python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
from dataclasses import dataclass
from fairseq.dataclass import FairseqDataclass
from fairseq.scoring import BaseScorer, register_scorer
@dataclass
class MeteorScorerConfig(FairseqDataclass):
pass
@register_scorer("meteor", dataclass=MeteorScorerConfig)
class MeteorScorer(BaseScorer):
def __init__(self, args):
super(MeteorScorer, self).__init__(args)
try:
import nltk
except ImportError:
raise ImportError("Please install nltk to use METEOR scorer")
self.nltk = nltk
self.scores = []
def add_string(self, ref, pred):
self.ref.append(ref)
self.pred.append(pred)
def score(self, order=4):
self.scores = [
self.nltk.translate.meteor_score.single_meteor_score(r, p)
for r, p in zip(self.ref, self.pred)
]
return np.mean(self.scores)
def result_string(self, order=4):
return f"METEOR: {self.score():.4f}"
| EXA-1-master | exa/libraries/fairseq/fairseq/scoring/meteor.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from fairseq.dataclass import FairseqDataclass
from fairseq.scoring import BaseScorer, register_scorer
@dataclass
class ChrFScorerConfig(FairseqDataclass):
pass
@register_scorer("chrf", dataclass=ChrFScorerConfig)
class ChrFScorer(BaseScorer):
def __init__(self, args):
super(ChrFScorer, self).__init__(args)
import sacrebleu
self.sacrebleu = sacrebleu
def add_string(self, ref, pred):
self.ref.append(ref)
self.pred.append(pred)
def score(self, order=4):
return self.result_string(order).score
def result_string(self, order=4):
if order != 4:
raise NotImplementedError
return self.sacrebleu.corpus_chrf(self.pred, [self.ref]).format()
| EXA-1-master | exa/libraries/fairseq/fairseq/scoring/chrf.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
from dataclasses import _MISSING_TYPE, dataclass, field
from typing import Any, List, Optional
import torch
from omegaconf import II, MISSING
from fairseq.dataclass.constants import (
DATASET_IMPL_CHOICES,
DDP_BACKEND_CHOICES,
DDP_COMM_HOOK_CHOICES,
GENERATION_CONSTRAINTS_CHOICES,
GENERATION_DECODING_FORMAT_CHOICES,
LOG_FORMAT_CHOICES,
PIPELINE_CHECKPOINT_CHOICES,
PRINT_ALIGNMENT_CHOICES,
ZERO_SHARDING_CHOICES,
)
@dataclass
class FairseqDataclass:
"""fairseq base dataclass that supported fetching attributes and metas"""
_name: Optional[str] = None
@staticmethod
def name():
return None
def _get_all_attributes(self) -> List[str]:
return [k for k in self.__dataclass_fields__.keys()]
def _get_meta(
self, attribute_name: str, meta: str, default: Optional[Any] = None
) -> Any:
return self.__dataclass_fields__[attribute_name].metadata.get(meta, default)
def _get_name(self, attribute_name: str) -> str:
return self.__dataclass_fields__[attribute_name].name
def _get_default(self, attribute_name: str) -> Any:
if hasattr(self, attribute_name):
if str(getattr(self, attribute_name)).startswith("${"):
return str(getattr(self, attribute_name))
elif str(self.__dataclass_fields__[attribute_name].default).startswith(
"${"
):
return str(self.__dataclass_fields__[attribute_name].default)
elif (
getattr(self, attribute_name)
!= self.__dataclass_fields__[attribute_name].default
):
return getattr(self, attribute_name)
f = self.__dataclass_fields__[attribute_name]
if not isinstance(f.default_factory, _MISSING_TYPE):
return f.default_factory()
return f.default
def _get_type(self, attribute_name: str) -> Any:
return self.__dataclass_fields__[attribute_name].type
def _get_help(self, attribute_name: str) -> Any:
return self._get_meta(attribute_name, "help")
def _get_argparse_const(self, attribute_name: str) -> Any:
return self._get_meta(attribute_name, "argparse_const")
def _get_argparse_alias(self, attribute_name: str) -> Any:
return self._get_meta(attribute_name, "argparse_alias")
def _get_choices(self, attribute_name: str) -> Any:
return self._get_meta(attribute_name, "choices")
@classmethod
def from_namespace(cls, args):
if isinstance(args, cls):
return args
else:
config = cls()
for k in config.__dataclass_fields__.keys():
if k.startswith("_"):
# private member, skip
continue
if hasattr(args, k):
setattr(config, k, getattr(args, k))
return config
@dataclass
class CommonConfig(FairseqDataclass):
# This is the core dataclass including common parameters shared by all different jobs. Please append your params to other dataclasses if they were
# used for a particular purpose or task, such as those dedicated for `distributed training`, `optimization`, etc.
no_progress_bar: bool = field(
default=False, metadata={"help": "disable progress bar"}
)
log_interval: int = field(
default=100,
metadata={
"help": "log progress every N batches (when progress bar is disabled)"
},
)
log_format: Optional[LOG_FORMAT_CHOICES] = field(
default=None, metadata={"help": "log format to use"}
)
log_file: Optional[str] = field(
default=None, metadata={"help": "log file to copy metrics to."}
)
aim_repo: Optional[str] = field(
default=None,
metadata={"help": "path to Aim repository"},
)
aim_run_hash: Optional[str] = field(
default=None,
metadata={
"help": "Aim run hash. If skipped, creates or continues run "
"based on save_dir"
},
)
tensorboard_logdir: Optional[str] = field(
default=None,
metadata={
"help": "path to save logs for tensorboard, should match --logdir "
"of running tensorboard (default: no tensorboard logging)"
},
)
wandb_project: Optional[str] = field(
default=None,
metadata={"help": "Weights and Biases project name to use for logging"},
)
azureml_logging: Optional[bool] = field(
default=False,
metadata={"help": "Log scalars to AzureML context"},
)
seed: int = field(
default=1, metadata={"help": "pseudo random number generator seed"}
)
cpu: bool = field(default=False, metadata={"help": "use CPU instead of CUDA"})
tpu: bool = field(default=False, metadata={"help": "use TPU instead of CUDA"})
bf16: bool = field(default=False, metadata={"help": "use bfloat16; implies --tpu"})
memory_efficient_bf16: bool = field(
default=False,
metadata={
"help": "use a memory-efficient version of BF16 training; implies --bf16"
},
)
fp16: bool = field(default=False, metadata={"help": "use FP16"})
memory_efficient_fp16: bool = field(
default=False,
metadata={
"help": "use a memory-efficient version of FP16 training; implies --fp16"
},
)
fp16_no_flatten_grads: bool = field(
default=False, metadata={"help": "don't flatten FP16 grads tensor"}
)
fp16_init_scale: int = field(
default=2**7, metadata={"help": "default FP16 loss scale"}
)
fp16_scale_window: Optional[int] = field(
default=None,
metadata={"help": "number of updates before increasing loss scale"},
)
fp16_scale_tolerance: float = field(
default=0.0,
metadata={
"help": "pct of updates that can overflow before decreasing the loss scale"
},
)
on_cpu_convert_precision: bool = field(
default=False,
metadata={
"help": "if set, the floating point conversion to fp16/bf16 runs on CPU. "
"This reduces bus transfer time and GPU memory usage."
},
)
min_loss_scale: float = field(
default=1e-4,
metadata={
"help": "minimum FP16/AMP loss scale, after which training is stopped"
},
)
threshold_loss_scale: Optional[float] = field(
default=None, metadata={"help": "threshold FP16 loss scale from below"}
)
amp: bool = field(default=False, metadata={"help": "use automatic mixed precision"})
amp_batch_retries: int = field(
default=2,
metadata={
"help": "number of retries of same batch after reducing loss scale with AMP"
},
)
amp_init_scale: int = field(
default=2**7, metadata={"help": "default AMP loss scale"}
)
amp_scale_window: Optional[int] = field(
default=None,
metadata={"help": "number of updates before increasing AMP loss scale"},
)
user_dir: Optional[str] = field(
default=None,
metadata={
"help": "path to a python module containing custom extensions (tasks and/or architectures)"
},
)
empty_cache_freq: int = field(
default=0,
metadata={"help": "how often to clear the PyTorch CUDA cache (0 to disable)"},
)
all_gather_list_size: int = field(
default=16384,
metadata={"help": "number of bytes reserved for gathering stats from workers"},
)
model_parallel_size: int = field(
default=1, metadata={"help": "total number of GPUs to parallelize model over"}
)
quantization_config_path: Optional[str] = field(
default=None, metadata={"help": "path to quantization config file"}
)
profile: bool = field(
default=False, metadata={"help": "enable autograd profiler emit_nvtx"}
)
reset_logging: bool = field(
default=False,
metadata={
"help": "when using Hydra, reset the logging at the beginning of training"
},
)
suppress_crashes: bool = field(
default=False,
metadata={
"help": "suppress crashes when training with the hydra_train entry point so that the "
"main method can return a value (useful for sweeps)"
},
)
use_plasma_view: bool = field(
default=False, metadata={"help": "Store indices and sizes in shared memory"}
)
plasma_path: Optional[str] = field(
default="/tmp/plasma",
metadata={
"help": "path to run plasma_store, defaults to /tmp/plasma. Paths outside /tmp tend to fail."
},
)
@dataclass
class DistributedTrainingConfig(FairseqDataclass):
distributed_world_size: int = field(
default=max(1, torch.cuda.device_count()),
metadata={
"help": "total number of GPUs across all nodes (default: all visible GPUs)"
},
)
distributed_num_procs: Optional[int] = field(
default=max(1, torch.cuda.device_count()),
metadata={
"help": "total number of processes to fork (default: all visible GPUs)"
},
)
distributed_rank: Optional[int] = field(
default=0, metadata={"help": "rank of the current worker"}
)
distributed_backend: str = field(
default="nccl", metadata={"help": "distributed backend"}
)
distributed_init_method: Optional[str] = field(
default=None,
metadata={
"help": "typically tcp://hostname:port that will be used to "
"establish initial connetion"
},
)
distributed_port: int = field(
default=-1,
metadata={
"help": "port number (not required if using --distributed-init-method)"
},
)
device_id: int = field(
default=os.getenv("LOCAL_RANK", 0),
metadata={
"help": "which GPU to use (by default looks for $LOCAL_RANK, usually configured automatically)",
"argparse_alias": "--local_rank",
},
)
distributed_no_spawn: bool = field(
default=False,
metadata={
"help": "do not spawn multiple processes even if multiple GPUs are visible"
},
)
ddp_backend: DDP_BACKEND_CHOICES = field(
default="pytorch_ddp", metadata={"help": "DistributedDataParallel backend"}
)
ddp_comm_hook: DDP_COMM_HOOK_CHOICES = field(
default="none", metadata={"help": "communication hook"}
)
bucket_cap_mb: int = field(
default=25, metadata={"help": "bucket size for reduction"}
)
fix_batches_to_gpus: bool = field(
default=False,
metadata={
"help": "don't shuffle batches between GPUs; this reduces overall "
"randomness and may affect precision but avoids the cost of re-reading the data"
},
)
find_unused_parameters: bool = field(
default=False,
metadata={
"help": "disable unused parameter detection (not applicable to "
"--ddp-backend=legacy_ddp)"
},
)
gradient_as_bucket_view: bool = field(
default=False,
metadata={
"help": "when set to True, gradients will be views pointing to different offsets of allreduce communication buckets. This can reduce peak memory usage, where the saved memory size will be equal to the total gradients size. "
"--gradient-as-bucket-view=gradient_as_bucket_view)"
},
)
fast_stat_sync: bool = field(
default=False,
metadata={"help": "[deprecated] this is now defined per Criterion"},
)
heartbeat_timeout: int = field(
default=-1,
metadata={
"help": "kill the job if no progress is made in N seconds; "
"set to -1 to disable"
},
)
broadcast_buffers: bool = field(
default=False,
metadata={
"help": "Copy non-trainable parameters between GPUs, such as "
"batchnorm population statistics"
},
)
slowmo_momentum: Optional[float] = field(
default=None,
metadata={
"help": "SlowMo momentum term; by default use 0.0 for 16 GPUs, "
"0.2 for 32 GPUs; 0.5 for 64 GPUs, 0.6 for > 64 GPUs"
},
)
slowmo_base_algorithm: str = field(
default="localsgd",
metadata={
"help": "Base algorithm. Either 'localsgd' or 'sgp'. Please refer "
"to the documentation of 'slowmo_base_algorithm' parameter in "
"https://fairscale.readthedocs.io/en/latest/api/experimental/nn/slowmo_ddp.html "
"for more details"
},
)
localsgd_frequency: int = field(
default=3, metadata={"help": "Local SGD allreduce frequency"}
)
nprocs_per_node: int = field(
default=max(1, torch.cuda.device_count()),
metadata={
"help": "number of GPUs in each node. An allreduce operation across GPUs in "
"a node is very fast. Hence, we do allreduce across GPUs in a node, "
"and gossip across different nodes"
},
)
pipeline_model_parallel: bool = field(
default=False,
metadata={"help": "if set, use pipeline model parallelism across GPUs"},
)
pipeline_balance: Optional[str] = field(
default=None,
metadata={
"help": "partition the model into N_K pieces, where each piece "
"contains N_i layers. The sum(args.pipeline_balance) "
"should equal the total number of layers in the model"
},
)
pipeline_devices: Optional[str] = field(
default=None,
metadata={
"help": "a list of device indices indicating which device to place "
"each of the N_K partitions. The length of this list should "
"equal the length of the --pipeline-balance argument"
},
)
pipeline_chunks: Optional[int] = field(
default=0, metadata={"help": "microbatch count for pipeline model parallelism"}
)
pipeline_encoder_balance: Optional[str] = field(
default=None,
metadata={
"help": "partition the pipeline parallel encoder into N_K pieces, where each piece "
"contains N_i layers. The sum(args.pipeline_encoder_balance) "
"should equal the total number of encoder layers in the model"
},
)
pipeline_encoder_devices: Optional[str] = field(
default=None,
metadata={
"help": "a list of device indices indicating which device to place "
"each of the N_K partitions. The length of this list should "
"equal the length of the --pipeline-encoder-balance argument"
},
)
pipeline_decoder_balance: Optional[str] = field(
default=None,
metadata={
"help": "partition the pipeline parallel decoder into N_K pieces, where each piece "
"contains N_i layers. The sum(args.pipeline_decoder_balance) "
"should equal the total number of decoder layers in the model"
},
)
pipeline_decoder_devices: Optional[str] = field(
default=None,
metadata={
"help": "a list of device indices indicating which device to place "
"each of the N_K partitions. The length of this list should "
"equal the length of the --pipeline-decoder-balance argument"
},
)
pipeline_checkpoint: PIPELINE_CHECKPOINT_CHOICES = field(
default="never",
metadata={"help": "checkpointing mode for pipeline model parallelism"},
)
zero_sharding: ZERO_SHARDING_CHOICES = field(
default="none", metadata={"help": "ZeRO sharding"}
)
fp16: bool = II("common.fp16")
memory_efficient_fp16: bool = II("common.memory_efficient_fp16")
tpu: bool = II("common.tpu")
# configuration for --ddp-backend=fully_sharded
no_reshard_after_forward: bool = field(
default=False,
metadata={"help": "don't reshard parameters after forward pass"},
)
fp32_reduce_scatter: bool = field(
default=False,
metadata={"help": "reduce-scatter grads in FP32"},
)
cpu_offload: bool = field(
default=False, metadata={"help": "offload FP32 params to CPU"}
)
use_sharded_state: bool = field(
default=False,
metadata={"help": "use sharded checkpoint files"},
)
not_fsdp_flatten_parameters: bool = field(
default=False,
metadata={"help": "not flatten parameter param for fsdp"},
)
@dataclass
class DatasetConfig(FairseqDataclass):
num_workers: int = field(
default=1, metadata={"help": "how many subprocesses to use for data loading"}
)
skip_invalid_size_inputs_valid_test: bool = field(
default=False,
metadata={"help": "ignore too long or too short lines in valid and test set"},
)
max_tokens: Optional[int] = field(
default=None, metadata={"help": "maximum number of tokens in a batch"}
)
batch_size: Optional[int] = field(
default=None,
metadata={
"help": "number of examples in a batch",
"argparse_alias": "--max-sentences",
},
)
required_batch_size_multiple: int = field(
default=8, metadata={"help": "batch size will be a multiplier of this value"}
)
required_seq_len_multiple: int = field(
default=1,
metadata={
"help": "maximum sequence length in batch will be a multiplier of this value"
},
)
dataset_impl: Optional[DATASET_IMPL_CHOICES] = field(
default=None, metadata={"help": "output dataset implementation"}
)
data_buffer_size: int = field(
default=10, metadata={"help": "Number of batches to preload"}
)
train_subset: str = field(
default="train",
metadata={"help": "data subset to use for training (e.g. train, valid, test)"},
)
valid_subset: str = field(
default="valid",
metadata={
"help": "comma separated list of data subsets to use for validation"
" (e.g. train, valid, test)"
},
)
combine_valid_subsets: Optional[bool] = field(
default=None,
metadata={
"help": "comma separated list of data subsets to use for validation"
" (e.g. train, valid, test)",
"argparse_alias": "--combine-val",
},
)
ignore_unused_valid_subsets: Optional[bool] = field(
default=False,
metadata={"help": "do not raise error if valid subsets are ignored"},
)
validate_interval: int = field(
default=1, metadata={"help": "validate every N epochs"}
)
validate_interval_updates: int = field(
default=0, metadata={"help": "validate every N updates"}
)
validate_after_updates: int = field(
default=0, metadata={"help": "dont validate until reaching this many updates"}
)
fixed_validation_seed: Optional[int] = field(
default=None, metadata={"help": "specified random seed for validation"}
)
disable_validation: bool = field(
default=False, metadata={"help": "disable validation"}
)
max_tokens_valid: Optional[int] = field(
default=II("dataset.max_tokens"),
metadata={
"help": "maximum number of tokens in a validation batch"
" (defaults to --max-tokens)"
},
)
batch_size_valid: Optional[int] = field(
default=II("dataset.batch_size"),
metadata={
"help": "batch size of the validation batch (defaults to --batch-size)",
"argparse_alias": "--max-sentences-valid",
},
)
max_valid_steps: Optional[int] = field(
default=None,
metadata={"help": "How many batches to evaluate", "argparse_alias": "--nval"},
)
curriculum: int = field(
default=0, metadata={"help": "don't shuffle batches for first N epochs"}
)
gen_subset: str = field(
default="test",
metadata={"help": "data subset to generate (train, valid, test)"},
)
num_shards: int = field(
default=1, metadata={"help": "shard generation over N shards"}
)
shard_id: int = field(
default=0, metadata={"help": "id of the shard to generate (id < num_shards)"}
)
grouped_shuffling: bool = field(
default=False,
metadata={
"help": "shuffle batches in groups of num_shards to enable similar sequence lengths on each GPU worker when batches are sorted by length",
},
)
update_epoch_batch_itr: bool = field(
default=II("dataset.grouped_shuffling"),
metadata={
"help": "if true then prevents the reuse the epoch batch iterator by setting can_reuse_epoch_itr to false, defaults to --grouped-shuffling )",
},
)
update_ordered_indices_seed: bool = field(
default=False,
metadata={
"help": "if true then increment seed with epoch for getting batch iterators, defautls to False.",
},
)
@dataclass
class OptimizationConfig(FairseqDataclass):
max_epoch: int = field(
default=0, metadata={"help": "force stop training at specified epoch"}
)
max_update: int = field(
default=0, metadata={"help": "force stop training at specified update"}
)
stop_time_hours: float = field(
default=0,
metadata={
"help": "force stop training after specified cumulative time (if >0)"
},
)
clip_norm: float = field(
default=0.0, metadata={"help": "clip threshold of gradients"}
)
sentence_avg: bool = field(
default=False,
metadata={
"help": "normalize gradients by the number of sentences in a batch"
" (default is to normalize by number of tokens)"
},
)
update_freq: List[int] = field(
default_factory=lambda: [1],
metadata={"help": "update parameters every N_i batches, when in epoch i"},
)
lr: List[float] = field(
default_factory=lambda: [0.25],
metadata={
"help": "learning rate for the first N epochs; all epochs >N using LR_N"
" (note: this may be interpreted differently depending on --lr-scheduler)"
},
)
stop_min_lr: float = field(
default=-1.0,
metadata={"help": "stop training when the learning rate reaches this minimum"},
)
use_bmuf: bool = field(
default=False,
metadata={
"help": "specify global optimizer for syncing models on different GPUs/shards"
},
)
skip_remainder_batch: Optional[bool] = field(
default=False,
metadata={
"help": "if set, include the last (partial) batch of each epoch in training"
" (default is to skip it)."
},
)
debug_param_names: bool = False
@dataclass
class CheckpointConfig(FairseqDataclass):
save_dir: str = field(
default="checkpoints", metadata={"help": "path to save checkpoints"}
)
restore_file: str = field(
default="checkpoint_last.pt",
metadata={
"help": "filename from which to load checkpoint "
"(default: <save-dir>/checkpoint_last.pt"
},
)
continue_once: Optional[str] = field(
default=None,
metadata={
"help": "continues from this checkpoint, unless a checkpoint indicated in 'restore_file' option is present"
},
)
finetune_from_model: Optional[str] = field(
default=None,
metadata={
"help": "finetune from a pretrained model; note that meters and lr scheduler will be reset"
},
)
reset_dataloader: bool = field(
default=False,
metadata={
"help": "if set, does not reload dataloader state from the checkpoint"
},
)
reset_lr_scheduler: bool = field(
default=False,
metadata={
"help": "if set, does not load lr scheduler state from the checkpoint"
},
)
reset_meters: bool = field(
default=False,
metadata={"help": "if set, does not load meters from the checkpoint"},
)
reset_optimizer: bool = field(
default=False,
metadata={"help": "if set, does not load optimizer state from the checkpoint"},
)
optimizer_overrides: str = field(
default="{}",
metadata={
"help": "a dictionary used to override optimizer args when loading a checkpoint"
},
)
save_interval: int = field(
default=1, metadata={"help": "save a checkpoint every N epochs"}
)
save_interval_updates: int = field(
default=0, metadata={"help": "save a checkpoint (and validate) every N updates"}
)
keep_interval_updates: int = field(
default=-1,
metadata={
"help": "keep the last N checkpoints saved with --save-interval-updates"
},
)
keep_interval_updates_pattern: int = field(
default=-1,
metadata={
"help": "when used with --keep-interval-updates, skips deleting "
"any checkpoints with update X where "
"X %% keep_interval_updates_pattern == 0"
},
)
keep_last_epochs: int = field(
default=-1, metadata={"help": "keep last N epoch checkpoints"}
)
keep_best_checkpoints: int = field(
default=-1, metadata={"help": "keep best N checkpoints based on scores"}
)
no_save: bool = field(
default=False, metadata={"help": "don't save models or checkpoints"}
)
no_epoch_checkpoints: bool = field(
default=False, metadata={"help": "only store last and best checkpoints"}
)
no_last_checkpoints: bool = field(
default=False, metadata={"help": "don't store last checkpoints"}
)
no_save_optimizer_state: bool = field(
default=False,
metadata={"help": "don't save optimizer-state as part of checkpoint"},
)
best_checkpoint_metric: str = field(
default="loss", metadata={"help": 'metric to use for saving "best" checkpoints'}
)
maximize_best_checkpoint_metric: bool = field(
default=False,
metadata={
"help": 'select the largest metric value for saving "best" checkpoints'
},
)
patience: int = field(
default=-1,
metadata={
"help": (
"early stop training if valid performance doesn't "
"improve for N consecutive validation runs; note "
"that this is influenced by --validate-interval"
)
},
)
checkpoint_suffix: str = field(
default="", metadata={"help": "suffix to add to the checkpoint file name"}
)
checkpoint_shard_count: int = field(
default=1,
metadata={
"help": "Number of shards containing the checkpoint - "
"if the checkpoint is over 300GB, it is preferable "
"to split it into shards to prevent OOM on CPU while loading "
"the checkpoint"
},
)
load_checkpoint_on_all_dp_ranks: bool = field(
default=False,
metadata={
"help": "load checkpoints on all data parallel devices "
"(default: only load on rank 0 and broadcast to other devices)"
},
)
write_checkpoints_asynchronously: bool = field(
default=False,
metadata={
"help": (
"Write checkpoints asynchronously in a separate "
"thread. NOTE: This feature is currently being tested."
),
"argparse_alias": "--save-async",
},
)
model_parallel_size: int = II("common.model_parallel_size")
@dataclass
class FairseqBMUFConfig(FairseqDataclass):
block_lr: float = field(
default=1, metadata={"help": "block learning rate for bmuf"}
)
block_momentum: float = field(
default=0.875, metadata={"help": "block momentum for bmuf"}
)
global_sync_iter: int = field(
default=50, metadata={"help": "Iteration for syncing global model"}
)
warmup_iterations: int = field(
default=500, metadata={"help": "warmup iterations for model to broadcast"}
)
use_nbm: bool = field(
default=False,
metadata={"help": "Specify whether you want to use classical BM / Nesterov BM"},
)
average_sync: bool = field(
default=False,
metadata={
"help": "Specify whether you want to average the local momentum after each sync"
},
)
distributed_world_size: int = II("distributed_training.distributed_world_size")
@dataclass
class GenerationConfig(FairseqDataclass):
beam: int = field(
default=5,
metadata={"help": "beam size"},
)
beam_mt: int = field(
default=0,
metadata={"help": "beam size for the first-pass decoder"},
)
nbest: int = field(
default=1,
metadata={"help": "number of hypotheses to output"},
)
max_len_a: float = field(
default=0,
metadata={
"help": "generate sequences of maximum length ax + b, where x is the source length"
},
)
max_len_b: int = field(
default=200,
metadata={
"help": "generate sequences of maximum length ax + b, where x is the source length"
},
)
max_len_a_mt: float = field(
default=0,
metadata={
"help": "generate sequences of maximum length ax + b, where x is the source length for the first-pass decoder"
},
)
max_len_b_mt: int = field(
default=200,
metadata={
"help": "generate sequences of maximum length ax + b, where x is the source length for the first-pass decoder"
},
)
min_len: int = field(
default=1,
metadata={"help": "minimum generation length"},
)
match_source_len: bool = field(
default=False,
metadata={"help": "generations should match the source length"},
)
unnormalized: bool = field(
default=False,
metadata={"help": "compare unnormalized hypothesis scores"},
)
no_early_stop: bool = field(
default=False,
metadata={"help": "deprecated"},
)
no_beamable_mm: bool = field(
default=False,
metadata={"help": "don't use BeamableMM in attention layers"},
)
lenpen: float = field(
default=1,
metadata={
"help": "length penalty: <1.0 favors shorter, >1.0 favors longer sentences"
},
)
lenpen_mt: float = field(
default=1,
metadata={
"help": "length penalty for the first-pass decoder: <1.0 favors shorter, >1.0 favors longer sentences"
},
)
unkpen: float = field(
default=0,
metadata={
"help": "unknown word penalty: <0 produces more unks, >0 produces fewer"
},
)
replace_unk: Optional[str] = field(
default=None,
metadata={
"help": "perform unknown replacement (optionally with alignment dictionary)",
"argparse_const": "@@ ",
},
)
sacrebleu: bool = field(
default=False,
metadata={"help": "score with sacrebleu"},
)
score_reference: bool = field(
default=False,
metadata={"help": "just score the reference translation"},
)
prefix_size: int = field(
default=0,
metadata={"help": "initialize generation by target prefix of given length"},
)
no_repeat_ngram_size: int = field(
default=0,
metadata={
"help": "ngram blocking such that this size ngram cannot be repeated in the generation"
},
)
sampling: bool = field(
default=False,
metadata={"help": "sample hypotheses instead of using beam search"},
)
sampling_topk: int = field(
default=-1,
metadata={"help": "sample from top K likely next words instead of all words"},
)
sampling_topp: float = field(
default=-1.0,
metadata={
"help": "sample from the smallest set whose cumulative probability mass exceeds p for next words"
},
)
constraints: Optional[GENERATION_CONSTRAINTS_CHOICES] = field(
default=None,
metadata={
"help": "enables lexically constrained decoding",
"argparse_const": "ordered",
},
)
temperature: float = field(
default=1.0,
metadata={"help": "temperature for generation"},
)
diverse_beam_groups: int = field(
default=-1,
metadata={"help": "number of groups for Diverse Beam Search"},
)
diverse_beam_strength: float = field(
default=0.5,
metadata={"help": "strength of diversity penalty for Diverse Beam Search"},
)
diversity_rate: float = field(
default=-1.0,
metadata={"help": "strength of diversity penalty for Diverse Siblings Search"},
)
print_alignment: Optional[PRINT_ALIGNMENT_CHOICES] = field(
default=None,
metadata={
"help": "if set, uses attention feedback to compute and print alignment to source tokens "
"(valid options are: hard, soft, otherwise treated as hard alignment)",
"argparse_const": "hard",
},
)
print_step: bool = field(
default=False,
metadata={"help": "print steps"},
)
lm_path: Optional[str] = field(
default=None,
metadata={"help": "path to lm checkpoint for lm fusion"},
)
lm_weight: float = field(
default=0.0,
metadata={"help": "weight for lm probs for lm fusion"},
)
# arguments for iterative refinement generator
iter_decode_eos_penalty: float = field(
default=0.0,
metadata={"help": "if > 0.0, it penalized early-stopping in decoding."},
)
iter_decode_max_iter: int = field(
default=10,
metadata={"help": "maximum iterations for iterative refinement."},
)
iter_decode_force_max_iter: bool = field(
default=False,
metadata={
"help": "if set, run exact the maximum number of iterations without early stop"
},
)
iter_decode_with_beam: int = field(
default=1,
metadata={
"help": "if > 1, model will generate translations varying by the lengths."
},
)
iter_decode_with_external_reranker: bool = field(
default=False,
metadata={
"help": "if set, the last checkpoint are assumed to be a reranker to rescore the translations"
},
)
retain_iter_history: bool = field(
default=False,
metadata={
"help": "if set, decoding returns the whole history of iterative refinement"
},
)
retain_dropout: bool = field(
default=False,
metadata={"help": "Use dropout at inference time"},
)
# temporarily set to Any until https://github.com/facebookresearch/hydra/issues/1117 is fixed
# retain_dropout_modules: Optional[List[str]] = field(
retain_dropout_modules: Any = field(
default=None,
metadata={
"help": "if set, only retain dropout for the specified modules; "
"if not set, then dropout will be retained for all modules"
},
)
# special decoding format for advanced decoding.
decoding_format: Optional[GENERATION_DECODING_FORMAT_CHOICES] = field(
default=None,
metadata={"help": "special decoding format for advanced decoding."},
)
no_seed_provided: bool = field(
default=False,
metadata={"help": "if set, dont use seed for initializing random generators"},
)
eos_token: Optional[str] = field(
default=None,
metadata={"help": "EOS token"},
)
@dataclass
class CommonEvalConfig(FairseqDataclass):
path: Optional[str] = field(
default=None,
metadata={"help": "path(s) to model file(s), colon separated"},
)
post_process: Optional[str] = field(
default=None,
metadata={
"help": (
"post-process text by removing BPE, letter segmentation, etc. "
"Valid options can be found in fairseq.data.utils.post_process."
),
"argparse_const": "subword_nmt",
"argparse_alias": "--remove-bpe",
},
)
quiet: bool = field(default=False, metadata={"help": "only print final scores"})
model_overrides: str = field(
default="{}",
metadata={
"help": "a dictionary used to override model args at generation that were used during model training"
},
)
results_path: Optional[str] = field(
default=None, metadata={"help": "path to save eval results (optional)"}
)
@dataclass
class EvalLMConfig(FairseqDataclass):
output_word_probs: bool = field(
default=False,
metadata={
"help": "if set, outputs words and their predicted log probabilities to standard output"
},
)
output_word_stats: bool = field(
default=False,
metadata={
"help": "if set, outputs word statistics such as word count, average probability, etc"
},
)
context_window: int = field(
default=0,
metadata={
"help": "ensures that every evaluated token has access to a context of at least this size, if possible"
},
)
softmax_batch: int = field(
default=sys.maxsize,
metadata={
"help": "if BxT is more than this, will batch the softmax over vocab to this amount of tokens, in order to fit into GPU memory"
},
)
@dataclass
class InteractiveConfig(FairseqDataclass):
buffer_size: int = field(
default=0,
metadata={
"help": "read this many sentences into a buffer before processing them"
},
)
input: str = field(
default="-",
metadata={"help": "file to read from; use - for stdin"},
)
@dataclass
class EMAConfig(FairseqDataclass):
store_ema: bool = field(
default=False, metadata={help: "store exponential moving average shadow model"}
)
ema_decay: float = field(
default=0.9999, metadata={"help": "decay for exponential moving average model"}
)
ema_start_update: int = field(
default=0, metadata={"help": "start EMA update after this many model updates"}
)
ema_seed_model: Optional[str] = field(
default=None,
metadata={
"help": "Seed to load EMA model from. "
"Used to load EMA model separately from the actual model."
},
)
ema_update_freq: int = field(
default=1, metadata={"help": "Do EMA update every this many model updates"}
)
ema_fp32: bool = field(
default=False,
metadata={"help": "If true, store EMA model in fp32 even if model is in fp16"},
)
@dataclass
class FairseqConfig(FairseqDataclass):
common: CommonConfig = CommonConfig()
common_eval: CommonEvalConfig = CommonEvalConfig()
distributed_training: DistributedTrainingConfig = DistributedTrainingConfig()
dataset: DatasetConfig = DatasetConfig()
optimization: OptimizationConfig = OptimizationConfig()
checkpoint: CheckpointConfig = CheckpointConfig()
bmuf: FairseqBMUFConfig = FairseqBMUFConfig()
generation: GenerationConfig = GenerationConfig()
eval_lm: EvalLMConfig = EvalLMConfig()
interactive: InteractiveConfig = InteractiveConfig()
model: Any = MISSING
task: Any = None
criterion: Any = None
optimizer: Any = None
lr_scheduler: Any = None
scoring: Any = None
bpe: Any = None
tokenizer: Any = None
ema: EMAConfig = EMAConfig()
| EXA-1-master | exa/libraries/fairseq/fairseq/dataclass/configs.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import logging
from hydra.core.config_store import ConfigStore
from fairseq.dataclass.configs import FairseqConfig
from omegaconf import DictConfig, OmegaConf
logger = logging.getLogger(__name__)
def hydra_init(cfg_name="config") -> None:
cs = ConfigStore.instance()
cs.store(name=f"{cfg_name}", node=FairseqConfig)
for k in FairseqConfig.__dataclass_fields__:
v = FairseqConfig.__dataclass_fields__[k].default
try:
cs.store(name=k, node=v)
except BaseException:
logger.error(f"{k} - {v}")
raise
def add_defaults(cfg: DictConfig) -> None:
"""This function adds default values that are stored in dataclasses that hydra doesn't know about"""
from fairseq.registry import REGISTRIES
from fairseq.tasks import TASK_DATACLASS_REGISTRY
from fairseq.models import ARCH_MODEL_NAME_REGISTRY, MODEL_DATACLASS_REGISTRY
from fairseq.dataclass.utils import merge_with_parent
from typing import Any
OmegaConf.set_struct(cfg, False)
for k, v in FairseqConfig.__dataclass_fields__.items():
field_cfg = cfg.get(k)
if field_cfg is not None and v.type == Any:
dc = None
if isinstance(field_cfg, str):
field_cfg = DictConfig({"_name": field_cfg})
field_cfg.__dict__["_parent"] = field_cfg.__dict__["_parent"]
name = getattr(field_cfg, "_name", None)
if k == "task":
dc = TASK_DATACLASS_REGISTRY.get(name)
elif k == "model":
name = ARCH_MODEL_NAME_REGISTRY.get(name, name)
dc = MODEL_DATACLASS_REGISTRY.get(name)
elif k in REGISTRIES:
dc = REGISTRIES[k]["dataclass_registry"].get(name)
if dc is not None:
cfg[k] = merge_with_parent(dc, field_cfg)
| EXA-1-master | exa/libraries/fairseq/fairseq/dataclass/initialize.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from enum import Enum, EnumMeta
from typing import List
class StrEnumMeta(EnumMeta):
# this is workaround for submitit pickling leading to instance checks failing in hydra for StrEnum, see
# https://github.com/facebookresearch/hydra/issues/1156
@classmethod
def __instancecheck__(cls, other):
return "enum" in str(type(other))
class StrEnum(Enum, metaclass=StrEnumMeta):
def __str__(self):
return self.value
def __eq__(self, other: str):
return self.value == other
def __repr__(self):
return self.value
def __hash__(self):
return hash(str(self))
def ChoiceEnum(choices: List[str]):
"""return the Enum class used to enforce list of choices"""
return StrEnum("Choices", {k: k for k in choices})
LOG_FORMAT_CHOICES = ChoiceEnum(["json", "none", "simple", "tqdm"])
DDP_BACKEND_CHOICES = ChoiceEnum(
[
"c10d", # alias for pytorch_ddp
"fully_sharded", # FullyShardedDataParallel from fairscale
"legacy_ddp",
"no_c10d", # alias for legacy_ddp
"pytorch_ddp",
"slowmo",
]
)
DDP_COMM_HOOK_CHOICES = ChoiceEnum(["none", "fp16"])
DATASET_IMPL_CHOICES = ChoiceEnum(["raw", "lazy", "cached", "mmap", "fasta", "huffman"])
GENERATION_CONSTRAINTS_CHOICES = ChoiceEnum(["ordered", "unordered"])
GENERATION_DECODING_FORMAT_CHOICES = ChoiceEnum(
["unigram", "ensemble", "vote", "dp", "bs"]
)
ZERO_SHARDING_CHOICES = ChoiceEnum(["none", "os"])
PIPELINE_CHECKPOINT_CHOICES = ChoiceEnum(["always", "never", "except_last"])
PRINT_ALIGNMENT_CHOICES = ChoiceEnum(["hard", "soft"])
| EXA-1-master | exa/libraries/fairseq/fairseq/dataclass/constants.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .configs import FairseqDataclass
from .constants import ChoiceEnum
__all__ = [
"FairseqDataclass",
"ChoiceEnum",
]
| EXA-1-master | exa/libraries/fairseq/fairseq/dataclass/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import ast
import inspect
import logging
import os
import re
from argparse import ArgumentError, ArgumentParser, Namespace
from dataclasses import _MISSING_TYPE, MISSING, is_dataclass
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Type
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.configs import FairseqConfig
from hydra.core.global_hydra import GlobalHydra
from hydra.experimental import compose, initialize
from omegaconf import DictConfig, OmegaConf, open_dict, _utils
logger = logging.getLogger(__name__)
def eval_str_list(x, x_type=float):
if x is None:
return None
if isinstance(x, str):
if len(x) == 0:
return []
x = ast.literal_eval(x)
try:
return list(map(x_type, x))
except TypeError:
return [x_type(x)]
def interpret_dc_type(field_type):
if isinstance(field_type, str):
raise RuntimeError("field should be a type")
if field_type == Any:
return str
typestring = str(field_type)
if re.match(
r"(typing.|^)Union\[(.*), NoneType\]$", typestring
) or typestring.startswith("typing.Optional"):
return field_type.__args__[0]
return field_type
def gen_parser_from_dataclass(
parser: ArgumentParser,
dataclass_instance: FairseqDataclass,
delete_default: bool = False,
with_prefix: Optional[str] = None,
) -> None:
"""
convert a dataclass instance to tailing parser arguments.
If `with_prefix` is provided, prefix all the keys in the resulting parser with it. It means that we are
building a flat namespace from a structured dataclass (see transformer_config.py for example).
"""
def argparse_name(name: str):
if name == "data" and (with_prefix is None or with_prefix == ""):
# normally data is positional args, so we don't add the -- nor the prefix
return name
if name == "_name":
# private member, skip
return None
full_name = "--" + name.replace("_", "-")
if with_prefix is not None and with_prefix != "":
# if a prefix is specified, construct the prefixed arg name
full_name = with_prefix + "-" + full_name[2:] # strip -- when composing
return full_name
def get_kwargs_from_dc(
dataclass_instance: FairseqDataclass, k: str
) -> Dict[str, Any]:
"""k: dataclass attributes"""
kwargs = {}
field_type = dataclass_instance._get_type(k)
inter_type = interpret_dc_type(field_type)
field_default = dataclass_instance._get_default(k)
if isinstance(inter_type, type) and issubclass(inter_type, Enum):
field_choices = [t.value for t in list(inter_type)]
else:
field_choices = None
field_help = dataclass_instance._get_help(k)
field_const = dataclass_instance._get_argparse_const(k)
if isinstance(field_default, str) and field_default.startswith("${"):
kwargs["default"] = field_default
else:
if field_default is MISSING:
kwargs["required"] = True
if field_choices is not None:
kwargs["choices"] = field_choices
if (
isinstance(inter_type, type)
and (issubclass(inter_type, List) or issubclass(inter_type, Tuple))
) or ("List" in str(inter_type) or "Tuple" in str(inter_type)):
if "int" in str(inter_type):
kwargs["type"] = lambda x: eval_str_list(x, int)
elif "float" in str(inter_type):
kwargs["type"] = lambda x: eval_str_list(x, float)
elif "str" in str(inter_type):
kwargs["type"] = lambda x: eval_str_list(x, str)
else:
raise NotImplementedError(
"parsing of type " + str(inter_type) + " is not implemented"
)
if field_default is not MISSING:
kwargs["default"] = (
",".join(map(str, field_default))
if field_default is not None
else None
)
elif (
isinstance(inter_type, type) and issubclass(inter_type, Enum)
) or "Enum" in str(inter_type):
kwargs["type"] = str
if field_default is not MISSING:
if isinstance(field_default, Enum):
kwargs["default"] = field_default.value
else:
kwargs["default"] = field_default
elif inter_type is bool:
kwargs["action"] = (
"store_false" if field_default is True else "store_true"
)
kwargs["default"] = field_default
else:
kwargs["type"] = inter_type
if field_default is not MISSING:
kwargs["default"] = field_default
# build the help with the hierarchical prefix
if with_prefix is not None and with_prefix != "" and field_help is not None:
field_help = with_prefix[2:] + ": " + field_help
kwargs["help"] = field_help
if field_const is not None:
kwargs["const"] = field_const
kwargs["nargs"] = "?"
return kwargs
for k in dataclass_instance._get_all_attributes():
field_name = argparse_name(dataclass_instance._get_name(k))
field_type = dataclass_instance._get_type(k)
if field_name is None:
continue
elif inspect.isclass(field_type) and issubclass(field_type, FairseqDataclass):
# for fields that are of type FairseqDataclass, we can recursively
# add their fields to the namespace (so we add the args from model, task, etc. to the root namespace)
prefix = None
if with_prefix is not None:
# if a prefix is specified, then we don't want to copy the subfields directly to the root namespace
# but we prefix them with the name of the current field.
prefix = field_name
gen_parser_from_dataclass(parser, field_type(), delete_default, prefix)
continue
kwargs = get_kwargs_from_dc(dataclass_instance, k)
field_args = [field_name]
alias = dataclass_instance._get_argparse_alias(k)
if alias is not None:
field_args.append(alias)
if "default" in kwargs:
if isinstance(kwargs["default"], str) and kwargs["default"].startswith(
"${"
):
if kwargs["help"] is None:
# this is a field with a name that will be added elsewhere
continue
else:
del kwargs["default"]
if delete_default and "default" in kwargs:
del kwargs["default"]
try:
parser.add_argument(*field_args, **kwargs)
except ArgumentError:
pass
def _set_legacy_defaults(args, cls):
"""Helper to set default arguments based on *add_args*."""
if not hasattr(cls, "add_args"):
return
import argparse
parser = argparse.ArgumentParser(
argument_default=argparse.SUPPRESS, allow_abbrev=False
)
cls.add_args(parser)
# copied from argparse.py:
defaults = argparse.Namespace()
for action in parser._actions:
if action.dest is not argparse.SUPPRESS:
if not hasattr(defaults, action.dest):
if action.default is not argparse.SUPPRESS:
setattr(defaults, action.dest, action.default)
for key, default_value in vars(defaults).items():
if not hasattr(args, key):
setattr(args, key, default_value)
def _override_attr(
sub_node: str, data_class: Type[FairseqDataclass], args: Namespace
) -> List[str]:
overrides = []
if not inspect.isclass(data_class) or not issubclass(data_class, FairseqDataclass):
return overrides
def get_default(f):
if not isinstance(f.default_factory, _MISSING_TYPE):
return f.default_factory()
return f.default
for k, v in data_class.__dataclass_fields__.items():
if k.startswith("_"):
# private member, skip
continue
val = get_default(v) if not hasattr(args, k) else getattr(args, k)
field_type = interpret_dc_type(v.type)
if (
isinstance(val, str)
and not val.startswith("${") # not interpolation
and field_type != str
and (
not inspect.isclass(field_type) or not issubclass(field_type, Enum)
) # not choices enum
):
# upgrade old models that stored complex parameters as string
val = ast.literal_eval(val)
if isinstance(val, tuple):
val = list(val)
v_type = getattr(v.type, "__origin__", None)
if (
(v_type is List or v_type is list or v_type is Optional)
# skip interpolation
and not (isinstance(val, str) and val.startswith("${"))
):
# if type is int but val is float, then we will crash later - try to convert here
if hasattr(v.type, "__args__"):
t_args = v.type.__args__
if len(t_args) == 1 and (t_args[0] is float or t_args[0] is int):
val = list(map(t_args[0], val))
elif val is not None and (
field_type is int or field_type is bool or field_type is float
):
try:
val = field_type(val)
except:
pass # ignore errors here, they are often from interpolation args
if val is None:
overrides.append("{}.{}=null".format(sub_node, k))
elif val == "":
overrides.append("{}.{}=''".format(sub_node, k))
elif isinstance(val, str):
val = val.replace("'", r"\'")
overrides.append("{}.{}='{}'".format(sub_node, k, val))
elif isinstance(val, FairseqDataclass):
overrides += _override_attr(f"{sub_node}.{k}", type(val), args)
elif isinstance(val, Namespace):
sub_overrides, _ = override_module_args(val)
for so in sub_overrides:
overrides.append(f"{sub_node}.{k}.{so}")
else:
overrides.append("{}.{}={}".format(sub_node, k, val))
return overrides
def migrate_registry(
name, value, registry, args, overrides, deletes, use_name_as_val=False
):
if value in registry:
overrides.append("{}={}".format(name, value))
overrides.append("{}._name={}".format(name, value))
overrides.extend(_override_attr(name, registry[value], args))
elif use_name_as_val and value is not None:
overrides.append("{}={}".format(name, value))
else:
deletes.append(name)
def override_module_args(args: Namespace) -> Tuple[List[str], List[str]]:
"""use the field in args to overrides those in cfg"""
overrides = []
deletes = []
for k in FairseqConfig.__dataclass_fields__.keys():
overrides.extend(
_override_attr(k, FairseqConfig.__dataclass_fields__[k].type, args)
)
if args is not None:
if hasattr(args, "task"):
from fairseq.tasks import TASK_DATACLASS_REGISTRY
migrate_registry(
"task", args.task, TASK_DATACLASS_REGISTRY, args, overrides, deletes
)
else:
deletes.append("task")
# these options will be set to "None" if they have not yet been migrated
# so we can populate them with the entire flat args
CORE_REGISTRIES = {"criterion", "optimizer", "lr_scheduler"}
from fairseq.registry import REGISTRIES
for k, v in REGISTRIES.items():
if hasattr(args, k):
migrate_registry(
k,
getattr(args, k),
v["dataclass_registry"],
args,
overrides,
deletes,
use_name_as_val=k not in CORE_REGISTRIES,
)
else:
deletes.append(k)
no_dc = True
if hasattr(args, "arch"):
from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_MODEL_NAME_REGISTRY
if args.arch in ARCH_MODEL_REGISTRY:
m_cls = ARCH_MODEL_REGISTRY[args.arch]
dc = getattr(m_cls, "__dataclass", None)
if dc is not None:
m_name = ARCH_MODEL_NAME_REGISTRY[args.arch]
overrides.append("model={}".format(m_name))
overrides.append("model._name={}".format(args.arch))
# override model params with those exist in args
overrides.extend(_override_attr("model", dc, args))
no_dc = False
if no_dc:
deletes.append("model")
return overrides, deletes
class omegaconf_no_object_check:
def __init__(self):
# Changed in https://github.com/omry/omegaconf/pull/911 - both are kept for back compat.
if hasattr(_utils, "is_primitive_type"):
self.old_is_primitive = _utils.is_primitive_type
else:
self.old_is_primitive = _utils.is_primitive_type_annotation
def __enter__(self):
if hasattr(_utils, "is_primitive_type"):
_utils.is_primitive_type = lambda _: True
else:
_utils.is_primitive_type_annotation = lambda _: True
def __exit__(self, type, value, traceback):
if hasattr(_utils, "is_primitive_type"):
_utils.is_primitive_type = self.old_is_primitive
else:
_utils.is_primitive_type_annotation = self.old_is_primitive
def convert_namespace_to_omegaconf(args: Namespace) -> DictConfig:
"""Convert a flat argparse.Namespace to a structured DictConfig."""
# Here we are using field values provided in args to override counterparts inside config object
overrides, deletes = override_module_args(args)
# configs will be in fairseq/config after installation
config_path = os.path.join("..", "config")
GlobalHydra.instance().clear()
with initialize(config_path=config_path):
try:
composed_cfg = compose("config", overrides=overrides, strict=False)
except:
logger.error("Error when composing. Overrides: " + str(overrides))
raise
for k in deletes:
composed_cfg[k] = None
cfg = OmegaConf.create(
OmegaConf.to_container(composed_cfg, resolve=True, enum_to_str=True)
)
# hack to be able to set Namespace in dict config. this should be removed when we update to newer
# omegaconf version that supports object flags, or when we migrate all existing models
from omegaconf import _utils
with omegaconf_no_object_check():
if cfg.task is None and getattr(args, "task", None):
cfg.task = Namespace(**vars(args))
from fairseq.tasks import TASK_REGISTRY
_set_legacy_defaults(cfg.task, TASK_REGISTRY[args.task])
cfg.task._name = args.task
if cfg.model is None and getattr(args, "arch", None):
cfg.model = Namespace(**vars(args))
from fairseq.models import ARCH_MODEL_REGISTRY
_set_legacy_defaults(cfg.model, ARCH_MODEL_REGISTRY[args.arch])
cfg.model._name = args.arch
if cfg.optimizer is None and getattr(args, "optimizer", None):
cfg.optimizer = Namespace(**vars(args))
from fairseq.optim import OPTIMIZER_REGISTRY
_set_legacy_defaults(cfg.optimizer, OPTIMIZER_REGISTRY[args.optimizer])
cfg.optimizer._name = args.optimizer
if cfg.lr_scheduler is None and getattr(args, "lr_scheduler", None):
cfg.lr_scheduler = Namespace(**vars(args))
from fairseq.optim.lr_scheduler import LR_SCHEDULER_REGISTRY
_set_legacy_defaults(
cfg.lr_scheduler, LR_SCHEDULER_REGISTRY[args.lr_scheduler]
)
cfg.lr_scheduler._name = args.lr_scheduler
if cfg.criterion is None and getattr(args, "criterion", None):
cfg.criterion = Namespace(**vars(args))
from fairseq.criterions import CRITERION_REGISTRY
_set_legacy_defaults(cfg.criterion, CRITERION_REGISTRY[args.criterion])
cfg.criterion._name = args.criterion
OmegaConf.set_struct(cfg, True)
return cfg
def overwrite_args_by_name(cfg: DictConfig, overrides: Dict[str, any]):
# this will be deprecated when we get rid of argparse and model_overrides logic
from fairseq.registry import REGISTRIES
with open_dict(cfg):
for k in cfg.keys():
# "k in cfg" will return false if its a "mandatory value (e.g. ???)"
if k in cfg and isinstance(cfg[k], DictConfig):
if k in overrides and isinstance(overrides[k], dict):
for ok, ov in overrides[k].items():
if isinstance(ov, dict) and cfg[k][ok] is not None:
overwrite_args_by_name(cfg[k][ok], ov)
else:
cfg[k][ok] = ov
else:
overwrite_args_by_name(cfg[k], overrides)
elif k in cfg and isinstance(cfg[k], Namespace):
for override_key, val in overrides.items():
setattr(cfg[k], override_key, val)
elif k in overrides:
if (
k in REGISTRIES
and overrides[k] in REGISTRIES[k]["dataclass_registry"]
):
cfg[k] = DictConfig(
REGISTRIES[k]["dataclass_registry"][overrides[k]]
)
overwrite_args_by_name(cfg[k], overrides)
cfg[k]._name = overrides[k]
else:
cfg[k] = overrides[k]
def merge_with_parent(dc: FairseqDataclass, cfg: DictConfig, remove_missing=False):
if remove_missing:
def remove_missing_rec(src_keys, target_cfg):
if is_dataclass(target_cfg):
target_keys = set(target_cfg.__dataclass_fields__.keys())
else:
target_keys = set(target_cfg.keys())
for k in list(src_keys.keys()):
if k not in target_keys:
del src_keys[k]
elif OmegaConf.is_config(src_keys[k]):
tgt = getattr(target_cfg, k)
if tgt is not None and (is_dataclass(tgt) or hasattr(tgt, "keys")):
remove_missing_rec(src_keys[k], tgt)
with open_dict(cfg):
remove_missing_rec(cfg, dc)
merged_cfg = OmegaConf.merge(dc, cfg)
merged_cfg.__dict__["_parent"] = cfg.__dict__["_parent"]
OmegaConf.set_struct(merged_cfg, True)
return merged_cfg
| EXA-1-master | exa/libraries/fairseq/fairseq/dataclass/utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
class BeamableMM(nn.Module):
"""This module provides an optimized MM for beam decoding with attention.
It leverage the fact that the source-side of the input is replicated beam
times and the target-side of the input is of width one. This layer speeds up
inference by replacing the inputs {(bsz x 1 x nhu), (bsz x sz2 x nhu)}
with smaller inputs {(bsz/beam x beam x nhu), (bsz/beam x sz2 x nhu)}.
"""
def __init__(self, beam_size=None):
super(BeamableMM, self).__init__()
self.beam_size = beam_size
def forward(self, input1, input2):
if (
not self.training
and self.beam_size is not None # test mode
and input1.dim() == 3 # beam size is set
and input1.size(1) # only support batched input
== 1 # single time step update
):
bsz, beam = input1.size(0), self.beam_size
# bsz x 1 x nhu --> bsz/beam x beam x nhu
input1 = input1[:, 0, :].unfold(0, beam, beam).transpose(2, 1)
# bsz x sz2 x nhu --> bsz/beam x sz2 x nhu
input2 = input2.unfold(0, beam, beam)[:, :, :, 0]
# use non batched operation if bsz = beam
if input1.size(0) == 1:
output = torch.mm(input1[0, :, :], input2[0, :, :])
else:
output = input1.bmm(input2)
return output.view(bsz, 1, -1)
else:
return input1.bmm(input2)
def set_beam_size(self, beam_size):
self.beam_size = beam_size
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/beamable_mm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.scalar_bias import scalar_bias
class SingleHeadAttention(nn.Module):
"""
Single-head attention that supports Gating and Downsampling
"""
def __init__(
self,
out_channels,
embed_dim,
head_dim,
head_index,
dropout=0.0,
bias=True,
project_input=True,
gated=False,
downsample=False,
num_heads=1,
):
super().__init__()
self.embed_dim = embed_dim
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.head_index = head_index
self.head_dim = head_dim
self.project_input = project_input
self.gated = gated
self.downsample = downsample
self.num_heads = num_heads
self.projection = None
k_layers = []
v_layers = []
if self.downsample:
k_layers.append(Downsample(self.head_index))
v_layers.append(Downsample(self.head_index))
out_proj_size = self.head_dim
else:
out_proj_size = self.head_dim * self.num_heads
if self.gated:
k_layers.append(GatedLinear(self.embed_dim, out_proj_size, bias=bias))
self.in_proj_q = GatedLinear(self.embed_dim, out_proj_size, bias=bias)
v_layers.append(GatedLinear(self.embed_dim, out_proj_size, bias=bias))
else:
k_layers.append(Linear(self.embed_dim, out_proj_size, bias=bias))
self.in_proj_q = Linear(self.embed_dim, out_proj_size, bias=bias)
v_layers.append(Linear(self.embed_dim, out_proj_size, bias=bias))
self.in_proj_k = nn.Sequential(*k_layers)
self.in_proj_v = nn.Sequential(*v_layers)
if self.downsample:
self.out_proj = Linear(out_proj_size, self.head_dim, bias=bias)
else:
self.out_proj = Linear(out_proj_size, out_channels, bias=bias)
self.scaling = self.head_dim**-0.5
def forward(
self,
query,
key,
value,
mask_future_timesteps=False,
key_padding_mask=None,
use_scalar_bias=False,
):
"""Input shape: Time x Batch x Channel
Self-attention can be implemented by passing in the same arguments for
query, key and value. Future timesteps can be masked with the
`mask_future_timesteps` argument. Padding elements can be excluded from
the key by passing a binary ByteTensor (`key_padding_mask`) with shape:
batch x src_len, where padding elements are indicated by 1s.
"""
src_len, bsz, out_channels = key.size()
tgt_len = query.size(0)
assert list(query.size()) == [tgt_len, bsz, out_channels]
assert key.size() == value.size()
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.downsample:
size = bsz
else:
size = bsz * self.num_heads
k = key
v = value
q = query
if self.project_input:
q = self.in_proj_q(q)
k = self.in_proj_k(k)
v = self.in_proj_v(v)
src_len = k.size()[0]
q *= self.scaling
if not self.downsample:
q = q.view(tgt_len, size, self.head_dim)
k = k.view(src_len, size, self.head_dim)
v = v.view(src_len, size, self.head_dim)
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
if mask_future_timesteps:
assert (
query.size() == key.size()
), "mask_future_timesteps only applies to self-attention"
attn_weights *= torch.tril(
attn_weights.data.new([1]).expand(tgt_len, tgt_len).clone(),
diagonal=-1,
)[:, :: self.head_index + 1 if self.downsample else 1].unsqueeze(0)
attn_weights += torch.triu(
attn_weights.data.new([-math.inf]).expand(tgt_len, tgt_len).clone(),
diagonal=0,
)[:, :: self.head_index + 1 if self.downsample else 1].unsqueeze(0)
tgt_size = tgt_len
if use_scalar_bias:
attn_weights = scalar_bias(attn_weights, 2)
v = scalar_bias(v, 1)
tgt_size += 1
if key_padding_mask is not None:
# don't attend to padding symbols
if key_padding_mask.max() > 0:
if self.downsample:
attn_weights = attn_weights.view(bsz, 1, tgt_len, src_len)
else:
attn_weights = attn_weights.view(
size, self.num_heads, tgt_len, src_len
)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
-math.inf,
)
attn_weights = attn_weights.view(size, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
attn_weights = self.dropout_module(attn_weights)
attn = torch.bmm(attn_weights, v)
if self.downsample:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.head_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
attn = self.out_proj(attn)
return attn, attn_weights
class DownsampledMultiHeadAttention(nn.ModuleList):
"""
Multi-headed attention with Gating and Downsampling
"""
def __init__(
self,
out_channels,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
project_input=True,
gated=False,
downsample=False,
):
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.downsample = downsample
self.gated = gated
self.project_input = project_input
assert self.head_dim * num_heads == embed_dim
if self.downsample:
attention_heads = []
for index in range(self.num_heads):
attention_heads.append(
SingleHeadAttention(
out_channels,
self.embed_dim,
self.head_dim,
index,
dropout,
bias,
self.project_input,
self.gated,
self.downsample,
self.num_heads,
)
)
super().__init__(modules=attention_heads)
self.out_proj = Linear(embed_dim, out_channels, bias=bias)
else:
# either we have a list of attention heads, or just one attention head
# if not being downsampled, we can do the heads with one linear layer instead of separate ones
super().__init__()
self.attention_module = SingleHeadAttention(
out_channels,
self.embed_dim,
self.head_dim,
1,
dropout,
bias,
self.project_input,
self.gated,
self.downsample,
self.num_heads,
)
def forward(
self,
query,
key,
value,
mask_future_timesteps=False,
key_padding_mask=None,
use_scalar_bias=False,
):
src_len, bsz, embed_dim = key.size()
tgt_len = query.size(0)
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
assert key.size() == value.size()
tgt_size = tgt_len
if use_scalar_bias:
tgt_size += 1
attn = []
attn_weights = []
if self.downsample:
for attention_head_number in range(self.num_heads):
# call the forward of each attention head
_attn, _attn_weight = self[attention_head_number](
query,
key,
value,
mask_future_timesteps,
key_padding_mask,
use_scalar_bias,
)
attn.append(_attn)
attn_weights.append(_attn_weight)
full_attn = torch.cat(attn, dim=2)
full_attn = self.out_proj(full_attn)
return full_attn, attn_weights[0].clone()
else:
_attn, _attn_weight = self.attention_module(
query,
key,
value,
mask_future_timesteps,
key_padding_mask,
use_scalar_bias,
)
attn.append(_attn)
attn_weights.append(_attn_weight)
full_attn = torch.cat(attn, dim=2)
full_attn_weights = torch.cat(attn_weights)
full_attn_weights = full_attn_weights.view(
bsz, self.num_heads, tgt_size, src_len
)
full_attn_weights = full_attn_weights.sum(dim=1) / self.num_heads
return full_attn, full_attn_weights
class Downsample(nn.Module):
"""
Selects every nth element, where n is the index
"""
def __init__(self, index):
super().__init__()
self.index = index
def forward(self, x):
return x[:: self.index + 1]
def Linear(in_features, out_features, dropout=0.0, bias=True):
"""Weight-normalized Linear layer (input: B x T x C)"""
m = nn.Linear(in_features, out_features, bias=bias)
m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features))
m.bias.data.zero_()
return nn.utils.weight_norm(m)
def GatedLinear(in_features, out_features, dropout=0.0, bias=True):
"""Weight-normalized Linear layer (input: B x T x C) with interspersed GLU units"""
return nn.Sequential(
Linear(in_features, out_features * 4, dropout, bias),
nn.GLU(),
Linear(out_features * 2, out_features * 2, dropout, bias),
nn.GLU(),
Linear(out_features, out_features, dropout, bias),
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/downsampled_multihead_attention.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import torch
import torch.nn.functional as F
logger = logging.getLogger(__name__)
def _cross_entropy_pytorch(logits, target, ignore_index=None, reduction="mean"):
lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32)
return F.nll_loss(
lprobs,
target,
ignore_index=ignore_index,
reduction=reduction,
)
try:
import xentropy_cuda
from apex.contrib import xentropy
def cross_entropy(logits, target, ignore_index=-100, reduction="mean"):
if logits.device == torch.device("cpu"):
return _cross_entropy_pytorch(logits, target, ignore_index, reduction)
else:
if not getattr(cross_entropy, "_has_logged_once", False):
logger.info("using fused cross entropy")
cross_entropy._has_logged_once = True
half_to_float = logits.dtype == torch.half
losses = xentropy.SoftmaxCrossEntropyLoss.apply(
logits,
target,
0.0,
ignore_index,
half_to_float,
)
if reduction == "sum":
return losses.sum()
elif reduction == "mean":
if ignore_index >= 0:
return losses.sum() / target.ne(ignore_index).sum()
else:
return losses.mean()
elif reduction == "none":
return losses
else:
raise NotImplementedError
except ImportError:
def cross_entropy(logits, target, ignore_index=-100, reduction="mean"):
return _cross_entropy_pytorch(logits, target, ignore_index, reduction)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/cross_entropy.py |
import torch
class RotaryPositionalEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000, precision=torch.half):
"""Rotary positional embedding
Reference : https://blog.eleuther.ai/rotary-embeddings/
Paper: https://arxiv.org/pdf/2104.09864.pdf
Args:
dim: Dimension of embedding
base: Base value for exponential
precision: precision to use for numerical values
"""
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
self.precision = precision
def forward(self, x, seq_len=None):
"""
Args:
x: Input x with T X B X C
seq_len: Sequence length of input x
"""
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[:, None, None, :]
self.sin_cached = emb.sin()[:, None, None, :]
return self.cos_cached, self.sin_cached
# rotary pos emb helpers:
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat(
(-x2, x1), dim=x1.ndim - 1
) # dim=-1 triggers a bug in earlier torch versions
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
cos, sin = (
cos[offset : q.shape[0] + offset, ...],
sin[offset : q.shape[0] + offset, ...],
)
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/rotary_positional_embedding.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import Parameter
try:
from xformers.components.attention import build_attention
from xformers.components.attention.utils import maybe_merge_masks
_xformers_available = True
except ImportError:
_xformers_available = False
from fairseq import utils
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from fairseq.models.fairseq_incremental_decoder import FairseqIncrementalDecoder
# TODO: move this into xformers?
# TODO: uint8 input type should just output a bool
def _mask_for_xformers(mask: Tensor, to_dtype: Optional[torch.dtype] = None):
"""
call to pytorch multihead accepts three mask types:
- ByteTensor where non-zero means to mask
- FloatTensor which is an additive mask
- BoolTensor where True means to mask
xFormers currently accepts boolean and additive maks. For boolean masks
the values have opposite meaning. For a BoolTensor True mean to keep the value.
"""
float_types = [torch.float, torch.float16]
# If an input mask is a float it is an additive mask. Otherwise it is either uint8 or bool.
additive = mask.dtype in float_types
# If to_dype is not specified, keep same dtype as mask.
to_dtype = mask.dtype if to_dtype is None else to_dtype
to_additive = to_dtype in float_types
if additive:
if to_additive:
return mask.to(to_dtype)
mask = mask < 0
if to_additive:
# return additive mask
new_mask = torch.zeros_like(mask, dtype=to_dtype)
new_mask = new_mask.masked_fill_(mask, -float("inf"))
return new_mask
# In xFormers True is value to keep rather than value to mask
mask = ~mask.to(torch.bool)
mask = mask.to(to_dtype)
return mask
class MultiheadAttention(FairseqIncrementalDecoder):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
dictionary=None,
q_noise=0.0,
qn_block_size=8,
# TODO: pass in config rather than string.
# config defined in xformers.components.attention.AttentionConfig
xformers_att_config: Optional[str] = None,
xformers_blocksparse_layout: Optional[
torch.Tensor
] = None, # This should be part of the config
xformers_blocksparse_blocksize: Optional[
int
] = 16, # This should be part of the config
):
super().__init__(dictionary)
xformers_att_config = utils.eval_str_dict(xformers_att_config)
self.use_xformers = xformers_att_config is not None
if self.use_xformers and not _xformers_available:
raise ImportError("\n\n Please install xFormers.")
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
self.k_proj = quant_noise(
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.q_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.out_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.beam_size = 1
self.reset_parameters()
if self.use_xformers:
xformers_att_config["dropout"] = xformers_att_config.get("dropout", dropout)
xformers_att_config["num_heads"] = xformers_att_config.get(
"num_heads", num_heads
)
if xformers_blocksparse_layout is not None:
# Could be part of a single config passed only once
xformers_att_config["block_size"] = xformers_blocksparse_blocksize
xformers_att_config["layout"] = xformers_blocksparse_layout
xformers_att_config["name"] = "blocksparse"
self.attention = build_attention(xformers_att_config)
self.onnx_trace = False
self.skip_embed_dim_check = False
self.init_incremental_state()
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
if self.qkv_same_dim:
# Empirically observed the convergence to be much better with
# the scaled initialization
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def _get_reserve_head_index(self, num_heads_to_keep: int):
k_proj_heads_norm = []
q_proj_heads_norm = []
v_proj_heads_norm = []
for i in range(self.num_heads):
start_idx = i * self.head_dim
end_idx = (i + 1) * self.head_dim
k_proj_heads_norm.append(
torch.sum(
torch.abs(
self.k_proj.weight[
start_idx:end_idx,
]
)
).tolist()
+ torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist()
)
q_proj_heads_norm.append(
torch.sum(
torch.abs(
self.q_proj.weight[
start_idx:end_idx,
]
)
).tolist()
+ torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist()
)
v_proj_heads_norm.append(
torch.sum(
torch.abs(
self.v_proj.weight[
start_idx:end_idx,
]
)
).tolist()
+ torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist()
)
heads_norm = []
for i in range(self.num_heads):
heads_norm.append(
k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i]
)
sorted_head_index = sorted(
range(self.num_heads), key=lambda k: heads_norm[k], reverse=True
)
reserve_head_index = []
for i in range(num_heads_to_keep):
start = sorted_head_index[i] * self.head_dim
end = (sorted_head_index[i] + 1) * self.head_dim
reserve_head_index.append((start, end))
return reserve_head_index
def _adaptive_prune_heads(self, reserve_head_index: List[Tuple[int, int]]):
new_q_weight = []
new_q_bias = []
new_k_weight = []
new_k_bias = []
new_v_weight = []
new_v_bias = []
new_out_proj_weight = []
for ele in reserve_head_index:
start_idx, end_idx = ele
new_q_weight.append(
self.q_proj.weight[
start_idx:end_idx,
]
)
new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
new_k_weight.append(
self.k_proj.weight[
start_idx:end_idx,
]
)
new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
new_v_weight.append(
self.v_proj.weight[
start_idx:end_idx,
]
)
new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])
new_q_weight = torch.cat(new_q_weight).detach()
new_k_weight = torch.cat(new_k_weight).detach()
new_v_weight = torch.cat(new_v_weight).detach()
new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
new_q_weight.requires_grad = True
new_k_weight.requires_grad = True
new_v_weight.requires_grad = True
new_out_proj_weight.requires_grad = True
new_q_bias = torch.cat(new_q_bias).detach()
new_q_bias.requires_grad = True
new_k_bias = torch.cat(new_k_bias).detach()
new_k_bias.requires_grad = True
new_v_bias = torch.cat(new_v_bias).detach()
new_v_bias.requires_grad = True
self.q_proj.weight = torch.nn.Parameter(new_q_weight)
self.q_proj.bias = torch.nn.Parameter(new_q_bias)
self.k_proj.weight = torch.nn.Parameter(new_k_weight)
self.k_proj.bias = torch.nn.Parameter(new_k_bias)
self.v_proj.weight = torch.nn.Parameter(new_v_weight)
self.v_proj.bias = torch.nn.Parameter(new_v_bias)
self.out_proj.weight = torch.nn.Parameter(new_out_proj_weight)
self.num_heads = len(reserve_head_index)
self.embed_dim = self.head_dim * self.num_heads
self.q_proj.out_features = self.embed_dim
self.k_proj.out_features = self.embed_dim
self.v_proj.out_features = self.embed_dim
def _set_skip_embed_dim_check(self):
self.skip_embed_dim_check = True
def _pad_masks(
self,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
) -> Tuple[Optional[Tensor], Optional[Tensor]]:
if attn_mask is not None:
shape = attn_mask.size()[:-1] + torch.Size([1])
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)
if key_padding_mask is not None:
shape = key_padding_mask.size()[:-1] + torch.Size([1])
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(shape),
],
dim=-1,
)
return key_padding_mask, attn_mask
def _add_bias(
self,
k: Tensor,
v: Tensor,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
bsz: int,
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
assert self.bias_k is not None
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
key_padding_mask, attn_mask = self._pad_masks(
key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
return k, v, key_padding_mask, attn_mask
def _append_zero_attn(
self,
k: Tensor,
v: Tensor,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
zero_attn_shape = k.size()[:-2] + torch.Size([1]) + k.size()[-1:]
k = torch.cat(
[k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=-2
)
v = torch.cat(
[v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=-2
)
key_padding_mask, attn_mask = self._pad_masks(
key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
return k, v, key_padding_mask, attn_mask
def _xformers_attn_forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
tgt_len, bsz, embed_dim = query.size()
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == tgt_len
if self.self_attention:
key = query
value = query
elif self.encoder_decoder_attention:
value = key
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
if self.bias_k is not None:
assert self.bias_v is not None
k, v, attn_mask, key_padding_mask = self._add_bias(
k, v, attn_mask, key_padding_mask, bsz
)
def fold_heads(x):
return (
x.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
def split_heads(x):
return (
x.contiguous()
.view(-1, bsz, self.num_heads, self.head_dim)
.transpose(0, 1)
.transpose(1, 2)
)
massage = split_heads if self.attention.requires_head_dimension else fold_heads
q = massage(q)
if k is not None:
k = massage(k)
if v is not None:
v = massage(v)
if self.add_zero_attn:
k, v, key_padding_mask, attn_mask = self._append_zero_attn(
k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
kwargs = {}
if attn_mask is not None and self.attention.supports_attention_mask:
attn_mask = _mask_for_xformers(attn_mask, to_dtype=q.dtype)
kwargs["att_mask"] = attn_mask
if key_padding_mask is not None:
key_padding_mask = _mask_for_xformers(key_padding_mask, to_dtype=torch.bool)
if not self.attention.requires_separate_masks:
attn_mask = maybe_merge_masks(
attn_mask,
key_padding_mask,
batch_size=bsz,
src_len=k.size(-2),
tgt_len=q.size(-2),
num_heads=self.num_heads,
)
key_padding_mask = None
kwargs["att_mask"] = attn_mask
if self.attention.supports_key_padding_mask:
kwargs["key_padding_mask"] = key_padding_mask
y = self.attention(q, k, v, **kwargs)
y = (
y.view(bsz, self.num_heads, tgt_len, self.head_dim)
.transpose(1, 2)
.flatten(start_dim=2, end_dim=3)
.transpose(0, 1)
)
assert list(y.size()) == [tgt_len, bsz, embed_dim]
# Dropout not needed because already applied in attention.
# It is applied to the attention weights before matmul with v.
y = self.out_proj(y)
# TODO: support returning attention weights if needed.
return y, None
def forward(
self,
query: Tensor,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
if not self.skip_embed_dim_check:
assert (
embed_dim == self.embed_dim
), f"query dim {embed_dim} != {self.embed_dim}"
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
assert value is not None
assert src_len, key_bsz == value.shape[:2]
if (
not self.onnx_trace
and not is_tpu # don't use PyTorch version on TPUs
and incremental_state is None
and not static_kv
# A workaround for quantization to work. Otherwise JIT compilation
# treats bias in linear module as method.
and not torch.jit.is_scripting()
# The Multihead attention implemented in pytorch forces strong dimension check
# for input embedding dimention and K,Q,V projection dimension.
# Since pruning will break the dimension check and it is not easy to modify the pytorch API,
# it is preferred to bypass the pytorch MHA when we need to skip embed_dim_check
and not self.skip_embed_dim_check
):
assert key is not None and value is not None
if self.use_xformers:
return self._xformers_attn_forward(
query, key, value, key_padding_mask, need_weights, attn_mask
)
else:
return F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
torch.empty([0]),
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout_module.p,
self.out_proj.weight,
self.out_proj.bias,
self.training or self.dropout_module.apply_during_inference,
key_padding_mask.bool() if key_padding_mask is not None else None,
need_weights,
attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
if self.beam_size > 1 and bsz == key.size(1):
# key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
key = key.view(key.size(0), -1, self.beam_size, key.size(2))[
:, :, 0, :
]
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.view(
-1, self.beam_size, key_padding_mask.size(1)
)[:, 0, :]
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k, v, attn_mask, key_padding_mask = self._add_bias(
k, v, attn_mask, key_padding_mask, bsz
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
kv_bsz = bsz # need default value for scripting
if k is not None:
kv_bsz = k.size(1)
k = (
k.contiguous()
.view(-1, kv_bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, kv_bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
kv_bsz = _prev_key.size(0)
prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
assert kv_bsz == _prev_value.size(0)
prev_value = _prev_value.view(
kv_bsz * self.num_heads, -1, self.head_dim
)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=kv_bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(
kv_bsz, self.num_heads, -1, self.head_dim
)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == kv_bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k, v, key_padding_mask, attn_mask = self._append_zero_attn(
k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
if self.encoder_decoder_attention and bsz != kv_bsz:
attn_weights = torch.einsum(
"bxhtd,bhsd->bxhts",
q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]),
k.view((kv_bsz, self.num_heads) + k.size()[1:]),
)
attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
else:
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.view(
kv_bsz, -1, self.num_heads, tgt_len, src_len
)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.to(torch.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils.softmax(
attn_weights, dim=-1, onnx_trace=self.onnx_trace
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn: Optional[Tensor] = None
if self.encoder_decoder_attention and bsz != kv_bsz:
attn = torch.einsum(
"bxhts,bhsd->bxhtd",
attn_probs.view(
(
kv_bsz,
-1,
self.num_heads,
)
+ attn_probs.size()[1:]
),
v.view(
(
kv_bsz,
self.num_heads,
)
+ v.size()[1:]
),
)
attn = attn.reshape((-1,) + attn.size()[-2:])
else:
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1:
# when ONNX tracing a single decoder step (sequence length == 1)
# the transpose is a no-op copy before view, thus unnecessary
attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current
# is None
elif prev_key_padding_mask is not None:
if src_len > prev_key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - prev_key_padding_mask.size(1)),
device=prev_key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), filler.float()], dim=1
)
else:
new_key_padding_mask = prev_key_padding_mask.float()
elif key_padding_mask is not None:
if src_len > key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - key_padding_mask.size(1)),
device=key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[filler.float(), key_padding_mask.float()], dim=1
)
else:
new_key_padding_mask = key_padding_mask.float()
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
new_order: Tensor,
):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention:
if input_buffer_k.size(0) * self.beam_size == new_order.size(0):
return incremental_state
elif self.beam_size > 1:
input_buffer[k] = input_buffer_k.index_select(
0,
new_order.reshape(-1, self.beam_size)[:, 0]
// self.beam_size,
)
else:
input_buffer[k] = input_buffer_k.index_select(0, new_order)
else:
input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
return incremental_state
def set_beam_size(self, beam_size):
"""Used for effiecient beamable enc-dec attention"""
self.beam_size = beam_size
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
) -> Dict[str, Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None:
return result
else:
empty_result: Dict[str, Optional[Tensor]] = {}
return empty_result
def _set_input_buffer(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
buffer: Dict[str, Optional[Tensor]],
):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + "in_proj_weight"):
# in_proj_weight used to be q + k + v with same dimensions
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
keys_to_remove.append(k)
k_bias = prefix + "in_proj_bias"
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
dim : 2 * dim
]
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
keys_to_remove.append(prefix + "in_proj_bias")
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/multihead_attention.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function, unicode_literals
from collections.abc import Iterable
from itertools import repeat
import torch
import torch.nn as nn
def _pair(v):
if isinstance(v, Iterable):
assert len(v) == 2, "len(v) != 2"
return v
return tuple(repeat(v, 2))
def infer_conv_output_dim(conv_op, input_dim, sample_inchannel):
sample_seq_len = 200
sample_bsz = 10
x = torch.randn(sample_bsz, sample_inchannel, sample_seq_len, input_dim)
# N x C x H x W
# N: sample_bsz, C: sample_inchannel, H: sample_seq_len, W: input_dim
x = conv_op(x)
# N x C x H x W
x = x.transpose(1, 2)
# N x H x C x W
bsz, seq = x.size()[:2]
per_channel_dim = x.size()[3]
# bsz: N, seq: H, CxW the rest
return x.contiguous().view(bsz, seq, -1).size(-1), per_channel_dim
class VGGBlock(torch.nn.Module):
"""
VGG motibated cnn module https://arxiv.org/pdf/1409.1556.pdf
Args:
in_channels: (int) number of input channels (typically 1)
out_channels: (int) number of output channels
conv_kernel_size: convolution channels
pooling_kernel_size: the size of the pooling window to take a max over
num_conv_layers: (int) number of convolution layers
input_dim: (int) input dimension
conv_stride: the stride of the convolving kernel.
Can be a single number or a tuple (sH, sW) Default: 1
padding: implicit paddings on both sides of the input.
Can be a single number or a tuple (padH, padW). Default: None
layer_norm: (bool) if layer norm is going to be applied. Default: False
Shape:
Input: BxCxTxfeat, i.e. (batch_size, input_size, timesteps, features)
Output: BxCxTxfeat, i.e. (batch_size, input_size, timesteps, features)
"""
def __init__(
self,
in_channels,
out_channels,
conv_kernel_size,
pooling_kernel_size,
num_conv_layers,
input_dim,
conv_stride=1,
padding=None,
layer_norm=False,
):
assert (
input_dim is not None
), "Need input_dim for LayerNorm and infer_conv_output_dim"
super(VGGBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.conv_kernel_size = _pair(conv_kernel_size)
self.pooling_kernel_size = _pair(pooling_kernel_size)
self.num_conv_layers = num_conv_layers
self.padding = (
tuple(e // 2 for e in self.conv_kernel_size)
if padding is None
else _pair(padding)
)
self.conv_stride = _pair(conv_stride)
self.layers = nn.ModuleList()
for layer in range(num_conv_layers):
conv_op = nn.Conv2d(
in_channels if layer == 0 else out_channels,
out_channels,
self.conv_kernel_size,
stride=self.conv_stride,
padding=self.padding,
)
self.layers.append(conv_op)
if layer_norm:
conv_output_dim, per_channel_dim = infer_conv_output_dim(
conv_op, input_dim, in_channels if layer == 0 else out_channels
)
self.layers.append(nn.LayerNorm(per_channel_dim))
input_dim = per_channel_dim
self.layers.append(nn.ReLU())
if self.pooling_kernel_size is not None:
pool_op = nn.MaxPool2d(kernel_size=self.pooling_kernel_size, ceil_mode=True)
self.layers.append(pool_op)
self.total_output_dim, self.output_dim = infer_conv_output_dim(
pool_op, input_dim, out_channels
)
def forward(self, x):
for i, _ in enumerate(self.layers):
x = self.layers[i](x)
return x
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/vggblock.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from torch import Tensor
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.onnx_trace = False
if self.padding_idx is not None:
self.max_positions = self.num_embeddings - self.padding_idx - 1
else:
self.max_positions = self.num_embeddings
def forward(
self,
input: Tensor,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
positions: Optional[Tensor] = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
assert (positions is None) or (
self.padding_idx is None
), "If positions is pre-computed then padding_idx should not be set."
if positions is None:
if incremental_state is not None:
# positions is the same for every token when decoding a single step
# Without the int() cast, it doesn't work in some cases when exporting to ONNX
positions = torch.zeros(
(1, 1), device=input.device, dtype=input.dtype
).fill_(int(self.padding_idx + input.size(1)))
else:
positions = utils.make_positions(
input, self.padding_idx, onnx_trace=self.onnx_trace
)
return F.embedding(
positions,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/learned_positional_embedding.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
class GradMultiply(torch.autograd.Function):
@staticmethod
def forward(ctx, x, scale):
ctx.scale = scale
res = x.new(x)
return res
@staticmethod
def backward(ctx, grad):
return grad * ctx.scale, None
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/grad_multiply.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import List, Tuple
import torch
import torch.nn.functional as F
from fairseq.data import Dictionary
from torch import nn
CHAR_PAD_IDX = 0
CHAR_EOS_IDX = 257
logger = logging.getLogger(__name__)
class CharacterTokenEmbedder(torch.nn.Module):
def __init__(
self,
vocab: Dictionary,
filters: List[Tuple[int, int]],
char_embed_dim: int,
word_embed_dim: int,
highway_layers: int,
max_char_len: int = 50,
char_inputs: bool = False,
):
super(CharacterTokenEmbedder, self).__init__()
self.onnx_trace = False
self.embedding_dim = word_embed_dim
self.max_char_len = max_char_len
self.char_embeddings = nn.Embedding(257, char_embed_dim, padding_idx=0)
self.symbol_embeddings = nn.Parameter(torch.FloatTensor(2, word_embed_dim))
self.eos_idx, self.unk_idx = 0, 1
self.char_inputs = char_inputs
self.convolutions = nn.ModuleList()
for width, out_c in filters:
self.convolutions.append(
nn.Conv1d(char_embed_dim, out_c, kernel_size=width)
)
last_dim = sum(f[1] for f in filters)
self.highway = Highway(last_dim, highway_layers) if highway_layers > 0 else None
self.projection = nn.Linear(last_dim, word_embed_dim)
assert (
vocab is not None or char_inputs
), "vocab must be set if not using char inputs"
self.vocab = None
if vocab is not None:
self.set_vocab(vocab, max_char_len)
self.reset_parameters()
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def set_vocab(self, vocab, max_char_len):
word_to_char = torch.LongTensor(len(vocab), max_char_len)
truncated = 0
for i in range(len(vocab)):
if i < vocab.nspecial:
char_idxs = [0] * max_char_len
else:
chars = vocab[i].encode()
# +1 for padding
char_idxs = [c + 1 for c in chars] + [0] * (max_char_len - len(chars))
if len(char_idxs) > max_char_len:
truncated += 1
char_idxs = char_idxs[:max_char_len]
word_to_char[i] = torch.LongTensor(char_idxs)
if truncated > 0:
logger.info(
"truncated {} words longer than {} characters".format(
truncated, max_char_len
)
)
self.vocab = vocab
self.word_to_char = word_to_char
@property
def padding_idx(self):
return Dictionary().pad() if self.vocab is None else self.vocab.pad()
def reset_parameters(self):
nn.init.xavier_normal_(self.char_embeddings.weight)
nn.init.xavier_normal_(self.symbol_embeddings)
nn.init.xavier_uniform_(self.projection.weight)
nn.init.constant_(
self.char_embeddings.weight[self.char_embeddings.padding_idx], 0.0
)
nn.init.constant_(self.projection.bias, 0.0)
def forward(
self,
input: torch.Tensor,
):
if self.char_inputs:
chars = input.view(-1, self.max_char_len)
pads = chars[:, 0].eq(CHAR_PAD_IDX)
eos = chars[:, 0].eq(CHAR_EOS_IDX)
if eos.any():
if self.onnx_trace:
chars = torch.where(eos.unsqueeze(1), chars.new_zeros(1), chars)
else:
chars[eos] = 0
unk = None
else:
flat_words = input.view(-1)
chars = self.word_to_char[flat_words.type_as(self.word_to_char)].type_as(
input
)
pads = flat_words.eq(self.vocab.pad())
eos = flat_words.eq(self.vocab.eos())
unk = flat_words.eq(self.vocab.unk())
word_embs = self._convolve(chars)
if self.onnx_trace:
if pads.any():
word_embs = torch.where(
pads.unsqueeze(1), word_embs.new_zeros(1), word_embs
)
if eos.any():
word_embs = torch.where(
eos.unsqueeze(1), self.symbol_embeddings[self.eos_idx], word_embs
)
if unk is not None and unk.any():
word_embs = torch.where(
unk.unsqueeze(1), self.symbol_embeddings[self.unk_idx], word_embs
)
else:
if pads.any():
word_embs[pads] = 0
if eos.any():
word_embs[eos] = self.symbol_embeddings[self.eos_idx]
if unk is not None and unk.any():
word_embs[unk] = self.symbol_embeddings[self.unk_idx]
return word_embs.view(input.size()[:2] + (-1,))
def _convolve(
self,
char_idxs: torch.Tensor,
):
char_embs = self.char_embeddings(char_idxs)
char_embs = char_embs.transpose(1, 2) # BTC -> BCT
conv_result = []
for conv in self.convolutions:
x = conv(char_embs)
x, _ = torch.max(x, -1)
x = F.relu(x)
conv_result.append(x)
x = torch.cat(conv_result, dim=-1)
if self.highway is not None:
x = self.highway(x)
x = self.projection(x)
return x
class Highway(torch.nn.Module):
"""
A `Highway layer <https://arxiv.org/abs/1505.00387>`_.
Adopted from the AllenNLP implementation.
"""
def __init__(self, input_dim: int, num_layers: int = 1):
super(Highway, self).__init__()
self.input_dim = input_dim
self.layers = nn.ModuleList(
[nn.Linear(input_dim, input_dim * 2) for _ in range(num_layers)]
)
self.activation = nn.ReLU()
self.reset_parameters()
def reset_parameters(self):
for layer in self.layers:
# As per comment in AllenNLP:
# We should bias the highway layer to just carry its input forward. We do that by
# setting the bias on `B(x)` to be positive, because that means `g` will be biased to
# be high, so we will carry the input forward. The bias on `B(x)` is the second half
# of the bias vector in each Linear layer.
nn.init.constant_(layer.bias[self.input_dim :], 1)
nn.init.constant_(layer.bias[: self.input_dim], 0)
nn.init.xavier_normal_(layer.weight)
def forward(self, x: torch.Tensor):
for layer in self.layers:
projection = layer(x)
proj_x, gate = projection.chunk(2, dim=-1)
proj_x = self.activation(proj_x)
gate = torch.sigmoid(gate)
x = gate * x + (gate.new_tensor([1]) - gate) * proj_x
return x
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/character_token_embedder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import functools
from typing import Any, Dict, List, Tuple, Union
import torch
import torch.utils.checkpoint as checkpoint
from fairseq import utils
def checkpoint_wrapper(m, offload_to_cpu=False):
"""
A friendlier wrapper for performing activation checkpointing.
Compared to the PyTorch version, this version:
- wraps an nn.Module, so that all subsequent calls will use checkpointing
- handles keyword arguments in the forward
- handles non-Tensor outputs from the forward
Usage::
checkpointed_module = checkpoint_wrapper(my_module, offload_to_cpu=True)
a, b = checkpointed_module(x, y=3, z=torch.Tensor([1]))
"""
# should I check whether original_forward has already been set?
assert not hasattr(
m, "precheckpoint_forward"
), "checkpoint function has already been applied?"
m.precheckpoint_forward = m.forward
m.forward = functools.partial(
_checkpointed_forward,
m.precheckpoint_forward, # original_forward
offload_to_cpu,
)
return m
def unwrap_checkpoint(m: torch.nn.Module):
"""
unwrap a module and its children from checkpoint_wrapper
"""
for module in m.modules():
if hasattr(module, "precheckpoint_forward"):
module.forward = module.precheckpoint_forward
del module.precheckpoint_forward
if hasattr(module, "old_deepcopy_method"):
module.__deepcopy__ = module.old_deepcopy_method
del module.old_deepcopy_method
return m
def _checkpointed_forward(original_forward, offload_to_cpu, *args, **kwargs):
# Autograd Functions in PyTorch work best with positional args, since
# the backward must return gradients (or None) for every input argument.
# We can flatten keyword arguments to make this easier.
kwarg_keys, flat_args = pack_kwargs(*args, **kwargs)
parent_ctx_dict = {"offload": offload_to_cpu}
output = CheckpointFunction.apply(
original_forward, parent_ctx_dict, kwarg_keys, *flat_args
)
if isinstance(output, torch.Tensor):
return output
else:
packed_non_tensor_outputs = parent_ctx_dict["packed_non_tensor_outputs"]
if packed_non_tensor_outputs:
output = unpack_non_tensors(output, packed_non_tensor_outputs)
return output
def pack_kwargs(*args, **kwargs) -> Tuple[List[str], List[Any]]:
"""
Usage::
kwarg_keys, flat_args = pack_kwargs(1, 2, a=3, b=4)
args, kwargs = unpack_kwargs(kwarg_keys, flat_args)
assert args == [1, 2]
assert kwargs == {"a": 3, "b": 4}
"""
kwarg_keys = []
flat_args = list(args)
for k, v in kwargs.items():
kwarg_keys.append(k)
flat_args.append(v)
return kwarg_keys, flat_args
def unpack_kwargs(
kwarg_keys: List[str], flat_args: List[Any]
) -> Tuple[List[Any], Dict[str, Any]]:
if len(kwarg_keys) == 0:
return flat_args, {}
args = flat_args[: -len(kwarg_keys)]
kwargs = {k: v for k, v in zip(kwarg_keys, flat_args[-len(kwarg_keys) :])}
return args, kwargs
def split_non_tensors(
mixed: Union[torch.Tensor, Tuple[Any]]
) -> Tuple[Tuple[torch.Tensor], Dict[str, List[Any]]]:
"""
Usage::
x = torch.Tensor([1])
y = torch.Tensor([2])
tensors, packed_non_tensors = split_non_tensors((x, y, None, 3))
recon = unpack_non_tensors(tensors, packed_non_tensors)
assert recon == (x, y, None, 3)
"""
if isinstance(mixed, torch.Tensor):
return (mixed,), None
tensors = []
packed_non_tensors = {"is_tensor": [], "objects": []}
for o in mixed:
if isinstance(o, torch.Tensor):
packed_non_tensors["is_tensor"].append(True)
tensors.append(o)
else:
packed_non_tensors["is_tensor"].append(False)
packed_non_tensors["objects"].append(o)
return tuple(tensors), packed_non_tensors
def unpack_non_tensors(
tensors: Tuple[torch.Tensor],
packed_non_tensors: Dict[str, List[Any]],
) -> Tuple[Any]:
if packed_non_tensors is None:
return tensors
assert isinstance(packed_non_tensors, dict)
mixed = []
is_tensor_list = packed_non_tensors["is_tensor"]
objects = packed_non_tensors["objects"]
assert len(tensors) + len(objects) == len(is_tensor_list)
obj_i = tnsr_i = 0
for is_tensor in is_tensor_list:
if is_tensor:
mixed.append(tensors[tnsr_i])
tnsr_i += 1
else:
mixed.append(objects[obj_i])
obj_i += 1
return tuple(mixed)
class CheckpointFunction(torch.autograd.Function):
"""Similar to the torch version, but support non-Tensor outputs.
The caller is expected to provide a dict (*parent_ctx_dict*) that will hold
the non-Tensor outputs. These should be combined with the Tensor *outputs*
by calling ``unpack_non_tensors``.
"""
@staticmethod
def forward(ctx, run_function, parent_ctx_dict, kwarg_keys, *args):
if torch.is_grad_enabled(): # grad may be disabled, e.g., during validation
checkpoint.check_backward_validity(args)
ctx.run_function = run_function
ctx.kwarg_keys = kwarg_keys
ctx.fwd_rng_state = utils.get_rng_state()
tensor_inputs, packed_non_tensor_inputs = split_non_tensors(args)
if parent_ctx_dict["offload"]:
ctx.fwd_device = tuple(x.device for x in tensor_inputs)
ctx.grad_requirements = tuple(x.requires_grad for x in tensor_inputs)
tensor_inputs = tuple(
x.to(torch.device("cpu"), non_blocking=True) for x in tensor_inputs
)
else:
ctx.fwd_device, ctx.grad_requirements = None, None
ctx.save_for_backward(*tensor_inputs)
ctx.packed_non_tensor_inputs = packed_non_tensor_inputs
with torch.no_grad():
unpacked_args, unpacked_kwargs = unpack_kwargs(kwarg_keys, args)
outputs = run_function(*unpacked_args, **unpacked_kwargs)
if isinstance(outputs, torch.Tensor):
return outputs
else:
# Autograd Functions don't like non-Tensor outputs. We can split the
# non-Tensor and Tensor outputs, returning the former by reference
# through *parent_ctx_dict* and returning the latter directly.
outputs, packed_non_tensor_outputs = split_non_tensors(outputs)
parent_ctx_dict["packed_non_tensor_outputs"] = packed_non_tensor_outputs
return outputs
@staticmethod
def backward(ctx, *args):
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError(
"Checkpointing is not compatible with .grad(), please use .backward() if possible"
)
tensor_inputs: Tuple = ctx.saved_tensors
tensor_inputs = checkpoint.detach_variable(tensor_inputs)
if ctx.fwd_device is not None:
tensor_inputs = [
t.to(ctx.fwd_device[i], non_blocking=True)
for i, t in enumerate(tensor_inputs)
]
for i, need_grad in enumerate(ctx.grad_requirements):
tensor_inputs[i].requires_grad = need_grad
inputs = unpack_non_tensors(tensor_inputs, ctx.packed_non_tensor_inputs)
# Store the current states.
bwd_rng_state = utils.get_rng_state()
# Set the states to what it used to be before the forward pass.
utils.set_rng_state(ctx.fwd_rng_state)
with torch.enable_grad():
unpacked_args, unpacked_kwargs = unpack_kwargs(ctx.kwarg_keys, inputs)
outputs = ctx.run_function(*unpacked_args, **unpacked_kwargs)
tensor_outputs, _ = split_non_tensors(outputs)
# Set the states back to what it was at the start of this function.
utils.set_rng_state(bwd_rng_state)
# Run backward() with only Tensors that require grad
outputs_with_grad = []
args_with_grad = []
for i in range(len(tensor_outputs)):
if tensor_outputs[i].requires_grad:
outputs_with_grad.append(tensor_outputs[i])
args_with_grad.append(args[i])
if len(outputs_with_grad) == 0:
raise RuntimeError(
"None of the outputs have requires_grad=True, "
"this checkpoint() is not necessary"
)
torch.autograd.backward(outputs_with_grad, args_with_grad)
grads = tuple(
inp.grad if isinstance(inp, torch.Tensor) else None for inp in inputs
)
return (None, None, None) + grads
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/checkpoint_activations.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.modules import TransformerSentenceEncoderLayer
from fairseq.modules.sparse_multihead_attention import SparseMultiheadAttention
class SparseTransformerSentenceEncoderLayer(TransformerSentenceEncoderLayer):
"""
Implements a Sprase Transformer Encoder Layer (see SparseMultiheadAttention)
"""
def __init__(
self,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
export: bool = False,
is_bidirectional: bool = True,
stride: int = 32,
expressivity: int = 8,
) -> None:
super().__init__(
embedding_dim,
ffn_embedding_dim,
num_attention_heads,
dropout,
attention_dropout,
activation_dropout,
activation_fn,
export,
)
self.self_attn = SparseMultiheadAttention(
self.embedding_dim,
num_attention_heads,
dropout=attention_dropout,
add_bias_kv=False,
add_zero_attn=False,
self_attention=True,
is_bidirectional=is_bidirectional,
stride=stride,
expressivity=expressivity,
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/sparse_transformer_sentence_encoder_layer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import functools
import operator
import torch
import torch.nn.functional as F
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from torch import nn
class TiedLinear(nn.Module):
def __init__(self, weight, transpose):
super().__init__()
self.weight = weight
self.transpose = transpose
def forward(self, input):
return F.linear(input, self.weight.t() if self.transpose else self.weight)
class TiedHeadModule(nn.Module):
def __init__(self, weights, input_dim, num_classes, q_noise, qn_block_size):
super().__init__()
tied_emb, _ = weights
self.num_words, emb_dim = tied_emb.size()
self.word_proj = quant_noise(
TiedLinear(tied_emb, transpose=False), q_noise, qn_block_size
)
if input_dim != emb_dim:
self.word_proj = nn.Sequential(
quant_noise(
nn.Linear(input_dim, emb_dim, bias=False), q_noise, qn_block_size
),
self.word_proj,
)
self.class_proj = quant_noise(
nn.Linear(input_dim, num_classes, bias=False), q_noise, qn_block_size
)
self.out_dim = self.num_words + num_classes
self.register_buffer("_float_tensor", torch.FloatTensor(1))
def forward(self, input):
inp_sz = functools.reduce(operator.mul, input.shape[:-1], 1)
out = self._float_tensor.new(inp_sz, self.out_dim)
out[:, : self.num_words] = self.word_proj(input.view(inp_sz, -1))
out[:, self.num_words :] = self.class_proj(input.view(inp_sz, -1))
return out
class AdaptiveSoftmax(nn.Module):
"""
This is an implementation of the efficient softmax approximation for
graphical processing units (GPU), described in the paper "Efficient softmax
approximation for GPUs" (http://arxiv.org/abs/1609.04309).
"""
def __init__(
self,
vocab_size,
input_dim,
cutoff,
dropout,
factor=4.0,
adaptive_inputs=None,
tie_proj=False,
q_noise=0,
qn_block_size=8,
):
super().__init__()
if vocab_size > cutoff[-1]:
cutoff = cutoff + [vocab_size]
else:
assert (
vocab_size == cutoff[-1]
), "cannot specify cutoff larger than vocab size"
output_dim = cutoff[0] + len(cutoff) - 1
self.vocab_size = vocab_size
self.cutoff = cutoff
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.input_dim = input_dim
self.factor = factor
self.q_noise = q_noise
self.qn_block_size = qn_block_size
self.lsm = nn.LogSoftmax(dim=1)
if adaptive_inputs is not None:
self.head = TiedHeadModule(
adaptive_inputs.weights_for_band(0),
input_dim,
len(cutoff) - 1,
self.q_noise,
self.qn_block_size,
)
else:
self.head = quant_noise(
nn.Linear(input_dim, output_dim, bias=False),
self.q_noise,
self.qn_block_size,
)
self._make_tail(adaptive_inputs, tie_proj)
def init_weights(m):
if (
hasattr(m, "weight")
and not isinstance(m, TiedLinear)
and not isinstance(m, TiedHeadModule)
):
nn.init.xavier_uniform_(m.weight)
self.apply(init_weights)
self.register_buffer("version", torch.LongTensor([1]))
def _make_tail(self, adaptive_inputs=None, tie_proj=False):
self.tail = nn.ModuleList()
for i in range(len(self.cutoff) - 1):
dim = int(self.input_dim // self.factor ** (i + 1))
tied_emb, tied_proj = (
adaptive_inputs.weights_for_band(i + 1)
if adaptive_inputs is not None
else (None, None)
)
if tied_proj is not None:
if tie_proj:
proj = quant_noise(
TiedLinear(tied_proj, transpose=True),
self.q_noise,
self.qn_block_size,
)
else:
proj = quant_noise(
nn.Linear(tied_proj.size(0), tied_proj.size(1), bias=False),
self.q_noise,
self.qn_block_size,
)
else:
proj = quant_noise(
nn.Linear(self.input_dim, dim, bias=False),
self.q_noise,
self.qn_block_size,
)
if tied_emb is None:
out_proj = nn.Linear(
dim, self.cutoff[i + 1] - self.cutoff[i], bias=False
)
else:
out_proj = TiedLinear(tied_emb, transpose=False)
m = nn.Sequential(
proj,
nn.Dropout(self.dropout_module.p),
quant_noise(out_proj, self.q_noise, self.qn_block_size),
)
self.tail.append(m)
def upgrade_state_dict_named(self, state_dict, name):
version_name = name + ".version"
if version_name not in state_dict:
raise Exception("This version of the model is no longer supported")
def adapt_target(self, target):
"""
In order to be efficient, the AdaptiveSoftMax does not compute the
scores for all the word of the vocabulary for all the examples. It is
thus necessary to call the method adapt_target of the AdaptiveSoftMax
layer inside each forward pass.
"""
target = target.view(-1)
new_target = [target.clone()]
target_idxs = []
for i in range(len(self.cutoff) - 1):
mask = target.ge(self.cutoff[i]).mul(target.lt(self.cutoff[i + 1]))
new_target[0][mask] = self.cutoff[0] + i
if mask.any():
target_idxs.append(mask.nonzero(as_tuple=False).squeeze(1))
new_target.append(target[mask].add(-self.cutoff[i]))
else:
target_idxs.append(None)
new_target.append(None)
return new_target, target_idxs
def forward(self, input, target):
"""
Args:
input: (b x t x d)
target: (b x t)
Returns:
2 lists: output for each cutoff section and new targets by cut off
"""
input = input.contiguous().view(-1, input.size(-1))
input = self.dropout_module(input)
new_target, target_idxs = self.adapt_target(target)
output = [self.head(input)]
for i in range(len(target_idxs)):
if target_idxs[i] is not None:
output.append(self.tail[i](input.index_select(0, target_idxs[i])))
else:
output.append(None)
return output, new_target
def get_log_prob(self, input, target):
"""
Computes the log probabilities for all the words of the vocabulary,
given a 2D tensor of hidden vectors.
"""
bsz, length, dim = input.size()
input = input.contiguous().view(-1, dim)
if target is not None:
_, target_idxs = self.adapt_target(target)
else:
target_idxs = None
head_y = self.head(input)
log_probs = head_y.new_zeros(input.size(0), self.vocab_size)
head_sz = self.cutoff[0] + len(self.tail)
log_probs[:, :head_sz] = self.lsm(head_y)
tail_priors = log_probs[:, self.cutoff[0] : head_sz].clone()
for i in range(len(self.tail)):
start = self.cutoff[i]
end = self.cutoff[i + 1]
if target_idxs is None:
tail_out = log_probs[:, start:end]
tail_out.copy_(self.tail[i](input))
log_probs[:, start:end] = self.lsm(tail_out).add_(
tail_priors[:, i, None]
)
elif target_idxs[i] is not None:
idxs = target_idxs[i]
tail_out = log_probs[idxs, start:end]
tail_out.copy_(self.tail[i](input[idxs]))
log_probs[idxs, start:end] = self.lsm(tail_out).add_(
tail_priors[idxs, i, None]
)
log_probs = log_probs.view(bsz, length, -1)
return log_probs
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/adaptive_softmax.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import nn
from torch.nn.modules.utils import _single
from torch import Tensor
class ConvTBC(torch.nn.Module):
"""1D convolution over an input of shape (time x batch x channel)
The implementation uses gemm to perform the convolution. This implementation
is faster than cuDNN for small kernel sizes.
"""
def __init__(self, in_channels, out_channels, kernel_size, padding=0):
super(ConvTBC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _single(kernel_size)
self.padding = _single(padding)
self.weight = torch.nn.Parameter(
torch.Tensor(self.kernel_size[0], in_channels, out_channels)
)
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_normal_(self.weight)
nn.init.zeros_(self.bias)
def conv_tbc(self, input: Tensor):
return torch.conv_tbc(
input.contiguous(), self.weight, self.bias, self.padding[0]
)
def forward(self, input: Tensor):
return self.conv_tbc(input)
def __repr__(self):
s = (
"{name}({in_channels}, {out_channels}, kernel_size={kernel_size}"
", padding={padding}"
)
if self.bias is None:
s += ", bias=False"
s += ")"
return s.format(name=self.__class__.__name__, **self.__dict__)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/conv_tbc.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
batch norm done in fp32 (for fp16 training)
"""
import torch
import torch.nn as nn
class Fp32BatchNorm(nn.Module):
def __init__(self, sync=False, *args, **kwargs):
super().__init__()
if sync:
from fairseq.distributed import utils
if utils.get_global_world_size() == 1:
sync = False
if sync:
self.bn = nn.SyncBatchNorm(*args, **kwargs)
else:
self.bn = nn.BatchNorm1d(*args, **kwargs)
self.sync = sync
def forward(self, input):
if self.bn.running_mean.dtype != torch.float:
if self.sync:
self.bn.running_mean = self.bn.running_mean.float()
self.bn.running_var = self.bn.running_var.float()
if self.bn.affine:
try:
self.bn.weight = self.bn.weight.float()
self.bn.bias = self.bn.bias.float()
except:
self.bn.float()
else:
self.bn.float()
output = self.bn(input.float())
return output.type_as(input)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/fp32_batch_norm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Layer norm done in fp32 (for fp16 training)
"""
import torch.nn as nn
import torch.nn.functional as F
class Fp32InstanceNorm(nn.InstanceNorm1d):
def __init__(self, *args, **kwargs):
self.transpose_last = "transpose_last" in kwargs and kwargs["transpose_last"]
if "transpose_last" in kwargs:
del kwargs["transpose_last"]
super().__init__(*args, **kwargs)
def forward(self, input):
if self.transpose_last:
input = input.transpose(1, 2)
output = F.instance_norm(
input.float(),
running_mean=self.running_mean,
running_var=self.running_var,
weight=self.weight.float() if self.weight is not None else None,
bias=self.bias.float() if self.bias is not None else None,
use_input_stats=self.training or not self.track_running_stats,
momentum=self.momentum,
eps=self.eps,
)
if self.transpose_last:
output = output.transpose(1, 2)
return output.type_as(input)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/fp32_instance_norm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn.functional as F
def unfold1d(x, kernel_size: int, padding_l: int, pad_value: float = 0):
"""unfold T x B x C to T x B x C x K"""
if kernel_size > 1:
T, B, C = x.size()
x = F.pad(
x, (0, 0, 0, 0, padding_l, kernel_size - 1 - padding_l), value=pad_value
)
x = x.as_strided((T, B, C, kernel_size), (B * C, C, 1, B * C))
else:
x = x.unsqueeze(3)
return x
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/unfold.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
import torch
import sys
from fairseq import utils
from fairseq.distributed import utils as distributed_utils
from fairseq.modules.layer_norm import LayerNorm
class BaseLayer(nn.Module):
def __init__(self, args):
super().__init__()
self.num_workers = distributed_utils.get_data_parallel_world_size()
expert_centroids = torch.empty(self.num_workers, args.decoder_embed_dim)
torch.nn.init.orthogonal_(expert_centroids, gain=0.1)
self.register_parameter(
"expert_centroids", torch.nn.Parameter(expert_centroids)
)
self.expert_network = nn.Sequential(
*([BaseSublayer(args) for _ in range(args.base_sublayers)])
)
self.expert_id = distributed_utils.get_data_parallel_rank()
self.shuffle = args.base_shuffle
self.cpp = self.load_assignment()
# Add a special attribute to the expert parameters, so we know not to sync their gradients
for param in self.expert_network.parameters():
param.expert = True
def forward(self, input_features, *args, **kwargs):
features = input_features.reshape(-1, input_features.size(-1))
is_training = input_features.requires_grad
if self.shuffle and is_training:
# Send each token to a random worker, to break correlations within the batch
shuffle_sort = torch.randperm(features.size(0), device=features.device)
features = All2All.apply(features[shuffle_sort])
with torch.no_grad():
# Compute similarity of each token to each expert, for routing
token_expert_affinities = features.matmul(
self.expert_centroids.transpose(0, 1)
)
# Compute which token goes to which expert
sort_by_expert, input_splits, output_splits = (
self.balanced_assignment(token_expert_affinities)
if is_training
else self.greedy_assignment(token_expert_affinities)
)
# Swap these tokens for the right ones for our expert
routed_features = All2All.apply(
features[sort_by_expert], output_splits, input_splits
)
if routed_features.size(0) > 0:
# Mix in the expert network based on how appropriate it is for these tokens
alpha = torch.sigmoid(
routed_features.mv(self.expert_centroids[self.expert_id])
).unsqueeze(1)
routed_features = (
alpha * self.expert_network(routed_features)
+ (1 - alpha) * routed_features
)
# Return to original worker and ordering
result = All2All.apply(routed_features, input_splits, output_splits)[
self.inverse_sort(sort_by_expert)
]
if self.shuffle and is_training:
# Undo shuffling
result = All2All.apply(result)[self.inverse_sort(shuffle_sort)]
# Return additional Nones for compatibility with TransformerDecoderLayer
return result.view(input_features.size()), None, None
def inverse_sort(self, order):
# Creates an index that undoes a sort: xs==xs[order][inverse_sort(order)]
return torch.empty_like(order).scatter_(
0, order, torch.arange(0, order.size(0), device=order.device)
)
def balanced_assignment(self, scores):
ok = scores.isfinite()
if not ok.all():
# NaNs here can break the assignment algorithm
scores[~ok] = scores[ok].min()
return self.cpp.balanced_assignment(scores), None, None
# Assigns each token to the top k experts
def greedy_assignment(self, scores, k=1):
token_to_workers = torch.topk(scores, dim=1, k=k, largest=True).indices.view(-1)
token_to_workers, sort_ordering = torch.sort(token_to_workers)
worker2token = sort_ordering // k
# Find how many tokens we're sending to each other worker (being careful for sending 0 tokens to some workers)
output_splits = torch.zeros(
(self.num_workers,), dtype=torch.long, device=scores.device
)
workers, counts = torch.unique_consecutive(token_to_workers, return_counts=True)
output_splits[workers] = counts
# Tell other workers how many tokens to expect from us
input_splits = All2All.apply(output_splits)
return worker2token, input_splits.tolist(), output_splits.tolist()
def load_assignment(self):
try:
from fairseq import libbase
return libbase
except ImportError as e:
sys.stderr.write(
"ERROR: missing libbase. run `python setup.py build_ext --inplace`\n"
)
raise e
class BaseSublayer(nn.Module):
def __init__(self, args):
super().__init__()
self.activation_fn = utils.get_activation_fn(
activation=getattr(args, "activation_fn", "relu") or "relu"
)
self.norm = LayerNorm(args.decoder_embed_dim, export=False)
self.ff1 = torch.nn.Linear(args.decoder_embed_dim, args.decoder_ffn_embed_dim)
self.ff2 = torch.nn.Linear(args.decoder_ffn_embed_dim, args.decoder_embed_dim)
self.ff2.weight.data.zero_()
def forward(self, xs):
return xs + self.ff2(self.activation_fn(self.ff1(self.norm(xs))))
# Wraps torch.distributed.all_to_all_single as a function that supports autograd
class All2All(torch.autograd.Function):
@staticmethod
def forward(ctx, xs, input_splits=None, output_splits=None):
ctx.input_splits = input_splits
ctx.output_splits = output_splits
ys = (
torch.empty_like(xs)
if output_splits is None
else xs.new_empty(size=[sum(output_splits)] + list(xs.size()[1:]))
)
torch.distributed.all_to_all_single(
ys, xs, output_split_sizes=output_splits, input_split_sizes=input_splits
)
return ys
@staticmethod
def backward(ctx, grad_output):
result = (
torch.empty_like(grad_output)
if ctx.input_splits is None
else grad_output.new_empty(
size=[sum(ctx.input_splits)] + list(grad_output.size()[1:])
)
)
torch.distributed.all_to_all_single(
result,
grad_output,
output_split_sizes=ctx.input_splits,
input_split_sizes=ctx.output_splits,
)
return result, None, None
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/base_layer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This file is to re-implemented the low-rank and beam approximation of CRF layer
Proposed by:
Sun, Zhiqing, et al.
Fast Structured Decoding for Sequence Models
https://arxiv.org/abs/1910.11555
The CRF implementation is mainly borrowed from
https://github.com/kmkurn/pytorch-crf/blob/master/torchcrf/__init__.py
"""
import numpy as np
import torch
import torch.nn as nn
def logsumexp(x, dim=1):
return torch.logsumexp(x.float(), dim=dim).type_as(x)
class DynamicCRF(nn.Module):
"""Dynamic CRF layer is used to approximate the traditional
Conditional Random Fields (CRF)
$P(y | x) = 1/Z(x) exp(sum_i s(y_i, x) + sum_i t(y_{i-1}, y_i, x))$
where in this function, we assume the emition scores (s) are given,
and the transition score is a |V| x |V| matrix $M$
in the following two aspects:
(1) it used a low-rank approximation for the transition matrix:
$M = E_1 E_2^T$
(2) it used a beam to estimate the normalizing factor Z(x)
"""
def __init__(self, num_embedding, low_rank=32, beam_size=64):
super().__init__()
self.E1 = nn.Embedding(num_embedding, low_rank)
self.E2 = nn.Embedding(num_embedding, low_rank)
self.vocb = num_embedding
self.rank = low_rank
self.beam = beam_size
def extra_repr(self):
return "vocab_size={}, low_rank={}, beam_size={}".format(
self.vocb, self.rank, self.beam
)
def forward(self, emissions, targets, masks, beam=None):
"""
Compute the conditional log-likelihood of a sequence of target tokens given emission scores
Args:
emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output
``(batch_size, seq_len, vocab_size)``. We assume batch-first
targets (`~torch.LongTensor`): Sequence of target token indices
``(batch_size, seq_len)
masks (`~torch.ByteTensor`): Mask tensor with the same size as targets
Returns:
`~torch.Tensor`: approximated log-likelihood
"""
numerator = self._compute_score(emissions, targets, masks)
denominator = self._compute_normalizer(emissions, targets, masks, beam)
return numerator - denominator
def forward_decoder(self, emissions, masks=None, beam=None):
"""
Find the most likely output sequence using Viterbi algorithm.
Args:
emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output
``(batch_size, seq_len, vocab_size)``. We assume batch-first
masks (`~torch.ByteTensor`): Mask tensor with the same size as targets
Returns:
`~torch.LongTensor`: decoded sequence from the CRF model
"""
return self._viterbi_decode(emissions, masks, beam)
def _compute_score(self, emissions, targets, masks=None):
batch_size, seq_len = targets.size()
emission_scores = emissions.gather(2, targets[:, :, None])[:, :, 0] # B x T
transition_scores = (self.E1(targets[:, :-1]) * self.E2(targets[:, 1:])).sum(2)
scores = emission_scores
scores[:, 1:] += transition_scores
if masks is not None:
scores = scores * masks.type_as(scores)
return scores.sum(-1)
def _compute_normalizer(self, emissions, targets=None, masks=None, beam=None):
# HACK: we include "target" which is a hueristic for training
# HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?)
beam = beam if beam is not None else self.beam
batch_size, seq_len = emissions.size()[:2]
if targets is not None:
_emissions = emissions.scatter(2, targets[:, :, None], np.float("inf"))
beam_targets = _emissions.topk(beam, 2)[1]
beam_emission_scores = emissions.gather(2, beam_targets)
else:
beam_emission_scores, beam_targets = emissions.topk(beam, 2)
beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D
beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D
beam_transition_matrix = torch.bmm(
beam_transition_score1.view(-1, beam, self.rank),
beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2),
)
beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam)
# compute the normalizer in the log-space
score = beam_emission_scores[:, 0] # B x K
for i in range(1, seq_len):
next_score = score[:, :, None] + beam_transition_matrix[:, i - 1]
next_score = logsumexp(next_score, dim=1) + beam_emission_scores[:, i]
if masks is not None:
score = torch.where(masks[:, i : i + 1], next_score, score)
else:
score = next_score
# Sum (log-sum-exp) over all possible tags
return logsumexp(score, dim=1)
def _viterbi_decode(self, emissions, masks=None, beam=None):
# HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?)
beam = beam if beam is not None else self.beam
batch_size, seq_len = emissions.size()[:2]
beam_emission_scores, beam_targets = emissions.topk(beam, 2)
beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D
beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D
beam_transition_matrix = torch.bmm(
beam_transition_score1.view(-1, beam, self.rank),
beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2),
)
beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam)
traj_tokens, traj_scores = [], []
finalized_tokens, finalized_scores = [], []
# compute the normalizer in the log-space
score = beam_emission_scores[:, 0] # B x K
dummy = (
torch.arange(beam, device=score.device).expand(*score.size()).contiguous()
)
for i in range(1, seq_len):
traj_scores.append(score)
_score = score[:, :, None] + beam_transition_matrix[:, i - 1]
_score, _index = _score.max(dim=1)
_score = _score + beam_emission_scores[:, i]
if masks is not None:
score = torch.where(masks[:, i : i + 1], _score, score)
index = torch.where(masks[:, i : i + 1], _index, dummy)
else:
score, index = _score, _index
traj_tokens.append(index)
# now running the back-tracing and find the best
best_score, best_index = score.max(dim=1)
finalized_tokens.append(best_index[:, None])
finalized_scores.append(best_score[:, None])
for idx, scs in zip(reversed(traj_tokens), reversed(traj_scores)):
previous_index = finalized_tokens[-1]
finalized_tokens.append(idx.gather(1, previous_index))
finalized_scores.append(scs.gather(1, previous_index))
finalized_tokens.reverse()
finalized_tokens = torch.cat(finalized_tokens, 1)
finalized_tokens = beam_targets.gather(2, finalized_tokens[:, :, None])[:, :, 0]
finalized_scores.reverse()
finalized_scores = torch.cat(finalized_scores, 1)
finalized_scores[:, 1:] = finalized_scores[:, 1:] - finalized_scores[:, :-1]
return finalized_scores, finalized_tokens
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/dynamic_crf_layer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
See "Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel with
the corresponding GitHub repo: https://github.com/hendrycks/GELUs
"""
import math
import torch
import torch.nn as nn
def gelu_accurate(x):
if not hasattr(gelu_accurate, "_a"):
gelu_accurate._a = math.sqrt(2 / math.pi)
return (
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
)
def gelu(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x.float()).type_as(x)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/gelu.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
LayerDrop as described in https://arxiv.org/abs/1909.11556.
"""
import torch
import torch.nn as nn
class LayerDropModuleList(nn.ModuleList):
"""
A LayerDrop implementation based on :class:`torch.nn.ModuleList`.
We refresh the choice of which layers to drop every time we iterate
over the LayerDropModuleList instance. During evaluation we always
iterate over all layers.
Usage::
layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])
for layer in layers: # this might iterate over layers 1 and 3
x = layer(x)
for layer in layers: # this might iterate over all layers
x = layer(x)
for layer in layers: # this might not iterate over any layers
x = layer(x)
Args:
p (float): probability of dropping out each layer
modules (iterable, optional): an iterable of modules to add
"""
def __init__(self, p, modules=None):
super().__init__(modules)
self.p = p
def __iter__(self):
dropout_probs = torch.empty(len(self)).uniform_()
for i, m in enumerate(super().__iter__()):
if not self.training or (dropout_probs[i] > self.p):
yield m
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/layer_drop.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple
import torch
import torch.nn as nn
from fairseq.modules import (
FairseqDropout,
LayerDropModuleList,
LayerNorm,
MultiheadAttention,
PositionalEmbedding,
TransformerSentenceEncoderLayer,
)
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_
def init_bert_params(module):
"""
Initialize the weights specific to the BERT Model.
This overrides the default initializations depending on the specified arguments.
1. If normal_init_linear_weights is set then weights of linear
layer will be initialized using the normal distribution and
bais will be set to the specified value.
2. If normal_init_embed_weights is set then weights of embedding
layer will be initialized using the normal distribution.
3. If normal_init_proj_weights is set then weights of
in_project_weight for MultiHeadAttention initialized using
the normal distribution (to be validated).
"""
def normal_(data):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
if isinstance(module, nn.Linear):
normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, MultiheadAttention):
normal_(module.q_proj.weight.data)
normal_(module.k_proj.weight.data)
normal_(module.v_proj.weight.data)
class TransformerSentenceEncoder(nn.Module):
"""
Implementation for a Bi-directional Transformer based Sentence Encoder used
in BERT/XLM style pre-trained models.
This first computes the token embedding using the token embedding matrix,
position embeddings (if specified) and segment embeddings
(if specified). After applying the specified number of
TransformerEncoderLayers, it outputs all the internal states of the
encoder as well as the final representation associated with the first
token (usually CLS token).
Input:
- tokens: B x T matrix representing sentences
- segment_labels: B x T matrix representing segment label for tokens
Output:
- a tuple of the following:
- a list of internal model states used to compute the
predictions where each tensor has shape T x B x C
- sentence representation associated with first input token
in format B x C.
"""
def __init__(
self,
padding_idx: int,
vocab_size: int,
num_encoder_layers: int = 6,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
layerdrop: float = 0.0,
max_seq_len: int = 256,
num_segments: int = 2,
use_position_embeddings: bool = True,
offset_positions_by_padding: bool = True,
encoder_normalize_before: bool = False,
apply_bert_init: bool = False,
activation_fn: str = "relu",
learned_pos_embedding: bool = True,
embed_scale: float = None,
freeze_embeddings: bool = False,
n_trans_layers_to_freeze: int = 0,
export: bool = False,
traceable: bool = False,
q_noise: float = 0.0,
qn_block_size: int = 8,
) -> None:
super().__init__()
self.padding_idx = padding_idx
self.vocab_size = vocab_size
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.layerdrop = layerdrop
self.max_seq_len = max_seq_len
self.embedding_dim = embedding_dim
self.num_segments = num_segments
self.use_position_embeddings = use_position_embeddings
self.apply_bert_init = apply_bert_init
self.learned_pos_embedding = learned_pos_embedding
self.traceable = traceable
self.embed_tokens = self.build_embedding(
self.vocab_size, self.embedding_dim, self.padding_idx
)
self.embed_scale = embed_scale
if q_noise > 0:
self.quant_noise = apply_quant_noise_(
nn.Linear(self.embedding_dim, self.embedding_dim, bias=False),
q_noise,
qn_block_size,
)
else:
self.quant_noise = None
self.segment_embeddings = (
nn.Embedding(self.num_segments, self.embedding_dim, padding_idx=None)
if self.num_segments > 0
else None
)
self.embed_positions = (
PositionalEmbedding(
self.max_seq_len,
self.embedding_dim,
padding_idx=(self.padding_idx if offset_positions_by_padding else None),
learned=self.learned_pos_embedding,
)
if self.use_position_embeddings
else None
)
if encoder_normalize_before:
self.emb_layer_norm = LayerNorm(self.embedding_dim, export=export)
else:
self.emb_layer_norm = None
if self.layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.layerdrop)
else:
self.layers = nn.ModuleList([])
self.layers.extend(
[
self.build_transformer_sentence_encoder_layer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=ffn_embedding_dim,
num_attention_heads=num_attention_heads,
dropout=self.dropout_module.p,
attention_dropout=attention_dropout,
activation_dropout=activation_dropout,
activation_fn=activation_fn,
export=export,
q_noise=q_noise,
qn_block_size=qn_block_size,
)
for _ in range(num_encoder_layers)
]
)
# Apply initialization of model params after building the model
if self.apply_bert_init:
self.apply(init_bert_params)
def freeze_module_params(m):
if m is not None:
for p in m.parameters():
p.requires_grad = False
if freeze_embeddings:
freeze_module_params(self.embed_tokens)
freeze_module_params(self.segment_embeddings)
freeze_module_params(self.embed_positions)
freeze_module_params(self.emb_layer_norm)
for layer in range(n_trans_layers_to_freeze):
freeze_module_params(self.layers[layer])
def build_embedding(self, vocab_size, embedding_dim, padding_idx):
return nn.Embedding(vocab_size, embedding_dim, padding_idx)
def build_transformer_sentence_encoder_layer(
self,
embedding_dim,
ffn_embedding_dim,
num_attention_heads,
dropout,
attention_dropout,
activation_dropout,
activation_fn,
export,
q_noise,
qn_block_size,
):
return TransformerSentenceEncoderLayer(
embedding_dim=embedding_dim,
ffn_embedding_dim=ffn_embedding_dim,
num_attention_heads=num_attention_heads,
dropout=dropout,
attention_dropout=attention_dropout,
activation_dropout=activation_dropout,
activation_fn=activation_fn,
export=export,
q_noise=q_noise,
qn_block_size=qn_block_size,
)
def forward(
self,
tokens: torch.Tensor,
segment_labels: torch.Tensor = None,
last_state_only: bool = False,
positions: Optional[torch.Tensor] = None,
token_embeddings: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
is_tpu = tokens.device.type == "xla"
# compute padding mask. This is needed for multi-head attention
padding_mask = tokens.eq(self.padding_idx)
if not self.traceable and not is_tpu and not padding_mask.any():
padding_mask = None
if token_embeddings is not None:
x = token_embeddings
else:
x = self.embed_tokens(tokens)
if self.embed_scale is not None:
x = x * self.embed_scale
if self.embed_positions is not None:
x = x + self.embed_positions(tokens, positions=positions)
if self.segment_embeddings is not None and segment_labels is not None:
x = x + self.segment_embeddings(segment_labels)
if self.quant_noise is not None:
x = self.quant_noise(x)
if self.emb_layer_norm is not None:
x = self.emb_layer_norm(x)
x = self.dropout_module(x)
# account for padding while computing the representation
if padding_mask is not None:
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
# B x T x C -> T x B x C
x = x.transpose(0, 1)
inner_states = []
if not last_state_only:
inner_states.append(x)
for layer in self.layers:
x, _ = layer(
x, self_attn_padding_mask=padding_mask, self_attn_mask=attn_mask
)
if not last_state_only:
inner_states.append(x)
sentence_rep = x[0, :, :]
if last_state_only:
inner_states = [x]
if self.traceable:
return torch.stack(inner_states), sentence_rep
else:
return inner_states, sentence_rep
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/transformer_sentence_encoder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
from .adaptive_input import AdaptiveInput
from .adaptive_softmax import AdaptiveSoftmax
from .base_layer import BaseLayer
from .beamable_mm import BeamableMM
from .character_token_embedder import CharacterTokenEmbedder
from .conv_tbc import ConvTBC
from .cross_entropy import cross_entropy
from .downsampled_multihead_attention import DownsampledMultiHeadAttention
from .dynamic_convolution import DynamicConv, DynamicConv1dTBC, DynamicConv_scripatable
from .dynamic_crf_layer import DynamicCRF
from .ema_module import EMAModuleConfig, EMAModule
from .fairseq_dropout import FairseqDropout
from .fp32_batch_norm import Fp32BatchNorm
from .fp32_group_norm import Fp32GroupNorm
from .fp32_instance_norm import Fp32InstanceNorm
from .gelu import gelu, gelu_accurate
from .grad_multiply import GradMultiply
from .gumbel_vector_quantizer import GumbelVectorQuantizer
from .kmeans_vector_quantizer import KmeansVectorQuantizer
from .layer_drop import LayerDropModuleList
from .layer_norm import Fp32LayerNorm, LayerNorm
from .learned_positional_embedding import LearnedPositionalEmbedding
from .lightweight_convolution import LightweightConv, LightweightConv1dTBC
from .linearized_convolution import LinearizedConvolution
from .location_attention import LocationAttention
from .lstm_cell_with_zoneout import LSTMCellWithZoneOut
from .multihead_attention import MultiheadAttention
from .positional_embedding import PositionalEmbedding
from .same_pad import SamePad, SamePad2d
from .scalar_bias import ScalarBias
from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding
from .transformer_sentence_encoder_layer import TransformerSentenceEncoderLayer
from .transformer_sentence_encoder import TransformerSentenceEncoder
from .transpose_last import TransposeLast
from .unfold import unfold1d
from .transformer_layer import TransformerDecoderLayer, TransformerEncoderLayer
from .vggblock import VGGBlock
from .espnet_multihead_attention import (
ESPNETMultiHeadedAttention,
RelPositionMultiHeadedAttention,
RotaryPositionMultiHeadedAttention,
)
from .rotary_positional_embedding import RotaryPositionalEmbedding
from .positional_encoding import (
RelPositionalEncoding,
)
__all__ = [
"AdaptiveInput",
"AdaptiveSoftmax",
"BaseLayer",
"BeamableMM",
"CharacterTokenEmbedder",
"ConvTBC",
"cross_entropy",
"DownsampledMultiHeadAttention",
"DynamicConv1dTBC",
"DynamicConv",
"DynamicConv_scripatable",
"DynamicCRF",
"EMAModule",
"EMAModuleConfig",
"FairseqDropout",
"Fp32BatchNorm",
"Fp32GroupNorm",
"Fp32LayerNorm",
"Fp32InstanceNorm",
"gelu",
"gelu_accurate",
"GradMultiply",
"GumbelVectorQuantizer",
"KmeansVectorQuantizer",
"LayerDropModuleList",
"LayerNorm",
"LearnedPositionalEmbedding",
"LightweightConv1dTBC",
"LightweightConv",
"LinearizedConvolution",
"LocationAttention",
"LSTMCellWithZoneOut",
"MultiheadAttention",
"PositionalEmbedding",
"SamePad",
"SamePad2d",
"ScalarBias",
"SinusoidalPositionalEmbedding",
"TransformerSentenceEncoderLayer",
"TransformerSentenceEncoder",
"TransformerDecoderLayer",
"TransformerEncoderLayer",
"TransposeLast",
"VGGBlock",
"unfold1d",
"ESPNETMultiheadedAttention",
"PositionalEmbedding",
"RelPositionMultiHeadedAttention",
"RelPositionalEncoding",
"RotaryPositionalEmbedding",
"RotaryPositionMultiHeadedAttention",
]
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
from fairseq.modules import TransformerSentenceEncoder
from fairseq.modules.sparse_transformer_sentence_encoder_layer import (
SparseTransformerSentenceEncoderLayer,
)
class SparseTransformerSentenceEncoder(TransformerSentenceEncoder):
"""
Sparse implementation of the TransformerSentenceEncoder
- see SparseMultiheadAttention
"""
def __init__(
self,
padding_idx: int,
vocab_size: int,
num_encoder_layers: int = 6,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
max_seq_len: int = 256,
num_segments: int = 2,
use_position_embeddings: bool = True,
offset_positions_by_padding: bool = True,
encoder_normalize_before: bool = False,
apply_bert_init: bool = False,
activation_fn: str = "relu",
learned_pos_embedding: bool = True,
embed_scale: float = None,
freeze_embeddings: bool = False,
n_trans_layers_to_freeze: int = 0,
export: bool = False,
is_bidirectional: bool = True,
stride: int = 32,
expressivity: int = 8,
) -> None:
super().__init__(
padding_idx,
vocab_size,
num_encoder_layers,
embedding_dim,
ffn_embedding_dim,
num_attention_heads,
dropout,
attention_dropout,
activation_dropout,
max_seq_len,
num_segments,
use_position_embeddings,
offset_positions_by_padding,
encoder_normalize_before,
apply_bert_init,
activation_fn,
learned_pos_embedding,
embed_scale,
freeze_embeddings,
n_trans_layers_to_freeze,
export,
)
self.layers = nn.ModuleList(
[
SparseTransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=ffn_embedding_dim,
num_attention_heads=num_attention_heads,
dropout=dropout,
attention_dropout=attention_dropout,
activation_dropout=activation_dropout,
activation_fn=activation_fn,
export=export,
is_bidirectional=is_bidirectional,
stride=stride,
expressivity=expressivity,
)
for _ in range(num_encoder_layers)
]
)
def freeze_module_params(m):
if m is not None:
for p in m.parameters():
p.requires_grad = False
for layer in range(n_trans_layers_to_freeze):
freeze_module_params(self.layers[layer])
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/sparse_transformer_sentence_encoder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from .conv_tbc import ConvTBC
from typing import Dict, Optional
from torch import Tensor
@with_incremental_state
class LinearizedConvolution(ConvTBC):
"""An optimized version of nn.Conv1d.
At training time, this module uses ConvTBC, which is an optimized version
of Conv1d. At inference time, it optimizes incremental generation (i.e.,
one time step at a time) by replacing the convolutions with linear layers.
Note that the input order changes from training to inference.
"""
def __init__(self, in_channels, out_channels, kernel_size, **kwargs):
super().__init__(in_channels, out_channels, kernel_size, **kwargs)
self._linearized_weight = None
self.register_backward_hook(self._clear_linearized_weight)
def state_dict(self, destination=None, prefix="", keep_vars=False):
state = ConvTBC.state_dict(self, destination, prefix, keep_vars=keep_vars)
# don't store redundant _linearized_weight in checkpoints
if prefix + "_linearized_weight" in state:
del state[prefix + "_linearized_weight"]
return state
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
if prefix + "_linearized_weight" in state_dict:
del state_dict[prefix + "_linearized_weight"]
@torch.jit.export
def forward(
self,
input,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
):
"""
Args:
incremental_state: Used to buffer signal; if not None, then input is
expected to contain a single frame. If the input order changes
between time steps, call reorder_incremental_state.
Input:
Time x Batch x Channel during training
Batch x Time x Channel during inference
"""
if incremental_state is None:
output = self.conv_tbc(input)
if self.kernel_size[0] > 1 and self.padding[0] > 0:
# remove future timesteps added by padding
output = output[: -self.padding[0], :, :]
return output
# reshape weight
weight = self._get_linearized_weight()
kw = self.kernel_size[0]
bsz = input.size(0) # input: bsz x len x dim
if kw > 1:
input = input.data
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is None:
input_buffer = input.new(bsz, kw, input.size(2)).zero_()
self._set_input_buffer(incremental_state, input_buffer)
else:
# shift buffer
input_buffer[:, :-1, :] = input_buffer[:, 1:, :].clone()
# append next input
input_buffer[:, -1, :] = input[:, -1, :]
input = input_buffer
with torch.no_grad():
output = F.linear(input.view(bsz, -1), weight, self.bias)
return output.view(bsz, 1, -1)
@torch.jit.unused
def reorder_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
new_order,
):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
input_buffer = input_buffer.index_select(0, new_order)
self._set_input_buffer(incremental_state, input_buffer)
@torch.jit.unused
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
):
return utils.get_incremental_state(self, incremental_state, "input_buffer")
@torch.jit.unused
def _set_input_buffer(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
new_buffer,
):
return utils.set_incremental_state(
self, incremental_state, "input_buffer", new_buffer
)
@torch.jit.unused
def _get_linearized_weight(self):
if self._linearized_weight is None:
kw = self.kernel_size[0]
weight = self.weight.transpose(2, 1).transpose(1, 0).contiguous()
assert weight.size() == (self.out_channels, kw, self.in_channels)
return weight.view(self.out_channels, -1)
return self._linearized_weight
@torch.jit.unused
def _clear_linearized_weight(self, *args):
self._linearized_weight = None
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/linearized_convolution.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional
import torch
import torch.nn as nn
from torch import Tensor
from fairseq import utils
from fairseq.models.transformer import TransformerConfig
from fairseq.modules import LayerNorm, MultiheadAttention
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
class TransformerEncoderLayerBase(nn.Module):
"""Encoder layer block.
In the original paper each operation (multi-head attention or FFN) is
postprocessed with: `dropout -> add residual -> layernorm`. In the
tensor2tensor code they suggest that learning is more robust when
preprocessing each layer with layernorm and postprocessing with:
`dropout -> add residual`. We default to the approach in the paper, but the
tensor2tensor approach can be enabled by setting
*cfg.encoder.normalize_before* to ``True``.
Args:
cfg (argparse.Namespace): parsed command-line arguments
"""
def __init__(self, cfg, return_fc=False):
super().__init__()
self.cfg = cfg
self.return_fc = return_fc
self.embed_dim = cfg.encoder.embed_dim
self.quant_noise = cfg.quant_noise.pq
self.quant_noise_block_size = cfg.quant_noise.pq_block_size
self.self_attn = self.build_self_attention(self.embed_dim, cfg)
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
self.dropout_module = FairseqDropout(
cfg.dropout, module_name=self.__class__.__name__
)
self.activation_fn = utils.get_activation_fn(activation=cfg.activation_fn)
activation_dropout_p = cfg.activation_dropout
if activation_dropout_p == 0:
# for backwards compatibility with models that use cfg.relu_dropout
activation_dropout_p = cfg.relu_dropout or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = cfg.encoder.normalize_before
self.fc1 = self.build_fc1(
self.embed_dim,
cfg.encoder.ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
cfg.encoder.ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.final_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(
nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
)
def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(
nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
)
def _get_fc_rank(self, remove_num: int) -> List[int]:
f1_filter_param = []
for i in range(self.fc1.out_features):
f1_filter_param.append(
torch.sum(torch.abs(self.fc1.weight[i]))
+ torch.sum(torch.abs(self.fc2.weight[:, i]))
+ torch.abs(self.fc1.bias[i])
)
return sorted(
range(len(f1_filter_param)), key=lambda k: f1_filter_param[k], reverse=False
)[0:remove_num]
def _prune_fc_layer(self, remove_index: List[int]):
new_fc1_weight = []
new_fc1_bias = []
for i in range(self.fc1.out_features):
if i not in remove_index:
new_fc1_weight.append(self.fc1.weight[i])
new_fc1_bias.append(self.fc1.bias[i])
new_fc1_weight = torch.stack(new_fc1_weight).detach()
new_fc1_weight.requires_grad = True
new_fc1_bias = torch.stack(new_fc1_bias).detach()
new_fc1_bias.requires_grad = True
self.fc1 = quant_noise(
nn.Linear(self.fc1.in_features, self.fc1.out_features - len(remove_index)),
p=self.quant_noise,
block_size=self.quant_noise_block_size,
)
self.fc1.weight = torch.nn.Parameter(new_fc1_weight)
self.fc1.bias = torch.nn.Parameter(new_fc1_bias)
new_fc2_weight = []
new_fc2_bias = []
for i in range(self.fc2.in_features):
if i not in remove_index:
new_fc2_weight.append(self.fc2.weight[:, i])
new_fc2_bias = self.fc2.bias.detach()
new_fc2_weight = torch.stack(new_fc2_weight, dim=-1).detach()
new_fc2_weight.requires_grad = True
new_fc2_bias = self.fc2.bias.detach()
new_fc2_bias.requires_grad = True
self.fc2 = quant_noise(
nn.Linear(self.fc2.in_features - len(remove_index), self.fc2.out_features),
p=self.quant_noise,
block_size=self.quant_noise_block_size,
)
self.fc2.weight = torch.nn.Parameter(new_fc2_weight)
self.fc2.bias = torch.nn.Parameter(new_fc2_bias)
def build_self_attention(self, embed_dim, cfg):
return MultiheadAttention(
embed_dim,
cfg.encoder.attention_heads,
dropout=cfg.attention_dropout,
self_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
xformers_att_config=cfg.encoder.xformers_att_config,
)
def residual_connection(self, x, residual):
return residual + x
def upgrade_state_dict_named(self, state_dict, name):
"""
Rename layer norm states from `...layer_norms.0.weight` to
`...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to
`...final_layer_norm.weight`
"""
layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"}
for old, new in layer_norm_map.items():
for m in ("weight", "bias"):
k = "{}.layer_norms.{}.{}".format(name, old, m)
if k in state_dict:
state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k]
del state_dict[k]
def forward(
self,
x,
encoder_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor] = None,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, seq_len)` where padding elements are indicated by ``1``.
attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`,
where `tgt_len` is the length of output and `src_len` is the
length of input, though here both are equal to `seq_len`.
`attn_mask[tgt_i, src_j] = 1` means that when calculating the
embedding for `tgt_i`, we exclude (mask out) `src_j`. This is
useful for strided self-attention.
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
# anything in original attn_mask = 1, becomes -1e8
# anything in original attn_mask = 0, becomes 0
# Note that we cannot use -inf here, because at some edge cases,
# the attention weight (before softmax) for some padded element in query
# will become -inf, which results in NaN in model parameters
if attn_mask is not None:
attn_mask = attn_mask.masked_fill(
attn_mask.to(torch.bool), -1e8 if x.dtype == torch.float32 else -1e4
)
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask,
need_weights=False,
attn_mask=attn_mask,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
fc_result = x
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.return_fc and not torch.jit.is_scripting():
return x, fc_result
return x
# backward compatible with the legacy argparse format
class TransformerEncoderLayer(TransformerEncoderLayerBase):
def __init__(self, args):
super().__init__(TransformerConfig.from_namespace(args))
self.args = args
def build_self_attention(self, embed_dim, args):
return super().build_self_attention(
embed_dim, TransformerConfig.from_namespace(args)
)
class TransformerDecoderLayerBase(nn.Module):
"""Decoder layer block.
In the original paper each operation (multi-head attention, encoder
attention or FFN) is postprocessed with: `dropout -> add residual ->
layernorm`. In the tensor2tensor code they suggest that learning is more
robust when preprocessing each layer with layernorm and postprocessing with:
`dropout -> add residual`. We default to the approach in the paper, but the
tensor2tensor approach can be enabled by setting
*cfg.decoder.normalize_before* to ``True``.
Args:
args (argparse.Namespace): parsed command-line arguments
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(
self, cfg, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False
):
super().__init__()
self.embed_dim = cfg.decoder.embed_dim
self.dropout_module = FairseqDropout(
cfg.dropout, module_name=self.__class__.__name__
)
self.quant_noise = cfg.quant_noise.pq
self.quant_noise_block_size = cfg.quant_noise.pq_block_size
self.cross_self_attention = cfg.cross_self_attention
self.self_attn = self.build_self_attention(
self.embed_dim,
cfg,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
self.attn_ln = (
LayerNorm(self.embed_dim)
if utils.safe_getattr(cfg, "scale_attn", False)
else None
)
self.nh = self.self_attn.num_heads
self.head_dim = self.self_attn.head_dim
scale_heads = utils.safe_getattr(cfg, "scale_heads", False)
self.c_attn = (
nn.Parameter(torch.ones((self.nh,)), requires_grad=True)
if scale_heads
else None
)
self.activation_fn = utils.get_activation_fn(activation=cfg.activation_fn)
activation_dropout_p = cfg.activation_dropout
if activation_dropout_p == 0:
# for backwards compatibility with models that use cfg.relu_dropout
activation_dropout_p = cfg.relu_dropout or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = cfg.decoder.normalize_before
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = self.build_encoder_attention(self.embed_dim, cfg)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
self.ffn_layernorm = (
LayerNorm(cfg.decoder.ffn_embed_dim)
if utils.safe_getattr(cfg, "scale_fc", False)
else None
)
self.w_resid = (
nn.Parameter(
torch.ones(
self.embed_dim,
),
requires_grad=True,
)
if utils.safe_getattr(cfg, "scale_resids", False)
else None
)
self.fc1 = self.build_fc1(
self.embed_dim,
cfg.decoder.ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
cfg.decoder.ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.final_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
self.need_attn = True
self.onnx_trace = False
def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def build_self_attention(
self, embed_dim, cfg, add_bias_kv=False, add_zero_attn=False
):
return MultiheadAttention(
embed_dim,
cfg.decoder.attention_heads,
dropout=cfg.attention_dropout,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
self_attention=not cfg.cross_self_attention,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
xformers_att_config=cfg.decoder.xformers_att_config,
)
def build_encoder_attention(self, embed_dim, cfg):
return MultiheadAttention(
embed_dim,
cfg.decoder.attention_heads,
kdim=cfg.encoder.embed_dim,
vdim=cfg.encoder.embed_dim,
dropout=cfg.attention_dropout,
encoder_decoder_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
xformers_att_config=cfg.encoder.xformers_att_config,
)
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def residual_connection(self, x, residual):
return residual + x
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
)
if self.c_attn is not None:
tgt_len, bsz = x.size(0), x.size(1)
x = x.view(tgt_len, bsz, self.nh, self.head_dim)
x = torch.einsum("tbhd,h->tbhd", x, self.c_attn)
x = x.reshape(tgt_len, bsz, self.embed_dim)
if self.attn_ln is not None:
x = self.attn_ln(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = self.dropout_module(x)
if self.w_resid is not None:
residual = torch.mul(self.w_resid, residual)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
def make_generation_fast_(self, need_attn: bool = False, **kwargs):
self.need_attn = need_attn
# backward compatible with the legacy argparse format
class TransformerDecoderLayer(TransformerDecoderLayerBase):
def __init__(
self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False
):
super().__init__(
TransformerConfig.from_namespace(args),
no_encoder_attn=no_encoder_attn,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
self.args = args
def build_self_attention(
self, embed_dim, args, add_bias_kv=False, add_zero_attn=False
):
return super().build_self_attention(
embed_dim,
TransformerConfig.from_namespace(args),
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
def build_encoder_attention(self, embed_dim, args):
return super().build_encoder_attention(
embed_dim,
TransformerConfig.from_namespace(args),
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/transformer_layer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Callable, Optional
import torch
import torch.nn as nn
from fairseq import utils
from fairseq.modules import LayerNorm, MultiheadAttention
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
class TransformerSentenceEncoderLayer(nn.Module):
"""
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
models.
"""
def __init__(
self,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
export: bool = False,
q_noise: float = 0.0,
qn_block_size: int = 8,
init_fn: Callable = None,
) -> None:
super().__init__()
if init_fn is not None:
init_fn()
# Initialize parameters
self.embedding_dim = embedding_dim
self.num_attention_heads = num_attention_heads
self.attention_dropout = attention_dropout
self.q_noise = q_noise
self.qn_block_size = qn_block_size
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.activation_dropout_module = FairseqDropout(
activation_dropout, module_name=self.__class__.__name__
)
# Initialize blocks
self.activation_fn = utils.get_activation_fn(activation_fn)
self.self_attn = self.build_self_attention(
self.embedding_dim,
num_attention_heads,
dropout=attention_dropout,
self_attention=True,
q_noise=q_noise,
qn_block_size=qn_block_size,
)
# layer norm associated with the self attention layer
self.self_attn_layer_norm = LayerNorm(self.embedding_dim, export=export)
self.fc1 = self.build_fc1(
self.embedding_dim,
ffn_embedding_dim,
q_noise=q_noise,
qn_block_size=qn_block_size,
)
self.fc2 = self.build_fc2(
ffn_embedding_dim,
self.embedding_dim,
q_noise=q_noise,
qn_block_size=qn_block_size,
)
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = LayerNorm(self.embedding_dim, export=export)
def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def build_self_attention(
self,
embed_dim,
num_attention_heads,
dropout,
self_attention,
q_noise,
qn_block_size,
):
return MultiheadAttention(
embed_dim,
num_attention_heads,
dropout=dropout,
self_attention=True,
q_noise=q_noise,
qn_block_size=qn_block_size,
)
def forward(
self,
x: torch.Tensor,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
):
"""
LayerNorm is applied either before or after the self-attention/ffn
modules similar to the original Transformer implementation.
"""
residual = x
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=False,
attn_mask=self_attn_mask,
)
x = self.dropout_module(x)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = residual + x
x = self.final_layer_norm(x)
return x, attn
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/transformer_sentence_encoder_layer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
def quant_noise(module, p, block_size):
"""
Wraps modules and applies quantization noise to the weights for
subsequent quantization with Iterative Product Quantization as
described in "Training with Quantization Noise for Extreme Model Compression"
Args:
- module: nn.Module
- p: amount of Quantization Noise
- block_size: size of the blocks for subsequent quantization with iPQ
Remarks:
- Module weights must have the right sizes wrt the block size
- Only Linear, Embedding and Conv2d modules are supported for the moment
- For more detail on how to quantize by blocks with convolutional weights,
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
- We implement the simplest form of noise here as stated in the paper
which consists in randomly dropping blocks
"""
# if no quantization noise, don't register hook
if p <= 0:
return module
# supported modules
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
# test whether module.weight has the right sizes wrt block_size
is_conv = module.weight.ndim == 4
# 2D matrix
if not is_conv:
assert (
module.weight.size(1) % block_size == 0
), "Input features must be a multiple of block sizes"
# 4D matrix
else:
# 1x1 convolutions
if module.kernel_size == (1, 1):
assert (
module.in_channels % block_size == 0
), "Input channels must be a multiple of block sizes"
# regular convolutions
else:
k = module.kernel_size[0] * module.kernel_size[1]
assert k % block_size == 0, "Kernel size must be a multiple of block size"
def _forward_pre_hook(mod, input):
# no noise for evaluation
if mod.training:
if not is_conv:
# gather weight and sizes
weight = mod.weight
in_features = weight.size(1)
out_features = weight.size(0)
# split weight matrix into blocks and randomly drop selected blocks
mask = torch.zeros(
in_features // block_size * out_features, device=weight.device
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
else:
# gather weight and sizes
weight = mod.weight
in_channels = mod.in_channels
out_channels = mod.out_channels
# split weight matrix into blocks and randomly drop selected blocks
if mod.kernel_size == (1, 1):
mask = torch.zeros(
int(in_channels // block_size * out_channels),
device=weight.device,
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
else:
mask = torch.zeros(
weight.size(0), weight.size(1), device=weight.device
)
mask.bernoulli_(p)
mask = (
mask.unsqueeze(2)
.unsqueeze(3)
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
)
# scale weights and apply mask
mask = mask.to(
torch.bool
) # x.bool() is not currently supported in TorchScript
s = 1 / (1 - p)
mod.weight.data = s * weight.masked_fill(mask, 0)
module.register_forward_pre_hook(_forward_pre_hook)
return module
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quant_noise.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
import torch
import torch.nn.functional as F
class LocationAttention(nn.Module):
"""
Attention-Based Models for Speech Recognition
https://arxiv.org/pdf/1506.07503.pdf
:param int encoder_dim: # projection-units of encoder
:param int decoder_dim: # units of decoder
:param int attn_dim: attention dimension
:param int conv_dim: # channels of attention convolution
:param int conv_kernel_size: filter size of attention convolution
"""
def __init__(
self,
attn_dim,
encoder_dim,
decoder_dim,
attn_state_kernel_size,
conv_dim,
conv_kernel_size,
scaling=2.0,
):
super(LocationAttention, self).__init__()
self.attn_dim = attn_dim
self.decoder_dim = decoder_dim
self.scaling = scaling
self.proj_enc = nn.Linear(encoder_dim, attn_dim)
self.proj_dec = nn.Linear(decoder_dim, attn_dim, bias=False)
self.proj_attn = nn.Linear(conv_dim, attn_dim, bias=False)
self.conv = nn.Conv1d(
attn_state_kernel_size,
conv_dim,
2 * conv_kernel_size + 1,
padding=conv_kernel_size,
bias=False,
)
self.proj_out = nn.Sequential(nn.Tanh(), nn.Linear(attn_dim, 1))
self.proj_enc_out = None # cache
def clear_cache(self):
self.proj_enc_out = None
def forward(self, encoder_out, encoder_padding_mask, decoder_h, attn_state):
"""
:param torch.Tensor encoder_out: padded encoder hidden state B x T x D
:param torch.Tensor encoder_padding_mask: encoder padding mask
:param torch.Tensor decoder_h: decoder hidden state B x D
:param torch.Tensor attn_prev: previous attention weight B x K x T
:return: attention weighted encoder state (B, D)
:rtype: torch.Tensor
:return: previous attention weights (B x T)
:rtype: torch.Tensor
"""
bsz, seq_len, _ = encoder_out.size()
if self.proj_enc_out is None:
self.proj_enc_out = self.proj_enc(encoder_out)
# B x K x T -> B x C x T
attn = self.conv(attn_state)
# B x C x T -> B x T x C -> B x T x D
attn = self.proj_attn(attn.transpose(1, 2))
if decoder_h is None:
decoder_h = encoder_out.new_zeros(bsz, self.decoder_dim)
dec_h = self.proj_dec(decoder_h).view(bsz, 1, self.attn_dim)
out = self.proj_out(attn + self.proj_enc_out + dec_h).squeeze(2)
out.masked_fill_(encoder_padding_mask, -float("inf"))
w = F.softmax(self.scaling * out, dim=1)
c = torch.sum(encoder_out * w.view(bsz, seq_len, 1), dim=1)
return c, w
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/location_attention.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional
import torch
from numpy.random import uniform
from torch import Tensor
from fairseq.modules import LayerNorm
from fairseq.modules.transformer_layer import TransformerDecoderLayerBase
class AugTransformerDecoderLayerBase(TransformerDecoderLayerBase):
"""Decoder layer block augmented with an additional cross-attention.
This decoder block is processed with the sequence of the following sub-modules.
self-attention -> cross-attention (first) -> cross-attention (second) -> FFN
Args:
cfg (argparse.Namespace): parsed command-line arguments
encoder_attn_merge_type (str, optional): the way to combine outputs from
two cross-attention modules. If "sequential" is set, two cross-attention
modules are stacked sequentially. If "parallel" is set, they are processed
in parallel and combined before feeding it to FFN (default: sequential).
dropnet_ratio (float, optional): a probability to drop each cross-attention
module during training (default: 0.0).
"""
def __init__(
self,
cfg,
add_bias_kv=False,
add_zero_attn=False,
encoder_attn_merge_type="sequential",
dropnet_ratio=0.0,
):
super().__init__(
cfg,
no_encoder_attn=False,
add_bias_kv=add_bias_kv,
add_zero_attn=False,
)
self.encoder_attn = self.build_encoder_attention(self.embed_dim, cfg)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
self.encoder_attn2 = self.build_encoder_attention(self.embed_dim, cfg)
if encoder_attn_merge_type == "sequential":
self.encoder_attn_layer_norm2 = LayerNorm(self.embed_dim, export=cfg.export)
else:
self.encoder_attn_layer_norm2 = None
self.encoder_attn_merge_type = encoder_attn_merge_type
self.dropnet_ratio = dropnet_ratio
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
encoder_out_aug: Optional[torch.Tensor] = None,
encoder_padding_mask2: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
)
if self.c_attn is not None:
tgt_len, bsz = x.size(0), x.size(1)
x = x.view(tgt_len, bsz, self.nh, self.head_dim)
x = torch.einsum("tbhd,h->tbhd", x, self.c_attn)
x = x.reshape(tgt_len, bsz, self.embed_dim)
if self.attn_ln is not None:
x = self.attn_ln(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
assert encoder_out is not None
assert encoder_out_aug is not None
if self.encoder_attn_merge_type == "sequential":
ratios = self.get_dropnet_ratio()
# first encoder attention
if ratios[0] > 0:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
x = ratios[0] * x
# second encoder attention
if ratios[1] > 0:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm2(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn2._set_input_buffer(incremental_state, saved_state)
x, attn2 = self.encoder_attn2(
query=x,
key=encoder_out_aug,
value=encoder_out_aug,
key_padding_mask=encoder_padding_mask2,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm2(x)
x = ratios[1] * x
elif self.encoder_attn_merge_type == "parallel":
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x1, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x2, attn2 = self.encoder_attn2(
query=x,
key=encoder_out_aug,
value=encoder_out_aug,
key_padding_mask=encoder_padding_mask2,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x1 = self.dropout_module(x1)
x2 = self.dropout_module(x2)
ratios = self.get_dropnet_ratio()
x = ratios[0] * x1 + ratios[1] * x2
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
else:
raise NotImplementedError(self.encoder_attn_merge_type)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = self.dropout_module(x)
if self.w_resid is not None:
residual = torch.mul(self.w_resid, residual)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, attn2, self_attn_state
return x, attn, attn2, None
def get_dropnet_ratio(self):
if self.encoder_attn_merge_type == "sequential":
if self.dropnet_ratio > 0:
frand = float(uniform(0, 1))
if frand < self.dropnet_ratio and self.training:
return [2, 0]
elif frand > 1 - self.dropnet_ratio and self.training:
return [0, 2]
else:
return [1, 1]
else:
return [1, 1]
elif self.encoder_attn_merge_type == "parallel":
if self.dropnet_ratio > 0:
frand = float(uniform(0, 1))
if frand < self.dropnet_ratio and self.training:
return [1, 0]
elif frand > 1 - self.dropnet_ratio and self.training:
return [0, 1]
else:
return [0.5, 0.5]
else:
return [0.5, 0.5]
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/transformer_layer_aug.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Layer norm done in fp32 (for fp16 training)
"""
import torch.nn as nn
import torch.nn.functional as F
class Fp32GroupNorm(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.group_norm(
input.float(),
self.num_groups,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/fp32_group_norm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import (
FairseqIncrementalState,
with_incremental_state,
)
from fairseq.modules.fairseq_dropout import FairseqDropout
from torch import Tensor
from .unfold import unfold1d
def DynamicConv(
input_size,
kernel_size=1,
padding_l=None,
num_heads=1,
weight_dropout=0.0,
weight_softmax=False,
renorm_padding=False,
bias=False,
conv_bias=False,
query_size=None,
in_proj=False,
):
if torch.cuda.is_available():
try:
from fairseq.modules.dynamicconv_layer import DynamicconvLayer
return DynamicconvLayer(
input_size,
kernel_size=kernel_size,
padding_l=padding_l,
num_heads=num_heads,
weight_dropout=weight_dropout,
weight_softmax=weight_softmax,
renorm_padding=renorm_padding,
bias=bias,
conv_bias=conv_bias,
query_size=query_size,
)
except ImportError as e:
print(e)
return DynamicConv1dTBC(
input_size,
kernel_size=kernel_size,
padding_l=padding_l,
num_heads=num_heads,
weight_dropout=weight_dropout,
weight_softmax=weight_softmax,
renorm_padding=renorm_padding,
bias=bias,
conv_bias=conv_bias,
query_size=query_size,
)
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
@with_incremental_state
class DynamicConv1dTBC(nn.Module):
"""Dynamic lightweight convolution taking T x B x C inputs
Args:
input_size: # of channels of the input
kernel_size: convolution channels
padding_l: padding to the left when using "same" padding
num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size)
weight_dropout: the drop rate of the DropConnect to drop the weight
weight_softmax: normalize the weight with softmax before the convolution
renorm_padding: re-normalize the filters to ignore the padded part (only the non-padding parts sum up to 1)
bias: use bias
conv_bias: bias of the convolution
query_size: specified when feeding a different input as the query
in_proj: project the input and generate the filter together
Shape:
Input: TxBxC, i.e. (timesteps, batch_size, input_size)
Output: TxBxC, i.e. (timesteps, batch_size, input_size)
Attributes:
weight: the learnable weights of the module of shape
`(num_heads, 1, kernel_size)`
bias: the learnable bias of the module of shape `(input_size)`
"""
def __init__(
self,
input_size,
kernel_size=1,
padding_l=None,
num_heads=1,
weight_dropout=0.0,
weight_softmax=False,
renorm_padding=False,
bias=False,
conv_bias=False,
query_size=None,
in_proj=False,
):
super().__init__()
self.input_size = input_size
self.query_size = input_size if query_size is None else query_size
self.kernel_size = kernel_size
self.padding_l = padding_l
self.num_heads = num_heads
self.weight_dropout_module = FairseqDropout(
weight_dropout, module_name=self.__class__.__name__
)
self.weight_softmax = weight_softmax
self.renorm_padding = renorm_padding
if in_proj:
self.weight_linear = Linear(
self.input_size, self.input_size + num_heads * kernel_size * 1
)
else:
self.weight_linear = Linear(
self.query_size, num_heads * kernel_size * 1, bias=bias
)
if conv_bias:
self.conv_bias = nn.Parameter(torch.Tensor(input_size))
else:
self.conv_bias = None
self.reset_parameters()
@property
def in_proj(self):
return (
self.weight_linear.out_features
== self.input_size + self.num_heads * self.kernel_size
)
def reset_parameters(self):
self.weight_linear.reset_parameters()
if self.conv_bias is not None:
nn.init.constant_(self.conv_bias, 0.0)
def forward(self, x, incremental_state=None, query=None, unfold=None):
"""Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C
args:
x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size)
incremental_state: A dict to keep the state
unfold: unfold the input or not. If not, we use the matrix trick instead
query: use the specified query to predict the conv filters
"""
unfold = (
x.size(0) > 512 if unfold is None else unfold
) # use unfold mode as default for long sequence to save memory
unfold = unfold or (incremental_state is not None)
assert query is None or not self.in_proj
if query is None:
query = x
if unfold:
output = self._forward_unfolded(x, incremental_state, query)
else:
output = self._forward_expanded(x, incremental_state, query)
if self.conv_bias is not None:
output = output + self.conv_bias.view(1, 1, -1)
return output
def _forward_unfolded(self, x, incremental_state, query):
"""The conventional implementation of convolutions.
Unfolding the input by having a window shifting to the right."""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
if self.in_proj:
proj = self.weight_linear(x)
x = proj.narrow(2, 0, self.input_size).contiguous()
weight = (
proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1)
)
else:
weight = self.weight_linear(query).view(T * B * H, -1)
# renorm_padding is only implemented in _forward_expanded
assert not self.renorm_padding or incremental_state is not None
if incremental_state is not None:
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is None:
input_buffer = x.new()
x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
if self.kernel_size > 1:
self._set_input_buffer(
incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
)
x_unfold = x_unfold.view(T * B * H, R, -1)
else:
padding_l = self.padding_l
if K > T and padding_l == K - 1:
weight = weight.narrow(1, K - T, T)
K, padding_l = T, T - 1
# unfold the input: T x B x C --> T' x B x C x K
x_unfold = unfold1d(x, K, padding_l, 0)
x_unfold = x_unfold.view(T * B * H, R, K)
if self.weight_softmax and not self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = weight.narrow(1, 0, K)
if incremental_state is not None:
weight = weight[:, -x_unfold.size(2) :]
K = weight.size(1)
if self.weight_softmax and self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = self.weight_dropout_module(weight, inplace=False)
output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1
output = output.view(T, B, C)
return output
def _forward_expanded(self, x, incremental_stat, query):
"""Turn the convolution filters into band matrices and do matrix multiplication.
This is faster when the sequence is short, but less memory efficient.
This is not used in the decoder during inference.
"""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
if self.in_proj:
proj = self.weight_linear(x)
x = proj.narrow(2, 0, self.input_size).contiguous()
weight = (
proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1)
)
else:
weight = self.weight_linear(query).view(T * B * H, -1)
if not self.renorm_padding:
if self.weight_softmax:
weight = F.softmax(weight, dim=1)
weight = self.weight_dropout_module(weight, inplace=False)
weight = weight.narrow(1, 0, K).contiguous()
weight = weight.view(T, B * H, K).transpose(0, 1)
x = x.view(T, B * H, R).transpose(0, 1)
if self.weight_softmax and self.renorm_padding:
# turn the convolution filters into band matrices
weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf"))
weight_expanded.as_strided(
(B * H, T, K), (T * (T + K - 1), T + K, 1)
).copy_(weight)
weight_expanded = weight_expanded.narrow(2, self.padding_l, T)
# normalize the weight over valid positions like self-attention
weight_expanded = F.softmax(weight_expanded, dim=2)
weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False)
else:
P = self.padding_l
# For efficiency, we cut the kernel size and reduce the padding when the kernel is larger than the length
if K > T and P == K - 1:
weight = weight.narrow(2, K - T, T)
K, P = T, T - 1
# turn the convolution filters into band matrices
weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False)
weight_expanded.as_strided(
(B * H, T, K), (T * (T + K - 1), T + K, 1)
).copy_(weight)
weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T
output = torch.bmm(weight_expanded, x)
output = output.transpose(0, 1).contiguous().view(T, B, C)
return output
def reorder_incremental_state(self, incremental_state, new_order):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
input_buffer = input_buffer.index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return utils.get_incremental_state(self, incremental_state, "input_buffer")
def _set_input_buffer(self, incremental_state, new_buffer):
return utils.set_incremental_state(
self, incremental_state, "input_buffer", new_buffer
)
def extra_repr(self):
s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, conv_bias={}, renorm_padding={}, in_proj={}".format(
self.input_size,
self.kernel_size,
self.padding_l,
self.num_heads,
self.weight_softmax,
self.conv_bias is not None,
self.renorm_padding,
self.in_proj,
)
if self.query_size != self.input_size:
s += ", query_size={}".format(self.query_size)
if self.weight_dropout_module.p > 0.0:
s += ", weight_dropout={}".format(self.weight_dropout_module.p)
return s
class DynamicConv_scripatable(nn.Module, FairseqIncrementalState):
"""Dynamic lightweight convolution taking T x B x C inputs
Args:
input_size: # of channels of the input
kernel_size: convolution channels
padding_l: padding to the left when using "same" padding
num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size)
weight_dropout: the drop rate of the DropConnect to drop the weight
weight_softmax: normalize the weight with softmax before the convolution
renorm_padding: re-normalize the filters to ignore the padded part (only the non-padding parts sum up to 1)
bias: use bias
conv_bias: bias of the convolution
query_size: specified when feeding a different input as the query
in_proj: project the input and generate the filter together
Shape:
Input: TxBxC, i.e. (timesteps, batch_size, input_size)
Output: TxBxC, i.e. (timesteps, batch_size, input_size)
Attributes:
weight: the learnable weights of the module of shape
`(num_heads, 1, kernel_size)`
bias: the learnable bias of the module of shape `(input_size)`
"""
def __init__(
self,
input_size,
kernel_size=1,
padding_l=None,
num_heads=1,
weight_dropout=0.0,
weight_softmax=False,
renorm_padding=False,
bias=False,
conv_bias=False,
query_size=None,
in_proj=False,
):
super().__init__()
self.input_size = input_size
self.query_size = input_size if query_size is None else query_size
self.kernel_size = kernel_size
self.padding_l = padding_l
self.num_heads = num_heads
self.weight_dropout_module = FairseqDropout(
weight_dropout, module_name=self.__class__.__name__
)
self.weight_softmax = weight_softmax
self.renorm_padding = renorm_padding
if in_proj:
self.weight_linear = Linear(
self.input_size, self.input_size + num_heads * kernel_size * 1
)
else:
self.weight_linear = Linear(
self.query_size, num_heads * kernel_size * 1, bias=bias
)
self.in_proj = (
self.weight_linear.out_features
== self.input_size + self.num_heads * self.kernel_size
)
self.has_conv_bias = conv_bias
self.conv_bias = nn.Parameter(torch.Tensor(input_size).view(1, 1, -1))
self.init_incremental_state()
self.reset_parameters()
def reset_parameters(self):
self.weight_linear.reset_parameters()
if self.has_conv_bias:
nn.init.constant_(self.conv_bias, 0.0)
def forward(
self,
x,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
query: Optional[Tensor] = None,
):
"""Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C
args:
x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size)
incremental_state: A dict to keep the state
unfold: unfold the input or not. If not, we use the matrix trick instead
query: use the specified query to predict the conv filters
"""
assert query is None or not self.in_proj
if query is None:
query = x
output = self._forward_unfolded(x, incremental_state, query)
if self.has_conv_bias:
output = output + self.conv_bias
return output
def _forward_unfolded(
self,
x,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
query,
):
"""The conventional implementation of convolutions.
Unfolding the input by having a window shifting to the right."""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
TxBxH = T * B * H
if self.in_proj:
proj = self.weight_linear(x)
x = proj.narrow(2, 0, self.input_size).contiguous()
weight = proj.narrow(2, self.input_size, H * K).contiguous().view(TxBxH, -1)
else:
weight = self.weight_linear(query).view(TxBxH, -1)
# renorm_padding is only implemented in _forward_expanded
assert not self.renorm_padding or incremental_state is not None
if incremental_state is not None:
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
else:
x_unfold = x.unsqueeze(3).clone()
if self.kernel_size > 1:
self._set_input_buffer(
incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
)
x_unfold = x_unfold.view(TxBxH, R, -1)
else:
padding_l = self.padding_l
if K > T and padding_l == K - 1:
weight = weight.narrow(1, K - T, T)
K, padding_l = T, T - 1
# unfold the input: T x B x C --> T' x B x C x K
x_unfold = unfold1d(x, K, padding_l, 0.0)
x_unfold = x_unfold.view(TxBxH, R, K)
if self.weight_softmax and not self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = weight.narrow(1, 0, K)
if incremental_state is not None:
weight = weight[:, -(x_unfold.size(2)) :]
K = weight.size(1)
if self.weight_softmax and self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = self.weight_dropout_module(weight, inplace=False)
output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T x B x H x R x 1
output = output.view(T, B, C)
return output
def reorder_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
new_order: Tensor,
):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
input_buffer = input_buffer.index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
):
result = self.get_incremental_state(incremental_state, "input_buffer")
if result is not None and "input_buffer" in result:
return result["input_buffer"]
else:
return None
def _set_input_buffer(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
new_buffer: Optional[Tensor],
):
result = self.set_incremental_state(
incremental_state, "input_buffer", {"input_buffer": new_buffer}
)
if result is not None:
incremental_state = result
return incremental_state
def extra_repr(self):
s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, conv_bias={}, renorm_padding={}, in_proj={}".format( # noqa
self.input_size,
self.kernel_size,
self.padding_l,
self.num_heads,
self.weight_softmax,
self.conv_bias is not None,
self.renorm_padding,
self.in_proj,
)
if self.query_size != self.input_size:
s += ", query_size={}".format(self.query_size)
if self.weight_dropout_module.p > 0.0:
s += ", weight_dropout={}".format(self.weight_dropout_module.p)
return s
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/dynamic_convolution.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import List, Optional
import torch.nn as nn
import torch.nn.functional as F
logger = logging.getLogger(__name__)
class FairseqDropout(nn.Module):
def __init__(self, p, module_name=None):
super().__init__()
self.p = p
self.module_name = module_name
self.apply_during_inference = False
def forward(self, x, inplace: bool = False):
if self.p > 0 and (self.training or self.apply_during_inference):
return F.dropout(x, p=self.p, training=True, inplace=inplace)
else:
return x
def make_generation_fast_(
self,
name: str,
retain_dropout: bool = False,
retain_dropout_modules: Optional[List[str]] = None,
**kwargs
):
if retain_dropout:
if retain_dropout_modules is not None and self.module_name is None:
logger.warning(
"Cannot enable dropout during inference for module {} "
"because module_name was not set".format(name)
)
elif (
retain_dropout_modules is None # if None, apply to all modules
or self.module_name in retain_dropout_modules
):
logger.info(
"Enabling dropout during inference for module: {}".format(name)
)
self.apply_during_inference = True
else:
logger.info("Disabling dropout for module: {}".format(name))
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/fairseq_dropout.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
class GumbelVectorQuantizer(nn.Module):
def __init__(
self,
dim,
num_vars,
temp,
groups,
combine_groups,
vq_dim,
time_first,
activation=nn.GELU(),
weight_proj_depth=1,
weight_proj_factor=1,
hard=True,
std=0,
):
"""Vector quantization using gumbel softmax
Args:
dim: input dimension (channels)
num_vars: number of quantized vectors per group
temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor)
groups: number of groups for vector quantization
combine_groups: whether to use the vectors for all groups
vq_dim: dimensionality of the resulting quantized vector
time_first: if true, expect input in BxTxC format, otherwise in BxCxT
activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1
weight_proj_depth: number of layers (with activation in between) to project input before computing logits
weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of
projections by this factor
"""
super().__init__()
self.groups = groups
self.combine_groups = combine_groups
self.input_dim = dim
self.num_vars = num_vars
self.time_first = time_first
self.hard = hard
assert (
vq_dim % groups == 0
), f"dim {vq_dim} must be divisible by groups {groups} for concatenation"
var_dim = vq_dim // groups
num_groups = groups if not combine_groups else 1
self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * num_vars, var_dim))
if std == 0:
nn.init.uniform_(self.vars)
else:
nn.init.normal_(self.vars, mean=0, std=std)
if weight_proj_depth > 1:
def block(input_dim, output_dim):
return nn.Sequential(nn.Linear(input_dim, output_dim), activation)
inner_dim = self.input_dim * weight_proj_factor
self.weight_proj = nn.Sequential(
*[
block(self.input_dim if i == 0 else inner_dim, inner_dim)
for i in range(weight_proj_depth - 1)
],
nn.Linear(inner_dim, groups * num_vars),
)
else:
self.weight_proj = nn.Linear(self.input_dim, groups * num_vars)
nn.init.normal_(self.weight_proj.weight, mean=0, std=1)
nn.init.zeros_(self.weight_proj.bias)
if isinstance(temp, str):
import ast
temp = ast.literal_eval(temp)
assert len(temp) == 3, f"{temp}, {len(temp)}"
self.max_temp, self.min_temp, self.temp_decay = temp
self.curr_temp = self.max_temp
self.codebook_indices = None
def set_num_updates(self, num_updates):
self.curr_temp = max(
self.max_temp * self.temp_decay**num_updates, self.min_temp
)
def get_codebook_indices(self):
if self.codebook_indices is None:
from itertools import product
p = [range(self.num_vars)] * self.groups
inds = list(product(*p))
self.codebook_indices = torch.tensor(
inds, dtype=torch.long, device=self.vars.device
).flatten()
if not self.combine_groups:
self.codebook_indices = self.codebook_indices.view(
self.num_vars**self.groups, -1
)
for b in range(1, self.groups):
self.codebook_indices[:, b] += self.num_vars * b
self.codebook_indices = self.codebook_indices.flatten()
return self.codebook_indices
def codebook(self):
indices = self.get_codebook_indices()
return (
self.vars.squeeze(0)
.index_select(0, indices)
.view(self.num_vars**self.groups, -1)
)
def sample_from_codebook(self, b, n):
indices = self.get_codebook_indices()
indices = indices.view(-1, self.groups)
cb_size = indices.size(0)
assert (
n < cb_size
), f"sample size {n} is greater than size of codebook {cb_size}"
sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,))
indices = indices[sample_idx]
z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b, n, -1)
return z
def to_codebook_index(self, indices):
res = indices.new_full(indices.shape[:-1], 0)
for i in range(self.groups):
exponent = self.groups - i - 1
res += indices[..., i] * (self.num_vars**exponent)
return res
def forward_idx(self, x):
res = self.forward(x, produce_targets=True)
return res["x"], res["targets"]
def forward(self, x, produce_targets=False):
result = {"num_vars": self.num_vars * self.groups}
if not self.time_first:
x = x.transpose(1, 2)
bsz, tsz, fsz = x.shape
x = x.reshape(-1, fsz)
x = self.weight_proj(x)
x = x.view(bsz * tsz * self.groups, -1)
with torch.no_grad():
_, k = x.max(-1)
hard_x = (
x.new_zeros(*x.shape)
.scatter_(-1, k.view(-1, 1), 1.0)
.view(bsz * tsz, self.groups, -1)
)
hard_probs = torch.mean(hard_x.float(), dim=0)
result["code_perplexity"] = torch.exp(
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1)
).sum()
avg_probs = torch.softmax(
x.view(bsz * tsz, self.groups, -1).float(), dim=-1
).mean(dim=0)
result["prob_perplexity"] = torch.exp(
-torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1)
).sum()
result["temp"] = self.curr_temp
if self.training:
x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=self.hard).type_as(
x
)
else:
x = hard_x
x = x.view(bsz * tsz, -1)
vars = self.vars
if self.combine_groups:
vars = vars.repeat(1, self.groups, 1)
if produce_targets:
result["targets"] = (
x.view(bsz * tsz * self.groups, -1)
.argmax(dim=-1)
.view(bsz, tsz, self.groups)
.detach()
)
x = x.unsqueeze(-1) * vars
x = x.view(bsz * tsz, self.groups, self.num_vars, -1)
x = x.sum(-2)
x = x.view(bsz, tsz, -1)
if not self.time_first:
x = x.transpose(1, 2) # BTC -> BCT
result["x"] = x
return result
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/gumbel_vector_quantizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from fairseq.modules import Fp32GroupNorm
class KmeansVectorQuantizer(nn.Module):
def __init__(
self, dim, num_vars, groups, combine_groups, vq_dim, time_first, gamma=0.25
):
"""Vector quantization using straight pass-through estimator (i.e. kmeans)
Args:
dim: input dimension (channels)
num_vars: number of quantized vectors per group
groups: number of groups for vector quantization
combine_groups: whether to use the vectors for all groups
vq_dim: dimensionality of the resulting quantized vector
time_first: if true, expect input in BxTxC format, otherwise in BxCxT
gamma: commitment loss coefficient
"""
super().__init__()
self.groups = groups
self.combine_groups = combine_groups
self.input_dim = dim
self.num_vars = num_vars
self.vq_dim = vq_dim
self.time_first = time_first
assert (
vq_dim % groups == 0
), f"dim {vq_dim} must be divisible by groups {groups} for concatenation"
self.var_dim = vq_dim // groups
num_groups = groups if not combine_groups else 1
self.embedding = nn.Parameter(
0.01 * torch.randn(num_vars, num_groups, self.var_dim)
)
self.projection = nn.Sequential(
nn.Conv1d(dim, dim, kernel_size=1, groups=groups, bias=False),
Fp32GroupNorm(groups, dim),
)
self.gamma = gamma
self.mse_mean = nn.MSELoss(reduction="mean")
def _pass_grad(self, x, y):
"""Manually set gradient for backward pass.
for y = f(x), ensure that during the backward pass,
dL/dy = dL/dx regardless of f(x).
Returns:
y, with the gradient forced to be dL/dy = dL/dx.
"""
return y.detach() + (x - x.detach())
@property
def expand_embedding(self):
if self.combine_groups:
return self.embedding.expand(self.num_vars, self.groups, self.var_dim)
return self.embedding
def forward_idx(self, x):
res = self.forward(x, produce_targets=True)
return res["x"], res["targets"]
def forward(self, x, produce_targets=False):
result = {"num_vars": self.num_vars}
if self.time_first:
x = x.transpose(1, 2)
bsz, fsz, tsz = x.shape
ze = self.projection(x)
ze_ = ze.view(bsz, self.groups, self.var_dim, tsz).permute(0, 3, 1, 2)
d = (
(ze_.unsqueeze(0) - self.expand_embedding.unsqueeze(1).unsqueeze(1))
.view(self.num_vars, bsz, tsz, self.groups, -1)
.norm(dim=-1, p=2)
)
idx = d.argmin(dim=0)
zq = (
torch.stack(
[
self.expand_embedding[idx[..., group], group]
for group in range(self.groups)
],
dim=-2,
)
.view(bsz, tsz, self.groups * self.var_dim)
.permute(0, 2, 1)
)
assert ze.shape == zq.shape, (ze.shape, zq.shape)
x = self._pass_grad(ze, zq)
with torch.no_grad():
hard_x = (
idx.new_zeros(bsz * tsz * self.groups, self.num_vars)
.scatter_(-1, idx.view(-1, 1), 1.0)
.view(bsz * tsz, self.groups, -1)
)
hard_probs = torch.mean(hard_x.float(), dim=0)
result["code_perplexity"] = torch.exp(
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1)
).sum()
if produce_targets:
result["targets"] = idx
if self.time_first:
x = x.transpose(1, 2) # BCT -> BTC
result["x"] = x
ze = ze.float()
zq = zq.float()
latent_loss = self.mse_mean(zq, ze.detach())
commitment_loss = self.mse_mean(ze, zq.detach())
result["kmeans_loss"] = latent_loss + self.gamma * commitment_loss
return result
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/kmeans_vector_quantizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
class LSTMCellWithZoneOut(nn.Module):
"""
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
https://arxiv.org/abs/1606.01305
"""
def __init__(
self, prob: float, input_size: int, hidden_size: int, bias: bool = True
):
super(LSTMCellWithZoneOut, self).__init__()
self.lstm_cell = nn.LSTMCell(input_size, hidden_size, bias=bias)
self.prob = prob
if prob > 1.0 or prob < 0.0:
raise ValueError(
"zoneout probability must be in the range from " "0.0 to 1.0."
)
def zoneout(self, h, next_h, prob):
if isinstance(h, tuple):
return tuple([self.zoneout(h[i], next_h[i], prob) for i in range(len(h))])
if self.training:
mask = h.new_zeros(*h.size()).bernoulli_(prob)
return mask * h + (1 - mask) * next_h
return prob * h + (1 - prob) * next_h
def forward(self, x, h):
return self.zoneout(h, self.lstm_cell(x, h), self.prob)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/lstm_cell_with_zoneout.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
import torch
from torch import nn
from fairseq.modules.quant_noise import quant_noise
class AdaptiveInput(nn.Module):
def __init__(
self,
vocab_size: int,
padding_idx: int,
initial_dim: int,
factor: float,
output_dim: int,
cutoff: List[int],
q_noise: float = 0,
qn_block_size: int = 8,
):
super().__init__()
if vocab_size > cutoff[-1]:
cutoff = cutoff + [vocab_size]
else:
assert (
vocab_size == cutoff[-1]
), "cannot specify cutoff larger than vocab size"
self.cutoff = cutoff
self.embedding_dim = output_dim
self.padding_idx = padding_idx
self.embeddings = nn.ModuleList()
for i in range(len(self.cutoff)):
prev = self.cutoff[i - 1] if i > 0 else 0
size = self.cutoff[i] - prev
dim = int(initial_dim // (factor**i))
seq = nn.Sequential(
nn.Embedding(size, dim, self.padding_idx),
quant_noise(
nn.Linear(dim, output_dim, bias=False), q_noise, qn_block_size
),
)
self.embeddings.append(seq)
self.padding_idx = None
self.padding_idx = padding_idx
def init_weights(m):
if isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0, std=m.weight.shape[1] ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
elif hasattr(m, "weight"):
nn.init.xavier_uniform_(m.weight)
self.apply(init_weights)
self.register_buffer("_float_tensor", torch.FloatTensor(1))
def weights_for_band(self, band: int):
return self.embeddings[band][0].weight, self.embeddings[band][1].weight
def forward(self, input: torch.Tensor):
result = self._float_tensor.new(input.shape + (self.embedding_dim,))
for i in range(len(self.cutoff)):
mask = input.lt(self.cutoff[i])
if i > 0:
mask.mul_(input.ge(self.cutoff[i - 1]))
chunk_input = input[mask] - self.cutoff[i - 1]
else:
chunk_input = input[mask]
if mask.any():
result[mask] = self.embeddings[i](chunk_input)
return result
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/adaptive_input.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.unfold import unfold1d
def LightweightConv(
input_size,
kernel_size=1,
padding_l=None,
num_heads=1,
weight_dropout=0.0,
weight_softmax=False,
bias=False,
):
if torch.cuda.is_available():
try:
from fairseq.modules.lightconv_layer import LightconvLayer
return LightconvLayer(
input_size,
kernel_size=kernel_size,
padding_l=padding_l,
num_heads=num_heads,
weight_dropout=weight_dropout,
weight_softmax=weight_softmax,
bias=bias,
)
except ImportError as e:
print(e)
return LightweightConv1dTBC(
input_size,
kernel_size=kernel_size,
padding_l=padding_l,
num_heads=num_heads,
weight_dropout=weight_dropout,
weight_softmax=weight_softmax,
bias=bias,
)
class LightweightConv1d(nn.Module):
"""Lightweight Convolution assuming the input is BxCxT
This is just an example that explains LightConv clearer than the TBC version.
We don't use this module in the model.
Args:
input_size: # of channels of the input and output
kernel_size: convolution channels
padding: padding
num_heads: number of heads used. The weight is of shape
`(num_heads, 1, kernel_size)`
weight_softmax: normalize the weight with softmax before the convolution
Shape:
Input: BxCxT, i.e. (batch_size, input_size, timesteps)
Output: BxCxT, i.e. (batch_size, input_size, timesteps)
Attributes:
weight: the learnable weights of the module of shape
`(num_heads, 1, kernel_size)`
bias: the learnable bias of the module of shape `(input_size)`
"""
def __init__(
self,
input_size,
kernel_size=1,
padding=0,
num_heads=1,
weight_softmax=False,
bias=False,
weight_dropout=0.0,
):
super().__init__()
self.input_size = input_size
self.kernel_size = kernel_size
self.num_heads = num_heads
self.padding = padding
self.weight_softmax = weight_softmax
self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size))
if bias:
self.bias = nn.Parameter(torch.Tensor(input_size))
else:
self.bias = None
self.weight_dropout_module = FairseqDropout(
weight_dropout, module_name=self.__class__.__name__
)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
def forward(self, input):
"""
input size: B x C x T
output size: B x C x T
"""
B, C, T = input.size()
H = self.num_heads
weight = self.weight
if self.weight_softmax:
weight = F.softmax(weight, dim=-1)
weight = self.weight_dropout_module(weight)
# Merge every C/H entries into the batch dimension (C = self.input_size)
# B x C x T -> (B * C/H) x H x T
# One can also expand the weight to C x 1 x K by a factor of C/H
# and do not reshape the input instead, which is slow though
input = input.view(-1, H, T)
output = F.conv1d(input, weight, padding=self.padding, groups=self.num_heads)
output = output.view(B, C, T)
if self.bias is not None:
output = output + self.bias.view(1, -1, 1)
return output
@with_incremental_state
class LightweightConv1dTBC(nn.Module):
"""Lightweight Convolution assuming the input is TxBxC
Args:
input_size: # of channels of the input
kernel_size: convolution channels
padding_l: padding to the left when using "same" padding
num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size)
weight_dropout: the drop rate of the DropConnect to drop the weight
weight_softmax: normalize the weight with softmax before the convolution
bias: use bias
Shape:
Input: TxBxC, i.e. (timesteps, batch_size, input_size)
Output: TxBxC, i.e. (timesteps, batch_size, input_size)
Attributes:
weight: the learnable weights of the module of shape
`(num_heads, 1, kernel_size)`
bias: the learnable bias of the module of shape `(input_size)`
"""
def __init__(
self,
input_size,
kernel_size=1,
padding_l=None,
num_heads=1,
weight_dropout=0.0,
weight_softmax=False,
bias=False,
):
super().__init__()
self.input_size = input_size
self.kernel_size = kernel_size
self.padding_l = padding_l
self.num_heads = num_heads
self.weight_dropout_module = FairseqDropout(
weight_dropout, module_name=self.__class__.__name__
)
self.weight_softmax = weight_softmax
self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size))
if bias:
self.bias = nn.Parameter(torch.Tensor(input_size))
else:
self.bias = None
self.reset_parameters()
self.onnx_trace = False
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
def forward(self, x, incremental_state=None, unfold=False):
"""Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C
args:
x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size)
incremental_state: A dict to keep the state
unfold: unfold the input or not. If not, we use the matrix trick instead
"""
unfold = unfold or (incremental_state is not None)
if unfold:
output = self._forward_unfolded(x, incremental_state)
else:
output = self._forward_expanded(x, incremental_state)
if self.bias is not None:
output = output + self.bias.view(1, 1, -1)
return output
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def _forward_unfolded(self, x, incremental_state):
"""The conventional implementation of convolutions.
Unfolding the input by having a window shifting to the right."""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
weight = self.weight.view(H, K)
if incremental_state is not None:
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is None:
input_buffer = x.new()
x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
if self.kernel_size > 1:
self._set_input_buffer(
incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
)
x_unfold = x_unfold.view(T * B * H, R, -1)
else:
# unfold the input: T x B x C --> T' x B x C x K
x_unfold = unfold1d(x, self.kernel_size, self.padding_l, 0)
x_unfold = x_unfold.view(T * B * H, R, K)
if self.weight_softmax:
weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as(
weight
)
if incremental_state is not None:
weight = weight[:, -x_unfold.size(2) :]
K = weight.size(1)
weight = (
weight.view(1, H, K).expand(T * B, H, K).contiguous().view(T * B * H, K, 1)
)
weight = self.weight_dropout_module(weight)
output = torch.bmm(x_unfold, weight) # T*B*H x R x 1
output = output.view(T, B, C)
return output
def _forward_expanded(self, x, incremental_state):
"""Turn the convolution filters into band matrices and do matrix multiplication.
This is faster when the sequence is short, but less memory efficient.
This is not used in the decoder during inference.
"""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
weight = self.weight.view(H, K)
if self.weight_softmax:
weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as(
weight
)
weight = weight.view(1, H, K).expand(T * B, H, K).contiguous()
weight = weight.view(T, B * H, K).transpose(0, 1)
x = x.view(T, B * H, R).transpose(0, 1)
P = self.padding_l
if K > T and P == K - 1:
weight = weight.narrow(2, K - T, T)
K, P = T, T - 1
# turn the convolution filters into band matrices
weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False)
weight_expanded.as_strided((B * H, T, K), (T * (T + K - 1), T + K, 1)).copy_(
weight
)
weight_expanded = weight_expanded.narrow(2, P, T)
weight_expanded = self.weight_dropout_module(weight_expanded)
output = torch.bmm(weight_expanded, x)
output = output.transpose(0, 1).contiguous().view(T, B, C)
return output
def reorder_incremental_state(self, incremental_state, new_order):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
input_buffer = input_buffer.index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return utils.get_incremental_state(self, incremental_state, "input_buffer")
def _set_input_buffer(self, incremental_state, new_buffer):
return utils.set_incremental_state(
self, incremental_state, "input_buffer", new_buffer
)
def extra_repr(self):
s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, bias={}".format(
self.input_size,
self.kernel_size,
self.padding_l,
self.num_heads,
self.weight_softmax,
self.bias is not None,
)
if self.weight_dropout_module.p > 0.0:
s += ", weight_dropout={}".format(self.weight_dropout_module.p)
return s
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/lightweight_convolution.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
import torch
class ScalarBias(torch.autograd.Function):
"""
Adds a vector of scalars, used in self-attention mechanism to allow
the model to optionally attend to this vector instead of the past
"""
@staticmethod
def forward(ctx, input, dim, bias_init):
size = list(input.size())
size[dim] += 1
output = input.new(*size).fill_(bias_init)
output.narrow(dim, 1, size[dim] - 1).copy_(input)
ctx.dim = dim
return output
@staticmethod
def backward(ctx, grad):
return grad.narrow(ctx.dim, 1, grad.size(ctx.dim) - 1), None, None
def scalar_bias(input, dim, bias_init=0):
return ScalarBias.apply(input, dim, bias_init)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/scalar_bias.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
from .learned_positional_embedding import LearnedPositionalEmbedding
from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding
def PositionalEmbedding(
num_embeddings: int,
embedding_dim: int,
padding_idx: int,
learned: bool = False,
):
if learned:
# if padding_idx is specified then offset the embedding ids by
# this index and adjust num_embeddings appropriately
# TODO: The right place for this offset would be inside
# LearnedPositionalEmbedding. Move this there for a cleaner implementation.
if padding_idx is not None:
num_embeddings = num_embeddings + padding_idx + 1
m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5)
if padding_idx is not None:
nn.init.constant_(m.weight[padding_idx], 0)
else:
m = SinusoidalPositionalEmbedding(
embedding_dim,
padding_idx,
init_size=num_embeddings + padding_idx + 1,
)
return m
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/positional_embedding.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
from .multihead_attention import MultiheadAttention
class SparseMultiheadAttention(MultiheadAttention):
"""Sparse Multi-Headed Attention.
"Generating Long Sequences with Sparse Transformers". Implements
fixed factorized self attention, where l=stride and c=expressivity.
A(1) includes all words in the stride window and A(2) takes a summary of c
words from the end of each stride window.
If is_bidirectional=False, we do not include any words past the current word,
as in the paper.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
stride=32,
expressivity=8,
is_bidirectional=True,
):
super().__init__(
embed_dim,
num_heads,
kdim,
vdim,
dropout,
bias,
add_bias_kv,
add_zero_attn,
self_attention,
encoder_decoder_attention,
)
self.is_bidirectional = is_bidirectional
self.stride = stride
self.expressivity = expressivity
assert self.stride > 0 and self.stride >= self.expressivity
# Used for Ai(2) calculations - beginning of [l-c, l] range
def compute_checkpoint(self, word_index):
if word_index % self.stride == 0 and word_index != 0:
checkpoint_index = word_index - self.expressivity
else:
checkpoint_index = (
math.floor(word_index / self.stride) * self.stride
+ self.stride
- self.expressivity
)
return checkpoint_index
# Computes Ai(2)
def compute_subset_summaries(self, absolute_max):
checkpoint_index = self.compute_checkpoint(0)
subset_two = set()
while checkpoint_index <= absolute_max - 1:
summary = set(
range(
checkpoint_index,
min(checkpoint_index + self.expressivity + 1, absolute_max),
)
)
subset_two = subset_two.union(summary)
checkpoint_index = self.compute_checkpoint(checkpoint_index + self.stride)
return subset_two
# Sparse Transformer Fixed Attention Pattern: https://arxiv.org/pdf/1904.10509.pdf
def compute_fixed_attention_subset(self, word_index, tgt_len):
# +1s account for range function; [min, max) -> [min, max]
if not self.is_bidirectional:
absolute_max = word_index + 1
else:
absolute_max = tgt_len
# Subset 1 - whole window
rounded_index = (
math.floor((word_index + self.stride) / self.stride) * self.stride
)
if word_index % self.stride == 0 and word_index != 0:
subset_one = set(
range(word_index - self.stride, min(absolute_max, word_index + 1))
)
else:
subset_one = set(
range(
max(0, rounded_index - self.stride),
min(absolute_max, rounded_index + 1),
)
)
# Subset 2 - summary per window
# If bidirectional, subset 2 is the same for every index
subset_two = set()
if not self.is_bidirectional:
subset_two = self.compute_subset_summaries(absolute_max)
return subset_one.union(subset_two)
# Compute sparse mask - if bidirectional, can pre-compute and store
def buffered_sparse_mask(self, tensor, tgt_len, src_len):
assert tgt_len > self.stride
sparse_mask = torch.empty((tgt_len, src_len)).float().fill_(float("-inf"))
# If bidirectional, subset 2 is the same for every index
subset_summaries = set()
if self.is_bidirectional:
subset_summaries = self.compute_subset_summaries(tgt_len)
for i in range(tgt_len):
fixed_attention_subset = self.compute_fixed_attention_subset(i, tgt_len)
fixed_attention_subset = fixed_attention_subset.union(subset_summaries)
included_word_indices = torch.LongTensor(list(fixed_attention_subset))
sparse_mask[i].index_fill_(0, included_word_indices, 0)
return sparse_mask.type_as(tensor)
def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz):
sparse_mask = self.buffered_sparse_mask(attn_weights, tgt_len, src_len)
sparse_mask = sparse_mask.unsqueeze(0).expand(
bsz * self.num_heads, tgt_len, src_len
)
attn_weights += sparse_mask
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/sparse_multihead_attention.py |
#!/usr/bin/env python3
"""
Used for EMA tracking a given pytorch module. The user is responsible for calling step()
and setting the appropriate decay
"""
import copy
from dataclasses import dataclass, field
import logging
import torch
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
try:
from amp_C import multi_tensor_l2norm
multi_tensor_l2norm_available = True
except ImportError:
multi_tensor_l2norm_available = False
logger = logging.getLogger(__name__)
@dataclass
class EMAModuleConfig(FairseqDataclass):
ema_decay: float = field(
default=0.9999, metadata={"help": "decay for exponential moving average model"}
)
ema_fp32: bool = field(
default=False,
metadata={"help": "If true, store EMA model in fp32 even if model is in fp16"},
)
add_missing_params: bool = True
log_norms: bool = False
class EMAModule:
"""Exponential Moving Average of Fairseq Models"""
def __init__(
self,
model,
config: EMAModuleConfig,
copy_model=True,
device=None,
skip_keys=None,
):
"""
@param model model to initialize the EMA with
@param config EMAConfig object with configuration like
ema_decay, ema_update_freq, ema_fp32
@param device If provided, copy EMA to this device (e.g. gpu).
Otherwise EMA is in the same device as the model.
"""
self.config = config
if copy_model:
self.model = copy.deepcopy(model)
self.model.requires_grad_(False)
else:
self.model = model
self.config = config
self.decay = config.ema_decay
self.skip_keys = skip_keys or set()
self.add_missing_params = config.add_missing_params
self.fp32_params = {}
if device is not None:
logging.info(f"Copying EMA model to device {device}")
self.model = self.model.to(device=device)
if self.config.ema_fp32:
self.build_fp32_params()
self.log_norms = config.log_norms and multi_tensor_l2norm_available
self.logs = {}
def build_fp32_params(self, state_dict=None):
"""
Store a copy of the EMA params in fp32.
If state dict is passed, the EMA params is copied from
the provided state dict. Otherwise, it is copied from the
current EMA model parameters.
"""
if not self.config.ema_fp32:
raise RuntimeError(
"build_fp32_params should not be called if ema_fp32=False. "
"Use ema_fp32=True if this is really intended."
)
if state_dict is None:
state_dict = self.model.state_dict()
def _to_float(t):
return t.float() if torch.is_floating_point(t) else t
for param_key in state_dict:
if param_key in self.fp32_params:
if param_key == "__sq_mom":
self.fp32_params[param_key] = state_dict[param_key]
else:
self.fp32_params[param_key].copy_(state_dict[param_key])
else:
self.fp32_params[param_key] = _to_float(state_dict[param_key])
if "__sq_mom" in self.fp32_params:
self.fp32_params["__sq_mom"][param_key] = torch.zeros_like(
self.fp32_params[param_key]
)
def restore(self, state_dict, build_fp32_params=False):
"""Load data from a model spec into EMA model"""
self.model.load_state_dict(state_dict, strict=False)
if build_fp32_params:
self.build_fp32_params(state_dict)
def set_decay(self, decay, weight_decay=None):
self.decay = decay
if weight_decay is not None:
self.weight_decay = weight_decay
def get_decay(self):
return self.decay
def _step_internal(self, new_model):
"""One update of the EMA model based on new model weights"""
decay = self.decay
ema_state_dict = {}
ema_params = (
self.fp32_params if self.config.ema_fp32 else self.model.state_dict()
)
new_p = []
ema_p = []
for key, param in new_model.named_parameters():
if isinstance(param, dict):
continue
if not self.add_missing_params and key not in ema_params:
continue
try:
ema_param = ema_params[key]
except KeyError:
ema_param = (
param.float().clone() if param.ndim == 1 else copy.deepcopy(param)
)
ema_params[key] = ema_param
if param.shape != ema_param.shape:
raise ValueError(
"incompatible tensor shapes between model param and ema param"
+ "{} vs. {}".format(param.shape, ema_param.shape)
)
if "version" in key:
# Do not decay a model.version pytorch param
continue
lr = 1 - decay
if key in self.skip_keys or not param.requires_grad:
ema_params[key].copy_(param.to(dtype=ema_param.dtype).data)
ema_param = ema_params[key]
else:
if self.log_norms:
new_p.append(param)
ema_p.append(ema_param)
ema_param.mul_(1 - lr)
ema_param.add_(param.data.to(dtype=ema_param.dtype), alpha=lr)
ema_state_dict[key] = ema_param
for key, param in new_model.named_buffers():
ema_state_dict[key] = param
if self.log_norms:
if "model_norm" in self.logs:
self.prev_model_norm = self.logs["model_norm"]
chunk_size = 2048 * 32
has_inf = torch.zeros(
(1, 1), dtype=torch.int, device=next(new_model.parameters()).device
)
new_norm = multi_tensor_l2norm(chunk_size, has_inf, [new_p], False)
old_norm = multi_tensor_l2norm(chunk_size, has_inf, [ema_p], False)
self.logs["model_norm"] = new_norm[0]
self.logs["ema_norm"] = old_norm[0]
self.restore(ema_state_dict, build_fp32_params=False)
@torch.no_grad()
def step(self, new_model):
self._step_internal(new_model)
def reverse(self, model):
"""
Load the model parameters from EMA model.
Useful for inference or fine-tuning from the EMA model.
"""
d = self.model.state_dict()
if "_ema" in d:
del d["_ema"]
model.load_state_dict(d, strict=False)
return model
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/ema_module.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
import math
import torch
class PositionalEncoding(nn.Module):
"""Positional encoding.
Args:
d_model: Embedding dimension.
dropout_rate: Dropout rate.
max_len: Maximum input length.
reverse: Whether to reverse the input position.
"""
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
"""Construct an PositionalEncoding object."""
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.reverse = reverse
self.xscale = math.sqrt(self.d_model)
self.dropout = nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor B X T X C
Returns:
torch.Tensor: Encoded tensor B X T X C
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
class RelPositionalEncoding(nn.Module):
"""Relative positional encoding module (new implementation).
Args:
d_model: Embedding dimension.
dropout_rate: Dropout rate.
max_len: Maximum input length.
"""
def __init__(self, max_len, d_model):
"""Construct an PositionalEncoding object."""
super(RelPositionalEncoding, self).__init__()
self.d_model = d_model
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x : Input tensor T X B X C.
Returns:
torch.Tensor: Encoded tensor T X B X C.
"""
x = x.transpose(0, 1) # Change TBC to BTC
self.extend_pe(x)
pos_emb = self.pe[
:,
self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1),
]
pos_emb = pos_emb.transpose(0, 1) # change to TBC
return pos_emb
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/positional_encoding.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional
import torch
from fairseq.modules import (
ESPNETMultiHeadedAttention,
LayerNorm,
MultiheadAttention,
RelPositionMultiHeadedAttention,
RotaryPositionMultiHeadedAttention,
)
from fairseq.utils import get_activation_fn
class ConvolutionModule(torch.nn.Module):
"""Convolution block used in the conformer block"""
def __init__(
self,
embed_dim,
channels,
depthwise_kernel_size,
dropout,
activation_fn="swish",
bias=False,
export=False,
):
"""
Args:
embed_dim: Embedding dimension
channels: Number of channels in depthwise conv layers
depthwise_kernel_size: Depthwise conv layer kernel size
dropout: dropout value
activation_fn: Activation function to use after depthwise convolution kernel
bias: If bias should be added to conv layers
export: If layernorm should be exported to jit
"""
super(ConvolutionModule, self).__init__()
assert (
depthwise_kernel_size - 1
) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
self.layer_norm = LayerNorm(embed_dim, export=export)
self.pointwise_conv1 = torch.nn.Conv1d(
embed_dim,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.glu = torch.nn.GLU(dim=1)
self.depthwise_conv = torch.nn.Conv1d(
channels,
channels,
depthwise_kernel_size,
stride=1,
padding=(depthwise_kernel_size - 1) // 2,
groups=channels,
bias=bias,
)
self.batch_norm = torch.nn.BatchNorm1d(channels)
self.activation = get_activation_fn(activation_fn)(channels)
self.pointwise_conv2 = torch.nn.Conv1d(
channels,
embed_dim,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x):
"""
Args:
x: Input of shape B X T X C
Returns:
Tensor of shape B X T X C
"""
x = self.layer_norm(x)
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = self.glu(x) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
x = self.batch_norm(x)
x = self.activation(x)
x = self.pointwise_conv2(x)
x = self.dropout(x)
return x.transpose(1, 2)
class FeedForwardModule(torch.nn.Module):
"""Positionwise feed forward layer used in conformer"""
def __init__(
self,
input_feat,
hidden_units,
dropout1,
dropout2,
activation_fn="swish",
bias=True,
):
"""
Args:
input_feat: Input feature dimension
hidden_units: Hidden unit dimension
dropout1: dropout value for layer1
dropout2: dropout value for layer2
activation_fn: Name of activation function
bias: If linear layers should have bias
"""
super(FeedForwardModule, self).__init__()
self.layer_norm = LayerNorm(input_feat)
self.w_1 = torch.nn.Linear(input_feat, hidden_units, bias=bias)
self.w_2 = torch.nn.Linear(hidden_units, input_feat, bias=bias)
self.dropout1 = torch.nn.Dropout(dropout1)
self.dropout2 = torch.nn.Dropout(dropout2)
self.activation = get_activation_fn(activation_fn)(hidden_units)
def forward(self, x):
"""
Args:
x: Input Tensor of shape T X B X C
Returns:
Tensor of shape T X B X C
"""
x = self.layer_norm(x)
x = self.w_1(x)
x = self.activation(x)
x = self.dropout1(x)
x = self.w_2(x)
return self.dropout2(x)
class ConformerEncoderLayer(torch.nn.Module):
"""Conformer block based on https://arxiv.org/abs/2005.08100. We currently don't support relative positional encoding in MHA"""
def __init__(
self,
embed_dim,
ffn_embed_dim,
attention_heads,
dropout,
use_fp16,
depthwise_conv_kernel_size=31,
activation_fn="swish",
attn_type=None,
pos_enc_type="abs",
):
"""
Args:
embed_dim: Input embedding dimension
ffn_embed_dim: FFN layer dimension
attention_heads: Number of attention heads in MHA
dropout: dropout value
depthwise_conv_kernel_size: Size of kernel in depthwise conv layer in convolution module
activation_fn: Activation function name to use in convulation block and feed forward block
attn_type: MHA implementation from ESPNET vs fairseq
pos_enc_type: Positional encoding type - abs, rope, rel_pos
"""
self.pos_enc_type = pos_enc_type
super(ConformerEncoderLayer, self).__init__()
self.ffn1 = FeedForwardModule(
embed_dim,
ffn_embed_dim,
dropout,
dropout,
)
self.self_attn_layer_norm = LayerNorm(embed_dim, export=False)
self.self_attn_dropout = torch.nn.Dropout(dropout)
if attn_type == "espnet":
if self.pos_enc_type == "rel_pos":
self.self_attn = RelPositionMultiHeadedAttention(
embed_dim,
attention_heads,
dropout=dropout,
)
elif self.pos_enc_type == "rope":
self.self_attn = RotaryPositionMultiHeadedAttention(
embed_dim, attention_heads, dropout=dropout, precision=use_fp16
)
elif self.pos_enc_type == "abs":
self.self_attn = ESPNETMultiHeadedAttention(
embed_dim,
attention_heads,
dropout=dropout,
)
else:
raise Exception(f"Unsupported attention type {self.pos_enc_type}")
else:
# Default to fairseq MHA
self.self_attn = MultiheadAttention(
embed_dim,
attention_heads,
dropout=dropout,
)
self.conv_module = ConvolutionModule(
embed_dim=embed_dim,
channels=embed_dim,
depthwise_kernel_size=depthwise_conv_kernel_size,
dropout=dropout,
activation_fn=activation_fn,
)
self.ffn2 = FeedForwardModule(
embed_dim,
ffn_embed_dim,
dropout,
dropout,
activation_fn=activation_fn,
)
self.final_layer_norm = LayerNorm(embed_dim, export=False)
def forward(
self,
x,
encoder_padding_mask: Optional[torch.Tensor],
position_emb: Optional[torch.Tensor] = None,
):
"""
Args:
x: Tensor of shape T X B X C
encoder_padding_mask: Optional mask tensor
positions:
Returns:
Tensor of shape T X B X C
"""
residual = x
x = self.ffn1(x)
x = x * 0.5 + residual
residual = x
x = self.self_attn_layer_norm(x)
if self.pos_enc_type == "rel_pos":
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask,
pos_emb=position_emb,
need_weights=False,
)
else:
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask,
need_weights=False,
)
x = self.self_attn_dropout(x)
x = x + residual
residual = x
# TBC to BTC
x = x.transpose(0, 1)
x = self.conv_module(x)
# BTC to TBC
x = x.transpose(0, 1)
x = residual + x
residual = x
x = self.ffn2(x)
layer_result = x
x = x * 0.5 + residual
x = self.final_layer_norm(x)
return x, (attn, layer_result)
class ConformerWav2Vec2EncoderLayer(ConformerEncoderLayer):
"""Encoder layer for Wav2vec2 encoder"""
def forward(
self,
x: torch.Tensor,
self_attn_mask: torch.Tensor = None,
self_attn_padding_mask: torch.Tensor = None,
need_weights: bool = False,
att_args=None,
position_emb=None,
):
return super().forward(x, self_attn_padding_mask, position_emb)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/conformer_layer.py |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Multi-Head Attention layer definition."""
import math
import torch
from torch import nn
from fairseq.modules.rotary_positional_embedding import (
RotaryPositionalEmbedding,
apply_rotary_pos_emb,
)
class ESPNETMultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head: The number of heads.
n_feat: The number of features.
dropout: Dropout rate.
"""
def __init__(self, n_feat, n_head, dropout):
"""Construct an MultiHeadedAttention object."""
super(ESPNETMultiHeadedAttention, self).__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward_qkv(self, query, key, value, **kwargs):
"""Transform query, key and value.
Args:
query: Query tensor B X T1 X C
key: Key tensor B X T2 X C
value: Value tensor B X T2 X C
Returns:
torch.Tensor: Transformed query tensor B X n_head X T1 X d_k
torch.Tensor: Transformed key tensor B X n_head X T2 X d_k
torch.Tensor: Transformed value tensor B X n_head X T2 X d_k
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(self, value, scores, mask):
"""Compute attention context vector.
Args:
value: Transformed value B X n_head X T2 X d_k.
scores: Attention score B X n_head X T1 X T2
mask: Mask T2 X B
Returns:
torch.Tensor: Transformed value B X T1 X d_model
weighted by the attention score B X T1 X T2
"""
n_batch = value.size(0)
if mask is not None:
scores = scores.masked_fill(
mask.unsqueeze(1).unsqueeze(2).to(bool),
float("-inf"), # (batch, head, time1, time2)
)
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
else:
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(self.attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(self, query, key, value, key_padding_mask=None, **kwargs):
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor T X B X C
key (torch.Tensor): Key tensor T X B X C
value (torch.Tensor): Value tensor T X B X C
mask (torch.Tensor): Mask tensor T X B
Returns:
torch.Tensor: Output tensor T X B X D.
"""
query = query.transpose(0, 1)
key = key.transpose(0, 1)
value = value.transpose(0, 1)
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
scores = self.forward_attention(v, scores, key_padding_mask)
scores = scores.transpose(0, 1)
return scores, None
class RelPositionMultiHeadedAttention(ESPNETMultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head: The number of heads.
n_feat: The number of features.
dropout: Dropout rate.
zero_triu: Whether to zero the upper triangular part of attention matrix.
"""
def __init__(self, n_feat, n_head, dropout, zero_triu=False):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_feat, n_head, dropout)
self.zero_triu = zero_triu
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.zeros(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.zeros(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x):
"""Compute relative positional encoding.
Args:
x: Input tensor B X n_head X T X 2T-1
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)[
:, :, :, : x.size(-1) // 2 + 1
] # only keep the positions from 0 to time2
if self.zero_triu:
ones = torch.ones((x.size(2), x.size(3)), device=x.device)
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
def forward(self, query, key, value, pos_emb, key_padding_mask=None, **kwargs):
"""Compute scaled dot product attention.
Args:
query: Query tensor T X B X C
key: Key tensor T X B X C
value: Value tensor T X B X C
pos_emb: Positional embedding tensor B X 2T-1 X C
key_padding_mask: Mask tensor T X B
Returns:
torch.Tensor: Output tensor T X B X C.
"""
query = query.transpose(0, 1)
key = key.transpose(0, 1)
value = value.transpose(0, 1)
pos_emb = pos_emb.transpose(0, 1)
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, 2*time1-1)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k
) # (batch, head, time1, time2)
scores = self.forward_attention(v, scores, key_padding_mask)
scores = scores.transpose(0, 1)
return scores, None
class RotaryPositionMultiHeadedAttention(ESPNETMultiHeadedAttention):
def __init__(
self,
n_feat,
n_head,
dropout,
precision,
rotary_emd_base=10000,
):
"""Construct an RotaryPositionMultiHeadedAttention object."""
super().__init__(n_feat, n_head, dropout)
precision = torch.float
self.rotary_ndims = self.d_k # also try self.d_k//2
if precision == "fp16":
precision = torch.half
self.rotary_emb = RotaryPositionalEmbedding(
self.rotary_ndims, base=rotary_emd_base, precision=precision
)
def forward(self, query, key, value, key_padding_mask=None, **kwargs):
"""Compute rotary position attention.
Args:
query: Query tensor T X B X C
key: Key tensor T X B X C
value: Value tensor T X B X C
key_padding_mask: Mask tensor T X B
Returns:
torch.Tensor: Output tensor T X B X D.
Notes:
Assumes self attn
"""
T, B, C = value.size()
query = query.view(T, B, self.h, self.d_k)
key = key.view(T, B, self.h, self.d_k)
value = value.view(T, B, self.h, self.d_k)
cos, sin = self.rotary_emb(value, seq_len=T)
query, key = apply_rotary_pos_emb(
query, key, cos, sin, offset=0
) # offset is based on layer_past
query = query.view(T, B, self.h * self.d_k)
key = key.view(T, B, self.h * self.d_k)
value = value.view(T, B, self.h * self.d_k)
# TBD to BTD
query = query.transpose(0, 1)
key = key.transpose(0, 1)
value = value.transpose(0, 1)
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
scores = self.forward_attention(v, scores, key_padding_mask)
scores = scores.transpose(0, 1)
return scores, None
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/espnet_multihead_attention.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
transpose last 2 dimensions of the input
"""
import torch.nn as nn
class TransposeLast(nn.Module):
def __init__(self, deconstruct_idx=None, tranpose_dim=-2):
super().__init__()
self.deconstruct_idx = deconstruct_idx
self.tranpose_dim = tranpose_dim
def forward(self, x):
if self.deconstruct_idx is not None:
x = x[self.deconstruct_idx]
return x.transpose(self.tranpose_dim, -1)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/transpose_last.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Any, Optional
import torch
import torch.onnx.operators
from fairseq import utils
from torch import Tensor, nn
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx if padding_idx is not None else 0
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size, embedding_dim, padding_idx
)
self.onnx_trace = False
self.register_buffer("_float_tensor", torch.FloatTensor(1))
self.max_positions = int(1e5)
def prepare_for_onnx_export_(self):
self.onnx_trace = True
@staticmethod
def get_embedding(
num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None
):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(
1
) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(
num_embeddings, -1
)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(
self,
input,
incremental_state: Optional[Any] = None,
timestep: Optional[Tensor] = None,
positions: Optional[Any] = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
bspair = torch.onnx.operators.shape_as_tensor(input)
bsz, seq_len = bspair[0], bspair[1]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos, self.embedding_dim, self.padding_idx
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
if self.onnx_trace:
return (
self.weights.index_select(index=self.padding_idx + pos, dim=0)
.unsqueeze(1)
.repeat(bsz, 1, 1)
)
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = utils.make_positions(
input, self.padding_idx, onnx_trace=self.onnx_trace
)
if self.onnx_trace:
flat_embeddings = self.weights.detach().index_select(0, positions.view(-1))
embedding_shape = torch.cat(
(bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long))
)
embeddings = torch.onnx.operators.reshape_from_tensor_shape(
flat_embeddings, embedding_shape
)
return embeddings
return (
self.weights.index_select(0, positions.view(-1))
.view(bsz, seq_len, -1)
.detach()
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/sinusoidal_positional_embedding.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from apex.normalization import FusedLayerNorm as _FusedLayerNorm
has_fused_layernorm = True
class FusedLayerNorm(_FusedLayerNorm):
@torch.jit.unused
def forward(self, x):
if not x.is_cuda:
return super().forward(x)
else:
with torch.cuda.device(x.device):
return super().forward(x)
except ImportError:
has_fused_layernorm = False
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
if torch.jit.is_scripting() or torch.jit.is_tracing():
export = True
if not export and torch.cuda.is_available() and has_fused_layernorm:
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
class Fp32LayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(
input.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/layer_norm.py |
import math
from functools import reduce, wraps
from inspect import isfunction
from operator import mul
import torch
import torch.nn as nn
import torch.nn.functional as F
from aml.multimodal_video.utils.einops.lib import rearrange, repeat
from aml.multimodal_video.utils.einops.lib.layers.torch import Rearrange
from fairseq.modules.local_attention import LocalAttention
# constants
TOKEN_SELF_ATTN_VALUE = -5e4
KMEAN_INIT_ITERS = 10
# helper functions
def exists(val):
return val is not None
def identity(x, *args, **kwargs):
return x
def default(x, d):
if not exists(x):
return d if not isfunction(d) else d()
return x
def cast_tuple(x):
return x if isinstance(x, tuple) else (x,)
def cache_fn(f):
cache = None
@wraps(f)
def cached_fn(*args, **kwargs):
nonlocal cache
if exists(cache):
return cache
cache = f(*args, **kwargs)
return cache
return cached_fn
def to(t):
return {"device": t.device, "dtype": t.dtype}
def find_modules(nn_module, type):
return [module for module in nn_module.modules() if isinstance(module, type)]
def is_empty(t):
return t.nelement() == 0
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def batched_index_select(values, indices):
last_dim = values.shape[-1]
return values.gather(2, expand_dim(indices, -1, last_dim))
def merge_dims(ind_from, ind_to, tensor):
shape = list(tensor.shape)
arr_slice = slice(ind_from, ind_to + 1)
shape[arr_slice] = [reduce(mul, shape[arr_slice])]
return tensor.reshape(*shape)
def expand_dim(t, dim, k):
t = t.unsqueeze(dim)
expand_shape = [-1] * len(t.shape)
expand_shape[dim] = k
return t.expand(*expand_shape)
def scatter_mean(src, t, index, dim, eps=1e-5):
numer = src.scatter_add(dim, index, t)
denom = src.scatter_add(dim, index, torch.ones_like(t))
return numer / (denom + eps)
def split_at_index(dim, index, t):
pre_slices = (slice(None),) * dim
l = (*pre_slices, slice(None, index))
r = (*pre_slices, slice(index, None))
return t[l], t[r]
def reshape_dim(t, dim, split_dims):
shape = list(t.shape)
num_dims = len(shape)
dim = (dim + num_dims) % num_dims
shape[dim : dim + 1] = split_dims
return t.reshape(shape)
def ema(old, new, decay):
if not exists(old):
return new
return old * decay + new * (1 - decay)
def ema_inplace(moving_avg, new, decay):
if is_empty(moving_avg):
moving_avg.data.copy_(new)
return
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
# helper classes
def map_first_tuple_or_el(x, fn):
if isinstance(x, tuple):
return (fn(x[0]),) + x[1:]
return fn(x)
class Chunk(nn.Module):
def __init__(self, chunks, fn, along_dim=-1):
super().__init__()
self.dim = along_dim
self.chunks = chunks
self.fn = fn
def forward(self, x, **kwargs):
if self.chunks <= 1:
return self.fn(x, **kwargs)
chunks = x.chunk(self.chunks, dim=self.dim)
return torch.cat([self.fn(c, **kwargs) for c in chunks], dim=self.dim)
class PreNorm(nn.ModuleList):
def __init__(self, norm_class, dim, fn):
super().__init__()
self.norm = norm_class(dim)
self.fn = fn
def forward(self, x, **kwargs):
x = self.norm(x)
return self.fn(x, **kwargs)
class ReZero(nn.Module):
def __init__(self, fn):
super().__init__()
self.residual_weight = nn.Parameter(torch.zeros(1))
self.fn = fn
def forward(self, x, **kwargs):
x = self.fn(x, **kwargs)
return map_first_tuple_or_el(x, lambda t: t * self.residual_weight)
class ScaleNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.g = nn.Parameter(torch.ones(1))
self.eps = eps
def forward(self, x):
def norm(t):
n = torch.norm(t, dim=-1, keepdim=True).clamp(min=self.eps)
return t / n * self.g
return map_first_tuple_or_el(x, norm)
class ProjectInOut(nn.Module):
def __init__(self, fn, dim_in, dim_out, project_out=True):
super().__init__()
self.fn = fn
self.project_in = nn.Linear(dim_in, dim_out)
self.project_out = nn.Linear(dim_out, dim_in) if project_out else identity
def forward(self, x, **kwargs):
x = self.project_in(x)
x, loss = self.fn(x, **kwargs)
x = self.project_out(x)
return x, loss
class MatrixMultiply(nn.Module):
def __init__(self, tensor, transpose=False):
super().__init__()
self.tensor = tensor
self.transpose = transpose
def forward(self, x):
tensor = self.tensor
if self.transpose:
tensor = tensor.t()
return x @ tensor
# positional embeddings
class DepthWiseConv1d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, stride=1, bias=True, causal=False):
super().__init__()
self.padding = (
((kernel_size - 1), 0) if causal else (kernel_size // 2, kernel_size // 2)
)
self.net = nn.Sequential(
nn.Conv1d(
dim_in,
dim_in,
kernel_size=kernel_size,
groups=dim_in,
stride=stride,
bias=bias,
),
nn.Conv1d(dim_in, dim_out, 1, bias=bias),
)
def forward(self, x):
x = F.pad(x, self.padding, value=0.0)
return self.net(x)
class FixedPositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
position = torch.arange(0, max_seq_len, dtype=torch.float)
sinusoid_inp = torch.einsum("i,j->ij", position, inv_freq)
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
self.register_buffer("emb", emb)
def forward(self, x):
return self.emb[None, : x.shape[1], :].to(x)
def rotate_every_two(x):
x = rearrange(x, "... (d j) -> ... d j", j=2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return rearrange(x, "... d j -> ... (d j)")
def apply_rotary_pos_emb(q, k, sinu_pos):
sinu_pos = rearrange(sinu_pos, "() n (j d) -> n j d", j=2)
sin, cos = sinu_pos.unbind(dim=-2)
sin, cos = map(lambda t: repeat(t, "b n -> b (n j)", j=2), (sin, cos))
q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k))
return q, k
# kmeans related function and class
def update_kmeans_on_backwards(module):
module.kmean_modules = find_modules(module, Kmeans)
def hook(_, grad_in, grad_out):
for m in module.kmean_modules:
m.update()
return module.register_backward_hook(hook)
def similarity(x, means):
return torch.einsum("bhld,hcd->bhlc", x, means)
def dists_and_buckets(x, means):
dists = similarity(x, means)
_, buckets = torch.max(dists, dim=-1)
return dists, buckets
def batched_bincount(index, num_classes, dim=-1):
shape = list(index.shape)
shape[dim] = num_classes
out = index.new_zeros(shape)
out.scatter_add_(dim, index, torch.ones_like(index, dtype=index.dtype))
return out
def kmeans_iter(x, means, buckets=None):
b, h, _, d, dtype, num_clusters = *x.shape, x.dtype, means.shape[1]
if not exists(buckets):
_, buckets = dists_and_buckets(x, means)
bins = batched_bincount(buckets, num_clusters).sum(0, keepdim=True)
zero_mask = bins.long() == 0
means_ = buckets.new_zeros(b, h, num_clusters, d, dtype=dtype)
means_.scatter_add_(-2, expand_dim(buckets, -1, d), x)
means_ = F.normalize(means_.sum(0, keepdim=True), dim=-1).type(dtype)
means = torch.where(zero_mask.unsqueeze(-1), means, means_)
means = means.squeeze(0)
return means
def distribution(dists, window_size):
_, topk_indices = dists.topk(k=window_size, dim=-2)
indices = topk_indices.transpose(-2, -1)
return indices.reshape(*indices.size()[:2], -1)
class Kmeans(nn.Module):
def __init__(
self, num_heads, head_dim, num_clusters, ema_decay=0.999, commitment=1e-4
):
super().__init__()
self.commitment = commitment
self.ema_decay = ema_decay
self.register_buffer("means", torch.randn(num_heads, num_clusters, head_dim))
self.register_buffer("initted", torch.tensor(False))
self.num_new_means = 0
self.new_means = None
@torch.no_grad()
def init(self, x):
if self.initted:
return
_, h, _, d, device, _ = *x.shape, x.device, x.dtype
num_clusters = self.means.shape[1]
means = x.transpose(0, 1).contiguous().view(h, -1, d)
num_samples = means.shape[1]
if num_samples >= num_clusters:
indices = torch.randperm(num_samples, device=device)[:num_clusters]
else:
indices = torch.randint(0, num_samples, (num_clusters,), device=device)
means = means[:, indices]
for _ in range(KMEAN_INIT_ITERS):
means = kmeans_iter(x, means)
self.num_new_means = 0
self.means.data.copy_(means)
self.initted.data.copy_(torch.tensor(True))
@torch.no_grad()
def update(self, new_means=None):
new_means = default(new_means, self.new_means)
assert exists(new_means), "new kmeans has not been supplied"
ema_inplace(self.means, new_means, self.ema_decay)
del self.new_means
self.new_means = None
self.num_new_means = 0
def forward(self, x, update_means=False):
self.init(x)
b, dtype = x.shape[0], x.dtype
means = self.means.type(dtype)
x = F.normalize(x, 2, dim=-1).type(dtype)
with torch.no_grad():
dists, buckets = dists_and_buckets(x, means)
routed_means = batched_index_select(expand_dim(means, 0, b), buckets)
loss = F.mse_loss(x, routed_means) * self.commitment
if update_means:
with torch.no_grad():
means = kmeans_iter(x, means, buckets)
self.new_means = ema(
self.new_means, means, self.num_new_means / (self.num_new_means + 1)
)
self.num_new_means += 1
return dists, loss
# kmeans attention class
class KmeansAttention(nn.Module):
def __init__(
self,
num_clusters,
window_size,
num_heads,
head_dim,
causal=False,
dropout=0.0,
ema_decay=0.999,
commitment=1e-4,
context_window_size=None,
receives_context=False,
num_mem_kv=0,
shared_qk=False,
):
super().__init__()
self.num_heads = num_heads
self.num_clusters = num_clusters
self.head_dim = head_dim
self.window_size = window_size
self.context_window_size = default(context_window_size, window_size)
self.causal = causal
self.shared_qk = shared_qk
self.receives_context = receives_context
self.kmeans = Kmeans(num_heads, head_dim, num_clusters, ema_decay, commitment)
self.dropout = nn.Dropout(dropout)
self.num_mem_kv = max(num_mem_kv, 1 if causal and not shared_qk else 0)
self.mem_key = nn.Parameter(
torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim)
)
self.mem_value = nn.Parameter(
torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim)
)
def forward(self, q, k, v, query_mask=None, key_mask=None, **kwargs):
b, h, t, d, kv_t, wsz, c_wsz, nc, device, dtype = (
*q.shape,
k.shape[2],
self.window_size,
self.context_window_size,
self.num_clusters,
q.device,
q.dtype,
)
is_reverse = kwargs.pop("_reverse", False)
out = torch.zeros_like(q, dtype=dtype)
update_kmeans = self.training and not is_reverse
key_mask = (
default(key_mask, query_mask) if not self.receives_context else key_mask
)
kv_wsz = wsz if not self.receives_context else c_wsz
wsz = min(wsz, t)
kv_wsz = min(kv_wsz, kv_t)
if not self.shared_qk or self.receives_context:
dists, aux_loss = self.kmeans(torch.cat((q, k), dim=2), update_kmeans)
q_dists, k_dists = split_at_index(2, t, dists)
indices = distribution(q_dists, wsz)
kv_indices = distribution(k_dists, kv_wsz)
else:
dists, aux_loss = self.kmeans(q, update_kmeans)
k = F.normalize(k, dim=-1).to(q)
indices = distribution(dists, wsz)
kv_indices = indices
q = batched_index_select(q, indices)
k = batched_index_select(k, kv_indices)
v = batched_index_select(v, kv_indices)
reshape_with_window = lambda x: x.reshape(b, h, nc, -1, d)
q, k, v = map(reshape_with_window, (q, k, v))
m_k, m_v = map(
lambda x: expand_dim(x, 0, b).to(q), (self.mem_key, self.mem_value)
)
k, v = map(lambda x: torch.cat(x, dim=3), ((m_k, k), (m_v, v)))
dots = torch.einsum("bhnid,bhnjd->bhnij", q, k) * (d**-0.5)
mask_value = max_neg_value(dots)
if exists(query_mask) or exists(key_mask):
query_mask = default(
query_mask, lambda: torch.ones((b, t), device=device).bool()
)
key_mask = default(
key_mask, lambda: torch.ones((b, kv_t), device=device).bool()
)
q_mask = expand_dim(query_mask, 1, h).gather(2, indices)
kv_mask = expand_dim(key_mask, 1, h).gather(2, kv_indices)
q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (q_mask, kv_mask))
mask = q_mask[:, :, :, :, None] * kv_mask[:, :, :, None, :]
mask = F.pad(mask, (self.num_mem_kv, 0), value=1)
dots.masked_fill_(~mask, mask_value)
del mask
if self.causal:
q_mask, kv_mask = map(
lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices)
)
mask = q_mask[:, :, :, :, None] >= kv_mask[:, :, :, None, :]
mask = F.pad(mask, (self.num_mem_kv, 0), value=1)
dots.masked_fill_(~mask, mask_value)
del mask
if self.shared_qk:
q_mask, kv_mask = map(
lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices)
)
mask = q_mask[:, :, :, :, None] == kv_mask[:, :, :, None, :]
mask = F.pad(mask, (self.num_mem_kv, 0), value=0)
dots.masked_fill_(mask, TOKEN_SELF_ATTN_VALUE)
del mask
dots = dots.softmax(dim=-1)
dots = self.dropout(dots)
bo = torch.einsum("bhcij,bhcjd->bhcid", dots, v)
so = torch.reshape(bo, (b, h, -1, bo.shape[-1])).type(dtype)
out = scatter_mean(out, so, indices.unsqueeze(-1).expand_as(so), -2)
return out, aux_loss
# feedforward
class GELU_(nn.Module):
def forward(self, x):
return (
0.5
* x
* (
1
+ torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))
)
)
GELU = nn.GELU if hasattr(nn, "GELU") else GELU_
class FeedForward(nn.Module):
def __init__(self, dim, mult=4, dropout=0.0, activation=None, glu=False):
super().__init__()
activation = default(activation, GELU)
self.glu = glu
self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1))
self.act = activation()
self.dropout = nn.Dropout(dropout)
self.w2 = nn.Linear(dim * mult, dim)
def forward(self, x, **kwargs):
if not self.glu:
x = self.w1(x)
x = self.act(x)
else:
x, v = self.w1(x).chunk(2, dim=-1)
x = self.act(x) * v
x = self.dropout(x)
x = self.w2(x)
return x
# self attention
class SelfAttention(nn.Module):
def __init__(
self,
dim,
max_seq_len,
heads,
local_attn_heads,
window_size,
dim_head=None,
local_attn_window_size=None,
local_attn_radius_blocks=1,
causal=False,
attn_dropout=0.0,
dropout=0.0,
kmeans_ema_decay=0.999,
commitment_factor=1e-4,
receives_context=False,
context_window_size=None,
rel_pos_emb=True,
num_mem_kv=0,
shared_qk=False,
conv_query_kernel=9,
):
super().__init__()
assert (
dim_head or (dim % heads) == 0
), "hidden dimension must be divisible by number of heads"
assert (
max_seq_len % window_size
) == 0, "maximum sequence length must be divisible by the target window size"
assert (
local_attn_heads <= heads
), "number of local attention heads must be less than total heads"
assert not (
receives_context and local_attn_heads > 0
), "local attention cannot be used for self attention with context"
assert not (
receives_context and causal
), "contextual attention layer cannot be causal"
local_attn_window_size = default(local_attn_window_size, window_size)
context_window_size = default(context_window_size, window_size)
self.shared_qk = shared_qk
self.receives_context = receives_context
self.heads = heads
self.local_attn_heads = local_attn_heads
self.global_attn_heads = heads - local_attn_heads
self.causal = causal
self.window_size = window_size
dim_head = default(dim_head, dim // heads)
dim_heads = dim_head * heads
self.dim_head = dim_head
num_clusters = max_seq_len // window_size
# local
local_dim_heads = dim_head * self.local_attn_heads
if self.local_attn_heads > 0:
rel_pos_emb_config = (dim_head, local_attn_heads) if rel_pos_emb else None
self.local_attn = LocalAttention(
dim=dim_head,
window_size=local_attn_window_size,
causal=causal,
dropout=attn_dropout,
rel_pos_emb_config=rel_pos_emb_config,
look_backward=local_attn_radius_blocks,
look_forward=0 if causal else local_attn_radius_blocks,
)
self.local_to_qkv = nn.Linear(dim, 3 * local_dim_heads)
# global
global_dim_heads = dim_head * self.global_attn_heads
if self.global_attn_heads > 0:
self.global_attn = KmeansAttention(
num_clusters,
window_size,
self.global_attn_heads,
dim_head,
causal=causal,
dropout=attn_dropout,
ema_decay=kmeans_ema_decay,
commitment=commitment_factor,
receives_context=receives_context,
num_mem_kv=num_mem_kv,
shared_qk=shared_qk,
)
self.to_q = nn.Sequential(
Rearrange("b n c -> b c n"),
DepthWiseConv1d(dim, global_dim_heads, conv_query_kernel, causal=causal),
Rearrange("b c n -> b n c"),
)
self.to_v = nn.Linear(dim, global_dim_heads, bias=False)
if not self.shared_qk:
self.to_k = nn.Linear(dim, global_dim_heads, bias=False)
# out
self.to_out = nn.Linear(dim_heads, dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(
self,
query,
key,
value,
context=None,
key_padding_mask=None,
context_mask=None,
pos_emb=None,
**kwargs
):
assert not (
self.receives_context and not exists(context)
), "context must be passed if self attention is set to receive context"
input_mask = key_padding_mask
x = query.transpose(0, 1)
b, t, _, h, dh = *x.shape, self.heads, self.dim_head
has_local, has_global = map(
lambda x: x > 0, (self.local_attn_heads, self.global_attn_heads)
)
split_heads = (
lambda v: reshape_dim(v, -1, (-1, dh)).transpose(1, 2).contiguous()
)
if has_local:
local_qkv = self.local_to_qkv(x).chunk(3, dim=-1)
lq, lk, lv = map(split_heads, local_qkv)
if has_global:
kv_input = x if not self.receives_context else context
q, v = self.to_q(x), self.to_v(kv_input)
if not self.shared_qk:
k = self.to_k(kv_input)
else:
k = self.to_q(kv_input) if self.receives_context else q
q, k, v = map(split_heads, (q, k, v))
out = []
total_loss = torch.tensor(0.0, requires_grad=True, **to(x))
if has_local:
local_out = self.local_attn(lq, lk, lv, input_mask=input_mask)
out.append(local_out)
if has_global:
if not self.receives_context and exists(pos_emb):
q, k = apply_rotary_pos_emb(q, k, pos_emb)
global_out, loss = self.global_attn(
q, k, v, query_mask=input_mask, key_mask=context_mask
)
total_loss = total_loss + loss
out.append(global_out)
out = torch.cat(out, dim=1)
out = out.reshape(b, h, t, -1).transpose(1, 2).reshape(b, t, -1)
out = self.dropout(out.transpose(0, 1))
# out = self.to_out(out)
return out, total_loss
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/kmeans_attention.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from torch import nn
class SamePad(nn.Module):
def __init__(self, kernel_size, causal=False):
super().__init__()
if causal:
self.remove = kernel_size - 1
else:
self.remove = 1 if kernel_size % 2 == 0 else 0
def forward(self, x):
if self.remove > 0:
x = x[:, :, : -self.remove]
return x
class SamePad2d(nn.Module):
def __init__(self, kernel_size):
super().__init__()
self.remove = 1 if kernel_size % 2 == 0 else 0
def forward(self, x):
assert len(x.size()) == 4
if self.remove > 0:
x = x[:, :, : -self.remove, : -self.remove]
return x
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/same_pad.py |
EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/__init__.py |
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
def parse_config_yaml(yaml_data):
# Initialize to default options.
quantization_options = {
"n_centroids": {
"Linear": ["in_features", {"*": 256}],
"Embedding": ["embedding_dim", {"*": 256}],
},
"block_sizes": {
"Linear": ["fuzzy_name", {"fc": 8, "attn": 4, "emb": 4}],
"Embedding": ["fuzzy_name", {"emb": 8}],
},
"layers_to_quantize": [
"decoder\\.layers\\.\\d+\\.fc[12]",
"decoder\\.embed_tokens\\.embeddings\\.[012]\\.[01]",
"decoder\\.layers\\.\\d+\\.self_attn\\.(k_proj|v_proj|q_proj|out_proj)",
],
}
if "n_centroids" in yaml_data:
quantization_options["n_centroids"] = {
layer: convert_yaml_to_tuple(layer_data)
for layer, layer_data in yaml_data["n_centroids"].items()
}
if "block_sizes" in yaml_data:
quantization_options["block_sizes"] = {
layer: convert_yaml_to_tuple(layer_data)
for layer, layer_data in yaml_data["block_sizes"].items()
}
if "layers_to_quantize" in yaml_data:
quantization_options["layers_to_quantize"] = yaml_data["layers_to_quantize"]
return quantization_options
def convert_yaml_to_tuple(yaml_dictionary):
"""Converts a yaml dictionary with two keys: `key` and `value` into a two
argument tuple of those values."""
return (yaml_dictionary["key"], yaml_dictionary["value"])
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/quantization_options.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .utils import SizeTracker, get_param, attrsetter, quantize_model_ # NOQA
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .em import EM, EmptyClusterResolveError
class PQ(EM):
"""
Quantizes the layer weights W with the standard Product Quantization
technique. This learns a codebook of codewords or centroids of size
block_size from W. For further reference on using PQ to quantize
neural networks, see "And the Bit Goes Down: Revisiting the Quantization
of Neural Networks", Stock et al., ICLR 2020.
PQ is performed in two steps:
(1) The matrix W (weights or fully-connected or convolutional layer)
is reshaped to (block_size, -1).
- If W is fully-connected (2D), its columns are split into
blocks of size block_size.
- If W is convolutional (4D), its filters are split along the
spatial dimension.
(2) We apply the standard EM/k-means algorithm to the resulting reshaped matrix.
Args:
- W: weight matrix to quantize of size (in_features x out_features)
- block_size: size of the blocks (subvectors)
- n_centroids: number of centroids
- n_iter: number of k-means iterations
- eps: for cluster reassignment when an empty cluster is found
- max_tentatives for cluster reassignment when an empty cluster is found
- verbose: print information after each iteration
Remarks:
- block_size be compatible with the shape of W
"""
def __init__(
self,
W,
block_size,
n_centroids=256,
n_iter=20,
eps=1e-6,
max_tentatives=30,
verbose=True,
):
self.block_size = block_size
W_reshaped = self._reshape(W)
super(PQ, self).__init__(
W_reshaped,
n_centroids=n_centroids,
n_iter=n_iter,
eps=eps,
max_tentatives=max_tentatives,
verbose=verbose,
)
def _reshape(self, W):
"""
Reshapes the matrix W as expained in step (1).
"""
# fully connected: by convention the weight has size out_features x in_features
if len(W.size()) == 2:
self.out_features, self.in_features = W.size()
assert (
self.in_features % self.block_size == 0
), "Linear: n_blocks must be a multiple of in_features"
return (
W.reshape(self.out_features, -1, self.block_size)
.permute(2, 1, 0)
.flatten(1, 2)
)
# convolutional: we reshape along the spatial dimension
elif len(W.size()) == 4:
self.out_channels, self.in_channels, self.k_h, self.k_w = W.size()
assert (
self.in_channels * self.k_h * self.k_w
) % self.block_size == 0, (
"Conv2d: n_blocks must be a multiple of in_channels * k_h * k_w"
)
return (
W.reshape(self.out_channels, -1, self.block_size)
.permute(2, 1, 0)
.flatten(1, 2)
)
# not implemented
else:
raise NotImplementedError(W.size())
def encode(self):
"""
Performs self.n_iter EM steps.
"""
self.initialize_centroids()
for i in range(self.n_iter):
try:
self.step(i)
except EmptyClusterResolveError:
break
def decode(self):
"""
Returns the encoded full weight matrix. Must be called after
the encode function.
"""
# fully connected case
if "k_h" not in self.__dict__:
return (
self.centroids[self.assignments]
.reshape(-1, self.out_features, self.block_size)
.permute(1, 0, 2)
.flatten(1, 2)
)
# convolutional case
else:
return (
self.centroids[self.assignments]
.reshape(-1, self.out_channels, self.block_size)
.permute(1, 0, 2)
.reshape(self.out_channels, self.in_channels, self.k_h, self.k_w)
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/pq.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import random
from collections import Counter
import torch
class EM:
"""
EM algorithm used to quantize the columns of W to minimize
||W - W_hat||^2
Args:
- W: weight matrix of size (in_features x out_features)
- n_iter: number of k-means iterations
- n_centroids: number of centroids (size of codebook)
- eps: for cluster reassignment when an empty cluster is found
- max_tentatives for cluster reassignment when an empty cluster is found
- verbose: print error after each iteration
Remarks:
- If one cluster is empty, the most populated cluster is split into
two clusters
- All the relevant dimensions are specified in the code
"""
def __init__(
self, W, n_centroids=256, n_iter=20, eps=1e-6, max_tentatives=30, verbose=True
):
self.W = W
self.n_centroids = n_centroids
self.n_iter = n_iter
self.eps = eps
self.max_tentatives = max_tentatives
self.verbose = verbose
self.centroids = torch.Tensor()
self.assignments = torch.Tensor()
self.objective = []
def initialize_centroids(self):
"""
Initializes the centroids by sampling random columns from W.
"""
in_features, out_features = self.W.size()
indices = torch.randint(
low=0, high=out_features, size=(self.n_centroids,)
).long()
self.centroids = self.W[:, indices].t() # (n_centroids x in_features)
def step(self, i):
"""
There are two standard steps for each iteration: expectation (E) and
minimization (M). The E-step (assignment) is performed with an exhaustive
search and the M-step (centroid computation) is performed with
the exact solution.
Args:
- i: step number
Remarks:
- The E-step heavily uses PyTorch broadcasting to speed up computations
and reduce the memory overhead
"""
# assignments (E-step)
distances = self.compute_distances() # (n_centroids x out_features)
self.assignments = torch.argmin(distances, dim=0) # (out_features)
n_empty_clusters = self.resolve_empty_clusters()
# centroids (M-step)
for k in range(self.n_centroids):
W_k = self.W[:, self.assignments == k] # (in_features x size_of_cluster_k)
self.centroids[k] = W_k.mean(dim=1) # (in_features)
# book-keeping
obj = (self.centroids[self.assignments].t() - self.W).norm(p=2).item()
self.objective.append(obj)
if self.verbose:
logging.info(
f"Iteration: {i},\t"
f"objective: {obj:.6f},\t"
f"resolved empty clusters: {n_empty_clusters}"
)
def resolve_empty_clusters(self):
"""
If one cluster is empty, the most populated cluster is split into
two clusters by shifting the respective centroids. This is done
iteratively for a fixed number of tentatives.
"""
# empty clusters
counts = Counter(map(lambda x: x.item(), self.assignments))
empty_clusters = set(range(self.n_centroids)) - set(counts.keys())
n_empty_clusters = len(empty_clusters)
tentatives = 0
while len(empty_clusters) > 0:
# given an empty cluster, find most populated cluster and split it into two
k = random.choice(list(empty_clusters))
m = counts.most_common(1)[0][0]
e = torch.randn_like(self.centroids[m]) * self.eps
self.centroids[k] = self.centroids[m].clone()
self.centroids[k] += e
self.centroids[m] -= e
# recompute assignments
distances = self.compute_distances() # (n_centroids x out_features)
self.assignments = torch.argmin(distances, dim=0) # (out_features)
# check for empty clusters
counts = Counter(map(lambda x: x.item(), self.assignments))
empty_clusters = set(range(self.n_centroids)) - set(counts.keys())
# increment tentatives
if tentatives == self.max_tentatives:
logging.info(
f"Could not resolve all empty clusters, {len(empty_clusters)} remaining"
)
raise EmptyClusterResolveError
tentatives += 1
return n_empty_clusters
def compute_distances(self):
"""
For every centroid m, computes
||M - m[None, :]||_2
Remarks:
- We rely on PyTorch's broadcasting to speed up computations
and reduce the memory overhead
- Without chunking, the sizes in the broadcasting are modified as:
(n_centroids x n_samples x out_features) -> (n_centroids x out_features)
- The broadcasting computation is automatically chunked so that
the tensors fit into the memory of the GPU
"""
nb_centroids_chunks = 1
while True:
try:
return torch.cat(
[
(self.W[None, :, :] - centroids_c[:, :, None]).norm(p=2, dim=1)
for centroids_c in self.centroids.chunk(
nb_centroids_chunks, dim=0
)
],
dim=0,
)
except RuntimeError:
nb_centroids_chunks *= 2
def assign(self):
"""
Assigns each column of W to its closest centroid, thus essentially
performing the E-step in train().
Remarks:
- The function must be called after train() or after loading
centroids using self.load(), otherwise it will return empty tensors
"""
distances = self.compute_distances() # (n_centroids x out_features)
self.assignments = torch.argmin(distances, dim=0) # (out_features)
def save(self, path, layer):
"""
Saves centroids and assignments.
Args:
- path: folder used to save centroids and assignments
"""
torch.save(self.centroids, os.path.join(path, "{}_centroids.pth".format(layer)))
torch.save(
self.assignments, os.path.join(path, "{}_assignments.pth".format(layer))
)
torch.save(self.objective, os.path.join(path, "{}_objective.pth".format(layer)))
def load(self, path, layer):
"""
Loads centroids and assignments from a given path
Args:
- path: folder use to load centroids and assignments
"""
self.centroids = torch.load(
os.path.join(path, "{}_centroids.pth".format(layer))
)
self.assignments = torch.load(
os.path.join(path, "{}_assignments.pth".format(layer))
)
self.objective = torch.load(
os.path.join(path, "{}_objective.pth".format(layer))
)
class EmptyClusterResolveError(Exception):
pass
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/em.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import re
from operator import attrgetter, itemgetter
import torch
import numpy as np
import torch.distributed as dist
import torch.nn as nn
from .modules import PQConv2d, PQEmbedding, PQLinear
from .pq import PQ
def quantize_model_(
model,
size_tracker,
layers_to_quantize,
block_sizes_config,
n_centroids_config,
step=0,
n_iter=15,
eps=1e-6,
max_tentatives=100,
remove_weights=False,
verbose=True,
state_dict=None,
):
"""
Quantize a model in-place by stages. All the targeted
layers are replaced by their quantized counterpart,
and the model is ready for the finetuning of the
centroids in a standard training loop (no modifications
required). Note that we do not quantize biases.
Args:
- model: a nn.Module
- size_tracker: useful for tracking quatization statistics
- layers_to_quantize: a list containing regexps for
filtering the layers to quantize at each stage according
to their name (as in model.named_parameters())
- block_sizes_config: dict like
{
'Conv2d': ('kernel_size', {'(3, 3)': 9, '(1, 1)': 4}),
'Linear': ('in_features', {'*': 8})
}
For instance, all conv2d layers with kernel size 3x3 have
a block size of 9 and all Linear layers are quantized with
a block size of 8, irrespective of their size.
- n_centroids_config: dict like
{
'Conv2d': ('kernel_size', {'*': 256}),
'Linear': ('in_features', {'*': 256})
}
For instance, all conv2d layers are quantized with 256 centroids
- step: the layers to quantize inplace corresponding
to layers_to_quantize[step]
"""
quantized_layers = get_layers(
model, layers_to_quantize[step], remove_weights=remove_weights
)
for layer in quantized_layers:
# book-keeping
is_master_process = (not dist.is_initialized()) or (
dist.is_initialized() and dist.get_rank() == 0
)
verbose = verbose and is_master_process
# get block size and centroids
module = attrgetter(layer)(model)
block_size = get_param(module, layer, block_sizes_config)
n_centroids = get_param(module, layer, n_centroids_config)
if verbose:
logging.info(
f"Quantizing layer {layer} with block size {block_size} and {n_centroids} centroids"
)
# quantize layer
weight = module.weight.data.clone()
is_bias = "bias" in [x[0] for x in module.named_parameters()]
bias = module.bias.data.clone() if is_bias else None
quantizer = PQ(
weight,
block_size,
n_centroids=n_centroids,
n_iter=n_iter,
eps=eps,
max_tentatives=max_tentatives,
verbose=verbose,
)
# quantization performed on all GPUs with same seed
quantizer.encode()
centroids = quantizer.centroids.contiguous()
assignments = quantizer.assignments.contiguous()
# If n_iter = 0 and state_dict is provided, then
# we initialize random assignments and centroids to
# random values of the appropriate dimensions
# because the quantized model parameters will
# overwritten by the state_dict later on.
if n_iter == 0 and state_dict:
# Initialize random centroids of the correct size
centroids = torch.rand(centroids.size())
centroids.cuda()
# Get counts and assignment keys from layer in loaded checkpoint.
counts_key = layer + "." + "counts"
assignment_key = layer + "." + "assignments"
# Get number of different bins to include.
counts = list(state_dict[counts_key].shape)[0]
print(layer)
print(state_dict[counts_key])
print(counts)
# Initialize random assignments of the correct size
# with an appropriate number of bins.
num_assignments = list(state_dict[assignment_key].shape)[0]
num_extra = num_assignments - counts
print(num_assignments)
print(num_extra)
assignments_bins = torch.arange(counts)
assignments_rand = torch.randint(0, counts - 1, (num_extra,))
assignments = torch.cat((assignments_bins, assignments_rand), 0)
# assignments = assignments.type(torch.IntTensor)
assignments.cuda()
print("assignments")
print(assignments)
# broadcast results to make sure weights are up-to-date
if dist.is_initialized():
dist.broadcast(centroids, 0)
dist.broadcast(assignments, 0)
# instantiate the quantized counterpart
if isinstance(module, nn.Linear):
out_features, in_features = map(
lambda k: module.__dict__[k], ["out_features", "in_features"]
)
quantized_module = PQLinear(
centroids, assignments, bias, in_features, out_features
)
elif isinstance(module, nn.Embedding):
num_embeddings, embedding_dim = map(
lambda k: module.__dict__[k], ["num_embeddings", "embedding_dim"]
)
quantized_module = PQEmbedding(
centroids, assignments, num_embeddings, embedding_dim
)
elif isinstance(module, nn.Conv2d):
out_channels, in_channels, kernel_size = map(
lambda k: module.__dict__[k],
["out_channels", "in_channels", "kernel_size"],
)
stride, padding, dilation, groups, padding_mode = map(
lambda k: module.__dict__[k],
["stride", "padding", "dilation", "groups", "padding_mode"],
)
quantized_module = PQConv2d(
centroids,
assignments,
bias,
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
padding_mode=padding_mode,
)
else:
raise ValueError(f"Module {module} not yet supported for quantization")
# replace layer by its quantized counterpart
attrsetter(layer)(model, quantized_module)
# update statistics
size_tracker.update(weight, block_size, n_centroids)
# return name of quantized layers
return quantized_layers
def get_layers(model, filter_regexp, remove_weights=False):
"""
Filters out the layers according to a regexp. Note that
we omit biases.
Args:
- model: a nn.Module
- filter_regexp: a regexp to filter the layers to keep
according to their name in model.named_parameters().
For instance, the regexp:
down_layers\\.[123456]\\.(conv[12]|identity\\.conv))
is keeping blocks down_layers from 1 to 6, and inside
each block is keeping conv1, conv2 and identity.conv.
Remarks:
- We add (module\\.)? at the beginning of the regexp to
account for the possible use of nn.parallel.DataParallel
"""
# get all parameter names
all_layers = map(itemgetter(0), model.named_parameters())
# remove biases
all_layers = filter(lambda x: "bias" not in x, all_layers)
# remove .weight in all other names (or .weight_orig is spectral norm)
all_layers = map(lambda x: x.replace(".weight_orig", ""), all_layers)
# remove weights indicates whether the weights extension should be removed, in addition to
# weight_orig and weight extension on names
if remove_weights:
all_layers = map(lambda x: x.replace(".weights", ""), all_layers)
all_layers = map(lambda x: x.replace(".weight", ""), all_layers)
# return filtered layers
filter_regexp = "(module\\.)?" + "(" + filter_regexp + ")"
r = re.compile(filter_regexp)
return list(filter(r.match, all_layers))
def get_param(module, layer_name, param_config):
"""
Given a quantization configuration, get the right parameter
for the module to be quantized.
Args:
- module: a nn.Module
- layer_name: the name of the layer
- param_config: a dict like
{
'Conv2d': ('kernel_size', {'(3, 3)': 9, '(1, 1)': 4}),
'Linear': ('in_features', {'*': 8})
}
For instance, all conv2d layers with kernel size 3x3 have
a block size of 9 and all Linear layers are quantized with
a block size of 8, irrespective of their size.
Remarks:
- if 'fuzzy_name' is passed as a parameter, layers whose layer_name
include 'fuzzy_name' will be assigned the given parameter.
In the following example, conv.expand layers will have a block
size of 9 while conv.reduce will have a block size of 4 and all
other layers will have a block size of 2.
{
'Conv2d': ('fuzzy_name', {'expand': 9, 'reduce': 4, '*': 2}),
'Linear': ('fuzzy_name', {'classifier': 8, 'projection': 4})
}
"""
layer_type = module.__class__.__name__
if layer_type not in param_config:
raise KeyError(f"Layer type {layer_type} not in config for layer {module}")
feature, params = param_config[module.__class__.__name__]
if feature != "fuzzy_name":
feature_value = str(getattr(module, feature))
if feature_value not in params:
if "*" in params:
feature_value = "*"
else:
raise KeyError(
f"{feature}={feature_value} not in config for layer {module}"
)
else:
feature_values = [name for name in params if name in layer_name]
if len(feature_values) == 0:
if "*" in params:
feature_value = "*"
else:
raise KeyError(f"name={layer_name} not in config for {module}")
else:
feature_value = feature_values[0]
return params[feature_value]
class SizeTracker(object):
"""
Class to keep track of the compressed network size with iPQ.
Args:
- model: a nn.Module
Remarks:
- The compressed size is the sum of three components
for each layer in the network:
(1) Storing the centroids given by iPQ in fp16
(2) Storing the assignments of the blocks in int8
(3) Storing all non-compressed elements such as biases
- This cost in only valid if we use 256 centroids (then
indexing can indeed by done with int8).
"""
def __init__(self, model):
self.model = model
self.size_non_compressed_model = self.compute_size()
self.size_non_quantized = self.size_non_compressed_model
self.size_index = 0
self.size_centroids = 0
self.n_quantized_layers = 0
def compute_size(self):
"""
Computes the size of the model (in MB).
"""
res = 0
for _, p in self.model.named_parameters():
res += p.numel()
return res * 4 / 1024 / 1024
def update(self, W, block_size, n_centroids):
"""
Updates the running statistics when quantizing a new layer.
"""
# bits per weights
bits_per_weight = np.log2(n_centroids) / block_size
self.n_quantized_layers += 1
# size of indexing the subvectors of size block_size (in MB)
size_index_layer = bits_per_weight * W.numel() / 8 / 1024 / 1024
self.size_index += size_index_layer
# size of the centroids stored in float16 (in MB)
size_centroids_layer = n_centroids * block_size * 2 / 1024 / 1024
self.size_centroids += size_centroids_layer
# size of non-compressed layers, e.g. LayerNorms or biases (in MB)
size_uncompressed_layer = W.numel() * 4 / 1024 / 1024
self.size_non_quantized -= size_uncompressed_layer
def __repr__(self):
size_compressed = (
self.size_index + self.size_centroids + self.size_non_quantized
)
compression_ratio = self.size_non_compressed_model / size_compressed # NOQA
return (
f"Non-compressed model size: {self.size_non_compressed_model:.2f} MB. "
f"After quantizing {self.n_quantized_layers} layers, size "
f"(indexing + centroids + other): {self.size_index:.2f} MB + "
f"{self.size_centroids:.2f} MB + {self.size_non_quantized:.2f} MB = "
f"{size_compressed:.2f} MB, compression ratio: {compression_ratio:.2f}x"
)
def attrsetter(*items):
def resolve_attr(obj, attr):
attrs = attr.split(".")
head = attrs[:-1]
tail = attrs[-1]
for name in head:
obj = getattr(obj, name)
return obj, tail
def g(obj, val):
for attr in items:
resolved_obj, resolved_attr = resolve_attr(obj, attr)
setattr(resolved_obj, resolved_attr, val)
return g
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
class PQLinear(nn.Module):
"""
Quantized counterpart of nn.Linear module. Stores the centroid, the assignments
and the non-quantized biases. The full weight is re-instantiated at each forward
pass.
Args:
- centroids: centroids of size n_centroids x block_size
- assignments: assignments of the centroids to the subvectors
of size self.out_features x n_blocks
- bias: the non-quantized bias
Remarks:
- We refer the reader to the official documentation of the nn.Linear module
for the other arguments and the behavior of the module
- Performance tests on GPU show that this implementation is 15% slower than
the non-quantized nn.Linear module for a standard training loop.
"""
def __init__(self, centroids, assignments, bias, in_features, out_features):
super(PQLinear, self).__init__()
self.block_size = centroids.size(1)
self.n_centroids = centroids.size(0)
self.in_features = in_features
self.out_features = out_features
# check compatibility
if self.in_features % self.block_size != 0:
raise ValueError("Wrong PQ sizes")
if len(assignments) % self.out_features != 0:
raise ValueError("Wrong PQ sizes")
# define parameters
self.centroids = nn.Parameter(centroids, requires_grad=True)
self.register_buffer("assignments", assignments)
self.register_buffer("counts", torch.bincount(assignments).type_as(centroids))
if bias is not None:
self.bias = nn.Parameter(bias)
else:
self.register_parameter("bias", None)
@property
def weight(self):
return (
self.centroids[self.assignments]
.reshape(-1, self.out_features, self.block_size)
.permute(1, 0, 2)
.flatten(1, 2)
)
def forward(self, x):
return F.linear(
x,
self.weight,
self.bias,
)
def extra_repr(self):
return f"in_features={self.in_features},\
out_features={self.out_features},\
n_centroids={self.n_centroids},\
block_size={self.block_size},\
bias={self.bias is not None}"
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/modules/qlinear.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
class PQConv2d(nn.Module):
"""
Quantized counterpart of nn.Conv2d module. Stores the centroid, the assignments
and the non-quantized biases. The full weight is re-instantiated at each forward
pass and autograd automatically computes the gradients with respect to the
centroids.
Args:
- centroids: centroids of size n_centroids x block_size
- assignments: assignments of the centroids to the subvectors
of size self.out_channels x n_blocks
- bias: the non-quantized bias, must be either torch.Tensor or None
Remarks:
- We refer the reader to the official documentation of the nn.Conv2d module
for the other arguments and the behavior of the module.
- Performance tests on GPU show that this implementation is 10% slower than
the non-quantized nn.Conv2d module for a standard training loop.
- During the backward, the gradients are averaged by cluster and not summed.
This explains the hook registered to the centroids.
"""
def __init__(
self,
centroids,
assignments,
bias,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode="zeros",
):
super(PQConv2d, self).__init__()
self.block_size = centroids.size(1)
self.n_centroids = centroids.size(0)
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.groups = groups
self.padding_mode = padding_mode
# check compatibility
if in_channels // groups * np.prod(self.kernel_size) % self.block_size != 0:
raise ValueError("Wrong PQ sizes")
if len(assignments) % out_channels != 0:
raise ValueError("Wrong PQ sizes")
if in_channels % groups != 0:
raise ValueError("in_channels must be divisible by groups")
if out_channels % groups != 0:
raise ValueError("out_channels must be divisible by groups")
# define parameters
self.centroids = nn.Parameter(centroids, requires_grad=True)
self.register_buffer("assignments", assignments)
self.register_buffer("counts", torch.bincount(assignments).type_as(centroids))
if bias is not None:
self.bias = nn.Parameter(bias)
else:
self.register_parameter("bias", None)
# register hook for averaging gradients per centroids instead of summing
self.centroids.register_hook(lambda x: x / self.counts[:, None])
@property
def weight(self):
return (
self.centroids[self.assignments]
.reshape(-1, self.out_channels, self.block_size)
.permute(1, 0, 2)
.reshape(
self.out_channels, self.in_channels // self.groups, *self.kernel_size
)
)
def forward(self, x):
return F.conv2d(
x,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
def extra_repr(self):
s = "{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}"
if self.padding != (0,) * len(self.padding):
s += ", padding={padding}"
if self.dilation != (1,) * len(self.dilation):
s += ", dilation={dilation}"
if self.groups != 1:
s += ", groups={groups}"
if self.bias is None:
s += ", bias=False"
if self.padding_mode != "zeros":
s += ", padding_mode={padding_mode}"
s += ", n_centroids={n_centroids}, block_size={block_size}"
return s.format(**self.__dict__)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/modules/qconv.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .qconv import PQConv2d # NOQA
from .qemb import PQEmbedding # NOQA
from .qlinear import PQLinear # NOQA
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/modules/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
class PQEmbedding(nn.Module):
"""
Quantized counterpart of nn.Embedding module. Stores the centroids and
the assignments. The full weight is re-instantiated at each forward
pass.
Args:
- centroids: centroids of size n_centroids x block_size
- assignments: assignments of the centroids to the subvectors
of size self.out_features x n_blocks
- bias: the non-quantized bias
Remarks:
- We refer the reader to the official documentation of the nn.Embedding module
for the other arguments and the behavior of the module
- Performance tests on GPU show that this implementation is 10% slower than
the non-quantized nn.Embedding module for a standard training loop.
"""
def __init__(
self,
centroids,
assignments,
num_embeddings,
embedding_dim,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
):
super(PQEmbedding, self).__init__()
self.block_size = centroids.size(1)
self.n_centroids = centroids.size(0)
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if padding_idx is not None:
if padding_idx > 0:
assert (
padding_idx < self.num_embeddings
), "Padding_idx must be within num_embeddings"
elif padding_idx < 0:
assert (
padding_idx >= -self.num_embeddings
), "Padding_idx must be within num_embeddings"
padding_idx = self.num_embeddings + padding_idx
self.padding_idx = padding_idx
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
self.sparse = sparse
# check compatibility
if self.embedding_dim % self.block_size != 0:
raise ValueError("Wrong PQ sizes")
if len(assignments) % self.num_embeddings != 0:
raise ValueError("Wrong PQ sizes")
# define parameters
self.centroids = nn.Parameter(centroids, requires_grad=True)
self.register_buffer("assignments", assignments)
self.register_buffer("counts", torch.bincount(assignments).type_as(centroids))
@property
def weight(self):
return (
self.centroids[self.assignments]
.reshape(-1, self.num_embeddings, self.block_size)
.permute(1, 0, 2)
.flatten(1, 2)
)
def forward(self, input):
return F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
def extra_repr(self):
s = "{num_embeddings}, {embedding_dim}"
if self.padding_idx is not None:
s += ", padding_idx={padding_idx}"
if self.max_norm is not None:
s += ", max_norm={max_norm}"
if self.norm_type != 2:
s += ", norm_type={norm_type}"
if self.scale_grad_by_freq is not False:
s += ", scale_grad_by_freq={scale_grad_by_freq}"
if self.sparse is not False:
s += ", sparse=True"
s += ", n_centroids={n_centroids}, block_size={block_size}"
return s.format(**self.__dict__)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/pq/modules/qemb.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .utils import quantize_model_ # NOQA
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
try:
import torch.ao.quantization as quantization
except ImportError:
import torch.quantization as quantization
def emulate_int(w, bits, method, scale=None, zero_point=None):
q = globals()[f"emulate_int8_{method}"]
return q(w, scale=scale, zero_point=zero_point, bits=bits)
def quantize(w, scale, zero_point, bits=8):
# In the default behavior, max_val = 255.
max_val = 2**bits - 1
return (
torch.clamp(torch.round(w / scale + zero_point), 0, max_val) - zero_point
) * scale
def emulate_int8_histogram(w, scale=None, zero_point=None, bits=8):
if scale is None:
obs = quantization.observer.HistogramObserver()
obs.to(device=w.device)
_ = obs(w.float())
scale, zero_point = obs.calculate_qparams()
scale = scale.cuda().type_as(w)
zero_point = zero_point.cuda().type_as(w)
return quantize(w, scale, zero_point, bits=bits), scale, zero_point
def emulate_int8_channel(w, scale=None, zero_point=None, bits=8):
if scale is None:
obs = quantization.observer.PerChannelMinMaxObserver(
ch_axis=-1, qscheme=torch.per_channel_symmetric
)
obs.to(device=w.device)
_ = obs(w)
scale, zero_point, ch_axis = obs.get_qparams()
scale = scale.cuda().type_as(w)
zero_point = zero_point.cuda().type_as(w)
return quantize(w, scale, zero_point, bits=bits), scale, zero_point
def emulate_int8_tensor(w, scale=None, zero_point=None, bits=8):
if scale is None:
obs = quantization.observer.MinMaxObserver()
obs.to(device=w.device)
_ = obs(w)
scale, zero_point = obs.calculate_qparams()
scale = scale.cuda().type_as(w)
zero_point = zero_point.cuda().type_as(w)
return quantize(w, scale, zero_point, bits=bits), scale, zero_point
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/ops.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from operator import attrgetter
import torch.distributed as dist
import torch.nn as nn
from ..pq.utils import attrsetter, get_layers
from .modules import ActivationQuantizer, IntConv2d, IntEmbedding, IntLinear
MAPPING = {nn.Linear: IntLinear, nn.Embedding: IntEmbedding, nn.Conv2d: IntConv2d}
def quantize_model_(
model, p=0.2, bits=8, update_step=3000, method="histogram", remove_weights=False
):
"""
Replaces all modules with their scalar quantized counterpart and
registers hooks to quantize the post-ativations of those modules.
Args:
- model: a nn.Module
- p: amount of noise (0 for no noise, 1 to quantize all the weights/activations)
- bits: number of bits
- update_step: update quantization parameters every update_step steps
"""
# quantize all layers
# remove weights indicates whether the weights extension should be removed, in addition to
# weight_orig and weight extension on names
quantized_layers = get_layers(model, "(.*?)", remove_weights=remove_weights)
for layer in quantized_layers:
# book-keeping
is_master_process = (not dist.is_initialized()) or (
dist.is_initialized() and dist.get_rank() == 0
)
# recover module
module = attrgetter(layer)(model)
if is_master_process:
logging.info(
f"Quantizing layer {layer} with bits={bits} and QuantNoise={p}"
)
# quantization params
q_params = {
"p": p,
"update_step": update_step,
"bits": bits,
"method": method,
"counter": 0,
}
# instantiate the quantized counterpart
if isinstance(module, tuple(MAPPING.keys())):
QuantizedModule = MAPPING[module.__class__]
quantized_module = QuantizedModule.__new__(QuantizedModule)
params = module.__dict__
params.update(q_params)
quantized_module.__dict__.update(params)
else:
if is_master_process:
logging.info(f"Module {module} not yet supported for quantization")
continue
# activation quantization
a_q = ActivationQuantizer(quantized_module, p=0, bits=bits, method=method)
# replace layer by its quantized counterpart
attrsetter(layer)(model, quantized_module)
# return name of quantized layers
return quantized_layers
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..ops import emulate_int
class IntLinear(nn.Module):
"""
Quantized counterpart of the nn.Linear module that applies QuantNoise during training.
Args:
- in_features: input features
- out_features: output features
- bias: bias or not
- p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights)
- bits: number of bits
- method: choose among {"tensor", "histogram", "channel"}
- update_step: recompute scale and zero_point every update_steps iterations
Remarks:
- We use the straight-through estimator so that the gradients
back-propagate nicely in the network, this is implemented with
the detach() trick.
- Parameters scale and zero_point are recomputed every update_step
forward pass to reduce the overhead
- At test time, the weights are fully quantized
"""
def __init__(
self,
in_features,
out_features,
bias=True,
p=0,
update_step=3000,
bits=8,
method="histogram",
):
super(IntLinear, self).__init__()
self.in_features = int(in_features)
self.out_features = int(out_features)
self.weight = torch.nn.Parameter(torch.Tensor(out_features, in_features))
self.chosen_bias = bias
if self.chosen_bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter("bias", None)
self.reset_parameters()
# quantization parameters
self.p = p
self.bits = bits
self.method = method
self.update_step = update_step
self.counter = 0
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight)
if self.chosen_bias:
nn.init.constant_(self.bias, 0.0)
return
def forward(self, input):
# train with QuantNoise and evaluate the fully quantized network
p = self.p if self.training else 1
# update parameters every 100 iterations
if self.counter % self.update_step == 0:
self.scale = None
self.zero_point = None
self.counter += 1
# quantize weight
weight_quantized, self.scale, self.zero_point = emulate_int(
self.weight.detach(),
bits=self.bits,
method=self.method,
scale=self.scale,
zero_point=self.zero_point,
)
# mask to apply noise
mask = torch.zeros_like(self.weight)
mask.bernoulli_(1 - p)
noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0)
# using straight-through estimator (STE)
clamp_low = -self.scale * self.zero_point
clamp_high = self.scale * (2**self.bits - 1 - self.zero_point)
weight = (
torch.clamp(self.weight, clamp_low.item(), clamp_high.item())
+ noise.detach()
)
# return output
output = F.linear(input, weight, self.bias)
return output
def extra_repr(self):
return "in_features={}, out_features={}, bias={}, quant_noise={}, bits={}, method={}".format(
self.in_features,
self.out_features,
self.bias is not None,
self.p,
self.bits,
self.method,
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/modules/qlinear.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn.functional as F
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.utils import _pair
from ..ops import emulate_int
class IntConv2d(_ConvNd):
"""
Quantized counterpart of the nn.Conv2d module that applies QuantNoise during training.
Args:
- standard nn.Conv2d parameters
- p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights)
- bits: number of bits
- method: choose among {"tensor", "histogram", "channel"}
- update_step: recompute scale and zero_point every update_steps iterations
Remarks:
- We use the straight-thgourh estimator so that the gradients
back-propagate nicely in the network, this is implemented with
the detach() trick
- Parameters scale and zero_point are recomputed every update_step
forward pass to reduce the overhead
- At test time, the weights are fully quantized
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
p=0,
bits=8,
method="histogram",
update_step=1000,
):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(IntConv2d, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
False,
_pair(0),
groups,
bias,
padding_mode,
)
# quantization parameters
self.p = p
self.bits = bits
self.method = method
self.update_step = update_step
self.counter = 0
def _conv_forward(self, input, weight):
if self.padding_mode != "zeros":
return F.conv2d(
F.pad(input, self._padding_repeated_twice, mode=self.padding_mode),
weight,
self.bias,
self.stride,
_pair(0),
self.dilation,
self.groups,
)
return F.conv2d(
input,
weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
def forward(self, input):
# train with QuantNoise and evaluate the fully quantized network
p = self.p if self.training else 1
# update parameters every 100 iterations
if self.counter % self.update_step == 0:
self.scale = None
self.zero_point = None
self.counter += 1
# quantize weight
weight_quantized, self.scale, self.zero_point = emulate_int(
self.weight.detach(),
bits=self.bits,
method=self.method,
scale=self.scale,
zero_point=self.zero_point,
)
# mask to apply noise
mask = torch.zeros_like(self.weight)
mask.bernoulli_(1 - p)
noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0)
# using straight-through estimator (STE)
clamp_low = -self.scale * self.zero_point
clamp_high = self.scale * (2**self.bits - 1 - self.zero_point)
weight = (
torch.clamp(self.weight, clamp_low.item(), clamp_high.item())
+ noise.detach()
)
# return output
output = self._conv_forward(input, weight)
return output
def extra_repr(self):
return (
"in_channels={}, out_channels={}, kernel_size={}, stride={}, "
"padding={}, dilation={}, groups={}, bias={}, quant_noise={}, "
"bits={}, method={}".format(
self.in_channels,
self.out_channels,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
self.groups,
self.bias is not None,
self.p,
self.bits,
self.method,
)
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/modules/qconv.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .qact import ActivationQuantizer # NOQA
from .qconv import IntConv2d # NOQA
from .qemb import IntEmbedding # NOQA
from .qlinear import IntLinear # NOQA
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/modules/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..ops import emulate_int
class IntEmbedding(nn.Module):
"""
Quantized counterpart of the nn.Embedding module that applies QuantNoise during training.
Args:
- num_embeddings: number of tokens
- embedding_dim: embedding dimension
- p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights)
- bits: number of bits
- method: choose among {"tensor", "histogram", "channel"}
- update_step: recompute scale and zero_point every update_steps iterations
Remarks:
- We use the straight-through estimator so that the gradients
back-propagate nicely in the network, this is implemented with
the detach() trick
- Parameters scale and zero_point are recomputed every update_step
forward pass to reduce the overhead
- At test time, the weights are fully quantized
"""
def __init__(
self,
num_embeddings,
embedding_dim,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
p=0,
update_step=1000,
bits=8,
method="histogram",
):
super(IntEmbedding, self).__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if padding_idx is not None:
if padding_idx > 0:
assert (
padding_idx < self.num_embeddings
), "Padding_idx must be within num_embeddings"
elif padding_idx < 0:
assert (
padding_idx >= -self.num_embeddings
), "Padding_idx must be within num_embeddings"
padding_idx = self.num_embeddings + padding_idx
self.padding_idx = padding_idx
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
if _weight is None:
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
self.reset_parameters()
else:
assert list(_weight.shape) == [
num_embeddings,
embedding_dim,
], "Shape of weight does not match num_embeddings and embedding_dim"
self.weight = nn.Parameter(_weight)
self.sparse = sparse
# quantization parameters
self.p = p
self.bits = bits
self.method = method
self.update_step = update_step
self.counter = 0
def reset_parameters(self):
nn.init.normal_(self.weight)
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input):
# train with QuantNoise and evaluate the fully quantized network
p = self.p if self.training else 1
# update parameters every 1000 iterations
if self.counter % self.update_step == 0:
self.scale = None
self.zero_point = None
self.counter += 1
# quantize weight
weight_quantized, self.scale, self.zero_point = emulate_int(
self.weight.detach(),
bits=self.bits,
method=self.method,
scale=self.scale,
zero_point=self.zero_point,
)
# mask to apply noise
mask = torch.zeros_like(self.weight)
mask.bernoulli_(1 - p)
noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0)
# using straight-through estimator (STE)
clamp_low = -self.scale * self.zero_point
clamp_high = self.scale * (2**self.bits - 1 - self.zero_point)
weight = (
torch.clamp(self.weight, clamp_low.item(), clamp_high.item())
+ noise.detach()
)
# return output
output = F.embedding(
input,
weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return output
def extra_repr(self):
s = "{num_embeddings}, {embedding_dim}"
if self.padding_idx is not None:
s += ", padding_idx={padding_idx}"
if self.max_norm is not None:
s += ", max_norm={max_norm}"
if self.norm_type != 2:
s += ", norm_type={norm_type}"
if self.scale_grad_by_freq is not False:
s += ", scale_grad_by_freq={scale_grad_by_freq}"
if self.sparse is not False:
s += ", sparse=True"
s += "quant_noise={p}, bits={bits}, method={method}"
return s.format(**self.__dict__)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/modules/qemb.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from ..ops import emulate_int
class ActivationQuantizer:
"""
Fake scalar quantization of the activations using a forward hook.
Args:
- module. a nn.Module for which we quantize the *post-activations*
- p: proportion of activations to quantize, set by default to 1
- update_step: to recompute quantization parameters
- bits: number of bits for quantization
- method: choose among {"tensor", "histogram", "channel"}
- clamp_threshold: to prevent gradients overflow
Remarks:
- Parameters scale and zero_point are recomputed every update_step
forward pass to reduce the overhead
- For the list of quantization methods and number of bits, see ops.py
- To remove the hook from the module, simply call self.handle.remove()
- At test time, the activations are fully quantized
- We use the straight-through estimator so that the gradients
back-propagate nicely in the network, this is implemented with
the detach() trick
- The activations are hard-clamped in [-clamp_threshold, clamp_threshold]
to prevent overflow during the backward pass
"""
def __init__(
self,
module,
p=1,
update_step=1000,
bits=8,
method="histogram",
clamp_threshold=5,
):
self.module = module
self.p = p
self.update_step = update_step
self.counter = 0
self.bits = bits
self.method = method
self.clamp_threshold = clamp_threshold
self.handle = None
self.register_hook()
def register_hook(self):
# forward hook
def quantize_hook(module, x, y):
# update parameters every 1000 iterations
if self.counter % self.update_step == 0:
self.scale = None
self.zero_point = None
self.counter += 1
# train with QuantNoise and evaluate the fully quantized network
p = self.p if self.module.training else 1
# quantize activations
y_q, self.scale, self.zero_point = emulate_int(
y.detach(),
bits=self.bits,
method=self.method,
scale=self.scale,
zero_point=self.zero_point,
)
# mask to apply noise
mask = torch.zeros_like(y)
mask.bernoulli_(1 - p)
noise = (y_q - y).masked_fill(mask.bool(), 0)
# using straight-through estimator (STE)
clamp_low = -self.scale * self.zero_point
clamp_high = self.scale * (2**self.bits - 1 - self.zero_point)
return torch.clamp(y, clamp_low.item(), clamp_high.item()) + noise.detach()
# register hook
self.handle = self.module.register_forward_hook(quantize_hook)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/quantization/scalar/modules/qact.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
def gen_forward():
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]]
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "lightconv_cuda.cuh"
std::vector<at::Tensor> lightconv_cuda_forward(at::Tensor input, at::Tensor filters, int padding_l) {
at::DeviceGuard g(input.device());
const auto minibatch = input.size(0);
const auto numFeatures = input.size(1);
const auto sequenceLength = input.size(2);
const auto numHeads = filters.size(0);
const auto filterSize = filters.size(1);
const auto numFiltersInBlock = numFeatures / numHeads;
const dim3 blocks(minibatch, numFeatures);
auto output = at::zeros_like(input);
auto stream = at::cuda::getCurrentCUDAStream();
"""
sequence_if = """
if (sequenceLength <= {seq}) {{
switch(filterSize) {{
"""
case_k = """
case {k}:
"""
main_block = """
if (padding_l == {pad}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_forward", ([&] {{
lightconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t>
<<<blocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
filters.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
output.data<scalar_t>());
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl;
}
break;
"""
bad_filter = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl;
}
"""
con_else = """
} else
"""
final_else = """
{
switch(filterSize) {
"""
final_return = """
}
return {output};
}
"""
with open("lightconv_cuda_forward.cu", "w") as forward:
forward.write(head)
for seq in seqs:
forward.write(sequence_if.format(seq=seq))
for k in kernels:
forward.write(case_k.format(k=k))
for pad in [k // 2, k - 1]:
forward.write(main_block.format(k=k, b_size=seq, pad=pad))
forward.write(bad_padding)
forward.write(bad_filter)
forward.write(con_else)
forward.write(final_else)
for k in kernels:
forward.write(case_k.format(k=k))
for pad in [k // 2, k - 1]:
forward.write(main_block.format(k=k, b_size=seq, pad=pad))
forward.write(bad_padding)
forward.write(bad_filter)
forward.write(final_return)
def gen_backward():
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "lightconv_cuda.cuh"
std::vector<at::Tensor> lightconv_cuda_backward(
at::Tensor gradOutput,
int padding_l,
at::Tensor input,
at::Tensor filters) {
// gradWrtInput
const int minibatch = input.size(0);
const int numFeatures = input.size(1);
const int sequenceLength = input.size(2);
const int numHeads = filters.size(0);
const int filterSize = filters.size(1);
const dim3 gradBlocks(minibatch, numFeatures);
const dim3 weightGradFirstpassShortBlocks(minibatch, numHeads);
const dim3 weightGradSecondpassBlocks(numHeads, filterSize);
const int numFiltersInBlock = numFeatures / numHeads;
auto gradInput = at::zeros_like(input);
auto gradFilters = at::zeros_like(filters);
at::DeviceGuard g(input.device());
auto stream = at::cuda::getCurrentCUDAStream();
switch(filterSize) {
"""
sequence_if = """
if (sequenceLength <= {seq}) {{
"""
case_k = """
case {k}:
"""
main_block = """
if (padding_l == {p}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_backward", ([&] {{
lightconv_grad_wrt_input_kernel<{k}, {b_size}, {p}, scalar_t>
<<<gradBlocks, {b_size}, 0, stream>>>(
gradOutput.data<scalar_t>(),
filters.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
gradInput.data<scalar_t>());
"""
weight_grad_short = """
at::Tensor tempSumGradFilters = at::zeros({{minibatch, numHeads, filterSize}}, input.options().dtype(at::kFloat));
lightconv_grad_wrt_weights_firstpass_short_kernel<{k}, {b_size}, {p}, scalar_t>
<<<weightGradFirstpassShortBlocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
gradOutput.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
numHeads,
tempSumGradFilters.data<float>()
);
lightconv_grad_wrt_weights_secondpass_short_kernel<{k}, {b_size}, scalar_t>
<<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>(
tempSumGradFilters.data<float>(),
minibatch,
numFiltersInBlock,
gradFilters.data<scalar_t>()
);
}}));
}} else
"""
weight_grad = """
at::Tensor tempSumGradFilters = at::zeros({{minibatch, numFeatures, filterSize}}, input.options().dtype(at::kFloat));
lightconv_grad_wrt_weights_firstpass_kernel<{k}, {b_size}, {p}, scalar_t>
<<<gradBlocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
gradOutput.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
tempSumGradFilters.data<float>()
);
lightconv_grad_wrt_weights_secondpass_kernel<{k}, {b_size}, scalar_t>
<<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>(
tempSumGradFilters.data<float>(),
minibatch,
numFiltersInBlock,
gradFilters.data<scalar_t>()
);
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl;
}
"""
breakout = """
break;
"""
bad_filter = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl;
"""
con_else = """
} else
"""
final_else = """
{
switch(filterSize) {
"""
last_return = """
}
return {gradInput, gradFilters};
}
"""
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]]
thresh = [32, 32, 64, 128, 256, -1, -1, -1]
max_mem = [-1, -1, -1, -1, -1, 192, 96, 64]
with open("lightconv_cuda_backward.cu", "w") as backward:
backward.write(head)
for (k, t, mem) in zip(kernels, thresh, max_mem):
backward.write(case_k.format(k=k))
for seq in seqs:
if (t == -1 or seq <= t) and (mem == -1 or seq < mem):
backward.write(sequence_if.format(seq=seq))
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=seq, p=p))
backward.write(weight_grad_short.format(k=k, b_size=seq, p=p))
backward.write(bad_padding)
else:
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=32, p=p))
backward.write(weight_grad.format(k=k, b_size=32, p=p))
backward.write(bad_padding)
backward.write(breakout)
break
backward.write(con_else)
backward.write(bad_filter)
backward.write(last_return)
if __name__ == "__main__":
gen_forward()
gen_backward()
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/lightconv_layer/cuda_function_gen.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .lightconv_layer import LightconvLayer # noqa
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/lightconv_layer/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import lightconv_cuda
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.fairseq_dropout import FairseqDropout
from torch import nn
from torch.autograd import Function
class lightconvFunction(Function):
@staticmethod
def forward(ctx, x, weights, padding_l):
ctx.padding_l = padding_l
outputs = lightconv_cuda.forward(x, weights, padding_l)
variables = [x, weights]
ctx.save_for_backward(*variables)
return outputs[0]
@staticmethod
def backward(ctx, grad_output):
outputs = lightconv_cuda.backward(
grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors
)
grad_input, grad_weights = outputs
return grad_input, grad_weights, None
@with_incremental_state
class LightconvLayer(nn.Module):
def __init__(
self,
input_size,
kernel_size=1,
padding_l=None,
weight_softmax=False,
num_heads=1,
weight_dropout=0.0,
bias=False,
):
super(LightconvLayer, self).__init__()
self.input_size = input_size
self.kernel_size = kernel_size
self.padding_l = padding_l
self.num_heads = num_heads
self.weight_softmax = weight_softmax
self.weight_dropout_module = FairseqDropout(
weight_dropout, module_name=self.__class__.__name__
)
self.weight = nn.Parameter(torch.Tensor(num_heads, kernel_size))
if bias:
self.bias = nn.Parameter(torch.Tensor(input_size))
else:
self.bias = None
self.reset_parameters()
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
for k, v in state_dict.items():
if k.endswith(prefix + "weight"):
if v.dim() == 3 and v.size(1) == 1:
state_dict[k] = v.squeeze(1)
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
def forward(self, x, incremental_state=None):
# during inference time, incremental BMM is faster
if incremental_state is not None:
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is None:
input_buffer = x.new()
x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
if self.kernel_size > 1:
self._set_input_buffer(
incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
)
x_unfold = x_unfold.view(T * B * H, R, -1)
weight = self.weight
if self.weight_softmax:
weight = F.softmax(weight.float(), dim=1).type_as(weight)
weight = weight[:, -x_unfold.size(2) :]
K = weight.size(1)
weight = (
weight.view(1, H, K)
.expand(T * B, H, K)
.contiguous()
.view(T * B * H, K, 1)
)
weight = self.weight_dropout_module(weight)
output = torch.bmm(x_unfold, weight) # T*B*H x R x 1
output = output.view(T, B, C)
return output
# during training time, use CUDA kernel
else:
x = x.permute(1, 2, 0).contiguous()
weight = self.weight
if self.weight_softmax:
weight = F.softmax(self.weight, -1)
if self.weight_dropout_module.p:
weight = self.weight_dropout_module(weight)
return lightconvFunction.apply(x, weight, self.padding_l).permute(2, 0, 1)
def reorder_incremental_state(self, incremental_state, new_order):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
input_buffer = input_buffer.index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return utils.get_incremental_state(self, incremental_state, "input_buffer")
def _set_input_buffer(self, incremental_state, new_buffer):
return utils.set_incremental_state(
self, incremental_state, "input_buffer", new_buffer
)
def half(self):
return self._apply(lambda t: t.half() if t.is_floating_point() else t)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/lightconv_layer/lightconv_layer.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name="lightconv_layer",
ext_modules=[
CUDAExtension(
"lightconv_cuda",
[
"lightconv_cuda.cpp",
"lightconv_cuda_kernel.cu",
],
),
],
cmdclass={"build_ext": BuildExtension},
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/lightconv_layer/setup.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
def gen_forward():
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
blocks = [32, 64, 128, 256]
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "dynamicconv_cuda.cuh"
std::vector<at::Tensor> dynamicconv_cuda_forward(at::Tensor input, at::Tensor weight, int padding_l) {
at::DeviceGuard g(input.device());
const auto minibatch = input.size(0);
const auto numFeatures = input.size(1);
const auto sequenceLength = input.size(2);
const auto numHeads = weight.size(1);
const auto filterSize = weight.size(2);
const auto numFiltersInBlock = numFeatures / numHeads;
const dim3 blocks(minibatch, numFeatures);
auto output = at::zeros_like(input);
auto stream = at::cuda::getCurrentCUDAStream();
"""
switch = """
switch(filterSize) {
"""
case_k = """
case {k}:
"""
main_block = """
if (padding_l == {pad}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "dynamicconv_forward", ([&] {{
dynamicconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t>
<<<blocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
weight.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
numHeads,
output.data<scalar_t>());
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl;
}
break;\n
"""
end = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl;
}
return {output};
}
"""
with open("dynamicconv_cuda_forward.cu", "w") as forward:
forward.write(head)
forward.write(switch)
for k in kernels:
b_size = 32
for b in blocks:
if b > k:
b_size = b
break
forward.write(case_k.format(k=k))
for pad in [k // 2, k - 1]:
forward.write(main_block.format(k=k, b_size=b_size, pad=pad))
forward.write(bad_padding)
forward.write(end)
def gen_backward():
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
thresh = [512, 512, 512, 512, 512, 380, 256, 256]
min_block = [64, 64, 64, 64, 64, 64, 128, 256]
seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]]
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "dynamicconv_cuda.cuh"
std::vector<at::Tensor> dynamicconv_cuda_backward(at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor weight) {
at::DeviceGuard g(input.device());
const auto minibatch = input.size(0);
const auto numFeatures = input.size(1);
const auto sequenceLength = input.size(2);
const auto numHeads = weight.size(1);
const auto filterSize = weight.size(2);
const auto numFiltersInBlock = numFeatures / numHeads;
auto numChunks = 1;
auto gradInput = at::zeros_like(input);
auto gradWeight = at::zeros_like(weight);
auto stream = at::cuda::getCurrentCUDAStream();
dim3 blocks(minibatch, numHeads, numChunks);
"""
sequence_if = """
if (sequenceLength < {seq}) {{
switch(filterSize) {{
"""
case_k = """
case {k}:
"""
chunks_reset = """
numChunks = int(ceilf(sequenceLength/float({b_size})));
blocks = dim3(minibatch, numHeads, numChunks);
"""
main_block = """
if (padding_l == {p}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(gradOutput.scalar_type(), "dynamicconv_backward", ([&] {{
dynamicconv_backward_kernel<{k}, {b_size}, {p}, scalar_t>
<<<blocks, {b_size}, 0, stream>>>(
gradOutput.data<scalar_t>(),
input.data<scalar_t>(),
weight.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
numHeads,
gradWeight.data<scalar_t>(),
gradInput.data<scalar_t>());
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl;
}
break;\n
"""
bad_filter = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl;
}
"""
con_else = """
} else
"""
final_else = """
{
switch(filterSize) {
"""
last_return = """
}
return {gradInput, gradWeight};
}
"""
with open("dynamicconv_cuda_backward.cu", "w") as backward:
backward.write(head)
for seq in seqs:
backward.write(sequence_if.format(seq=seq))
for k, t, m in zip(kernels, thresh, min_block):
backward.write(case_k.format(k=k))
if seq <= t:
b_size = seq
else:
b_size = m
backward.write(chunks_reset.format(b_size=b_size))
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=b_size, p=p))
backward.write(bad_padding)
backward.write(bad_filter)
backward.write(con_else)
backward.write(final_else)
for k, m in zip(kernels, min_block):
backward.write(case_k.format(k=k))
backward.write(chunks_reset.format(b_size=m))
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=m, p=p))
backward.write(bad_padding)
backward.write(bad_filter)
backward.write(last_return)
if __name__ == "__main__":
gen_forward()
gen_backward()
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/dynamicconv_layer/cuda_function_gen.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .dynamicconv_layer import DynamicconvLayer # noqa
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/dynamicconv_layer/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import dynamicconv_cuda
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.unfold import unfold1d
from torch import nn
from torch.autograd import Function
class dynamicconvFunction(Function):
@staticmethod
def forward(ctx, x, weights, padding_l):
ctx.padding_l = padding_l
outputs = dynamicconv_cuda.forward(x, weights, padding_l)
variables = [x, weights]
ctx.save_for_backward(*variables)
return outputs[0]
@staticmethod
def backward(ctx, grad_output):
outputs = dynamicconv_cuda.backward(
grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors
)
grad_input, grad_weights = outputs
return grad_input, grad_weights, None
@with_incremental_state
class DynamicconvLayer(nn.Module):
def __init__(
self,
input_size,
kernel_size=1,
padding_l=None,
weight_softmax=False,
num_heads=1,
weight_dropout=0.0,
bias=False,
renorm_padding=False,
conv_bias=False,
query_size=None,
):
super(DynamicconvLayer, self).__init__()
self.input_size = input_size
self.query_size = input_size if query_size is None else query_size
self.kernel_size = kernel_size
self.padding_l = padding_l
self.num_heads = num_heads
self.weight_softmax = weight_softmax
self.weight_dropout_module = FairseqDropout(
weight_dropout, module_name=self.__class__.__name__
)
self.renorm_padding = renorm_padding
self.bias = bias
self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias)
if conv_bias:
self.conv_bias = nn.Parameter(torch.Tensor(input_size))
else:
self.conv_bias = None
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight_linear.weight)
if self.conv_bias is not None:
nn.init.constant_(self.conv_bias, 0.0)
nn.init.constant_(self.weight_linaer.bias, 0.0)
def forward(self, x, incremental_state=None, query=None, unfold=None):
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
# R = C // H
# during inference time, incremental BMM is faster
if incremental_state is not None:
unfold = (
x.size(0) > 512 if unfold is None else unfold
) # use unfold mode as default for long sequence to save memory
unfold = unfold or (incremental_state is not None)
assert query is None
if query is None:
query = x
if unfold:
output = self._forward_unfolded(x, incremental_state, query)
else:
output = self._forward_expanded(x, incremental_state, query)
if self.conv_bias is not None:
output = output + self.conv_bias.view(1, 1, -1)
return output
# during training time, use CUDA kernel
else:
weight = self.weight_linear(x).view(T, B, H, K)
if self.weight_softmax:
weight = F.softmax(weight, dim=-1)
if self.weight_dropout_module.p:
weight = self.weight_dropout_module(weight)
weight = weight.permute(1, 2, 3, 0).contiguous()
self.filters = weight
x = x.permute(1, 2, 0).contiguous()
output = dynamicconvFunction.apply(x, weight, self.padding_l).permute(
2, 0, 1
)
if self.conv_bias is not None:
output = output + self.conv_bias.view(1, 1, -1)
return output
def reorder_incremental_state(self, incremental_state, new_order):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
input_buffer = input_buffer.index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return utils.get_incremental_state(self, incremental_state, "input_buffer")
def _set_input_buffer(self, incremental_state, new_buffer):
return utils.set_incremental_state(
self, incremental_state, "input_buffer", new_buffer
)
def _forward_unfolded(self, x, incremental_state, query):
"""The conventional implementation of convolutions.
Unfolding the input by having a window shifting to the right."""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
weight = self.weight_linear(query).view(T * B * H, -1)
# renorm_padding is only implemented in _forward_expanded
assert not self.renorm_padding or incremental_state is not None
if incremental_state is not None:
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is None:
input_buffer = x.new()
x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
if self.kernel_size > 1:
self._set_input_buffer(
incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
)
x_unfold = x_unfold.view(T * B * H, R, -1)
else:
padding_l = self.padding_l
if K > T and padding_l == K - 1:
weight = weight.narrow(1, K - T, T)
K, padding_l = T, T - 1
# unfold the input: T x B x C --> T' x B x C x K
x_unfold = unfold1d(x, K, padding_l, 0)
x_unfold = x_unfold.view(T * B * H, R, K)
if self.weight_softmax and not self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = weight.narrow(1, 0, K)
if incremental_state is not None:
weight = weight[:, -x_unfold.size(2) :]
K = weight.size(1)
if self.weight_softmax and self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = self.weight_dropout_module(weight, inplace=False)
output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1
output = output.view(T, B, C)
return output
def _forward_expanded(self, x, incremental_stat, query):
"""Turn the convolution filters into band matrices and do matrix multiplication.
This is faster when the sequence is short, but less memory efficient.
This is not used in the decoder during inference.
"""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
weight = self.weight_linear(query).view(T * B * H, -1)
if not self.renorm_padding:
if self.weight_softmax:
weight = F.softmax(weight, dim=1)
weight = self.weight_dropout_module(weight, inplace=False)
weight = weight.narrow(1, 0, K).contiguous()
weight = weight.view(T, B * H, K).transpose(0, 1)
x = x.view(T, B * H, R).transpose(0, 1)
if self.weight_softmax and self.renorm_padding:
# turn the convolution filters into band matrices
weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf"))
weight_expanded.as_strided(
(B * H, T, K), (T * (T + K - 1), T + K, 1)
).copy_(weight)
weight_expanded = weight_expanded.narrow(2, self.padding_l, T)
# normalize the weight over valid positions like self-attention
weight_expanded = F.softmax(weight_expanded, dim=2)
weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False)
else:
P = self.padding_l
# For efficiency, we cut the kernel size and reduce the padding when the kernel is larger than the length
if K > T and P == K - 1:
weight = weight.narrow(2, K - T, T)
K, P = T, T - 1
# turn the convolution filters into band matrices
weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False)
weight_expanded.as_strided(
(B * H, T, K), (T * (T + K - 1), T + K, 1)
).copy_(weight)
weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T
output = torch.bmm(weight_expanded, x)
output = output.transpose(0, 1).contiguous().view(T, B, C)
return output
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/dynamicconv_layer/dynamicconv_layer.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name="dynamicconv_layer",
ext_modules=[
CUDAExtension(
name="dynamicconv_cuda",
sources=[
"dynamicconv_cuda.cpp",
"dynamicconv_cuda_kernel.cu",
],
),
],
cmdclass={"build_ext": BuildExtension},
)
| EXA-1-master | exa/libraries/fairseq/fairseq/modules/dynamicconv_layer/setup.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import BaseWrapperDataset
class OffsetTokensDataset(BaseWrapperDataset):
def __init__(self, dataset, offset):
super().__init__(dataset)
self.offset = offset
def __getitem__(self, idx):
return self.dataset[idx] + self.offset
| EXA-1-master | exa/libraries/fairseq/fairseq/data/offset_tokens_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
import torch
from torch.utils.data.dataloader import default_collate
from . import FairseqDataset
def _flatten(dico, prefix=None):
"""Flatten a nested dictionary."""
new_dico = OrderedDict()
if isinstance(dico, dict):
prefix = prefix + "." if prefix is not None else ""
for k, v in dico.items():
if v is None:
continue
new_dico.update(_flatten(v, prefix + k))
elif isinstance(dico, list):
for i, v in enumerate(dico):
new_dico.update(_flatten(v, prefix + ".[" + str(i) + "]"))
else:
new_dico = OrderedDict({prefix: dico})
return new_dico
def _unflatten(dico):
"""Unflatten a flattened dictionary into a nested dictionary."""
new_dico = OrderedDict()
for full_k, v in dico.items():
full_k = full_k.split(".")
node = new_dico
for k in full_k[:-1]:
if k.startswith("[") and k.endswith("]"):
k = int(k[1:-1])
if k not in node:
node[k] = OrderedDict()
node = node[k]
node[full_k[-1]] = v
return new_dico
class NestedDictionaryDataset(FairseqDataset):
def __init__(self, defn, sizes=None):
super().__init__()
self.defn = _flatten(defn)
self.sizes = [sizes] if not isinstance(sizes, (list, tuple)) else sizes
first = None
for v in self.defn.values():
if not isinstance(
v,
(
FairseqDataset,
torch.utils.data.Dataset,
),
):
raise ValueError("Expected Dataset but found: {}".format(v.__class__))
first = first or v
if len(v) > 0:
assert len(v) == len(first), "dataset lengths must match"
self._len = len(first)
def __getitem__(self, index):
return OrderedDict((k, ds[index]) for k, ds in self.defn.items())
def __len__(self):
return self._len
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch suitable for forwarding with a Model
"""
if len(samples) == 0:
return {}
sample = OrderedDict()
for k, ds in self.defn.items():
try:
sample[k] = ds.collater([s[k] for s in samples])
except NotImplementedError:
sample[k] = default_collate([s[k] for s in samples])
return _unflatten(sample)
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return max(s[index] for s in self.sizes)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
if len(self.sizes) == 1:
return self.sizes[0][index]
else:
return (s[index] for s in self.sizes)
@property
def supports_prefetch(self):
"""Whether this dataset supports prefetching."""
return any(ds.supports_prefetch for ds in self.defn.values())
def prefetch(self, indices):
"""Prefetch the data required for this epoch."""
for ds in self.defn.values():
if getattr(ds, "supports_prefetch", False):
ds.prefetch(indices)
@property
def can_reuse_epoch_itr_across_epochs(self):
return all(ds.can_reuse_epoch_itr_across_epochs for ds in self.defn.values())
def set_epoch(self, epoch):
super().set_epoch(epoch)
for ds in self.defn.values():
ds.set_epoch(epoch)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/nested_dictionary_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import asyncio
import logging
import time
from collections import OrderedDict
from typing import Dict, List, Optional
import numpy as np
from fairseq.data import data_utils
from . import FairseqDataset
logger = logging.getLogger(__name__)
class MultiCorpusDataset(FairseqDataset):
"""
Stores multiple instances of FairseqDataset together.
Unless batch_sample=True, requires each instance
to be the same dataset, as the collate method needs to work on batches with
samples from each dataset.
Allows specifying a distribution over the datasets to use. Note that unlike
MultiCorpusSampledDataset, this distribution allows sampling for each item,
rather than on a batch level. Note that datasets with sampling probabilty
of 0 will be skipped.
Each time ordered_indices() is called, a new sample is generated with
the specified distribution.
Args:
datasets: a OrderedDict of FairseqDataset instances.
distribution: a List containing the probability of getting an utterance from
corresponding dataset
seed: random seed for sampling the datsets
sort_indices: if true, will sort the ordered indices by size
batch_sample: if true, will ensure each batch is from a single dataset
"""
def __init__(
self,
datasets: Dict[str, FairseqDataset],
distribution: List[float],
seed: int,
sort_indices: bool = False,
batch_sample: bool = False,
distributed_rank: Optional[int] = None,
):
super().__init__()
assert isinstance(datasets, OrderedDict)
assert len(datasets) == len(distribution)
assert sum(distribution) == 1
self.datasets = datasets
self.distribution = distribution
self.seed = seed
self.sort_indices = sort_indices
self.batch_sample = batch_sample
self.distributed_rank = distributed_rank
# Avoid repeated conversions to list later
self.dataset_list = list(datasets.values())
self.total_num_instances = 0
first_dataset = self.dataset_list[0]
self.num_instances_per_dataset = []
self.dataset_offsets = []
for i, dataset in enumerate(self.dataset_list):
assert isinstance(dataset, FairseqDataset)
assert type(dataset) is type(first_dataset)
self.num_instances_per_dataset.append(
0 if self.distribution[i] == 0 else len(dataset)
)
self.dataset_offsets.append(self.total_num_instances)
self.total_num_instances += self.num_instances_per_dataset[i]
def ordered_indices(self):
start = time.time()
with data_utils.numpy_seed(self.seed, self.epoch):
logger.info(
f"sampling new dataset with seed {self.seed} epoch {self.epoch}"
)
sampled_indices = []
num_selected_instances = 0
# For each dataset i, sample self.distribution[i] * self.total_num_instances
for i, key in enumerate(self.datasets):
if self.distribution[i] == 0:
# skip dataset if sampling probability is 0
continue
if i < len(self.datasets) - 1:
num_instances = int(self.distribution[i] * self.total_num_instances)
high = self.dataset_offsets[i + 1]
else:
num_instances = self.total_num_instances - num_selected_instances
high = self.total_num_instances
logger.info(f"sampling {num_instances} from {key} dataset")
num_selected_instances += num_instances
# First, add k copies of the dataset where k = num_instances // len(dataset).
# This ensures an equal distribution of the data points as much as possible.
# For the remaining entries randomly sample them
dataset_size = len(self.datasets[key])
num_copies = num_instances // dataset_size
dataset_indices = (
np.random.permutation(high - self.dataset_offsets[i])
+ self.dataset_offsets[i]
)[: num_instances - num_copies * dataset_size]
if num_copies > 0:
sampled_indices += list(
np.concatenate(
(
np.repeat(
np.arange(self.dataset_offsets[i], high), num_copies
),
dataset_indices,
)
)
)
else:
sampled_indices += list(dataset_indices)
assert (
len(sampled_indices) == self.total_num_instances
), f"{len(sampled_indices)} vs {self.total_num_instances}"
np.random.shuffle(sampled_indices)
if self.sort_indices:
sampled_indices.sort(key=lambda i: self.num_tokens(i))
logger.info(
"multi_corpus_dataset ordered_indices took {}s".format(
time.time() - start
)
)
return np.array(sampled_indices, dtype=np.int64)
def _map_index(self, index: int):
"""
If dataset A has length N and dataset B has length M
then index 1 maps to index 1 of dataset A, and index N + 1
maps to index 1 of B.
"""
counter = 0
for num_instances, key in zip(self.num_instances_per_dataset, self.datasets):
if index < counter + num_instances:
return index - counter, key
counter += num_instances
raise ValueError(
"Invalid index: {}, max: {}".format(index, self.total_num_instances)
)
def __len__(self):
"""
Length of this dataset is the sum of individual datasets
"""
return self.total_num_instances
async def getitem(self, index):
new_index, key = self._map_index(index)
try:
if hasattr(self.datasets[key], "getitem"):
item = await self.datasets[key].getitem(new_index)
else:
item = self.datasets[key][new_index]
item["full_id"] = index
return item
except Exception as e:
e.args = (f"Error from {key} dataset", *e.args)
raise
def __getitem__(self, index):
return asyncio.run(self.getitem(index))
async def getitems(self, indices):
# initialize a bunch of everstore read operations
# wait in the end to reduce overhead
# very helpful if io is latency bounded
max_concurrency = 32
sem = asyncio.Semaphore(max_concurrency)
async def controlled_getitem(index):
async with sem:
return await self.getitem(index)
coroutines = []
for index in indices:
coroutines.append(controlled_getitem(index))
results = await asyncio.gather(*coroutines)
return results
def __getitems__(self, indices):
return asyncio.run(self.getitems(indices))
def collater(self, samples):
"""
If we are doing batch sampling, then pick the right collater to use.
Otherwise we assume all collaters are the same.
"""
if len(samples) == 0:
return None
if "full_id" in samples[0]:
_, key = self._map_index(samples[0]["full_id"])
try:
batch = self.datasets[key].collater(samples)
except Exception:
print(f"Collating failed for key {key}", flush=True)
raise
return batch
else:
# Subclasses may override __getitem__ to not specify full_id
return list(self.datasets.values())[0].collater(samples)
def num_tokens(self, index: int):
index, key = self._map_index(index)
return self.datasets[key].num_tokens(index)
def size(self, index: int):
index, key = self._map_index(index)
return self.datasets[key].size(index)
@property
def can_reuse_epoch_itr_across_epochs(self):
return False
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
logger.info(f"setting epoch of multi_corpus_dataset to {epoch}")
self.epoch = epoch
@property
def supports_prefetch(self):
return False
@property
def supports_fetch_outside_dataloader(self):
return all(
self.datasets[key].supports_fetch_outside_dataloader
for key in self.datasets
)
def batch_by_size(
self,
indices,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
if not self.batch_sample:
return super().batch_by_size(
indices, max_tokens, max_sentences, required_batch_size_multiple
)
dataset_indices = {key: [] for key in self.datasets}
for i in indices:
_, key = self._map_index(i)
dataset_indices[key].append(i)
batches = []
for key in dataset_indices:
cur_batches = super().batch_by_size(
np.array(dataset_indices[key], dtype=np.int64),
max_tokens,
max_sentences,
required_batch_size_multiple,
)
logger.info(f"Created {len(cur_batches)} batches for dataset {key}")
batches += cur_batches
# If this dataset is used in a distributed training setup,
# then shuffle such that the order is seeded by the distributed rank
# as well
if self.distributed_rank is not None:
with data_utils.numpy_seed(self.seed, self.epoch, self.distributed_rank):
np.random.shuffle(batches)
return batches
| EXA-1-master | exa/libraries/fairseq/fairseq/data/multi_corpus_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import bisect
import numpy as np
from torch.utils.data.dataloader import default_collate
from . import FairseqDataset
class ConcatDataset(FairseqDataset):
@staticmethod
def cumsum(sequence, sample_ratios):
r, s = [], 0
for e, ratio in zip(sequence, sample_ratios):
curr_len = int(ratio * len(e))
r.append(curr_len + s)
s += curr_len
return r
def __init__(self, datasets, sample_ratios=1):
super(ConcatDataset, self).__init__()
assert len(datasets) > 0, "datasets should not be an empty iterable"
self.datasets = list(datasets)
if isinstance(sample_ratios, int):
sample_ratios = [sample_ratios] * len(self.datasets)
self.sample_ratios = sample_ratios
self.cumulative_sizes = self.cumsum(self.datasets, sample_ratios)
self.real_sizes = [len(d) for d in self.datasets]
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
return self.datasets[dataset_idx][sample_idx]
def _get_dataset_and_sample_index(self, idx: int):
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
sample_idx = sample_idx % self.real_sizes[dataset_idx]
return dataset_idx, sample_idx
def collater(self, samples, **extra_args):
# For now only supports datasets with same underlying collater implementations
if hasattr(self.datasets[0], "collater"):
return self.datasets[0].collater(samples, **extra_args)
else:
return default_collate(samples, **extra_args)
def size(self, idx: int):
"""
Return an example's size as a float or tuple.
"""
dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
return self.datasets[dataset_idx].size(sample_idx)
def num_tokens(self, index: int):
return np.max(self.size(index))
def attr(self, attr: str, index: int):
dataset_idx = bisect.bisect_right(self.cumulative_sizes, index)
return getattr(self.datasets[dataset_idx], attr, None)
@property
def sizes(self):
_dataset_sizes = []
for ds, sr in zip(self.datasets, self.sample_ratios):
if isinstance(ds.sizes, np.ndarray):
_dataset_sizes.append(np.tile(ds.sizes, sr))
else:
# Only support underlying dataset with single size array.
assert isinstance(ds.sizes, list)
_dataset_sizes.append(np.tile(ds.sizes[0], sr))
return np.concatenate(_dataset_sizes)
@property
def supports_prefetch(self):
return all(d.supports_prefetch for d in self.datasets)
def ordered_indices(self):
"""
Returns indices sorted by length. So less padding is needed.
"""
if isinstance(self.sizes, np.ndarray) and len(self.sizes.shape) > 1:
# special handling for concatenating lang_pair_datasets
indices = np.arange(len(self))
sizes = self.sizes
tgt_sizes = (
sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None
)
src_sizes = (
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes
)
# sort by target length, then source length
if tgt_sizes is not None:
indices = indices[np.argsort(tgt_sizes[indices], kind="mergesort")]
return indices[np.argsort(src_sizes[indices], kind="mergesort")]
else:
return np.argsort(self.sizes)
def prefetch(self, indices):
frm = 0
for to, ds in zip(self.cumulative_sizes, self.datasets):
real_size = len(ds)
if getattr(ds, "supports_prefetch", False):
ds.prefetch([(i - frm) % real_size for i in indices if frm <= i < to])
frm = to
@property
def can_reuse_epoch_itr_across_epochs(self):
return all(d.can_reuse_epoch_itr_across_epochs for d in self.datasets)
def set_epoch(self, epoch):
super().set_epoch(epoch)
for ds in self.datasets:
if hasattr(ds, "set_epoch"):
ds.set_epoch(epoch)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/concat_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import BaseWrapperDataset
class ReplaceDataset(BaseWrapperDataset):
"""Replaces tokens found in the dataset by a specified replacement token
Args:
dataset (~torch.utils.data.Dataset): dataset to replace tokens in
replace_map(Dictionary[int,int]): map of token to replace -> replacement token
offsets (List[int]): do not replace tokens before (from left if pos, right if neg) this offset. should be
as many as the number of objects returned by the underlying dataset __getitem__ method.
"""
def __init__(self, dataset, replace_map, offsets):
super().__init__(dataset)
assert len(replace_map) > 0
self.replace_map = replace_map
self.offsets = offsets
def __getitem__(self, index):
item = self.dataset[index]
is_tuple = isinstance(item, tuple)
srcs = item if is_tuple else [item]
for offset, src in zip(self.offsets, srcs):
for k, v in self.replace_map.items():
src_off = src[offset:] if offset >= 0 else src[:offset]
src_off.masked_fill_(src_off == k, v)
item = srcs if is_tuple else srcs[0]
return item
| EXA-1-master | exa/libraries/fairseq/fairseq/data/replace_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq import utils
from . import FairseqDataset
def backtranslate_samples(samples, collate_fn, generate_fn, cuda=True):
"""Backtranslate a list of samples.
Given an input (*samples*) of the form:
[{'id': 1, 'source': 'hallo welt'}]
this will return:
[{'id': 1, 'source': 'hello world', 'target': 'hallo welt'}]
Args:
samples (List[dict]): samples to backtranslate. Individual samples are
expected to have a 'source' key, which will become the 'target'
after backtranslation.
collate_fn (callable): function to collate samples into a mini-batch
generate_fn (callable): function to generate backtranslations
cuda (bool): use GPU for generation (default: ``True``)
Returns:
List[dict]: an updated list of samples with a backtranslated source
"""
collated_samples = collate_fn(samples)
s = utils.move_to_cuda(collated_samples) if cuda else collated_samples
generated_sources = generate_fn(s)
id_to_src = {sample["id"]: sample["source"] for sample in samples}
# Go through each tgt sentence in batch and its corresponding best
# generated hypothesis and create a backtranslation data pair
# {id: id, source: generated backtranslation, target: original tgt}
return [
{
"id": id.item(),
"target": id_to_src[id.item()],
"source": hypos[0]["tokens"].cpu(),
}
for id, hypos in zip(collated_samples["id"], generated_sources)
]
class BacktranslationDataset(FairseqDataset):
"""
Sets up a backtranslation dataset which takes a tgt batch, generates
a src using a tgt-src backtranslation function (*backtranslation_fn*),
and returns the corresponding `{generated src, input tgt}` batch.
Args:
tgt_dataset (~fairseq.data.FairseqDataset): the dataset to be
backtranslated. Only the source side of this dataset will be used.
After backtranslation, the source sentences in this dataset will be
returned as the targets.
src_dict (~fairseq.data.Dictionary): the dictionary of backtranslated
sentences.
tgt_dict (~fairseq.data.Dictionary, optional): the dictionary of
sentences to be backtranslated.
backtranslation_fn (callable, optional): function to call to generate
backtranslations. This is typically the `generate` method of a
:class:`~fairseq.sequence_generator.SequenceGenerator` object.
Pass in None when it is not available at initialization time, and
use set_backtranslation_fn function to set it when available.
output_collater (callable, optional): function to call on the
backtranslated samples to create the final batch
(default: ``tgt_dataset.collater``).
cuda: use GPU for generation
"""
def __init__(
self,
tgt_dataset,
src_dict,
tgt_dict=None,
backtranslation_fn=None,
output_collater=None,
cuda=True,
**kwargs
):
self.tgt_dataset = tgt_dataset
self.backtranslation_fn = backtranslation_fn
self.output_collater = (
output_collater if output_collater is not None else tgt_dataset.collater
)
self.cuda = cuda if torch.cuda.is_available() else False
self.src_dict = src_dict
self.tgt_dict = tgt_dict
def __getitem__(self, index):
"""
Returns a single sample from *tgt_dataset*. Note that backtranslation is
not applied in this step; use :func:`collater` instead to backtranslate
a batch of samples.
"""
return self.tgt_dataset[index]
def __len__(self):
return len(self.tgt_dataset)
def set_backtranslation_fn(self, backtranslation_fn):
self.backtranslation_fn = backtranslation_fn
def collater(self, samples):
"""Merge and backtranslate a list of samples to form a mini-batch.
Using the samples from *tgt_dataset*, load a collated target sample to
feed to the backtranslation model. Then take the backtranslation with
the best score as the source and the original input as the target.
Note: we expect *tgt_dataset* to provide a function `collater()` that
will collate samples into the format expected by *backtranslation_fn*.
After backtranslation, we will feed the new list of samples (i.e., the
`(backtranslated source, original source)` pairs) to *output_collater*
and return the result.
Args:
samples (List[dict]): samples to backtranslate and collate
Returns:
dict: a mini-batch with keys coming from *output_collater*
"""
if samples[0].get("is_dummy", False):
return samples
samples = backtranslate_samples(
samples=samples,
collate_fn=self.tgt_dataset.collater,
generate_fn=(lambda net_input: self.backtranslation_fn(net_input)),
cuda=self.cuda,
)
return self.output_collater(samples)
def num_tokens(self, index):
"""Just use the tgt dataset num_tokens"""
return self.tgt_dataset.num_tokens(index)
def ordered_indices(self):
"""Just use the tgt dataset ordered_indices"""
return self.tgt_dataset.ordered_indices()
def size(self, index):
"""Return an example's size as a float or tuple. This value is used
when filtering a dataset with ``--max-positions``.
Note: we use *tgt_dataset* to approximate the length of the source
sentence, since we do not know the actual length until after
backtranslation.
"""
tgt_size = self.tgt_dataset.size(index)[0]
return (tgt_size, tgt_size)
@property
def supports_prefetch(self):
return getattr(self.tgt_dataset, "supports_prefetch", False)
def prefetch(self, indices):
return self.tgt_dataset.prefetch(indices)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/backtranslation_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import FairseqDataset
class IdDataset(FairseqDataset):
def __getitem__(self, index):
return index
def __len__(self):
return 0
def collater(self, samples):
return torch.tensor(samples)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/id_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.data import data_utils
from . import BaseWrapperDataset
class PaddingMaskDataset(BaseWrapperDataset):
def __init__(self, dataset, left_pad, pad_length=None):
super().__init__(dataset)
self.left_pad = left_pad
self.pad_length = pad_length
def __getitem__(self, index):
item = self.dataset[index]
return torch.zeros_like(item).bool()
def __len__(self):
return len(self.dataset)
def collater(self, samples):
return data_utils.collate_tokens(
samples, True, left_pad=self.left_pad, pad_to_length=self.pad_length
)
class LeftPaddingMaskDataset(PaddingMaskDataset):
def __init__(self, dataset):
super().__init__(dataset, left_pad=True)
class RightPaddingMaskDataset(PaddingMaskDataset):
def __init__(self, dataset):
super().__init__(dataset, left_pad=False)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/padding_mask_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from . import BaseWrapperDataset
class PrependDataset(BaseWrapperDataset):
def __init__(self, dataset, prepend_getter, ensure_first_token_is=None):
super().__init__(dataset)
self.prepend_getter = prepend_getter
self.ensure_first_token = ensure_first_token_is
def __getitem__(self, idx):
item = self.dataset[idx]
is_tuple = isinstance(item, tuple)
src = item[0] if is_tuple else item
assert self.ensure_first_token is None or src[0] == self.ensure_first_token
prepend_idx = self.prepend_getter(self.dataset, idx)
assert isinstance(prepend_idx, int)
src[0] = prepend_idx
item = tuple((src,) + item[1:]) if is_tuple else src
return item
| EXA-1-master | exa/libraries/fairseq/fairseq/data/prepend_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import BaseWrapperDataset, data_utils
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel
class AddTargetDataset(BaseWrapperDataset):
def __init__(
self,
dataset,
labels,
pad,
eos,
batch_targets,
process_label=None,
label_len_fn=None,
add_to_input=False,
text_compression_level=TextCompressionLevel.none,
):
super().__init__(dataset)
self.labels = labels
self.batch_targets = batch_targets
self.pad = pad
self.eos = eos
self.process_label = process_label
self.label_len_fn = label_len_fn
self.add_to_input = add_to_input
self.text_compressor = TextCompressor(level=text_compression_level)
def get_label(self, index, process_fn=None):
lbl = self.labels[index]
lbl = self.text_compressor.decompress(lbl)
return lbl if process_fn is None else process_fn(lbl)
def __getitem__(self, index):
item = self.dataset[index]
item["label"] = self.get_label(index, process_fn=self.process_label)
return item
def size(self, index):
sz = self.dataset.size(index)
own_sz = self.label_len_fn(self.get_label(index))
return sz, own_sz
def collater(self, samples):
collated = self.dataset.collater(samples)
if len(collated) == 0:
return collated
indices = set(collated["id"].tolist())
target = [s["label"] for s in samples if s["id"] in indices]
if self.batch_targets:
collated["target_lengths"] = torch.LongTensor([len(t) for t in target])
target = data_utils.collate_tokens(target, pad_idx=self.pad, left_pad=False)
collated["ntokens"] = collated["target_lengths"].sum().item()
else:
collated["ntokens"] = sum([len(t) for t in target])
collated["target"] = target
if self.add_to_input:
eos = target.new_full((target.size(0), 1), self.eos)
collated["target"] = torch.cat([target, eos], dim=-1).long()
collated["net_input"]["prev_output_tokens"] = torch.cat(
[eos, target], dim=-1
).long()
collated["ntokens"] += target.size(0)
return collated
def filter_indices_by_size(self, indices, max_sizes):
indices, ignored = data_utils._filter_by_size_dynamic(
indices, self.size, max_sizes
)
return indices, ignored
| EXA-1-master | exa/libraries/fairseq/fairseq/data/add_class_target_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
from typing import Callable, Dict, List
import numpy as np
from . import FairseqDataset
def uniform_sampler(x):
# Sample from uniform distribution
return np.random.choice(x, 1).item()
class MultiCorpusSampledDataset(FairseqDataset):
"""
Stores multiple instances of FairseqDataset together and in every iteration
creates a batch by first sampling a dataset according to a specified
probability distribution and then getting instances from that dataset.
Args:
datasets: an OrderedDict of FairseqDataset instances.
sampling_func: A function for sampling over list of dataset keys.
The default strategy is to sample uniformly.
"""
def __init__(
self,
datasets: Dict[str, FairseqDataset],
sampling_func: Callable[[List], int] = None,
):
super().__init__()
assert isinstance(datasets, OrderedDict)
self.datasets = datasets
if sampling_func is None:
sampling_func = uniform_sampler
self.sampling_func = sampling_func
self.total_num_instances = 0
for _, dataset in datasets.items():
assert isinstance(dataset, FairseqDataset)
self.total_num_instances += len(dataset)
self._ordered_indices = None
def __len__(self):
"""
Length of this dataset is the sum of individual datasets
"""
return self.total_num_instances
def ordered_indices(self):
"""
Ordered indices for batching. Here we call the underlying
dataset's ordered_indices() so that we get the same random ordering
as we would have from using the underlying dataset directly.
"""
if self._ordered_indices is None:
self._ordered_indices = OrderedDict(
[
(key, dataset.ordered_indices())
for key, dataset in self.datasets.items()
]
)
return np.arange(len(self))
def _map_index_to_dataset(self, key: int, index: int):
"""
Different underlying datasets have different lengths. In order to ensure
we are not accessing an index outside the range of the current dataset
size, we wrap around. This function should be called after we have
created an ordering for this and all underlying datasets.
"""
assert (
self._ordered_indices is not None
), "Must call MultiCorpusSampledDataset.ordered_indices() first"
mapped_index = index % len(self.datasets[key])
return self._ordered_indices[key][mapped_index]
def __getitem__(self, index: int):
"""
Get the item associated with index from each underlying dataset.
Since index is in the range of [0, TotalNumInstances], we need to
map the index to the dataset before retrieving the item.
"""
return OrderedDict(
[
(key, dataset[self._map_index_to_dataset(key, index)])
for key, dataset in self.datasets.items()
]
)
def collater(self, samples: List[Dict]):
"""
Generate a mini-batch for this dataset.
To convert this into a regular mini-batch we use the following
logic:
1. Select a dataset using the specified probability distribution.
2. Call the collater function of the selected dataset.
"""
if len(samples) == 0:
return None
selected_key = self.sampling_func(list(self.datasets.keys()))
selected_samples = [sample[selected_key] for sample in samples]
return self.datasets[selected_key].collater(selected_samples)
def num_tokens(self, index: int):
"""
Return an example's length (number of tokens), used for batching. Here
we return the max across all examples at index across all underlying
datasets.
"""
return max(
dataset.num_tokens(self._map_index_to_dataset(key, index))
for key, dataset in self.datasets.items()
)
def size(self, index: int):
"""
Return an example's size as a float or tuple. Here we return the max
across all underlying datasets. This value is used when filtering a
dataset with max-positions.
"""
return max(
dataset.size(self._map_index_to_dataset(key, index))
for key, dataset in self.datasets.items()
)
@property
def supports_prefetch(self):
return all(
getattr(dataset, "supports_prefetch", False)
for dataset in self.datasets.values()
)
def prefetch(self, indices):
for key, dataset in self.datasets.items():
dataset.prefetch(
[self._map_index_to_dataset(key, index) for index in indices]
)
@property
def supports_fetch_outside_dataloader(self):
return all(
self.datasets[key].supports_fetch_outside_dataloader
for key in self.datasets
)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/multi_corpus_sampled_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import FairseqDataset
class NumSamplesDataset(FairseqDataset):
def __getitem__(self, index):
return 1
def __len__(self):
return 0
def collater(self, samples):
return sum(samples)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/num_samples_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from fairseq.data import data_utils
class WordNoising(object):
"""Generate a noisy version of a sentence, without changing words themselves."""
def __init__(self, dictionary, bpe_cont_marker="@@", bpe_end_marker=None):
self.dictionary = dictionary
self.bpe_end = None
if bpe_cont_marker:
self.bpe_end = np.array(
[
not self.dictionary[i].endswith(bpe_cont_marker)
for i in range(len(self.dictionary))
]
)
elif bpe_end_marker:
self.bpe_end = np.array(
[
self.dictionary[i].endswith(bpe_end_marker)
for i in range(len(self.dictionary))
]
)
self.get_word_idx = (
self._get_bpe_word_idx if self.bpe_end is not None else self._get_token_idx
)
def noising(self, x, lengths, noising_prob=0.0):
raise NotImplementedError()
def _get_bpe_word_idx(self, x):
"""
Given a list of BPE tokens, for every index in the tokens list,
return the index of the word grouping that it belongs to.
For example, for input x corresponding to ["how", "are", "y@@", "ou"],
return [[0], [1], [2], [2]].
"""
# x: (T x B)
bpe_end = self.bpe_end[x]
if x.size(0) == 1 and x.size(1) == 1:
# Special case when we only have one word in x. If x = [[N]],
# bpe_end is a scalar (bool) instead of a 2-dim array of bools,
# which makes the sum operation below fail.
return np.array([[0]])
# do a reduce front sum to generate word ids
word_idx = bpe_end[::-1].cumsum(0)[::-1]
word_idx = word_idx.max(0)[None, :] - word_idx
return word_idx
def _get_token_idx(self, x):
"""
This is to extend noising functions to be able to apply to non-bpe
tokens, e.g. word or characters.
"""
x = torch.t(x)
word_idx = np.array([range(len(x_i)) for x_i in x])
return np.transpose(word_idx)
class WordDropout(WordNoising):
"""Randomly drop input words. If not passing blank_idx (default is None),
then dropped words will be removed. Otherwise, it will be replaced by the
blank_idx."""
def __init__(
self,
dictionary,
default_dropout_prob=0.1,
bpe_cont_marker="@@",
bpe_end_marker=None,
):
super().__init__(dictionary, bpe_cont_marker, bpe_end_marker)
self.default_dropout_prob = default_dropout_prob
def noising(self, x, lengths, dropout_prob=None, blank_idx=None):
if dropout_prob is None:
dropout_prob = self.default_dropout_prob
# x: (T x B), lengths: B
if dropout_prob == 0:
return x, lengths
assert 0 < dropout_prob < 1
# be sure to drop entire words
word_idx = self.get_word_idx(x)
sentences = []
modified_lengths = []
for i in range(lengths.size(0)):
# Since dropout probabilities need to apply over non-pad tokens,
# it is not trivial to generate the keep mask without consider
# input lengths; otherwise, this could be done outside the loop
# We want to drop whole words based on word_idx grouping
num_words = max(word_idx[:, i]) + 1
# ith example: [x0, x1, ..., eos, pad, ..., pad]
# We should only generate keep probs for non-EOS tokens. Thus if the
# input sentence ends in EOS, the last word idx is not included in
# the dropout mask generation and we append True to always keep EOS.
# Otherwise, just generate the dropout mask for all word idx
# positions.
has_eos = x[lengths[i] - 1, i] == self.dictionary.eos()
if has_eos: # has eos?
keep = np.random.rand(num_words - 1) >= dropout_prob
keep = np.append(keep, [True]) # keep EOS symbol
else:
keep = np.random.rand(num_words) >= dropout_prob
words = x[: lengths[i], i].tolist()
# TODO: speed up the following loop
# drop words from the input according to keep
new_s = [
w if keep[word_idx[j, i]] else blank_idx for j, w in enumerate(words)
]
new_s = [w for w in new_s if w is not None]
# we need to have at least one word in the sentence (more than the
# start / end sentence symbols)
if len(new_s) <= 1:
# insert at beginning in case the only token left is EOS
# EOS should be at end of list.
new_s.insert(0, words[np.random.randint(0, len(words))])
assert len(new_s) >= 1 and (
not has_eos # Either don't have EOS at end or last token is EOS
or (len(new_s) >= 2 and new_s[-1] == self.dictionary.eos())
), "New sentence is invalid."
sentences.append(new_s)
modified_lengths.append(len(new_s))
# re-construct input
modified_lengths = torch.LongTensor(modified_lengths)
modified_x = torch.LongTensor(
modified_lengths.max(), modified_lengths.size(0)
).fill_(self.dictionary.pad())
for i in range(modified_lengths.size(0)):
modified_x[: modified_lengths[i], i].copy_(torch.LongTensor(sentences[i]))
return modified_x, modified_lengths
class WordShuffle(WordNoising):
"""Shuffle words by no more than k positions."""
def __init__(
self,
dictionary,
default_max_shuffle_distance=3,
bpe_cont_marker="@@",
bpe_end_marker=None,
):
super().__init__(dictionary, bpe_cont_marker, bpe_end_marker)
self.default_max_shuffle_distance = 3
def noising(self, x, lengths, max_shuffle_distance=None):
if max_shuffle_distance is None:
max_shuffle_distance = self.default_max_shuffle_distance
# x: (T x B), lengths: B
if max_shuffle_distance == 0:
return x, lengths
# max_shuffle_distance < 1 will return the same sequence
assert max_shuffle_distance > 1
# define noise word scores
noise = np.random.uniform(
0,
max_shuffle_distance,
size=(x.size(0), x.size(1)),
)
noise[0] = -1 # do not move start sentence symbol
# be sure to shuffle entire words
word_idx = self.get_word_idx(x)
x2 = x.clone()
for i in range(lengths.size(0)):
length_no_eos = lengths[i]
if x[lengths[i] - 1, i] == self.dictionary.eos():
length_no_eos = lengths[i] - 1
# generate a random permutation
scores = word_idx[:length_no_eos, i] + noise[word_idx[:length_no_eos, i], i]
# ensure no reordering inside a word
scores += 1e-6 * np.arange(length_no_eos.item())
permutation = scores.argsort()
# shuffle words
x2[:length_no_eos, i].copy_(
x2[:length_no_eos, i][torch.from_numpy(permutation)]
)
return x2, lengths
class UnsupervisedMTNoising(WordNoising):
"""
Implements the default configuration for noising in UnsupervisedMT
(github.com/facebookresearch/UnsupervisedMT)
"""
def __init__(
self,
dictionary,
max_word_shuffle_distance,
word_dropout_prob,
word_blanking_prob,
bpe_cont_marker="@@",
bpe_end_marker=None,
):
super().__init__(dictionary)
self.max_word_shuffle_distance = max_word_shuffle_distance
self.word_dropout_prob = word_dropout_prob
self.word_blanking_prob = word_blanking_prob
self.word_dropout = WordDropout(
dictionary=dictionary,
bpe_cont_marker=bpe_cont_marker,
bpe_end_marker=bpe_end_marker,
)
self.word_shuffle = WordShuffle(
dictionary=dictionary,
bpe_cont_marker=bpe_cont_marker,
bpe_end_marker=bpe_end_marker,
)
def noising(self, x, lengths):
# 1. Word Shuffle
noisy_src_tokens, noisy_src_lengths = self.word_shuffle.noising(
x=x,
lengths=lengths,
max_shuffle_distance=self.max_word_shuffle_distance,
)
# 2. Word Dropout
noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising(
x=noisy_src_tokens,
lengths=noisy_src_lengths,
dropout_prob=self.word_dropout_prob,
)
# 3. Word Blanking
noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising(
x=noisy_src_tokens,
lengths=noisy_src_lengths,
dropout_prob=self.word_blanking_prob,
blank_idx=self.dictionary.unk(),
)
return noisy_src_tokens
class NoisingDataset(torch.utils.data.Dataset):
def __init__(
self,
src_dataset,
src_dict,
seed,
noiser=None,
noising_class=UnsupervisedMTNoising,
**kwargs
):
"""
Wrap a :class:`~torch.utils.data.Dataset` and apply noise to the
samples based on the supplied noising configuration.
Args:
src_dataset (~torch.utils.data.Dataset): dataset to wrap.
to build self.src_dataset --
a LanguagePairDataset with src dataset as the source dataset and
None as the target dataset. Should NOT have padding so that
src_lengths are accurately calculated by language_pair_dataset
collate function.
We use language_pair_dataset here to encapsulate the tgt_dataset
so we can re-use the LanguagePairDataset collater to format the
batches in the structure that SequenceGenerator expects.
src_dict (~fairseq.data.Dictionary): source dictionary
seed (int): seed to use when generating random noise
noiser (WordNoising): a pre-initialized :class:`WordNoising`
instance. If this is None, a new instance will be created using
*noising_class* and *kwargs*.
noising_class (class, optional): class to use to initialize a
default :class:`WordNoising` instance.
kwargs (dict, optional): arguments to initialize the default
:class:`WordNoising` instance given by *noiser*.
"""
self.src_dataset = src_dataset
self.src_dict = src_dict
self.seed = seed
self.noiser = (
noiser
if noiser is not None
else noising_class(
dictionary=src_dict,
**kwargs,
)
)
self.sizes = src_dataset.sizes
def __getitem__(self, index):
"""
Returns a single noisy sample. Multiple samples are fed to the collater
create a noising dataset batch.
"""
src_tokens = self.src_dataset[index]
src_lengths = torch.LongTensor([len(src_tokens)])
src_tokens = src_tokens.unsqueeze(0)
# Transpose src tokens to fit expected shape of x in noising function
# (batch size, sequence length) -> (sequence length, batch size)
src_tokens_t = torch.t(src_tokens)
with data_utils.numpy_seed(self.seed + index):
noisy_src_tokens = self.noiser.noising(src_tokens_t, src_lengths)
# Transpose back to expected src_tokens format
# (sequence length, 1) -> (1, sequence length)
noisy_src_tokens = torch.t(noisy_src_tokens)
return noisy_src_tokens[0]
def __len__(self):
"""
The length of the noising dataset is the length of src.
"""
return len(self.src_dataset)
@property
def supports_prefetch(self):
return self.src_dataset.supports_prefetch
def prefetch(self, indices):
if self.src_dataset.supports_prefetch:
self.src_dataset.prefetch(indices)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/noising.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
import os
import random
from pathlib import Path
import numpy as np
import torch
import torch.utils.data
from . import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
F0_FRAME_SPACE = 0.005 # sec
logger = logging.getLogger(__name__)
class ExpressiveCodeDataConfig(object):
def __init__(self, json_path):
with open(json_path, "r") as f:
self.config = json.load(f)
self._manifests = self.config["manifests"]
@property
def manifests(self):
return self._manifests
@property
def n_units(self):
return self.config["n_units"]
@property
def sampling_rate(self):
return self.config["sampling_rate"]
@property
def code_hop_size(self):
return self.config["code_hop_size"]
@property
def f0_stats(self):
"""pre-computed f0 statistics path"""
return self.config.get("f0_stats", None)
@property
def f0_vq_type(self):
"""naive or precomp"""
return self.config["f0_vq_type"]
@property
def f0_vq_name(self):
return self.config["f0_vq_name"]
def get_f0_vq_naive_quantizer(self, log, norm_mean, norm_std):
key = "log" if log else "linear"
if norm_mean and norm_std:
key += "_mean_std_norm"
elif norm_mean:
key += "_mean_norm"
else:
key += "_none_norm"
return self.config["f0_vq_naive_quantizer"][key]
@property
def f0_vq_n_units(self):
return self.config["f0_vq_n_units"]
@property
def multispkr(self):
"""how to parse speaker label from audio path"""
return self.config.get("multispkr", None)
def get_f0(audio, rate=16000):
try:
import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT
from librosa.util import normalize
except ImportError:
raise "Please install amfm_decompy (`pip install AMFM-decompy`) and librosa (`pip install librosa`)."
assert audio.ndim == 1
frame_length = 20.0 # ms
to_pad = int(frame_length / 1000 * rate) // 2
audio = normalize(audio) * 0.95
audio = np.pad(audio, (to_pad, to_pad), "constant", constant_values=0)
audio = basic.SignalObj(audio, rate)
pitch = pYAAPT.yaapt(
audio,
frame_length=frame_length,
frame_space=F0_FRAME_SPACE * 1000,
nccf_thresh1=0.25,
tda_frame_length=25.0,
)
f0 = pitch.samp_values
return f0
def interpolate_f0(f0):
try:
from scipy.interpolate import interp1d
except ImportError:
raise "Please install scipy (`pip install scipy`)"
orig_t = np.arange(f0.shape[0])
f0_interp = f0[:]
ii = f0_interp != 0
if ii.sum() > 1:
f0_interp = interp1d(
orig_t[ii], f0_interp[ii], bounds_error=False, kind="linear", fill_value=0
)(orig_t)
f0_interp = torch.Tensor(f0_interp).type_as(f0).to(f0.device)
return f0_interp
def naive_quantize(x, edges):
bin_idx = (x.view(-1, 1) > edges.view(1, -1)).long().sum(dim=1)
return bin_idx
def load_wav(full_path):
try:
import soundfile as sf
except ImportError:
raise "Please install soundfile (`pip install SoundFile`)"
data, sampling_rate = sf.read(full_path)
return data, sampling_rate
def parse_code(code_str, dictionary, append_eos):
code, duration = torch.unique_consecutive(
torch.ShortTensor(list(map(int, code_str.split()))), return_counts=True
)
code = " ".join(map(str, code.tolist()))
code = dictionary.encode_line(code, append_eos).short()
if append_eos:
duration = torch.cat((duration, duration.new_zeros((1,))), dim=0) # eos
duration = duration.short()
return code, duration
def parse_manifest(manifest, dictionary):
audio_files = []
codes = []
durations = []
speakers = []
with open(manifest) as info:
for line in info.readlines():
sample = eval(line.strip())
if "cpc_km100" in sample:
k = "cpc_km100"
elif "hubert_km100" in sample:
k = "hubert_km100"
elif "phone" in sample:
k = "phone"
else:
assert False, "unknown format"
code = sample[k]
code, duration = parse_code(code, dictionary, append_eos=True)
codes.append(code)
durations.append(duration)
audio_files.append(sample["audio"])
speakers.append(sample.get("speaker", None))
return audio_files, codes, durations, speakers
def parse_speaker(path, method):
if type(path) == str:
path = Path(path)
if method == "parent_name":
return path.parent.name
elif method == "parent_parent_name":
return path.parent.parent.name
elif method == "_":
return path.name.split("_")[0]
elif method == "single":
return "A"
elif callable(method):
return method(path)
else:
raise NotImplementedError()
def get_f0_by_filename(filename, tgt_sampling_rate):
audio, sampling_rate = load_wav(filename)
if sampling_rate != tgt_sampling_rate:
raise ValueError(
"{} SR doesn't match target {} SR".format(sampling_rate, tgt_sampling_rate)
)
# compute un-interpolated f0, and use Ann's interp in __getitem__ if set
f0 = get_f0(audio, rate=tgt_sampling_rate)
f0 = torch.from_numpy(f0.astype(np.float32))
return f0
def align_f0_to_durations(f0, durations, f0_code_ratio, tol=1):
code_len = durations.sum()
targ_len = int(f0_code_ratio * code_len)
diff = f0.size(0) - targ_len
assert abs(diff) <= tol, (
f"Cannot subsample F0: |{f0.size(0)} - {f0_code_ratio}*{code_len}|"
f" > {tol} (dur=\n{durations})"
)
if diff > 0:
f0 = f0[:targ_len]
elif diff < 0:
f0 = torch.cat((f0, f0.new_full((-diff,), f0[-1])), 0)
f0_offset = 0.0
seg_f0s = []
for dur in durations:
f0_dur = dur.item() * f0_code_ratio
seg_f0 = f0[int(f0_offset) : int(f0_offset + f0_dur)]
seg_f0 = seg_f0[seg_f0 != 0]
if len(seg_f0) == 0:
seg_f0 = torch.tensor(0).type(seg_f0.type())
else:
seg_f0 = seg_f0.mean()
seg_f0s.append(seg_f0)
f0_offset += f0_dur
assert int(f0_offset) == f0.size(0), f"{f0_offset} {f0.size()} {durations.sum()}"
return torch.tensor(seg_f0s)
class Paddings(object):
def __init__(self, code_val, dur_val=0, f0_val=-2.0):
self.code = code_val
self.dur = dur_val
self.f0 = f0_val
class Shifts(object):
def __init__(self, shifts_str, pads):
self._shifts = list(map(int, shifts_str.split(",")))
assert len(self._shifts) == 2, self._shifts
assert all(s >= 0 for s in self._shifts)
self.extra_length = max(s for s in self._shifts)
self.pads = pads
@property
def dur(self):
return self._shifts[0]
@property
def f0(self):
return self._shifts[1]
@staticmethod
def shift_one(seq, left_pad_num, right_pad_num, pad):
assert seq.ndim == 1
bos = seq.new_full((left_pad_num,), pad)
eos = seq.new_full((right_pad_num,), pad)
seq = torch.cat([bos, seq, eos])
mask = torch.ones_like(seq).bool()
mask[left_pad_num : len(seq) - right_pad_num] = 0
return seq, mask
def __call__(self, code, dur, f0):
if self.extra_length == 0:
code_mask = torch.zeros_like(code).bool()
dur_mask = torch.zeros_like(dur).bool()
f0_mask = torch.zeros_like(f0).bool()
return code, code_mask, dur, dur_mask, f0, f0_mask
code, code_mask = self.shift_one(code, 0, self.extra_length, self.pads.code)
dur, dur_mask = self.shift_one(
dur, self.dur, self.extra_length - self.dur, self.pads.dur
)
f0, f0_mask = self.shift_one(
f0, self.f0, self.extra_length - self.f0, self.pads.f0
)
return code, code_mask, dur, dur_mask, f0, f0_mask
class CodeDataset(FairseqDataset):
def __init__(
self,
manifest,
dictionary,
dur_dictionary,
f0_dictionary,
config,
discrete_dur,
discrete_f0,
log_f0,
normalize_f0_mean,
normalize_f0_std,
interpolate_f0,
return_filename=False,
strip_filename=True,
shifts="0,0",
return_continuous_f0=False,
):
random.seed(1234)
self.dictionary = dictionary
self.dur_dictionary = dur_dictionary
self.f0_dictionary = f0_dictionary
self.config = config
# duration config
self.discrete_dur = discrete_dur
# pitch config
self.discrete_f0 = discrete_f0
self.log_f0 = log_f0
self.normalize_f0_mean = normalize_f0_mean
self.normalize_f0_std = normalize_f0_std
self.interpolate_f0 = interpolate_f0
self.return_filename = return_filename
self.strip_filename = strip_filename
self.f0_code_ratio = config.code_hop_size / (
config.sampling_rate * F0_FRAME_SPACE
)
# use lazy loading to avoid sharing file handlers across workers
self.manifest = manifest
self._codes = None
self._durs = None
self._f0s = None
with open(f"{manifest}.leng.txt", "r") as f:
lengs = [int(line.rstrip()) for line in f]
edges = np.cumsum([0] + lengs)
self.starts, self.ends = edges[:-1], edges[1:]
with open(f"{manifest}.path.txt", "r") as f:
self.file_names = [line.rstrip() for line in f]
logger.info(f"num entries: {len(self.starts)}")
if os.path.exists(f"{manifest}.f0_stat.pt"):
self.f0_stats = torch.load(f"{manifest}.f0_stat.pt")
elif config.f0_stats:
self.f0_stats = torch.load(config.f0_stats)
self.multispkr = config.multispkr
if config.multispkr:
with open(f"{manifest}.speaker.txt", "r") as f:
self.spkrs = [line.rstrip() for line in f]
self.id_to_spkr = sorted(self.spkrs)
self.spkr_to_id = {k: v for v, k in enumerate(self.id_to_spkr)}
self.pads = Paddings(
dictionary.pad(),
0, # use 0 for duration padding
f0_dictionary.pad() if discrete_f0 else -5.0,
)
self.shifts = Shifts(shifts, pads=self.pads)
self.return_continuous_f0 = return_continuous_f0
def get_data_handlers(self):
logging.info(f"loading data for {self.manifest}")
self._codes = np.load(f"{self.manifest}.code.npy", mmap_mode="r")
self._durs = np.load(f"{self.manifest}.dur.npy", mmap_mode="r")
if self.discrete_f0:
if self.config.f0_vq_type == "precomp":
self._f0s = np.load(
f"{self.manifest}.{self.config.f0_vq_name}.npy", mmap_mode="r"
)
elif self.config.f0_vq_type == "naive":
self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r")
quantizers_path = self.config.get_f0_vq_naive_quantizer(
self.log_f0, self.normalize_f0_mean, self.normalize_f0_std
)
quantizers = torch.load(quantizers_path)
n_units = self.config.f0_vq_n_units
self._f0_quantizer = torch.from_numpy(quantizers[n_units])
else:
raise ValueError(f"f0_vq_type {self.config.f0_vq_type} not supported")
else:
self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r")
def preprocess_f0(self, f0, stats):
"""
1. interpolate
2. log transform (keep unvoiced frame 0)
"""
# TODO: change this to be dependent on config for naive quantizer
f0 = f0.clone()
if self.interpolate_f0:
f0 = interpolate_f0(f0)
mask = f0 != 0 # only process voiced frames
if self.log_f0:
f0[mask] = f0[mask].log()
if self.normalize_f0_mean:
mean = stats["logf0_mean"] if self.log_f0 else stats["f0_mean"]
f0[mask] = f0[mask] - mean
if self.normalize_f0_std:
std = stats["logf0_std"] if self.log_f0 else stats["f0_std"]
f0[mask] = f0[mask] / std
return f0
def _get_raw_item(self, index):
start, end = self.starts[index], self.ends[index]
if self._codes is None:
self.get_data_handlers()
code = torch.from_numpy(np.array(self._codes[start:end])).long()
dur = torch.from_numpy(np.array(self._durs[start:end]))
f0 = torch.from_numpy(np.array(self._f0s[start:end]))
return code, dur, f0
def __getitem__(self, index):
code, dur, f0 = self._get_raw_item(index)
code = torch.cat([code.new([self.dictionary.bos()]), code])
# use 0 for eos and bos
dur = torch.cat([dur.new([0]), dur])
if self.discrete_dur:
dur = self.dur_dictionary.encode_line(
" ".join(map(str, dur.tolist())), append_eos=False
).long()
else:
dur = dur.float()
# TODO: find a more elegant approach
raw_f0 = None
if self.discrete_f0:
if self.config.f0_vq_type == "precomp":
f0 = self.f0_dictionary.encode_line(
" ".join(map(str, f0.tolist())), append_eos=False
).long()
else:
f0 = f0.float()
f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]])
if self.return_continuous_f0:
raw_f0 = f0
raw_f0 = torch.cat([raw_f0.new([self.f0_dictionary.bos()]), raw_f0])
f0 = naive_quantize(f0, self._f0_quantizer)
f0 = torch.cat([f0.new([self.f0_dictionary.bos()]), f0])
else:
f0 = f0.float()
if self.multispkr:
f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]])
else:
f0 = self.preprocess_f0(f0, self.f0_stats)
f0 = torch.cat([f0.new([0]), f0])
if raw_f0 is not None:
*_, raw_f0, raw_f0_mask = self.shifts(code, dur, raw_f0)
else:
raw_f0_mask = None
code, code_mask, dur, dur_mask, f0, f0_mask = self.shifts(code, dur, f0)
if raw_f0_mask is not None:
assert (raw_f0_mask == f0_mask).all()
# is a padded frame if either input or output is padded
feats = {
"source": code[:-1],
"target": code[1:],
"mask": code_mask[1:].logical_or(code_mask[:-1]),
"dur_source": dur[:-1],
"dur_target": dur[1:],
"dur_mask": dur_mask[1:].logical_or(dur_mask[:-1]),
"f0_source": f0[:-1],
"f0_target": f0[1:],
"f0_mask": f0_mask[1:].logical_or(f0_mask[:-1]),
}
if raw_f0 is not None:
feats["raw_f0"] = raw_f0[1:]
if self.return_filename:
fname = self.file_names[index]
feats["filename"] = (
fname if not self.strip_filename else Path(fname).with_suffix("").name
)
return feats
def __len__(self):
return len(self.starts)
def size(self, index):
return self.ends[index] - self.starts[index] + self.shifts.extra_length
def num_tokens(self, index):
return self.size(index)
def collater(self, samples):
pad_idx, eos_idx = self.dictionary.pad(), self.dictionary.eos()
if len(samples) == 0:
return {}
src_tokens = data_utils.collate_tokens(
[s["source"] for s in samples], pad_idx, eos_idx, left_pad=False
)
tgt_tokens = data_utils.collate_tokens(
[s["target"] for s in samples],
pad_idx=pad_idx,
eos_idx=pad_idx, # appending padding, eos is there already
left_pad=False,
)
src_durs, tgt_durs = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=self.pads.dur,
eos_idx=self.pads.dur,
left_pad=False,
)
for k in ["dur_source", "dur_target"]
]
src_f0s, tgt_f0s = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=self.pads.f0,
eos_idx=self.pads.f0,
left_pad=False,
)
for k in ["f0_source", "f0_target"]
]
mask, dur_mask, f0_mask = [
data_utils.collate_tokens(
[s[k] for s in samples],
pad_idx=1,
eos_idx=1,
left_pad=False,
)
for k in ["mask", "dur_mask", "f0_mask"]
]
src_lengths = torch.LongTensor([s["source"].numel() for s in samples])
n_tokens = sum(len(s["source"]) for s in samples)
result = {
"nsentences": len(samples),
"ntokens": n_tokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"dur_src": src_durs,
"f0_src": src_f0s,
},
"target": tgt_tokens,
"dur_target": tgt_durs,
"f0_target": tgt_f0s,
"mask": mask,
"dur_mask": dur_mask,
"f0_mask": f0_mask,
}
if "filename" in samples[0]:
result["filename"] = [s["filename"] for s in samples]
# TODO: remove this hack into the inference dataset
if "prefix" in samples[0]:
result["prefix"] = [s["prefix"] for s in samples]
if "raw_f0" in samples[0]:
raw_f0s = data_utils.collate_tokens(
[s["raw_f0"] for s in samples],
pad_idx=self.pads.f0,
eos_idx=self.pads.f0,
left_pad=False,
)
result["raw_f0"] = raw_f0s
return result
| EXA-1-master | exa/libraries/fairseq/fairseq/data/codedataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
from fairseq.data import data_utils
from . import BaseWrapperDataset
class TruncateDataset(BaseWrapperDataset):
"""Truncate a sequence by returning the first truncation_length tokens"""
def __init__(self, dataset, truncation_length):
super().__init__(dataset)
assert truncation_length is not None
self.truncation_length = truncation_length
self.dataset = dataset
def __getitem__(self, index):
item = self.dataset[index]
item_len = item.size(0)
if item_len > self.truncation_length:
item = item[: self.truncation_length]
return item
@property
def sizes(self):
return np.minimum(self.dataset.sizes, self.truncation_length)
def __len__(self):
return len(self.dataset)
class RandomCropDataset(TruncateDataset):
"""Truncate a sequence by returning a random crop of truncation_length tokens"""
def __init__(self, dataset, truncation_length, seed=1):
super().__init__(dataset, truncation_length)
self.seed = seed
self.epoch = 0
@property
def can_reuse_epoch_itr_across_epochs(self):
return True # only the crop changes, not item sizes
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def __getitem__(self, index):
with data_utils.numpy_seed(self.seed, self.epoch, index):
item = self.dataset[index]
item_len = item.size(0)
excess = item_len - self.truncation_length
if excess > 0:
start_idx = np.random.randint(0, excess)
item = item[start_idx : start_idx + self.truncation_length]
return item
def maybe_shorten_dataset(
dataset,
split,
shorten_data_split_list,
shorten_method,
tokens_per_sample,
seed,
):
truncate_split = (
split in shorten_data_split_list.split(",") or len(shorten_data_split_list) == 0
)
if shorten_method == "truncate" and truncate_split:
dataset = TruncateDataset(dataset, tokens_per_sample)
elif shorten_method == "random_crop" and truncate_split:
dataset = RandomCropDataset(dataset, tokens_per_sample, seed)
return dataset
| EXA-1-master | exa/libraries/fairseq/fairseq/data/shorten_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import numpy as np
from fairseq.data.data_utils import numpy_seed
from . import BaseWrapperDataset
logger = logging.getLogger(__name__)
class SubsampleDataset(BaseWrapperDataset):
"""Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples
Args:
dataset (~torch.utils.data.Dataset): dataset to subsample
size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive)
"""
def __init__(self, dataset, size_ratio, shuffle=False, seed=None):
super().__init__(dataset)
assert size_ratio < 1
self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int)
with numpy_seed(seed) if seed is not None else contextlib.ExitStack():
self.indices = np.random.choice(
list(range(len(self.dataset))), self.actual_size, replace=False
)
self.shuffle = shuffle
logger.info(
"subsampled dataset from {} to {} (ratio={})".format(
len(self.dataset), self.actual_size, size_ratio
)
)
def __getitem__(self, index):
return self.dataset[self.indices[index]]
def __len__(self):
return self.actual_size
def collater(self, samples):
return self.dataset.collater(samples)
@property
def sizes(self):
return self.dataset.sizes[self.indices]
@property
def name(self):
return self.dataset.name
def num_tokens(self, index):
return self.dataset.num_tokens(self.indices[index])
def size(self, index):
return self.dataset.size(self.indices[index])
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)
def prefetch(self, indices):
self.dataset.prefetch(self.indices[indices])
| EXA-1-master | exa/libraries/fairseq/fairseq/data/subsample_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
from . import BaseWrapperDataset
class SortDataset(BaseWrapperDataset):
def __init__(self, dataset, sort_order):
super().__init__(dataset)
if not isinstance(sort_order, (list, tuple)):
sort_order = [sort_order]
self.sort_order = sort_order
assert all(len(so) == len(dataset) for so in sort_order)
def ordered_indices(self):
return np.lexsort(self.sort_order)
| EXA-1-master | exa/libraries/fairseq/fairseq/data/sort_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from enum import Enum
class TextCompressionLevel(Enum):
none = 0
low = 1
high = 2
class TextCompressor(object):
def __init__(
self, level: TextCompressionLevel, max_input_byte_length: int = 2**16
):
self.level = level
self.max_input_length = max_input_byte_length
def compress(self, text: str) -> bytes:
if self.level == TextCompressionLevel.low:
import zlib
# zlib: built-in, fast
return zlib.compress(text.encode(), level=0)
elif self.level == TextCompressionLevel.high:
try:
import unishox2
# unishox2: optimized for short text but slower
except ImportError:
raise ImportError(
"Please install unishox2 for the text compression feature: "
"pip install unishox2-py3"
)
assert len(text.encode()) <= self.max_input_length
return unishox2.compress(text)[0]
else:
return text.encode()
def decompress(self, compressed: bytes) -> str:
if self.level == TextCompressionLevel.low:
import zlib
return zlib.decompress(compressed).decode()
elif self.level == TextCompressionLevel.high:
try:
import unishox2
except ImportError:
raise ImportError(
"Please install unishox2 for the text compression feature: "
"pip install unishox2-py3"
)
return unishox2.decompress(compressed, self.max_input_length)
else:
return compressed.decode()
| EXA-1-master | exa/libraries/fairseq/fairseq/data/text_compressor.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.