise ValueError( "tokens exceeds maximum length: {} > {}".format( tokens.size(-1), self.model.max_positions() ) ) tokens.to(device=self.device), prev_output_tokens = tokens.clone() prev_output_tokens[:, 0] = tokens.gather( 1, (tokens.ne(self.task.source_dictionary.pad()).sum(dim=1) - 1).unsqueeze(-1), ).squeeze() prev_output_tokens[:, 1:] = tokens[:, :-1] features, extra = self.model( src_tokens=tokens, src_lengths=None, prev_output_tokens=prev_output_tokens, features_only=True, return_all_hiddens=return_all_hiddens, ) if return_all_hiddens: # convert from T x B x C -> B x T x C inner_states = extra["inner_states"] return [inner_state.transpose(0, 1) for inner_state in inner_states] else: return features # just the last layer's features def register_classification_head( self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs ): self.model.register_classification_head( name, num_classes=num_classes, embedding_size=embedding_size, **kwargs ) def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False): if tokens.dim() == 1: tokens = tokens.unsqueeze(0) features = self.extract_features(tokens.to(device=self.device)) sentence_representation = features[ tokens.eq(self.task.source_dictionary.eos()), : ].view(features.size(0), -1, features.size(-1))[:, -1, :] logits = self.model.classification_heads[head](sentence_representation) if return_logits: return logits return F.log_softmax(logits, dim=-1) def fill_mask( self, masked_inputs: List[str], topk: int = 5, match_source_len: bool = True, **generate_kwargs ): masked_token = "<mask>" batch_tokens = [] for masked_input in masked_inputs: assert ( masked_token in masked_input ), "please add one {} token for the input".format(masked_token) text_spans = masked_input.split(masked_token) text_spans_bpe = ( (" {0} ".format(masked_token)) .join([self.bpe.encode(text_span.rstrip()) for text_span in text_spans]) .strip() ) tokens = self.task.source_dictionary.encode_line( "<s> " + text_spans_bpe + " </s>", append_eos=False, add_if_not_exist=False, ).long() batch_tokens.append(tokens) # ensure beam size is at least as big as topk generate_kwargs["beam"] = max( topk, generate_kwargs.get("beam", -1), ) generate_kwargs["match_source_len"] = match_source_len batch_hypos = self.generate(batch_tokens, **generate_kwargs) return [ [(self.decode(hypo["tokens"]), hypo["score"]) for hypo in hypos[:topk]] for hypos in batch_hypos ]
EXA-1-master
exa/libraries/fairseq/fairseq/models/bart/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models import BaseFairseqModel, register_model from fairseq.models.wav2vec.wav2vec2_asr import ( Wav2Vec2CtcConfig, Wav2VecCtc, Wav2VecEncoder, ) from fairseq.tasks import FairseqTask @register_model("wav2vec2_laser", dataclass=Wav2Vec2CtcConfig) class Wav2VecLaser(Wav2VecCtc): def __init__(self, cfg: Wav2Vec2CtcConfig, w2v_encoder: BaseFairseqModel): super().__init__(cfg, w2v_encoder) self.num_updates = 0 self.freeze_finetune_updates = cfg.freeze_finetune_updates @classmethod def build_model(cls, cfg: Wav2Vec2CtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = Wav2VecEncoder(cfg, 1024) return cls(cfg, w2v_encoder) def forward(self, **kwargs): output = super().forward(**kwargs) x_out = output["encoder_out"] * 0.01 out_pad_mask = output["padding_mask"] # Set padded outputs to -inf so they are not selected by max-pooling if out_pad_mask is not None and out_pad_mask.any(): x_out = ( x_out.float() .masked_fill_(out_pad_mask.T.unsqueeze(-1), float("-inf")) .type_as(x_out) ) return x_out.max(dim=0)[0]
EXA-1-master
exa/libraries/fairseq/fairseq/models/wav2vec/wav2vec2_laser.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .wav2vec import * # noqa from .wav2vec2 import * # noqa from .wav2vec2_asr import * # noqa from .wav2vec2_laser import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/wav2vec/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import copy import logging import math import re from argparse import Namespace from dataclasses import dataclass, field from typing import Any, Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from omegaconf import II, MISSING, open_dict from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.models import ( BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, ) from fairseq.models.wav2vec.wav2vec2 import MASKING_DISTRIBUTION_CHOICES from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer from fairseq.tasks import FairseqTask logger = logging.getLogger(__name__) @dataclass class Wav2Vec2AsrConfig(FairseqDataclass): w2v_path: str = field( default=MISSING, metadata={"help": "path to wav2vec 2.0 model"} ) no_pretrained_weights: bool = field( default=False, metadata={"help": "if true, does not load pretrained weights"} ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) final_dropout: float = field( default=0.0, metadata={"help": "dropout after transformer and before final projection"}, ) dropout: float = field( default=0.0, metadata={"help": "dropout probability inside wav2vec 2.0 model"} ) attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside wav2vec 2.0 model" }, ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside wav2vec 2.0 model" }, ) # masking apply_mask: bool = field( default=False, metadata={"help": "apply masking during fine-tuning"} ) mask_length: int = field( default=10, metadata={"help": "repeat the mask indices multiple times"} ) mask_prob: float = field( default=0.5, metadata={ "help": "probability of replacing a token with mask (normalized by length)" }, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose masks"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: Optional[int] = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) require_same_masks: bool = field( default=True, metadata={ "help": "whether to number of masked timesteps must be the same across all " "examples in a batch" }, ) mask_dropout: float = field( default=0.0, metadata={"help": "percent of masks to unmask for each sample"}, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"} ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"} ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"} ) freeze_finetune_updates: int = field( default=0, metadata={"help": "dont finetune wav2vec for this many updates"} ) feature_grad_mult: float = field( default=0.0, metadata={"help": "reset feature grad mult in wav2vec 2.0 to this"} ) layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a layer in wav2vec 2.0"} ) drop_path: float = 0 mask_channel_min_space: Optional[int] = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) mask_channel_before: bool = False normalize: bool = II("task.normalize") update_alibi: bool = True data: str = II("task.data") # this holds the loaded wav2vec args w2v_args: Any = None offload_activations: bool = field( default=False, metadata={"help": "offload_activations"} ) min_params_to_wrap: int = field( default=int(1e8), metadata={ "help": "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." }, ) checkpoint_activations: bool = field( default=False, metadata={"help": "recompute activations and save memory for extra compute"}, ) ddp_backend: str = II("distributed_training.ddp_backend") zero_mask: bool = False load_ema: bool = False layer_decay: float = 1 @dataclass class Wav2Vec2CtcConfig(Wav2Vec2AsrConfig): blank_weight: float = 0 blank_mode: str = "add" @register_model("wav2vec_ctc", dataclass=Wav2Vec2CtcConfig) class Wav2VecCtc(BaseFairseqModel): def __init__(self, cfg: Wav2Vec2CtcConfig, w2v_encoder: BaseFairseqModel): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder self.blank_weight = cfg.blank_weight self.blank_mode = cfg.blank_mode def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: Wav2Vec2CtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = Wav2VecEncoder(cfg, len(task.target_dictionary)) return cls(cfg, w2v_encoder) def get_logits(self, net_output, normalize=False): logits = net_output["encoder_out"] if self.blank_weight != 0: if self.blank_mode == "add": logits[..., 0] += self.blank_weight elif self.blank_mode == "set": logits[..., 0] = self.blank_weight else: raise Exception(f"invalid blank mode {self.blank_mode}") if net_output["padding_mask"] is not None and net_output["padding_mask"].any(): number_of_classes = logits.size(-1) masking_tensor = torch.ones( number_of_classes, device=logits.device ) * float("-inf") masking_tensor[0] = 0 if logits.size(0) > net_output["padding_mask"].size(1): net_output["padding_mask"] = F.pad( net_output["padding_mask"], (1, 0), value=False ) logits[net_output["padding_mask"].T] = masking_tensor.type_as(logits) if normalize: logits = utils.log_softmax(logits.float(), dim=-1) return logits def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = self.get_logits(net_output) if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x @dataclass class Wav2Vec2Seq2SeqConfig(Wav2Vec2AsrConfig): decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"}) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) autoregressive: bool = II("task.autoregressive") @register_model("wav2vec_seq2seq", dataclass=Wav2Vec2Seq2SeqConfig) class Wav2Vec2Seq2SeqModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, cfg: Wav2Vec2Seq2SeqConfig, task: FairseqTask): """Build a new model instance.""" assert ( cfg.autoregressive ), "Please set task.autoregressive=true for seq2seq asr models" src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) return emb decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) encoder = cls.build_encoder(cfg) decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens) return Wav2Vec2Seq2SeqModel(encoder, decoder) @classmethod def build_encoder(cls, cfg: Wav2Vec2AsrConfig): return Wav2VecEncoder(cfg) @classmethod def build_decoder(cls, cfg: Wav2Vec2Seq2SeqConfig, tgt_dict, embed_tokens): return TransformerDecoder(cfg, tgt_dict, embed_tokens) def forward(self, **kwargs): encoder_out = self.encoder(**kwargs) decoder_out = self.decoder(encoder_out=encoder_out, **kwargs) return decoder_out def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict class Wav2VecEncoder(FairseqEncoder): def __init__(self, cfg: Wav2Vec2AsrConfig, output_size=None): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "require_same_masks": getattr(cfg, "require_same_masks", True), "pct_holes": getattr(cfg, "mask_dropout", 0), "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_before": cfg.mask_channel_before, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, "checkpoint_activations": cfg.checkpoint_activations, "offload_activations": cfg.offload_activations, "min_params_to_wrap": cfg.min_params_to_wrap, # d2v multi args "encoder_dropout": cfg.dropout, "drop_path": getattr(cfg, "drop_path", 0), "mask_dropout": getattr(cfg, "mask_dropout", 0), "zero_mask": getattr(cfg, "zero_mask", False), "local_grad_mult": cfg.feature_grad_mult, "layerdrop": cfg.layerdrop, "prenet_layerdrop": cfg.layerdrop, "prenet_dropout": cfg.dropout, "post_mlp_drop": cfg.dropout, "encoder_zero_mask": getattr(cfg, "zero_mask", False), "inverse_mask": False, "learned_alibi_scale": getattr(cfg, "update_alibi", True), } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) w2v_args.criterion = None w2v_args.lr_scheduler = None cfg.w2v_args = w2v_args logger.info(w2v_args) else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) self.is_d2v_multi = "data2vec_multi" in w2v_args.model.get("_name", None) if not self.is_d2v_multi: model_normalized = w2v_args.task.get( "normalize", w2v_args.model.get("normalize", False) ) assert cfg.normalize == model_normalized, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for both pre-training and here" ) if hasattr(cfg, "checkpoint_activations") and cfg.checkpoint_activations: with open_dict(w2v_args): w2v_args.model.checkpoint_activations = cfg.checkpoint_activations w2v_args.task.data = cfg.data task = tasks.setup_task(w2v_args.task, from_checkpoint=True) model = task.build_model(w2v_args.model, from_checkpoint=True) model.remove_pretraining_modules() d = w2v_args.model.encoder_embed_dim else: assert cfg.normalize if hasattr(w2v_args.task, "audio"): w2v_args.task.audio.data = cfg.data else: w2v_args.task.data = cfg.data task = tasks.setup_task(w2v_args.task, from_checkpoint=True) model = task.build_model(w2v_args.model, from_checkpoint=True) model.remove_pretraining_modules(modality="audio") d = w2v_args.model.embed_dim if state is not None and not cfg.no_pretrained_weights: if cfg.load_ema: assert "_ema" in state["model"] for k in state["model"]["_ema"]: mk = "encoder." + k assert mk in state["model"], mk state["model"][mk] = state["model"]["_ema"][k] self.load_model_weights(state, model, cfg) super().__init__(task.source_dictionary) self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 targ_d = None self.proj = None if output_size is not None: targ_d = output_size elif getattr(cfg, "decoder_embed_dim", d) != d: targ_d = cfg.decoder_embed_dim if targ_d is not None: self.proj = Linear(d, targ_d) layer_decay = getattr(cfg, "layer_decay", 1) if layer_decay < 1: mod_encs = list(model.modality_encoders.values()) assert len(mod_encs) == 1, len(mod_encs) blocks = list(mod_encs[0].context_encoder.blocks) + list(model.blocks) num_layers = len(blocks) + 1 layer_scales = list( layer_decay ** (num_layers - i) for i in range(num_layers + 1) ) for i, b in enumerate(blocks): lid = i + 1 if layer_scales[lid] == 1.0: continue for n, p in b.named_parameters(): optim_override = getattr(p, "optim_overrides", {}) if "optimizer" not in optim_override: optim_override["optimizer"] = {} optim_override["optimizer"]["lr_scale"] = layer_scales[lid] p.optim_overrides = optim_override def load_model_weights(self, state, model, cfg): if cfg.ddp_backend == "fully_sharded": from fairseq.distributed import FullyShardedDataParallel for name, module in model.named_modules(): if "encoder.layers" in name and len(name.split(".")) == 3: # Only for layers, we do a special handling and load the weights one by one # We dont load all weights together as that wont be memory efficient and may # cause oom new_dict = { k.replace(name + ".", ""): v for (k, v) in state["model"].items() if name + "." in k } assert isinstance(module, FullyShardedDataParallel) with module.summon_full_params(): module.load_state_dict(new_dict, strict=True) module._reset_lazy_init() # Once layers are loaded, filter them out and load everything else. r = re.compile("encoder.layers.\d.") filtered_list = list(filter(r.match, state["model"].keys())) new_big_dict = { k: v for (k, v) in state["model"].items() if k not in filtered_list } model.load_state_dict(new_big_dict, strict=False) else: to_delete = {"_ema", "target_proj", "decoder"} for k in to_delete: if k in state["model"]: del state["model"][k] if hasattr(model, "modality_encoders"): if "modality_encoders.AUDIO.encoder_mask" not in state["model"]: model.modality_encoders["AUDIO"].encoder_mask = None elif not cfg.zero_mask: model.modality_encoders["AUDIO"].encoder_mask = None del state["model"]["modality_encoders.AUDIO.encoder_mask"] for k in list(state["model"].keys()): if k.startswith("modality_encoders.") and not k.startswith( "modality_encoders.AUDIO" ): del state["model"][k] print(model) model.load_state_dict(state["model"], strict=True) def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, source, padding_mask, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, "mask": self.apply_mask and self.training, } if self.is_d2v_multi: w2v_args["mode"] = "AUDIO" ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): res = self.w2v_model.extract_features(**w2v_args) x = res["x"] padding_mask = res["padding_mask"] # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj: x = self.proj(x) return { "encoder_out": x, # T x B x C "padding_mask": padding_mask, # B x T, "layer_results": res["layer_results"], } def forward_torchscript(self, net_input): if torch.jit.is_scripting(): return self.forward(net_input["source"], net_input["padding_mask"]) else: return self.forward_non_torchscript(net_input) def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["padding_mask"] is not None: encoder_out["padding_mask"] = encoder_out["padding_mask"].index_select( 0, new_order ) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg: Wav2Vec2Seq2SeqConfig, dictionary, embed_tokens, no_encoder_attn=False, ): super().__init__(dictionary) self.dropout = cfg.decoder_dropout self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder_embed_dim self.output_embed_dim = cfg.decoder_embed_dim self.layerdrop = cfg.decoder_layerdrop self.padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( cfg.max_target_positions, embed_dim, self.padding_idx, learned=cfg.decoder_learned_pos, ) if not cfg.no_token_positional_embeddings else None ) # TODO: update this when transformer gets converted to dataclass configs transformer_cfg = copy.deepcopy(cfg) with open_dict(transformer_cfg): transformer_cfg.dropout = transformer_cfg.decoder_dropout transformer_cfg.attention_dropout = ( transformer_cfg.decoder_attention_dropout ) transformer_cfg.activation_dropout = ( transformer_cfg.decoder_activation_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerDecoderLayer(transformer_cfg, no_encoder_attn) for _ in range(transformer_cfg.decoder_layers) ] ) if not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim**-0.5) if transformer_cfg.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ if type(prev_output_tokens) == list: max_len = max((len(x) for x in prev_output_tokens)) tmp = torch.zeros( [len(prev_output_tokens), max_len], device=prev_output_tokens[0].device ) for (i, p) in enumerate(prev_output_tokens): tmp[i, : len(p)] = p prev_output_tokens = tmp prev_output_tokens = prev_output_tokens.long() x, extra = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers self_attn_padding_mask = None if prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) for layer in self.layers: dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, attn, _ = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["padding_mask"] if encoder_out is not None else None, incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, self_attn_padding_mask=self_attn_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
EXA-1-master
exa/libraries/fairseq/fairseq/models/wav2vec/wav2vec2_asr.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field from typing import List, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.data.data_utils import compute_mask_indices from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.distributed import fsdp_wrap from fairseq.models import BaseFairseqModel, register_model from fairseq.modules import ( Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, RelPositionalEncoding, SamePad, TransposeLast, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.conformer_layer import ConformerWav2Vec2EncoderLayer from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.utils import buffered_arange, index_put, is_xla_tensor from .utils import pad_to_multiple EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) LAYER_TYPE_CHOICES = ChoiceEnum(["transformer", "conformer"]) @dataclass class Wav2Vec2Config(FairseqDataclass): extractor_mode: EXTRACTOR_MODE_CHOICES = field( default="default", metadata={ "help": "mode for feature extractor. default has a single group norm with d " "groups in the first conv block, whereas layer_norm has layer norms in " "every block (meant to use with normalize=True)" }, ) encoder_layers: int = field( default=12, metadata={"help": "num encoder layers in the transformer"} ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension"} ) encoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_attention_heads: int = field( default=12, metadata={"help": "num encoder attention heads"} ) activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) layer_type: LAYER_TYPE_CHOICES = field( default="transformer", metadata={"help": "layer type in encoder"} ) # dropouts dropout: float = field( default=0.1, metadata={"help": "dropout probability for the transformer"} ) attention_dropout: float = field( default=0.1, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"} ) encoder_layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"} ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features (after feat extr)"}, ) final_dim: int = field( default=0, metadata={ "help": "project final representations and targets to this many dimensions." "set to encoder_embed_dim is <= 0" }, ) layer_norm_first: bool = field( default=False, metadata={"help": "apply layernorm first in the transformer"} ) conv_feature_layers: str = field( default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]", metadata={ "help": "string describing convolutional feature extraction layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" }, ) conv_bias: bool = field( default=False, metadata={"help": "include bias in conv encoder"} ) logit_temp: float = field( default=0.1, metadata={"help": "temperature to divide logits by"} ) quantize_targets: bool = field( default=False, metadata={"help": "use quantized targets"} ) quantize_input: bool = field( default=False, metadata={"help": "use quantized inputs"} ) same_quantizer: bool = field( default=False, metadata={"help": "use same quantizer for inputs and targets"} ) target_glu: bool = field( default=False, metadata={"help": "adds projection + glu to targets"} ) feature_grad_mult: float = field( default=1.0, metadata={"help": "multiply feature extractor var grads by this"} ) quantizer_depth: int = field( default=1, metadata={"help": "number of quantizer layers"}, ) quantizer_factor: int = field( default=3, metadata={ "help": "dimensionality increase for inner quantizer layers (if depth > 1)" }, ) latent_vars: int = field( default=320, metadata={"help": "number of latent variables V in each group of the codebook"}, ) latent_groups: int = field( default=2, metadata={"help": "number of groups G of latent variables in the codebook"}, ) latent_dim: int = field( default=0, metadata={ "help": "if > 0, uses this dimensionality for latent variables. " "otherwise uses final_dim / latent_groups" }, ) # masking mask_length: int = field(default=10, metadata={"help": "mask length"}) mask_prob: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"} ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) require_same_masks: bool = field( default=True, metadata={ "help": "whether to number of masked timesteps must be the same across all " "examples in a batch" }, ) mask_dropout: float = field( default=0.0, metadata={"help": "percent of masks to unmask for each sample"}, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"} ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"} ) mask_channel_before: bool = False mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"} ) mask_channel_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # negative selection num_negatives: int = field( default=100, metadata={"help": "number of negative examples from the same sample"}, ) negatives_from_everywhere: bool = field( default=False, metadata={"help": "sample negatives from everywhere, not just masked states"}, ) cross_sample_negatives: int = field( default=0, metadata={"help": "number of negative examples from the any sample"} ) codebook_negatives: int = field( default=0, metadata={"help": "number of negative examples codebook"} ) # positional embeddings conv_pos: int = field( default=128, metadata={"help": "number of filters for convolutional positional embeddings"}, ) conv_pos_groups: int = field( default=16, metadata={"help": "number of groups for convolutional positional embedding"}, ) pos_conv_depth: int = field( default=1, metadata={"help": "depth of positional encoder network"}, ) latent_temp: Tuple[float, float, float] = field( default=(2, 0.5, 0.999995), metadata={ "help": "temperature for latent variable sampling. " "can be tuple of 3 values (start, end, decay)" }, ) max_positions: int = field(default=100000, metadata={"help": "Max positions"}) checkpoint_activations: bool = field( default=False, metadata={"help": "recompute activations and save memory for extra compute"}, ) # FP16 optimization required_seq_len_multiple: int = field( default=2, metadata={ "help": "pad the input to encoder such that the sequence length is divisible by multiple" }, ) crop_seq_to_multiple: int = field( default=1, metadata={ "help": "crop convolutional feature extractor output such that the sequence length is divisible by multiple" }, ) # Conformer depthwise_conv_kernel_size: int = field( default=31, metadata={ "help": "depthwise-conv-kernel-size for convolution in conformer layer" }, ) attn_type: str = field( default="", metadata={"help": "if espnet use ESPNET MHA"}, ) pos_enc_type: str = field( default="abs", metadata={"help": "Positional encoding type to use in conformer"}, ) fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"}) @register_model("wav2vec2", dataclass=Wav2Vec2Config) class Wav2Vec2Model(BaseFairseqModel): def __init__(self, cfg: Wav2Vec2Config): super().__init__() self.cfg = cfg feature_enc_layers = eval(cfg.conv_feature_layers) self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input else None ) self.crop_seq_to_multiple = cfg.crop_seq_to_multiple self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_before = cfg.mask_channel_before self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.quantizer = None self.input_quantizer = None self.n_negatives = cfg.num_negatives self.cross_sample_negatives = cfg.cross_sample_negatives self.codebook_negatives = cfg.codebook_negatives self.negatives_from_everywhere = cfg.negatives_from_everywhere self.logit_temp = cfg.logit_temp final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim if cfg.quantize_targets: vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim self.quantizer = GumbelVectorQuantizer( dim=self.embed, num_vars=cfg.latent_vars, temp=cfg.latent_temp, groups=cfg.latent_groups, combine_groups=False, vq_dim=vq_dim, time_first=True, weight_proj_depth=cfg.quantizer_depth, weight_proj_factor=cfg.quantizer_factor, ) self.project_q = nn.Linear(vq_dim, final_dim) else: self.project_q = nn.Linear(self.embed, final_dim) if cfg.quantize_input: if cfg.same_quantizer and self.quantizer is not None: vq_dim = final_dim self.input_quantizer = self.quantizer else: vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim self.input_quantizer = GumbelVectorQuantizer( dim=self.embed, num_vars=cfg.latent_vars, temp=cfg.latent_temp, groups=cfg.latent_groups, combine_groups=False, vq_dim=vq_dim, time_first=True, weight_proj_depth=cfg.quantizer_depth, weight_proj_factor=cfg.quantizer_factor, ) self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) encoder_cls = TransformerEncoder if cfg.layer_type == "conformer" and cfg.pos_enc_type in ["rel_pos", "rope"]: encoder_cls = ConformerEncoder self.encoder = encoder_cls(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict @classmethod def build_model(cls, cfg: Wav2Vec2Config, task=None): """Build a new model instance.""" return cls(cfg) def apply_mask( self, x, padding_mask, mask_indices=None, mask_channel_indices=None, ): B, T, C = x.shape if self.mask_channel_prob > 0 and self.mask_channel_before: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 if self.mask_prob > 0: if mask_indices is None: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, require_same_masks=self.cfg.require_same_masks, mask_dropout=self.cfg.mask_dropout, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x = index_put(x, mask_indices, self.mask_emb) else: mask_indices = None if self.mask_channel_prob > 0 and not self.mask_channel_before: if mask_channel_indices is None: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x = index_put(x, mask_channel_indices, 0) return x, mask_indices def sample_negatives(self, y, num, padding_count=None): if self.n_negatives == 0 and self.cross_sample_negatives == 0: return y.new(0) bsz, tsz, fsz = y.shape y = y.view(-1, fsz) # BTC => (BxT)C # FIXME: what happens if padding_count is specified? cross_high = tsz * bsz high = tsz - (padding_count or 0) with torch.no_grad(): assert high > 1, f"{bsz,tsz,fsz}" if self.n_negatives > 0: tszs = ( buffered_arange(num) .unsqueeze(-1) .expand(-1, self.n_negatives) .flatten() ) neg_idxs = torch.randint( low=0, high=high - 1, size=(bsz, self.n_negatives * num) ) neg_idxs[neg_idxs >= tszs] += 1 if self.cross_sample_negatives > 0: tszs = ( buffered_arange(num) .unsqueeze(-1) .expand(-1, self.cross_sample_negatives) .flatten() ) cross_neg_idxs = torch.randint( low=0, high=cross_high - 1, size=(bsz, self.cross_sample_negatives * num), ) cross_neg_idxs[cross_neg_idxs >= tszs] += 1 if self.n_negatives > 0: neg_idxs = neg_idxs + (torch.arange(bsz).unsqueeze(1) * high) else: neg_idxs = cross_neg_idxs if self.cross_sample_negatives > 0 and self.n_negatives > 0: neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) negs = y[neg_idxs.view(-1)] negs = negs.view( bsz, num, self.n_negatives + self.cross_sample_negatives, fsz ).permute( 2, 0, 1, 3 ) # to NxBxTxC return negs, neg_idxs def compute_preds(self, x, y, negatives): neg_is_pos = (y == negatives).all(-1) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1) logits = logits / self.logit_temp logits = logits.type_as(x) if is_xla_tensor(logits) or neg_is_pos.any(): if not hasattr(self, "_inftensor"): fillval = -float(2**30) self._inftensor = ( torch.tensor(fillval).to(x.device) if is_xla_tensor(logits) else float("-inf") ) logits[1:] = index_put(logits[1:], neg_is_pos, self._inftensor) return logits def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): return torch.floor((input_length - kernel_size) / stride + 1) conv_cfg_list = eval(self.cfg.conv_feature_layers) for i in range(len(conv_cfg_list)): input_lengths = _conv_out_length( input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2] ) return input_lengths.to(torch.long) def forward( self, source, padding_mask=None, mask=True, features_only=False, layer=None, mask_indices=None, mask_channel_indices=None, padding_count=None, ): if self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(source) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None and padding_mask.any(): input_lengths = (1 - padding_mask.long()).sum(-1) # apply conv formula to get real output_lengths output_lengths = self._get_feat_extract_output_lengths(input_lengths) padding_mask = torch.zeros( features.shape[:2], dtype=features.dtype, device=features.device ) # these two operations makes sure that all values # before the output lengths indices are attended to padding_mask[ ( torch.arange(padding_mask.shape[0], device=padding_mask.device), output_lengths - 1, ) ] = 1 padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool() else: padding_mask = None time_steps_to_drop = features.size(1) % self.crop_seq_to_multiple if time_steps_to_drop != 0: features = features[:, :-time_steps_to_drop] unmasked_features = unmasked_features[:, :-time_steps_to_drop] if padding_mask is not None: padding_mask = padding_mask[:, :-time_steps_to_drop] if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) num_vars = None code_ppl = None prob_ppl = None curr_temp = None if self.input_quantizer: q = self.input_quantizer(features, produce_targets=False) features = q["x"] num_vars = q["num_vars"] code_ppl = q["code_perplexity"] prob_ppl = q["prob_perplexity"] curr_temp = q["temp"] features = self.project_inp(features) if mask: x, mask_indices = self.apply_mask( features, padding_mask, mask_indices=mask_indices, mask_channel_indices=mask_channel_indices, ) if not is_xla_tensor(x) and mask_indices is not None: # tpu-comment: reducing the size in a dynamic way causes # too many recompilations on xla. y = unmasked_features[mask_indices].view( unmasked_features.size(0), -1, unmasked_features.size(-1) ) else: y = unmasked_features else: x = features y = unmasked_features mask_indices = None x, layer_results = self.encoder(x, padding_mask=padding_mask, layer=layer) if features_only: return { "x": x, "padding_mask": padding_mask, "features": unmasked_features, "layer_results": layer_results, } if self.quantizer: if self.negatives_from_everywhere: q = self.quantizer(unmasked_features, produce_targets=False) y = q["x"] num_vars = q["num_vars"] code_ppl = q["code_perplexity"] prob_ppl = q["prob_perplexity"] curr_temp = q["temp"] y = self.project_q(y) negs, _ = self.sample_negatives( y, mask_indices[0].sum(), padding_count=padding_count, ) y = y[mask_indices].view(y.size(0), -1, y.size(-1)) else: q = self.quantizer(y, produce_targets=False) y = q["x"] num_vars = q["num_vars"] code_ppl = q["code_perplexity"] prob_ppl = q["prob_perplexity"] curr_temp = q["temp"] y = self.project_q(y) negs, _ = self.sample_negatives( y, y.size(1), padding_count=padding_count, ) if self.codebook_negatives > 0: cb_negs = self.quantizer.sample_from_codebook( y.size(0) * y.size(1), self.codebook_negatives ) cb_negs = cb_negs.view( self.codebook_negatives, y.size(0), y.size(1), -1 ) # order doesnt matter cb_negs = self.project_q(cb_negs) negs = torch.cat([negs, cb_negs], dim=0) else: y = self.project_q(y) if self.negatives_from_everywhere: negs, _ = self.sample_negatives( unmasked_features, y.size(1), padding_count=padding_count, ) negs = self.project_q(negs) else: negs, _ = self.sample_negatives( y, y.size(1), padding_count=padding_count, ) if not is_xla_tensor(x): # tpu-comment: reducing the size in a dynamic way causes # too many recompilations on xla. x = x[mask_indices].view(x.size(0), -1, x.size(-1)) if self.target_glu: y = self.target_glu(y) negs = self.target_glu(negs) x = self.final_proj(x) x = self.compute_preds(x, y, negs) result = { "x": x, "padding_mask": padding_mask, "features_pen": features_pen, } if prob_ppl is not None: result["prob_perplexity"] = prob_ppl result["code_perplexity"] = code_ppl result["num_vars"] = num_vars result["temp"] = curr_temp return result def quantize(self, x): assert self.quantizer is not None x = self.feature_extractor(x) x = x.transpose(1, 2) x = self.layer_norm(x) return self.quantizer.forward_idx(x) def extract_features(self, source, padding_mask, mask=False, layer=None): res = self.forward( source, padding_mask, mask=mask, features_only=True, layer=layer ) return res def get_logits(self, net_output): logits = net_output["x"] logits = logits.transpose(0, 2) logits = logits.reshape(-1, logits.size(-1)) return logits def get_targets(self, sample, net_output, expand_steps=True): x = net_output["x"] return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long) def get_extra_losses(self, net_output): pen = [] if "prob_perplexity" in net_output: pen.append( (net_output["num_vars"] - net_output["prob_perplexity"]) / net_output["num_vars"] ) if "features_pen" in net_output: pen.append(net_output["features_pen"]) return pen def remove_pretraining_modules(self, last_layer=None): self.quantizer = None self.project_q = None self.target_glu = None self.final_proj = None if last_layer is not None: self.encoder.layers = nn.ModuleList( l for i, l in enumerate(self.encoder.layers) if i <= last_layer ) class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers: List[Tuple[int, int, int]], dropout: float = 0.0, mode: str = "default", conv_bias: bool = False, ): super().__init__() assert mode in {"default", "layer_norm"} def block( n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False, ): def make_conv(): conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) nn.init.kaiming_normal_(conv.weight) return conv assert ( is_layer_norm and is_group_norm ) == False, "layer norm and group norm are exclusive" if is_layer_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=True), TransposeLast(), ), nn.GELU(), ) elif is_group_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), Fp32GroupNorm(dim, dim, affine=True), nn.GELU(), ) else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) in_d = 1 self.conv_layers = nn.ModuleList() for i, cl in enumerate(conv_layers): assert len(cl) == 3, "invalid conv definition: " + str(cl) (dim, k, stride) = cl self.conv_layers.append( block( in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias, ) ) in_d = dim def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: x = conv(x) return x def make_conv_pos(e, k, g): pos_conv = nn.Conv1d( e, e, kernel_size=k, padding=k // 2, groups=g, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (k * e)) nn.init.normal_(pos_conv.weight, mean=0, std=std) nn.init.constant_(pos_conv.bias, 0) pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2) pos_conv = nn.Sequential(pos_conv, SamePad(k), nn.GELU()) return pos_conv class TransformerEncoder(nn.Module): def build_encoder_layer(self, args: Wav2Vec2Config): if args.layer_type == "transformer": layer = TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, ) elif args.layer_type == "conformer": layer = ConformerWav2Vec2EncoderLayer( embed_dim=self.embedding_dim, ffn_embed_dim=args.encoder_ffn_embed_dim, attention_heads=args.encoder_attention_heads, dropout=args.dropout, depthwise_conv_kernel_size=args.depthwise_conv_kernel_size, activation_fn="swish", attn_type=args.attn_type, use_fp16=args.fp16, pos_enc_type="abs", ) layer = fsdp_wrap(layer) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) return layer def __init__(self, args: Wav2Vec2Config): super().__init__() self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.required_seq_len_multiple = args.required_seq_len_multiple pos_conv_depth = getattr(args, "pos_conv_depth", 1) if pos_conv_depth > 1: num_layers = args.pos_conv_depth k = max(3, args.conv_pos // num_layers) def make_conv_block(e, k, g, l): return nn.Sequential( *[ nn.Sequential( nn.Conv1d( e, e, kernel_size=k, padding=k // 2, groups=g, ), SamePad(k), TransposeLast(), LayerNorm(e, elementwise_affine=False), TransposeLast(), nn.GELU(), ) for _ in range(l) ] ) self.pos_conv = make_conv_block( self.embedding_dim, k, args.conv_pos_groups, num_layers ) else: self.pos_conv = make_conv_pos( self.embedding_dim, args.conv_pos, args.conv_pos_groups, ) self.layers = nn.ModuleList( [self.build_encoder_layer(args) for _ in range(args.encoder_layers)] ) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop self.apply(init_bert_params) def forward(self, x, padding_mask=None, layer=None): x, layer_results = self.extract_features(x, padding_mask, layer) if self.layer_norm_first and layer is None: x = self.layer_norm(x) return x, layer_results def extract_features( self, x, padding_mask=None, tgt_layer=None, min_layer=0, ): if padding_mask is not None: x = index_put(x, padding_mask, 0) x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x = x + x_conv if not self.layer_norm_first: x = self.layer_norm(x) # pad to the sequence length dimension x, pad_length = pad_to_multiple( x, self.required_seq_len_multiple, dim=-2, value=0 ) if pad_length > 0 and padding_mask is None: padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) padding_mask[:, -pad_length:] = True else: padding_mask, _ = pad_to_multiple( padding_mask, self.required_seq_len_multiple, dim=-1, value=True ) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) layer_results = [] r = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if self.layerdrop > 0 else 1 if not self.training or (dropout_probability > self.layerdrop): x, (z, lr) = layer( x, self_attn_padding_mask=padding_mask, need_weights=False ) if i >= min_layer: layer_results.append((x, z, lr)) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C x = x.transpose(0, 1) # undo paddding if pad_length > 0: x = x[:, :-pad_length] def undo_pad(a, b, c): return ( a[:-pad_length], b[:-pad_length] if b is not None else b, c[:-pad_length], ) layer_results = [undo_pad(*u) for u in layer_results] return x, layer_results def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict class ConformerEncoder(TransformerEncoder): def build_encoder_layer(self, args): layer = ConformerWav2Vec2EncoderLayer( embed_dim=self.embedding_dim, ffn_embed_dim=args.encoder_ffn_embed_dim, attention_heads=args.encoder_attention_heads, dropout=args.dropout, depthwise_conv_kernel_size=args.depthwise_conv_kernel_size, activation_fn="swish", attn_type=args.attn_type, pos_enc_type=args.pos_enc_type, use_fp16=args.fp16, # only used for rope ) layer = fsdp_wrap(layer) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) return layer def __init__(self, args): super().__init__(args) self.args = args self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.pos_enc_type = args.pos_enc_type max_source_positions = self.max_positions() if self.pos_enc_type == "rel_pos": self.embed_positions = RelPositionalEncoding( max_source_positions, self.embedding_dim ) elif self.pos_enc_type == "rope": self.embed_positions = None else: raise Exception("Unsupported positional encoding type") self.layers = nn.ModuleList( [self.build_encoder_layer(args) for _ in range(args.encoder_layers)] ) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop self.apply(init_bert_params) def extract_features(self, x, padding_mask=None, tgt_layer=None): if padding_mask is not None: x = index_put(x, padding_mask, 0) # B x T x C -> T x B x C x = x.transpose(0, 1) # B X T X C here position_emb = None if self.pos_enc_type == "rel_pos": position_emb = self.embed_positions(x) if not self.layer_norm_first: x = self.layer_norm(x) x = F.dropout(x, p=self.dropout, training=self.training) layer_results = [] r = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, z = layer( x, self_attn_padding_mask=padding_mask, need_weights=False, position_emb=position_emb, ) if tgt_layer is not None: layer_results.append((x, z)) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C x = x.transpose(0, 1) return x, layer_results class TransformerSentenceEncoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, att_args=None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, need_weights=False, ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) layer_result = x x = self.dropout3(x) x = residual + x else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False, ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) layer_result = x x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, (attn, layer_result)
EXA-1-master
exa/libraries/fairseq/fairseq/models/wav2vec/wav2vec2.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn.functional as F def pad_to_multiple(x, multiple, dim=-1, value=0): # Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41 if x is None: return None, 0 tsz = x.size(dim) m = tsz / multiple remainder = math.ceil(m) * multiple - tsz if m.is_integer(): return x, 0 pad_offset = (0,) * (-1 - dim) * 2 return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder
EXA-1-master
exa/libraries/fairseq/fairseq/models/wav2vec/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import logging import math from typing import Optional, Tuple from omegaconf import II import sys import torch import torch.nn as nn import torch.nn.functional as F from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.modules import ( Fp32GroupNorm, Fp32LayerNorm, GumbelVectorQuantizer, KmeansVectorQuantizer, TransposeLast, ) from fairseq.tasks import FairseqTask from fairseq.utils import buffered_arange logger = logging.getLogger(__name__) AGGREGATOR_CHOICES = ChoiceEnum(["cnn", "gru"]) PROJECT_FEATURES_CHOICES = ChoiceEnum(["none", "same", "new"]) ACTIVATION_CHOICES = ChoiceEnum(["relu", "gelu"]) VQ_TYPE_CHOICES = ChoiceEnum(["none", "gumbel", "kmeans"]) @dataclass class Wav2VecConfig(FairseqDataclass): prediction_steps: int = field( default=12, metadata={"help": "number of steps ahead to predict"} ) sample_distance: Optional[int] = field( default=None, metadata={ "help": "sample distance from target. does not work properly with cross-sampling" }, ) cross_sample_negatives: int = field( default=0, metadata={"help": "num of cross sampled negatives"} ) num_negatives: int = field( default=10, metadata={"help": "num of sampled negatives"} ) conv_feature_layers: str = field( default="[(512, 10, 5), (512, 8, 4), (512, 4, 2), (512, 4, 2), (512, 4, 2), (512, 1, 1), (512, 1, 1), (512, 1, 1)]", metadata={ "help": "convolutional feature extraction layers [(dim, kernel_size, stride), ...]" }, ) conv_aggregator_layers: str = field( default="[(512, 2, 1), (512, 3, 1), (512, 4, 1), (512, 5, 1), (512, 6, 1), (512, 7, 1), (512, 8, 1), (512, 9, 1), (512, 10, 1), (512, 11, 1), (512, 12, 1), (512, 13, 1)]", metadata={ "help": "convolutional aggregator layers [(dim, kernel_size, stride), ...]" }, ) dropout: float = field( default=0.0, metadata={"help": "dropout to apply within the model"} ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features"} ) dropout_agg: float = field( default=0.0, metadata={"help": "dropout to apply after aggregation step"} ) aggregator: AGGREGATOR_CHOICES = field( default="cnn", metadata={"help": "type of aggregator to use"} ) gru_dim: int = field(default=512, metadata={"help": "GRU dimensionality"}) no_conv_bias: bool = field( default=False, metadata={"help": "if set, does not learn bias for conv layers"} ) agg_zero_pad: bool = field( default=False, metadata={"help": "if set, zero pads in aggregator instead of repl pad"}, ) skip_connections_feat: bool = field( default=False, metadata={"help": "if set, adds skip connections to the feature extractor"}, ) skip_connections_agg: bool = field( default=True, metadata={"help": "if set, adds skip connections to the aggregator"}, ) residual_scale: float = field( default=0.5, metadata={"help": "scales residual by sqrt(value)"} ) log_compression: bool = field( default=True, metadata={"help": "if set, adds a log compression to feature extractor"}, ) balanced_classes: bool = field( default=False, metadata={"help": "if set, loss is scaled to balance for number of negatives"}, ) project_features: PROJECT_FEATURES_CHOICES = field( default="none", metadata={ "help": "if not none, features are projected using the (same or new) aggregator" }, ) non_affine_group_norm: bool = field( default=False, metadata={"help": "if set, group norm is not affine"} ) offset: str = field( default="auto", metadata={ "help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" }, ) activation: ACTIVATION_CHOICES = field( default="relu", metadata={ "help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" }, ) vq_type: VQ_TYPE_CHOICES = field( default="none", metadata={"help": "which type of quantizer to use"} ) vq_vars: int = field( default=320, metadata={"help": "project to this many vector quantized variables per group"}, ) vq_groups: int = field( default=2, metadata={"help": "number of groups of latent variables"} ) vq_dim: int = field( default=0, metadata={ "help": "uses this dimensionality for quantized vectors. 0 to use model dim // groups" }, ) vq_depth: int = field( default=1, metadata={"help": "number of layers for vq weight projection"} ) combine_groups: bool = field( default=False, metadata={"help": "if set, variables are shared among groups"} ) vq_temp: Tuple[float, float, float] = field( default=(2.0, 0.5, 0.999995), metadata={ "help": "temperature for latent variable sampling with gumbel softmax. should be a tuple of 3 values (start, end, decay)" }, ) vq_gamma: float = field( default=0.25, metadata={"help": "gamma parameter for kmeans style vector quantization"}, ) infonce: bool = II("criterion.infonce") @register_model("wav2vec", dataclass=Wav2VecConfig) class Wav2VecModel(BaseFairseqModel): @classmethod def build_model(cls, cfg: Wav2VecConfig, task: FairseqTask): """Build a new model instance.""" model = Wav2VecModel(cfg) logger.info(model) return model def __init__(self, cfg: Wav2VecConfig): super().__init__() self.prediction_steps = cfg.prediction_steps offset = cfg.offset if cfg.activation == "relu": activation = nn.ReLU() elif cfg.activation == "gelu": activation = nn.GELU() else: raise Exception("unknown activation " + cfg.activation) feature_enc_layers = eval(cfg.conv_feature_layers) self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, log_compression=cfg.log_compression, skip_connections=cfg.skip_connections_feat, residual_scale=cfg.residual_scale, non_affine_group_norm=cfg.non_affine_group_norm, activation=activation, ) embed = feature_enc_layers[-1][0] self.vector_quantizer = None if cfg.vq_type == "gumbel": self.vector_quantizer = GumbelVectorQuantizer( dim=embed, num_vars=cfg.vq_vars, temp=cfg.vq_temp, groups=cfg.vq_groups, combine_groups=cfg.combine_groups, vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, time_first=False, activation=activation, weight_proj_depth=cfg.vq_depth, weight_proj_factor=2, ) elif cfg.vq_type == "kmeans": self.vector_quantizer = KmeansVectorQuantizer( dim=embed, num_vars=cfg.vq_vars, groups=cfg.vq_groups, combine_groups=cfg.combine_groups, vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, time_first=False, gamma=cfg.vq_gamma, ) else: assert ( cfg.vq_type == "none" or cfg.vq_type is None ), "Unknown quantizer type" if cfg.offset == "auto": jin = 0 rin = 0 for _, k, stride in feature_enc_layers: if rin == 0: rin = k rin = rin + (k - 1) * jin if jin == 0: jin = stride else: jin *= stride offset = math.ceil(rin / jin) offset = int(offset) def make_aggregator(): if cfg.aggregator == "cnn": agg_layers = eval(cfg.conv_aggregator_layers) agg_dim = agg_layers[-1][0] feature_aggregator = ConvAggegator( conv_layers=agg_layers, embed=embed, dropout=cfg.dropout, skip_connections=cfg.skip_connections_agg, residual_scale=cfg.residual_scale, non_affine_group_norm=cfg.non_affine_group_norm, conv_bias=not cfg.no_conv_bias, zero_pad=cfg.agg_zero_pad, activation=activation, ) elif cfg.aggregator == "gru": agg_dim = cfg.gru_dim feature_aggregator = nn.Sequential( TransposeLast(), nn.GRU( input_size=embed, hidden_size=agg_dim, num_layers=1, dropout=cfg.dropout, ), TransposeLast(deconstruct_idx=0), ) else: raise Exception("unknown aggregator type " + cfg.aggregator) return feature_aggregator, agg_dim self.feature_aggregator, agg_dim = make_aggregator() self.wav2vec_predictions = Wav2VecPredictionsModel( in_dim=agg_dim, out_dim=embed, prediction_steps=cfg.prediction_steps, n_negatives=cfg.num_negatives, cross_sample_negatives=cfg.cross_sample_negatives, sample_distance=cfg.sample_distance, dropout=cfg.dropout, offset=offset, balanced_classes=cfg.balanced_classes, infonce=cfg.infonce, ) self.dropout_feats = nn.Dropout(p=cfg.dropout_features) self.dropout_agg = nn.Dropout(p=cfg.dropout_agg) if cfg.project_features == "none": self.project_features = None elif cfg.project_features == "same": self.project_features = self.feature_aggregator elif cfg.project_features == "new": self.project_features, _ = make_aggregator() def forward(self, source): result = {} features = self.feature_extractor(source) if self.vector_quantizer: q_res = self.vector_quantizer(features) features = q_res["x"] for k in q_res.keys(): if k != "x": result[k] = q_res[k] x = self.dropout_feats(features) x = self.feature_aggregator(x) x = self.dropout_agg(x) if self.project_features is not None: features = self.project_features(features) x, targets = self.wav2vec_predictions(x, features) result["cpc_logits"] = x result["cpc_targets"] = targets return result def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) def max_positions(self): """Maximum length supported by the model.""" return sys.maxsize def get_logits(self, net_output): logits = net_output["cpc_logits"] return logits def get_targets(self, sample, net_output): t = net_output["cpc_targets"] if isinstance(t, tuple): t = t[0] return t.contiguous() def get_target_weights(self, targets, net_output): targets = net_output["cpc_targets"] if isinstance(targets, tuple) and targets[-1] is not None: return targets[-1] return None def get_extra_losses(self, net_output): loss = None if "prob_perplexity" in net_output: loss = net_output["num_vars"] - net_output["prob_perplexity"] elif "kmeans_loss" in net_output: loss = net_output["kmeans_loss"] return loss def norm_block(is_layer_norm, dim, affine=True): if is_layer_norm: mod = nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=affine), TransposeLast(), ) else: mod = Fp32GroupNorm(1, dim, affine=affine) return mod class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers, dropout, log_compression, skip_connections, residual_scale, non_affine_group_norm, activation, ): super().__init__() def block(n_in, n_out, k, stride): return nn.Sequential( nn.Conv1d(n_in, n_out, k, stride=stride, bias=False), nn.Dropout(p=dropout), norm_block( is_layer_norm=False, dim=n_out, affine=not non_affine_group_norm ), activation, ) in_d = 1 self.conv_layers = nn.ModuleList() for dim, k, stride in conv_layers: self.conv_layers.append(block(in_d, dim, k, stride)) in_d = dim self.log_compression = log_compression self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: residual = x x = conv(x) if self.skip_connections and x.size(1) == residual.size(1): tsz = x.size(2) r_tsz = residual.size(2) residual = residual[..., :: r_tsz // tsz][..., :tsz] x = (x + residual) * self.residual_scale if self.log_compression: x = x.abs() x = x + 1 x = x.log() return x class ZeroPad1d(nn.Module): def __init__(self, pad_left, pad_right): super().__init__() self.pad_left = pad_left self.pad_right = pad_right def forward(self, x): return F.pad(x, (self.pad_left, self.pad_right)) class ConvAggegator(nn.Module): def __init__( self, conv_layers, embed, dropout, skip_connections, residual_scale, non_affine_group_norm, conv_bias, zero_pad, activation, ): super().__init__() def block(n_in, n_out, k, stride): # padding dims only really make sense for stride = 1 ka = k // 2 kb = ka - 1 if k % 2 == 0 else ka pad = ( ZeroPad1d(ka + kb, 0) if zero_pad else nn.ReplicationPad1d((ka + kb, 0)) ) return nn.Sequential( pad, nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias), nn.Dropout(p=dropout), norm_block(False, n_out, affine=not non_affine_group_norm), activation, ) in_d = embed self.conv_layers = nn.ModuleList() self.residual_proj = nn.ModuleList() for dim, k, stride in conv_layers: if in_d != dim and skip_connections: self.residual_proj.append(nn.Conv1d(in_d, dim, 1, bias=False)) else: self.residual_proj.append(None) self.conv_layers.append(block(in_d, dim, k, stride)) in_d = dim self.conv_layers = nn.Sequential(*self.conv_layers) self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): for rproj, conv in zip(self.residual_proj, self.conv_layers): residual = x x = conv(x) if self.skip_connections: if rproj is not None: residual = rproj(residual) x = (x + residual) * self.residual_scale return x class Wav2VecPredictionsModel(nn.Module): def __init__( self, in_dim, out_dim, prediction_steps, n_negatives, cross_sample_negatives, sample_distance, dropout, offset, balanced_classes, infonce, ): super().__init__() self.n_negatives = n_negatives self.cross_sample_negatives = cross_sample_negatives self.sample_distance = sample_distance self.project_to_steps = nn.ConvTranspose2d( in_dim, out_dim, (1, prediction_steps) ) self.dropout = nn.Dropout(p=dropout) self.offset = offset self.balanced_classes = balanced_classes self.infonce = infonce def sample_negatives(self, y): bsz, fsz, tsz = y.shape y = y.transpose(0, 1) # BCT -> CBT y = y.contiguous().view(fsz, -1) # CBT => C(BxT) cross_high = tsz * bsz high = tsz if self.sample_distance is None else min(tsz, self.sample_distance) assert high > 1 neg_idxs = torch.randint(low=0, high=high, size=(bsz, self.n_negatives * tsz)) with torch.no_grad(): if self.n_negatives > 0: tszs = ( buffered_arange(tsz) .unsqueeze(-1) .expand(-1, self.n_negatives) .flatten() ) neg_idxs = torch.randint( low=0, high=high - 1, size=(bsz, self.n_negatives * tsz) ) neg_idxs[neg_idxs >= tszs] += 1 if self.cross_sample_negatives > 0: tszs = ( buffered_arange(tsz) .unsqueeze(-1) .expand(-1, self.cross_sample_negatives) .flatten() ) cross_neg_idxs = torch.randint( low=0, high=cross_high - 1, size=(bsz, self.cross_sample_negatives * tsz), ) cross_neg_idxs[cross_neg_idxs >= tszs] += 1 if self.n_negatives > 0: for i in range(1, bsz): neg_idxs[i] += i * high else: neg_idxs = cross_neg_idxs if self.cross_sample_negatives > 0 and self.n_negatives > 0: neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) negs = y[..., neg_idxs.view(-1)] negs = negs.view( fsz, bsz, self.n_negatives + self.cross_sample_negatives, tsz ).permute( 2, 1, 0, 3 ) # to NxBxCxT return negs def forward(self, x, y): x = x.unsqueeze(-1) x = self.project_to_steps(x) # BxCxTxS x = self.dropout(x) negatives = self.sample_negatives(y) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) # Copies x B x C x T copies = targets.size(0) bsz, dim, tsz, steps = x.shape steps = min(steps, tsz - self.offset) predictions = x.new( bsz * copies * (tsz - self.offset + 1) * steps - ((steps + 1) * steps // 2) * copies * bsz ) if self.infonce: labels = predictions.new_full( (predictions.shape[0] // copies,), 0, dtype=torch.long ) else: labels = torch.zeros_like(predictions) weights = ( torch.full_like(labels, 1 / self.n_negatives) if self.balanced_classes and not self.infonce else None ) start = end = 0 for i in range(steps): offset = i + self.offset end = start + (tsz - offset) * bsz * copies if self.infonce: predictions[start:end] = torch.einsum( "bct,nbct->tbn", x[..., :-offset, i], targets[..., offset:] ).flatten() else: pos_num = (end - start) // copies predictions[start:end] = torch.einsum( "bct,nbct->nbt", x[..., :-offset, i], targets[..., offset:] ).flatten() labels[start : start + pos_num] = 1.0 if weights is not None: weights[start : start + pos_num] = 1.0 start = end assert end == predictions.numel(), "{} != {}".format(end, predictions.numel()) if self.infonce: predictions = predictions.view(-1, copies) else: if weights is not None: labels = (labels, weights) return predictions, labels
EXA-1-master
exa/libraries/fairseq/fairseq/models/wav2vec/wav2vec.py
import argparse import logging import torch.nn as nn import fairseq.checkpoint_utils from fairseq.models import ( FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.models.transformer import TransformerDecoder from fairseq.models.roberta import model as roberta logger = logging.getLogger(__name__) @register_model("roberta_enc_dec") class RobertaEncDecModel(FairseqEncoderDecoderModel): @staticmethod def add_args(parser): parser.add_argument( "--pretrained-mlm-checkpoint", default=None, type=str, metavar="PRETRAINED", help="path to pretrained mlm checkpoint", ) parser.add_argument( "--pretrained-decoder", action="store_true", help="reload decoder" ) parser.add_argument( "--hack-layernorm-embedding", action="store_true", help="hack to reload old models trained with encoder-normalize-before=False (no equivalent to encoder-normalize-before=False and layernorm_embedding=False", ) parser.add_argument( "--share-decoder-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--share-all-embeddings", action="store_true", help="share encoder, decoder and output embeddings" " (requires shared dictionary and embed dim)", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present base_enc_dec_architecture(args) if args.pretrained_mlm_checkpoint: arg_overrides = None if args.hack_layernorm_embedding: arg_overrides = {"layernorm_embedding": False} loaded = fairseq.checkpoint_utils.load_model_ensemble_and_task( [args.pretrained_mlm_checkpoint], arg_overrides=arg_overrides ) ([roberta_enc], _cfg, _task) = loaded else: # Do we need to edit untie_weights here ? share_in_out = ( args.share_decoder_input_output_embed or args.share_all_embeddings ) args.untie_weights_roberta = not share_in_out if args.hack_layernorm_embedding: args.layernorm_embedding = False args.encoder_normalize_before = False roberta_enc = roberta.RobertaModel.build_model(args, task) return cls.from_roberta(roberta_enc, args, task.source_dictionary) @staticmethod def from_roberta(roberta_enc: roberta.RobertaModel, args, dictionary): encoder = roberta_enc.encoder.sentence_encoder vocab_size, embed_dim = encoder.embed_tokens.weight.shape if args.share_all_embeddings: lm_head = roberta_enc.encoder.lm_head assert encoder.embed_tokens.weight is lm_head.weight, ( "Can't use --share-all-embeddings with a model " "that was pretraiend with --untie-weights-roberta_enc" ) else: lm_head = roberta.RobertaLMHead( embed_dim, vocab_size, roberta_enc.args.activation_fn ) dec_embs = nn.Embedding(vocab_size, embed_dim, dictionary.pad()) if args.share_all_embeddings or args.share_decoder_input_output_embed: # Note: I wasn't able to use Embedding _weight parameter to achive this sharing. dec_embs.weight = lm_head.weight decoder = TransformerDecoder( RobertaEncDecModel.read_args_from_roberta(roberta_enc.args), dictionary, dec_embs, no_encoder_attn=False, output_projection=lm_head, ) if getattr(args, "pretrained_decoder", False): decoder_dict = encoder.state_dict() # TODO: hide setting "encoder_attn" layers behind a flag. for k, w in list(decoder_dict.items()): if ".self_attn" in k: k_enc_attn = k.replace(".self_attn", ".encoder_attn") decoder_dict[k_enc_attn] = w.detach().clone() for k, w in lm_head.state_dict().items(): decoder_dict["output_projection." + k] = w missing_keys, unexpected_keys = decoder.load_state_dict( decoder_dict, strict=False ) # missing_keys = [m for m in missing_keys if ".encoder_attn" not in m] assert not missing_keys and not unexpected_keys, ( "Failed to load state dict. " f"Missing keys: {missing_keys}. " f"Unexpected keys: {unexpected_keys}." ) if args.share_all_embeddings: assert decoder.output_projection.weight is decoder.embed_tokens.weight assert encoder.embed_tokens.weight is decoder.embed_tokens.weight elif args.share_decoder_input_output_embed: assert decoder.output_projection.weight is decoder.embed_tokens.weight assert encoder.embed_tokens.weight is not decoder.embed_tokens.weight else: assert decoder.output_projection.weight is not decoder.embed_tokens.weight assert encoder.embed_tokens.weight is not decoder.embed_tokens.weight return RobertaEncDecModel(encoder, decoder) @staticmethod def read_args_from_roberta(roberta_args: argparse.Namespace): # TODO: this would become easier if encoder/decoder where using a similar # TransformerConfig object args = argparse.Namespace(**vars(roberta_args)) attr_map = [ ("encoder_attention_heads", "decoder_attention_heads"), ("encoder_embed_dim", "decoder_embed_dim"), ("encoder_embed_dim", "decoder_output_dim"), ("encoder_normalize_before", "decoder_normalize_before"), ("encoder_layers_to_keep", "decoder_layers_to_keep"), ("encoder_ffn_embed_dim", "decoder_ffn_embed_dim"), ("encoder_layerdrop", "decoder_layerdrop"), ("encoder_layers", "decoder_layers"), ("encoder_learned_pos", "decoder_learned_pos"), # should this be set from here ? ("max_positions", "max_target_positions"), ] for k1, k2 in attr_map: setattr(args, k2, getattr(roberta_args, k1)) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = not roberta_args.untie_weights_roberta return args def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" super().upgrade_state_dict_named(state_dict, name) old_keys = list(state_dict.keys()) # rename decoder -> encoder before upgrading children modules for k in old_keys: if k.startswith(prefix + "encoder.lm_head"): state_dict.pop(k) continue new_k = k new_k = new_k.replace(".sentence_encoder.", ".") new_k = new_k.replace("decoder.lm_head.", "decoder.output_projection.") if k == new_k: continue # print(k, "->", new_k) state_dict[new_k] = state_dict.pop(k) @register_model_architecture("roberta_enc_dec", "roberta_enc_dec") def base_enc_dec_architecture(args): args.hack_layernorm_embedding = getattr(args, "hack_layernorm_embedding", False) args.pretrained_mlm_checkpoint = getattr(args, "pretrained_mlm_checkpoint", None) args.pretrained_decoder = getattr(args, "pretrained_decoder", None) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) roberta.base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/enc_dec.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ GottBERT: a pure German Language Model """ from fairseq.models import register_model from .hub_interface import RobertaHubInterface from .model import RobertaModel @register_model("gottbert") class GottbertModel(RobertaModel): @classmethod def hub_models(cls): return { "gottbert-base": "https://dl.gottbert.de/fairseq/models/gottbert-base.tar.gz", } @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="hf_byte_bpe", bpe_vocab="vocab.json", bpe_merges="merges.txt", bpe_add_prefix_space=False, **kwargs ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, bpe_vocab=bpe_vocab, bpe_merges=bpe_merges, bpe_add_prefix_space=bpe_add_prefix_space, **kwargs, ) return RobertaHubInterface(x["args"], x["task"], x["models"][0])
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/model_gottbert.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Unsupervised Cross-lingual Representation Learning at Scale """ from fairseq.models import register_model from .hub_interface import RobertaHubInterface from .model import RobertaModel @register_model("xlmr") class XLMRModel(RobertaModel): @classmethod def hub_models(cls): return { "xlmr.base": "http://dl.fbaipublicfiles.com/fairseq/models/xlmr.base.tar.gz", "xlmr.large": "http://dl.fbaipublicfiles.com/fairseq/models/xlmr.large.tar.gz", "xlmr.xl": "http://dl.fbaipublicfiles.com/fairseq/models/xlmr/xlmr.xl.tar.gz", "xlmr.xxl": "http://dl.fbaipublicfiles.com/fairseq/models/xlmr/xlmr.xxl.tar.gz", } @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="sentencepiece", **kwargs ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) return RobertaHubInterface(x["args"], x["task"], x["models"][0])
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/model_xlmr.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import Counter from typing import List import torch def align_bpe_to_words(roberta, bpe_tokens: torch.LongTensor, other_tokens: List[str]): """ Helper to align GPT-2 BPE to other tokenization formats (e.g., spaCy). Args: roberta (RobertaHubInterface): RoBERTa instance bpe_tokens (torch.LongTensor): GPT-2 BPE tokens of shape `(T_bpe)` other_tokens (List[str]): other tokens of shape `(T_words)` Returns: List[str]: mapping from *other_tokens* to corresponding *bpe_tokens*. """ assert bpe_tokens.dim() == 1 assert bpe_tokens[0] == 0 def clean(text): return text.strip() # remove whitespaces to simplify alignment bpe_tokens = [roberta.task.source_dictionary.string([x]) for x in bpe_tokens] bpe_tokens = [ clean(roberta.bpe.decode(x) if x not in {"<s>", ""} else x) for x in bpe_tokens ] other_tokens = [clean(str(o)) for o in other_tokens] # strip leading <s> bpe_tokens = bpe_tokens[1:] assert "".join(bpe_tokens) == "".join(other_tokens) # create alignment from every word to a list of BPE tokens alignment = [] bpe_toks = filter(lambda item: item[1] != "", enumerate(bpe_tokens, start=1)) j, bpe_tok = next(bpe_toks) for other_tok in other_tokens: bpe_indices = [] while True: if other_tok.startswith(bpe_tok): bpe_indices.append(j) other_tok = other_tok[len(bpe_tok) :] try: j, bpe_tok = next(bpe_toks) except StopIteration: j, bpe_tok = None, None elif bpe_tok.startswith(other_tok): # other_tok spans multiple BPE tokens bpe_indices.append(j) bpe_tok = bpe_tok[len(other_tok) :] other_tok = "" else: raise Exception('Cannot align "{}" and "{}"'.format(other_tok, bpe_tok)) if other_tok == "": break assert len(bpe_indices) > 0 alignment.append(bpe_indices) assert len(alignment) == len(other_tokens) return alignment def align_features_to_words(roberta, features, alignment): """ Align given features to words. Args: roberta (RobertaHubInterface): RoBERTa instance features (torch.Tensor): features to align of shape `(T_bpe x C)` alignment: alignment between BPE tokens and words returned by func:`align_bpe_to_words`. """ assert features.dim() == 2 bpe_counts = Counter(j for bpe_indices in alignment for j in bpe_indices) assert bpe_counts[0] == 0 # <s> shouldn't be aligned denom = features.new([bpe_counts.get(j, 1) for j in range(len(features))]) weighted_features = features / denom.unsqueeze(-1) output = [weighted_features[0]] largest_j = -1 for bpe_indices in alignment: output.append(weighted_features[bpe_indices].sum(dim=0)) largest_j = max(largest_j, *bpe_indices) for j in range(largest_j + 1, len(features)): output.append(weighted_features[j]) output = torch.stack(output) assert torch.all(torch.abs(output.sum(dim=0) - features.sum(dim=0)) < 1e-4) return output def spacy_nlp(): if getattr(spacy_nlp, "_nlp", None) is None: try: from spacy.lang.en import English spacy_nlp._nlp = English() except ImportError: raise ImportError("Please install spacy with: pip install spacy") return spacy_nlp._nlp def spacy_tokenizer(): if getattr(spacy_tokenizer, "_tokenizer", None) is None: try: nlp = spacy_nlp() spacy_tokenizer._tokenizer = nlp.Defaults.create_tokenizer(nlp) except ImportError: raise ImportError("Please install spacy with: pip install spacy") return spacy_tokenizer._tokenizer
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/alignment_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .hub_interface import * # noqa from .model import * # noqa from .enc_dec import * # noqa from .model_camembert import * # noqa from .model_gottbert import * # noqa from .model_xlmr import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ RoBERTa: A Robustly Optimized BERT Pretraining Approach. """ import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderModel, register_model, register_model_architecture, ) from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, TransformerEncoder from fairseq.modules import LayerNorm from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.utils import safe_getattr, safe_hasattr from .hub_interface import RobertaHubInterface logger = logging.getLogger(__name__) @register_model("roberta") class RobertaModel(FairseqEncoderModel): @classmethod def hub_models(cls): return { "roberta.base": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz", "roberta.large": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz", "roberta.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz", "roberta.large.wsc": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz", } def __init__(self, args, encoder): super().__init__(encoder) self.args = args # We follow BERT's random weight initialization self.apply(init_bert_params) self.classification_heads = nn.ModuleDict() @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--encoder-layers", type=int, metavar="L", help="num encoder layers" ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="H", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="F", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="A", help="num encoder attention heads", ) parser.add_argument( "--activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--pooler-activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use for pooler layer", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--layernorm-embedding", action="store_true", help="add layernorm to embedding", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--activation-dropout", type=float, metavar="D", help="dropout probability after activation in FFN", ) parser.add_argument( "--pooler-dropout", type=float, metavar="D", help="dropout probability in the masked_lm pooler layers", ) parser.add_argument( "--max-positions", type=int, help="number of positional embeddings to learn" ) parser.add_argument( "--load-checkpoint-heads", action="store_true", help="(re-)register and load heads when loading checkpoints", ) parser.add_argument( "--untie-weights-roberta", action="store_true", help="Untie weights between embeddings and classifiers in RoBERTa", ) # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument( "--encoder-layerdrop", type=float, metavar="D", default=0, help="LayerDrop probability for encoder", ) parser.add_argument( "--encoder-layers-to-keep", default=None, help="which layers to *keep* when pruning as a comma-separated list", ) # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument( "--quant-noise-pq", type=float, metavar="D", default=0, help="iterative PQ quantization noise at training time", ) parser.add_argument( "--quant-noise-pq-block-size", type=int, metavar="D", default=8, help="block size of quantization noise at training time", ) parser.add_argument( "--quant-noise-scalar", type=float, metavar="D", default=0, help="scalar quantization noise and scalar quantization at training time", ) # args for "Better Fine-Tuning by Reducing Representational Collapse" (Aghajanyan et al. 2020) parser.add_argument( "--spectral-norm-classification-head", action="store_true", default=False, help="Apply spectral normalization on the classification head", ) # args for Fully Sharded Data Parallel (FSDP) training parser.add_argument( "--min-params-to-wrap", type=int, metavar="D", default=DEFAULT_MIN_PARAMS_TO_WRAP, help=( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ), ) # args for AdaPruning # In short, it adds regularizarion for the multihead attention module and feed forward neural nets # For more details, please refer to the paper https://openreview.net/forum?id=_CMSV7FTzGI parser.add_argument( "--mha-reg-scale-factor", type=float, metavar="D", default=0.0, help="scaling factor for regularization term in adptive pruning, recommendation is 0.000375", ) parser.add_argument( "--ffn-reg-scale-factor", type=float, metavar="D", default=0.0, help="scaling factor for regularization term in adptive pruning, recommendation is 0.000375", ) parser.add_argument( "--mha-heads-to-keep", type=int, metavar="D", default=-1, help="number of heads to keep in each multi-head attention module, -1 means keeping all heads", ) parser.add_argument( "--ffn-blocks-to-remove", type=int, metavar="D", default=-1, help="number of feedforward blocks to remove in each transformer layer, -1 means keeping all ffn blocks", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" from omegaconf import OmegaConf if OmegaConf.is_config(args): OmegaConf.set_struct(args, False) # make sure all arguments are present base_architecture(args) if not safe_hasattr(args, "max_positions"): if not safe_hasattr(args, "tokens_per_sample"): args.tokens_per_sample = task.max_positions() args.max_positions = args.tokens_per_sample encoder = RobertaEncoder(args, task.source_dictionary) if OmegaConf.is_config(args): OmegaConf.set_struct(args, True) return cls(args, encoder) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, classification_head_name=None, **kwargs, ): if classification_head_name is not None: features_only = True x, extra = self.encoder(src_tokens, features_only, return_all_hiddens, **kwargs) if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) return x, extra def _get_adaptive_head_loss(self): norm_loss = 0 scaling = float(self.args.mha_reg_scale_factor) for layer in self.encoder.sentence_encoder.layers: norm_loss_layer = 0 for i in range(layer.self_attn.num_heads): start_idx = i * layer.self_attn.head_dim end_idx = (i + 1) * layer.self_attn.head_dim norm_loss_layer += scaling * ( torch.sum( torch.abs( layer.self_attn.q_proj.weight[ start_idx:end_idx, ] ) ) + torch.sum( torch.abs(layer.self_attn.q_proj.bias[start_idx:end_idx]) ) ) norm_loss_layer += scaling * ( torch.sum( torch.abs( layer.self_attn.k_proj.weight[ start_idx:end_idx, ] ) ) + torch.sum( torch.abs(layer.self_attn.k_proj.bias[start_idx:end_idx]) ) ) norm_loss_layer += scaling * ( torch.sum( torch.abs( layer.self_attn.v_proj.weight[ start_idx:end_idx, ] ) ) + torch.sum( torch.abs(layer.self_attn.v_proj.bias[start_idx:end_idx]) ) ) norm_loss += norm_loss_layer return norm_loss def _get_adaptive_ffn_loss(self): ffn_scale_factor = float(self.args.ffn_reg_scale_factor) filter_loss = 0 for layer in self.encoder.sentence_encoder.layers: filter_loss += torch.sum( torch.abs(layer.fc1.weight * ffn_scale_factor) ) + torch.sum(torch.abs(layer.fc2.weight * ffn_scale_factor)) filter_loss += torch.sum( torch.abs(layer.fc1.bias * ffn_scale_factor) ) + torch.sum(torch.abs(layer.fc2.bias * ffn_scale_factor)) return filter_loss def get_normalized_probs(self, net_output, log_probs, sample=None): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output[0].float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = RobertaClassificationHead( input_dim=self.args.encoder_embed_dim, inner_dim=inner_dim or self.args.encoder_embed_dim, num_classes=num_classes, activation_fn=self.args.pooler_activation_fn, pooler_dropout=self.args.pooler_dropout, q_noise=self.args.quant_noise_pq, qn_block_size=self.args.quant_noise_pq_block_size, do_spectral_norm=self.args.spectral_norm_classification_head, ) @property def supported_targets(self): return {"self"} @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="gpt2", **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) logger.info(x["args"]) return RobertaHubInterface(x["args"], x["task"], x["models"][0]) def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" # rename decoder -> encoder before upgrading children modules for k in list(state_dict.keys()): if k.startswith(prefix + "decoder"): new_k = prefix + "encoder" + k[len(prefix + "decoder") :] state_dict[new_k] = state_dict[k] del state_dict[k] # rename emb_layer_norm -> layernorm_embedding for k in list(state_dict.keys()): if ".emb_layer_norm." in k: new_k = k.replace(".emb_layer_norm.", ".layernorm_embedding.") state_dict[new_k] = state_dict[k] del state_dict[k] # upgrade children modules super().upgrade_state_dict_named(state_dict, name) # Handle new classification heads present in the state dict. current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v # adapt data2vec models if ( "encoder._ema" in state_dict and "encoder.lm_head.weight" not in state_dict ): lm_state = self.encoder.lm_head.state_dict() for k, v in lm_state.items(): state_dict["encoder.lm_head." + k] = v for k in list(state_dict.keys()): if k.startswith("encoder.regression_head") or k == "encoder._ema": del state_dict[k] class RobertaLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, q_noise=0, qn_block_size=8, do_spectral_norm=False, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = apply_quant_noise_( nn.Linear(inner_dim, num_classes), q_noise, qn_block_size ) if do_spectral_norm: if q_noise != 0: raise NotImplementedError( "Attempting to use Spectral Normalization with Quant Noise. This is not officially supported" ) self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaEncoder(FairseqEncoder): """RoBERTa encoder.""" def __init__(self, args, dictionary): super().__init__(dictionary) # set any missing default values base_architecture(args) self.args = args if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) embed_tokens = self.build_embedding( len(dictionary), args.encoder_embed_dim, dictionary.pad() ) self.sentence_encoder = self.build_encoder(args, dictionary, embed_tokens) self.lm_head = self.build_lm_head( embed_dim=args.encoder_embed_dim, output_dim=len(dictionary), activation_fn=args.activation_fn, weight=( self.sentence_encoder.embed_tokens.weight if not args.untie_weights_roberta else None ), ) def build_embedding(self, vocab_size, embedding_dim, padding_idx): return nn.Embedding(vocab_size, embedding_dim, padding_idx) def build_encoder(self, args, dictionary, embed_tokens): encoder = TransformerEncoder(args, dictionary, embed_tokens) encoder.apply(init_bert_params) return encoder def build_lm_head(self, embed_dim, output_dim, activation_fn, weight): return RobertaLMHead(embed_dim, output_dim, activation_fn, weight) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, masked_tokens=None, **unused, ): """ Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` features_only (bool, optional): skip LM head and just return features. If True, the output will be of shape `(batch, src_len, embed_dim)`. return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: tuple: - the LM output of shape `(batch, src_len, vocab)` - a dictionary of additional data, where 'inner_states' is a list of hidden states. Note that the hidden states have shape `(src_len, batch, vocab)`. """ x, extra = self.extract_features( src_tokens, return_all_hiddens=return_all_hiddens ) if not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra def extract_features(self, src_tokens, return_all_hiddens=False, **kwargs): encoder_out = self.sentence_encoder( src_tokens, return_all_hiddens=return_all_hiddens, token_embeddings=kwargs.get("token_embeddings", None), ) # T x B x C -> B x T x C features = encoder_out["encoder_out"][0].transpose(0, 1) inner_states = encoder_out["encoder_states"] if return_all_hiddens else None return features, {"inner_states": inner_states} def output_layer(self, features, masked_tokens=None, **unused): return self.lm_head(features, masked_tokens) def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions @register_model_architecture("roberta", "roberta") def base_architecture(args): args.encoder_layers = safe_getattr(args, "encoder_layers", 12) args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 12) args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.activation_dropout = safe_getattr(args, "activation_dropout", 0.0) args.pooler_dropout = safe_getattr(args, "pooler_dropout", 0.0) args.max_source_positions = safe_getattr(args, "max_positions", 512) args.no_token_positional_embeddings = safe_getattr( args, "no_token_positional_embeddings", False ) # BERT has a few structural differences compared to the original Transformer args.encoder_learned_pos = safe_getattr(args, "encoder_learned_pos", True) args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", True) args.no_scale_embedding = safe_getattr(args, "no_scale_embedding", True) args.activation_fn = safe_getattr(args, "activation_fn", "gelu") args.encoder_normalize_before = safe_getattr( args, "encoder_normalize_before", False ) args.pooler_activation_fn = safe_getattr(args, "pooler_activation_fn", "tanh") args.untie_weights_roberta = safe_getattr(args, "untie_weights_roberta", False) # Adaptive input config args.adaptive_input = safe_getattr(args, "adaptive_input", False) # LayerDrop config args.encoder_layerdrop = safe_getattr(args, "encoder_layerdrop", 0.0) args.encoder_layers_to_keep = safe_getattr(args, "encoder_layers_to_keep", None) # Quantization noise config args.quant_noise_pq = safe_getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = safe_getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = safe_getattr(args, "quant_noise_scalar", 0) # R4F config args.spectral_norm_classification_head = safe_getattr( args, "spectral_norm_classification_head", False ) @register_model_architecture("roberta", "roberta_prenorm") def roberta_prenorm_architecture(args): args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", False) args.encoder_normalize_before = safe_getattr(args, "encoder_normalize_before", True) base_architecture(args) @register_model_architecture("roberta", "roberta_base") def roberta_base_architecture(args): base_architecture(args) @register_model_architecture("roberta", "roberta_large") def roberta_large_architecture(args): args.encoder_layers = safe_getattr(args, "encoder_layers", 24) args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 16) base_architecture(args) @register_model_architecture("roberta", "xlm") def xlm_architecture(args): args.encoder_layers = safe_getattr(args, "encoder_layers", 16) args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 1280) args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 1280 * 4) args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 16) base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ CamemBERT: a Tasty French Language Model """ from fairseq.models import register_model from .hub_interface import RobertaHubInterface from .model import RobertaModel @register_model("camembert") class CamembertModel(RobertaModel): @classmethod def hub_models(cls): return { "camembert": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz", "camembert.v0": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz", "camembert-base": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz", "camembert-large": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-large.tar.gz", "camembert-base-ccnet": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet.tar.gz", "camembert-base-ccnet-4gb": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet-4gb.tar.gz", "camembert-base-wikipedia-4gb": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-wikipedia-4gb.tar.gz", "camembert-base-oscar-4gb": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-oscar-4gb.tar.gz", } @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="sentencepiece", **kwargs ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) return RobertaHubInterface(x["args"], x["task"], x["models"][0])
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/model_camembert.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.data import encoders class RobertaHubInterface(nn.Module): """A simple PyTorch Hub interface to RoBERTa. Usage: https://github.com/pytorch/fairseq/tree/main/examples/roberta """ def __init__(self, cfg, task, model): super().__init__() self.cfg = cfg self.task = task self.model = model self.bpe = encoders.build_bpe(cfg.bpe) # this is useful for determining the device self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float)) @property def device(self): return self._float_tensor.device def encode( self, sentence: str, *addl_sentences, no_separator=False ) -> torch.LongTensor: """ BPE-encode a sentence (or multiple sentences). Every sequence begins with a beginning-of-sentence (`<s>`) symbol. Every sentence ends with an end-of-sentence (`</s>`) and we use an extra end-of-sentence (`</s>`) as a separator. Example (single sentence): `<s> a b c </s>` Example (sentence pair): `<s> d e f </s> </s> 1 2 3 </s>` The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE requires leading spaces. For example:: >>> roberta.encode('Hello world').tolist() [0, 31414, 232, 2] >>> roberta.encode(' world').tolist() [0, 232, 2] >>> roberta.encode('world').tolist() [0, 8331, 2] """ bpe_sentence = "<s> " + self.bpe.encode(sentence) + " </s>" for s in addl_sentences: bpe_sentence += " </s>" if not no_separator else "" bpe_sentence += " " + self.bpe.encode(s) + " </s>" tokens = self.task.source_dictionary.encode_line( bpe_sentence, append_eos=False, add_if_not_exist=False ) return tokens.long() def decode(self, tokens: torch.LongTensor): assert tokens.dim() == 1 tokens = tokens.numpy() if tokens[0] == self.task.source_dictionary.bos(): tokens = tokens[1:] # remove <s> eos_mask = tokens == self.task.source_dictionary.eos() doc_mask = eos_mask[1:] & eos_mask[:-1] sentences = np.split(tokens, doc_mask.nonzero()[0] + 1) sentences = [ self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences ] if len(sentences) == 1: return sentences[0] return sentences def extract_features( self, tokens: torch.LongTensor, return_all_hiddens: bool = False ) -> torch.Tensor: if tokens.dim() == 1: tokens = tokens.unsqueeze(0) if tokens.size(-1) > self.model.max_positions(): raise ValueError( "tokens exceeds maximum length: {} > {}".format( tokens.size(-1), self.model.max_positions() ) ) features, extra = self.model( tokens.to(device=self.device), features_only=True, return_all_hiddens=return_all_hiddens, ) if return_all_hiddens: # convert from T x B x C -> B x T x C inner_states = extra["inner_states"] return [inner_state.transpose(0, 1) for inner_state in inner_states] else: return features # just the last layer's features def register_classification_head( self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs ): self.model.register_classification_head( name, num_classes=num_classes, embedding_size=embedding_size, **kwargs ) def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False): features = self.extract_features(tokens.to(device=self.device)) logits = self.model.classification_heads[head](features) if return_logits: return logits return F.log_softmax(logits, dim=-1) def extract_features_aligned_to_words( self, sentence: str, return_all_hiddens: bool = False ) -> torch.Tensor: """Extract RoBERTa features, aligned to spaCy's word-level tokenizer.""" from fairseq.models.roberta import alignment_utils from spacy.tokens import Doc nlp = alignment_utils.spacy_nlp() tokenizer = alignment_utils.spacy_tokenizer() # tokenize both with GPT-2 BPE and spaCy bpe_toks = self.encode(sentence) spacy_toks = tokenizer(sentence) spacy_toks_ws = [t.text_with_ws for t in tokenizer(sentence)] alignment = alignment_utils.align_bpe_to_words(self, bpe_toks, spacy_toks_ws) # extract features and align them features = self.extract_features( bpe_toks, return_all_hiddens=return_all_hiddens ) features = features.squeeze(0) aligned_feats = alignment_utils.align_features_to_words( self, features, alignment ) # wrap in spaCy Doc doc = Doc( nlp.vocab, words=["<s>"] + [x.text for x in spacy_toks] + ["</s>"], spaces=[True] + [x.endswith(" ") for x in spacy_toks_ws[:-1]] + [True, False], ) assert len(doc) == aligned_feats.size(0) doc.user_token_hooks["vector"] = lambda token: aligned_feats[token.i] return doc def fill_mask(self, masked_input: str, topk: int = 5): masked_token = "<mask>" assert ( masked_token in masked_input and masked_input.count(masked_token) == 1 ), "Please add one {0} token for the input, eg: 'He is a {0} guy'".format( masked_token ) text_spans = masked_input.split(masked_token) text_spans_bpe = ( (" {0} ".format(masked_token)) .join([self.bpe.encode(text_span.rstrip()) for text_span in text_spans]) .strip() ) tokens = self.task.source_dictionary.encode_line( "<s> " + text_spans_bpe + " </s>", append_eos=False, add_if_not_exist=False, ) masked_index = (tokens == self.task.mask_idx).nonzero(as_tuple=False) if tokens.dim() == 1: tokens = tokens.unsqueeze(0) with utils.model_eval(self.model): features, extra = self.model( tokens.long().to(device=self.device), features_only=False, return_all_hiddens=False, ) logits = features[0, masked_index, :].squeeze() prob = logits.softmax(dim=0) values, index = prob.topk(k=topk, dim=0) topk_predicted_token_bpe = self.task.source_dictionary.string(index) topk_filled_outputs = [] for index, predicted_token_bpe in enumerate( topk_predicted_token_bpe.split(" ") ): predicted_token = self.bpe.decode(predicted_token_bpe) # Quick hack to fix https://github.com/pytorch/fairseq/issues/1306 if predicted_token_bpe.startswith("\u2581"): predicted_token = " " + predicted_token if " {0}".format(masked_token) in masked_input: topk_filled_outputs.append( ( masked_input.replace( " {0}".format(masked_token), predicted_token ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(masked_token, predicted_token), values[index].item(), predicted_token, ) ) return topk_filled_outputs def disambiguate_pronoun(self, sentence: str) -> bool: """ Usage:: >>> disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.') True >>> disambiguate_pronoun('The trophy would not fit in the brown suitcase because [it] was too big.') 'The trophy' """ assert hasattr( self.task, "disambiguate_pronoun" ), "roberta.disambiguate_pronoun() requires a model trained with the WSC task." with utils.model_eval(self.model): return self.task.disambiguate_pronoun( self.model, sentence, use_cuda=self.device.type == "cuda" )
EXA-1-master
exa/libraries/fairseq/fairseq/models/roberta/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the models/huggingface/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("fairseq.models.huggingface." + model_name)
EXA-1-master
exa/libraries/fairseq/fairseq/models/huggingface/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from typing import Dict, List, Optional import torch from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) logger = logging.getLogger(__name__) DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("hf_gpt2") class HuggingFaceGPT2LanguageModel(FairseqLanguageModel): def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--embed-dim', type=int, metavar='N', help='embedding dimension') parser.add_argument('--num-attention-heads', type=int, metavar='N', help='num attention heads') parser.add_argument('--num-layers', type=int, metavar='N', help='num layers') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability for all fully connected layers ' 'in the embeddings, encoder, and pooler') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" default_architecture(args) return cls(HuggingFaceGPT2Decoder(args, task)) class HuggingFaceGPT2Decoder(FairseqIncrementalDecoder): def __init__(self, args, task): try: from transformers import GPT2Config, GPT2LMHeadModel except ImportError: raise ImportError( "\n\nPlease install huggingface/transformers with:" "\n\n pip install transformers" ) super().__init__(task.target_dictionary) config = GPT2Config( vocab_size=len(task.target_dictionary), n_positions=args.max_target_positions + 1, n_ctx=args.max_target_positions, n_embd=args.embed_dim, n_layer=args.num_layers, n_head=args.num_attention_heads, resid_pdrop=args.dropout, embd_pdrop=args.dropout, attn_pdrop=args.attention_dropout, layer_norm_epsilon=1e-6, ) self.model = GPT2LMHeadModel(config) # set zero embedding for padding symbol self.pad_idx = task.target_dictionary.pad() self.model.transformer.wte.weight.data[self.pad_idx].zero_() self.model.transformer.wpe.weight.data[0].zero_() def forward( self, prev_output_tokens, src_lengths=None, incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, encoder_out=None, ): features = self.extract_features(prev_output_tokens, incremental_state) lm_logits = self.model.lm_head(features) return (lm_logits,) def extract_features( self, prev_output_tokens, incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, ): if incremental_state: past = self.get_incremental_state("past") else: past = None # don't attend to padding symbols attention_mask = prev_output_tokens.ne(self.pad_idx).int() # set position ids to exclude padding symbols position_ids = attention_mask * ( torch.arange(1, 1 + prev_output_tokens.size(1)) .to(prev_output_tokens) .repeat(prev_output_tokens.size(0), 1) ) outputs = self.model.transformer( input_ids=prev_output_tokens, past=past, attention_mask=attention_mask, position_ids=position_ids, ) last_hidden_states = outputs[0] if incremental_state: self.set_incremental_state(incremental_state, "past", outputs[1]) return last_hidden_states def max_positions(self): return self.model.config.n_positions - 1 @register_model_architecture("hf_gpt2", "hf_gpt2") def default_architecture(args): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) args.embed_dim = getattr(args, "embed_dim", 768) args.num_attention_heads = getattr(args, "num_attention_heads", 12) args.num_layers = getattr(args, "num_layers", 12) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) @register_model_architecture("hf_gpt2", "hf_gpt2_medium") def hf_gpt2_medium(args): args.embed_dim = getattr(args, "embed_dim", 1024) args.num_attention_heads = getattr(args, "num_attention_heads", 16) args.num_layers = getattr(args, "num_layers", 24) default_architecture(args) @register_model_architecture("hf_gpt2", "hf_gpt2_large") def hf_gpt2_large(args): args.embed_dim = getattr(args, "embed_dim", 1280) args.num_attention_heads = getattr(args, "num_attention_heads", 20) args.num_layers = getattr(args, "num_layers", 36) default_architecture(args) @register_model_architecture("hf_gpt2", "hf_gpt2_xl") def hf_gpt2_xl(args): args.embed_dim = getattr(args, "embed_dim", 1600) args.num_attention_heads = getattr(args, "num_attention_heads", 25) args.num_layers = getattr(args, "num_layers", 48) default_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/huggingface/hf_gpt2.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .speech_dlm import * # noqa from .hub_interface import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional from fairseq import utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import Embedding from .modules.speech_dlm_decoder import CrossChannelTransformerDecoder from omegaconf import II DEFAULT_MAX_TARGET_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class SpeechDLMConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_cross_layers: int = field( default=-1, metadata={"help": "num self cross attention decoder layers"} ) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_decoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last decoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_layerdrop: float = field( default=0.0, metadata={"help": "LayerDrop probability for decoder"} ) decoder_layers_to_keep: Optional[str] = field( default=None, metadata={ "help": "which layers to *keep* when pruning as a comma-separated list" }, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) quant_noise_pq: float = field( default=0.0, metadata={"help": "iterative PQ quantization noise at training time"}, ) quant_noise_pq_block_size: int = field( default=8, metadata={"help": "block size of quantization noise at training time"}, ) # TODO common var add to parent quant_noise_scalar: float = field( default=0.0, metadata={ "help": "scalar quantization noise and scalar quantization at training time" }, ) add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") duration_prediction: str = II("task.duration_prediction") delayed_duration_target: str = II("task.delayed_duration_target") main_and_cross_weights: str = II("criterion.main_and_cross_weights") @register_model("speech_dlm", dataclass=SpeechDLMConfig) class SpeechDLM(FairseqLanguageModel): """Spoken Unit-based Dialogue Language Model model (SpeechDLM) as described in the paper: https://arxiv.org/pdf/2203.16502.pdf """ def __init__(self, decoder): super().__init__(decoder) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_lm_architecture(args) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if args.decoder_cross_layers < 0: args.decoder_cross_layers = args.decoder_layers if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) # Assert all dictionary to be the same assert all( task.source_dictionaries[channel] == task.source_dictionary for channel in task.channels ), "Source dictionaries of all channels are expected to be the same!!!" assert all( task.target_dictionaries[channel] == task.target_dictionary for channel in task.channels ), "Target dictionaries of all channels are expected to be the same!!!" # Build the unit embeddings embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) decoder = CrossChannelTransformerDecoder( args, task.target_dictionary, embed_tokens, channels=task.channels, no_encoder_attn=True, ) return cls(decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) return embed_tokens @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", **kwargs, ): """ Load a :class:`~fairseq.models.FairseqModel` from a pre-trained model file. Downloads and caches the pre-trained model file if needed. The base implementation returns a :class:`~fairseq.hub_utils.GeneratorHubInterface`, which can be used to generate translations or sample from language models. The underlying :class:`~fairseq.models.FairseqModel` can be accessed via the *generator.models* attribute. This function return a class:`MultichannelGeneratorHubInterface` object, which allows generation in multiple channels with a multichannel model. Args: model_name_or_path (str): either the name of a pre-trained model to load or a path/URL to a pre-trained model state dict checkpoint_file (str, optional): colon-separated list of checkpoint files in the model archive to ensemble (default: 'model.pt') data_name_or_path (str, optional): point args.data to the archive at the given path/URL. Can start with '.' or './' to reuse the model archive path. """ from fairseq import hub_utils from .hub_interface import MultichannelGeneratorHubInterface x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), **kwargs, ) logger.info(x["args"]) return MultichannelGeneratorHubInterface(x["args"], x["task"], x["models"]) @property def supported_targets(self): return {"next", "edge", "duration"} def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_cross_layers = getattr(args, "decoder_cross_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True @register_model_architecture("speech_dlm", "speech_dlm_big") def speech_dlm_big(args): args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_cross_layers = getattr(args, "decoder_cross_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) base_lm_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/speech_dlm.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import logging from typing import Any, Dict, Iterator, List import torch from fairseq import utils from omegaconf import open_dict from torch import nn from tqdm import tqdm from fairseq.hub_utils import GeneratorHubInterface logger = logging.getLogger(__name__) class MultichannelGeneratorHubInterface(GeneratorHubInterface): """Pytorch Hub interface for generating sequences from a pre-trained multichannel language model. """ def __init__(self, cfg, task, models): super().__init__(cfg, task, models) self.cfg = cfg self.task = task self.models = nn.ModuleList(models) self.src_dicts = task.source_dictionaries self.tgt_dicts = task.target_dictionaries self.channels = task.channels # optimize model for generation for model in self.models: model.prepare_for_inference_(cfg) def sample( self, sentences: List[Dict[str, str]], beam: int = 1, verbose: bool = False, **kwargs ) -> List[str]: if isinstance(sentences, dict): return self.sample([sentences], beam=beam, verbose=verbose, **kwargs)[0] tokenized_sentences = [self.encode(sentence) for sentence in sentences] batched_hypos = self.generate(tokenized_sentences, beam, verbose, **kwargs) return [self.decode(hypos[0]["tokens"]) for hypos in batched_hypos] def score(self, sentences: List[Dict[str, str]], **kwargs): raise NotImplementedError( "MultichannelGeneratorHubInterface doesn't support score() method" ) def generate( self, tokenized_sentences: List[Dict[str, torch.LongTensor]], beam: int = 5, verbose: bool = False, skip_invalid_size_inputs=False, inference_step_args=None, **kwargs ) -> List[List[Dict[str, torch.Tensor]]]: if isinstance(tokenized_sentences, dict): return self.generate( [tokenized_sentences], beam=beam, verbose=verbose, **kwargs )[0] # build generator using current args as well as any kwargs gen_args = copy.deepcopy(self.cfg.generation) with open_dict(gen_args): gen_args.beam = beam for k, v in kwargs.items(): setattr(gen_args, k, v) generator = self.task.build_generator(self.models, gen_args) inference_step_args = inference_step_args or {} results = [] for batch in tqdm( self._build_batches(tokenized_sentences, skip_invalid_size_inputs) ): batch = utils.apply_to_sample(lambda t: t.to(self.device), batch) translations = self.task.inference_step( generator, self.models, batch, **inference_step_args ) for id, hypos in zip(batch["id"].tolist(), translations): # The output of the generator is supposed to be a tensor of size (bsz x max_len x n_channels) # So we need to convert it to dictionary form for i in range(len(hypos)): hypos[i]["tokens"] = { channel: hypos[i]["tokens"][..., j] for j, channel in enumerate(self.channels) } results.append((id, hypos)) # sort output to match input order outputs = [hypos for _, hypos in sorted(results, key=lambda x: x[0])] if verbose: def getarg(name, default): return getattr(gen_args, name, getattr(self.cfg, name, default)) for source_tokens, target_hypotheses in zip(tokenized_sentences, outputs): src_str_with_unk = { channel: self.string(source_tokens[channel], channel) for channel in source_tokens } logger.info("S\t{}".format(src_str_with_unk)) for hypo in target_hypotheses: hypo_str = self.decode(hypo["tokens"]) logger.info("H\t{}\t{}".format(hypo["score"], hypo_str)) # hypo["positional_scores"]: T x n_channels pos_scores = {} for c, channel in enumerate(source_tokens): pos_scores[channel] = " ".join( map( lambda x: "{:.4f}".format(x), hypo["positional_scores"][:, c].tolist(), ) ) logger.info("P\t{}".format(pos_scores)) return outputs def encode(self, sentence: Dict[str, str]) -> Dict[str, torch.LongTensor]: assert isinstance( sentence, dict ), "Input sentence is expected to be a dictionary over channels" assert set(sentence.keys()) == set( self.channels ), "Mismatch between input sentence keys and model channels ({} vs {})".format( set(sentence.keys()), set(self.channels) ) encoded_sentence = {} for channel in sentence: sentence_channel = sentence[channel] sentence_channel = self.tokenize(sentence_channel) sentence_channel = self.apply_bpe(sentence_channel) sentence_channel = self.binarize(sentence_channel, channel) encoded_sentence[channel] = sentence_channel sentence_size = encoded_sentence[self.channels[0]].size() assert all( encoded_sentence[channel].size() == sentence_size for channel in encoded_sentence ), "Input tensors are expected to have the same size in all channels" return encoded_sentence def decode(self, tokens: Dict[str, torch.LongTensor]) -> Dict[str, str]: assert isinstance( tokens, dict ), "Input tokens are expected to be a dictionary over channels" assert set(tokens.keys()) == set( self.channels ), "Mismatch between input tokens keys and model channels ({} vs {})".format( set(tokens.keys()), set(self.channels) ) decoded_sentence = {} for channel in tokens: tokens_channel = tokens[channel] sentence_channel = self.string(tokens_channel, channel) sentence_channel = self.remove_bpe(sentence_channel) sentence_channel = self.detokenize(sentence_channel) decoded_sentence[channel] = sentence_channel return decoded_sentence def binarize(self, sentence: str, channel: str) -> torch.LongTensor: return ( self.src_dicts[channel].encode_line(sentence, add_if_not_exist=False).long() ) def string(self, tokens: torch.LongTensor, channel: str) -> str: return self.tgt_dicts[channel].string(tokens) def _build_batches( self, tokens: List[Dict[str, List[int]]], skip_invalid_size_inputs: bool ) -> Iterator[Dict[str, Any]]: lengths = torch.LongTensor([next(iter(d.values())).numel() for d in tokens]) batch_iterator = self.task.get_batch_iterator( dataset=self.task.build_dataset_for_inference(tokens, lengths), max_tokens=self.cfg.dataset.max_tokens, max_sentences=self.cfg.dataset.batch_size, max_positions=self.max_positions, ignore_invalid_inputs=skip_invalid_size_inputs, disable_iterator_cache=True, ).next_epoch_itr(shuffle=False) return batch_iterator
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from fairseq import utils from fairseq.models import FairseqIncrementalDecoder from fairseq.modules import ( FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, ) from .speech_dlm_decoder_layer import ( CrossChannelTransformerDecoderLayer, StandardTransformerDecoderLayer, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from torch import Tensor class CrossChannelTransformerDecoder(FairseqIncrementalDecoder): """ Cross-channel Transformer Decoder Block for parallel spoken dialogue units as described in the paper: https://arxiv.org/pdf/2203.16502.pdf; consisting of *args.decoder_layers* layers. Each layer is a :class:`StandardTransformerDecoderLayer` or :class:`CrossChannelTransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding channels (list): list of channel names (string) no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, channels, no_encoder_attn=False): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.decoder_layerdrop = args.decoder_layerdrop self.share_input_output_embed = args.share_decoder_input_output_embed self.channels = channels input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.output_embed_dim = args.decoder_output_dim self.padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) if args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None self.project_in_dim = ( nn.Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( self.max_target_positions, embed_dim, self.padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None self.cross_self_attention = getattr(args, "cross_self_attention", False) assert 0 <= args.decoder_cross_layers <= args.decoder_layers, ( "The number of cross-channel attention decoder layers must be non-negative" f"and not exceeds the number of decoder layers (found {args.decoder_cross_layers})" ) if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(args, no_encoder_attn) if i < args.decoder_layers - args.decoder_cross_layers else self.build_cross_decoder_layer(args, no_encoder_attn) for i in range(args.decoder_layers) ] ) self.num_layers = len(self.layers) self.non_cross_layers = args.decoder_layers - args.decoder_cross_layers if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None self.project_out_dim = ( nn.Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim else None ) self.output_projection = None self.is_cross_prediction = bool( float(args.main_and_cross_weights.split(",")[1]) != 0 ) self.n_output_projections = ( 1 if not self.is_cross_prediction else len(self.channels) ) if self.share_input_output_embed: # Output projection is a list of projections # where the first proj is for the main-channel, # then roll in a cicular way. # For example: if the main channel has index i # the second proj is for channel i+1 (mod N_channels), etc. self.output_projection = nn.ModuleList( [ nn.Linear( embed_tokens.weight.shape[1], # embed_dim embed_tokens.weight.shape[0], # n_dictionaries bias=False, ) for _ in range(self.n_output_projections) ] ) # Only share the main-channel projection self.output_projection[0].weight = embed_tokens.weight for i in range(1, self.n_output_projections): nn.init.normal_( self.output_projection[i].weight, mean=0, std=embed_tokens.weight.shape[1] ** -0.5, ) else: self.output_projection = nn.ModuleList( [ nn.Linear(self.output_embed_dim, len(dictionary), bias=False) for _ in range(self.n_output_projections) ] ) for i in range(self.n_output_projections): nn.init.normal_( self.output_projection[i].weight, mean=0, std=self.output_embed_dim**-0.5, ) self.output_duration_prediction = ( None if str(args.duration_prediction).lower() == "false" else nn.ModuleList( [ nn.Linear(self.output_embed_dim, 1) for _ in range(self.n_output_projections) ] ) ) def build_decoder_layer(self, args, no_encoder_attn=False): layer = StandardTransformerDecoderLayer(args, no_encoder_attn) if getattr(args, "checkpoint_activations", False): offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) return layer def build_cross_decoder_layer(self, args, no_encoder_attn=False): layer = CrossChannelTransformerDecoderLayer(args, no_encoder_attn) if getattr(args, "checkpoint_activations", False): offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) return layer def forward( self, prev_output_tokens: Dict[str, Tensor], encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[ List[Dict[str, Dict[str, Optional[Tensor]]]] ] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, # return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (dict[str, LongTensor]): previous decoder outputs, dictionary over all channels with the values being the tensors of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): list of dictionaries used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output, dict over channels of tensors of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens: Dict[str, Tensor], encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[ List[Dict[str, Dict[str, Optional[Tensor]]]] ] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens: Dict[str, Tensor], encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[ List[Dict[str, Dict[str, Optional[Tensor]]]] ] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ The core function of *forward* but only return features. The input (prev_output_tokens) is a dictionary over all channels, expected to have the following form: { 'channel1' : Tensor((batch x tgt_len)), 'channel2' : Tensor((batch x tgt_len)), } Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features, dict over channels of tensors of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ if alignment_layer is None: alignment_layer = self.num_layers - 1 x_list = [] for i, channel in enumerate(self.channels): # embed positions positions = None if self.embed_positions is not None: positions = self.embed_positions( prev_output_tokens[channel], incremental_state=incremental_state[i] if incremental_state is not None else None, ) if incremental_state is not None: prev_output_tokens[channel] = prev_output_tokens[channel][:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_tokens(prev_output_tokens[channel]) if self.project_in_dim is not None: x = self.project_in_dim(x) x = self.embed_scale * x if self.quant_noise is not None: x = self.quant_noise(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) x_list.append(x) self_attn_padding_mask: Optional[Tensor] = None if ( self.cross_self_attention or prev_output_tokens[self.channels[0]].eq(self.padding_idx).any() ): self_attn_padding_mask = prev_output_tokens[self.channels[0]].eq( self.padding_idx ) # decoder layers attn: Optional[Dict[Tensor]] = None inner_states: List[Optional[Dict[str, Tensor]]] = [ {channel: x_list[i] for i, channel in enumerate(self.channels)} ] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x_list[0]) else: self_attn_mask = None # need to change to tensor for the checkpoint activation to work if isinstance(x_list, list): x_list = torch.stack(x_list) x_list, layer_attn_list, _ = layer( x_list, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append( {channel: x_list[i] for i, channel in enumerate(self.channels)} ) if idx == alignment_layer and all( layer_attn is not None for layer_attn in layer_attn_list ): attn = { channel: layer_attn_list[i].float().to(x_list[0]) for i, channel in enumerate(self.channels) } # change back from tensor to list if not isinstance(x_list, list): x_list = list(torch.unbind(x_list)) if attn is not None: for channel in attn: if alignment_heads is not None: attn[channel] = attn[channel][:alignment_heads] # average probabilities over heads attn[channel] = attn[channel].mean(dim=0) for i, x in enumerate(x_list): if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) x_list[i] = x x = {channel: x_list[i] for i, channel in enumerate(self.channels)} return x, {"attn": [attn], "inner_states": inner_states} def output_layer(self, features): """Project features to the vocabulary size. Return a dictionary of the form: { 'input-channel': { 'predicted-channel': token prediction tensor of shape `(batch, tgt_len, vocab)`, } } if duration_prediction is enabled { 'input-channel': { 'predicted-channel': { 'pred_token': token prediction tensor of shape `(batch, tgt_len, vocab)`, 'pred_duration': duration prediction tensor } } } """ # project back to size of vocabulary if self.output_duration_prediction is None: if self.is_cross_prediction: return { channel: { pred_channel: self.output_projection[j - i](features[channel]) for j, pred_channel in enumerate(self.channels) } for i, channel in enumerate(self.channels) } else: return { channel: {channel: self.output_projection[0](features[channel])} for i, channel in enumerate(self.channels) } else: if self.is_cross_prediction: return { channel: { pred_channel: { "pred_token": self.output_projection[j - i]( features[channel] ), "pred_duration": self.output_duration_prediction[j - i]( features[channel] ), } for j, pred_channel in enumerate(self.channels) } for i, channel in enumerate(self.channels) } else: return { channel: { channel: { "pred_token": self.output_projection[0](features[channel]), "pred_duration": self.output_duration_prediction[0]( features[channel] ), } } for i, channel in enumerate(self.channels) } def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 ) self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] def get_normalized_probs_scriptable( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" logits_dict = net_output[0] out_dict = {} for channel in logits_dict: out_dict[channel] = {} for pred_channel in logits_dict[channel]: if isinstance(logits_dict[channel][pred_channel], dict): pred_token_logits = logits_dict[channel][pred_channel]["pred_token"] else: pred_token_logits = logits_dict[channel][pred_channel] if log_probs: out = utils.log_softmax( pred_token_logits, dim=-1, onnx_trace=self.onnx_trace ) else: out = utils.softmax( pred_token_logits, dim=-1, onnx_trace=self.onnx_trace ) if isinstance(logits_dict[channel][pred_channel], dict): out_dict[channel][pred_channel] = { "pred_token": out, "pred_duration": logits_dict[channel][pred_channel][ "pred_duration" ].float(), } # move to float32 to avoid inf loss else: out_dict[channel][pred_channel] = out return out_dict def reorder_incremental_state_scripting( self, incremental_state: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order: Tensor, ): """Main entry point for reordering the incremental state. Due to limitations in TorchScript, we call this function in :class:`fairseq.sequence_generator.SequenceGenerator` instead of calling :func:`reorder_incremental_state` directly. """ for module in self.modules(): if hasattr(module, "reorder_incremental_state"): for i, incremental_state_channel in enumerate(incremental_state): result = module.reorder_incremental_state( incremental_state_channel, new_order ) if result is not None: incremental_state[i] = result
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/modules/speech_dlm_decoder.py
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Tuple, Optional import torch import torch.nn as nn from fairseq import utils from fairseq.modules import LayerNorm, MultiheadAttention from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import Tensor class CrossChannelTransformerDecoderLayer(nn.Module): """Cross-Attention Transformer Decoder Layer block as described in the paper: https://arxiv.org/pdf/2203.16502.pdf Composed of a Multi-head Self Attention block followed by a Multi-head Cross-Attention block which attends to the self-attention outputs of the other channels. The weights of the attention blocks in all channels are shared. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super().__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) # This cross_self_attention is used for encoder-decoder systems, # It's not the cross-channel attention (defined below as cross_channel_attn) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.cross_channel_attn = self.build_cross_channel_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.cross_channel_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_self_attention( self, embed_dim, args, add_bias_kv=False, add_zero_attn=False ): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_cross_channel_attention( self, embed_dim, args, add_bias_kv=False, add_zero_attn=False ): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=False, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def prepare_for_onnx_export_(self): self.onnx_trace = True def residual_connection(self, x, residual): return residual + x def forward( self, x_list_tensor: List[torch.Tensor], encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[ List[Dict[str, Dict[str, Optional[Tensor]]]] ] = None, prev_self_attn_state: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x_list_tensor (List[Tensor]): list of input tensors in different channels, each tensor is of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. incremental_state (optional): list of incremental_state dictionaries over different channels (sequence generation mode) prev_self_attn_state (List[Tuple[Tensor, Tensor]], optional): list of tuples (self_attn_state, cross_channel_attn_state) over different channels need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: list of encoded output of shape `(seq_len, batch, embed_dim)` """ n_channels = len(x_list_tensor) if need_head_weights: need_attn = True # incremental_state is a list of dictionaries over different channels if incremental_state is not None: assert isinstance(incremental_state, list) assert len(incremental_state) == n_channels # prev_self_attn_state is a list of tuples (self_attn_state, cross_channel_attn_state) over different channels if prev_self_attn_state is not None: assert isinstance(prev_self_attn_state, list) assert len(prev_self_attn_state) == n_channels for prev_self_attn_state_channel in prev_self_attn_state: assert isinstance(prev_self_attn_state_channel, tuple) assert len(prev_self_attn_state_channel) == 2 # Backup for other channels & cross channel attention self_attn_mask_orin = self_attn_mask self_attn_padding_mask_orin = self_attn_padding_mask x_list = [] attn_list = [] for i, x in enumerate(x_list_tensor): residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[i][0][:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state[i][0]) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[i][0][2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state[i], saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer( incremental_state[i] if incremental_state is not None else None ) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask_orin is not None: assert encoder_out is not None self_attn_mask = torch.cat( ( x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask_orin, ), dim=1, ) if self_attn_padding_mask_orin is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask_orin.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask_orin), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state[i] if incremental_state is not None else None, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer( incremental_state[i], saved_state ) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state[i] if incremental_state is not None else None, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) x_list.append(x) attn_list.append(attn) # Store attentions & new x(s) (bc the old x(s) are used in other channels) x_list_new = [] # Here comes the cross channel attention for i, x in enumerate(x_list): residual = x if self.normalize_before: x = self.cross_channel_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[i][1][:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state[i][1]) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[i][1][2] assert incremental_state is not None self.cross_channel_attn._set_input_buffer( incremental_state[i], saved_state ) # The cross attention is computed with the concatenation of attentions from other channels if len(x_list) > 1: x_other = torch.cat( [x_list[(i + j) % len(x_list)] for j in range(1, len(x_list))], dim=0, ) else: # Self-attention when having only one channel x_other = x_list[i] x, attn = self.cross_channel_attn( query=x, key=x_other, value=x_other, key_padding_mask=self_attn_padding_mask_orin, incremental_state=incremental_state[i] if incremental_state is not None else None, need_weights=False, attn_mask=self_attn_mask_orin, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.cross_channel_attn_layer_norm(x) x_list_new.append(x) x_list = x_list_new for i, x in enumerate(x_list): residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) x_list[i] = x # Trick for the checkpoint activation x_list_tensor = torch.stack(x_list) if self.onnx_trace and incremental_state is not None: self_and_cross_attn_state_list = [] for i in range(n_channels): self_and_cross_attn_state = [] for self_attn_module in [self.self_attn, self.cross_channel_attn]: saved_state = self_attn_module._get_input_buffer( incremental_state[i] ) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_module_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_module_state = [ saved_state["prev_key"], saved_state["prev_value"], ] self_and_cross_attn_state.append(self_attn_module_state) self_and_cross_attn_state_list.append(tuple(self_and_cross_attn_state)) return x_list_tensor, attn_list, self_and_cross_attn_state_list return x_list_tensor, attn_list, None def make_generation_fast_(self, need_attn: bool = False, **kwargs): self.need_attn = need_attn # Rewrite fairseq.modules.TransformerDecoderLayer # to be compatible with checkpoint_activations # (avoid forwarding model multiple times) class StandardTransformerDecoderLayer(nn.Module): """Rewrite fairseq.modules.TransformerDecoderLayer to avoid forwarding model multiple times and be compatible with checkpoint_activations. The input is expected to be a list of tensors from different channels, each is forwarded to the same model (shared attention weights). In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super().__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_self_attention( self, embed_dim, args, add_bias_kv=False, add_zero_attn=False ): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def prepare_for_onnx_export_(self): self.onnx_trace = True def residual_connection(self, x, residual): return residual + x def forward( self, x_list_tensor: List[torch.Tensor], encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[ List[Dict[str, Dict[str, Optional[Tensor]]]] ] = None, prev_self_attn_state: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x_list_tensor (List[Tensor]): list of input tensors in different channels, each tensor is of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. incremental_state (optional): list of incremental_state dictionaries over different channels (sequence generation mode) prev_self_attn_state (List[Tuple[Tensor, Tensor]], optional): list of tuples (self_attn_state, cross_channel_attn_state) over different channels need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: list of encoded output of shape `(seq_len, batch, embed_dim)` """ n_channels = len(x_list_tensor) if need_head_weights: need_attn = True # incremental_state is a list of dictionaries over different channels if incremental_state is not None: assert isinstance(incremental_state, list) assert len(incremental_state) == n_channels # prev_self_attn_state is a list of self_attn_state over different channels if prev_self_attn_state is not None: assert isinstance(prev_self_attn_state, list) assert len(prev_self_attn_state) == n_channels x_list = [] attn_list = [] for i, x in enumerate(x_list_tensor): residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[i][:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state[i]) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state[i], saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer( incremental_state ) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1, ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state[i] if incremental_state is not None else None, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state[i] if incremental_state is not None else None, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) x_list.append(x) attn_list.append(attn) # Trick for the checkpoint activation x_list_tensor = torch.stack(x_list) if self.onnx_trace and incremental_state is not None: self_attn_state_list = [] for i in range(n_channels): saved_state = self.self_attn._get_input_buffer(incremental_state[i]) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], ] self_attn_state_list.append(self_attn_state) return x_list_tensor, attn_list, self_attn_state_list return x_list_tensor, attn_list, None def make_generation_fast_(self, need_attn: bool = False, **kwargs): self.need_attn = need_attn
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/modules/speech_dlm_decoder_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, List, Optional from omegaconf.listconfig import ListConfig from omegaconf.dictconfig import DictConfig import torch import torch.nn as nn from fairseq.models import FairseqIncrementalDecoder from torch import Tensor from fairseq.ngram_repeat_block import NGramRepeatBlock from .multichannel_search import ContiguousMultichannelBeamSearch from fairseq.models.speech_dlm import SpeechDLM class MultichannelSequenceGenerator(nn.Module): def __init__( self, models, tgt_dicts, beam_size=1, max_len_a=0, max_len_b=200, min_len=1, normalize_scores=True, len_penalty=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, search_strategy=None, eos=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, duration_temperature=1.0, ): """Generate multi-channel parallel units with the SpeechDLM model as described in the paper: https://arxiv.org/pdf/2203.16502.pdf; Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) duration_temperature (float, optional): rate of the duration prediction, higher rate induces a faster generated wav (default: 1.0) """ super().__init__() if isinstance(models, MultichannelEnsembleModel): self.model = models else: self.model = MultichannelEnsembleModel(models) self.tgt_dicts = tgt_dicts self.pad = list(tgt_dicts.values())[0].pad() self.unk = list(tgt_dicts.values())[0].unk() self.eos = list(tgt_dicts.values())[0].eos() if eos is None else eos self.symbols_to_strip_from_output = ( symbols_to_strip_from_output.union({self.eos}) if symbols_to_strip_from_output is not None else {self.eos} ) self.channels = list(tgt_dicts.keys()) self.n_channels = len(self.channels) self.vocab_sizes = [len(tgt_dicts[channel]) for channel in self.channels] # the max beam size is the dictionary size - 1, since we never select pad max_possible_beam_size = 1 for i in self.vocab_sizes: max_possible_beam_size *= i - 1 self.beam_size = min(beam_size, max_possible_beam_size) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty if isinstance(temperature, (int, float)): temperature = {channel: temperature for channel in self.channels} elif isinstance(temperature, ListConfig) or isinstance(temperature, list): temperature = { channel: temperature[i] for i, channel in enumerate(self.channels) } assert isinstance(temperature, DictConfig) or isinstance( temperature, dict ), f"temperature: expected dict, but found {type(temperature)}" self.temperature = temperature self.match_source_len = match_source_len if no_repeat_ngram_size > 0: self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size) else: self.repeat_ngram_blocker = None for channel in temperature: assert temperature[channel] > 0, "--temperature must be greater than 0" if search_strategy is None: self.search = ContiguousMultichannelBeamSearch(tgt_dicts) else: self.search = search_strategy # We only need to set src_lengths in LengthConstrainedBeamSearch. # As a module attribute, setting it would break in multithread # settings when the model is shared. self.should_set_src_lengths = ( hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths ) self.model.eval() self.lm_model = lm_model self.lm_weight = lm_weight if self.lm_model is not None: self.lm_model.eval() self.duration_prediction = bool( str(getattr(models[0].decoder.args, "duration_prediction", "false")).lower() == "true" ) self.delayed_duration = bool( str( getattr(models[0].decoder.args, "delayed_duration_target", "false") ).lower() == "true" ) self.duration_temperature = duration_temperature def cuda(self): self.model.cuda() return self @torch.no_grad() def forward( self, sample: Dict[str, Dict[str, Tensor]], # TODO: Modify this prefix_tokens: Optional[Dict[str, Tensor]] = None, bos_token: Optional[int] = None, ): """Generate a batch of translations. Args: sample (dict): batch prefix_tokens (dict of torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, prefix_tokens, bos_token=bos_token) @torch.no_grad() def generate(self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs): """Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (dict of torch.LongTensor, optional): force decoder to begin with these tokens constraints (torch.LongTensor, optional): force decoder to include the list of constraints bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Dict[str, Tensor]] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """ Here sample is expected to have the following form { 'id': index, 'net_input': { 'src_tokens': { 'channel1' : tensor((batch x src_length)), 'channel2' : tensor((batch x src_length)), }, ... }, } and prefix_tokens { 'channel1' : tensor((batch x prefix_length)), 'channel2' : tensor((batch x prefix_length)), } """ if self.model.is_speech_dlm: incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [{} for _ in range(self.n_channels)], ) for i in range(self.model.models_size) ], ) else: incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) net_input = sample["net_input"] # Convert from dict to tensor form # shape of src_tokens : (bsz x src_len x n_channels) src_tokens = torch.stack( [net_input["src_tokens"][channel] for channel in self.channels], dim=-1 ) prefix_tokens = torch.stack( [prefix_tokens[channel] for channel in self.channels], dim=-1 ) # length of the source text being the character length except EndOfSentence and pad src_lengths = ( (src_tokens[..., 0].ne(self.eos) & src_tokens[..., 0].ne(self.pad)) .long() .sum(dim=1) ) # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, beam_size) max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), # exclude the EOS marker self.model.max_decoder_positions() - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # compute the encoder output for each beam encoder_outs = self.model.forward_encoder(net_input) # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None # initialize buffers # cumulative scores of hypotheses scores = ( torch.zeros(bsz * beam_size, max_len + 1, self.n_channels) .to(src_tokens) .float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2, self.n_channels) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step finished = [ False for i in range(bsz) ] # a boolean array indicating if the sentence at the index is finished or not num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) if self.duration_prediction: dur_counter = torch.ones(bsz * beam_size, self.n_channels).to(src_tokens) # save the indice where the dur_counter just copied from dur_pred dur_counter_jump_indices = None for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) input_tokens = { channel: tokens[:, : step + 1, i] for i, channel in enumerate(self.channels) } lprobs_dict, avg_attn_scores = self.model.forward_decoder( input_tokens, encoder_outs, incremental_states, self.temperature, ) # Because the sizes of vocab is different, we cannot concat the lprobs to form a single tensor if not self.duration_prediction: lprobs_list = list(lprobs_dict.values()) else: lprobs_list = [ net_output["pred_token"] for net_output in lprobs_dict.values() ] # non-positive predicted durations dur_preds = ( torch.stack( [ net_output["pred_duration"] for net_output in lprobs_dict.values() ] ) .squeeze(-1) .T ) dur_preds = dur_preds / self.duration_temperature dur_preds = dur_preds.round().long() dur_preds[dur_preds < 1] = 1 # dur_preds & dur_counter needs to be modified when there isn't an edge if step > 0: non_edge_indices = tokens[:, step, :] == tokens[:, step - 1, :] if self.delayed_duration: dur_preds[non_edge_indices] = 1 else: if dur_counter_jump_indices is not None: dur_counter[dur_counter_jump_indices & non_edge_indices] = 2 # update dur_counter if step > 0: if self.delayed_duration: dur_counter -= ( (dur_counter == 1) | (tokens[:, step, :] == tokens[:, step - 1, :]) ).int() dur_counter[dur_counter < 0] = 0 else: dur_counter -= ( tokens[:, step, :] == tokens[:, step - 1, :] ).int() dur_counter[dur_counter < 1] = 1 # whether to copy previous token (ie. if the counter is still on) # and get get the new duration if self.delayed_duration: dur_counter_jump_indices = dur_counter == 0 dur_counter[dur_counter_jump_indices] = dur_preds[ dur_counter_jump_indices ] # whether to copy previous token in this step copy_prev_token = dur_counter != 1 if self.delayed_duration is False: dur_counter_jump_indices = dur_counter == 1 dur_counter[dur_counter_jump_indices] = dur_preds[ dur_counter_jump_indices ] # else: # dur_counter[dur_counter==0] = dur_preds[dur_counter==0] - 1 # copy_prev_token = (dur_counter > 0) if self.lm_model is not None: assert False, "Currently not supported in multichannelLM case" for i in range(self.n_channels): lprobs_list[i][lprobs_list[i] != lprobs_list[i]] = torch.tensor( -math.inf ).to(lprobs_list[i]) lprobs_list[i][:, self.pad] = -math.inf # never select pad lprobs_list[i][:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs_list[i][:, : self.eos] = -math.inf lprobs_list[i][:, self.eos + 1 :] = -math.inf else: lprobs_list[i][ :, self.eos ] = -math.inf # quick fix for short generation # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): ( lprobs_list[i], tokens[..., i], scores[..., i], ) = self._prefix_tokens( step, lprobs_list[i], scores[..., i], tokens[..., i], prefix_tokens[..., i], beam_size, ) if self.duration_prediction: # Can copy previous token if the prefix token is padding or unk (1-channel conditionned case) can_copy_mask = ( prefix_tokens[:, step, i].eq(self.pad) | prefix_tokens[:, step, i].eq(self.unk) ).repeat_interleave(beam_size) copy_prev_token[:, i] &= can_copy_mask elif step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs_list[i][:, self.eos] = -math.inf if self.duration_prediction: if step < max_len: for j in range(copy_prev_token.size(0)): if copy_prev_token[j, i]: prev_token = tokens[j, step, i] lprobs_list[i][j, :prev_token] = -math.inf lprobs_list[i][j, prev_token + 1 :] = -math.inf # lprobs_list[i][j, prev_token] = 0. # dur_counter[j,i] -= 1 # else: # prev_token = tokens[j, step, i] # if not (lprobs_list[i][j,:].ne(-math.inf).nonzero() == prev_token).all(): # lprobs_list[i][j, prev_token] = -math.inf # dur_counter[j,i] = 0. # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs_list[0]) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: for i in range(self.n_channels): lprobs_list[i] = self.repeat_ngram_blocker( tokens, lprobs_list[i], bsz, beam_size, step ) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, [ lprobs_list[i].view(bsz, -1, self.vocab_sizes[i]) for i in range(self.n_channels) ], scores.view(bsz, beam_size, -1, self.n_channels)[:, :, :step, :], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask = torch.any(eos_mask, dim=-1, keepdim=False) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.stack( [ torch.masked_select( cand_scores[:, :beam_size, i], mask=eos_mask[:, :beam_size] ) for i in range(self.n_channels) ], dim=-1, ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, -1, self.n_channels ) tokens = tokens.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, -1, self.n_channels ) if self.duration_prediction: dur_counter = dur_counter.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, self.n_channels ) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) # active_scores = torch.stack([ # torch.gather(cand_scores[...,0], dim=1, index=active_hypos) # for i in range(self.n_channels) # ], dim = -1) # active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them for i in range(self.n_channels): tokens.view(bsz, beam_size, -1, self.n_channels)[ :, :, step + 1, i ] = torch.gather(cand_indices[..., i], dim=1, index=active_hypos) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) for i in range(self.n_channels): scores.view(bsz, beam_size, -1, self.n_channels)[ :, :, step, i ] = torch.gather(cand_scores[..., i], dim=1, index=active_hypos) if self.duration_prediction: dur_counter = torch.index_select( dur_counter, dim=0, index=active_bbsz_idx ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized def _prefix_tokens( self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int ): """Handle prefix tokens""" prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) prefix_mask = prefix_toks.ne(self.pad) # used for 1-channel generation, do not force the unk token (i.e. unk tokens are changed) prefix_mask &= prefix_toks.ne(self.unk) # zeroing the copying tokens # if step > 0: # copy_mask = (prefix_tokens[:, step] == prefix_tokens[:, step-1]).unsqueeze(-1).repeat(1, beam_size).view(-1) # prefix_lprobs[copy_mask & prefix_mask] = 0. lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] ) # shouldn't stop at unk token unk_mask = prefix_toks.eq(self.unk) if len(lprobs[unk_mask]) > 0: # otherwise it won't assign to lprobs, # see: https://discuss.pytorch.org/t/how-to-mask-and-assign-a-value-to-tensor/18437 copy_lprobs = lprobs[unk_mask][:, :] copy_lprobs[:, self.eos] = -math.inf lprobs[unk_mask] = copy_lprobs # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[ :, 0, 1 : step + 1 ] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() # copy tokens, scores and lprobs from the first beam to all beams tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return lprobs, tokens, scores def replicate_first_beam(self, tensor, mask, beam_size: int): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) def finalize_hypos( self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[str, Tensor]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int, ): """Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. A sentence is finalized when {beam_size} finished items have been collected for it. Returns number of sentences (not beam items) being finalized. These will be removed from the batch and not processed further. Args: bbsz_idx (Tensor): """ assert bbsz_idx.numel() == eos_scores.size(0) # clone relevant token and attention tensors. # tokens is (batch * beam, max_len). So the index_select # gets the newly EOS rows, then selects cols 1..{step + 2} tokens_clone = tokens.index_select(0, bbsz_idx)[ :, 1 : step + 2 ] # skip the first index, which is EOS tokens_clone[:, step] = self.eos attn_clone = ( attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2] if attn is not None else None ) # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] pos_scores[:, step, :] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: eos_scores /= (step + 1) ** self.len_penalty # cum_unfin records which sentences in the batch are finished. # It helps match indexing between (a) the original sentences # in the batch and (b) the current, possibly-reduced set of # sentences. cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) # The keys here are of the form "{sent}_{unfin_idx}", where # "unfin_idx" is the index in the current (possibly reduced) # list of sentences, and "sent" is the index in the original, # unreduced batch # set() is not supported in script export sents_seen: Dict[str, Optional[Tensor]] = {} # For every finished beam item for i in range(bbsz_idx.size()[0]): idx = bbsz_idx[i] score = eos_scores[i].sum() # sentence index in the current (possibly reduced) batch unfin_idx = idx // beam_size # sentence index in the original (unreduced) batch sent = unfin_idx + cum_unfin[unfin_idx] # Cannot create dict for key type '(int, int)' in torchscript. # The workaround is to cast int to string seen = str(sent.item()) + "_" + str(unfin_idx.item()) if seen not in sents_seen: sents_seen[seen] = None if self.match_source_len and step > src_lengths[unfin_idx]: score = torch.tensor(-math.inf).to(score) # An input sentence (among those in a batch) is finished when # beam_size hypotheses have been collected for it if len(finalized[sent]) < beam_size: if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent].append( { "tokens": tokens_clone[i], "score": score, "attention": hypo_attn, # src_len x tgt_len "alignment": torch.empty(0), "positional_scores": pos_scores[i], } ) newly_finished: List[int] = [] for seen in sents_seen.keys(): # check termination conditions for this sentence sent: int = int(float(seen.split("_")[0])) unfin_idx: int = int(float(seen.split("_")[1])) if not finished[sent] and self.is_finished( step, unfin_idx, max_len, len(finalized[sent]), beam_size ): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished def is_finished( self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int, ): """ Check whether decoding for a sentence is finished, which occurs when the list of finalized sentences has reached the beam size, or when we reach the maximum length. """ assert finalized_sent_len <= beam_size if finalized_sent_len == beam_size or step == max_len: return True return False class MultichannelEnsembleModel(nn.Module): """A wrapper around an ensemble of SpeechDLM models.""" def __init__(self, models): super().__init__() self.models_size = len(models) # method '__len__' is not supported in ModuleList for torch script self.single_model = models[0] self.models = nn.ModuleList(models) self.has_incremental: bool = False if all( hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder) for m in models ): self.has_incremental = True if isinstance(models[0], SpeechDLM): self.is_speech_dlm = True # Otherwise it's a multi-channel language model (without cross-prediction outputs) else: self.is_speech_dlm = False if getattr(models[0].decoder.args, "duration_prediction", False): self.is_duration_prediction = True else: self.is_duration_prediction = False def forward(self): pass def has_encoder(self): return hasattr(self.single_model, "encoder") def has_incremental_states(self): return self.has_incremental def max_decoder_positions(self): return min([m.max_decoder_positions() for m in self.models]) @torch.jit.export def forward_encoder(self, net_input: Dict[str, Tensor]): if not self.has_encoder(): return None return [model.encoder.forward_torchscript(net_input) for model in self.models] @torch.jit.export def forward_decoder( self, tokens, encoder_outs: List[Dict[str, List[Tensor]]], incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], temperature: Dict[str, float] = 1.0, ): if isinstance(temperature, (float, int)): temperature = {channel: temperature for channel in tokens} log_probs = {channel: [] for channel in tokens} avg_attn: Optional[Tensor] = None encoder_out: Optional[Dict[str, List[Tensor]]] = None for i, model in enumerate(self.models): if self.has_encoder(): encoder_out = encoder_outs[i] # decode each model if self.has_incremental_states(): decoder_out = model.decoder.forward( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i], ) else: decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out) attn: Optional[Tensor] = None decoder_len = len(decoder_out) if decoder_len > 1 and decoder_out[1] is not None: if isinstance(decoder_out[1], Tensor): attn = decoder_out[1] else: attn_holder = decoder_out[1]["attn"] if isinstance(attn_holder, Tensor): attn = attn_holder elif attn_holder is not None: attn = attn_holder[0] if attn is not None: attn = attn[:, -1, :] if self.is_speech_dlm: if self.is_duration_prediction: decoder_out_divided_by_temperature = { channel_src: { channel_pred: { "pred_token": decoder_out[0][channel_src][channel_pred][ "pred_token" ][:, -1:, :].div_(temperature[channel_pred]), "pred_duration": decoder_out[0][channel_src][ channel_pred ]["pred_duration"][:, -1:, :], } for channel_pred in decoder_out[0][channel_src] } for channel_src in decoder_out[0] } else: decoder_out_divided_by_temperature = { channel_src: { channel_pred: decoder_out[0][channel_src][channel_pred][ :, -1:, : ].div_(temperature[channel_pred]) for channel_pred in decoder_out[0][channel_src] } for channel_src in decoder_out[0] } else: decoder_out_divided_by_temperature = { channel: decoder_out[0][channel][:, -1:, :].div_( temperature[channel] ) for channel in decoder_out[0] } decoder_out_tuple = ( decoder_out_divided_by_temperature, None if decoder_len <= 1 else decoder_out[1], ) probs = model.get_normalized_probs( decoder_out_tuple, log_probs=True, sample=None ) if self.is_speech_dlm: if self.is_duration_prediction: probs = { channel: { "pred_token": probs[channel][channel]["pred_token"][ :, -1, : ], "pred_duration": probs[channel][channel]["pred_duration"][ :, -1, : ], } for channel in probs } else: probs = { channel: probs[channel][channel][:, -1, :] for channel in probs } else: probs = {channel: probs[channel][:, -1, :] for channel in probs} if self.models_size == 1: return probs, attn for channel in probs: log_probs[channel].append(probs[channel]) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = {} for channel in log_probs: avg_probs[channel] = torch.logsumexp( torch.stack(log_probs[channel], dim=0), dim=0 ) - math.log(self.models_size) if avg_attn is not None: avg_attn.div_(self.models_size) return avg_probs, avg_attn @torch.jit.export def reorder_encoder_out( self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order ): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ new_outs: List[Dict[str, List[Tensor]]] = [] if not self.has_encoder(): return new_outs for i, model in enumerate(self.models): assert encoder_outs is not None new_outs.append( model.encoder.reorder_encoder_out(encoder_outs[i], new_order) ) return new_outs @torch.jit.export def reorder_incremental_state( self, incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order, ): if not self.has_incremental_states(): return for i, model in enumerate(self.models): model.decoder.reorder_incremental_state_scripting( incremental_states[i], new_order )
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/sequence_generator/multichannel_sequence_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .multichannel_sequence_generator import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/sequence_generator/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Optional import torch import torch.nn as nn from torch import Tensor class MultichannelSearch(nn.Module): def __init__(self, tgt_dicts): super().__init__() tgt_dict = list(tgt_dicts.values())[0] self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() for tgt_dict in tgt_dicts.values(): assert self.pad == tgt_dict.pad() assert self.unk == tgt_dict.unk() assert self.eos == tgt_dict.eos() self.vocab_sizes = {channel: len(tgt_dicts[channel]) for channel in tgt_dicts} self.src_lengths = torch.tensor(-1) self.supports_constraints = False self.stop_on_max_len = False def step( self, step, lprobs, scores, prev_output_tokens=None, original_batch_idxs=None ): """Take a single search step. Args: step: the current search step, starting at 0 lprobs: dictionary of channels {channel : (bsz x input_beam_size x vocab_size_channel)} the model's log-probabilities over the vocabulary at the current step scores: {channel : (bsz x input_beam_size x step)} the historical model scores of each hypothesis up to this point prev_output_tokens: {channel : (bsz x step)} the previously generated oputput tokens original_batch_idxs: (bsz) the tensor with the batch indices, in the range [0, bsz) this is useful in case there has been applied a re-ordering and we need to know the orignal indices Return: A tuple of (scores, indices, beams) where: scores: {channel : (bsz x output_beam_size)} the scores of the chosen elements; output_beam_size can be larger than input_beam_size, e.g., we may return 2*input_beam_size to account for EOS indices: {channel : (bsz x output_beam_size)} the indices of the chosen elements beams: (bsz x output_beam_size) the hypothesis ids of the chosen elements, in the range [0, input_beam_size) """ raise NotImplementedError @torch.jit.export def set_src_lengths(self, src_lengths): self.src_lengths = src_lengths @torch.jit.export def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int): """Initialize constraint states for constrained decoding (if supported). Args: batch_constraints: (torch.Tensor, optional) the list of constraints, in packed form beam_size: (int) the beam size Returns: *encoder_out* rearranged according to *new_order* """ pass def prune_sentences(self, batch_idxs: Tensor): """ Removes constraint states for completed sentences (if supported). This is called from sequence_generator._generate() when sentences are deleted from the batch. Args: batch_idxs: Indices of *sentences* whose constraint state should be *kept*. """ pass def update_constraints(self, active_hypos: Tensor): """ Updates the constraint states by selecting the beam items that are retained. This is called at each time step of sequence_generator._generate() when the set of 2 * {beam_size} candidate hypotheses are reduced to the beam size. Args: active_hypos: (batch size, beam size) list of integers denoting, for each sentence, which beam candidate items should be kept. """ pass def unravel_index(index, shape): out = [] for dim in reversed(shape): out.append(index % dim) index = index // dim return torch.stack(tuple(reversed(out)), dim=-1) def topk_sum(lprobs_list, k): """ lprobs_list = [lprobs_1,...,lprobs_n], where: lprobs_1 : (batch_size x beam_size x vocab_1) ... lprobs_n : (batch_size x beam_size x vocab_n) Return: - topk_values : (batch_size x k) values of the topk sum of the form : lprobs_1[bsz, beam_idx, vocab_1_idx] + ... + lprobs_n[bsz, beam_idx, vocab_n_idx] - topk_idxs : (batch_size x k x n+1) each (n+1)-tensor being [beam_idx, vocab_1_idx, ..., vocab_n_idx] """ # Reduce all lprobs to k candidates first to reduce later complexity # We may assume that k << vocab lprobs_topk_list = [] lprobs_topk_indices_list = [] for lprobs in lprobs_list: k_i = min(k, lprobs.size(-1)) topk_values, topk_indices = torch.topk(lprobs, k=k_i) # topk_values : (batch_size x beam_size x k_i) # topk_indices : (batch_size x beam_size x k_i) lprobs_topk_list.append(topk_values) lprobs_topk_indices_list.append(topk_indices) # Compute all possible sums sum_lprobs_topk = lprobs_topk_list[0] for i in range(1, len(lprobs_topk_list)): unsqueezed_lprobs = lprobs_topk_list[i] for _ in range(i): unsqueezed_lprobs = unsqueezed_lprobs.unsqueeze(-2) sum_lprobs_topk = sum_lprobs_topk.unsqueeze(-1) + unsqueezed_lprobs # sum_lprobs : (batch_size x beam_size x k_1 x ... x k_n) # Get the top k sums and the (transformed indices) topk_sum_values, topk_sum_indices = torch.topk( sum_lprobs_topk.view(sum_lprobs_topk.size(0), -1), k=k ) # topk_sum_values : (batch_size x k) # topk_sum_indices : (batch_size x k) topk_sum_indices = unravel_index(topk_sum_indices, tuple(sum_lprobs_topk.shape[1:])) # topk_sum_indices : (batch_size x k x n+1) # Convert the transformed indices to the true indices for i_batch in range(topk_sum_indices.size(0)): for i_cand in range(topk_sum_indices.size(1)): i_beam, *transformed_vocab_indices = topk_sum_indices[i_batch, i_cand] true_vocab_indices = [i_beam] for j, transformed_vocab_j_idx in enumerate(transformed_vocab_indices): true_vocab_j_idx = lprobs_topk_indices_list[j][ i_batch, i_beam, transformed_vocab_j_idx ] true_vocab_indices.append(true_vocab_j_idx) topk_sum_indices[i_batch, i_cand] = torch.tensor(true_vocab_indices) topk_sum_beams = topk_sum_indices[:, :, 0] topk_sum_indices = topk_sum_indices[:, :, 1:] return topk_sum_values, topk_sum_indices, topk_sum_beams class MultichannelBeamSearch(MultichannelSearch): def __init__(self, tgt_dicts): super().__init__(tgt_dicts) self.constraint_states = None @torch.jit.export def step( self, step: int, lprobs, scores: Optional[Dict[str, Tensor]], prev_output_tokens: Optional[Dict[str, Tensor]] = None, original_batch_idxs: Optional[Tensor] = None, ): channels = list(lprobs.keys()) bsz, beam_size, _ = lprobs[channels[0]].size() lprobs_list = [] if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam for channel in channels: lprobs_list.append(lprobs[channel][:, ::beam_size, :].contiguous()) else: # make probs contain cumulative scores for each hypothesis assert scores is not None for channel in channels: lprobs_list.append( lprobs[channel] + scores[channel][:, :, step - 1].unsqueeze(-1) ) topk_sum_values, topk_sum_indices, topk_sum_beams = topk_sum( lprobs_list, k=beam_size * 2 ) beams_buf = topk_sum_beams scores_buf = {} indices_buf = {} for i, channel in enumerate(channels): indices_buf[channel] = topk_sum_indices[:, :, i] scores_buf[channel] = ( torch.tensor( [ lprobs_list[i][i_batch, i_beam, i_index] for i_batch in range(bsz) for i_beam, i_index in zip( beams_buf[i_batch], indices_buf[channel][i_batch] ) ] ) .view(bsz, -1) .to(lprobs_list[i].device) ) # At this point, beams_buf and indices_buf are single-dim and contain relative indices return scores_buf, indices_buf, beams_buf class ContiguousMultichannelBeamSearch(MultichannelSearch): def __init__(self, tgt_dicts): super().__init__(tgt_dicts) self.constraint_states = None @torch.jit.export def step( self, step: int, lprobs, scores: Optional[Tensor], prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): n_channels = len(lprobs) bsz, beam_size, _ = lprobs[0].size() lprobs_list = [] if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam for i in range(n_channels): lprobs_list.append(lprobs[i][:, ::beam_size, :].contiguous()) else: # make probs contain cumulative scores for each hypothesis assert scores is not None for i in range(n_channels): lprobs_list.append(lprobs[i] + scores[:, :, step - 1, i].unsqueeze(-1)) topk_sum_values, topk_sum_indices, topk_sum_beams = topk_sum( lprobs_list, k=beam_size * 2 ) beams_buf = topk_sum_beams indices_buf = topk_sum_indices scores_buf = ( torch.tensor( [ lprobs_list[i][i_batch, i_beam, i_index] for i in range(len(lprobs_list)) for i_batch in range(bsz) for i_beam, i_index in zip( beams_buf[i_batch], indices_buf[i_batch, :, i] ) ] ) .view(len(lprobs_list), bsz, -1) .permute(1, 2, 0) .to(lprobs_list[0].device) ) # At this point, beams_buf and indices_buf are single-dim and contain relative indices return scores_buf, indices_buf, beams_buf class ContiguousMultichannelSampling(MultichannelSearch): sampling_topk: int sampling_topp: float def __init__(self, tgt_dicts, sampling_topk=-1, sampling_topp=-1.0): super().__init__(tgt_dicts) self.sampling_topk = sampling_topk self.sampling_topp = sampling_topp def _sample_topp(self, lprobs): """Sample among the smallest set of elements whose cumulative probability mass exceeds p. See `"The Curious Case of Neural Text Degeneration" (Holtzman et al., 2019) <https://arxiv.org/abs/1904.09751>`_. Args: lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step Return: A tuple of (trimed_probs, truncated_indices) where: trimed_probs: (bsz x input_beam_size x ?) the model's probabilities over the elements selected to sample from. The width of the third dimension is determined by top-P. truncated_indices: (bsz x input_beam_size x ?) the indices of the chosen elements. """ probs = lprobs.exp_() # sort the last dimension (vocab dimension) in descending order sorted_probs, sorted_indices = probs.sort(descending=True) # compute a mask to indicate the words to be included in the top-P set. cumsum_probs = sorted_probs.cumsum(dim=2) mask = cumsum_probs.lt(self.sampling_topp) # note that mask was computed by 'lt'. One more word needs to be included # so that the cumulative probability mass can exceed p. cumsum_mask = mask.cumsum(dim=2) last_included = cumsum_mask[:, :, -1:] last_included.clamp_(0, mask.size()[2] - 1) mask = mask.scatter_(2, last_included, 1) # truncate unnecessary dims. max_dim = last_included.max() truncated_mask = mask[:, :, : max_dim + 1] truncated_probs = sorted_probs[:, :, : max_dim + 1] truncated_indices = sorted_indices[:, :, : max_dim + 1] # trim the words that are not in top-P by setting their probabilities # to 0, so that they would not be sampled later. trim_mask = ~truncated_mask trimed_probs = truncated_probs.masked_fill_(trim_mask, 0) return trimed_probs, truncated_indices @torch.jit.export def step( self, step: int, lprobs, scores, prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): n_channels = len(lprobs) bsz, beam_size, vocab_size = lprobs[0].size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam for i in range(n_channels): lprobs[i] = lprobs[i][:, ::beam_size, :].contiguous() probs = [] top_indices = [] for i in range(n_channels): if self.sampling_topp > 0: # only sample from the smallest set of words whose cumulative probability mass exceeds p probs_i, top_indices_i = self._sample_topp(lprobs[i]) elif self.sampling_topk > 0: # only sample from top-k candidates lprobs[i], top_indices_i = lprobs[i].topk( min(self.sampling_topk, lprobs[i].size(-1)) ) probs_i = lprobs[i].exp_() else: probs_i = lprobs[i].exp_() # dummy data to be consistent with true branch for type check top_indices_i = torch.empty(0).to(probs_i) probs.append(probs_i) top_indices.append(top_indices_i) # sample indices_buf = [] for i in range(n_channels): if step == 0: indices_buf.append( torch.multinomial( probs[i].view(bsz, -1), beam_size, replacement=True, ).view(bsz, beam_size) ) else: indices_buf.append( torch.multinomial( probs[i].view(bsz * beam_size, -1), 1, replacement=True, ).view(bsz, beam_size) ) if step == 0: for i in range(n_channels): # expand to beam size probs[i] = probs[i].expand(bsz, beam_size, -1) # gather scores scores_buf = [] for i in range(n_channels): scores_buf.append( torch.gather(probs[i], dim=2, index=indices_buf[i].unsqueeze(-1)) ) scores_buf[i] = scores_buf[i].log_().view(bsz, -1) # remap indices if using top-k or top-P sampling if self.sampling_topk > 0 or self.sampling_topp > 0: for i in range(n_channels): indices_buf[i] = torch.gather( top_indices[i].expand(bsz, beam_size, -1), dim=2, index=indices_buf[i].unsqueeze(-1), ).squeeze(2) if step == 0: beams_buf = indices_buf[0].new_zeros(bsz, beam_size) else: beams_buf = torch.arange(0, beam_size).to(indices_buf[0]).repeat(bsz, 1) # make scores cumulative for i in range(n_channels): scores_buf[i].add_( torch.gather(scores[:, :, step - 1, i], dim=1, index=beams_buf) ) scores_buf = torch.stack(scores_buf, dim=-1) indices_buf = torch.stack(indices_buf, dim=-1) return scores_buf, indices_buf, beams_buf
EXA-1-master
exa/libraries/fairseq/fairseq/models/speech_dlm/sequence_generator/multichannel_search.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging from typing import Dict import numpy as np import torch import torch.nn.functional as F from torch import nn from fairseq.data.audio.audio_utils import ( TTSSpectrogram, get_fourier_basis, get_mel_filters, get_window, ) from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig from fairseq.models import BaseFairseqModel, register_model from fairseq.models.text_to_speech.codehifigan import CodeGenerator as CodeHiFiGANModel from fairseq.models.text_to_speech.hifigan import Generator as HiFiGANModel from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface logger = logging.getLogger(__name__) class PseudoInverseMelScale(torch.nn.Module): def __init__(self, n_stft, n_mels, sample_rate, f_min, f_max) -> None: super(PseudoInverseMelScale, self).__init__() self.n_mels = n_mels basis = get_mel_filters(sample_rate, (n_stft - 1) * 2, n_mels, f_min, f_max) basis = torch.pinverse(basis) # F x F_mel self.register_buffer("basis", basis) def forward(self, melspec: torch.Tensor) -> torch.Tensor: # pack batch shape = melspec.shape # B_1 x ... x B_K x F_mel x T n_mels, time = shape[-2], shape[-1] melspec = melspec.view(-1, n_mels, time) freq, _ = self.basis.size() # F x F_mel assert self.n_mels == n_mels, (self.n_mels, n_mels) specgram = self.basis.matmul(melspec).clamp(min=0) # unpack batch specgram = specgram.view(shape[:-2] + (freq, time)) return specgram class GriffinLim(torch.nn.Module): def __init__( self, n_fft: int, win_length: int, hop_length: int, n_iter: int, window_fn=torch.hann_window, ): super(GriffinLim, self).__init__() self.transform = TTSSpectrogram( n_fft, win_length, hop_length, return_phase=True ) basis = get_fourier_basis(n_fft) basis = torch.pinverse(n_fft / hop_length * basis).T[:, None, :] basis *= get_window(window_fn, n_fft, win_length) self.register_buffer("basis", basis) self.n_fft = n_fft self.win_length = win_length self.hop_length = hop_length self.n_iter = n_iter self.tiny = 1.1754944e-38 @classmethod def get_window_sum_square( cls, n_frames, hop_length, win_length, n_fft, window_fn=torch.hann_window ) -> torch.Tensor: w_sq = get_window(window_fn, n_fft, win_length) ** 2 n = n_fft + hop_length * (n_frames - 1) x = torch.zeros(n, dtype=torch.float32) for i in range(n_frames): ofst = i * hop_length x[ofst : min(n, ofst + n_fft)] += w_sq[: max(0, min(n_fft, n - ofst))] return x def inverse(self, magnitude: torch.Tensor, phase) -> torch.Tensor: x = torch.cat( [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1 ) x = F.conv_transpose1d(x, self.basis, stride=self.hop_length) win_sum_sq = self.get_window_sum_square( magnitude.shape[-1], hop_length=self.hop_length, win_length=self.win_length, n_fft=self.n_fft, ).to(magnitude.device) # remove modulation effects approx_nonzero_indices = win_sum_sq > self.tiny x[:, :, approx_nonzero_indices] /= win_sum_sq[approx_nonzero_indices] x *= self.n_fft / self.hop_length x = x[:, :, self.n_fft // 2 :] x = x[:, :, : -self.n_fft // 2 :] return x def forward(self, specgram: torch.Tensor) -> torch.Tensor: angles = np.angle(np.exp(2j * np.pi * np.random.rand(*specgram.shape))) angles = torch.from_numpy(angles).to(specgram) _specgram = specgram.view(-1, specgram.shape[-2], specgram.shape[-1]) waveform = self.inverse(_specgram, angles).squeeze(1) for _ in range(self.n_iter): _, angles = self.transform(waveform) waveform = self.inverse(_specgram, angles).squeeze(1) return waveform.squeeze(0) class GriffinLimVocoder(nn.Module): def __init__( self, sample_rate, win_size, hop_size, n_fft, n_mels, f_min, f_max, window_fn, spec_bwd_max_iter=32, fp16=False, ): super().__init__() self.inv_mel_transform = PseudoInverseMelScale( n_stft=n_fft // 2 + 1, n_mels=n_mels, sample_rate=sample_rate, f_min=f_min, f_max=f_max, ) self.gl_transform = GriffinLim( n_fft=n_fft, win_length=win_size, hop_length=hop_size, window_fn=window_fn, n_iter=spec_bwd_max_iter, ) if fp16: self.half() self.inv_mel_transform.half() self.gl_transform.half() else: self.float() self.inv_mel_transform.float() self.gl_transform.float() def forward(self, x): # x: (B x) T x D -> (B x) 1 x T # NOTE: batched forward produces noisier waveform. recommend running # one utterance at a time self.eval() x = x.exp().transpose(-1, -2) x = self.inv_mel_transform(x) x = self.gl_transform(x) return x @classmethod def from_data_cfg(cls, args, data_cfg: S2TDataConfig): feat_cfg = data_cfg.config["features"] window_fn = getattr(torch, feat_cfg["window_fn"] + "_window") return cls( sample_rate=feat_cfg["sample_rate"], win_size=int(feat_cfg["win_len_t"] * feat_cfg["sample_rate"]), hop_size=int(feat_cfg["hop_len_t"] * feat_cfg["sample_rate"]), n_fft=feat_cfg["n_fft"], n_mels=feat_cfg["n_mels"], f_min=feat_cfg["f_min"], f_max=feat_cfg["f_max"], window_fn=window_fn, spec_bwd_max_iter=args.spec_bwd_max_iter, fp16=args.fp16, ) class HiFiGANVocoder(nn.Module): def __init__( self, checkpoint_path: str, model_cfg: Dict[str, str], fp16: bool = False ) -> None: super().__init__() self.model = HiFiGANModel(model_cfg) state_dict = torch.load(checkpoint_path) self.model.load_state_dict(state_dict["generator"]) if fp16: self.model.half() logger.info(f"loaded HiFiGAN checkpoint from {checkpoint_path}") def forward(self, x: torch.Tensor) -> torch.Tensor: # (B x) T x D -> (B x) 1 x T model = self.model.eval() if len(x.shape) == 2: return model(x.unsqueeze(0).transpose(1, 2)).detach().squeeze(0) else: return model(x.transpose(-1, -2)).detach() @classmethod def from_data_cfg(cls, args, data_cfg: S2TDataConfig): vocoder_cfg = data_cfg.vocoder assert vocoder_cfg.get("type", "griffin_lim") == "hifigan" with open(vocoder_cfg["config"]) as f: model_cfg = json.load(f) return cls(vocoder_cfg["checkpoint"], model_cfg, fp16=args.fp16) @register_model("CodeHiFiGANVocoder") class CodeHiFiGANVocoder(BaseFairseqModel): def __init__( self, checkpoint_path: str, model_cfg: Dict[str, str], fp16: bool = False ) -> None: super().__init__() self.model = CodeHiFiGANModel(model_cfg) if torch.cuda.is_available(): state_dict = torch.load(checkpoint_path) else: state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) self.model.load_state_dict(state_dict["generator"]) self.model.eval() if fp16: self.model.half() self.model.remove_weight_norm() logger.info(f"loaded CodeHiFiGAN checkpoint from {checkpoint_path}") def forward(self, x: Dict[str, torch.Tensor], dur_prediction=False) -> torch.Tensor: assert "code" in x x["dur_prediction"] = dur_prediction # remove invalid code mask = x["code"] >= 0 x["code"] = x["code"][mask].unsqueeze(dim=0) if "f0" in x: f0_up_ratio = x["f0"].size(1) // x["code"].size(1) mask = mask.unsqueeze(2).repeat(1, 1, f0_up_ratio).view(-1, x["f0"].size(1)) x["f0"] = x["f0"][mask].unsqueeze(dim=0) return self.model(**x).detach().squeeze() @classmethod def from_data_cfg(cls, args, data_cfg): vocoder_cfg = data_cfg.vocoder assert vocoder_cfg is not None, "vocoder not specified in the data config" with open(vocoder_cfg["config"]) as f: model_cfg = json.load(f) return cls(vocoder_cfg["checkpoint"], model_cfg, fp16=args.fp16) @classmethod def hub_models(cls): base_url = "http://dl.fbaipublicfiles.com/fairseq/vocoder" model_ids = [ "unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur", "unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_es_css10_dur", "unit_hifigan_HK_layer12.km2500_frame_TAT-TTS", ] return {i: f"{base_url}/{i}.tar.gz" for i in model_ids} @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", config="config.json", fp16: bool = False, **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), config_yaml=config, fp16=fp16, is_vocoder=True, **kwargs, ) with open(f"{x['args']['data']}/{config}") as f: vocoder_cfg = json.load(f) assert len(x["args"]["model_path"]) == 1, "Too many vocoder models in the input" vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg) return VocoderHubInterface(vocoder_cfg, vocoder) def get_vocoder(args, data_cfg: S2TDataConfig): if args.vocoder == "griffin_lim": return GriffinLimVocoder.from_data_cfg(args, data_cfg) elif args.vocoder == "hifigan": return HiFiGANVocoder.from_data_cfg(args, data_cfg) elif args.vocoder == "code_hifigan": return CodeHiFiGANVocoder.from_data_cfg(args, data_cfg) else: raise ValueError("Unknown vocoder")
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/vocoder.py
from argparse import Namespace import torch import torch.nn as nn from fairseq.models.text_to_speech.fastspeech2 import VariancePredictor from fairseq.models.text_to_speech.hifigan import Generator class CodeGenerator(Generator): def __init__(self, cfg): super().__init__(cfg) self.dict = nn.Embedding(cfg["num_embeddings"], cfg["embedding_dim"]) self.multispkr = cfg.get("multispkr", None) self.embedder = cfg.get("embedder_params", None) if self.multispkr and not self.embedder: self.spkr = nn.Embedding(cfg.get("num_speakers", 200), cfg["embedding_dim"]) elif self.embedder: self.spkr = nn.Linear(cfg.get("embedder_dim", 256), cfg["embedding_dim"]) self.dur_predictor = None if cfg.get("dur_predictor_params", None): self.dur_predictor = VariancePredictor( Namespace(**cfg["dur_predictor_params"]) ) self.f0 = cfg.get("f0", None) n_f0_bin = cfg.get("f0_quant_num_bin", 0) self.f0_quant_embed = ( None if n_f0_bin <= 0 else nn.Embedding(n_f0_bin, cfg["embedding_dim"]) ) @staticmethod def _upsample(signal, max_frames): if signal.dim() == 3: bsz, channels, cond_length = signal.size() elif signal.dim() == 2: signal = signal.unsqueeze(2) bsz, channels, cond_length = signal.size() else: signal = signal.view(-1, 1, 1) bsz, channels, cond_length = signal.size() signal = signal.unsqueeze(3).repeat(1, 1, 1, max_frames // cond_length) # pad zeros as needed (if signal's shape does not divide completely with max_frames) reminder = (max_frames - signal.shape[2] * signal.shape[3]) // signal.shape[3] if reminder > 0: raise NotImplementedError( "Padding condition signal - misalignment between condition features." ) signal = signal.view(bsz, channels, max_frames) return signal def forward(self, **kwargs): x = self.dict(kwargs["code"]).transpose(1, 2) if self.dur_predictor and kwargs.get("dur_prediction", False): assert x.size(0) == 1, "only support single sample" log_dur_pred = self.dur_predictor(x.transpose(1, 2)) dur_out = torch.clamp( torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1 ) # B x C x T x = torch.repeat_interleave(x, dur_out.view(-1), dim=2) if self.f0: if self.f0_quant_embed: kwargs["f0"] = self.f0_quant_embed(kwargs["f0"].long()).transpose(1, 2) else: kwargs["f0"] = kwargs["f0"].unsqueeze(1) if x.shape[-1] < kwargs["f0"].shape[-1]: x = self._upsample(x, kwargs["f0"].shape[-1]) elif x.shape[-1] > kwargs["f0"].shape[-1]: kwargs["f0"] = self._upsample(kwargs["f0"], x.shape[-1]) x = torch.cat([x, kwargs["f0"]], dim=1) if self.multispkr: assert ( "spkr" in kwargs ), 'require "spkr" input for multispeaker CodeHiFiGAN vocoder' spkr = self.spkr(kwargs["spkr"]).transpose(1, 2) spkr = self._upsample(spkr, x.shape[-1]) x = torch.cat([x, spkr], dim=1) for k, feat in kwargs.items(): if k in ["spkr", "code", "f0", "dur_prediction"]: continue feat = self._upsample(feat, x.shape[-1]) x = torch.cat([x, feat], dim=1) return super().forward(x)
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/codehifigan.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch from torch import nn from torch.nn import functional as F from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import LSTMCellWithZoneOut, LocationAttention logger = logging.getLogger(__name__) def encoder_init(m): if isinstance(m, nn.Conv1d): nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("relu")) class Tacotron2Encoder(FairseqEncoder): def __init__(self, args, src_dict, embed_speaker): super().__init__(src_dict) self.padding_idx = src_dict.pad() self.embed_speaker = embed_speaker self.spk_emb_proj = None if embed_speaker is not None: self.spk_emb_proj = nn.Linear( args.encoder_embed_dim + args.speaker_embed_dim, args.encoder_embed_dim ) self.embed_tokens = nn.Embedding( len(src_dict), args.encoder_embed_dim, padding_idx=self.padding_idx ) assert args.encoder_conv_kernel_size % 2 == 1 self.convolutions = nn.ModuleList( nn.Sequential( nn.Conv1d( args.encoder_embed_dim, args.encoder_embed_dim, kernel_size=args.encoder_conv_kernel_size, padding=((args.encoder_conv_kernel_size - 1) // 2), ), nn.BatchNorm1d(args.encoder_embed_dim), nn.ReLU(), nn.Dropout(args.encoder_dropout), ) for _ in range(args.encoder_conv_layers) ) self.lstm = nn.LSTM( args.encoder_embed_dim, args.encoder_embed_dim // 2, num_layers=args.encoder_lstm_layers, batch_first=True, bidirectional=True, ) self.apply(encoder_init) def forward(self, src_tokens, src_lengths=None, speaker=None, **kwargs): x = self.embed_tokens(src_tokens) x = x.transpose(1, 2).contiguous() # B x T x C -> B x C x T for conv in self.convolutions: x = conv(x) x = x.transpose(1, 2).contiguous() # B x C x T -> B x T x C src_lengths = src_lengths.cpu().long() x = nn.utils.rnn.pack_padded_sequence(x, src_lengths, batch_first=True) x = self.lstm(x)[0] x = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)[0] encoder_padding_mask = src_tokens.eq(self.padding_idx) if self.embed_speaker is not None: seq_len, bsz, _ = x.size() emb = self.embed_speaker(speaker).expand(seq_len, bsz, -1) x = self.spk_emb_proj(torch.cat([x, emb], dim=2)) return { "encoder_out": [x], # B x T x C "encoder_padding_mask": encoder_padding_mask, # B x T } class Prenet(nn.Module): def __init__(self, in_dim, n_layers, n_units, dropout): super().__init__() self.layers = nn.ModuleList( nn.Sequential(nn.Linear(in_dim if i == 0 else n_units, n_units), nn.ReLU()) for i in range(n_layers) ) self.dropout = dropout def forward(self, x): for layer in self.layers: x = F.dropout(layer(x), p=self.dropout) # always applies dropout return x class Postnet(nn.Module): def __init__(self, in_dim, n_channels, kernel_size, n_layers, dropout): super(Postnet, self).__init__() self.convolutions = nn.ModuleList() assert kernel_size % 2 == 1 for i in range(n_layers): cur_layers = ( [ nn.Conv1d( in_dim if i == 0 else n_channels, n_channels if i < n_layers - 1 else in_dim, kernel_size=kernel_size, padding=((kernel_size - 1) // 2), ), nn.BatchNorm1d(n_channels if i < n_layers - 1 else in_dim), ] + ([nn.Tanh()] if i < n_layers - 1 else []) + [nn.Dropout(dropout)] ) nn.init.xavier_uniform_( cur_layers[0].weight, torch.nn.init.calculate_gain("tanh" if i < n_layers - 1 else "linear"), ) self.convolutions.append(nn.Sequential(*cur_layers)) def forward(self, x): x = x.transpose(1, 2) # B x T x C -> B x C x T for conv in self.convolutions: x = conv(x) return x.transpose(1, 2) def decoder_init(m): if isinstance(m, torch.nn.Conv1d): nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("tanh")) class Tacotron2Decoder(FairseqIncrementalDecoder): def __init__(self, args, src_dict): super().__init__(None) self.args = args self.n_frames_per_step = args.n_frames_per_step self.out_dim = args.output_frame_dim * args.n_frames_per_step self.prenet = Prenet( self.out_dim, args.prenet_layers, args.prenet_dim, args.prenet_dropout ) # take prev_context, prev_frame, (speaker embedding) as input self.attention_lstm = LSTMCellWithZoneOut( args.zoneout, args.prenet_dim + args.encoder_embed_dim, args.decoder_lstm_dim, ) # take attention_lstm output, attention_state, encoder_out as input self.attention = LocationAttention( args.attention_dim, args.encoder_embed_dim, args.decoder_lstm_dim, (1 + int(args.attention_use_cumprob)), args.attention_conv_dim, args.attention_conv_kernel_size, ) # take attention_lstm output, context, (gated_latent) as input self.lstm = nn.ModuleList( LSTMCellWithZoneOut( args.zoneout, args.encoder_embed_dim + args.decoder_lstm_dim, args.decoder_lstm_dim, ) for i in range(args.decoder_lstm_layers) ) proj_in_dim = args.encoder_embed_dim + args.decoder_lstm_dim self.feat_proj = nn.Linear(proj_in_dim, self.out_dim) self.eos_proj = nn.Linear(proj_in_dim, 1) self.postnet = Postnet( self.out_dim, args.postnet_conv_dim, args.postnet_conv_kernel_size, args.postnet_layers, args.postnet_dropout, ) self.ctc_proj = None if getattr(args, "ctc_weight", 0.0) > 0.0: self.ctc_proj = nn.Linear(self.out_dim, len(src_dict)) self.apply(decoder_init) def _get_states(self, incremental_state, enc_out): bsz, in_len, _ = enc_out.size() alstm_h = self.get_incremental_state(incremental_state, "alstm_h") if alstm_h is None: alstm_h = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) alstm_c = self.get_incremental_state(incremental_state, "alstm_c") if alstm_c is None: alstm_c = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) lstm_h = self.get_incremental_state(incremental_state, "lstm_h") if lstm_h is None: lstm_h = [ enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) for _ in range(self.args.decoder_lstm_layers) ] lstm_c = self.get_incremental_state(incremental_state, "lstm_c") if lstm_c is None: lstm_c = [ enc_out.new_zeros(bsz, self.args.decoder_lstm_dim) for _ in range(self.args.decoder_lstm_layers) ] attn_w = self.get_incremental_state(incremental_state, "attn_w") if attn_w is None: attn_w = enc_out.new_zeros(bsz, in_len) attn_w_cum = self.get_incremental_state(incremental_state, "attn_w_cum") if attn_w_cum is None: attn_w_cum = enc_out.new_zeros(bsz, in_len) return alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum def _get_init_attn_c(self, enc_out, enc_mask): bsz = enc_out.size(0) if self.args.init_attn_c == "zero": return enc_out.new_zeros(bsz, self.args.encoder_embed_dim) elif self.args.init_attn_c == "avg": enc_w = (~enc_mask).type(enc_out.type()) enc_w = enc_w / enc_w.sum(dim=1, keepdim=True) return torch.sum(enc_out * enc_w.unsqueeze(2), dim=1) else: raise ValueError(f"{self.args.init_attn_c} not supported") def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, target_lengths=None, **kwargs, ): enc_mask = encoder_out["encoder_padding_mask"] enc_out = encoder_out["encoder_out"][0] in_len = enc_out.size(1) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:, :] bsz, out_len, _ = prev_output_tokens.size() prenet_out = self.prenet(prev_output_tokens) (alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum) = self._get_states( incremental_state, enc_out ) attn_ctx = self._get_init_attn_c(enc_out, enc_mask) attn_out = enc_out.new_zeros(bsz, in_len, out_len) feat_out = enc_out.new_zeros(bsz, out_len, self.out_dim) eos_out = enc_out.new_zeros(bsz, out_len) for t in range(out_len): alstm_in = torch.cat((attn_ctx, prenet_out[:, t, :]), dim=1) alstm_h, alstm_c = self.attention_lstm(alstm_in, (alstm_h, alstm_c)) attn_state = attn_w.unsqueeze(1) if self.args.attention_use_cumprob: attn_state = torch.stack((attn_w, attn_w_cum), dim=1) attn_ctx, attn_w = self.attention(enc_out, enc_mask, alstm_h, attn_state) attn_w_cum = attn_w_cum + attn_w attn_out[:, :, t] = attn_w for i, cur_lstm in enumerate(self.lstm): if i == 0: lstm_in = torch.cat((attn_ctx, alstm_h), dim=1) else: lstm_in = torch.cat((attn_ctx, lstm_h[i - 1]), dim=1) lstm_h[i], lstm_c[i] = cur_lstm(lstm_in, (lstm_h[i], lstm_c[i])) proj_in = torch.cat((attn_ctx, lstm_h[-1]), dim=1) feat_out[:, t, :] = self.feat_proj(proj_in) eos_out[:, t] = self.eos_proj(proj_in).squeeze(1) self.attention.clear_cache() self.set_incremental_state(incremental_state, "alstm_h", alstm_h) self.set_incremental_state(incremental_state, "alstm_c", alstm_c) self.set_incremental_state(incremental_state, "lstm_h", lstm_h) self.set_incremental_state(incremental_state, "lstm_c", lstm_c) self.set_incremental_state(incremental_state, "attn_w", attn_w) self.set_incremental_state(incremental_state, "attn_w_cum", attn_w_cum) post_feat_out = feat_out + self.postnet(feat_out) eos_out = eos_out.view(bsz, out_len, 1) return post_feat_out, eos_out, {"attn": attn_out, "feature_out": feat_out} @register_model("tacotron_2") class Tacotron2Model(FairseqEncoderDecoderModel): """ Implementation for https://arxiv.org/pdf/1712.05884.pdf """ @staticmethod def add_args(parser): # encoder parser.add_argument("--encoder-dropout", type=float) parser.add_argument("--encoder-embed-dim", type=int) parser.add_argument("--encoder-conv-layers", type=int) parser.add_argument("--encoder-conv-kernel-size", type=int) parser.add_argument("--encoder-lstm-layers", type=int) # decoder parser.add_argument("--attention-dim", type=int) parser.add_argument("--attention-conv-dim", type=int) parser.add_argument("--attention-conv-kernel-size", type=int) parser.add_argument("--prenet-dropout", type=float) parser.add_argument("--prenet-layers", type=int) parser.add_argument("--prenet-dim", type=int) parser.add_argument("--postnet-dropout", type=float) parser.add_argument("--postnet-layers", type=int) parser.add_argument("--postnet-conv-dim", type=int) parser.add_argument("--postnet-conv-kernel-size", type=int) parser.add_argument("--init-attn-c", type=str) parser.add_argument("--attention-use-cumprob", action="store_true") parser.add_argument("--zoneout", type=float) parser.add_argument("--decoder-lstm-layers", type=int) parser.add_argument("--decoder-lstm-dim", type=int) parser.add_argument("--output-frame-dim", type=int) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._num_updates = 0 @classmethod def build_model(cls, args, task): embed_speaker = task.get_speaker_embeddings(args) encoder = Tacotron2Encoder(args, task.src_dict, embed_speaker) decoder = Tacotron2Decoder(args, task.src_dict) return cls(encoder, decoder) def forward_encoder(self, src_tokens, src_lengths, **kwargs): return self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self._num_updates = num_updates @register_model_architecture("tacotron_2", "tacotron_2") def base_architecture(args): # encoder args.encoder_dropout = getattr(args, "encoder_dropout", 0.5) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_conv_layers = getattr(args, "encoder_conv_layers", 3) args.encoder_conv_kernel_size = getattr(args, "encoder_conv_kernel_size", 5) args.encoder_lstm_layers = getattr(args, "encoder_lstm_layers", 1) # decoder args.attention_dim = getattr(args, "attention_dim", 128) args.attention_conv_dim = getattr(args, "attention_conv_dim", 32) args.attention_conv_kernel_size = getattr(args, "attention_conv_kernel_size", 15) args.prenet_dropout = getattr(args, "prenet_dropout", 0.5) args.prenet_layers = getattr(args, "prenet_layers", 2) args.prenet_dim = getattr(args, "prenet_dim", 256) args.postnet_dropout = getattr(args, "postnet_dropout", 0.5) args.postnet_layers = getattr(args, "postnet_layers", 5) args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512) args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5) args.init_attn_c = getattr(args, "init_attn_c", "zero") args.attention_use_cumprob = getattr(args, "attention_use_cumprob", True) args.zoneout = getattr(args, "zoneout", 0.1) args.decoder_lstm_layers = getattr(args, "decoder_lstm_layers", 2) args.decoder_lstm_dim = getattr(args, "decoder_lstm_dim", 1024) args.output_frame_dim = getattr(args, "output_frame_dim", 80)
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/tacotron2.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .tacotron2 import * # noqa from .tts_transformer import * # noqa from .fastspeech2 import * # noqa from .vocoder import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch from torch import nn from fairseq import utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderModel, register_model, register_model_architecture, ) from fairseq.models.text_to_speech.hub_interface import TTSHubInterface from fairseq.models.text_to_speech.tacotron2 import Postnet from fairseq.modules import ( FairseqDropout, LayerNorm, MultiheadAttention, PositionalEmbedding, ) logger = logging.getLogger(__name__) def model_init(m): if isinstance(m, nn.Conv1d): nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("relu")) def Embedding(num_embeddings, embedding_dim, padding_idx=None): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) return m class PositionwiseFeedForward(nn.Module): def __init__(self, in_dim, hidden_dim, kernel_size, dropout): super().__init__() self.ffn = nn.Sequential( nn.Conv1d( in_dim, hidden_dim, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, ), nn.ReLU(), nn.Conv1d( hidden_dim, in_dim, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, ), ) self.layer_norm = LayerNorm(in_dim) self.dropout = self.dropout_module = FairseqDropout( p=dropout, module_name=self.__class__.__name__ ) def forward(self, x): # B x T x C residual = x x = self.ffn(x.transpose(1, 2)).transpose(1, 2) x = self.dropout(x) return self.layer_norm(x + residual) class FFTLayer(torch.nn.Module): def __init__( self, embed_dim, n_heads, hidden_dim, kernel_size, dropout, attention_dropout ): super().__init__() self.self_attn = MultiheadAttention( embed_dim, n_heads, dropout=attention_dropout, self_attention=True ) self.layer_norm = LayerNorm(embed_dim) self.ffn = PositionwiseFeedForward( embed_dim, hidden_dim, kernel_size, dropout=dropout ) def forward(self, x, padding_mask=None): # B x T x C residual = x x = x.transpose(0, 1) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=padding_mask, need_weights=False ) x = x.transpose(0, 1) x = self.layer_norm(x + residual) return self.ffn(x) class LengthRegulator(nn.Module): def forward(self, x, durations): # x: B x T x C out_lens = durations.sum(dim=1) max_len = out_lens.max() bsz, seq_len, dim = x.size() out = x.new_zeros((bsz, max_len, dim)) for b in range(bsz): indices = [] for t in range(seq_len): indices.extend([t] * utils.item(durations[b, t])) indices = torch.tensor(indices, dtype=torch.long).to(x.device) out_len = utils.item(out_lens[b]) out[b, :out_len] = x[b].index_select(0, indices) return out, out_lens class VariancePredictor(nn.Module): def __init__(self, args): super().__init__() self.conv1 = nn.Sequential( nn.Conv1d( args.encoder_embed_dim, args.var_pred_hidden_dim, kernel_size=args.var_pred_kernel_size, padding=(args.var_pred_kernel_size - 1) // 2, ), nn.ReLU(), ) self.ln1 = nn.LayerNorm(args.var_pred_hidden_dim) self.dropout_module = FairseqDropout( p=args.var_pred_dropout, module_name=self.__class__.__name__ ) self.conv2 = nn.Sequential( nn.Conv1d( args.var_pred_hidden_dim, args.var_pred_hidden_dim, kernel_size=args.var_pred_kernel_size, padding=1, ), nn.ReLU(), ) self.ln2 = nn.LayerNorm(args.var_pred_hidden_dim) self.proj = nn.Linear(args.var_pred_hidden_dim, 1) def forward(self, x): # Input: B x T x C; Output: B x T x = self.conv1(x.transpose(1, 2)).transpose(1, 2) x = self.dropout_module(self.ln1(x)) x = self.conv2(x.transpose(1, 2)).transpose(1, 2) x = self.dropout_module(self.ln2(x)) return self.proj(x).squeeze(dim=2) class VarianceAdaptor(nn.Module): def __init__(self, args): super().__init__() self.args = args self.length_regulator = LengthRegulator() self.duration_predictor = VariancePredictor(args) self.pitch_predictor = VariancePredictor(args) self.energy_predictor = VariancePredictor(args) n_bins, steps = self.args.var_pred_n_bins, self.args.var_pred_n_bins - 1 self.pitch_bins = torch.linspace(args.pitch_min, args.pitch_max, steps) self.embed_pitch = Embedding(n_bins, args.encoder_embed_dim) self.energy_bins = torch.linspace(args.energy_min, args.energy_max, steps) self.embed_energy = Embedding(n_bins, args.encoder_embed_dim) def get_pitch_emb(self, x, tgt=None, factor=1.0): out = self.pitch_predictor(x) bins = self.pitch_bins.to(x.device) if tgt is None: out = out * factor emb = self.embed_pitch(torch.bucketize(out, bins)) else: emb = self.embed_pitch(torch.bucketize(tgt, bins)) return out, emb def get_energy_emb(self, x, tgt=None, factor=1.0): out = self.energy_predictor(x) bins = self.energy_bins.to(x.device) if tgt is None: out = out * factor emb = self.embed_energy(torch.bucketize(out, bins)) else: emb = self.embed_energy(torch.bucketize(tgt, bins)) return out, emb def forward( self, x, padding_mask, durations=None, pitches=None, energies=None, d_factor=1.0, p_factor=1.0, e_factor=1.0, ): # x: B x T x C log_dur_out = self.duration_predictor(x) dur_out = torch.clamp( torch.round((torch.exp(log_dur_out) - 1) * d_factor).long(), min=0 ) dur_out.masked_fill_(padding_mask, 0) pitch_out, pitch_emb = self.get_pitch_emb(x, pitches, p_factor) x = x + pitch_emb energy_out, energy_emb = self.get_energy_emb(x, energies, e_factor) x = x + energy_emb x, out_lens = self.length_regulator( x, dur_out if durations is None else durations ) return x, out_lens, log_dur_out, pitch_out, energy_out class FastSpeech2Encoder(FairseqEncoder): def __init__(self, args, src_dict, embed_speaker): super().__init__(src_dict) self.args = args self.padding_idx = src_dict.pad() self.n_frames_per_step = args.n_frames_per_step self.out_dim = args.output_frame_dim * args.n_frames_per_step self.embed_speaker = embed_speaker self.spk_emb_proj = None if embed_speaker is not None: self.spk_emb_proj = nn.Linear( args.encoder_embed_dim + args.speaker_embed_dim, args.encoder_embed_dim ) self.dropout_module = FairseqDropout( p=args.dropout, module_name=self.__class__.__name__ ) self.embed_tokens = Embedding( len(src_dict), args.encoder_embed_dim, padding_idx=self.padding_idx ) self.embed_positions = PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, self.padding_idx ) self.pos_emb_alpha = nn.Parameter(torch.ones(1)) self.dec_pos_emb_alpha = nn.Parameter(torch.ones(1)) self.encoder_fft_layers = nn.ModuleList( FFTLayer( args.encoder_embed_dim, args.encoder_attention_heads, args.fft_hidden_dim, args.fft_kernel_size, dropout=args.dropout, attention_dropout=args.attention_dropout, ) for _ in range(args.encoder_layers) ) self.var_adaptor = VarianceAdaptor(args) self.decoder_fft_layers = nn.ModuleList( FFTLayer( args.decoder_embed_dim, args.decoder_attention_heads, args.fft_hidden_dim, args.fft_kernel_size, dropout=args.dropout, attention_dropout=args.attention_dropout, ) for _ in range(args.decoder_layers) ) self.out_proj = nn.Linear(args.decoder_embed_dim, self.out_dim) self.postnet = None if args.add_postnet: self.postnet = Postnet( self.out_dim, args.postnet_conv_dim, args.postnet_conv_kernel_size, args.postnet_layers, args.postnet_dropout, ) self.apply(model_init) def forward( self, src_tokens, src_lengths=None, speaker=None, durations=None, pitches=None, energies=None, **kwargs, ): x = self.embed_tokens(src_tokens) enc_padding_mask = src_tokens.eq(self.padding_idx) x += self.pos_emb_alpha * self.embed_positions(enc_padding_mask) x = self.dropout_module(x) for layer in self.encoder_fft_layers: x = layer(x, enc_padding_mask) if self.embed_speaker is not None: bsz, seq_len, _ = x.size() emb = self.embed_speaker(speaker).expand(bsz, seq_len, -1) x = self.spk_emb_proj(torch.cat([x, emb], dim=2)) x, out_lens, log_dur_out, pitch_out, energy_out = self.var_adaptor( x, enc_padding_mask, durations, pitches, energies ) dec_padding_mask = lengths_to_padding_mask(out_lens) x += self.dec_pos_emb_alpha * self.embed_positions(dec_padding_mask) for layer in self.decoder_fft_layers: x = layer(x, dec_padding_mask) x = self.out_proj(x) x_post = None if self.postnet is not None: x_post = x + self.postnet(x) return x, x_post, out_lens, log_dur_out, pitch_out, energy_out @register_model("fastspeech2") class FastSpeech2Model(FairseqEncoderModel): """ Implementation for https://arxiv.org/abs/2006.04558 """ NON_AUTOREGRESSIVE = True @classmethod def hub_models(cls): base_url = "http://dl.fbaipublicfiles.com/fairseq/s2" model_ids = [ "fastspeech2-en-ljspeech", "fastspeech2-en-200_speaker-cv4", ] return {i: f"{base_url}/{i}.tar.gz" for i in model_ids} @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", config_yaml="config.yaml", vocoder: str = "griffin_lim", fp16: bool = False, **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), config_yaml=config_yaml, vocoder=vocoder, fp16=fp16, **kwargs, ) return TTSHubInterface(x["args"], x["task"], x["models"][0]) @staticmethod def add_args(parser): parser.add_argument("--dropout", type=float) parser.add_argument("--output-frame-dim", type=int) parser.add_argument("--speaker-embed-dim", type=int) # FFT blocks parser.add_argument("--fft-hidden-dim", type=int) parser.add_argument("--fft-kernel-size", type=int) parser.add_argument("--attention-dropout", type=float) parser.add_argument("--encoder-layers", type=int) parser.add_argument("--encoder-embed-dim", type=int) parser.add_argument("--encoder-attention-heads", type=int) parser.add_argument("--decoder-layers", type=int) parser.add_argument("--decoder-embed-dim", type=int) parser.add_argument("--decoder-attention-heads", type=int) # variance predictor parser.add_argument("--var-pred-n-bins", type=int) parser.add_argument("--var-pred-hidden-dim", type=int) parser.add_argument("--var-pred-kernel-size", type=int) parser.add_argument("--var-pred-dropout", type=float) # postnet parser.add_argument("--add-postnet", action="store_true") parser.add_argument("--postnet-dropout", type=float) parser.add_argument("--postnet-layers", type=int) parser.add_argument("--postnet-conv-dim", type=int) parser.add_argument("--postnet-conv-kernel-size", type=int) def __init__(self, encoder, args, src_dict): super().__init__(encoder) self._num_updates = 0 out_dim = args.output_frame_dim * args.n_frames_per_step self.ctc_proj = None if getattr(args, "ctc_weight", 0.0) > 0.0: self.ctc_proj = nn.Linear(out_dim, len(src_dict)) @classmethod def build_model(cls, args, task): embed_speaker = task.get_speaker_embeddings(args) encoder = FastSpeech2Encoder(args, task.src_dict, embed_speaker) return cls(encoder, args, task.src_dict) def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self._num_updates = num_updates def get_normalized_probs(self, net_output, log_probs, sample=None): logits = self.ctc_proj(net_output[0]) if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) @register_model_architecture("fastspeech2", "fastspeech2") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.2) args.output_frame_dim = getattr(args, "output_frame_dim", 80) args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 64) # FFT blocks args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024) args.fft_kernel_size = getattr(args, "fft_kernel_size", 9) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.encoder_layers = getattr(args, "encoder_layers", 4) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2) args.decoder_layers = getattr(args, "decoder_layers", 4) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2) # variance predictor args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256) args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256) args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3) args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5) # postnet args.add_postnet = getattr(args, "add_postnet", False) args.postnet_dropout = getattr(args, "postnet_dropout", 0.5) args.postnet_layers = getattr(args, "postnet_layers", 5) args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512) args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/fastspeech2.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Conv1d, ConvTranspose1d from torch.nn.utils import remove_weight_norm, weight_norm LRELU_SLOPE = 0.1 def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 class ResBlock(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock, self).__init__() self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for layer in self.convs1: remove_weight_norm(layer) for layer in self.convs2: remove_weight_norm(layer) class Generator(torch.nn.Module): def __init__(self, cfg): super(Generator, self).__init__() self.num_kernels = len(cfg["resblock_kernel_sizes"]) self.num_upsamples = len(cfg["upsample_rates"]) self.conv_pre = weight_norm( Conv1d( cfg.get("model_in_dim", 80), cfg["upsample_initial_channel"], 7, 1, padding=3, ) ) self.ups = nn.ModuleList() for i, (u, k) in enumerate( zip(cfg["upsample_rates"], cfg["upsample_kernel_sizes"]) ): self.ups.append( weight_norm( ConvTranspose1d( cfg["upsample_initial_channel"] // (2**i), cfg["upsample_initial_channel"] // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = cfg["upsample_initial_channel"] // (2 ** (i + 1)) for k, d in zip( cfg["resblock_kernel_sizes"], cfg["resblock_dilation_sizes"] ): self.resblocks.append(ResBlock(ch, k, d)) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print("Removing weight norm...") for layer in self.ups: remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post)
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/hifigan.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import List, Optional import torch from torch import nn from fairseq import utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.models.text_to_speech.hub_interface import TTSHubInterface from fairseq.models.text_to_speech.tacotron2 import Postnet, Prenet from fairseq.modules import ( FairseqDropout, LayerNorm, PositionalEmbedding, TransformerDecoderLayer, TransformerEncoderLayer, ) logger = logging.getLogger(__name__) def encoder_init(m): if isinstance(m, nn.Conv1d): nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("relu")) def Embedding(num_embeddings, embedding_dim): m = nn.Embedding(num_embeddings, embedding_dim) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) return m class TTSTransformerEncoder(FairseqEncoder): def __init__(self, args, src_dict, embed_speaker): super().__init__(src_dict) self.padding_idx = src_dict.pad() self.embed_speaker = embed_speaker self.spk_emb_proj = None if embed_speaker is not None: self.spk_emb_proj = nn.Linear( args.encoder_embed_dim + args.speaker_embed_dim, args.encoder_embed_dim ) self.dropout_module = FairseqDropout( p=args.dropout, module_name=self.__class__.__name__ ) self.embed_tokens = nn.Embedding( len(src_dict), args.encoder_embed_dim, padding_idx=self.padding_idx ) assert args.encoder_conv_kernel_size % 2 == 1 self.prenet = nn.ModuleList( nn.Sequential( nn.Conv1d( args.encoder_embed_dim, args.encoder_embed_dim, kernel_size=args.encoder_conv_kernel_size, padding=((args.encoder_conv_kernel_size - 1) // 2), ), nn.BatchNorm1d(args.encoder_embed_dim), nn.ReLU(), nn.Dropout(args.encoder_dropout), ) for _ in range(args.encoder_conv_layers) ) self.prenet_proj = nn.Linear(args.encoder_embed_dim, args.encoder_embed_dim) self.embed_positions = PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, self.padding_idx ) self.pos_emb_alpha = nn.Parameter(torch.ones(1)) self.transformer_layers = nn.ModuleList( TransformerEncoderLayer(args) for _ in range(args.encoder_transformer_layers) ) if args.encoder_normalize_before: self.layer_norm = LayerNorm(args.encoder_embed_dim) else: self.layer_norm = None self.apply(encoder_init) def forward(self, src_tokens, src_lengths=None, speaker=None, **kwargs): x = self.embed_tokens(src_tokens) x = x.transpose(1, 2).contiguous() # B x T x C -> B x C x T for conv in self.prenet: x = conv(x) x = x.transpose(1, 2).contiguous() # B x C x T -> B x T x C x = self.prenet_proj(x) padding_mask = src_tokens.eq(self.padding_idx) positions = self.embed_positions(padding_mask) x += self.pos_emb_alpha * positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) for layer in self.transformer_layers: x = layer(x, padding_mask) if self.layer_norm is not None: x = self.layer_norm(x) if self.embed_speaker is not None: seq_len, bsz, _ = x.size() emb = self.embed_speaker(speaker).transpose(0, 1) emb = emb.expand(seq_len, bsz, -1) x = self.spk_emb_proj(torch.cat([x, emb], dim=2)) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [padding_mask] if padding_mask.any() else [], # B x T "encoder_embedding": [], # B x T x C "encoder_states": [], # List[T x B x C] "src_tokens": [], "src_lengths": [], } def decoder_init(m): if isinstance(m, torch.nn.Conv1d): nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("tanh")) class TTSTransformerDecoder(FairseqIncrementalDecoder): def __init__(self, args, src_dict, padding_idx=1): super().__init__(None) self._future_mask = torch.empty(0) self.args = args self.padding_idx = src_dict.pad() if src_dict else padding_idx self.n_frames_per_step = args.n_frames_per_step self.out_dim = args.output_frame_dim * args.n_frames_per_step self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.embed_positions = PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, self.padding_idx ) self.pos_emb_alpha = nn.Parameter(torch.ones(1)) self.prenet = nn.Sequential( Prenet( self.out_dim, args.prenet_layers, args.prenet_dim, args.prenet_dropout ), nn.Linear(args.prenet_dim, args.decoder_embed_dim), ) self.n_transformer_layers = args.decoder_transformer_layers self.transformer_layers = nn.ModuleList( TransformerDecoderLayer(args) for _ in range(self.n_transformer_layers) ) if args.decoder_normalize_before: self.layer_norm = LayerNorm(args.decoder_embed_dim) else: self.layer_norm = None self.feat_proj = nn.Linear(args.decoder_embed_dim, self.out_dim) self.eos_proj = nn.Linear(args.decoder_embed_dim, 1) self.postnet = Postnet( self.out_dim, args.postnet_conv_dim, args.postnet_conv_kernel_size, args.postnet_layers, args.postnet_dropout, ) self.ctc_proj = None if getattr(args, "ctc_weight", 0.0) > 0.0: self.ctc_proj = nn.Linear(self.out_dim, len(src_dict)) self.apply(decoder_init) def extract_features( self, prev_outputs, encoder_out=None, incremental_state=None, target_lengths=None, speaker=None, **kwargs, ): alignment_layer = self.n_transformer_layers - 1 self_attn_padding_mask = lengths_to_padding_mask(target_lengths) positions = self.embed_positions( self_attn_padding_mask, incremental_state=incremental_state ) if incremental_state is not None: prev_outputs = prev_outputs[:, -1:, :] self_attn_padding_mask = self_attn_padding_mask[:, -1:] if positions is not None: positions = positions[:, -1:] x = self.prenet(prev_outputs) x += self.pos_emb_alpha * positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) if not self_attn_padding_mask.any(): self_attn_padding_mask = None attn: Optional[torch.Tensor] = None inner_states: List[Optional[torch.Tensor]] = [x] for idx, transformer_layer in enumerate(self.transformer_layers): if incremental_state is None: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, _ = transformer_layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: # average probabilities over heads, transpose to # (B, src_len, tgt_len) attn = attn.mean(dim=0).transpose(2, 1) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, target_lengths=None, speaker=None, **kwargs, ): x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, target_lengths=target_lengths, speaker=speaker, **kwargs, ) attn = extra["attn"] feat_out = self.feat_proj(x) bsz, seq_len, _ = x.size() eos_out = self.eos_proj(x) post_feat_out = feat_out + self.postnet(feat_out) return ( post_feat_out, eos_out, { "attn": attn, "feature_out": feat_out, "inner_states": extra["inner_states"], }, ) def get_normalized_probs(self, net_output, log_probs, sample): logits = self.ctc_proj(net_output[2]["feature_out"]) if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def buffered_future_mask(self, tensor): dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 ) self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] @register_model("tts_transformer") class TTSTransformerModel(FairseqEncoderDecoderModel): """ Implementation for https://arxiv.org/pdf/1809.08895.pdf """ @classmethod def hub_models(cls): base_url = "http://dl.fbaipublicfiles.com/fairseq/s2" model_ids = [ "tts_transformer-en-ljspeech", "tts_transformer-en-200_speaker-cv4", "tts_transformer-es-css10", "tts_transformer-fr-cv7_css10", "tts_transformer-ru-cv7_css10", "tts_transformer-zh-cv7_css10", "tts_transformer-ar-cv7_css10", "tts_transformer-tr-cv7_css10", "tts_transformer-vi-cv7", ] return {i: f"{base_url}/{i}.tar.gz" for i in model_ids} @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", config_yaml="config.yaml", vocoder: str = "griffin_lim", fp16: bool = False, **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), config_yaml=config_yaml, vocoder=vocoder, fp16=fp16, **kwargs, ) return TTSHubInterface(x["args"], x["task"], x["models"][0]) @staticmethod def add_args(parser): parser.add_argument("--dropout", type=float) parser.add_argument("--output-frame-dim", type=int) parser.add_argument("--speaker-embed-dim", type=int) # encoder prenet parser.add_argument("--encoder-dropout", type=float) parser.add_argument("--encoder-conv-layers", type=int) parser.add_argument("--encoder-conv-kernel-size", type=int) # encoder transformer layers parser.add_argument("--encoder-transformer-layers", type=int) parser.add_argument("--encoder-embed-dim", type=int) parser.add_argument("--encoder-ffn-embed-dim", type=int) parser.add_argument("--encoder-normalize-before", action="store_true") parser.add_argument("--encoder-attention-heads", type=int) parser.add_argument("--attention-dropout", type=float) parser.add_argument("--activation-dropout", "--relu-dropout", type=float) parser.add_argument("--activation-fn", type=str, default="relu") # decoder prenet parser.add_argument("--prenet-dropout", type=float) parser.add_argument("--prenet-layers", type=int) parser.add_argument("--prenet-dim", type=int) # decoder postnet parser.add_argument("--postnet-dropout", type=float) parser.add_argument("--postnet-layers", type=int) parser.add_argument("--postnet-conv-dim", type=int) parser.add_argument("--postnet-conv-kernel-size", type=int) # decoder transformer layers parser.add_argument("--decoder-transformer-layers", type=int) parser.add_argument("--decoder-embed-dim", type=int) parser.add_argument("--decoder-ffn-embed-dim", type=int) parser.add_argument("--decoder-normalize-before", action="store_true") parser.add_argument("--decoder-attention-heads", type=int) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._num_updates = 0 @classmethod def build_model(cls, args, task): embed_speaker = task.get_speaker_embeddings(args) encoder = TTSTransformerEncoder(args, task.src_dict, embed_speaker) decoder = TTSTransformerDecoder(args, task.src_dict) return cls(encoder, decoder) def forward_encoder(self, src_tokens, src_lengths, speaker=None, **kwargs): return self.encoder( src_tokens, src_lengths=src_lengths, speaker=speaker, **kwargs ) def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self._num_updates = num_updates @register_model_architecture("tts_transformer", "tts_transformer") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.output_frame_dim = getattr(args, "output_frame_dim", 80) args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 64) # encoder prenet args.encoder_dropout = getattr(args, "encoder_dropout", 0.5) args.encoder_conv_layers = getattr(args, "encoder_conv_layers", 3) args.encoder_conv_kernel_size = getattr(args, "encoder_conv_kernel_size", 5) # encoder transformer layers args.encoder_transformer_layers = getattr(args, "encoder_transformer_layers", 6) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr( args, "encoder_ffn_embed_dim", 4 * args.encoder_embed_dim ) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") # decoder prenet args.prenet_dropout = getattr(args, "prenet_dropout", 0.5) args.prenet_layers = getattr(args, "prenet_layers", 2) args.prenet_dim = getattr(args, "prenet_dim", 256) # decoder postnet args.postnet_dropout = getattr(args, "postnet_dropout", 0.5) args.postnet_layers = getattr(args, "postnet_layers", 5) args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512) args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5) # decoder transformer layers args.decoder_transformer_layers = getattr(args, "decoder_transformer_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", 4 * args.decoder_embed_dim ) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/tts_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import random from pathlib import Path from typing import Dict, Optional, Tuple import torch import torch.nn as nn logger = logging.getLogger(__name__) class TTSHubInterface(nn.Module): def __init__(self, cfg, task, model): super().__init__() self.cfg = cfg self.task = task self.model = model self.model.eval() self.update_cfg_with_data_cfg(self.cfg, self.task.data_cfg) self.generator = self.task.build_generator([self.model], self.cfg) @classmethod def phonemize( cls, text: str, lang: Optional[str], phonemizer: Optional[str] = None, preserve_punct: bool = False, to_simplified_zh: bool = False, ): if to_simplified_zh: import hanziconv text = hanziconv.HanziConv.toSimplified(text) if phonemizer == "g2p": import g2p_en g2p = g2p_en.G2p() if preserve_punct: return " ".join("|" if p == " " else p for p in g2p(text)) else: res = [{",": "sp", ";": "sp"}.get(p, p) for p in g2p(text)] return " ".join(p for p in res if p.isalnum()) if phonemizer == "g2pc": import g2pc g2p = g2pc.G2pC() return " ".join([w[3] for w in g2p(text)]) elif phonemizer == "ipa": assert lang is not None import phonemizer from phonemizer.separator import Separator lang_map = {"en": "en-us", "fr": "fr-fr"} return phonemizer.phonemize( text, backend="espeak", language=lang_map.get(lang, lang), separator=Separator(word="| ", phone=" "), ) else: return text @classmethod def tokenize(cls, text: str, tkn_cfg: Dict[str, str]): sentencepiece_model = tkn_cfg.get("sentencepiece_model", None) if sentencepiece_model is not None: assert Path(sentencepiece_model).exists() import sentencepiece as sp spm = sp.SentencePieceProcessor() spm.Load(sentencepiece_model) return " ".join(spm.Encode(text, out_type=str)) else: return text @classmethod def update_cfg_with_data_cfg(cls, cfg, data_cfg): cfg["task"].vocoder = data_cfg.vocoder.get("type", "griffin_lim") @classmethod def get_model_input( cls, task, text: str, speaker: Optional[int] = None, verbose: bool = False ): phonemized = cls.phonemize( text, task.data_cfg.hub.get("lang", None), task.data_cfg.hub.get("phonemizer", None), task.data_cfg.hub.get("preserve_punct", False), task.data_cfg.hub.get("to_simplified_zh", False), ) tkn_cfg = task.data_cfg.bpe_tokenizer tokenized = cls.tokenize(phonemized, tkn_cfg) if verbose: logger.info(f"text: {text}") logger.info(f"phonemized: {phonemized}") logger.info(f"tokenized: {tokenized}") spk = task.data_cfg.hub.get("speaker", speaker) n_speakers = len(task.speaker_to_id or {}) if spk is None and n_speakers > 0: spk = random.randint(0, n_speakers - 1) if spk is not None: spk = max(0, min(spk, n_speakers - 1)) if verbose: logger.info(f"speaker: {spk}") spk = None if spk is None else torch.Tensor([[spk]]).long() src_tokens = task.src_dict.encode_line(tokenized, add_if_not_exist=False).view( 1, -1 ) src_lengths = torch.Tensor([len(tokenized.split())]).long() return { "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, "prev_output_tokens": None, }, "target_lengths": None, "speaker": spk, } @classmethod def get_prediction(cls, task, model, generator, sample) -> Tuple[torch.Tensor, int]: prediction = generator.generate(model, sample) return prediction[0]["waveform"], task.sr def predict( self, text: str, speaker: Optional[int] = None, verbose: bool = False ) -> Tuple[torch.Tensor, int]: sample = self.get_model_input(self.task, text, speaker, verbose=verbose) return self.get_prediction(self.task, self.model, self.generator, sample) class VocoderHubInterface(nn.Module): """Vocoder interface to run vocoder models through hub. Currently we only support unit vocoder""" def __init__(self, cfg, model): super().__init__() self.vocoder = model self.vocoder.eval() self.sr = 16000 self.multispkr = self.vocoder.model.multispkr if self.multispkr: logger.info("multi-speaker vocoder") self.num_speakers = cfg.get( "num_speakers", 200, ) # following the default in codehifigan to set to 200 def get_model_input( self, text: str, speaker: Optional[int] = -1, ): units = list(map(int, text.strip().split())) x = { "code": torch.LongTensor(units).view(1, -1), } if not speaker: speaker = -1 if self.multispkr: assert ( speaker < self.num_speakers ), f"invalid --speaker-id ({speaker}) with total #speakers = {self.num_speakers}" spk = random.randint(0, self.num_speakers - 1) if speaker == -1 else speaker x["spkr"] = torch.LongTensor([spk]).view(1, 1) return x def get_prediction(self, sample, dur_prediction: Optional[bool] = True): wav = self.vocoder(sample, dur_prediction) return wav, self.sr def predict( self, text: str, speaker: Optional[int] = None, dur_prediction: Optional[bool] = True, ): sample = self.get_model_input(text, speaker) return self.get_prediction(sample, dur_prediction)
EXA-1-master
exa/libraries/fairseq/fairseq/models/text_to_speech/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.modules.transformer_layer import TransformerEncoderLayer from typing import Optional import torch import torch.nn as nn from fairseq import utils from fairseq.modules import LayerNorm from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import Tensor class Adapter(nn.Module): def __init__(self, cfg, red_fac=2): super(Adapter, self).__init__() self.cfg = cfg self.embed_dim = cfg.encoder_embed_dim self.quant_noise = getattr(cfg, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(cfg, "quant_noise_pq_block_size", 8) or 8 self.activation_fn = utils.get_activation_fn( activation=getattr(cfg, "activation_fn", "relu") or "relu" ) self.fc1 = quant_noise( nn.Linear(self.embed_dim, self.embed_dim // red_fac), p=self.quant_noise, block_size=self.quant_noise_block_size, ) self.fc2 = quant_noise( nn.Linear(self.embed_dim // red_fac, self.embed_dim), p=self.quant_noise, block_size=self.quant_noise_block_size, ) activation_dropout_p = getattr(cfg, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use cfg.relu_dropout activation_dropout_p = getattr(cfg, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) def forward(self, x): x = self.activation_fn(self.fc1(x)) if not hasattr(self.cfg, "adapter_dropout") or self.cfg.adapter_dropout: x = self.activation_dropout_module(x) x = self.fc2(x) return x class XMODTransformerEncoderLayerBase(TransformerEncoderLayer): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *cfg.encoder.normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, cfg): super().__init__(cfg) if hasattr(cfg, "adapter_modules") and cfg.adapter_modules: export = getattr(cfg, "export", False) if cfg.adapter_layer_norm: self.adapter_layer_norm = LayerNorm(self.embed_dim, export=export) self.adapter_modules = nn.ModuleDict(dict()) if hasattr(self.cfg, "bottleneck"): bottleneck = self.cfg.bottleneck else: bottleneck = 2 for language in cfg.languages: self.adapter_modules[str(language)] = Adapter(cfg, red_fac=bottleneck) def lang_adapter(self, lang_id, x): # If language adapters exist pass throught them if hasattr(self.cfg, "adapter_modules") and self.cfg.adapter_modules: if lang_id is None: lang_id = ["en_XX"] * x.shape[1] d_langs = [lang_id[0]] lang_lengths = [1] for lang in lang_id[1:]: if lang == d_langs[-1]: lang_lengths[-1] += 1 else: d_langs.append(lang) lang_lengths.append(1) if ( not hasattr(self.cfg, "ln_before_adapter") or not self.cfg.ln_before_adapter ): residual = x if self.cfg.adapter_layer_norm: x = self.adapter_layer_norm(x) elif self.cfg.adapter_reuse_layer_norm: x = self.final_layer_norm(x) if hasattr(self.cfg, "ln_before_adapter") and self.cfg.ln_before_adapter: residual = x split_x = torch.split(x, lang_lengths, 1) x_ = [] for i, (lang, s_x) in enumerate(zip(d_langs, split_x)): lang = lang.replace("_rom", "").replace("_zaw", "") x_.append(self.adapter_modules[str(lang)](s_x)) x = torch.cat(x_, 1) x = self.dropout_module(x) x = self.residual_connection(x, residual) return x def forward( self, x, encoder_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor] = None, lang_id: Optional[list] = None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, seq_len)` where padding elements are indicated by ``1``. attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`, where `tgt_len` is the length of output and `src_len` is the length of input, though here both are equal to `seq_len`. `attn_mask[tgt_i, src_j] = 1` means that when calculating the embedding for `tgt_i`, we exclude (mask out) `src_j`. This is useful for strided self-attention. Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ # anything in original attn_mask = 1, becomes -1e8 # anything in original attn_mask = 0, becomes 0 # Note that we cannot use -inf here, because at some edge cases, # the attention weight (before softmax) for some padded element in query # will become -inf, which results in NaN in model parameters if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=False, attn_mask=attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) x = self.lang_adapter(lang_id, x) if not self.normalize_before: x = self.final_layer_norm(x) return x
EXA-1-master
exa/libraries/fairseq/fairseq/models/xmod/transformer_layer_xmod.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .model import * # noqa from .transformer_layer_xmod import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/models/xmod/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from ..roberta.model_xlmr import XLMRModel from fairseq.models.xmod.transformer_layer_xmod import XMODTransformerEncoderLayerBase from ..roberta.model import base_architecture, RobertaEncoder from fairseq.models.transformer import TransformerEncoder from fairseq.modules.transformer_sentence_encoder import init_bert_params from typing import Optional from fairseq.models.xmod.hub_interface import XMODHubInterface import torch from fairseq.distributed import fsdp_wrap from fairseq.models import ( register_model, register_model_architecture, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) @register_model("xmod") class XMODModel(XLMRModel): @classmethod def hub_models(cls): return { "xmod.base": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.81.1M.tar.gz", "xmod.large.prenorm": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.large.prenorm.81.500k.tar.gz", "xmod.base.13.125k": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.13.125k.tar.gz", "xmod.base.30.125k": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.30.125k.tar.gz", "xmod.base.30.195k": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.30.195k.tar.gz", "xmod.base.60.125k": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.60.125k.tar.gz", "xmod.base.60.265k": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.60.265k.tar.gz", "xmod.base.75.125k": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.75.125k.tar.gz", "xmod.base.75.269k": "https://dl.fbaipublicfiles.com/fairseq/models/xmod/xmod.base.75.269k.tar.gz", } @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="sentencepiece", **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) return XMODHubInterface(x["args"], x["task"], x["models"][0]) @classmethod def build_model(cls, args, task): """Build a new model instance.""" from omegaconf import OmegaConf if OmegaConf.is_config(args): OmegaConf.set_struct(args, False) # make sure all arguments are present base_architecture(args) if not hasattr(args, "max_positions"): if not hasattr(args, "tokens_per_sample"): args.tokens_per_sample = task.max_positions() args.max_positions = args.tokens_per_sample encoder = XMODEncoder(args, task.source_dictionary) if OmegaConf.is_config(args): OmegaConf.set_struct(args, True) return cls(args, encoder) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, classification_head_name=None, lang_id=None, **kwargs, ): if classification_head_name is not None: features_only = True x, extra = self.encoder( src_tokens, features_only, return_all_hiddens, lang_id=lang_id, **kwargs ) if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) return x, extra class XMODEncoder(RobertaEncoder): """XMOD encoder.""" def build_encoder(self, args, dictionary, embed_tokens): encoder = XMODTransformerEncoder(args, dictionary, embed_tokens) encoder.apply(init_bert_params) return encoder def forward( self, src_tokens, features_only=False, return_all_hiddens=False, masked_tokens=None, lang_id=None, **unused, ): """ Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` features_only (bool, optional): skip LM head and just return features. If True, the output will be of shape `(batch, src_len, embed_dim)`. return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: tuple: - the LM output of shape `(batch, src_len, vocab)` - a dictionary of additional data, where 'inner_states' is a list of hidden states. Note that the hidden states have shape `(src_len, batch, vocab)`. """ x, extra = self.extract_features( src_tokens, return_all_hiddens=return_all_hiddens, lang_id=lang_id ) if not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra def extract_features( self, src_tokens, return_all_hiddens=False, lang_id=None, **kwargs ): encoder_out = self.sentence_encoder( src_tokens, return_all_hiddens=return_all_hiddens, lang_id=lang_id, token_embeddings=kwargs.get("token_embeddings", None), ) # T x B x C -> B x T x C features = encoder_out["encoder_out"][0].transpose(0, 1) inner_states = encoder_out["encoder_states"] if return_all_hiddens else None return features, {"inner_states": inner_states} class XMODTransformerEncoder(TransformerEncoder): def build_encoder_layer(self, cfg): layer = XMODTransformerEncoderLayerBase(cfg) checkpoint = cfg.checkpoint_activations if checkpoint: offload_to_cpu = cfg.offload_activations layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, lang_id=None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ return self.forward_scriptable( src_tokens, src_lengths, return_all_hiddens, token_embeddings, lang_id=lang_id, ) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, lang_id=None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any() x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # account for padding while computing the representation if has_pads: x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] if return_all_hiddens: encoder_states.append(x) # encoder layers for layer in self.layers: x = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None, lang_id=lang_id, ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. src_lengths = ( src_tokens.ne(self.padding_idx) .sum(dim=1, dtype=torch.int32) .reshape(-1, 1) .contiguous() ) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [src_lengths], } @register_model_architecture("xmod", "xmod_base_13") def roberta_base_architecture(args): args.ffn_modules = getattr(args, "ffn_modules", False) args.adapter_modules = getattr(args, "adapter_modules", True) args.adapter_layer_norm = getattr(args, "adapter_layer_norm", False) args.adapter_reuse_layer_norm = getattr(args, "adapter_reuse_layer_norm", True) args.ln_before_adapter = getattr(args, "ln_before_adapter", True) args.languages = getattr( args, "languages", [ "ar_AR", "en_XX", "fi_FI", "fr_XX", "hi_IN", "id_ID", "ka_GE", "ko_KR", "ru_RU", "sw_KE", "ta_IN", "th_TH", "vi_VN", ], ) base_architecture(args) @register_model_architecture("xmod", "xmod_base_30") def roberta_base_architecture(args): args.ffn_modules = getattr(args, "ffn_modules", False) args.adapter_modules = getattr(args, "adapter_modules", True) args.adapter_layer_norm = getattr(args, "adapter_layer_norm", False) args.adapter_reuse_layer_norm = getattr(args, "adapter_reuse_layer_norm", True) args.ln_before_adapter = getattr(args, "ln_before_adapter", True) args.languages = getattr( args, "languages", [ "ar_AR", "cs_CZ", "en_XX", "eu_ES", "fi_FI", "fr_XX", "hi_IN", "hr_HR", "hu_HU", "hy_AM", "id_ID", "it_IT", "ka_GE", "ko_KR", "lt_LT", "ml_IN", "mn_MN", "ms_MY", "pl_PL", "ro_RO", "ru_RU", "si_LK", "sk_SK", "sq_AL", "sv_SE", "sw_KE", "ta_IN", "th_TH", "tl_XX", "vi_VN", ], ) base_architecture(args) @register_model_architecture("xmod", "xmod_base_60") def roberta_base_architecture(args): args.ffn_modules = getattr(args, "ffn_modules", False) args.adapter_modules = getattr(args, "adapter_modules", True) args.adapter_layer_norm = getattr(args, "adapter_layer_norm", False) args.adapter_reuse_layer_norm = getattr(args, "adapter_reuse_layer_norm", True) args.ln_before_adapter = getattr(args, "ln_before_adapter", True) args.languages = getattr( args, "languages", [ "af_ZA", "am_ET", "ar_AR", "be_BY", "bn_IN", "ca_ES", "cs_CZ", "cy_GB", "da_DK", "en_XX", "eo_EO", "et_EE", "eu_ES", "fa_IR", "fi_FI", "fr_XX", "ga_IE", "gl_ES", "gu_IN", "ha_NG", "hi_IN", "hr_HR", "hu_HU", "hy_AM", "id_ID", "is_IS", "it_IT", "ka_GE", "ko_KR", "ku_TR", "la_VA", "lt_LT", "lv_LV", "mk_MK", "ml_IN", "mn_MN", "ms_MY", "ne_NP", "nl_XX", "no_XX", "pl_PL", "ps_AF", "pt_XX", "ro_RO", "ru_RU", "sa_IN", "sd_PK", "si_LK", "sk_SK", "sl_SI", "so_SO", "sq_AL", "sr_RS", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "vi_VN", ], ) base_architecture(args) @register_model_architecture("xmod", "xmod_base_75") def roberta_base_architecture(args): args.ffn_modules = getattr(args, "ffn_modules", False) args.adapter_modules = getattr(args, "adapter_modules", True) args.adapter_layer_norm = getattr(args, "adapter_layer_norm", False) args.adapter_reuse_layer_norm = getattr(args, "adapter_reuse_layer_norm", True) args.ln_before_adapter = getattr(args, "ln_before_adapter", True) args.languages = getattr( args, "languages", [ "af_ZA", "am_ET", "ar_AR", "as_IN", "be_BY", "bn_IN", "br_FR", "bs_BA", "ca_ES", "cs_CZ", "cy_GB", "da_DK", "en_XX", "eo_EO", "et_EE", "eu_ES", "fa_IR", "fi_FI", "fr_XX", "fy_NL", "ga_IE", "gd_GB", "gl_ES", "gu_IN", "ha_NG", "hi_IN", "hr_HR", "hu_HU", "hy_AM", "id_ID", "is_IS", "it_IT", "jv_ID", "ka_GE", "kn_IN", "ko_KR", "ku_TR", "la_VA", "lt_LT", "lv_LV", "mg_MG", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "ms_MY", "ne_NP", "nl_XX", "no_XX", "om_KE", "or_IN", "pa_IN", "pl_PL", "ps_AF", "pt_XX", "ro_RO", "ru_RU", "sa_IN", "sd_PK", "si_LK", "sk_SK", "sl_SI", "so_SO", "sq_AL", "sr_RS", "su_ID", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "vi_VN", "xh_ZA", "yi_DE", ], ) base_architecture(args) @register_model_architecture("xmod", "xmod_base") def roberta_base_architecture(args): args.ffn_modules = getattr(args, "ffn_modules", False) args.adapter_modules = getattr(args, "adapter_modules", True) args.adapter_layer_norm = getattr(args, "adapter_layer_norm", False) args.adapter_reuse_layer_norm = getattr(args, "adapter_reuse_layer_norm", True) args.ln_before_adapter = getattr(args, "ln_before_adapter", True) args.languages = getattr( args, "languages", [ "en_XX", "id_ID", "vi_VN", "ru_RU", "fa_IR", "sv_SE", "ja_XX", "fr_XX", "de_DE", "ro_RO", "ko_KR", "hu_HU", "es_XX", "fi_FI", "uk_UA", "da_DK", "pt_XX", "no_XX", "th_TH", "pl_PL", "bg_BG", "nl_XX", "zh_CN", "he_IL", "el_GR", "it_IT", "sk_SK", "hr_HR", "tr_TR", "ar_AR", "cs_CZ", "lt_LT", "hi_IN", "zh_TW", "ca_ES", "ms_MY", "sl_SI", "lv_LV", "ta_IN", "bn_IN", "et_EE", "az_AZ", "sq_AL", "sr_RS", "kk_KZ", "ka_GE", "tl_XX", "ur_PK", "is_IS", "hy_AM", "ml_IN", "mk_MK", "be_BY", "la_VA", "te_IN", "eu_ES", "gl_ES", "mn_MN", "kn_IN", "ne_NP", "sw_KE", "si_LK", "mr_IN", "af_ZA", "gu_IN", "cy_GB", "eo_EO", "km_KH", "ky_KG", "uz_UZ", "ps_AF", "pa_IN", "ga_IE", "ha_NG", "am_ET", "lo_LA", "ku_TR", "so_SO", "my_MM", "or_IN", "sa_IN", ], ) base_architecture(args) @register_model_architecture("xmod", "xmod_large_prenorm") def roberta_base_architecture(args): args.ffn_modules = getattr(args, "ffn_modules", False) args.adapter_modules = getattr(args, "adapter_modules", True) args.adapter_layer_norm = getattr(args, "adapter_layer_norm", True) args.adapter_reuse_layer_norm = getattr(args, "adapter_reuse_layer_norm", False) args.ln_before_adapter = getattr(args, "ln_before_adapter", False) # args.bottleneck = getattr(args, "bottleneck", 8) args.bottleneck = getattr(args, "bottleneck", 4) args.languages = getattr( args, "languages", [ "en_XX", "id_ID", "vi_VN", "ru_RU", "fa_IR", "sv_SE", "ja_XX", "fr_XX", "de_DE", "ro_RO", "ko_KR", "hu_HU", "es_XX", "fi_FI", "uk_UA", "da_DK", "pt_XX", "no_XX", "th_TH", "pl_PL", "bg_BG", "nl_XX", "zh_CN", "he_IL", "el_GR", "it_IT", "sk_SK", "hr_HR", "tr_TR", "ar_AR", "cs_CZ", "lt_LT", "hi_IN", "zh_TW", "ca_ES", "ms_MY", "sl_SI", "lv_LV", "ta_IN", "bn_IN", "et_EE", "az_AZ", "sq_AL", "sr_RS", "kk_KZ", "ka_GE", "tl_XX", "ur_PK", "is_IS", "hy_AM", "ml_IN", "mk_MK", "be_BY", "la_VA", "te_IN", "eu_ES", "gl_ES", "mn_MN", "kn_IN", "ne_NP", "sw_KE", "si_LK", "mr_IN", "af_ZA", "gu_IN", "cy_GB", "eo_EO", "km_KH", "ky_KG", "uz_UZ", "ps_AF", "pa_IN", "ga_IE", "ha_NG", "am_ET", "lo_LA", "ku_TR", "so_SO", "my_MM", "or_IN", "sa_IN", ], ) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/models/xmod/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models.roberta.hub_interface import RobertaHubInterface import torch import torch.nn.functional as F class XMODHubInterface(RobertaHubInterface): def extract_features( self, tokens: torch.LongTensor, return_all_hiddens: bool = False, lang_id=None, ) -> torch.Tensor: if tokens.dim() == 1: tokens = tokens.unsqueeze(0) if tokens.size(-1) > self.model.max_positions(): raise ValueError( "tokens exceeds maximum length: {} > {}".format( tokens.size(-1), self.model.max_positions() ) ) features, extra = self.model( tokens.to(device=self.device), features_only=True, return_all_hiddens=return_all_hiddens, lang_id=lang_id, ) if return_all_hiddens: # convert from T x B x C -> B x T x C inner_states = extra["inner_states"] return [inner_state.transpose(0, 1) for inner_state in inner_states] else: return features # just the last layer's features def predict( self, head: str, tokens: torch.LongTensor, return_logits: bool = False, lang_id=None, ): features = self.extract_features(tokens.to(device=self.device), lang_id=lang_id) logits = self.model.classification_heads[head](features) if return_logits: return logits return F.log_softmax(logits, dim=-1)
EXA-1-master
exa/libraries/fairseq/fairseq/models/xmod/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a network across multiple GPUs. """ from fairseq.dataclass.configs import FairseqConfig from fairseq.distributed import utils as distributed_utils from fairseq.trainer import Trainer try: from fairseq.model_parallel.megatron.mpu import ( get_data_parallel_rank, get_data_parallel_world_size, get_model_parallel_src_rank, get_cuda_rng_tracker, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class MegatronTrainer(Trainer): """Main class for model parallel with data parallel training.""" def __init__(self, cfg: FairseqConfig, task, model, criterion, **kwargs): if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) super().__init__(cfg, task, model, criterion, **kwargs) def clip_grad_norm(self, clip_norm): def _aggregate_model_parallel_grad_norm(total_norm): total_norm = total_norm**2 distributed_utils.all_reduce( total_norm, group=distributed_utils.get_model_parallel_group() ) total_norm = total_norm**0.5 return total_norm return self.optimizer.clip_grad_norm( clip_norm, aggregate_norm_fn=_aggregate_model_parallel_grad_norm, ) def save_checkpoint(self, filename, extra_state): """Save all training state in a checkpoint file.""" extra_state["rng_tracker_states"] = get_cuda_rng_tracker().get_states() super().save_checkpoint(filename, extra_state) def load_checkpoint( self, filename, reset_optimizer=False, reset_lr_scheduler=False, optimizer_overrides=None, reset_meters=False, ): extra_state = super().load_checkpoint( filename, reset_optimizer=reset_optimizer, reset_lr_scheduler=reset_lr_scheduler, optimizer_overrides=optimizer_overrides, reset_meters=reset_meters, ) if extra_state is not None and "rng_tracker_states" in extra_state: get_cuda_rng_tracker().set_states(extra_state["rng_tracker_states"]) return extra_state
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/megatron_trainer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import criterions, models, modules # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("fairseq.model_parallel.models." + model_name)
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch.nn as nn from fairseq.model_parallel.modules import ( ModelParallelTransformerDecoderLayer, ModelParallelTransformerEncoderLayer, ) from fairseq.models import register_model from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, ) try: from fairseq.model_parallel.megatron.mpu import ( VocabParallelEmbedding, copy_to_model_parallel_region, gather_from_model_parallel_region, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False logger = logging.getLogger(__name__) @register_model("model_parallel_transformer") class ModelParallelTransformerModel(TransformerModel): """ Model parallel Transformer model. """ @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) dictionary.pad_to_multiple_(args.model_parallel_size * 8) num_embeddings = len(dictionary) padding_idx = dictionary.pad() def _vocab_init(tensor, **kwargs): nn.init.normal_(tensor, mean=0, std=num_embeddings**-0.5) nn.init.constant_(tensor[1], 0) emb = VocabParallelEmbedding( num_embeddings, embed_dim, padding_idx, init_method=_vocab_init ) # if provided, load from preloaded dictionaries if path: raise NotImplementedError( "Loading of embedding from path is not supported for model parallel" ) return emb @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return ModelParallelTransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return ModelParallelTransformerDecoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) class ModelParallelTransformerEncoder(TransformerEncoder): """ Model parallel Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`ModelParallelTransformerEncoderLayer`. """ def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) if args.no_final_layer_norm: self.layer_norm = None def build_encoder_layer(self, args): return ModelParallelTransformerEncoderLayer(args) class ModelParallelTransformerDecoder(TransformerDecoder): """ Model Parallel Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`ModelParallelTransformerDecoderLayer`. """ def build_decoder_layer(self, args, no_encoder_attn=False): return ModelParallelTransformerDecoderLayer(args, no_encoder_attn) def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if not self.share_input_output_embed: raise NotImplementedError( "Model parallel training currently requires --share-decoder-input-output-embed" ) features = copy_to_model_parallel_region(features) # project back to size of vocabulary x = self.output_projection(features) if getattr(self.args, "criterion") != "vocab_parallel_cross_entropy": x = gather_from_model_parallel_region(x).contiguous() return x
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from fairseq.model_parallel.models.transformer import ModelParallelTransformerDecoder from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer_lm import TransformerLanguageModel try: from fairseq.model_parallel.megatron.mpu import VocabParallelEmbedding has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("model_parallel_transformer_lm") class ModelParallelTransformerLanguageModel(TransformerLanguageModel): @staticmethod def add_args(parser): TransformerLanguageModel.add_args(parser) @classmethod def build_model(cls, args, task): """Build a new model instance.""" if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) # make sure all arguments are present in older models base_lm_architecture(args) task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8) task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) if args.character_embeddings: raise NotImplementedError( "Character embeddings is not supported for model parallel" ) elif args.adaptive_input: raise NotImplementedError( "Adaptive input is not supported for model parallel" ) else: embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) decoder = ModelParallelTransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True, ) return cls(decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): def _vocab_init(tensor, **kwargs): nn.init.normal_(tensor, mean=0, std=embed_dim**-0.5) nn.init.constant_(tensor[1], 0) embed_tokens = VocabParallelEmbedding( len(dictionary), embed_dim, dictionary.pad(), init_method=_vocab_init ) return embed_tokens def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.relu_dropout = getattr(args, "relu_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.character_filters = getattr( args, "character_filters", "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]", ) args.character_embedding_dim = getattr(args, "character_embedding_dim", 4) args.char_embedder_highway_layers = getattr(args, "char_embedder_highway_layers", 2) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0.0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0.0) args.add_bos_token = getattr(args, "add_bos_token", False) @register_model_architecture("model_parallel_transformer_lm", "transformer_lm_megatron") def transformer_lm_megatron(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 4) args.decoder_layers = getattr(args, "decoder_layers", 72) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture( "model_parallel_transformer_lm", "transformer_lm_megatron_11b" ) def transformer_lm_megatron_11b(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 6) args.decoder_layers = getattr(args, "decoder_layers", 72) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/transformer_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .model import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/pipeline_parallel_transformer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.model_parallel.models.pipeline_parallel_transformer.layers import ( Embedding, TransformerDecoderEmbedding, TransformerDecoderLayer, TransformerDecoderOutputLayer, TransformerEncoderEmbedding, TransformerEncoderLayer, TransformerEncoderLayerNorm, ) from fairseq.models import ( BaseFairseqModel, FairseqDecoder, FairseqEncoder, register_model, register_model_architecture, ) from fairseq.models.fairseq_encoder import EncoderOut from fairseq.models.transformer import ( base_architecture, transformer_iwslt_de_en, transformer_wmt_en_de_big, ) from fairseq.modules import SinusoidalPositionalEmbedding logger = logging.getLogger(__name__) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 TORCH_PIPE = False RPC_INIT = False def import_pipe(): global TORCH_PIPE global RPC_INIT try: from torch.distributed.pipeline.sync import Pipe # noqa global Pipe from torch.distributed.pipeline.sync.utils import partition_model global partition_model from torch.distributed import rpc import tempfile TORCH_PIPE = True # Initialize single process RPC agent since TORCH_PIPE requires # RRef. RRef depends on RPC being initialized and as a result we initialize # RPC with a single node. tmpfile = tempfile.NamedTemporaryFile() if not RPC_INIT: rpc.init_rpc( name="worker", rank=0, world_size=1, rpc_backend_options=rpc.TensorPipeRpcBackendOptions( init_method="file://{}".format(tmpfile.name), ), ) RPC_INIT = True logger.info("Using torch pipe") except ImportError: try: from fairscale.nn import Pipe # noqa logger.info("Using fairscale pipe") except ImportError: raise ImportError("Please install fairscale with: pip install fairscale") @register_model("pipeline_parallel_transformer") class PipelineParallelTransformerModel(BaseFairseqModel): def __init__(self, encoder, decoder, balance, devices, chunks, checkpoint): import_pipe() super().__init__() assert isinstance(encoder, FairseqEncoder) assert isinstance(decoder, FairseqDecoder) encoder_module_list = ( [encoder.embedding_layer] + list(encoder.encoder_layers) + [encoder.final_layer_norm] ) self.num_encoder_modules = len(encoder_module_list) decoder_module_list = ( [decoder.embedding_layer] + list(decoder.decoder_layers) + [decoder.decoder_output_layer] ) self.num_decoder_modules = len(decoder_module_list) module_list = encoder_module_list + decoder_module_list self.devices = devices if TORCH_PIPE: self.model = Pipe( partition_model(nn.Sequential(*module_list), balance, devices), chunks=chunks, checkpoint=checkpoint, ) else: self.model = Pipe( nn.Sequential(*module_list), balance=balance, devices=devices, chunks=chunks, checkpoint=checkpoint, ) self.encoder_max_positions = self.max_positions_helper( encoder.embedding_layer, "max_source_positions" ) self.decoder_max_positions = self.max_positions_helper( decoder.embedding_layer, "max_target_positions" ) self.adaptive_softmax = getattr(decoder, "adaptive_softmax", None) # Note: To be populated during inference self.encoder = None self.decoder = None def forward(self, src_tokens, src_lengths, prev_output_tokens): if self.training: input_lst = [src_tokens, src_lengths, prev_output_tokens] input = tuple(i.to(self.devices[0], non_blocking=True) for i in input_lst) if TORCH_PIPE: return self.model(input).local_value() else: return self.model(input) else: assert self.encoder is not None and self.decoder is not None, ( "encoder and decoder need to be initialized by " + "calling the `prepare_for_inference_()` method" ) encoder_output_tuple = self.encoder(input) return self.decoder(encoder_output_tuple) def prepare_for_inference_(self, cfg): if self.encoder is not None and self.decoder is not None: logger.info("Encoder and Decoder already initialized") return encoder_module_list = [] decoder_module_list = [] module_count = 0 for partition in self.model.partitions: for module in partition: if module_count < self.num_encoder_modules: encoder_module_list.append(module) else: decoder_module_list.append(module) module_count += 1 self.model = None self.encoder = TransformerEncoder( cfg.distributed_training, None, None, encoder_module_list ) self.decoder = TransformerDecoder( cfg.distributed_training, None, None, decoder_module_list=decoder_module_list, ) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--num-embedding-chunks', type=int, metavar='N', default=1, help='Number of embedding layer chunks (enables more even distribution' 'of optimizer states across data parallel nodes' 'when using optimizer state sharding and' 'a big embedding vocabulary)') # fmt: on @classmethod def build_model_base(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, "max_source_positions"): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if not hasattr(args, "max_target_positions"): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim, path=None, num_embed_chunks=1): assert embed_dim % num_embed_chunks == 0, ( f"Number of embedding chunks = {num_embed_chunks} should be " + f"divisible by the embedding dimension = {embed_dim}" ) assert path is None or num_embed_chunks == 1, ( "Loading embedding from a path with number of embedding chunks > 1" + " is not yet supported" ) num_embeddings = len(dictionary) padding_idx = dictionary.pad() # if provided, load from preloaded dictionaries if path: emb = Embedding(num_embeddings, embed_dim, padding_idx) embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) else: embed_chunk_dim = embed_dim // num_embed_chunks emb = nn.ModuleList() for i in range(num_embed_chunks): emb.append(Embedding(num_embeddings, embed_chunk_dim, padding_idx)) return emb num_embed_chunks = args.num_embedding_chunks if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path, num_embed_chunks, ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: assert args.share_decoder_input_output_embed or num_embed_chunks == 1, ( "Not sharing decoder I/O embeddings is not yet supported with number of " + "embedding chunks > 1" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path, num_embed_chunks, ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path, num_embed_chunks, ) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return (encoder, decoder) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder(args, tgt_dict, embed_tokens) @classmethod def build_model(cls, args, task): encoder, decoder = cls.build_model_base(args, task) return PipelineParallelTransformerModel( encoder=encoder, decoder=decoder, balance=utils.eval_str_list(args.pipeline_balance, type=int), devices=utils.eval_str_list(args.pipeline_devices, type=int), chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) def output_layer(self, features, **kwargs): """Project features to the default output size (typically vocabulary size).""" return self.decoder.output_layer(features, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return (self.encoder_max_positions, self.decoder_max_positions) def max_positions_helper( self, embedding_layer, max_positions_field="max_source_positions" ): """Maximum input length supported by the encoder or decoder.""" if embedding_layer.embed_positions is None: return getattr(embedding_layer, max_positions_field) return min( getattr(embedding_layer, max_positions_field), embedding_layer.embed_positions.max_positions, ) def get_normalized_probs(self, net_output, log_probs, sample=None): """Get normalized probabilities (or log probs) from a net's output.""" if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None: if sample is not None: assert "target" in sample target = sample["target"] else: target = None out = self.adaptive_softmax.get_log_prob(net_output, target=target) return out.exp_() if not log_probs else out # A Pipe() module returns a tuple of tensors as the output. # In this case, the tuple has one element - the output tensor of logits logits = net_output if isinstance(net_output, torch.Tensor) else net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1, onnx_trace=False) else: return utils.softmax(logits, dim=-1, onnx_trace=False) def max_decoder_positions(self): """Maximum length supported by the decoder.""" return self.decoder_max_positions def load_state_dict(self, state_dict, strict=True, model_cfg=None): """Copies parameters and buffers from *state_dict* into this module and its descendants. Overrides the method in :class:`nn.Module`. Compared with that method this additionally "upgrades" *state_dicts* from old checkpoints. """ self.upgrade_state_dict(state_dict) is_regular_transformer = not any("model.partitions" in k for k in state_dict) if is_regular_transformer: state_dict = self.convert_to_pipeline_parallel_state_dict(state_dict) return super().load_state_dict(state_dict, strict) def convert_to_pipeline_parallel_state_dict(self, state_dict): new_state_dict = self.state_dict() encoder_layer_idx = 0 decoder_layer_idx = 0 encoder_key_suffixes = [ "self_attn.k_proj.weight", "self_attn.k_proj.bias", "self_attn.v_proj.weight", "self_attn.v_proj.bias", "self_attn.q_proj.weight", "self_attn.q_proj.bias", "self_attn.out_proj.weight", "self_attn.out_proj.bias", "self_attn_layer_norm.weight", "self_attn_layer_norm.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "final_layer_norm.weight", "final_layer_norm.bias", ] decoder_key_suffixes = [ "self_attn.k_proj.weight", "self_attn.k_proj.bias", "self_attn.v_proj.weight", "self_attn.v_proj.bias", "self_attn.q_proj.weight", "self_attn.q_proj.bias", "self_attn.out_proj.weight", "self_attn.out_proj.bias", "self_attn_layer_norm.weight", "self_attn_layer_norm.bias", "encoder_attn.k_proj.weight", "encoder_attn.k_proj.bias", "encoder_attn.v_proj.weight", "encoder_attn.v_proj.bias", "encoder_attn.q_proj.weight", "encoder_attn.q_proj.bias", "encoder_attn.out_proj.weight", "encoder_attn.out_proj.bias", "encoder_attn_layer_norm.weight", "encoder_attn_layer_norm.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "final_layer_norm.weight", "final_layer_norm.bias", ] for pid, partition in enumerate(self.model.partitions): logger.info(f"Begin Partition {pid}") for mid, module in enumerate(partition): # fmt: off if isinstance(module, TransformerEncoderEmbedding): new_state_dict[f'model.partitions.{pid}.{mid}.embed_tokens.weight'] = state_dict['encoder.embed_tokens.weight'] new_state_dict[f'model.partitions.{pid}.{mid}.embed_positions._float_tensor'] = state_dict['encoder.embed_positions._float_tensor'] if isinstance(module, TransformerEncoderLayer): for suffix in encoder_key_suffixes: new_state_dict[f'model.partitions.{pid}.{mid}.{suffix}'] = state_dict[f'encoder.layers.{encoder_layer_idx}.{suffix}'] encoder_layer_idx += 1 if isinstance(module, TransformerDecoderLayer): for suffix in decoder_key_suffixes: new_state_dict[f'model.partitions.{pid}.{mid}.{suffix}'] = state_dict[f'decoder.layers.{decoder_layer_idx}.{suffix}'] decoder_layer_idx += 1 if isinstance(module, TransformerEncoderLayerNorm): if 'encoder.layer_norm.weight' in state_dict: new_state_dict[f'model.partitions.{pid}.{mid}.layer_norm.weight'] = state_dict['encoder.layer_norm.weight'] new_state_dict[f'model.partitions.{pid}.{mid}.layer_norm.bias'] = state_dict['encoder.layer_norm.bias'] if isinstance(module, TransformerDecoderEmbedding): new_state_dict[f'model.partitions.{pid}.{mid}.embed_tokens.weight'] = state_dict['decoder.embed_tokens.weight'] new_state_dict[f'model.partitions.{pid}.{mid}.embed_positions._float_tensor'] = state_dict['decoder.embed_positions._float_tensor'] if isinstance(module, TransformerDecoderOutputLayer): new_state_dict[f'model.partitions.{pid}.{mid}.output_projection.weight'] = state_dict['decoder.output_projection.weight'] # fmt: on return new_state_dict class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens, encoder_module_list=None): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) import_pipe() self.use_pipeline = encoder_module_list is not None if not self.use_pipeline: self.embedding_layer = TransformerEncoderEmbedding(args, embed_tokens) self.encoder_layers = nn.Sequential( *[TransformerEncoderLayer(args) for i in range(args.encoder_layers)] ) if isinstance(embed_tokens, nn.ModuleList): emb_dim = sum(e.embedding_dim for e in embed_tokens) else: emb_dim = embed_tokens.embedding_dim self.final_layer_norm = TransformerEncoderLayerNorm(args, emb_dim) else: encoder_balance = utils.eval_str_list( args.pipeline_encoder_balance, type=int ) encoder_devices = utils.eval_str_list( args.pipeline_encoder_devices, type=int ) assert sum(encoder_balance) == len(encoder_module_list), ( f"Sum of encoder_balance={encoder_balance} is not equal " + f"to num_encoder_modules={len(encoder_module_list)}" ) if TORCH_PIPE: self.model = Pipe( module=partition_model( nn.Sequential(*encoder_module_list), encoder_balance, encoder_devices, ), chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) else: self.model = Pipe( module=nn.Sequential(*encoder_module_list), balance=encoder_balance, devices=encoder_devices, chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) def forward(self, src_tokens, src_lengths): """ Args: input_tuple( src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` ) Returns: output_tuple( - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - prev_output_tokens - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. ) """ dummy_prev_output_tokens = torch.zeros( 1, dtype=src_tokens.dtype, device=src_tokens.device ) input_tuple = (src_tokens, src_lengths, dummy_prev_output_tokens) if self.use_pipeline: input_tuple = tuple(i.to(self.model.devices[0]) for i in input_tuple) if TORCH_PIPE: encoder_out = self.model(input_tuple).local_value() else: encoder_out = self.model(input_tuple) else: encoder_embed_output_tuple = self.embedding_layer(input_tuple) encoder_layers_output = self.encoder_layers(encoder_embed_output_tuple) encoder_out = self.final_layer_norm(encoder_layers_output) # first element is the encoder output # second element is the encoder padding mask # the remaining elements of EncoderOut are not computed by # the PipelineParallelTransformer return EncoderOut(encoder_out[0], encoder_out[1], None, None, None, None) def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if encoder_out.encoder_out is not None: encoder_out = encoder_out._replace( encoder_out=encoder_out.encoder_out.index_select(1, new_order) ) if encoder_out.encoder_padding_mask is not None: encoder_out = encoder_out._replace( encoder_padding_mask=encoder_out.encoder_padding_mask.index_select( 0, new_order ) ) if encoder_out.encoder_embedding is not None: encoder_out = encoder_out._replace( encoder_embedding=encoder_out.encoder_embedding.index_select( 0, new_order ) ) if encoder_out.encoder_states is not None: for idx, state in enumerate(encoder_out.encoder_states): encoder_out.encoder_states[idx] = state.index_select(1, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" if self.embedding_layer.embed_positions is None: return self.embedding_layer.max_source_positions return min( self.embedding_layer.max_source_positions, self.embedding_layer.embed_positions.max_positions, ) class TransformerDecoder(FairseqDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, decoder_module_list=None, ): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) import_pipe() self.use_pipeline = decoder_module_list is not None if not self.use_pipeline: self.embedding_layer = TransformerDecoderEmbedding(args, embed_tokens) self.decoder_layers = nn.Sequential( *[ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(args.decoder_layers) ] ) self.decoder_output_layer = TransformerDecoderOutputLayer( args, embed_tokens, dictionary ) else: decoder_balance = utils.eval_str_list( args.pipeline_decoder_balance, type=int ) decoder_devices = utils.eval_str_list( args.pipeline_decoder_devices, type=int ) assert sum(decoder_balance) == len(decoder_module_list), ( f"Sum of decoder_balance={decoder_balance} is not equal " + f"to num_decoder_modules={len(decoder_module_list)}" ) if TORCH_PIPE: self.model = Pipe( module=partition_model( nn.Sequential(*decoder_module_list), decoder_balance, decoder_devices, ), chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) else: self.model = Pipe( module=nn.Sequential(*decoder_module_list), balance=decoder_balance, devices=decoder_devices, chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) def forward( self, prev_output_tokens, encoder_out=None, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ input_tuple = ( encoder_out.encoder_out, encoder_out.encoder_padding_mask, prev_output_tokens, ) if self.use_pipeline: input_tuple = tuple(i.to(self.model.devices[0]) for i in input_tuple) if TORCH_PIPE: return (self.model(input_tuple).local_value(),) else: return (self.model(input_tuple),) else: embed_layer_output = self.embedding_layer(input_tuple) state = self.decoder_layers(embed_layer_output) return (self.decoder_output_layer(state),) def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embedding_layer.embed_positions is None: return self.embedding_layer.max_target_positions return min( self.embedding_layer.max_target_positions, self.embedding_layer.embed_positions.max_positions, ) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(len(self.layers)): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict @register_model_architecture( "pipeline_parallel_transformer", "transformer_iwslt_de_en_pipeline_parallel" ) def transformer_iwslt_de_en_dist(args): transformer_iwslt_de_en(args) @register_model_architecture( "pipeline_parallel_transformer", "transformer_wmt_en_de_big_pipeline_parallel" ) def transformer_wmt_en_de_big_dist(args): transformer_wmt_en_de_big(args)
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/pipeline_parallel_transformer/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq import options, utils from fairseq.modules import ( AdaptiveSoftmax, LayerNorm, MultiheadAttention, PositionalEmbedding, ) EncoderOut = namedtuple( "TransformerEncoderOut", [ "encoder_out", # T x B x C "encoder_padding_mask", # B x T "encoder_embedding", # B x T x C "encoder_states", # List[T x B x C] ], ) class TransformerEncoderEmbedding(nn.Module): """Encoder Embedding + Positional Embedding""" def __init__(self, args, embed_tokens): super().__init__() self.dropout = args.dropout self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens if isinstance(embed_tokens, nn.ModuleList): self.padding_idx = embed_tokens[0].padding_idx embed_dim = sum(e.embedding_dim for e in embed_tokens) else: self.padding_idx = embed_tokens.padding_idx embed_dim = embed_tokens.embedding_dim self.embed_scale = math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None def forward(self, input): # embed tokens and positions src_tokens = input[0] prev_output_tokens = input[2] if isinstance(self.embed_tokens, nn.ModuleList): x_embed_list = [] for embed_tokens_part in self.embed_tokens: x_embed_list.append(embed_tokens_part(src_tokens)) embedded = torch.cat(x_embed_list, dim=-1) else: embedded = self.embed_tokens(src_tokens) x = embed = self.embed_scale * embedded if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding: x = self.layernorm_embedding(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) return (x, encoder_padding_mask, prev_output_tokens) class TransformerEncoderLayerNorm(nn.Module): """ Layer norm at the the end of all encoder layers if args.encoder_enormalize_before = True """ def __init__(self, args, embed_dim): super().__init__() if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, input): x = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] if self.layer_norm: x = self.layer_norm(x) # keeping track of the incremental_state is not supported yet return (x, encoder_padding_mask, prev_output_tokens) class TransformerDecoderEmbedding(nn.Module): """Decoder Embedding + Positional Embedding""" def __init__(self, args, embed_tokens): super().__init__() self.dropout = args.dropout self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = ( sum(e.embedding_dim for e in embed_tokens) if isinstance(embed_tokens, nn.ModuleList) else embed_tokens.embedding_dim ) embed_dim = args.decoder_embed_dim self.output_embed_dim = args.decoder_output_dim padding_idx = ( embed_tokens[0].padding_idx if isinstance(embed_tokens, nn.ModuleList) else embed_tokens.padding_idx ) self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) def forward(self, input): mt_task = False if isinstance(input, tuple): if len(input) == 3: encoder_out = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] incremental_state = None # Hardcoding to avoid passing of None objects mt_task = True else: # HACK for now, need to fix (TODO sidgoyal) prev_output_tokens = input[0] # discard "src_lengths" encoder_out = None encoder_padding_mask = None incremental_state = None else: prev_output_tokens = input encoder_out = None encoder_padding_mask = None incremental_state = None positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions if isinstance(self.embed_tokens, nn.ModuleList): x_embed_list = [] for embed_tokens_part in self.embed_tokens: x_embed_list.append(embed_tokens_part(prev_output_tokens)) x = self.embed_scale * torch.cat(x_embed_list, dim=-1) else: x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) if mt_task: return (x, encoder_out, encoder_padding_mask) return x class TransformerDecoderOutputLayer(nn.Module): def __init__(self, args, embed_tokens, dictionary): super().__init__() self.share_input_output_embed = args.share_decoder_input_output_embed self.embed_tokens = embed_tokens self.output_embed_dim = args.decoder_output_dim embed_dim = args.decoder_embed_dim self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None ) self.adaptive_softmax = None if args.adaptive_softmax_cutoff is not None: assert not isinstance(embed_tokens, nn.ModuleList) self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, options.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_tokens = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_( self.embed_tokens, mean=0, std=self.output_embed_dim**-0.5 ) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, input, apply_final_proj=True): if isinstance(input, tuple): x = input[0] else: x = input if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) if apply_final_proj: x = self.output_layer(x) return x def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: if isinstance(self.embed_tokens, nn.ModuleList): output = None for i, emb in enumerate(self.embed_tokens): sidx = i * emb.embedding_dim eidx = (i + 1) * emb.embedding_dim if output is None: output = F.linear(features[:, :, sidx:eidx], emb.weight) else: output += F.linear(features[:, :, sidx:eidx], emb.weight) return output else: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_tokens) else: return features class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, ) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) self.activation_dropout = getattr(args, "activation_dropout", 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, "relu_dropout", 0) self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward(self, input): """ Args: input (Tuple): input[0] (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` input[1] (ByteTensor/FloatTensor): encoder padding mask - binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. input[2] (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing) Returns: output (Tuple): output[0] (Tensor): encoded output of shape `(batch, src_len, embed_dim)` output[1] (ByteTensor/FloatTensor): encoder padding mask output[2] (LongTensor): previous decoder outputs """ x = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return (x, encoder_padding_mask, prev_output_tokens) def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x class TransformerDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( embed_dim=self.embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=True, ) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) self.activation_dropout = getattr(args, "activation_dropout", 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, "relu_dropout", 0) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def forward(self, input): """ Args: input (Tuple): input[0] (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` input[1] (Tensor): encoder output of shape `(batch, src_len, embed_dim)` input[2] (ByteTensor/FloatTensor): encoder padding mask - binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: output (Tuple): output[0] (Tensor): encoded output of shape `(batch, src_len, embed_dim)` output[1] (ByteTensor/FloatTensor): encoder padding mask output[2] (LongTensor): previous decoder outputs """ # Note: incremental state is not yet supported mt_task = False if isinstance(input, tuple): x = input[0] encoder_out = input[1] encoder_padding_mask = input[2] incremental_state = None mt_task = True else: x = input encoder_out = None encoder_padding_mask = None incremental_state = None if incremental_state is None: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None # TODO: add back prev_self_attn_state, prev_attn_state, # self_attn_padding_mask prev_self_attn_state = None prev_attn_state = None self_attn_padding_mask = None residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if prev_self_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_self_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if self.encoder_attn is not None: residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if mt_task: return (x, encoder_out, encoder_padding_mask) return x def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) if self._future_mask.size(0) < dim: self._future_mask = torch.triu( utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/pipeline_parallel_transformer/layers.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .model import * # noqa
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/roberta/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ RoBERTa: A Robustly Optimized BERT Pretraining Approach. """ import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.model_parallel.models.transformer import ModelParallelTransformerEncoder from fairseq.models import register_model, register_model_architecture from fairseq.models.roberta import ( roberta_base_architecture, roberta_prenorm_architecture, RobertaEncoder, RobertaModel, ) from fairseq.modules import LayerNorm try: from fairseq.model_parallel.megatron.mpu import ( copy_to_model_parallel_region, gather_from_model_parallel_region, ColumnParallelLinear, VocabParallelEmbedding, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False logger = logging.getLogger(__name__) @register_model("model_parallel_roberta") class ModelParallelRobertaModel(RobertaModel): def __init__(self, args, encoder): super().__init__(args, encoder) self.classification_heads = nn.ModuleDict() @staticmethod def add_args(parser): RobertaModel.add_args(parser) parser.add_argument( "--no-final-layer-norm", action="store_true", help=( "don't add final layernorm (only applicable when " "--encoder-normalize-before=True" ), ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present base_architecture(args) task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8) task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8) if not hasattr(args, "max_positions"): args.max_positions = args.tokens_per_sample if getattr(args, "untie_weights_roberta", False): raise NotImplementedError( "--untie-weights-roberta is not supported in model parallel mode" ) encoder = ModelParallelRobertaEncoder(args, task.source_dictionary) return cls(args, encoder) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, classification_head_name=None, **kwargs ): if classification_head_name is not None: features_only = True x, extra = self.encoder(src_tokens, features_only, return_all_hiddens, **kwargs) if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) return x, extra def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = ModelParallelRobertaClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) class ModelParallelRobertaLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = ColumnParallelLinear(embed_dim, embed_dim, gather_output=True) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the unmasked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) x = copy_to_model_parallel_region(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) x = gather_from_model_parallel_region(x).contiguous() x = x + self.bias return x class ModelParallelRobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout ): super().__init__() self.dense = ColumnParallelLinear(input_dim, inner_dim, gather_output=True) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x class ModelParallelRobertaEncoder(RobertaEncoder): """RoBERTa encoder.""" def __init__(self, args, dictionary): super().__init__(args, dictionary) assert not self.args.untie_weights_roberta def build_embedding(self, vocab_size, embedding_dim, padding_idx): return VocabParallelEmbedding(vocab_size, embedding_dim, padding_idx) def build_encoder(self, args, dictionary, embed_tokens): return ModelParallelTransformerEncoder(args, dictionary, embed_tokens) def build_lm_head(self, embed_dim, output_dim, activation_fn, weight): return ModelParallelRobertaLMHead(embed_dim, output_dim, activation_fn, weight) @register_model_architecture("model_parallel_roberta", "model_parallel_roberta") def base_architecture(args): args.no_final_layer_norm = getattr(args, "no_final_layer_norm", False) # model parallel RoBERTa defaults to "Pre-LN" formulation roberta_prenorm_architecture(args) # earlier versions of model parallel RoBERTa removed the final layer norm @register_model_architecture("model_parallel_roberta", "model_parallel_roberta_v1") def model_parallel_roberta_v1_architecture(args): args.no_final_layer_norm = getattr(args, "no_final_layer_norm", True) base_architecture(args) @register_model_architecture( "model_parallel_roberta", "model_parallel_roberta_postnorm" ) def model_parallel_roberta_postnorm_architecture(args): # the original BERT/RoBERTa uses the "Post-LN" formulation roberta_base_architecture(args) @register_model_architecture("model_parallel_roberta", "model_parallel_roberta_base") def model_parallel_roberta_base_architecture(args): base_architecture(args) @register_model_architecture("model_parallel_roberta", "model_parallel_roberta_large") def model_parallel_roberta_large_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) base_architecture(args)
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/models/roberta/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import Tensor, nn from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout try: from fairseq.model_parallel.megatron.mpu import ( ColumnParallelLinear, RowParallelLinear, get_cuda_rng_tracker, get_model_parallel_world_size, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False @with_incremental_state class ModelParallelMultiheadAttention(nn.Module): """Model parallel Multi-headed attention. This performs the Multi-headed attention over multiple gpus. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, self_attention=False, encoder_decoder_attention=False, ): super().__init__() if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.model_parallel_size = get_model_parallel_world_size() self.num_heads_partition = num_heads // self.model_parallel_size assert ( self.num_heads_partition * self.model_parallel_size == num_heads ), "Number of heads must be divisible by model parallel size" self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert ( not self.self_attention or self.qkv_same_dim ), "Self-attention requires query, key and value to be of the same size" self.k_proj = ColumnParallelLinear( self.kdim, embed_dim, bias=bias, gather_output=False ) self.v_proj = ColumnParallelLinear( self.vdim, embed_dim, bias=bias, gather_output=False ) self.q_proj = ColumnParallelLinear( embed_dim, embed_dim, bias=bias, gather_output=False ) self.out_proj = RowParallelLinear( embed_dim, embed_dim, bias=bias, input_is_parallel=True ) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, static_kv: bool = False, attn_mask: Optional[Tensor] = None, **unused_kwargs, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). """ tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] is_tpu = query.device.type == "xla" if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads_partition, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view( bsz * self.num_heads_partition, -1, self.head_dim ) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view( bsz * self.num_heads_partition, -1, self.head_dim ) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = ( ModelParallelMultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) ) saved_state["prev_key"] = k.view( bsz, self.num_heads_partition, -1, self.head_dim ) saved_state["prev_value"] = v.view( bsz, self.num_heads_partition, -1, self.head_dim ) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [ bsz * self.num_heads_partition, tgt_len, src_len, ] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view( bsz, self.num_heads_partition, tgt_len, src_len ) if not is_tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view( bsz * self.num_heads_partition, tgt_len, src_len ) attn_weights_float = utils.softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) with get_cuda_rng_tracker().fork(): attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [ bsz * self.num_heads_partition, tgt_len, self.head_dim, ] embed_dim_partition = embed_dim // self.model_parallel_size attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim_partition) attn = self.out_proj(attn) # return attn_weights None to keep the return type same as single gpu multihead attention # This will be deprecated. attn_weights: Optional[Tensor] = None return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1)) if prev_key_padding_mask.is_cuda: filler = filler.cuda() new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1)) if key_padding_mask.is_cuda: filler = filler.cuda() new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): if input_buffer[k] is not None: input_buffer[k] = input_buffer[k].index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer)
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/modules/multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .multihead_attention import ModelParallelMultiheadAttention from .transformer_layer import ( ModelParallelTransformerEncoderLayer, ModelParallelTransformerDecoderLayer, ) __all__ = [ "ModelParallelMultiheadAttention", "ModelParallelTransformerEncoderLayer", "ModelParallelTransformerDecoderLayer", ]
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.model_parallel.modules import ModelParallelMultiheadAttention from fairseq.modules import TransformerDecoderLayer, TransformerEncoderLayer try: from fairseq.model_parallel.megatron.mpu import ( ColumnParallelLinear, RowParallelLinear, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class ModelParallelTransformerEncoderLayer(TransformerEncoderLayer): """Encoder layer block over multiple gpus. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return ColumnParallelLinear(input_dim, output_dim, gather_output=False) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return RowParallelLinear(input_dim, output_dim, input_is_parallel=True) def build_self_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, ) class ModelParallelTransformerDecoderLayer(TransformerDecoderLayer): """Decoder layer block. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return ColumnParallelLinear(input_dim, output_dim, gather_output=False) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return RowParallelLinear(input_dim, output_dim, input_is_parallel=True) def build_self_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim=embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=not getattr(args, "cross_self_attention", False), ) def build_encoder_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim=embed_dim, num_heads=args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, )
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/modules/transformer_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion try: from fairseq.model_parallel.megatron.mpu.cross_entropy import ( vocab_parallel_cross_entropy, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False @register_criterion("vocab_parallel_cross_entropy") class VocabParallelCrossEntropyCriterion(FairseqCriterion): def __init__(self, task, sentence_avg): super().__init__(task) self.sentence_avg = sentence_avg if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) target = sample["target"] loss = vocab_parallel_cross_entropy(net_output[0].float(), target) loss = (loss * (target != self.padding_idx)).sum() sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/criterions/vocab_parallel_cross_entropy.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the criterions/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("fairseq.model_parallel.criterions." + module)
EXA-1-master
exa/libraries/fairseq/fairseq/model_parallel/criterions/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import numpy as np from fairseq.dataclass import FairseqDataclass from fairseq.scoring import BaseScorer, register_scorer @dataclass class BertScoreScorerConfig(FairseqDataclass): bert_score_lang: str = field(default="en", metadata={"help": "BERTScore language"}) @register_scorer("bert_score", dataclass=BertScoreScorerConfig) class BertScoreScorer(BaseScorer): def __init__(self, cfg): super(BertScoreScorer, self).__init__(cfg) try: import bert_score as _bert_score except ImportError: raise ImportError("Please install BERTScore: pip install bert-score") self.cfg = cfg self._bert_score = _bert_score self.scores = None def add_string(self, ref, pred): self.ref.append(ref) self.pred.append(pred) def score(self, order=4): _, _, self.scores = self._bert_score.score( self.pred, self.ref, lang=self.cfg.bert_score_lang ) self.scores = self.scores.numpy() return np.mean(self.scores) def result_string(self, order=4): return f"BERTScore: {self.score():.4f}"
EXA-1-master
exa/libraries/fairseq/fairseq/scoring/bertscore.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ctypes import math import sys from dataclasses import dataclass, field import torch from fairseq.dataclass import FairseqDataclass from fairseq.scoring import BaseScorer, register_scorer from fairseq.scoring.tokenizer import EvaluationTokenizer class BleuStat(ctypes.Structure): _fields_ = [ ("reflen", ctypes.c_size_t), ("predlen", ctypes.c_size_t), ("match1", ctypes.c_size_t), ("count1", ctypes.c_size_t), ("match2", ctypes.c_size_t), ("count2", ctypes.c_size_t), ("match3", ctypes.c_size_t), ("count3", ctypes.c_size_t), ("match4", ctypes.c_size_t), ("count4", ctypes.c_size_t), ] @dataclass class SacrebleuConfig(FairseqDataclass): sacrebleu_tokenizer: EvaluationTokenizer.ALL_TOKENIZER_TYPES = field( default="13a", metadata={"help": "tokenizer"} ) sacrebleu_lowercase: bool = field( default=False, metadata={"help": "apply lowercasing"} ) sacrebleu_char_level: bool = field( default=False, metadata={"help": "evaluate at character level"} ) @register_scorer("sacrebleu", dataclass=SacrebleuConfig) class SacrebleuScorer(BaseScorer): def __init__(self, cfg): super(SacrebleuScorer, self).__init__(cfg) import sacrebleu self.sacrebleu = sacrebleu self.tokenizer = EvaluationTokenizer( tokenizer_type=cfg.sacrebleu_tokenizer, lowercase=cfg.sacrebleu_lowercase, character_tokenization=cfg.sacrebleu_char_level, ) def add_string(self, ref, pred): self.ref.append(self.tokenizer.tokenize(ref)) self.pred.append(self.tokenizer.tokenize(pred)) def _score(self, order=4): if order != 4: raise NotImplementedError # tokenization and lowercasing are performed by self.tokenizer instead. return self.sacrebleu.corpus_bleu(self.pred, [self.ref], tokenize="none") def score(self, order=4): return self._score(order).score def result_string(self, order=4): return self._score(order).format() @dataclass class BleuConfig(FairseqDataclass): pad: int = field(default=1, metadata={"help": "padding index"}) eos: int = field(default=2, metadata={"help": "eos index"}) unk: int = field(default=3, metadata={"help": "unk index"}) @register_scorer("bleu", dataclass=BleuConfig) class Scorer(object): def __init__(self, cfg): self.stat = BleuStat() self.pad = cfg.pad self.eos = cfg.eos self.unk = cfg.unk try: from fairseq import libbleu except ImportError as e: sys.stderr.write( "ERROR: missing libbleu.so. run `pip install --editable .`\n" ) raise e self.C = ctypes.cdll.LoadLibrary(libbleu.__file__) self.reset() def reset(self, one_init=False): if one_init: self.C.bleu_one_init(ctypes.byref(self.stat)) else: self.C.bleu_zero_init(ctypes.byref(self.stat)) def add(self, ref, pred): if not isinstance(ref, torch.IntTensor): raise TypeError("ref must be a torch.IntTensor (got {})".format(type(ref))) if not isinstance(pred, torch.IntTensor): raise TypeError("pred must be a torch.IntTensor(got {})".format(type(pred))) # don't match unknown words rref = ref.clone() assert not rref.lt(0).any() rref[rref.eq(self.unk)] = -999 rref = rref.contiguous().view(-1) pred = pred.contiguous().view(-1) self.C.bleu_add( ctypes.byref(self.stat), ctypes.c_size_t(rref.size(0)), ctypes.c_void_p(rref.data_ptr()), ctypes.c_size_t(pred.size(0)), ctypes.c_void_p(pred.data_ptr()), ctypes.c_int(self.pad), ctypes.c_int(self.eos), ) def score(self, order=4): psum = sum( math.log(p) if p > 0 else float("-Inf") for p in self.precision()[:order] ) return self.brevity() * math.exp(psum / order) * 100 def precision(self): def ratio(a, b): return a / b if b > 0 else 0 return [ ratio(self.stat.match1, self.stat.count1), ratio(self.stat.match2, self.stat.count2), ratio(self.stat.match3, self.stat.count3), ratio(self.stat.match4, self.stat.count4), ] def brevity(self): r = self.stat.reflen / self.stat.predlen return min(1, math.exp(1 - r)) def result_string(self, order=4): assert order <= 4, "BLEU scores for order > 4 aren't supported" fmt = "BLEU{} = {:2.2f}, {:2.1f}" for _ in range(1, order): fmt += "/{:2.1f}" fmt += " (BP={:.3f}, ratio={:.3f}, syslen={}, reflen={})" bleup = [p * 100 for p in self.precision()[:order]] return fmt.format( order, self.score(order=order), *bleup, self.brevity(), self.stat.predlen / self.stat.reflen, self.stat.predlen, self.stat.reflen )
EXA-1-master
exa/libraries/fairseq/fairseq/scoring/bleu.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from abc import ABC, abstractmethod from fairseq import registry from omegaconf import DictConfig class BaseScorer(ABC): def __init__(self, cfg): self.cfg = cfg self.ref = [] self.pred = [] def add_string(self, ref, pred): self.ref.append(ref) self.pred.append(pred) @abstractmethod def score(self) -> float: pass @abstractmethod def result_string(self) -> str: pass _build_scorer, register_scorer, SCORER_REGISTRY, _ = registry.setup_registry( "--scoring", default="bleu" ) def build_scorer(choice, tgt_dict): _choice = choice._name if isinstance(choice, DictConfig) else choice if _choice == "bleu": from fairseq.scoring import bleu return bleu.Scorer( bleu.BleuConfig(pad=tgt_dict.pad(), eos=tgt_dict.eos(), unk=tgt_dict.unk()) ) return _build_scorer(choice) # automatically import any Python files in the current directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("fairseq.scoring." + module)
EXA-1-master
exa/libraries/fairseq/fairseq/scoring/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from fairseq.dataclass import FairseqDataclass from fairseq.scoring import BaseScorer, register_scorer from fairseq.scoring.tokenizer import EvaluationTokenizer @dataclass class WerScorerConfig(FairseqDataclass): wer_tokenizer: EvaluationTokenizer.ALL_TOKENIZER_TYPES = field( default="none", metadata={"help": "sacreBLEU tokenizer to use for evaluation"} ) wer_remove_punct: bool = field( default=False, metadata={"help": "remove punctuation"} ) wer_char_level: bool = field( default=False, metadata={"help": "evaluate at character level"} ) wer_lowercase: bool = field(default=False, metadata={"help": "lowercasing"}) @register_scorer("wer", dataclass=WerScorerConfig) class WerScorer(BaseScorer): def __init__(self, cfg): super().__init__(cfg) self.reset() try: import editdistance as ed except ImportError: raise ImportError("Please install editdistance to use WER scorer") self.ed = ed self.tokenizer = EvaluationTokenizer( tokenizer_type=self.cfg.wer_tokenizer, lowercase=self.cfg.wer_lowercase, punctuation_removal=self.cfg.wer_remove_punct, character_tokenization=self.cfg.wer_char_level, ) def reset(self): self.distance = 0 self.ref_length = 0 def add_string(self, ref, pred): ref_items = self.tokenizer.tokenize(ref).split() pred_items = self.tokenizer.tokenize(pred).split() self.distance += self.ed.eval(ref_items, pred_items) self.ref_length += len(ref_items) def result_string(self): return f"WER: {self.score():.2f}" def score(self): return 100.0 * self.distance / self.ref_length if self.ref_length > 0 else 0
EXA-1-master
exa/libraries/fairseq/fairseq/scoring/wer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unicodedata import sacrebleu as sb from fairseq.dataclass import ChoiceEnum SACREBLEU_V2_ABOVE = int(sb.__version__[0]) >= 2 class EvaluationTokenizer(object): """A generic evaluation-time tokenizer, which leverages built-in tokenizers in sacreBLEU (https://github.com/mjpost/sacrebleu). It additionally provides lowercasing, punctuation removal and character tokenization, which are applied after sacreBLEU tokenization. Args: tokenizer_type (str): the type of sacreBLEU tokenizer to apply. lowercase (bool): lowercase the text. punctuation_removal (bool): remove punctuation (based on unicode category) from text. character_tokenization (bool): tokenize the text to characters. """ SPACE = chr(32) SPACE_ESCAPE = chr(9601) _ALL_TOKENIZER_TYPES = ( sb.BLEU.TOKENIZERS if SACREBLEU_V2_ABOVE else ["none", "13a", "intl", "zh", "ja-mecab"] ) ALL_TOKENIZER_TYPES = ChoiceEnum(_ALL_TOKENIZER_TYPES) def __init__( self, tokenizer_type: str = "13a", lowercase: bool = False, punctuation_removal: bool = False, character_tokenization: bool = False, ): assert ( tokenizer_type in self._ALL_TOKENIZER_TYPES ), f"{tokenizer_type}, {self._ALL_TOKENIZER_TYPES}" self.lowercase = lowercase self.punctuation_removal = punctuation_removal self.character_tokenization = character_tokenization if SACREBLEU_V2_ABOVE: self.tokenizer = sb.BLEU(tokenize=str(tokenizer_type)).tokenizer else: self.tokenizer = sb.tokenizers.TOKENIZERS[tokenizer_type]() @classmethod def remove_punctuation(cls, sent: str): """Remove punctuation based on Unicode category.""" return cls.SPACE.join( t for t in sent.split(cls.SPACE) if not all(unicodedata.category(c)[0] == "P" for c in t) ) def tokenize(self, sent: str): tokenized = self.tokenizer(sent) if self.punctuation_removal: tokenized = self.remove_punctuation(tokenized) if self.character_tokenization: tokenized = self.SPACE.join( list(tokenized.replace(self.SPACE, self.SPACE_ESCAPE)) ) if self.lowercase: tokenized = tokenized.lower() return tokenized
EXA-1-master
exa/libraries/fairseq/fairseq/scoring/tokenizer.py