python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion def compute_cross_entropy_loss(logits, targets, ignore_index=-100): """ Function to compute the cross entropy loss. The default value of ignore_index is the same as the default value for F.cross_entropy in pytorch. """ assert logits.size(0) == targets.size( -1 ), "Logits and Targets tensor shapes don't match up" loss = F.nll_loss( F.log_softmax(logits, -1, dtype=torch.float32), targets, reduction="sum", ignore_index=ignore_index, ) return loss @register_criterion("legacy_masked_lm_loss") class LegacyMaskedLmLoss(FairseqCriterion): """ Implementation for the loss used in masked language model (MLM) training. This optionally also computes the next sentence prediction (NSP) loss and adds it to the overall loss based on the specified args. There are three cases to consider: 1) Generic MLM training without NSP loss. In this case sentence_targets and sentence_logits are both None. 2) BERT training without NSP loss. In this case sentence_targets is not None but sentence_logits is None and we should not be computing a sentence level loss. 3) BERT training with NSP loss. In this case both sentence_targets and sentence_logits are not None and we should be computing a sentence level loss. The weight of the sentence level loss is specified as an argument. """ def __init__(self, task, masked_lm_only, nsp_loss_weight): super().__init__(task) self.masked_lm_only = masked_lm_only self.nsp_loss_weight = nsp_loss_weight @staticmethod def add_args(parser): """Args for MaskedLM Loss""" # Default for masked_lm_only is False so as to not break BERT training parser.add_argument( "--masked-lm-only", default=False, action="store_true", help="compute MLM loss only", ) parser.add_argument( "--nsp-loss-weight", default=1.0, type=float, help="weight for next sentence prediction" " loss (default 1)", ) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ lm_logits, output_metadata = model(**sample["net_input"]) # reshape lm_logits from (N,T,C) to (N*T,C) lm_logits = lm_logits.view(-1, lm_logits.size(-1)) lm_targets = sample["lm_target"].view(-1) lm_loss = compute_cross_entropy_loss(lm_logits, lm_targets, self.padding_idx) # compute the number of tokens for which loss is computed. This is used # to normalize the loss ntokens = utils.strip_pad(lm_targets, self.padding_idx).numel() loss = lm_loss / ntokens nsentences = sample["nsentences"] # nsentences = 0 # Compute sentence loss if masked_lm_only is False sentence_loss = None if not self.masked_lm_only: sentence_logits = output_metadata["sentence_logits"] sentence_targets = sample["sentence_target"].view(-1) # This needs to be recomputed due to some differences between # TokenBlock and BlockPair dataset. This can be resolved with a # refactor of BERTModel which we will do in the future. # TODO: Remove this after refactor of BERTModel nsentences = sentence_targets.size(0) # Check for logits being none which can happen when remove_heads # is set to true in the BERT model. Ideally we should set # masked_lm_only to true in this case, but that requires some # refactor in the BERT model. if sentence_logits is not None: sentence_loss = compute_cross_entropy_loss( sentence_logits, sentence_targets ) loss += self.nsp_loss_weight * (sentence_loss / nsentences) # NOTE: as we are summing up per token mlm loss and per sentence nsp loss # we don't need to use sample_size as denominator for the gradient # here sample_size is just used for logging sample_size = 1 logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "lm_loss": utils.item(lm_loss.data) if reduce else lm_loss.data, # sentence loss is not always computed "sentence_loss": ( (utils.item(sentence_loss.data) if reduce else sentence_loss.data) if sentence_loss is not None else 0.0 ), "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" lm_loss_sum = sum(log.get("lm_loss", 0) for log in logging_outputs) sentence_loss_sum = sum(log.get("sentence_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_loss = sum(log.get("loss", 0) for log in logging_outputs) metrics.log_scalar( "loss", agg_loss / sample_size / math.log(2) if sample_size > 0 else 0.0, sample_size, round=3, ) metrics.log_scalar( "lm_loss", lm_loss_sum / ntokens / math.log(2) if ntokens > 0 else 0.0, ntokens, round=3, ) metrics.log_scalar( "sentence_loss", sentence_loss_sum / nsentences / math.log(2) if nsentences > 0 else 0.0, nsentences, round=3, ) metrics.log_scalar( "nll_loss", lm_loss_sum / ntokens / math.log(2) if ntokens > 0 else 0.0, ntokens, round=3, ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/legacy_masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from torch import Tensor from dataclasses import dataclass, field @dataclass class LabelSmoothedDualImitationCriterionConfig(FairseqDataclass): label_smoothing: float = field( default=0.0, metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, ) @register_criterion("nat_loss", dataclass=LabelSmoothedDualImitationCriterionConfig) class LabelSmoothedDualImitationCriterion(FairseqCriterion): def __init__(self, task, label_smoothing): super().__init__(task) self.label_smoothing = label_smoothing def _compute_loss( self, outputs, targets, masks=None, label_smoothing=0.0, name="loss", factor=1.0 ): """ outputs: batch x len x d_model targets: batch x len masks: batch x len policy_logprob: if there is some policy depends on the likelihood score as rewards. """ def mean_ds(x: Tensor, dim=None) -> Tensor: return ( x.float().mean().type_as(x) if dim is None else x.float().mean(dim).type_as(x) ) if masks is not None: outputs, targets = outputs[masks], targets[masks] if masks is not None and not masks.any(): nll_loss = torch.tensor(0) loss = nll_loss else: logits = F.log_softmax(outputs, dim=-1) if targets.dim() == 1: losses = F.nll_loss(logits, targets.to(logits.device), reduction="none") else: # soft-labels losses = F.kl_div(logits, targets.to(logits.device), reduction="none") losses = losses.sum(-1) nll_loss = mean_ds(losses) if label_smoothing > 0: loss = ( nll_loss * (1 - label_smoothing) - mean_ds(logits) * label_smoothing ) else: loss = nll_loss loss = loss * factor return {"name": name, "loss": loss, "nll_loss": nll_loss, "factor": factor} def _custom_loss(self, loss, name="loss", factor=1.0): return {"name": name, "loss": loss, "factor": factor} def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ nsentences, ntokens = sample["nsentences"], sample["ntokens"] # B x T src_tokens, src_lengths = ( sample["net_input"]["src_tokens"], sample["net_input"]["src_lengths"], ) tgt_tokens, prev_output_tokens = sample["target"], sample["prev_target"] outputs = model(src_tokens, src_lengths, prev_output_tokens, tgt_tokens) losses, nll_loss = [], [] for obj in outputs: if outputs[obj].get("loss", None) is None: _losses = self._compute_loss( outputs[obj].get("out"), outputs[obj].get("tgt"), outputs[obj].get("mask", None), outputs[obj].get("ls", 0.0), name=obj + "-loss", factor=outputs[obj].get("factor", 1.0), ) else: _losses = self._custom_loss( outputs[obj].get("loss"), name=obj + "-loss", factor=outputs[obj].get("factor", 1.0), ) losses += [_losses] if outputs[obj].get("nll_loss", False): nll_loss += [_losses.get("nll_loss", 0.0)] loss = sum(l["loss"] for l in losses) nll_loss = sum(l for l in nll_loss) if len(nll_loss) > 0 else loss.new_tensor(0) # NOTE: # we don't need to use sample_size as denominator for the gradient # here sample_size is just used for logging sample_size = 1 logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } for l in losses: logging_output[l["name"]] = ( utils.item(l["loss"].data / l["factor"]) if reduce else l[["loss"]].data / l["factor"] ) return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" sample_size = utils.item( sum(log.get("sample_size", 0) for log in logging_outputs) ) loss = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) nll_loss = utils.item(sum(log.get("nll_loss", 0) for log in logging_outputs)) metrics.log_scalar( "loss", loss / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss / sample_size / math.log(2), sample_size, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) for key in logging_outputs[0]: if key[-5:] == "-loss": val = sum(log.get(key, 0) for log in logging_outputs) metrics.log_scalar( key[:-5], val / sample_size / math.log(2) if sample_size > 0 else 0.0, sample_size, round=3, ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/nat_loss.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import importlib import os from fairseq import registry from fairseq.criterions.fairseq_criterion import ( # noqa FairseqCriterion, LegacyFairseqCriterion, ) from omegaconf import DictConfig ( build_criterion_, register_criterion, CRITERION_REGISTRY, CRITERION_DATACLASS_REGISTRY, ) = registry.setup_registry( "--criterion", base_class=FairseqCriterion, default="cross_entropy" ) def build_criterion(cfg: DictConfig, task, from_checkpoint=False): return build_criterion_(cfg, task, from_checkpoint=from_checkpoint) # automatically import any Python files in the criterions/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("fairseq.criterions." + file_name)
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import torch from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import register_criterion from fairseq.criterions.label_smoothed_cross_entropy import ( LabelSmoothedCrossEntropyCriterion, LabelSmoothedCrossEntropyCriterionConfig, ) try: from simuleval.metrics.latency import ( AverageLagging, AverageProportion, DifferentiableAverageLagging, ) LATENCY_METRICS = { "average_lagging": AverageLagging, "average_proportion": AverageProportion, "differentiable_average_lagging": DifferentiableAverageLagging, } except ImportError: LATENCY_METRICS = None @dataclass class LabelSmoothedCrossEntropyCriterionLatencyAugmentConfig( LabelSmoothedCrossEntropyCriterionConfig ): latency_avg_weight: float = field( default=0.0, metadata={"help": "weight fot average latency loss."}, ) latency_var_weight: float = field( default=0.0, metadata={"help": "weight fot variance latency loss."}, ) latency_avg_type: str = field( default="differentiable_average_lagging", metadata={"help": "latency type for average loss"}, ) latency_var_type: str = field( default="variance_delay", metadata={"help": "latency typ for variance loss"}, ) latency_gather_method: str = field( default="weighted_average", metadata={"help": "method to gather latency loss for all heads"}, ) latency_update_after: int = field( default=0, metadata={"help": "Add latency loss after certain steps"}, ) @register_criterion( "latency_augmented_label_smoothed_cross_entropy", dataclass=LabelSmoothedCrossEntropyCriterionLatencyAugmentConfig, ) class LatencyAugmentedLabelSmoothedCrossEntropyCriterion( LabelSmoothedCrossEntropyCriterion ): def __init__( self, task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy, latency_avg_weight, latency_var_weight, latency_avg_type, latency_var_type, latency_gather_method, latency_update_after, ): super().__init__( task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy ) assert LATENCY_METRICS is not None, "Please make sure SimulEval is installed." self.latency_avg_weight = latency_avg_weight self.latency_var_weight = latency_var_weight self.latency_avg_type = latency_avg_type self.latency_var_type = latency_var_type self.latency_gather_method = latency_gather_method self.latency_update_after = latency_update_after def forward(self, model, sample, reduce=True): net_output = model(**sample["net_input"]) # 1. Compute cross entropy loss loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) # 2. Compute cross latency loss latency_loss, expected_latency, expected_delays_var = self.compute_latency_loss( model, sample, net_output ) if self.latency_update_after > 0: num_updates = getattr(model.decoder, "num_updates", None) assert ( num_updates is not None ), "model.decoder doesn't have attribute 'num_updates'" if num_updates <= self.latency_update_after: latency_loss = 0 loss += latency_loss sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, "latency": expected_latency, "delays_var": expected_delays_var, "latency_loss": latency_loss, } if self.report_accuracy: n_correct, total = self.compute_accuracy(model, net_output, sample) logging_output["n_correct"] = utils.item(n_correct.data) logging_output["total"] = utils.item(total.data) return loss, sample_size, logging_output def compute_latency_loss(self, model, sample, net_output): assert ( net_output[-1].encoder_padding_mask is None or not net_output[-1].encoder_padding_mask[:, 0].any() ), "Only right padding on source is supported." # 1. Obtain the expected alignment alpha_list = [item["alpha"] for item in net_output[1].attn_list] num_layers = len(alpha_list) bsz, num_heads, tgt_len, src_len = alpha_list[0].size() # bsz * num_layers * num_heads, tgt_len, src_len alpha_all = torch.cat(alpha_list, dim=1).view(-1, tgt_len, src_len) # 2 compute expected delays # bsz * num_heads * num_layers, tgt_len, src_len for MMA steps = ( torch.arange(1, 1 + src_len) .unsqueeze(0) .unsqueeze(1) .expand_as(alpha_all) .type_as(alpha_all) ) expected_delays = torch.sum(steps * alpha_all, dim=-1) target_padding_mask = ( model.get_targets(sample, net_output) .eq(self.padding_idx) .unsqueeze(1) .expand(bsz, num_layers * num_heads, tgt_len) .contiguous() .view(-1, tgt_len) ) src_lengths = ( sample["net_input"]["src_lengths"] .unsqueeze(1) .expand(bsz, num_layers * num_heads) .contiguous() .view(-1) ) expected_latency = LATENCY_METRICS[self.latency_avg_type]( expected_delays, src_lengths, None, target_padding_mask=target_padding_mask ) # 2.1 average expected latency of heads # bsz, num_layers * num_heads expected_latency = expected_latency.view(bsz, -1) if self.latency_gather_method == "average": # bsz * tgt_len expected_latency = expected_delays.mean(dim=1) elif self.latency_gather_method == "weighted_average": weights = torch.nn.functional.softmax(expected_latency, dim=1) expected_latency = torch.sum(expected_latency * weights, dim=1) elif self.latency_gather_method == "max": expected_latency = expected_latency.max(dim=1)[0] else: raise NotImplementedError expected_latency = expected_latency.sum() avg_loss = self.latency_avg_weight * expected_latency # 2.2 variance of expected delays expected_delays_var = ( expected_delays.view(bsz, -1, tgt_len).var(dim=1).mean(dim=1) ) expected_delays_var = expected_delays_var.sum() var_loss = self.latency_avg_weight * expected_delays_var # 3. Final loss latency_loss = avg_loss + var_loss return latency_loss, expected_latency, expected_delays_var @classmethod def reduce_metrics(cls, logging_outputs) -> None: super().reduce_metrics(logging_outputs) latency = sum(log.get("latency", 0) for log in logging_outputs) delays_var = sum(log.get("delays_var", 0) for log in logging_outputs) latency_loss = sum(log.get("latency_loss", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) metrics.log_scalar("latency", latency.float() / nsentences, nsentences, round=3) metrics.log_scalar("delays_var", delays_var / nsentences, nsentences, round=3) metrics.log_scalar( "latency_loss", latency_loss / nsentences, nsentences, round=3 )
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/label_smoothed_cross_entropy_latency_augmented.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field import torch from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from omegaconf import II @dataclass class LabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass): label_smoothing: float = field( default=0.0, metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, ) report_accuracy: bool = field( default=False, metadata={"help": "report accuracy metric"}, ) ignore_prefix_size: int = field( default=0, metadata={"help": "Ignore first N tokens"}, ) sentence_avg: bool = II("optimization.sentence_avg") def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True): if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) if reduce: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / (lprobs.size(-1) - 1) loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss return loss, nll_loss @register_criterion( "label_smoothed_cross_entropy", dataclass=LabelSmoothedCrossEntropyCriterionConfig ) class LabelSmoothedCrossEntropyCriterion(FairseqCriterion): def __init__( self, task, sentence_avg, label_smoothing, ignore_prefix_size=0, report_accuracy=False, ): super().__init__(task) self.sentence_avg = sentence_avg self.eps = label_smoothing self.ignore_prefix_size = ignore_prefix_size self.report_accuracy = report_accuracy def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if self.report_accuracy: n_correct, total = self.compute_accuracy(model, net_output, sample) logging_output["n_correct"] = utils.item(n_correct.data) logging_output["total"] = utils.item(total.data) return loss, sample_size, logging_output def get_lprobs_and_target(self, model, net_output, sample): lprobs = model.get_normalized_probs(net_output, log_probs=True) target = model.get_targets(sample, net_output) if self.ignore_prefix_size > 0: # lprobs: B x T x C lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() target = target[:, self.ignore_prefix_size :].contiguous() return lprobs.view(-1, lprobs.size(-1)), target.view(-1) def compute_loss(self, model, net_output, sample, reduce=True): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) loss, nll_loss = label_smoothed_nll_loss( lprobs, target, self.eps, ignore_index=self.padding_idx, reduce=reduce, ) return loss, nll_loss def compute_accuracy(self, model, net_output, sample): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) mask = target.ne(self.padding_idx) n_correct = torch.sum( lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) ) total = torch.sum(mask) return n_correct, total @classmethod def reduce_metrics(cls, logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) if total > 0: metrics.log_scalar("total", total) n_correct = utils.item( sum(log.get("n_correct", 0) for log in logging_outputs) ) metrics.log_scalar("n_correct", n_correct) metrics.log_derived( "accuracy", lambda meters: round( meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 ) if meters["total"].sum > 0 else float("nan"), ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/label_smoothed_cross_entropy.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import logging from dataclasses import dataclass, field from functools import lru_cache from typing import Any, Dict, List import torch import torch.nn.functional as F from omegaconf import II from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.data.data_utils import lengths_to_mask from fairseq.dataclass import FairseqDataclass logger = logging.getLogger(__name__) @dataclass class Tacotron2CriterionConfig(FairseqDataclass): bce_pos_weight: float = field( default=1.0, metadata={"help": "weight of positive examples for BCE loss"}, ) use_guided_attention_loss: bool = field( default=False, metadata={"help": "use guided attention loss"}, ) guided_attention_loss_sigma: float = field( default=0.4, metadata={"help": "weight of positive examples for BCE loss"}, ) ctc_weight: float = field(default=0.0, metadata={"help": "weight for CTC loss"}) sentence_avg: bool = II("optimization.sentence_avg") class GuidedAttentionLoss(torch.nn.Module): """ Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention (https://arxiv.org/abs/1710.08969) """ def __init__(self, sigma): super().__init__() self.sigma = sigma @staticmethod @lru_cache(maxsize=8) def _get_weight(s_len, t_len, sigma): grid_x, grid_y = torch.meshgrid(torch.arange(t_len), torch.arange(s_len)) grid_x = grid_x.to(s_len.device) grid_y = grid_y.to(s_len.device) w = (grid_y.float() / s_len - grid_x.float() / t_len) ** 2 return 1.0 - torch.exp(-w / (2 * (sigma**2))) def _get_weights(self, src_lens, tgt_lens): bsz, max_s_len, max_t_len = len(src_lens), max(src_lens), max(tgt_lens) weights = torch.zeros((bsz, max_t_len, max_s_len)) for i, (s_len, t_len) in enumerate(zip(src_lens, tgt_lens)): weights[i, :t_len, :s_len] = self._get_weight(s_len, t_len, self.sigma) return weights @staticmethod def _get_masks(src_lens, tgt_lens): in_masks = lengths_to_mask(src_lens) out_masks = lengths_to_mask(tgt_lens) return out_masks.unsqueeze(2) & in_masks.unsqueeze(1) def forward(self, attn, src_lens, tgt_lens, reduction="mean"): weights = self._get_weights(src_lens, tgt_lens).to(attn.device) masks = self._get_masks(src_lens, tgt_lens).to(attn.device) loss = (weights * attn.transpose(1, 2)).masked_select(masks) loss = torch.sum(loss) if reduction == "sum" else torch.mean(loss) return loss @register_criterion("tacotron2", dataclass=Tacotron2CriterionConfig) class Tacotron2Criterion(FairseqCriterion): def __init__( self, task, sentence_avg, use_guided_attention_loss, guided_attention_loss_sigma, bce_pos_weight, ctc_weight, ): super().__init__(task) self.sentence_avg = sentence_avg self.bce_pos_weight = bce_pos_weight self.guided_attn = None if use_guided_attention_loss: self.guided_attn = GuidedAttentionLoss(guided_attention_loss_sigma) self.ctc_weight = ctc_weight def forward(self, model, sample, reduction="mean"): bsz, max_len, _ = sample["target"].size() feat_tgt = sample["target"] feat_len = sample["target_lengths"].view(bsz, 1).expand(-1, max_len) eos_tgt = torch.arange(max_len).to(sample["target"].device) eos_tgt = eos_tgt.view(1, max_len).expand(bsz, -1) eos_tgt = (eos_tgt == (feat_len - 1)).float() src_tokens = sample["net_input"]["src_tokens"] src_lens = sample["net_input"]["src_lengths"] tgt_lens = sample["target_lengths"] feat_out, eos_out, extra = model( src_tokens=src_tokens, src_lengths=src_lens, prev_output_tokens=sample["net_input"]["prev_output_tokens"], incremental_state=None, target_lengths=tgt_lens, speaker=sample["speaker"], ) l1_loss, mse_loss, eos_loss = self.compute_loss( extra["feature_out"], feat_out, eos_out, feat_tgt, eos_tgt, tgt_lens, reduction, ) attn_loss = torch.tensor(0.0).type_as(l1_loss) if self.guided_attn is not None: attn_loss = self.guided_attn(extra["attn"], src_lens, tgt_lens, reduction) ctc_loss = torch.tensor(0.0).type_as(l1_loss) if self.ctc_weight > 0.0: net_output = (feat_out, eos_out, extra) lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.transpose(0, 1) # T x B x C src_mask = lengths_to_mask(src_lens) src_tokens_flat = src_tokens.masked_select(src_mask) ctc_loss = ( F.ctc_loss( lprobs, src_tokens_flat, tgt_lens, src_lens, reduction=reduction, zero_infinity=True, ) * self.ctc_weight ) loss = l1_loss + mse_loss + eos_loss + attn_loss + ctc_loss sample_size = sample["nsentences"] if self.sentence_avg else sample["ntokens"] logging_output = { "loss": utils.item(loss.data), "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "l1_loss": utils.item(l1_loss.data), "mse_loss": utils.item(mse_loss.data), "eos_loss": utils.item(eos_loss.data), "attn_loss": utils.item(attn_loss.data), "ctc_loss": utils.item(ctc_loss.data), } return loss, sample_size, logging_output def compute_loss( self, feat_out, feat_out_post, eos_out, feat_tgt, eos_tgt, tgt_lens, reduction="mean", ): mask = lengths_to_mask(tgt_lens) _eos_out = eos_out[mask].squeeze() _eos_tgt = eos_tgt[mask] _feat_tgt = feat_tgt[mask] _feat_out = feat_out[mask] _feat_out_post = feat_out_post[mask] l1_loss = F.l1_loss(_feat_out, _feat_tgt, reduction=reduction) + F.l1_loss( _feat_out_post, _feat_tgt, reduction=reduction ) mse_loss = F.mse_loss(_feat_out, _feat_tgt, reduction=reduction) + F.mse_loss( _feat_out_post, _feat_tgt, reduction=reduction ) eos_loss = F.binary_cross_entropy_with_logits( _eos_out, _eos_tgt, pos_weight=torch.tensor(self.bce_pos_weight), reduction=reduction, ) return l1_loss, mse_loss, eos_loss @classmethod def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None: ns = [log.get("sample_size", 0) for log in logging_outputs] ntot = sum(ns) ws = [n / (ntot + 1e-8) for n in ns] for key in ["loss", "l1_loss", "mse_loss", "eos_loss", "attn_loss", "ctc_loss"]: vals = [log.get(key, 0) for log in logging_outputs] val = sum(val * w for val, w in zip(vals, ws)) metrics.log_scalar(key, val, ntot, round=3) metrics.log_scalar("sample_size", ntot, len(logging_outputs)) # inference metrics if "targ_frames" not in logging_outputs[0]: return n = sum(log.get("targ_frames", 0) for log in logging_outputs) for key, new_key in [ ("mcd_loss", "mcd_loss"), ("pred_frames", "pred_ratio"), ("nins", "ins_rate"), ("ndel", "del_rate"), ]: val = sum(log.get(key, 0) for log in logging_outputs) metrics.log_scalar(new_key, val / n, n, round=3) @staticmethod def logging_outputs_can_be_summed() -> bool: return False
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/tacotron2_loss.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq import utils from fairseq.criterions import LegacyFairseqCriterion, register_criterion from torch import nn @register_criterion("composite_loss") class CompositeLoss(LegacyFairseqCriterion): """This is a composite loss that, given a list of model outputs and a list of targets, computes an average of losses for each output-target pair""" def __init__(self, args, task): super().__init__(args, task) self.underlying_criterion = args.underlying_criterion @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" # fmt: off parser.add_argument('--underlying-criterion', type=str, metavar='VAL', required=True, help='underlying criterion to use for the composite loss') # fmt: on @staticmethod def build_underlying_criterion(args, task): saved_criterion = args.criterion args.criterion = args.underlying_criterion assert saved_criterion != args.underlying_criterion underlying_criterion = task.build_criterion(args) args.criterion = saved_criterion return underlying_criterion @classmethod def build_criterion(cls, args, task): underlying_criterion = CompositeLoss.build_underlying_criterion(args, task) class FakeModel(nn.Module): def __init__(self, model, net_out, target): super().__init__() self.model = model self.net_out = net_out self.target = target def forward(self, **unused): return self.net_out def get_normalized_probs(self, net_output, log_probs, sample=None): return self.model.get_normalized_probs( net_output, log_probs, sample=sample ) def get_targets(self, *unused): return self.target @property def decoder(self): return self.model.decoder class _CompositeLoss(LegacyFairseqCriterion): def __init__(self, args, task, underlying_criterion): super().__init__(args, task) self.underlying_criterion = underlying_criterion def forward(self, model, sample, reduce=True): net_outputs = model(**sample["net_input"]) targets = sample["target"] bsz = targets[0].size(0) loss = net_outputs[0][0].new(1 if reduce else bsz).float().zero_() sample_size = 0 logging_output = {} for o, t in zip(net_outputs[0], targets): m = FakeModel(model, (o, net_outputs[1]), t) sample["target"] = t l, ss, logging_output = self.underlying_criterion(m, sample, reduce) loss += l sample_size += ss loss.div_(len(targets)) sample_size /= len(targets) logging_output["loss"] = utils.item(loss.data) if reduce else loss.data return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): return underlying_criterion.__class__.aggregate_logging_outputs( logging_outputs ) @staticmethod def reduce_metrics(logging_outputs) -> None: underlying_criterion.__class__.reduce_metrics(logging_outputs) return _CompositeLoss(args, task, underlying_criterion)
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/composite_loss.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import re from dataclasses import dataclass, field from typing import List, Optional import torch import torch.nn.functional as F from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass @dataclass class HubertCriterionConfig(FairseqDataclass): pred_masked_weight: float = field( default=1.0, metadata={"help": "weight for predictive loss for masked frames"}, ) pred_nomask_weight: float = field( default=0.0, metadata={"help": "weight for predictive loss for unmasked frames"}, ) loss_weights: Optional[List[float]] = field( default=None, metadata={"help": "weights for additional loss terms (not first one)"}, ) log_keys: List[str] = field( default_factory=lambda: [], metadata={"help": "output keys to log"}, ) @register_criterion("hubert", dataclass=HubertCriterionConfig) class HubertCriterion(FairseqCriterion): def __init__( self, task, pred_masked_weight, pred_nomask_weight, loss_weights=None, log_keys=None, ): super().__init__(task) self.pred_masked_weight = pred_masked_weight self.pred_nomask_weight = pred_nomask_weight self.loss_weights = loss_weights self.log_keys = [] if log_keys is None else log_keys def forward(self, model, sample, reduce=True, log_pred=False): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(target_list=sample["target_list"], **sample["net_input"]) loss = 0.0 sample_size = 0 logging_output = {} reduction = "sum" if reduce else "none" loss_m_list = [] logp_m_list = model.get_logits(net_output, True) targ_m_list = model.get_targets(net_output, True) assert self.pred_masked_weight == 0 or len(logp_m_list) > 0 for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)): loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction) loss_m_list.append(loss_m) logging_output[f"loss_m_{i}"] = loss_m.detach().item() if self.pred_masked_weight > 0: loss += self.pred_masked_weight * sum(loss_m_list) sample_size += targ_m_list[0].numel() loss_u_list = [] logp_u_list = model.get_logits(net_output, False) targ_u_list = model.get_targets(net_output, False) assert self.pred_nomask_weight == 0 or len(logp_u_list) > 0 for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)): loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction) loss_u_list.append(loss_u) logging_output[f"loss_u_{i}"] = loss_u.detach().item() if self.pred_nomask_weight > 0: loss += self.pred_nomask_weight * sum(loss_u_list) sample_size += targ_u_list[0].numel() if self.loss_weights is not None: assert hasattr(model, "get_extra_losses") extra_losses, names = model.get_extra_losses(net_output) if torch.is_tensor(extra_losses): extra_losses = [extra_losses] names = [names] if len(self.loss_weights) == 1 and len(extra_losses) != 1: self.loss_weights = [self.loss_weights[0]] * len(extra_losses) assert len(extra_losses) == len( self.loss_weights ), f"{len(extra_losses)}, {len(self.loss_weights)}" for p, n, coef in zip(extra_losses, names, self.loss_weights): if coef != 0 and p is not None: p = coef * p.float() * sample_size loss += p logging_output[f"loss_{n}"] = p.item() logging_output = { "loss": loss.item() if reduce else loss, "ntokens": sample_size, "nsentences": sample["id"].numel(), "sample_size": sample_size, **logging_output, } for lk in self.log_keys: if lk in net_output: logging_output[lk] = float((net_output[lk])) def compute_correct(logits): if logits.numel() == 0: return 0, 0 else: assert logits.dim() > 1, logits.shape max = logits.argmax(-1) == 0 min = logits.argmin(-1) == 0 both = max & min corr = max.long().sum().item() - both.long().sum().item() count = max.numel() return corr, count with torch.no_grad(): for i, logp_m in enumerate(logp_m_list): corr_m, count_m = compute_correct(logp_m) logging_output[f"correct_m_{i}"] = corr_m logging_output[f"count_m_{i}"] = count_m for i, logp_u in enumerate(logp_u_list): corr_u, count_u = compute_correct(logp_u) logging_output[f"correct_u_{i}"] = corr_u logging_output[f"count_u_{i}"] = count_u return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training (copied from normal cross entropy).""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) counts = {} for lk in logging_outputs[0].keys(): if lk.startswith("count_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val) counts[lk] = val for lk in logging_outputs[0].keys(): if lk.startswith("loss_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val / sample_size / math.log(2), round=3) elif lk.startswith("correct_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)]) @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" raise NotImplementedError() @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return False
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/hubert_criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from dataclasses import dataclass, field import torch.nn.functional as F from fairseq.logging import metrics from fairseq.tasks import FairseqTask from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from omegaconf import II @dataclass class SpeechUnitLmCriterionConfig(FairseqDataclass): sentence_avg: bool = II("optimization.sentence_avg") loss_weights: str = field( default="1.;0.0;0.0", metadata={ "help": "Weights of the losses that correspond to token, duration, and F0 streams" }, ) discrete_duration: bool = II("task.discrete_duration") discrete_f0: bool = II("task.discrete_f0") def mae_loss(pred, targ, mask, reduce=True): if pred.ndim == 3: pred = pred.squeeze(2) else: assert pred.ndim == 2 loss = (pred.float() - targ.float()).abs() * (~mask).float() loss = loss.sum() if reduce else loss.view(-1) return loss def nll_loss(pred, targ, mask, reduce=True): lprob = F.log_softmax(pred, dim=-1) loss = F.nll_loss(lprob.view(-1, lprob.size(-1)), targ.view(-1), reduction="none") loss = loss * (~mask).float().view(-1) loss = loss.sum() if reduce else loss.view(-1) return loss @register_criterion("speech_unit_lm_criterion", dataclass=SpeechUnitLmCriterionConfig) class SpeechUnitLmCriterion(FairseqCriterion): def __init__(self, cfg: SpeechUnitLmCriterionConfig, task: FairseqTask): super().__init__(task) self.sentence_avg = cfg.sentence_avg self.weights = torch.tensor([float(w) for w in cfg.loss_weights.split(";")]) assert self.weights.size(0) == 3 assert (self.weights >= 0.0).all() self.dur_loss_fn = nll_loss if cfg.discrete_duration else mae_loss self.f0_loss_fn = nll_loss if cfg.discrete_f0 else mae_loss def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) token_loss = nll_loss( net_output["token"], sample["target"], sample["mask"], reduce ) dur_loss = self.dur_loss_fn( net_output["duration"], sample["dur_target"], sample["dur_mask"], reduce, ) f0_loss = self.f0_loss_fn( net_output["f0"], sample["f0_target"], sample["f0_mask"], reduce, ) loss = self.weights.to(token_loss.device) * torch.stack( [token_loss, dur_loss, f0_loss], dim=-1 ) loss = loss.sum() if reduce else loss.sum(-1) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": loss.detach().sum().item(), "token_loss": token_loss.detach().sum().item(), "dur_loss": dur_loss.detach().sum().item(), "f0_loss": f0_loss.detach().sum().item(), "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) token_loss_sum = sum(log.get("token_loss", 0) for log in logging_outputs) dur_loss_sum = sum(log.get("dur_loss", 0) for log in logging_outputs) f0_loss_sum = sum(log.get("f0_loss", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar("loss", loss_sum / sample_size, sample_size, round=3) metrics.log_scalar( "token_loss", token_loss_sum / sample_size, sample_size, round=3 ) metrics.log_scalar("dur_loss", dur_loss_sum / sample_size, sample_size, round=3) metrics.log_scalar("f0_loss", f0_loss_sum / sample_size, sample_size, round=3) @staticmethod def logging_outputs_can_be_summed() -> bool: return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/speech_ulm_criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field from itertools import chain import numpy as np import torch import torch.nn.functional as F from sklearn.metrics import f1_score from sklearn.metrics import matthews_corrcoef as _matthews_corrcoef from scipy.stats import pearsonr, spearmanr from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from fairseq.logging.meters import safe_round def simple_accuracy(preds, labels): return (preds == labels).mean() def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) return { "acc": acc, "f1": f1, "acc_and_f1": (acc + f1) / 2, } def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def matthews_corrcoef(preds, labels): # make it consistent with other metrics taking (preds, labels) as input mcc = _matthews_corrcoef(labels, preds) return mcc @dataclass class SentencePredictionConfig(FairseqDataclass): classification_head_name: str = field( default="sentence_classification_head", metadata={"help": "name of the classification head to use"}, ) regression_target: bool = field( default=False, ) report_mcc: bool = False report_acc_and_f1: bool = False report_pearson_and_spearman: bool = False @register_criterion("sentence_prediction", dataclass=SentencePredictionConfig) class SentencePredictionCriterion(FairseqCriterion): def __init__(self, cfg: SentencePredictionConfig, task): super().__init__(task) self.classification_head_name = cfg.classification_head_name self.regression_target = cfg.regression_target self.keep_pred_and_targ = ( cfg.report_mcc or cfg.report_acc_and_f1 or cfg.report_pearson_and_spearman ) self.report_mcc = cfg.report_mcc self.report_acc_and_f1 = cfg.report_acc_and_f1 self.report_pearson_and_spearman = cfg.report_pearson_and_spearman self.label_dict = task.label_dictionary def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert ( hasattr(model, "classification_heads") and self.classification_head_name in model.classification_heads ), "model must provide sentence classification head for --criterion=sentence_prediction" logits, _ = model( **sample["net_input"], features_only=True, classification_head_name=self.classification_head_name, ) targets = model.get_targets(sample, [logits]).view(-1) sample_size = targets.numel() if not self.regression_target: lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32) task_loss = F.nll_loss(lprobs, targets, reduction="sum") else: logits = logits.view(-1).float() targets = targets.float() task_loss = F.mse_loss(logits, targets, reduction="sum") logging_output = {} loss = task_loss # mha & ffn regularization update if ( hasattr(model, "args") and hasattr(model.args, "mha_reg_scale_factor") and model.args.mha_reg_scale_factor != 0.0 ): mha_reg_loss = model._get_adaptive_head_loss() loss += mha_reg_loss logging_output.update({"mha_reg_loss": mha_reg_loss}) if ( hasattr(model, "args") and hasattr(model.args, "ffn_reg_scale_factor") and model.args.ffn_reg_scale_factor != 0.0 ): ffn_reg_loss = model._get_adaptive_ffn_loss() loss += ffn_reg_loss logging_output.update({"ffn_reg_loss": ffn_reg_loss}) logging_output.update( { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample_size, "sample_size": sample_size, } ) if not self.regression_target: preds = logits.argmax(dim=1) logging_output["ncorrect"] = (preds == targets).sum() if self.keep_pred_and_targ and not model.training: if self.regression_target: logging_output["pred"] = logits.detach().cpu().tolist() logging_output["targ"] = targets.detach().cpu().tolist() else: # remove offset `self.label_dict.nspecial` from OffsetTokensDataset preds = self.label_dict.string(preds + self.label_dict.nspecial).split() targets = self.label_dict.string( targets + self.label_dict.nspecial ).split() logging_output["pred"] = list(map(int, preds)) logging_output["targ"] = list(map(int, targets)) if self.report_mcc: logging_output["report_mcc"] = True if self.report_acc_and_f1: logging_output["report_acc_and_f1"] = True if self.report_pearson_and_spearman: logging_output["report_pearson_and_spearman"] = True return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) mha_reg_loss_sum = sum(log.get("mha_reg_loss", 0) for log in logging_outputs) ffn_reg_loss_sum = sum(log.get("ffn_reg_loss", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if mha_reg_loss_sum: metrics.log_scalar( "mha_reg_loss", mha_reg_loss_sum / sample_size / math.log(2), sample_size, round=3, ) if ffn_reg_loss_sum: metrics.log_scalar( "ffn_reg_loss", ffn_reg_loss_sum / sample_size / math.log(2), sample_size, round=3, ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]: ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) metrics.log_scalar( "accuracy", 100.0 * ncorrect / nsentences, nsentences, round=1 ) # Metrics used by GLUE pred = np.array( list(chain.from_iterable(log.get("pred", []) for log in logging_outputs)) ) targ = np.array( list(chain.from_iterable(log.get("targ", []) for log in logging_outputs)) ) if len(pred): metrics.log_concat_tensor("pred", torch.from_numpy(pred), dim=0) metrics.log_concat_tensor("targ", torch.from_numpy(targ), dim=0) if any("report_mcc" in log for log in logging_outputs): metrics.log_derived( "mcc", lambda meters: safe_round( matthews_corrcoef( meters["pred"].tensor.numpy(), meters["targ"].tensor.numpy(), ) * 100, 1, ), ) if any("report_acc_and_f1" in log for log in logging_outputs): metrics.log_derived( "acc_and_f1", lambda meters: safe_round( acc_and_f1( meters["pred"].tensor.numpy(), meters["targ"].tensor.numpy(), )["acc_and_f1"] * 100, 1, ), ) metrics.log_derived( "f1", lambda meters: safe_round( acc_and_f1( meters["pred"].tensor.numpy(), meters["targ"].tensor.numpy(), )["f1"] * 100, 1, ), ) if any("report_pearson_and_spearman" in log for log in logging_outputs): metrics.log_derived( "pearson_and_spearman", lambda meters: safe_round( pearson_and_spearman( meters["pred"].tensor.numpy(), meters["targ"].tensor.numpy(), )["corr"] * 100, 1, ), ) metrics.log_derived( "pearson", lambda meters: safe_round( pearson_and_spearman( meters["pred"].tensor.numpy(), meters["targ"].tensor.numpy(), )["pearson"] * 100, 1, ), ) metrics.log_derived( "spearman", lambda meters: safe_round( pearson_and_spearman( meters["pred"].tensor.numpy(), meters["targ"].tensor.numpy(), )["spearmanr"] * 100, 1, ), ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/sentence_prediction.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import register_criterion from .label_smoothed_cross_entropy import ( LabelSmoothedCrossEntropyCriterion, LabelSmoothedCrossEntropyCriterionConfig, ) from dataclasses import dataclass, field @dataclass class LabelSmoothedCrossEntropyCriterionWithAlignmentConfig( LabelSmoothedCrossEntropyCriterionConfig ): alignment_lambda: float = field( default=0.05, metadata={"help": "weight for the alignment loss"} ) @register_criterion( "label_smoothed_cross_entropy_with_alignment", dataclass=LabelSmoothedCrossEntropyCriterionWithAlignmentConfig, ) class LabelSmoothedCrossEntropyCriterionWithAlignment( LabelSmoothedCrossEntropyCriterion ): def __init__(self, task, sentence_avg, label_smoothing, alignment_lambda): super().__init__(task, sentence_avg, label_smoothing) self.alignment_lambda = alignment_lambda def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "nll_loss": utils.item(nll_loss.data) if reduce else nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } alignment_loss = None # Compute alignment loss only for training set and non dummy batches. if "alignments" in sample and sample["alignments"] is not None: alignment_loss = self.compute_alignment_loss(sample, net_output) if alignment_loss is not None: logging_output["alignment_loss"] = utils.item(alignment_loss.data) loss += self.alignment_lambda * alignment_loss return loss, sample_size, logging_output def compute_alignment_loss(self, sample, net_output): attn_prob = net_output[1]["attn"][0] bsz, tgt_sz, src_sz = attn_prob.shape attn = attn_prob.view(bsz * tgt_sz, src_sz) align = sample["alignments"] align_weights = sample["align_weights"].float() if len(align) > 0: # Alignment loss computation. align (shape [:, 2]) contains the src-tgt index pairs corresponding to # the alignments. align_weights (shape [:]) contains the 1 / frequency of a tgt index for normalizing. loss = -( (attn[align[:, 1][:, None], align[:, 0][:, None]]).log() * align_weights[:, None] ).sum() else: return None return loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) nll_loss_sum = utils.item( sum(log.get("nll_loss", 0) for log in logging_outputs) ) alignment_loss_sum = utils.item( sum(log.get("alignment_loss", 0) for log in logging_outputs) ) ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs)) sample_size = utils.item( sum(log.get("sample_size", 0) for log in logging_outputs) ) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_scalar( "alignment_loss", alignment_loss_sum / sample_size / math.log(2), sample_size, round=3, ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/label_smoothed_cross_entropy_with_alignment.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from collections import OrderedDict import torch from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import register_criterion from fairseq.criterions.ctc import CtcCriterion from fairseq.criterions.label_smoothed_cross_entropy_with_rdrop import ( RdropLabelSmoothedCrossEntropyCriterion, RdropLabelSmoothedCrossEntropyCriterionConfig, duplicate_input, ) from fairseq.criterions.tacotron2_loss import ( Tacotron2Criterion, Tacotron2CriterionConfig, ) logger = logging.getLogger(__name__) class MultitaskCriterion: def __init__(self, multitask_tasks, rdrop_alpha=0.0): self.rdrop_alpha = rdrop_alpha self.rdrop_alpha_mtl = rdrop_alpha self.multitask_criterion = OrderedDict() self.multitask_loss_weight = OrderedDict() for task_name, task_obj in multitask_tasks.items(): if task_obj.args.get_loss_weight(0) == 0: logger.info(f"Skip {task_name} loss criterion") continue rdrop_alpha_task = task_obj.args.rdrop_alpha if rdrop_alpha_task is None: rdrop_alpha_task = rdrop_alpha self.rdrop_alpha_mtl = rdrop_alpha_task logger.info(f"rdrop_alpha is set to {rdrop_alpha_task} for {task_name}") if task_obj.args.decoder_type == "ctc": self.multitask_criterion[task_name] = CtcCriterion( task_obj.args.criterion_cfg, task_obj, rdrop_alpha=rdrop_alpha_task, ) else: self.multitask_criterion[ task_name ] = RdropLabelSmoothedCrossEntropyCriterion( task_obj, task_obj.args.criterion_cfg.sentence_avg, label_smoothing=task_obj.args.criterion_cfg.label_smoothing, rdrop_alpha=rdrop_alpha_task, ) def set_multitask_loss_weight(self, task_name, weight=0.0): self.multitask_loss_weight[task_name] = weight def get_multitask_loss(self, model, sample, model_out): logging_output = {} loss = 0.0 for task_name, task_criterion in self.multitask_criterion.items(): layer_id = task_criterion.task.args.input_layer if isinstance(task_criterion, CtcCriterion): if task_criterion.task.args.input_from == "encoder": if len(model_out["encoder_padding_mask"]) > 0: non_padding_mask = ~model_out["encoder_padding_mask"][0] input_lengths = non_padding_mask.long().sum(-1) else: out = model_out["encoder_states"][layer_id] input_lengths = out.new_full( (out.shape[1],), out.shape[0] ).long() task_sample = { "net_input": { "src_tokens": model_out["encoder_states"][ layer_id ], # check batch idx "src_lengths": input_lengths, }, "id": sample["id"], } else: task_sample = { "net_input": { "src_tokens": model_out["inner_states"][layer_id], "src_lengths": sample["target_lengths"], }, "id": sample["id"], } else: task_sample = { "net_input": { "src_tokens": sample["multitask"][task_name]["net_input"][ "prev_output_tokens" ], "encoder_out": { "encoder_out": [model_out["encoder_states"][layer_id]], "encoder_padding_mask": model_out["encoder_padding_mask"], }, } } for key in ["target", "target_lengths", "ntokens"]: task_sample[key] = sample["multitask"][task_name][key] if task_name == getattr(model, "mt_task_name", None): decoder_out = model_out["mt_decoder_out"] else: decoder_out = None task_loss, task_sample_size, task_logging_output = task_criterion( model.multitask_decoders[task_name], task_sample, net_output=decoder_out ) loss = loss + self.multitask_loss_weight[task_name] * task_loss task_logging_output["loss_weight"] = self.multitask_loss_weight[task_name] logging_output[task_name] = task_logging_output return loss, logging_output @classmethod def reduce_metrics(cls, logging_outputs) -> None: for task_name in logging_outputs[0]["multitask"].keys(): # different criterion may return different logging # currently only reduce on loss, the most common one # ideally the way that losses are reduced should also depend on the task type loss_sum = sum( log["multitask"][task_name].get("loss", 0) for log in logging_outputs ) sample_size = sum( log["multitask"][task_name].get("sample_size", 0) for log in logging_outputs ) metrics.log_scalar( f"multitask_{task_name}_loss", loss_sum / sample_size / math.log(2), sample_size, round=3, ) loss_weight = logging_outputs[0]["multitask"][task_name].get( "loss_weight", 0 ) metrics.log_scalar( f"multitask_{task_name}_loss_weight", loss_weight, weight=0, priority=250, ) @register_criterion( "speech_to_unit", dataclass=RdropLabelSmoothedCrossEntropyCriterionConfig ) class SpeechToUnitMultitaskTaskCriterion( RdropLabelSmoothedCrossEntropyCriterion, MultitaskCriterion ): def __init__( self, task, sentence_avg, label_smoothing, ignore_prefix_size=0, report_accuracy=False, rdrop_alpha=0.0, ): super().__init__( task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy, rdrop_alpha, ) MultitaskCriterion.__init__(self, task.multitask_tasks, rdrop_alpha) def forward(self, model, sample, reduce=True): net_input_concat = { "src_tokens": sample["net_input"]["src_tokens"], "src_lengths": sample["net_input"]["src_lengths"], "prev_output_tokens": sample["net_input"]["prev_output_tokens"], "tgt_speaker": sample["net_input"].get("tgt_speaker", None), "return_all_hiddens": True, } if self.rdrop_alpha > 0 or self.rdrop_alpha_mtl > 0: net_input_concat = duplicate_input(net_input_concat) net_output, extra = model(**net_input_concat) loss, nll_loss, rdrop_kl_loss = self.compute_loss( model, [net_output], sample, reduce=reduce ) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if self.report_accuracy: n_correct, total = self.compute_accuracy(model, [net_output], sample) logging_output["n_correct"] = utils.item(n_correct.data) logging_output["total"] = utils.item(total.data) if self.rdrop_alpha > 0: logging_output["rdrop_kl_loss"] = utils.item(rdrop_kl_loss.data) if len(self.multitask_criterion) == 0: return loss, sample_size, logging_output # multitask multitask_loss, multitask_log = self.get_multitask_loss(model, sample, extra) loss += multitask_loss logging_output["multitask"] = multitask_log return loss, sample_size, logging_output @classmethod def reduce_metrics(cls, logging_outputs) -> None: super().reduce_metrics(logging_outputs) # inference metrics if "targ_frames" in logging_outputs[0]: n = sum(log.get("norm_frames", 0) for log in logging_outputs) for key, new_key in [ ("mcd_loss", "mcd_loss"), ("pred_frames", "pred_ratio"), ("nins", "ins_rate"), ("ndel", "del_rate"), ]: val = sum(log.get(key, 0) for log in logging_outputs) metrics.log_scalar(new_key, val / n, n, round=3) if "multitask" not in logging_outputs[0]: return MultitaskCriterion.reduce_metrics(logging_outputs) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return False @register_criterion( "speech_to_unit_2pass", dataclass=RdropLabelSmoothedCrossEntropyCriterionConfig ) class SpeechToUnit2passMultitaskTaskCriterion(SpeechToUnitMultitaskTaskCriterion): def __init__( self, task, sentence_avg, label_smoothing, ignore_prefix_size=0, report_accuracy=False, rdrop_alpha=0.0, ): super().__init__( task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy, rdrop_alpha, ) def forward(self, model, sample, reduce=True): net_input_concat = { "src_tokens": sample["net_input"]["src_tokens"], "src_lengths": sample["net_input"]["src_lengths"], "prev_output_tokens": sample["net_input"]["prev_output_tokens"], "prev_output_tokens_mt": sample["multitask"][model.mt_task_name][ "net_input" ]["prev_output_tokens"], "tgt_speaker": sample["net_input"].get("tgt_speaker", None), "return_all_hiddens": True, } if getattr(model, "asr_task_name", None) is not None: net_input_concat["prev_output_tokens_asr"] = sample["multitask"][ model.asr_task_name ]["net_input"]["prev_output_tokens"] if self.rdrop_alpha > 0 or self.rdrop_alpha_mtl > 0: net_input_concat = duplicate_input(net_input_concat) net_output, extra = model(**net_input_concat) loss, nll_loss, rdrop_kl_loss = self.compute_loss( model, [net_output], sample, reduce=reduce ) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if self.report_accuracy: n_correct, total = self.compute_accuracy(model, [net_output], sample) logging_output["n_correct"] = utils.item(n_correct.data) logging_output["total"] = utils.item(total.data) if self.rdrop_alpha > 0: logging_output["rdrop_kl_loss"] = utils.item(rdrop_kl_loss.data) if len(self.multitask_criterion) == 0: return loss, sample_size, logging_output # multitask multitask_loss, multitask_log = self.get_multitask_loss(model, sample, extra) loss += multitask_loss logging_output["multitask"] = multitask_log return loss, sample_size, logging_output @register_criterion("speech_to_spectrogram", dataclass=Tacotron2CriterionConfig) class SpeechToSpectrogramMultitaskTaskCriterion(Tacotron2Criterion, MultitaskCriterion): def __init__( self, task, sentence_avg, use_guided_attention_loss, guided_attention_loss_sigma, bce_pos_weight, ctc_weight, ): super().__init__( task, sentence_avg, use_guided_attention_loss, guided_attention_loss_sigma, bce_pos_weight, ctc_weight, ) MultitaskCriterion.__init__(self, task.multitask_tasks) def forward(self, model, sample, reduction="mean"): bsz, max_len, _ = sample["target"].size() feat_tgt = sample["target"] feat_len = sample["target_lengths"].view(bsz, 1).expand(-1, max_len) eos_tgt = torch.arange(max_len).to(sample["target"].device) eos_tgt = eos_tgt.view(1, max_len).expand(bsz, -1) eos_tgt = (eos_tgt == (feat_len - 1)).float() feat_out, eos_out, extra = model( src_tokens=sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], prev_output_tokens=sample["net_input"]["prev_output_tokens"], tgt_speaker=sample["net_input"]["tgt_speaker"], target_lengths=sample["target_lengths"], return_all_hiddens=True, ) l1_loss, mse_loss, eos_loss = self.compute_loss( extra["feature_out"], feat_out, eos_out, feat_tgt, eos_tgt, sample["target_lengths"], reduction, ) attn_loss = torch.tensor(0.0).type_as(l1_loss) if self.guided_attn is not None: attn_loss = self.guided_attn( extra["attn"], sample["net_input"]["src_lengths"], sample["target_lengths"], reduction, ) loss = ( l1_loss + mse_loss + eos_loss + attn_loss ) # do not include ctc loss as there's no text target sample_size = sample["nsentences"] if self.sentence_avg else sample["ntokens"] logging_output = { "loss": utils.item(loss.data), "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "l1_loss": utils.item(l1_loss.data), "mse_loss": utils.item(mse_loss.data), "eos_loss": utils.item(eos_loss.data), "attn_loss": utils.item(attn_loss.data), } if len(self.multitask_criterion) == 0: return loss, sample_size, logging_output # multitask multitask_loss, multitask_log = self.get_multitask_loss(model, sample, extra) loss += multitask_loss logging_output["multitask"] = multitask_log return loss, sample_size, logging_output @classmethod def reduce_metrics(cls, logging_outputs) -> None: super().reduce_metrics(logging_outputs) # inference metrics if "targ_frames" in logging_outputs[0]: n = sum(log.get("norm_frames", 0) for log in logging_outputs) for key, new_key in [ ("mcd_loss", "mcd_loss"), ("pred_frames", "pred_ratio"), ("nins", "ins_rate"), ("ndel", "del_rate"), ]: val = sum(log.get(key, 0) for log in logging_outputs) metrics.log_scalar(new_key, val / n, n, round=3) if "multitask" not in logging_outputs[0]: return MultitaskCriterion.reduce_metrics(logging_outputs) @register_criterion("speech_to_spectrogram_2pass", dataclass=Tacotron2CriterionConfig) class SpeechToSpectrogram2passMultitaskTaskCriterion( SpeechToSpectrogramMultitaskTaskCriterion ): def __init__( self, task, sentence_avg, use_guided_attention_loss, guided_attention_loss_sigma, bce_pos_weight, ctc_weight, ): super().__init__( task, sentence_avg, use_guided_attention_loss, guided_attention_loss_sigma, bce_pos_weight, ctc_weight, ) def forward(self, model, sample, reduction="mean"): bsz, max_len, _ = sample["target"].size() feat_tgt = sample["target"] feat_len = sample["target_lengths"].view(bsz, 1).expand(-1, max_len) eos_tgt = torch.arange(max_len).to(sample["target"].device) eos_tgt = eos_tgt.view(1, max_len).expand(bsz, -1) eos_tgt = (eos_tgt == (feat_len - 1)).float() feat_out, eos_out, extra = model( src_tokens=sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], prev_output_tokens=sample["net_input"]["prev_output_tokens"], prev_output_tokens_mt=sample["multitask"][model.mt_task_name]["net_input"][ "prev_output_tokens" ], tgt_speaker=sample["net_input"]["tgt_speaker"], target_lengths=sample["target_lengths"], return_all_hiddens=True, ) l1_loss, mse_loss, eos_loss = self.compute_loss( extra["feature_out"], feat_out, eos_out, feat_tgt, eos_tgt, sample["target_lengths"], reduction, ) attn_loss = torch.tensor(0.0).type_as(l1_loss) if self.guided_attn is not None: attn_loss = self.guided_attn( extra["attn"], sample["net_input"]["src_lengths"], sample["target_lengths"], reduction, ) loss = ( l1_loss + mse_loss + eos_loss + attn_loss ) # do not include ctc loss as there's no text target sample_size = sample["nsentences"] if self.sentence_avg else sample["ntokens"] logging_output = { "loss": utils.item(loss.data), "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "l1_loss": utils.item(l1_loss.data), "mse_loss": utils.item(mse_loss.data), "eos_loss": utils.item(eos_loss.data), "attn_loss": utils.item(attn_loss.data), } if len(self.multitask_criterion) == 0: return loss, sample_size, logging_output # multitask multitask_loss, multitask_log = self.get_multitask_loss(model, sample, extra) loss += multitask_loss logging_output["multitask"] = multitask_log return loss, sample_size, logging_output
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/speech_to_speech_criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass import math from omegaconf import II import torch from fairseq import modules, utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass @dataclass class MaskedLmConfig(FairseqDataclass): tpu: bool = II("common.tpu") @register_criterion("masked_lm", dataclass=MaskedLmConfig) class MaskedLmLoss(FairseqCriterion): """ Implementation for the loss used in masked language model (MLM) training. """ def __init__(self, cfg: MaskedLmConfig, task): super().__init__(task) self.tpu = cfg.tpu def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ masked_tokens = sample["target"].ne(self.padding_idx) sample_size = masked_tokens.int().sum() # Rare: when all tokens are masked, project all tokens. # We use torch.where to avoid device-to-host transfers, # except on CPU where torch.where is not well supported # (see github.com/pytorch/pytorch/issues/26247). if self.tpu: masked_tokens = None # always project all tokens on TPU elif masked_tokens.device == torch.device("cpu"): if not masked_tokens.any(): masked_tokens = None else: masked_tokens = torch.where( masked_tokens.any(), masked_tokens, masked_tokens.new([True]), ) logits = model(**sample["net_input"], masked_tokens=masked_tokens)[0] targets = model.get_targets(sample, [logits]) if masked_tokens is not None: targets = targets[masked_tokens] loss = modules.cross_entropy( logits.view(-1, logits.size(-1)), targets.view(-1), reduction="sum", ignore_index=self.padding_idx, ) logging_output = { "loss": loss if self.tpu else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, } return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("sentence_ranking") class SentenceRankingCriterion(FairseqCriterion): def __init__(self, task, ranking_head_name, save_predictions, num_classes): super().__init__(task) self.ranking_head_name = ranking_head_name if save_predictions is not None: self.prediction_h = open(save_predictions, "w") else: self.prediction_h = None self.num_classes = num_classes def __del__(self): if self.prediction_h is not None: self.prediction_h.close() @staticmethod def add_args(parser): # fmt: off parser.add_argument('--save-predictions', metavar='FILE', help='file to save predictions to') parser.add_argument('--ranking-head-name', default='sentence_classification_head', help='name of the ranking head to use') # fmt: on def forward(self, model, sample, reduce=True): """Compute ranking loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert ( hasattr(model, "classification_heads") and self.ranking_head_name in model.classification_heads ), "model must provide sentence ranking head for --criterion=sentence_ranking" scores = [] for idx in range(self.num_classes): score, _ = model( **sample["net_input{idx}".format(idx=idx + 1)], classification_head_name=self.ranking_head_name, ) scores.append(score) logits = torch.cat(scores, dim=1) sample_size = logits.size(0) if "target" in sample: targets = model.get_targets(sample, [logits]).view(-1) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32) loss = F.nll_loss(lprobs, targets, reduction="sum") else: targets = None loss = torch.tensor(0.0, requires_grad=True) if self.prediction_h is not None: preds = logits.argmax(dim=1) for i, (id, pred) in enumerate(zip(sample["id"].tolist(), preds.tolist())): if targets is not None: label = targets[i].item() print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h) else: print("{}\t{}".format(id, pred), file=self.prediction_h) logging_output = { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample_size, "sample_size": sample_size, } if targets is not None: logging_output["ncorrect"] = (logits.argmax(dim=1) == targets).sum() return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]: ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) metrics.log_scalar( "accuracy", 100.0 * ncorrect / nsentences, nsentences, round=1 ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/fairseq/criterions/sentence_ranking.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # type: ignore from pathlib import Path from read_version import read_version from setuptools import find_namespace_packages, setup setup( name="dependency-submitit-launcher", version=read_version("hydra_plugins/dependency_submitit_launcher", "__init__.py"), author="Alexei Baevski", author_email="[email protected]", description="Dependency-supporting Submitit Launcher for Hydra apps", packages=find_namespace_packages(include=["hydra_plugins.*"]), classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Operating System :: MacOS", "Operating System :: POSIX :: Linux", "Development Status :: 4 - Beta", ], install_requires=[ "hydra-core>=1.0.4", "submitit>=1.0.0", ], include_package_data=True, )
EXA-1-master
exa/libraries/fairseq/hydra_plugins/dependency_submitit_launcher/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from dataclasses import dataclass, field from hydra.core.config_store import ConfigStore from hydra_plugins.hydra_submitit_launcher.config import SlurmQueueConf @dataclass class DependencySubmititConf(SlurmQueueConf): """Slurm configuration overrides and specific parameters""" _target_: str = ( "hydra_plugins.dependency_submitit_launcher.launcher.DependencySubmititLauncher" ) ConfigStore.instance().store( group="hydra/launcher", name="dependency_submitit_slurm", node=DependencySubmititConf(), provider="dependency_submitit_slurm", )
EXA-1-master
exa/libraries/fairseq/hydra_plugins/dependency_submitit_launcher/hydra_plugins/dependency_submitit_launcher/config.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved __version__ = "0.1"
EXA-1-master
exa/libraries/fairseq/hydra_plugins/dependency_submitit_launcher/hydra_plugins/dependency_submitit_launcher/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os import subprocess from pathlib import Path from typing import Any, List, Sequence from hydra.core.singleton import Singleton from hydra.core.utils import JobReturn, filter_overrides from omegaconf import OmegaConf log = logging.getLogger(__name__) from .config import DependencySubmititConf from hydra_plugins.hydra_submitit_launcher.submitit_launcher import BaseSubmititLauncher class DependencySubmititLauncher(BaseSubmititLauncher): _EXECUTOR = "slurm" def launch( self, job_overrides: Sequence[Sequence[str]], initial_job_idx: int ) -> Sequence[JobReturn]: # lazy import to ensure plugin discovery remains fast import submitit assert self.config is not None num_jobs = len(job_overrides) assert num_jobs > 0 next_script = None for jo in job_overrides: if next_script is None: for item in jo: if "next_script=" in item: next_script = item break assert ( next_script is not None ), "job overrides must contain +next_script=path/to/next/script" jo.remove(next_script) idx = next_script.find("=") next_script = next_script[idx + 1 :] params = self.params # build executor init_params = {"folder": self.params["submitit_folder"]} specific_init_keys = {"max_num_timeout"} init_params.update( **{ f"{self._EXECUTOR}_{x}": y for x, y in params.items() if x in specific_init_keys } ) init_keys = specific_init_keys | {"submitit_folder"} executor = submitit.AutoExecutor(cluster=self._EXECUTOR, **init_params) # specify resources/parameters baseparams = set(OmegaConf.structured(DependencySubmititConf).keys()) params = { x if x in baseparams else f"{self._EXECUTOR}_{x}": y for x, y in params.items() if x not in init_keys } executor.update_parameters(**params) log.info( f"Submitit '{self._EXECUTOR}' sweep output dir : " f"{self.config.hydra.sweep.dir}" ) sweep_dir = Path(str(self.config.hydra.sweep.dir)) sweep_dir.mkdir(parents=True, exist_ok=True) if "mode" in self.config.hydra.sweep: mode = int(str(self.config.hydra.sweep.mode), 8) os.chmod(sweep_dir, mode=mode) job_params: List[Any] = [] for idx, overrides in enumerate(job_overrides): idx = initial_job_idx + idx lst = " ".join(filter_overrides(overrides)) log.info(f"\t#{idx} : {lst}") job_params.append( ( list(overrides), "hydra.sweep.dir", idx, f"job_id_for_{idx}", Singleton.get_state(), ) ) jobs = executor.map_array(self, *zip(*job_params)) for j, jp in zip(jobs, job_params): job_id = str(j.job_id) task_id = "0" if "_" not in job_id else job_id.split("_")[1] sweep_config = self.config_loader.load_sweep_config(self.config, jp[0]) dir = sweep_config.hydra.sweep.dir dir = ( dir.replace("[", "") .replace("]", "") .replace("{", "") .replace("}", "") .replace(",", "_") .replace("'", "") .replace('"', "") ) subprocess.call( [next_script, job_id, task_id, dir], shell=False, ) return [j.results()[0] for j in jobs]
EXA-1-master
exa/libraries/fairseq/hydra_plugins/dependency_submitit_launcher/hydra_plugins/dependency_submitit_launcher/launcher.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # fairseq documentation build configuration file, created by # sphinx-quickstart on Fri Aug 17 21:45:30 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import os import sys from fairseq import __version__ # source code directory, relative to this file, for sphinx-autobuild sys.path.insert(0, os.path.abspath("..")) source_suffix = [".rst"] # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.intersphinx", "sphinx.ext.viewcode", "sphinx.ext.napoleon", "sphinxarg.ext", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The master toctree document. master_doc = "index" # General information about the project. project = "fairseq" copyright = "Facebook AI Research (FAIR)" author = "Facebook AI Research (FAIR)" github_doc_root = "https://github.com/pytorch/fairseq/tree/main/docs/" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" highlight_language = "python" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- html_theme = "classic" # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "numpy": ("http://docs.scipy.org/doc/numpy/", None), "python": ("https://docs.python.org/", None), "torch": ("https://pytorch.org/docs/master/", None), }
EXA-1-master
exa/libraries/fairseq/docs/conf.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import hydra import torch from hydra.core.hydra_config import HydraConfig from omegaconf import OmegaConf, open_dict from fairseq import distributed_utils, metrics from fairseq.dataclass.configs import FairseqConfig from fairseq.dataclass.initialize import add_defaults, hydra_init from fairseq.dataclass.utils import omegaconf_no_object_check from fairseq.utils import reset_logging from fairseq_cli.train import main as pre_main logger = logging.getLogger("fairseq_cli.hydra_train") @hydra.main(config_path=os.path.join("..", "fairseq", "config"), config_name="config") def hydra_main(cfg: FairseqConfig) -> float: _hydra_main(cfg) def _hydra_main(cfg: FairseqConfig, **kwargs) -> float: add_defaults(cfg) if cfg.common.reset_logging: reset_logging() # Hydra hijacks logging, fix that else: # check if directly called or called through hydra_main if HydraConfig.initialized(): with open_dict(cfg): # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126) cfg.job_logging_cfg = OmegaConf.to_container( HydraConfig.get().job_logging, resolve=True ) with omegaconf_no_object_check(): cfg = OmegaConf.create( OmegaConf.to_container(cfg, resolve=True, enum_to_str=True) ) OmegaConf.set_struct(cfg, True) try: if cfg.common.profile: with torch.cuda.profiler.profile(): with torch.autograd.profiler.emit_nvtx(): distributed_utils.call_main(cfg, pre_main, **kwargs) else: distributed_utils.call_main(cfg, pre_main, **kwargs) except BaseException as e: if not cfg.common.suppress_crashes: raise else: logger.error("Crashed! " + str(e)) # get best val and return - useful for sweepers try: best_val = metrics.get_smoothed_value( "valid", cfg.checkpoint.best_checkpoint_metric ) except: best_val = None if best_val is None: best_val = float("inf") return best_val def cli_main(): try: from hydra._internal.utils import get_args cfg_name = get_args().config_name or "config" except: logger.warning("Failed to get config name from hydra args") cfg_name = "config" hydra_init(cfg_name) hydra_main() if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/hydra_train.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Data pre-processing: build vocabularies and binarize training data. """ import logging import os import shutil import sys import typing as tp from argparse import Namespace from itertools import zip_longest from fairseq import options, tasks, utils from fairseq.binarizer import ( AlignmentDatasetBinarizer, FileBinarizer, VocabularyDatasetBinarizer, ) from fairseq.data import Dictionary logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.preprocess") ##################################################################### # file name tools ##################################################################### def _train_path(lang, trainpref): return "{}{}".format(trainpref, ("." + lang) if lang else "") def _file_name(prefix, lang): fname = prefix if lang is not None: fname += ".{lang}".format(lang=lang) return fname def _dest_path(prefix, lang, destdir): return os.path.join(destdir, _file_name(prefix, lang)) def _dict_path(lang, destdir): return _dest_path("dict", lang, destdir) + ".txt" def dataset_dest_prefix(args, output_prefix, lang): base = os.path.join(args.destdir, output_prefix) if lang is not None: lang_part = f".{args.source_lang}-{args.target_lang}.{lang}" elif args.only_source: lang_part = "" else: lang_part = f".{args.source_lang}-{args.target_lang}" return "{}{}".format(base, lang_part) def dataset_dest_file(args, output_prefix, lang, extension): return "{}.{}".format(dataset_dest_prefix(args, output_prefix, lang), extension) ##################################################################### # dictionary tools ##################################################################### def _build_dictionary( filenames, task, args, src=False, tgt=False, ): assert src ^ tgt return task.build_dictionary( filenames, workers=args.workers, threshold=args.thresholdsrc if src else args.thresholdtgt, nwords=args.nwordssrc if src else args.nwordstgt, padding_factor=args.padding_factor, ) ##################################################################### # bin file creation logic ##################################################################### def _make_binary_dataset( vocab: Dictionary, input_prefix: str, output_prefix: str, lang: tp.Optional[str], num_workers: int, args: Namespace, ): logger.info("[{}] Dictionary: {} types".format(lang, len(vocab))) binarizer = VocabularyDatasetBinarizer( vocab, append_eos=True, ) input_file = "{}{}".format(input_prefix, ("." + lang) if lang is not None else "") full_output_prefix = dataset_dest_prefix(args, output_prefix, lang) final_summary = FileBinarizer.multiprocess_dataset( input_file, args.dataset_impl, binarizer, full_output_prefix, vocab_size=len(vocab), num_workers=num_workers, ) logger.info(f"[{lang}] {input_file}: {final_summary} (by {vocab.unk_word})") def _make_binary_alignment_dataset( input_prefix: str, output_prefix: str, num_workers: int, args: Namespace ): binarizer = AlignmentDatasetBinarizer(utils.parse_alignment) input_file = input_prefix full_output_prefix = dataset_dest_prefix(args, output_prefix, lang=None) final_summary = FileBinarizer.multiprocess_dataset( input_file, args.dataset_impl, binarizer, full_output_prefix, vocab_size=None, num_workers=num_workers, ) logger.info( "[alignments] {}: parsed {} alignments".format( input_file, final_summary.num_seq ) ) ##################################################################### # routing logic ##################################################################### def _make_dataset( vocab: Dictionary, input_prefix: str, output_prefix: str, lang: tp.Optional[str], args: Namespace, num_workers: int, ): if args.dataset_impl == "raw": # Copy original text file to destination folder output_text_file = _dest_path( output_prefix + ".{}-{}".format(args.source_lang, args.target_lang), lang, args.destdir, ) shutil.copyfile(_file_name(input_prefix, lang), output_text_file) else: _make_binary_dataset( vocab, input_prefix, output_prefix, lang, num_workers, args ) def _make_all(lang, vocab, args): if args.trainpref: _make_dataset( vocab, args.trainpref, "train", lang, args=args, num_workers=args.workers ) if args.validpref: for k, validpref in enumerate(args.validpref.split(",")): outprefix = "valid{}".format(k) if k > 0 else "valid" _make_dataset( vocab, validpref, outprefix, lang, args=args, num_workers=args.workers ) if args.testpref: for k, testpref in enumerate(args.testpref.split(",")): outprefix = "test{}".format(k) if k > 0 else "test" _make_dataset( vocab, testpref, outprefix, lang, args=args, num_workers=args.workers ) def _make_all_alignments(args): if args.trainpref and os.path.exists(args.trainpref + "." + args.align_suffix): _make_binary_alignment_dataset( args.trainpref + "." + args.align_suffix, "train.align", num_workers=args.workers, args=args, ) if args.validpref and os.path.exists(args.validpref + "." + args.align_suffix): _make_binary_alignment_dataset( args.validpref + "." + args.align_suffix, "valid.align", num_workers=args.workers, args=args, ) if args.testpref and os.path.exists(args.testpref + "." + args.align_suffix): _make_binary_alignment_dataset( args.testpref + "." + args.align_suffix, "test.align", num_workers=args.workers, args=args, ) ##################################################################### # align ##################################################################### def _align_files(args, src_dict, tgt_dict): assert args.trainpref, "--trainpref must be set if --alignfile is specified" src_file_name = _train_path(args.source_lang, args.trainpref) tgt_file_name = _train_path(args.target_lang, args.trainpref) freq_map = {} with open(args.alignfile, "r", encoding="utf-8") as align_file: with open(src_file_name, "r", encoding="utf-8") as src_file: with open(tgt_file_name, "r", encoding="utf-8") as tgt_file: for a, s, t in zip_longest(align_file, src_file, tgt_file): si = src_dict.encode_line(s, add_if_not_exist=False) ti = tgt_dict.encode_line(t, add_if_not_exist=False) ai = list(map(lambda x: tuple(x.split("-")), a.split())) for sai, tai in ai: srcidx = si[int(sai)] tgtidx = ti[int(tai)] if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk(): assert srcidx != src_dict.pad() assert srcidx != src_dict.eos() assert tgtidx != tgt_dict.pad() assert tgtidx != tgt_dict.eos() if srcidx not in freq_map: freq_map[srcidx] = {} if tgtidx not in freq_map[srcidx]: freq_map[srcidx][tgtidx] = 1 else: freq_map[srcidx][tgtidx] += 1 align_dict = {} for srcidx in freq_map.keys(): align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get) with open( os.path.join( args.destdir, "alignment.{}-{}.txt".format(args.source_lang, args.target_lang), ), "w", encoding="utf-8", ) as f: for k, v in align_dict.items(): print("{} {}".format(src_dict[k], tgt_dict[v]), file=f) ##################################################################### # MAIN ##################################################################### def main(args): # setup some basic things utils.import_user_module(args) os.makedirs(args.destdir, exist_ok=True) logger.addHandler( logging.FileHandler( filename=os.path.join(args.destdir, "preprocess.log"), ) ) logger.info(args) assert ( args.dataset_impl != "huffman" ), "preprocessing.py doesn't support Huffman yet, use HuffmanCodeBuilder directly." # build dictionaries target = not args.only_source if not args.srcdict and os.path.exists(_dict_path(args.source_lang, args.destdir)): raise FileExistsError(_dict_path(args.source_lang, args.destdir)) if ( target and not args.tgtdict and os.path.exists(_dict_path(args.target_lang, args.destdir)) ): raise FileExistsError(_dict_path(args.target_lang, args.destdir)) task = tasks.get_task(args.task) if args.joined_dictionary: assert ( not args.srcdict or not args.tgtdict ), "cannot use both --srcdict and --tgtdict with --joined-dictionary" if args.srcdict: src_dict = task.load_dictionary(args.srcdict) elif args.tgtdict: src_dict = task.load_dictionary(args.tgtdict) else: assert ( args.trainpref ), "--trainpref must be set if --srcdict is not specified" src_dict = _build_dictionary( { _train_path(lang, args.trainpref) for lang in [args.source_lang, args.target_lang] }, task=task, args=args, src=True, ) tgt_dict = src_dict else: if args.srcdict: src_dict = task.load_dictionary(args.srcdict) else: assert ( args.trainpref ), "--trainpref must be set if --srcdict is not specified" src_dict = _build_dictionary( [_train_path(args.source_lang, args.trainpref)], task=task, args=args, src=True, ) if target: if args.tgtdict: tgt_dict = task.load_dictionary(args.tgtdict) else: assert ( args.trainpref ), "--trainpref must be set if --tgtdict is not specified" tgt_dict = _build_dictionary( [_train_path(args.target_lang, args.trainpref)], task=task, args=args, tgt=True, ) else: tgt_dict = None # save dictionaries src_dict.save(_dict_path(args.source_lang, args.destdir)) if target and tgt_dict is not None: tgt_dict.save(_dict_path(args.target_lang, args.destdir)) if args.dict_only: return _make_all(args.source_lang, src_dict, args) if target: _make_all(args.target_lang, tgt_dict, args) # align the datasets if needed if args.align_suffix: _make_all_alignments(args) logger.info("Wrote preprocessed data to {}".format(args.destdir)) if args.alignfile: _align_files(args, src_dict=src_dict, tgt_dict=tgt_dict) def cli_main(): parser = options.get_preprocessing_parser() args = parser.parse_args() main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/preprocess.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate pre-processed data with a trained model. """ import ast import logging import math import os import sys from argparse import Namespace from itertools import chain import numpy as np import torch from omegaconf import DictConfig from fairseq import checkpoint_utils, options, scoring, tasks, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import progress_bar from fairseq.logging.meters import StopwatchMeter, TimeMeter def main(cfg: DictConfig): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) assert cfg.common_eval.path is not None, "--path required for generation!" assert ( not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam ), "--sampling requires --nbest to be equal to --beam" assert ( cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw" ), "--replace-unk requires a raw text dataset (--dataset-impl=raw)" if cfg.common_eval.results_path is not None: os.makedirs(cfg.common_eval.results_path, exist_ok=True) output_path = os.path.join( cfg.common_eval.results_path, "generate-{}.txt".format(cfg.dataset.gen_subset), ) with open(output_path, "w", buffering=1, encoding="utf-8") as h: return _main(cfg, h) else: return _main(cfg, sys.stdout) def get_symbols_to_strip_from_output(generator): if hasattr(generator, "symbols_to_strip_from_output"): return generator.symbols_to_strip_from_output else: return {generator.eos} def _main(cfg: DictConfig, output_file): logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=output_file, ) logger = logging.getLogger("fairseq_cli.generate") utils.import_user_module(cfg.common) if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: cfg.dataset.max_tokens = 12000 logger.info(cfg) # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) use_cuda = torch.cuda.is_available() and not cfg.common.cpu # Load dataset splits task = tasks.setup_task(cfg.task) # Set dictionaries try: src_dict = getattr(task, "source_dictionary", None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary overrides = ast.literal_eval(cfg.common_eval.model_overrides) # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, saved_cfg = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), arg_overrides=overrides, task=task, suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, ) # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task) if cfg.generation.lm_path is not None: overrides["data"] = cfg.task.data try: lms, _ = checkpoint_utils.load_model_ensemble( [cfg.generation.lm_path], arg_overrides=overrides, task=None ) except: logger.warning( f"Failed to load language model! Please make sure that the language model dict is the same " f"as target dict and is located in the data dir ({cfg.task.data})" ) raise assert len(lms) == 1 else: lms = [None] # Optimize ensemble for generation for model in chain(models, lms): if model is None: continue if cfg.common.fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(cfg.generation.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(cfg.dataset.gen_subset), max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models] ), ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, seed=cfg.common.seed, num_shards=cfg.distributed_training.distributed_world_size, shard_id=cfg.distributed_training.distributed_rank, num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) # Initialize generator gen_timer = StopwatchMeter() extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight} generator = task.build_generator( models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) # Handle tokenization and BPE tokenizer = task.build_tokenizer(cfg.tokenizer) bpe = task.build_bpe(cfg.bpe) def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x scorer = scoring.build_scorer(cfg.scoring, tgt_dict) num_sentences = 0 has_target = True wps_meter = TimeMeter() for sample in progress: sample = utils.move_to_cuda(sample) if use_cuda else sample if "net_input" not in sample: continue prefix_tokens = None if cfg.generation.prefix_size > 0: prefix_tokens = sample["target"][:, : cfg.generation.prefix_size] constraints = None if "constraints" in sample: constraints = sample["constraints"] gen_timer.start() hypos = task.inference_step( generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints, ) num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample["id"].tolist()): has_target = sample["target"] is not None # Remove padding if "src_tokens" in sample["net_input"]: src_tokens = utils.strip_pad( sample["net_input"]["src_tokens"][i, :], tgt_dict.pad() ) else: src_tokens = None target_tokens = None if has_target: target_tokens = ( utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu() ) # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text( sample_id ) target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text( sample_id ) else: if src_dict is not None: src_str = src_dict.string(src_tokens, cfg.common_eval.post_process) else: src_str = "" if has_target: target_str = tgt_dict.string( target_tokens, cfg.common_eval.post_process, escape_unk=True, extra_symbols_to_ignore=get_symbols_to_strip_from_output( generator ), ) src_str = decode_fn(src_str) if has_target: target_str = decode_fn(target_str) if not cfg.common_eval.quiet: if src_dict is not None: print("S-{}\t{}".format(sample_id, src_str), file=output_file) if has_target: print("T-{}\t{}".format(sample_id, target_str), file=output_file) # Process top predictions for j, hypo in enumerate(hypos[i][: cfg.generation.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo["tokens"].int().cpu(), src_str=src_str, alignment=hypo["alignment"], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=cfg.common_eval.post_process, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) detok_hypo_str = decode_fn(hypo_str) if not cfg.common_eval.quiet: score = hypo["score"] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print( "H-{}\t{}\t{}".format(sample_id, score, hypo_str), file=output_file, ) # detokenized hypothesis print( "D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str), file=output_file, ) print( "P-{}\t{}".format( sample_id, " ".join( map( lambda x: "{:.4f}".format(x), # convert from base e to base 2 hypo["positional_scores"] .div_(math.log(2)) .tolist(), ) ), ), file=output_file, ) if cfg.generation.print_alignment == "hard": print( "A-{}\t{}".format( sample_id, " ".join( [ "{}-{}".format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment ] ), ), file=output_file, ) if cfg.generation.print_alignment == "soft": print( "A-{}\t{}".format( sample_id, " ".join( [",".join(src_probs) for src_probs in alignment] ), ), file=output_file, ) if cfg.generation.print_step: print( "I-{}\t{}".format(sample_id, hypo["steps"]), file=output_file, ) if cfg.generation.retain_iter_history: for step, h in enumerate(hypo["history"]): _, h_str, _ = utils.post_process_prediction( hypo_tokens=h["tokens"].int().cpu(), src_str=src_str, alignment=None, align_dict=None, tgt_dict=tgt_dict, remove_bpe=None, ) print( "E-{}_{}\t{}".format(sample_id, step, h_str), file=output_file, ) # Score only the top hypothesis if has_target and j == 0: if ( align_dict is not None or cfg.common_eval.post_process is not None ): # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tgt_dict.encode_line( target_str, add_if_not_exist=True ) hypo_tokens = tgt_dict.encode_line( detok_hypo_str, add_if_not_exist=True ) if hasattr(scorer, "add_string"): scorer.add_string(target_str, detok_hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) progress.log({"wps": round(wps_meter.avg)}) num_sentences += ( sample["nsentences"] if "nsentences" in sample else sample["id"].numel() ) logger.info("NOTE: hypothesis and token scores are output in base 2") logger.info( "Translated {:,} sentences ({:,} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1.0 / gen_timer.avg, ) ) if has_target: if cfg.bpe and not cfg.generation.sacrebleu: if cfg.common_eval.post_process: logger.warning( "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization" ) else: logger.warning( "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization" ) # use print to be consistent with other main outputs: S-, H-, T-, D- and so on print( "Generate {} with beam={}: {}".format( cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string() ), file=output_file, ) return scorer def cli_main(): parser = options.get_generation_parser() # TODO: replace this workaround with refactoring of `AudioPretraining` parser.add_argument( "--arch", "-a", metavar="ARCH", default="wav2vec2", help="Model architecture. For constructing tasks that rely on " "model args (e.g. `AudioPretraining`)", ) args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/generate.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from itertools import chain import torch from hydra.core.hydra_config import HydraConfig from omegaconf import OmegaConf, open_dict import hydra from fairseq import checkpoint_utils, distributed_utils, utils from fairseq.dataclass.configs import FairseqConfig from fairseq.dataclass.initialize import add_defaults, hydra_init from fairseq.dataclass.utils import omegaconf_no_object_check from fairseq.distributed import utils as distributed_utils from fairseq.logging import metrics, progress_bar from fairseq.utils import reset_logging logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.validate") @hydra.main(config_path=os.path.join("..", "fairseq", "config"), config_name="config") def hydra_main(cfg: FairseqConfig) -> float: return _hydra_main(cfg) def _hydra_main(cfg: FairseqConfig, **kwargs) -> float: add_defaults(cfg) if cfg.common.reset_logging: reset_logging() # Hydra hijacks logging, fix that else: # check if directly called or called through hydra_main if HydraConfig.initialized(): with open_dict(cfg): # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126) cfg.job_logging_cfg = OmegaConf.to_container( HydraConfig.get().job_logging, resolve=True ) with omegaconf_no_object_check(): cfg = OmegaConf.create( OmegaConf.to_container(cfg, resolve=True, enum_to_str=True) ) OmegaConf.set_struct(cfg, True) assert ( cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None ), "Must specify batch size either with --max-tokens or --batch-size" distributed_utils.call_main(cfg, validate, **kwargs) def validate(cfg): utils.import_user_module(cfg.common) use_fp16 = cfg.common.fp16 use_cuda = torch.cuda.is_available() and not cfg.common.cpu if use_cuda: torch.cuda.set_device(cfg.distributed_training.device_id) if cfg.distributed_training.distributed_world_size > 1: data_parallel_world_size = distributed_utils.get_data_parallel_world_size() data_parallel_rank = distributed_utils.get_data_parallel_rank() else: data_parallel_world_size = 1 data_parallel_rank = 0 overrides = {"task": {"data": cfg.task.data}} # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [cfg.common_eval.path], arg_overrides=overrides, suffix=cfg.checkpoint.checkpoint_suffix, ) model = models[0] # Move models to GPU for model in models: model.eval() if use_fp16: model.half() if use_cuda: model.cuda() # Print args logger.info(saved_cfg) # Build criterion criterion = task.build_criterion(saved_cfg.criterion, from_checkpoint=True) criterion.eval() for subset in cfg.dataset.valid_subset.split(","): try: task.load_dataset(subset, combine=False, epoch=1, task_cfg=saved_cfg.task) dataset = task.dataset(subset) except KeyError: raise Exception("Cannot find dataset: " + subset) # Initialize data iterator itr = task.get_batch_iterator( dataset=dataset, max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models], ), ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, seed=cfg.common.seed, num_shards=data_parallel_world_size, shard_id=data_parallel_rank, num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, prefix=f"valid on '{subset}' subset", default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) def apply_half(t): if t.dtype is torch.float32: return t.to(dtype=torch.half) return t log_outputs = [] for i, sample in enumerate(progress): sample = utils.move_to_cuda(sample) if use_cuda else sample if use_fp16: sample = utils.apply_to_sample(apply_half, sample) _loss, _sample_size, log_output = task.valid_step(sample, model, criterion) with metrics.aggregate() as agg: task.reduce_metrics([log_output], criterion) progress.log(agg.get_smoothed_values(), step=i) # progress.log(log_output, step=i) from vision log_outputs.append(log_output) if data_parallel_world_size > 1: log_outputs = distributed_utils.all_gather_list( log_outputs, max_size=cfg.common.all_gather_list_size, group=distributed_utils.get_data_parallel_group(), ) log_outputs = list(chain.from_iterable(log_outputs)) with metrics.aggregate() as agg: task.reduce_metrics(log_outputs, criterion) log_output = agg.get_smoothed_values() progress.print(log_output, tag=subset, step=i) def cli_main(): try: from hydra._internal.utils import get_args cfg_name = get_args().config_name or "config" except: logger.warning("Failed to get config name from hydra args") cfg_name = "config" hydra_init(cfg_name) hydra_main() if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/hydra_validate.py
EXA-1-master
exa/libraries/fairseq/fairseq_cli/__init__.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from argparse import Namespace from itertools import chain import torch from omegaconf import DictConfig from fairseq import checkpoint_utils, distributed_utils, options, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import metrics, progress_bar from fairseq.utils import reset_logging logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.validate") def main(cfg: DictConfig, override_args=None): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) utils.import_user_module(cfg.common) reset_logging() assert ( cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None ), "Must specify batch size either with --max-tokens or --batch-size" use_fp16 = cfg.common.fp16 use_cuda = torch.cuda.is_available() and not cfg.common.cpu if use_cuda: torch.cuda.set_device(cfg.distributed_training.device_id) if cfg.distributed_training.distributed_world_size > 1: data_parallel_world_size = distributed_utils.get_data_parallel_world_size() data_parallel_rank = distributed_utils.get_data_parallel_rank() else: data_parallel_world_size = 1 data_parallel_rank = 0 if override_args is not None: overrides = vars(override_args) overrides.update(eval(getattr(override_args, "model_overrides", "{}"))) else: overrides = None # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [cfg.common_eval.path], arg_overrides=overrides, suffix=cfg.checkpoint.checkpoint_suffix, ) model = models[0] # Move models to GPU for model in models: model.eval() if use_fp16: model.half() if use_cuda: model.cuda() # Print args logger.info(saved_cfg) # Build criterion criterion = task.build_criterion(saved_cfg.criterion) criterion.eval() for subset in cfg.dataset.valid_subset.split(","): try: task.load_dataset(subset, combine=False, epoch=1, task_cfg=saved_cfg.task) dataset = task.dataset(subset) except KeyError: raise Exception("Cannot find dataset: " + subset) # Initialize data iterator itr = task.get_batch_iterator( dataset=dataset, max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models], ), ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, seed=cfg.common.seed, num_shards=data_parallel_world_size, shard_id=data_parallel_rank, num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, prefix=f"valid on '{subset}' subset", default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) log_outputs = [] for i, sample in enumerate(progress): sample = utils.move_to_cuda(sample) if use_cuda else sample _loss, _sample_size, log_output = task.valid_step(sample, model, criterion) progress.log(log_output, step=i) log_outputs.append(log_output) if data_parallel_world_size > 1: log_outputs = distributed_utils.all_gather_list( log_outputs, max_size=cfg.common.all_gather_list_size, group=distributed_utils.get_data_parallel_group(), ) log_outputs = list(chain.from_iterable(log_outputs)) with metrics.aggregate() as agg: task.reduce_metrics(log_outputs, criterion) log_output = agg.get_smoothed_values() progress.print(log_output, tag=subset, step=i) def cli_main(): parser = options.get_validation_parser() args = options.parse_args_and_arch(parser) # only override args that are explicitly given on the command line override_parser = options.get_validation_parser() override_args = options.parse_args_and_arch(override_parser, suppress_defaults=True) distributed_utils.call_main( convert_namespace_to_omegaconf(args), main, override_args=override_args ) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/validate.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate raw text with a trained model. Batches data on-the-fly. """ import ast import fileinput import logging import math import os import sys import time from argparse import Namespace from collections import namedtuple import numpy as np import torch from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils from fairseq.dataclass.configs import FairseqConfig from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.token_generation_constraints import pack_constraints, unpack_constraints from fairseq_cli.generate import get_symbols_to_strip_from_output logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.interactive") Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints") Translation = namedtuple("Translation", "src_str hypos pos_scores alignments") def buffered_read(input, buffer_size): buffer = [] with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h: for src_str in h: buffer.append(src_str.strip()) if len(buffer) >= buffer_size: yield buffer buffer = [] if len(buffer) > 0: yield buffer def make_batches(lines, cfg, task, max_positions, encode_fn): def encode_fn_target(x): return encode_fn(x) if cfg.generation.constraints: # Strip (tab-delimited) contraints, if present, from input lines, # store them in batch_constraints batch_constraints = [list() for _ in lines] for i, line in enumerate(lines): if "\t" in line: lines[i], *batch_constraints[i] = line.split("\t") # Convert each List[str] to List[Tensor] for i, constraint_list in enumerate(batch_constraints): batch_constraints[i] = [ task.target_dictionary.encode_line( encode_fn_target(constraint), append_eos=False, add_if_not_exist=False, ) for constraint in constraint_list ] if cfg.generation.constraints: constraints_tensor = pack_constraints(batch_constraints) else: constraints_tensor = None tokens, lengths = task.get_interactive_tokens_and_lengths(lines, encode_fn) itr = task.get_batch_iterator( dataset=task.build_dataset_for_inference( tokens, lengths, constraints=constraints_tensor ), max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=max_positions, ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, ).next_epoch_itr(shuffle=False) for batch in itr: ids = batch["id"] src_tokens = batch["net_input"]["src_tokens"] src_lengths = batch["net_input"]["src_lengths"] constraints = batch.get("constraints", None) yield Batch( ids=ids, src_tokens=src_tokens, src_lengths=src_lengths, constraints=constraints, ) def main(cfg: FairseqConfig): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) start_time = time.time() total_translate_time = 0 utils.import_user_module(cfg.common) if cfg.interactive.buffer_size < 1: cfg.interactive.buffer_size = 1 if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: cfg.dataset.batch_size = 1 assert ( not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam ), "--sampling requires --nbest to be equal to --beam" assert ( not cfg.dataset.batch_size or cfg.dataset.batch_size <= cfg.interactive.buffer_size ), "--batch-size cannot be larger than --buffer-size" logger.info(cfg) # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) use_cuda = torch.cuda.is_available() and not cfg.common.cpu # Setup task, e.g., translation task = tasks.setup_task(cfg.task) # Load ensemble overrides = ast.literal_eval(cfg.common_eval.model_overrides) logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, _model_args = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), arg_overrides=overrides, task=task, suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, ) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Optimize ensemble for generation for model in models: if model is None: continue if cfg.common.fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # Initialize generator generator = task.build_generator(models, cfg.generation) # Handle tokenization and BPE tokenizer = task.build_tokenizer(cfg.tokenizer) bpe = task.build_bpe(cfg.bpe) def encode_fn(x): if tokenizer is not None: x = tokenizer.encode(x) if bpe is not None: x = bpe.encode(x) return x def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(cfg.generation.replace_unk) max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ) if cfg.generation.constraints: logger.warning( "NOTE: Constrained decoding currently assumes a shared subword vocabulary." ) if cfg.interactive.buffer_size > 1: logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size) logger.info("NOTE: hypothesis and token scores are output in base 2") logger.info("Type the input sentence and press return:") start_id = 0 for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size): results = [] for batch in make_batches(inputs, cfg, task, max_positions, encode_fn): bsz = batch.src_tokens.size(0) src_tokens = batch.src_tokens src_lengths = batch.src_lengths constraints = batch.constraints if use_cuda: src_tokens = src_tokens.cuda() src_lengths = src_lengths.cuda() if constraints is not None: constraints = constraints.cuda() sample = { "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, } translate_start_time = time.time() translations = task.inference_step( generator, models, sample, constraints=constraints ) translate_time = time.time() - translate_start_time total_translate_time += translate_time list_constraints = [[] for _ in range(bsz)] if cfg.generation.constraints: list_constraints = [unpack_constraints(c) for c in constraints] for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) constraints = list_constraints[i] results.append( ( start_id + id, src_tokens_i, hypos, { "constraints": constraints, "time": translate_time / len(translations), }, ) ) # sort output to match input order for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]): src_str = "" if src_dict is not None: src_str = src_dict.string(src_tokens, cfg.common_eval.post_process) print("S-{}\t{}".format(id_, src_str)) print("W-{}\t{:.3f}\tseconds".format(id_, info["time"])) for constraint in info["constraints"]: print( "C-{}\t{}".format( id_, tgt_dict.string(constraint, cfg.common_eval.post_process), ) ) # Process top predictions for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo["tokens"].int().cpu(), src_str=src_str, alignment=hypo["alignment"], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=cfg.common_eval.post_process, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) detok_hypo_str = decode_fn(hypo_str) score = hypo["score"] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print("H-{}\t{}\t{}".format(id_, score, hypo_str)) # detokenized hypothesis print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str)) print( "P-{}\t{}".format( id_, " ".join( map( lambda x: "{:.4f}".format(x), # convert from base e to base 2 hypo["positional_scores"].div_(math.log(2)).tolist(), ) ), ) ) if cfg.generation.print_alignment: alignment_str = " ".join( ["{}-{}".format(src, tgt) for src, tgt in alignment] ) print("A-{}\t{}".format(id_, alignment_str)) # update running id_ counter start_id += len(inputs) logger.info( "Total time: {:.3f} seconds; translation time: {:.3f}".format( time.time() - start_time, total_translate_time ) ) def cli_main(): parser = options.get_interactive_generation_parser() args = options.parse_args_and_arch(parser) distributed_utils.call_main(convert_namespace_to_omegaconf(args), main) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/interactive.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a new model on one or across multiple GPUs. """ import argparse import logging import math import os import sys from typing import Any, Callable, Dict, List, Optional, Tuple # We need to setup root logger before importing any fairseq libraries. logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.train") import numpy as np import torch from omegaconf import DictConfig, OmegaConf from fairseq import checkpoint_utils, options, quantization_utils, tasks, utils from fairseq.data import data_utils, iterators from fairseq.data.plasma_utils import PlasmaStore from fairseq.dataclass.configs import FairseqConfig from fairseq.dataclass.initialize import add_defaults from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.distributed import fsdp_enable_wrap, fsdp_wrap from fairseq.distributed import utils as distributed_utils from fairseq.file_io import PathManager from fairseq.logging import meters, metrics, progress_bar from fairseq.model_parallel.megatron_trainer import MegatronTrainer from fairseq.trainer import Trainer def main(cfg: FairseqConfig) -> None: if isinstance(cfg, argparse.Namespace): cfg = convert_namespace_to_omegaconf(cfg) utils.import_user_module(cfg.common) add_defaults(cfg) if ( distributed_utils.is_master(cfg.distributed_training) and "job_logging_cfg" in cfg ): # make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126) logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg)) assert ( cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None ), "Must specify batch size either with --max-tokens or --batch-size" metrics.reset() if cfg.common.log_file is not None: handler = logging.FileHandler(filename=cfg.common.log_file) logger.addHandler(handler) np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) if distributed_utils.is_master(cfg.distributed_training): checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir) # Print args logger.info(cfg) if cfg.checkpoint.write_checkpoints_asynchronously: try: import iopath # noqa: F401 except ImportError: logging.exception( "Asynchronous checkpoint writing is specified but iopath is " "not installed: `pip install iopath`" ) return # Setup task, e.g., translation, language modeling, etc. task = tasks.setup_task(cfg.task) assert cfg.criterion, "Please specify criterion to train a model" # Build model and criterion if cfg.distributed_training.ddp_backend == "fully_sharded": with fsdp_enable_wrap(cfg.distributed_training): model = fsdp_wrap(task.build_model(cfg.model)) else: model = task.build_model(cfg.model) criterion = task.build_criterion(cfg.criterion) logger.info(model) logger.info("task: {}".format(task.__class__.__name__)) logger.info("model: {}".format(model.__class__.__name__)) logger.info("criterion: {}".format(criterion.__class__.__name__)) logger.info( "num. shared model params: {:,} (num. trained: {:,})".format( sum( p.numel() for p in model.parameters() if not getattr(p, "expert", False) ), sum( p.numel() for p in model.parameters() if not getattr(p, "expert", False) and p.requires_grad ), ) ) logger.info( "num. expert model params: {} (num. trained: {})".format( sum(p.numel() for p in model.parameters() if getattr(p, "expert", False)), sum( p.numel() for p in model.parameters() if getattr(p, "expert", False) and p.requires_grad ), ) ) # Load valid dataset (we load training data below, based on the latest checkpoint) # We load the valid dataset AFTER building the model if not cfg.dataset.disable_validation: data_utils.raise_if_valid_subsets_unintentionally_ignored(cfg) if cfg.dataset.combine_valid_subsets: task.load_dataset("valid", combine=True, epoch=1) else: for valid_sub_split in cfg.dataset.valid_subset.split(","): task.load_dataset(valid_sub_split, combine=False, epoch=1) # (optionally) Configure quantization if cfg.common.quantization_config_path is not None: quantizer = quantization_utils.Quantizer( config_path=cfg.common.quantization_config_path, max_epoch=cfg.optimization.max_epoch, max_update=cfg.optimization.max_update, ) else: quantizer = None # Build trainer if cfg.common.model_parallel_size == 1: trainer = Trainer(cfg, task, model, criterion, quantizer) else: trainer = MegatronTrainer(cfg, task, model, criterion) logger.info( "training on {} devices (GPUs/TPUs)".format( cfg.distributed_training.distributed_world_size ) ) logger.info( "max tokens per device = {} and max sentences per device = {}".format( cfg.dataset.max_tokens, cfg.dataset.batch_size, ) ) # Load the latest checkpoint if one is available and restore the # corresponding train iterator extra_state, epoch_itr = checkpoint_utils.load_checkpoint( cfg.checkpoint, trainer, # don't cache epoch iterators for sharded datasets disable_iterator_cache=task.has_sharded_data("train"), ) if cfg.common.tpu: import torch_xla.core.xla_model as xm xm.rendezvous("load_checkpoint") # wait for all workers max_epoch = cfg.optimization.max_epoch or math.inf lr = trainer.get_lr() # TODO: a dry run on validation set to pin the memory valid_subsets = cfg.dataset.valid_subset.split(",") if not cfg.dataset.disable_validation: for subset in valid_subsets: logger.info('begin dry-run validation on "{}" subset'.format(subset)) itr = trainer.get_valid_iterator(subset).next_epoch_itr( shuffle=False, set_dataset_epoch=False # use a fixed valid set ) if cfg.common.tpu: itr = utils.tpu_data_loader(itr) for _ in itr: pass # TODO: end of dry run section train_meter = meters.StopwatchMeter() train_meter.start() while epoch_itr.next_epoch_idx <= max_epoch: if lr <= cfg.optimization.stop_min_lr: logger.info( f"stopping training because current learning rate ({lr}) is smaller " "than or equal to minimum learning rate " f"(--stop-min-lr={cfg.optimization.stop_min_lr})" ) break # train for one epoch valid_losses, should_stop = train(cfg, trainer, task, epoch_itr) if should_stop: break # only use first validation loss to update the learning rate lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0]) epoch_itr = trainer.get_train_iterator( epoch_itr.next_epoch_idx, # sharded data: get train iterator for next epoch load_dataset=task.has_sharded_data("train"), # don't cache epoch iterators for sharded datasets disable_iterator_cache=task.has_sharded_data("train"), ) train_meter.stop() logger.info("done training in {:.1f} seconds".format(train_meter.sum)) # ioPath implementation to wait for all asynchronous file writes to complete. if cfg.checkpoint.write_checkpoints_asynchronously: logger.info( "ioPath PathManager waiting for all asynchronous checkpoint " "writes to finish." ) PathManager.async_close() logger.info("ioPath PathManager finished waiting.") def should_stop_early(cfg: DictConfig, valid_loss: float) -> bool: # skip check if no validation was done in the current epoch if valid_loss is None: return False if cfg.checkpoint.patience <= 0: return False def is_better(a, b): return a > b if cfg.checkpoint.maximize_best_checkpoint_metric else a < b prev_best = getattr(should_stop_early, "best", None) if prev_best is None or is_better(valid_loss, prev_best): should_stop_early.best = valid_loss should_stop_early.num_runs = 0 return False else: should_stop_early.num_runs += 1 if should_stop_early.num_runs >= cfg.checkpoint.patience: logger.info( "early stop since valid performance hasn't improved for last {} runs".format( cfg.checkpoint.patience ) ) return True else: return False @metrics.aggregate("train") def train( cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr ) -> Tuple[List[Optional[float]], bool]: """Train the model for one epoch and return validation losses.""" # Initialize data iterator itr = epoch_itr.next_epoch_itr( fix_batches_to_gpus=cfg.distributed_training.fix_batches_to_gpus, shuffle=(epoch_itr.next_epoch_idx > cfg.dataset.curriculum), ) update_freq = ( cfg.optimization.update_freq[epoch_itr.epoch - 1] if epoch_itr.epoch <= len(cfg.optimization.update_freq) else cfg.optimization.update_freq[-1] ) itr = iterators.GroupedIterator( itr, update_freq, skip_remainder_batch=cfg.optimization.skip_remainder_batch, ) if cfg.common.tpu: itr = utils.tpu_data_loader(itr) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_file=cfg.common.log_file, log_interval=cfg.common.log_interval, epoch=epoch_itr.epoch, aim_repo=( cfg.common.aim_repo if distributed_utils.is_master(cfg.distributed_training) else None ), aim_run_hash=( cfg.common.aim_run_hash if distributed_utils.is_master(cfg.distributed_training) else None ), aim_param_checkpoint_dir=cfg.checkpoint.save_dir, tensorboard_logdir=( cfg.common.tensorboard_logdir if distributed_utils.is_master(cfg.distributed_training) else None ), default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), wandb_project=( cfg.common.wandb_project if distributed_utils.is_master(cfg.distributed_training) else None ), wandb_run_name=os.environ.get( "WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir) ), azureml_logging=( cfg.common.azureml_logging if distributed_utils.is_master(cfg.distributed_training) else False ), ) progress.update_config(_flatten_config(cfg)) trainer.begin_epoch(epoch_itr.epoch) valid_subsets = cfg.dataset.valid_subset.split(",") should_stop = False num_updates = trainer.get_num_updates() logger.info("Start iterating over samples") for i, samples in enumerate(progress): with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function( "train_step-%d" % i ): log_output = trainer.train_step(samples) if log_output is not None: # not OOM, overflow, ... # log mid-epoch stats num_updates = trainer.get_num_updates() if num_updates % cfg.common.log_interval == 0: stats = get_training_stats(metrics.get_smoothed_values("train_inner")) progress.log(stats, tag="train_inner", step=num_updates) # reset mid-epoch stats after each log interval # the end-of-epoch stats will still be preserved metrics.reset_meters("train_inner") end_of_epoch = not itr.has_next() valid_losses, should_stop = validate_and_save( cfg, trainer, task, epoch_itr, valid_subsets, end_of_epoch ) if should_stop: break # log end-of-epoch stats logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch)) stats = get_training_stats(metrics.get_smoothed_values("train")) progress.print(stats, tag="train", step=num_updates) # reset epoch-level meters metrics.reset_meters("train") return valid_losses, should_stop def _flatten_config(cfg: DictConfig): config = OmegaConf.to_container(cfg) # remove any legacy Namespaces and replace with a single "args" namespace = None for k, v in list(config.items()): if isinstance(v, argparse.Namespace): namespace = v del config[k] if namespace is not None: config["args"] = vars(namespace) return config def validate_and_save( cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr, valid_subsets: List[str], end_of_epoch: bool, ) -> Tuple[List[Optional[float]], bool]: num_updates = trainer.get_num_updates() max_update = cfg.optimization.max_update or math.inf # Stopping conditions (and an additional one based on validation loss later # on) should_stop = False if num_updates >= max_update: should_stop = True logger.info( f"Stopping training due to " f"num_updates: {num_updates} >= max_update: {max_update}" ) training_time_hours = trainer.cumulative_training_time() / (60 * 60) if ( cfg.optimization.stop_time_hours > 0 and training_time_hours > cfg.optimization.stop_time_hours ): should_stop = True logger.info( f"Stopping training due to " f"cumulative_training_time: {training_time_hours} > " f"stop_time_hours: {cfg.optimization.stop_time_hours} hour(s)" ) do_save = ( (end_of_epoch and epoch_itr.epoch % cfg.checkpoint.save_interval == 0) or should_stop or ( cfg.checkpoint.save_interval_updates > 0 and num_updates > 0 and num_updates % cfg.checkpoint.save_interval_updates == 0 and num_updates >= cfg.dataset.validate_after_updates ) ) do_validate = ( ( (not end_of_epoch and do_save) # validate during mid-epoch saves or (end_of_epoch and epoch_itr.epoch % cfg.dataset.validate_interval == 0) or should_stop or ( cfg.dataset.validate_interval_updates > 0 and num_updates > 0 and num_updates % cfg.dataset.validate_interval_updates == 0 ) ) and not cfg.dataset.disable_validation and num_updates >= cfg.dataset.validate_after_updates ) # Validate valid_losses = [None] if do_validate: valid_losses = validate(cfg, trainer, task, epoch_itr, valid_subsets) should_stop |= should_stop_early(cfg, valid_losses[0]) # Save checkpoint if do_save or should_stop: cp_path = checkpoint_utils.save_checkpoint( cfg.checkpoint, trainer, epoch_itr, valid_losses[0] ) if cp_path is not None and hasattr(task, "post_save"): task.post_save(cp_path, num_updates) return valid_losses, should_stop def get_training_stats(stats: Dict[str, Any]) -> Dict[str, Any]: stats["wall"] = round(metrics.get_meter("default", "wall").elapsed_time, 0) return stats def validate( cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr, subsets: List[str], ) -> List[Optional[float]]: """Evaluate the model on the validation set(s) and return the losses.""" if cfg.dataset.fixed_validation_seed is not None: # set fixed seed for every validation utils.set_torch_seed(cfg.dataset.fixed_validation_seed) trainer.begin_valid_epoch(epoch_itr.epoch) valid_losses = [] for subset_idx, subset in enumerate(subsets): logger.info('begin validation on "{}" subset'.format(subset)) # Initialize data iterator itr = trainer.get_valid_iterator(subset).next_epoch_itr( shuffle=False, set_dataset_epoch=False # use a fixed valid set ) if cfg.common.tpu: itr = utils.tpu_data_loader(itr) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, epoch=epoch_itr.epoch, prefix=f"valid on '{subset}' subset", aim_repo=( cfg.common.aim_repo if distributed_utils.is_master(cfg.distributed_training) else None ), aim_run_hash=( cfg.common.aim_run_hash if distributed_utils.is_master(cfg.distributed_training) else None ), aim_param_checkpoint_dir=cfg.checkpoint.save_dir, tensorboard_logdir=( cfg.common.tensorboard_logdir if distributed_utils.is_master(cfg.distributed_training) else None ), default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), wandb_project=( cfg.common.wandb_project if distributed_utils.is_master(cfg.distributed_training) else None ), wandb_run_name=os.environ.get( "WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir) ), ) # create a new root metrics aggregator so validation metrics # don't pollute other aggregators (e.g., train meters) with metrics.aggregate(new_root=True) as agg: for i, sample in enumerate(progress): if ( cfg.dataset.max_valid_steps is not None and i > cfg.dataset.max_valid_steps ): break trainer.valid_step(sample) # log validation stats # only tracking the best metric on the 1st validation subset tracking_best = subset_idx == 0 stats = get_valid_stats(cfg, trainer, agg.get_smoothed_values(), tracking_best) if hasattr(task, "post_validate"): task.post_validate(trainer.get_model(), stats, agg) progress.print(stats, tag=subset, step=trainer.get_num_updates()) valid_losses.append(stats[cfg.checkpoint.best_checkpoint_metric]) return valid_losses def get_valid_stats( cfg: DictConfig, trainer: Trainer, stats: Dict[str, Any], tracking_best: bool, ) -> Dict[str, Any]: stats["num_updates"] = trainer.get_num_updates() if tracking_best and hasattr(checkpoint_utils.save_checkpoint, "best"): key = "best_{0}".format(cfg.checkpoint.best_checkpoint_metric) best_function = max if cfg.checkpoint.maximize_best_checkpoint_metric else min stats[key] = best_function( checkpoint_utils.save_checkpoint.best, stats[cfg.checkpoint.best_checkpoint_metric], ) return stats def cli_main( modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None ) -> None: parser = options.get_training_parser() args = options.parse_args_and_arch(parser, modify_parser=modify_parser) cfg = convert_namespace_to_omegaconf(args) if cfg.common.use_plasma_view: server = PlasmaStore(path=cfg.common.plasma_path) logger.info( f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}" ) if args.profile: with torch.cuda.profiler.profile(): with torch.autograd.profiler.emit_nvtx(): distributed_utils.call_main(cfg, main) else: distributed_utils.call_main(cfg, main) # if cfg.common.use_plasma_view: # server.server.kill() if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/train.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Evaluate the perplexity of a trained language model. """ import logging import math import os import sys from argparse import Namespace from typing import Iterable, List, Optional import torch from omegaconf import DictConfig import fairseq from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import progress_bar from fairseq.logging.meters import StopwatchMeter from fairseq.sequence_scorer import SequenceScorer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.eval_lm") def eval_lm( models: List[fairseq.models.FairseqModel], source_dictionary: fairseq.data.Dictionary, batch_iterator: Iterable, post_process: Optional[str] = None, output_word_probs: bool = False, output_word_stats: bool = False, target_dictionary: Optional[fairseq.data.Dictionary] = None, softmax_batch: int = 0, remove_bos_token: bool = False, device: Optional[torch.device] = None, ): """ Args: models (List[~fairseq.models.FairseqModel]): list of models to evaluate. Models are essentially `nn.Module` instances, but must be compatible with fairseq's `SequenceScorer`. source_dictionary (~fairseq.data.Dictionary): dictionary for applying any relevant post processing or outputing word probs/stats. batch_iterator (Iterable): yield batches of data post_process (Optional[str]): post-process text by removing BPE, letter segmentation, etc. Valid options can be found in fairseq.data.utils.post_process, although not all options are implemented here. output_word_probs (Optional[bool]): output words and their predicted log probabilities output_word_stats (Optional[bool]): output word statistics such as word count and average probability target_dictionary (Optional[~fairseq.data.Dictionary]): output dictionary (defaults to *source_dictionary*) softmax_batch (Optional[bool]): if BxT is more than this, will batch the softmax over vocab to this amount of tokens, in order to fit into GPU memory remove_bos_token (Optional[bool]): if True, confirm that the first token is the beginning-of-sentence symbol (according to the relevant dictionary) and remove it from the output device (Optional[torch.device]): device to use for evaluation (defaults to device of first model parameter) """ if target_dictionary is None: target_dictionary = source_dictionary if device is None: device = next(models[0].parameters()).device gen_timer = StopwatchMeter() scorer = SequenceScorer(target_dictionary, softmax_batch) score_sum = 0.0 count = 0 if post_process is not None: if post_process in {"subword_nmt", "@@ "}: bpe_cont = post_process.rstrip() bpe_toks = { i for i in range(len(source_dictionary)) if source_dictionary[i].endswith(bpe_cont) } else: raise NotImplementedError( f"--post-process={post_process} is not implemented" ) bpe_len = len(bpe_cont) else: bpe_toks = None bpe_len = 0 word_stats = dict() for sample in batch_iterator: if "net_input" not in sample: continue sample = utils.move_to_cuda(sample, device=device) gen_timer.start() hypos = scorer.generate(models, sample) gen_timer.stop(sample["ntokens"]) for i, hypos_i in enumerate(hypos): hypo = hypos_i[0] sample_id = sample["id"][i] tokens = hypo["tokens"] tgt_len = tokens.numel() pos_scores = hypo["positional_scores"].float() if remove_bos_token: assert hypo["tokens"][0].item() == target_dictionary.bos() tokens = tokens[1:] pos_scores = pos_scores[1:] skipped_toks = 0 if bpe_toks is not None: for i in range(tgt_len - 1): if tokens[i].item() in bpe_toks: skipped_toks += 1 pos_scores[i + 1] += pos_scores[i] pos_scores[i] = 0 inf_scores = pos_scores.eq(float("inf")) | pos_scores.eq(float("-inf")) if inf_scores.any(): logger.info( "skipping tokens with inf scores:", target_dictionary.string(tokens[inf_scores.nonzero()]), ) pos_scores = pos_scores[(~inf_scores).nonzero()] score_sum += pos_scores.sum().cpu() count += pos_scores.numel() - skipped_toks if output_word_probs or output_word_stats: w = "" word_prob = [] is_bpe = False for i in range(len(tokens)): w_ind = tokens[i].item() w += source_dictionary[w_ind] if bpe_toks is not None and w_ind in bpe_toks: w = w[:-bpe_len] is_bpe = True else: word_prob.append((w, pos_scores[i].item())) next_prob = None ind = i + 1 while ind < len(tokens): if pos_scores[ind].item() != 0: next_prob = pos_scores[ind] break ind += 1 word_stats.setdefault(w, WordStat(w, is_bpe)).add( pos_scores[i].item(), next_prob ) is_bpe = False w = "" if output_word_probs: logger.info( str(int(sample_id)) + " " + ( "\t".join( "{} [{:2f}]".format(x[0], x[1]) for x in word_prob ) ) ) avg_nll_loss = ( -score_sum / count / math.log(2) if count > 0 else 0 ) # convert to base 2 logger.info( "Evaluated {:,} tokens in {:.1f}s ({:.2f} tokens/s)".format( gen_timer.n, gen_timer.sum, 1.0 / gen_timer.avg if gen_timer.avg > 0 else 0 ) ) if output_word_stats: for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True): logger.info(ws) return { "loss": avg_nll_loss, "perplexity": 2**avg_nll_loss, } class WordStat(object): def __init__(self, word, is_bpe): self.word = word self.is_bpe = is_bpe self.log_prob = 0 self.next_word_prob = 0 self.count = 0 self.missing_next_words = 0 def add(self, log_prob, next_word_prob): """increments counters for the sum of log probs of current word and next word (given context ending at current word). Since the next word might be at the end of the example, or it might be not counted because it is not an ending subword unit, also keeps track of how many of those we have seen""" if next_word_prob is not None: self.next_word_prob += next_word_prob else: self.missing_next_words += 1 self.log_prob += log_prob self.count += 1 def __str__(self): return "{}\t{}\t{}\t{}\t{}\t{}".format( self.word, self.count, self.log_prob, self.is_bpe, self.next_word_prob, self.count - self.missing_next_words, ) def main(cfg: DictConfig, **unused_kwargs): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) utils.import_user_module(cfg.common) logger.info(cfg) if cfg.eval_lm.context_window > 0: # reduce tokens per sample by the required context window size cfg.task.tokens_per_sample -= cfg.eval_lm.context_window # Initialize the task using the current *cfg* task = tasks.setup_task(cfg.task) # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, model_args, task = checkpoint_utils.load_model_ensemble_and_task( [cfg.common_eval.path], arg_overrides=eval(cfg.common_eval.model_overrides), suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, task=task, ) use_fp16 = cfg.common.fp16 use_cuda = torch.cuda.is_available() and not cfg.common.cpu if use_cuda: torch.cuda.set_device(cfg.distributed_training.device_id) # Optimize ensemble for generation and set the source and dest dicts on the model # (required by scorer) for model in models: if use_fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) assert len(models) > 0 logger.info( "num. model params: {:,}".format(sum(p.numel() for p in models[0].parameters())) ) # Load dataset splits task.load_dataset(cfg.dataset.gen_subset) dataset = task.dataset(cfg.dataset.gen_subset) logger.info( "{} {} {:,} examples".format( cfg.task.data, cfg.dataset.gen_subset, len(dataset) ) ) itr = task.eval_lm_dataloader( dataset=dataset, max_tokens=cfg.dataset.max_tokens or 36000, batch_size=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( *[model.max_positions() for model in models] ), num_shards=max( cfg.dataset.num_shards, cfg.distributed_training.distributed_world_size, ), shard_id=max( cfg.dataset.shard_id, cfg.distributed_training.distributed_rank, ), num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, context_window=cfg.eval_lm.context_window, ) itr = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) results = eval_lm( models=models, source_dictionary=task.source_dictionary, batch_iterator=itr, post_process=cfg.common_eval.post_process, output_word_probs=cfg.eval_lm.output_word_probs, output_word_stats=cfg.eval_lm.output_word_stats, target_dictionary=task.target_dictionary, softmax_batch=cfg.eval_lm.softmax_batch, remove_bos_token=getattr(cfg.task, "add_bos_token", False), ) logger.info( "Loss (base 2): {:.4f}, Perplexity: {:.2f}".format( results["loss"], results["perplexity"] ) ) return results def cli_main(): parser = options.get_eval_lm_parser() args = options.parse_args_and_arch(parser) distributed_utils.call_main(convert_namespace_to_omegaconf(args), main) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/eval_lm.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ BLEU scoring of generated translations against reference translations. """ import argparse import os import sys from fairseq.data import dictionary from fairseq.scoring import bleu def get_parser(): parser = argparse.ArgumentParser( description="Command-line script for BLEU scoring." ) # fmt: off parser.add_argument('-s', '--sys', default='-', help='system output') parser.add_argument('-r', '--ref', required=True, help='references') parser.add_argument('-o', '--order', default=4, metavar='N', type=int, help='consider ngrams up to this order') parser.add_argument('--ignore-case', action='store_true', help='case-insensitive scoring') parser.add_argument('--sacrebleu', action='store_true', help='score with sacrebleu') parser.add_argument('--sentence-bleu', action='store_true', help='report sentence-level BLEUs (i.e., with +1 smoothing)') # fmt: on return parser def cli_main(): parser = get_parser() args = parser.parse_args() print(args) assert args.sys == "-" or os.path.exists( args.sys ), "System output file {} does not exist".format(args.sys) assert os.path.exists(args.ref), "Reference file {} does not exist".format(args.ref) dict = dictionary.Dictionary() def readlines(fd): for line in fd.readlines(): if args.ignore_case: yield line.lower() else: yield line if args.sacrebleu: import sacrebleu def score(fdsys): with open(args.ref) as fdref: print(sacrebleu.corpus_bleu(fdsys, [fdref]).format()) elif args.sentence_bleu: def score(fdsys): with open(args.ref) as fdref: scorer = bleu.Scorer(dict.pad(), dict.eos(), dict.unk()) for i, (sys_tok, ref_tok) in enumerate( zip(readlines(fdsys), readlines(fdref)) ): scorer.reset(one_init=True) sys_tok = dict.encode_line(sys_tok) ref_tok = dict.encode_line(ref_tok) scorer.add(ref_tok, sys_tok) print(i, scorer.result_string(args.order)) else: def score(fdsys): with open(args.ref) as fdref: scorer = bleu.Scorer( bleu.BleuConfig( pad=dict.pad(), eos=dict.eos(), unk=dict.unk(), ) ) for sys_tok, ref_tok in zip(readlines(fdsys), readlines(fdref)): sys_tok = dict.encode_line(sys_tok) ref_tok = dict.encode_line(ref_tok) scorer.add(ref_tok, sys_tok) print(scorer.result_string(args.order)) if args.sys == "-": score(sys.stdin) else: with open(args.sys, "r") as f: score(f) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/fairseq_cli/score.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. try: from fairseq.version import __version__ # noqa except ImportError: pass
EXA-1-master
exa/libraries/fairseq/examples/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from multiprocessing import Pool import numpy as np from fairseq import options from fairseq.data import dictionary from fairseq.scoring import bleu from examples.noisychannel import ( rerank_generate, rerank_options, rerank_score_bw, rerank_score_lm, rerank_utils, ) def score_target_hypo( args, a, b, c, lenpen, target_outfile, hypo_outfile, write_hypos, normalize ): print("lenpen", lenpen, "weight1", a, "weight2", b, "weight3", c) gen_output_lst, bitext1_lst, bitext2_lst, lm_res_lst = load_score_files(args) dict = dictionary.Dictionary() scorer = scorer = bleu.Scorer( bleu.BleuConfig( pad=dict.pad(), eos=dict.eos(), unk=dict.unk(), ) ) ordered_hypos = {} ordered_targets = {} for shard_id in range(len(bitext1_lst)): bitext1 = bitext1_lst[shard_id] bitext2 = bitext2_lst[shard_id] gen_output = gen_output_lst[shard_id] lm_res = lm_res_lst[shard_id] total = len(bitext1.rescore_source.keys()) source_lst = [] hypo_lst = [] score_lst = [] reference_lst = [] j = 1 best_score = -math.inf for i in range(total): # length is measured in terms of words, not bpe tokens, since models may not share the same bpe target_len = len(bitext1.rescore_hypo[i].split()) if lm_res is not None: lm_score = lm_res.score[i] else: lm_score = 0 if bitext2 is not None: bitext2_score = bitext2.rescore_score[i] bitext2_backwards = bitext2.backwards else: bitext2_score = None bitext2_backwards = None score = rerank_utils.get_score( a, b, c, target_len, bitext1.rescore_score[i], bitext2_score, lm_score=lm_score, lenpen=lenpen, src_len=bitext1.source_lengths[i], tgt_len=bitext1.target_lengths[i], bitext1_backwards=bitext1.backwards, bitext2_backwards=bitext2_backwards, normalize=normalize, ) if score > best_score: best_score = score best_hypo = bitext1.rescore_hypo[i] if j == gen_output.num_hypos[i] or j == args.num_rescore: j = 1 hypo_lst.append(best_hypo) score_lst.append(best_score) source_lst.append(bitext1.rescore_source[i]) reference_lst.append(bitext1.rescore_target[i]) best_score = -math.inf best_hypo = "" else: j += 1 gen_keys = list(sorted(gen_output.no_bpe_target.keys())) for key in range(len(gen_keys)): if args.prefix_len is None: assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], ( "pred and rescore hypo mismatch: i: " + str(key) + ", " + str(hypo_lst[key]) + str(gen_keys[key]) + str(gen_output.no_bpe_hypo[key]) ) sys_tok = dict.encode_line(hypo_lst[key]) ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]]) scorer.add(ref_tok, sys_tok) else: full_hypo = rerank_utils.get_full_from_prefix( hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]] ) sys_tok = dict.encode_line(full_hypo) ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]]) scorer.add(ref_tok, sys_tok) # if only one set of hyper parameters is provided, write the predictions to a file if write_hypos: # recover the orinal ids from n best list generation for key in range(len(gen_output.no_bpe_target)): if args.prefix_len is None: assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], ( "pred and rescore hypo mismatch:" + "i:" + str(key) + str(hypo_lst[key]) + str(gen_output.no_bpe_hypo[key]) ) ordered_hypos[gen_keys[key]] = hypo_lst[key] ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[ gen_keys[key] ] else: full_hypo = rerank_utils.get_full_from_prefix( hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]] ) ordered_hypos[gen_keys[key]] = full_hypo ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[ gen_keys[key] ] # write the hypos in the original order from nbest list generation if args.num_shards == (len(bitext1_lst)): with open(target_outfile, "w") as t: with open(hypo_outfile, "w") as h: for key in range(len(ordered_hypos)): t.write(ordered_targets[key]) h.write(ordered_hypos[key]) res = scorer.result_string(4) if write_hypos: print(res) score = rerank_utils.parse_bleu_scoring(res) return score def match_target_hypo(args, target_outfile, hypo_outfile): """combine scores from the LM and bitext models, and write the top scoring hypothesis to a file""" if len(args.weight1) == 1: res = score_target_hypo( args, args.weight1[0], args.weight2[0], args.weight3[0], args.lenpen[0], target_outfile, hypo_outfile, True, args.normalize, ) rerank_scores = [res] else: print("launching pool") with Pool(32) as p: rerank_scores = p.starmap( score_target_hypo, [ ( args, args.weight1[i], args.weight2[i], args.weight3[i], args.lenpen[i], target_outfile, hypo_outfile, False, args.normalize, ) for i in range(len(args.weight1)) ], ) if len(rerank_scores) > 1: best_index = np.argmax(rerank_scores) best_score = rerank_scores[best_index] print("best score", best_score) print("best lenpen", args.lenpen[best_index]) print("best weight1", args.weight1[best_index]) print("best weight2", args.weight2[best_index]) print("best weight3", args.weight3[best_index]) return ( args.lenpen[best_index], args.weight1[best_index], args.weight2[best_index], args.weight3[best_index], best_score, ) else: return ( args.lenpen[0], args.weight1[0], args.weight2[0], args.weight3[0], rerank_scores[0], ) def load_score_files(args): if args.all_shards: shard_ids = list(range(args.num_shards)) else: shard_ids = [args.shard_id] gen_output_lst = [] bitext1_lst = [] bitext2_lst = [] lm_res1_lst = [] for shard_id in shard_ids: using_nbest = args.nbest_list is not None ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) if args.language_model is not None: lm_score_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.lm_name, lm_file=True ) # get gen output predictions_bpe_file = pre_gen + "/generate_output_bpe.txt" if using_nbest: print("Using predefined n-best list from interactive.py") predictions_bpe_file = args.nbest_list gen_output = rerank_utils.BitextOutputFromGen( predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest, prefix_len=args.prefix_len, target_prefix_frac=args.target_prefix_frac, ) if rerank1_is_gen: bitext1 = gen_output else: bitext1 = rerank_utils.BitextOutput( score1_file, args.backwards1, args.right_to_left1, args.post_process, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) if args.score_model2 is not None or args.nbest_list is not None: if rerank2_is_gen: bitext2 = gen_output else: bitext2 = rerank_utils.BitextOutput( score2_file, args.backwards2, args.right_to_left2, args.post_process, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) assert ( bitext2.source_lengths == bitext1.source_lengths ), "source lengths for rescoring models do not match" assert ( bitext2.target_lengths == bitext1.target_lengths ), "target lengths for rescoring models do not match" else: if args.diff_bpe: assert args.score_model2 is None bitext2 = gen_output else: bitext2 = None if args.language_model is not None: lm_res1 = rerank_utils.LMOutput( lm_score_file, args.lm_dict, args.prefix_len, args.post_process, args.target_prefix_frac, ) else: lm_res1 = None gen_output_lst.append(gen_output) bitext1_lst.append(bitext1) bitext2_lst.append(bitext2) lm_res1_lst.append(lm_res1) return gen_output_lst, bitext1_lst, bitext2_lst, lm_res1_lst def rerank(args): if type(args.lenpen) is not list: args.lenpen = [args.lenpen] if type(args.weight1) is not list: args.weight1 = [args.weight1] if type(args.weight2) is not list: args.weight2 = [args.weight2] if type(args.weight3) is not list: args.weight3 = [args.weight3] if args.all_shards: shard_ids = list(range(args.num_shards)) else: shard_ids = [args.shard_id] for shard_id in shard_ids: ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) rerank_generate.gen_and_reprocess_nbest(args) rerank_score_bw.score_bw(args) rerank_score_lm.score_lm(args) if args.write_hypos is None: write_targets = pre_gen + "/matched_targets" write_hypos = pre_gen + "/matched_hypos" else: write_targets = args.write_hypos + "_targets" + args.gen_subset write_hypos = args.write_hypos + "_hypos" + args.gen_subset if args.all_shards: write_targets += "_all_shards" write_hypos += "_all_shards" ( best_lenpen, best_weight1, best_weight2, best_weight3, best_score, ) = match_target_hypo(args, write_targets, write_hypos) return best_lenpen, best_weight1, best_weight2, best_weight3, best_score def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) rerank(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/rerank.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq import options def get_reranking_parser(default_task="translation"): parser = options.get_parser("Generation and reranking", default_task) add_reranking_args(parser) return parser def get_tuning_parser(default_task="translation"): parser = options.get_parser("Reranking tuning", default_task) add_reranking_args(parser) add_tuning_args(parser) return parser def add_reranking_args(parser): group = parser.add_argument_group("Reranking") # fmt: off group.add_argument('--score-model1', '-s1', type=str, metavar='FILE', required=True, help='path to first model or ensemble of models for rescoring') group.add_argument('--score-model2', '-s2', type=str, metavar='FILE', required=False, help='path to second model or ensemble of models for rescoring') group.add_argument('--num-rescore', '-n', type=int, metavar='N', default=10, help='the number of candidate hypothesis to rescore') group.add_argument('-bz', '--batch-size', type=int, metavar='N', default=128, help='batch size for generating the nbest list') group.add_argument('--gen-subset', default='test', metavar='SET', choices=['test', 'train', 'valid'], help='data subset to generate (train, valid, test)') group.add_argument('--gen-model', default=None, metavar='FILE', help='the model to generate translations') group.add_argument('-b1', '--backwards1', action='store_true', help='whether or not the first model group is backwards') group.add_argument('-b2', '--backwards2', action='store_true', help='whether or not the second model group is backwards') group.add_argument('-a', '--weight1', default=1, nargs='+', type=float, help='the weight(s) of the first model') group.add_argument('-b', '--weight2', default=1, nargs='+', type=float, help='the weight(s) of the second model, or the gen model if using nbest from interactive.py') group.add_argument('-c', '--weight3', default=1, nargs='+', type=float, help='the weight(s) of the third model') # lm arguments group.add_argument('-lm', '--language-model', default=None, metavar='FILE', help='language model for target language to rescore translations') group.add_argument('--lm-dict', default=None, metavar='FILE', help='the dict of the language model for the target language') group.add_argument('--lm-name', default=None, help='the name of the language model for the target language') group.add_argument('--lm-bpe-code', default=None, metavar='FILE', help='the bpe code for the language model for the target language') group.add_argument('--data-dir-name', default=None, help='name of data directory') group.add_argument('--lenpen', default=1, nargs='+', type=float, help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences') group.add_argument('--score-dict-dir', default=None, help='the directory with dictionaries for the scoring models') group.add_argument('--right-to-left1', action='store_true', help='whether the first model group is a right to left model') group.add_argument('--right-to-left2', action='store_true', help='whether the second model group is a right to left model') group.add_argument('--post-process', '--remove-bpe', default='@@ ', help='the bpe symbol, used for the bitext and LM') group.add_argument('--prefix-len', default=None, type=int, help='the length of the target prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--sampling', action='store_true', help='use sampling instead of beam search for generating n best list') group.add_argument('--diff-bpe', action='store_true', help='bpe for rescoring and nbest list not the same') group.add_argument('--rescore-bpe-code', default=None, help='bpe code for rescoring models') group.add_argument('--nbest-list', default=None, help='use predefined nbest list in interactive.py format') group.add_argument('--write-hypos', default=None, help='filename prefix to write hypos to') group.add_argument('--ref-translation', default=None, help='reference translation to use with nbest list from interactive.py') group.add_argument('--backwards-score-dict-dir', default=None, help='the directory with dictionaries for the backwards model,' 'if None then it is assumed the fw and backwards models share dictionaries') # extra scaling args group.add_argument('--gen-model-name', default=None, help='the name of the models that generated the nbest list') group.add_argument('--model1-name', default=None, help='the name of the set for model1 group ') group.add_argument('--model2-name', default=None, help='the name of the set for model2 group') group.add_argument('--shard-id', default=0, type=int, help='the id of the shard to generate') group.add_argument('--num-shards', default=1, type=int, help='the number of shards to generate across') group.add_argument('--all-shards', action='store_true', help='use all shards') group.add_argument('--target-prefix-frac', default=None, type=float, help='the fraction of the target prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--source-prefix-frac', default=None, type=float, help='the fraction of the source prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--normalize', action='store_true', help='whether to normalize by src and target len') # fmt: on return group def add_tuning_args(parser): group = parser.add_argument_group("Tuning") group.add_argument( "--lower-bound", default=[-0.7], nargs="+", type=float, help="lower bound of search space", ) group.add_argument( "--upper-bound", default=[3], nargs="+", type=float, help="upper bound of search space", ) group.add_argument( "--tune-param", default=["lenpen"], nargs="+", choices=["lenpen", "weight1", "weight2", "weight3"], help="the parameter(s) to tune", ) group.add_argument( "--tune-subset", default="valid", choices=["valid", "test", "train"], help="the subset to tune on ", ) group.add_argument( "--num-trials", default=1000, type=int, help="number of trials to do for random search", ) group.add_argument( "--share-weights", action="store_true", help="share weight2 and weight 3" ) return group
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/rerank_options.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import random import numpy as np from fairseq import options from examples.noisychannel import rerank, rerank_options def random_search(args): param_values = [] tuneable_parameters = ["lenpen", "weight1", "weight2", "weight3"] initial_params = [args.lenpen, args.weight1, args.weight2, args.weight3] for i, elem in enumerate(initial_params): if type(elem) is not list: initial_params[i] = [elem] else: initial_params[i] = elem tune_parameters = args.tune_param.copy() for i in range(len(args.tune_param)): assert args.upper_bound[i] >= args.lower_bound[i] index = tuneable_parameters.index(args.tune_param[i]) del tuneable_parameters[index] del initial_params[index] tune_parameters += tuneable_parameters param_values += initial_params random.seed(args.seed) random_params = np.array( [ [ random.uniform(args.lower_bound[i], args.upper_bound[i]) for i in range(len(args.tune_param)) ] for k in range(args.num_trials) ] ) set_params = np.array( [ [initial_params[i][0] for i in range(len(tuneable_parameters))] for k in range(args.num_trials) ] ) random_params = np.concatenate((random_params, set_params), 1) rerank_args = vars(args).copy() if args.nbest_list: rerank_args["gen_subset"] = "test" else: rerank_args["gen_subset"] = args.tune_subset for k in range(len(tune_parameters)): rerank_args[tune_parameters[k]] = list(random_params[:, k]) if args.share_weights: k = tune_parameters.index("weight2") rerank_args["weight3"] = list(random_params[:, k]) rerank_args = argparse.Namespace(**rerank_args) best_lenpen, best_weight1, best_weight2, best_weight3, best_score = rerank.rerank( rerank_args ) rerank_args = vars(args).copy() rerank_args["lenpen"] = [best_lenpen] rerank_args["weight1"] = [best_weight1] rerank_args["weight2"] = [best_weight2] rerank_args["weight3"] = [best_weight3] # write the hypothesis from the valid set from the best trial if args.gen_subset != "valid": rerank_args["gen_subset"] = "valid" rerank_args = argparse.Namespace(**rerank_args) rerank.rerank(rerank_args) # test with the best hyperparameters on gen subset rerank_args = vars(args).copy() rerank_args["gen_subset"] = args.gen_subset rerank_args["lenpen"] = [best_lenpen] rerank_args["weight1"] = [best_weight1] rerank_args["weight2"] = [best_weight2] rerank_args["weight3"] = [best_weight3] rerank_args = argparse.Namespace(**rerank_args) rerank.rerank(rerank_args) def cli_main(): parser = rerank_options.get_tuning_parser() args = options.parse_args_and_arch(parser) random_search(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/rerank_tune.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .rerank_options import * # noqa
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/__init__.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Generate n-best translations using a trained model. """ import os import subprocess from contextlib import redirect_stdout from fairseq import options from fairseq_cli import generate, preprocess from examples.noisychannel import rerank_options, rerank_utils def gen_and_reprocess_nbest(args): if args.score_dict_dir is None: args.score_dict_dir = args.data if args.prefix_len is not None: assert ( args.right_to_left1 is False ), "prefix length not compatible with right to left models" assert ( args.right_to_left2 is False ), "prefix length not compatible with right to left models" if args.nbest_list is not None: assert args.score_model2 is None if args.backwards1: scorer1_src = args.target_lang scorer1_tgt = args.source_lang else: scorer1_src = args.source_lang scorer1_tgt = args.target_lang store_data = ( os.path.join(os.path.dirname(__file__)) + "/rerank_data/" + args.data_dir_name ) if not os.path.exists(store_data): os.makedirs(store_data) ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, args.shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) assert not ( args.right_to_left1 and args.backwards1 ), "backwards right to left not supported" assert not ( args.right_to_left2 and args.backwards2 ), "backwards right to left not supported" assert not ( args.prefix_len is not None and args.target_prefix_frac is not None ), "target prefix frac and target prefix len incompatible" # make directory to store generation results if not os.path.exists(pre_gen): os.makedirs(pre_gen) rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) if args.nbest_list is not None: rerank2_is_gen = True # make directories to store preprossed nbest list for reranking if not os.path.exists(left_to_right_preprocessed_dir): os.makedirs(left_to_right_preprocessed_dir) if not os.path.exists(right_to_left_preprocessed_dir): os.makedirs(right_to_left_preprocessed_dir) if not os.path.exists(lm_preprocessed_dir): os.makedirs(lm_preprocessed_dir) if not os.path.exists(backwards_preprocessed_dir): os.makedirs(backwards_preprocessed_dir) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) predictions_bpe_file = pre_gen + "/generate_output_bpe.txt" using_nbest = args.nbest_list is not None if using_nbest: print("Using predefined n-best list from interactive.py") predictions_bpe_file = args.nbest_list else: if not os.path.isfile(predictions_bpe_file): print("STEP 1: generate predictions using the p(T|S) model with bpe") print(args.data) param1 = [ args.data, "--path", args.gen_model, "--shard-id", str(args.shard_id), "--num-shards", str(args.num_shards), "--nbest", str(args.num_rescore), "--batch-size", str(args.batch_size), "--beam", str(args.num_rescore), "--batch-size", str(args.num_rescore), "--gen-subset", args.gen_subset, "--source-lang", args.source_lang, "--target-lang", args.target_lang, ] if args.sampling: param1 += ["--sampling"] gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, param1) print(input_args) with open(predictions_bpe_file, "w") as f: with redirect_stdout(f): generate.main(input_args) gen_output = rerank_utils.BitextOutputFromGen( predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest, prefix_len=args.prefix_len, target_prefix_frac=args.target_prefix_frac, ) if args.diff_bpe: rerank_utils.write_reprocessed( gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, pre_gen + "/source_gen_bpe." + args.source_lang, pre_gen + "/target_gen_bpe." + args.target_lang, pre_gen + "/reference_gen_bpe." + args.target_lang, ) bitext_bpe = args.rescore_bpe_code bpe_src_param = [ "-c", bitext_bpe, "--input", pre_gen + "/source_gen_bpe." + args.source_lang, "--output", pre_gen + "/rescore_data." + args.source_lang, ] bpe_tgt_param = [ "-c", bitext_bpe, "--input", pre_gen + "/target_gen_bpe." + args.target_lang, "--output", pre_gen + "/rescore_data." + args.target_lang, ] subprocess.call( [ "python", os.path.join( os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" ), ] + bpe_src_param, shell=False, ) subprocess.call( [ "python", os.path.join( os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" ), ] + bpe_tgt_param, shell=False, ) if (not os.path.isfile(score1_file) and not rerank1_is_gen) or ( args.score_model2 is not None and not os.path.isfile(score2_file) and not rerank2_is_gen ): print( "STEP 2: process the output of generate.py so we have clean text files with the translations" ) rescore_file = "/rescore_data" if args.prefix_len is not None: prefix_len_rescore_file = rescore_file + "prefix" + str(args.prefix_len) if args.target_prefix_frac is not None: target_prefix_frac_rescore_file = ( rescore_file + "target_prefix_frac" + str(args.target_prefix_frac) ) if args.source_prefix_frac is not None: source_prefix_frac_rescore_file = ( rescore_file + "source_prefix_frac" + str(args.source_prefix_frac) ) if not args.right_to_left1 or not args.right_to_left2: if not args.diff_bpe: rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + rescore_file + "." + args.source_lang, pre_gen + rescore_file + "." + args.target_lang, pre_gen + "/reference_file", bpe_symbol=args.post_process, ) if args.prefix_len is not None: bw_rescore_file = prefix_len_rescore_file rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + prefix_len_rescore_file + "." + args.source_lang, pre_gen + prefix_len_rescore_file + "." + args.target_lang, pre_gen + "/reference_file", prefix_len=args.prefix_len, bpe_symbol=args.post_process, ) elif args.target_prefix_frac is not None: bw_rescore_file = target_prefix_frac_rescore_file rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + target_prefix_frac_rescore_file + "." + args.source_lang, pre_gen + target_prefix_frac_rescore_file + "." + args.target_lang, pre_gen + "/reference_file", bpe_symbol=args.post_process, target_prefix_frac=args.target_prefix_frac, ) else: bw_rescore_file = rescore_file if args.source_prefix_frac is not None: fw_rescore_file = source_prefix_frac_rescore_file rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + source_prefix_frac_rescore_file + "." + args.source_lang, pre_gen + source_prefix_frac_rescore_file + "." + args.target_lang, pre_gen + "/reference_file", bpe_symbol=args.post_process, source_prefix_frac=args.source_prefix_frac, ) else: fw_rescore_file = rescore_file if args.right_to_left1 or args.right_to_left2: rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + "/right_to_left_rescore_data." + args.source_lang, pre_gen + "/right_to_left_rescore_data." + args.target_lang, pre_gen + "/right_to_left_reference_file", right_to_left=True, bpe_symbol=args.post_process, ) print("STEP 3: binarize the translations") if ( not args.right_to_left1 or args.score_model2 is not None and not args.right_to_left2 or not rerank1_is_gen ): if args.backwards1 or args.backwards2: if args.backwards_score_dict_dir is not None: bw_dict = args.backwards_score_dict_dir else: bw_dict = args.score_dict_dir bw_preprocess_param = [ "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, "--trainpref", pre_gen + bw_rescore_file, "--srcdict", bw_dict + "/dict." + scorer1_src + ".txt", "--tgtdict", bw_dict + "/dict." + scorer1_tgt + ".txt", "--destdir", backwards_preprocessed_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(bw_preprocess_param) preprocess.main(input_args) preprocess_param = [ "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, "--trainpref", pre_gen + fw_rescore_file, "--srcdict", args.score_dict_dir + "/dict." + scorer1_src + ".txt", "--tgtdict", args.score_dict_dir + "/dict." + scorer1_tgt + ".txt", "--destdir", left_to_right_preprocessed_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_param) preprocess.main(input_args) if args.right_to_left1 or args.right_to_left2: preprocess_param = [ "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, "--trainpref", pre_gen + "/right_to_left_rescore_data", "--srcdict", args.score_dict_dir + "/dict." + scorer1_src + ".txt", "--tgtdict", args.score_dict_dir + "/dict." + scorer1_tgt + ".txt", "--destdir", right_to_left_preprocessed_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_param) preprocess.main(input_args) return gen_output def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) gen_and_reprocess_nbest(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/rerank_generate.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import os import re import subprocess from contextlib import redirect_stdout from fairseq import options from fairseq_cli import eval_lm, preprocess def reprocess(fle): # takes in a file of generate.py translation generate_output # returns a source dict and hypothesis dict, where keys are the ID num (as a string) # and values and the corresponding source and translation. There may be several translations # per source, so the values for hypothesis_dict are lists. # parses output of generate.py with open(fle, "r") as f: txt = f.read() """reprocess generate.py output""" p = re.compile(r"[STHP][-]\d+\s*") hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)") source_dict = {} hypothesis_dict = {} score_dict = {} target_dict = {} pos_score_dict = {} lines = txt.split("\n") for line in lines: line += "\n" prefix = re.search(p, line) if prefix is not None: assert len(prefix.group()) > 2, "prefix id not found" _, j = prefix.span() id_num = prefix.group()[2:] id_num = int(id_num) line_type = prefix.group()[0] if line_type == "H": h_txt = line[j:] hypo = re.search(hp, h_txt) assert ( hypo is not None ), "regular expression failed to find the hypothesis scoring" _, i = hypo.span() score = hypo.group() if id_num in hypothesis_dict: hypothesis_dict[id_num].append(h_txt[i:]) score_dict[id_num].append(float(score)) else: hypothesis_dict[id_num] = [h_txt[i:]] score_dict[id_num] = [float(score)] elif line_type == "S": source_dict[id_num] = line[j:] elif line_type == "T": target_dict[id_num] = line[j:] elif line_type == "P": pos_scores = (line[j:]).split() pos_scores = [float(x) for x in pos_scores] if id_num in pos_score_dict: pos_score_dict[id_num].append(pos_scores) else: pos_score_dict[id_num] = [pos_scores] return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict def reprocess_nbest(fle): """reprocess interactive.py output""" with open(fle, "r") as f: txt = f.read() source_dict = {} hypothesis_dict = {} score_dict = {} target_dict = {} pos_score_dict = {} lines = txt.split("\n") hp = re.compile(r"[-]?\d+[.]?\d+") j = -1 for _i, line in enumerate(lines): line += "\n" line_type = line[0] if line_type == "H": hypo = re.search(hp, line) _, start_index = hypo.span() score = hypo.group() if j in score_dict: score_dict[j].append(float(score)) hypothesis_dict[j].append(line[start_index:].strip("\t")) else: score_dict[j] = [float(score)] hypothesis_dict[j] = [line[start_index:].strip("\t")] elif line_type == "O": j += 1 source_dict[j] = line[2:] # we don't have the targets for interactive.py target_dict[j] = "filler" elif line_type == "P": pos_scores = [float(pos_score) for pos_score in line.split()[1:]] if j in pos_score_dict: pos_score_dict[j].append(pos_scores) else: pos_score_dict[j] = [pos_scores] assert source_dict.keys() == hypothesis_dict.keys() assert source_dict.keys() == pos_score_dict.keys() assert source_dict.keys() == score_dict.keys() return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict def write_reprocessed( sources, hypos, targets, source_outfile, hypo_outfile, target_outfile, right_to_left=False, prefix_len=None, bpe_symbol=None, target_prefix_frac=None, source_prefix_frac=None, ): """writes nbest hypothesis for rescoring""" assert not ( prefix_len is not None and target_prefix_frac is not None ), "in writing reprocessed, only one type of prefix may be used" assert not ( prefix_len is not None and source_prefix_frac is not None ), "in writing reprocessed, only one type of prefix may be used" assert not ( target_prefix_frac is not None and source_prefix_frac is not None ), "in writing reprocessed, only one type of prefix may be used" with open(source_outfile, "w") as source_file, open( hypo_outfile, "w" ) as hypo_file, open(target_outfile, "w") as target_file: assert len(sources) == len(hypos), "sources and hypos list length mismatch" if right_to_left: for i in range(len(sources)): for j in range(len(hypos[i])): if prefix_len is None: hypo_file.write(make_right_to_left(hypos[i][j]) + "\n") else: raise NotImplementedError() source_file.write(make_right_to_left(sources[i]) + "\n") target_file.write(make_right_to_left(targets[i]) + "\n") else: for i in sorted(sources.keys()): for j in range(len(hypos[i])): if prefix_len is not None: shortened = ( get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len) + "\n" ) hypo_file.write(shortened) source_file.write(sources[i]) target_file.write(targets[i]) elif target_prefix_frac is not None: num_words, shortened, num_bpe_tokens = calc_length_from_frac( hypos[i][j], target_prefix_frac, bpe_symbol ) shortened += "\n" hypo_file.write(shortened) source_file.write(sources[i]) target_file.write(targets[i]) elif source_prefix_frac is not None: num_words, shortened, num_bpe_tokensn = calc_length_from_frac( sources[i], source_prefix_frac, bpe_symbol ) shortened += "\n" hypo_file.write(hypos[i][j]) source_file.write(shortened) target_file.write(targets[i]) else: hypo_file.write(hypos[i][j]) source_file.write(sources[i]) target_file.write(targets[i]) def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol): # return number of words, (not bpe tokens) that we want no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol) len_sen = len(no_bpe_sen.split()) num_words = math.ceil(len_sen * prefix_frac) prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words) num_bpe_tokens = len(prefix.split()) return num_words, prefix, num_bpe_tokens def get_prefix(sentence, prefix_len): """assuming no bpe, gets the prefix of the sentence with prefix_len words""" tokens = sentence.strip("\n").split() if prefix_len >= len(tokens): return sentence.strip("\n") else: return " ".join(tokens[:prefix_len]) def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len): if bpe_symbol is None: return get_prefix(sentence, prefix_len) else: return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len)) def get_prefix_from_len(sentence, bpe_symbol, prefix_len): """get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens""" bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]]) if bpe_count == 0: return sentence[:prefix_len] else: return sentence[:prefix_len] + get_prefix_from_len( sentence[prefix_len:], bpe_symbol, bpe_count ) def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len): """given a prefix length in terms of words, return the number of bpe tokens""" prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len) assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len return len(prefix.split(" ")) def make_right_to_left(line): tokens = line.split() tokens.reverse() new_line = " ".join(tokens) return new_line def remove_bpe(line, bpe_symbol): line = line.replace("\n", "") line = (line + " ").replace(bpe_symbol, "").rstrip() return line + ("\n") def remove_bpe_dict(pred_dict, bpe_symbol): new_dict = {} for i in pred_dict: if type(pred_dict[i]) == list: new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]] new_dict[i] = new_list else: new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol) return new_dict def parse_bleu_scoring(line): p = re.compile(r"(BLEU4 = )\d+[.]\d+") res = re.search(p, line) assert res is not None, line return float(res.group()[8:]) def get_full_from_prefix(hypo_prefix, hypos): """given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix""" for hypo in hypos: hypo_prefix = hypo_prefix.strip("\n") len_prefix = len(hypo_prefix) if hypo[:len_prefix] == hypo_prefix: return hypo # no match found raise Exception() def get_score( a, b, c, target_len, bitext_score1, bitext_score2=None, lm_score=None, lenpen=None, src_len=None, tgt_len=None, bitext1_backwards=False, bitext2_backwards=False, normalize=False, ): if bitext1_backwards: bitext1_norm = src_len else: bitext1_norm = tgt_len if bitext_score2 is not None: if bitext2_backwards: bitext2_norm = src_len else: bitext2_norm = tgt_len else: bitext2_norm = 1 bitext_score2 = 0 if normalize: score = ( a * bitext_score1 / bitext1_norm + b * bitext_score2 / bitext2_norm + c * lm_score / src_len ) else: score = a * bitext_score1 + b * bitext_score2 + c * lm_score if lenpen is not None: score /= (target_len) ** float(lenpen) return score class BitextOutput(object): def __init__( self, output_file, backwards, right_to_left, bpe_symbol, prefix_len=None, target_prefix_frac=None, source_prefix_frac=None, ): """process output from rescoring""" source, hypo, score, target, pos_score = reprocess(output_file) if backwards: self.hypo_fracs = source_prefix_frac else: self.hypo_fracs = target_prefix_frac # remove length penalty so we can use raw scores score, num_bpe_tokens = get_score_from_pos( pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards ) source_lengths = {} target_lengths = {} assert hypo.keys() == source.keys(), "key mismatch" if backwards: tmp = hypo hypo = source source = tmp for i in source: # since we are reranking, there should only be one hypo per source sentence if backwards: len_src = len(source[i][0].split()) # record length without <eos> if len_src == num_bpe_tokens[i][0] - 1: source_lengths[i] = num_bpe_tokens[i][0] - 1 else: source_lengths[i] = num_bpe_tokens[i][0] target_lengths[i] = len(hypo[i].split()) source[i] = remove_bpe(source[i][0], bpe_symbol) target[i] = remove_bpe(target[i], bpe_symbol) hypo[i] = remove_bpe(hypo[i], bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] else: len_tgt = len(hypo[i][0].split()) # record length without <eos> if len_tgt == num_bpe_tokens[i][0] - 1: target_lengths[i] = num_bpe_tokens[i][0] - 1 else: target_lengths[i] = num_bpe_tokens[i][0] source_lengths[i] = len(source[i].split()) if right_to_left: source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol) target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol) hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] else: assert ( len(hypo[i]) == 1 ), "expected only one hypothesis per source sentence" source[i] = remove_bpe(source[i], bpe_symbol) target[i] = remove_bpe(target[i], bpe_symbol) hypo[i] = remove_bpe(hypo[i][0], bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] self.rescore_source = source self.rescore_hypo = hypo self.rescore_score = score self.rescore_target = target self.rescore_pos_score = pos_score self.backwards = backwards self.right_to_left = right_to_left self.target_lengths = target_lengths self.source_lengths = source_lengths class BitextOutputFromGen(object): def __init__( self, predictions_bpe_file, bpe_symbol=None, nbest=False, prefix_len=None, target_prefix_frac=None, ): if nbest: ( pred_source, pred_hypo, pred_score, pred_target, pred_pos_score, ) = reprocess_nbest(predictions_bpe_file) else: pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess( predictions_bpe_file ) assert len(pred_source) == len(pred_hypo) assert len(pred_source) == len(pred_score) assert len(pred_source) == len(pred_target) assert len(pred_source) == len(pred_pos_score) # remove length penalty so we can use raw scores pred_score, num_bpe_tokens = get_score_from_pos( pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False ) self.source = pred_source self.target = pred_target self.score = pred_score self.pos_score = pred_pos_score self.hypo = pred_hypo self.target_lengths = {} self.source_lengths = {} self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol) self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol) self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol) # indexes to match those from the rescoring models self.rescore_source = {} self.rescore_target = {} self.rescore_pos_score = {} self.rescore_hypo = {} self.rescore_score = {} self.num_hypos = {} self.backwards = False self.right_to_left = False index = 0 for i in sorted(pred_source.keys()): for j in range(len(pred_hypo[i])): self.target_lengths[index] = len(self.hypo[i][j].split()) self.source_lengths[index] = len(self.source[i].split()) self.rescore_source[index] = self.no_bpe_source[i] self.rescore_target[index] = self.no_bpe_target[i] self.rescore_hypo[index] = self.no_bpe_hypo[i][j] self.rescore_score[index] = float(pred_score[i][j]) self.rescore_pos_score[index] = pred_pos_score[i][j] self.num_hypos[index] = len(pred_hypo[i]) index += 1 def get_score_from_pos( pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards ): score_dict = {} num_bpe_tokens_dict = {} assert prefix_len is None or hypo_frac is None for key in pos_score_dict: score_dict[key] = [] num_bpe_tokens_dict[key] = [] for i in range(len(pos_score_dict[key])): if prefix_len is not None and not backwards: num_bpe_tokens = get_num_bpe_tokens_from_len( hypo_dict[key][i], bpe_symbol, prefix_len ) score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens])) num_bpe_tokens_dict[key].append(num_bpe_tokens) elif hypo_frac is not None: num_words, shortened, hypo_prefix_len = calc_length_from_frac( hypo_dict[key][i], hypo_frac, bpe_symbol ) score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len])) num_bpe_tokens_dict[key].append(hypo_prefix_len) else: score_dict[key].append(sum(pos_score_dict[key][i])) num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i])) return score_dict, num_bpe_tokens_dict class LMOutput(object): def __init__( self, lm_score_file, lm_dict=None, prefix_len=None, bpe_symbol=None, target_prefix_frac=None, ): ( lm_sentences, lm_sen_scores, lm_sen_pos_scores, lm_no_bpe_sentences, lm_bpe_tokens, ) = parse_lm( lm_score_file, prefix_len=prefix_len, bpe_symbol=bpe_symbol, target_prefix_frac=target_prefix_frac, ) self.sentences = lm_sentences self.score = lm_sen_scores self.pos_score = lm_sen_pos_scores self.lm_dict = lm_dict self.no_bpe_sentences = lm_no_bpe_sentences self.bpe_tokens = lm_bpe_tokens def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None): """parse output of eval_lm""" with open(input_file, "r") as f: text = f.readlines() text = text[7:] cleaned_text = text[:-2] sentences = {} sen_scores = {} sen_pos_scores = {} no_bpe_sentences = {} num_bpe_tokens_dict = {} for _i, line in enumerate(cleaned_text): tokens = line.split() if tokens[0].isdigit(): line_id = int(tokens[0]) scores = [float(x[1:-1]) for x in tokens[2::2]] sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n" if bpe_symbol is not None: # exclude <eos> symbol to match output from generate.py bpe_sen = " ".join(tokens[1::2][:-1]) + "\n" no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol) no_bpe_sentences[line_id] = no_bpe_sen if prefix_len is not None: num_bpe_tokens = get_num_bpe_tokens_from_len( bpe_sen, bpe_symbol, prefix_len ) sen_scores[line_id] = sum(scores[:num_bpe_tokens]) num_bpe_tokens_dict[line_id] = num_bpe_tokens elif target_prefix_frac is not None: num_words, shortened, target_prefix_len = calc_length_from_frac( bpe_sen, target_prefix_frac, bpe_symbol ) sen_scores[line_id] = sum(scores[:target_prefix_len]) num_bpe_tokens_dict[line_id] = target_prefix_len else: sen_scores[line_id] = sum(scores) num_bpe_tokens_dict[line_id] = len(scores) sen_pos_scores[line_id] = scores return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict def get_directories( data_dir_name, num_rescore, gen_subset, fw_name, shard_id, num_shards, sampling=False, prefix_len=None, target_prefix_frac=None, source_prefix_frac=None, ): nbest_file_id = ( "nbest_" + str(num_rescore) + "_subset_" + gen_subset + "_fw_name_" + fw_name + "_shard_" + str(shard_id) + "_of_" + str(num_shards) ) if sampling: nbest_file_id += "_sampling" # the directory containing all information for this nbest list pre_gen = ( os.path.join(os.path.dirname(__file__)) + "/rerank_data/" + data_dir_name + "/" + nbest_file_id ) # the directory to store the preprocessed nbest list, for left to right rescoring left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed" if source_prefix_frac is not None: left_to_right_preprocessed_dir = ( left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac) ) # the directory to store the preprocessed nbest list, for right to left rescoring right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed" # the directory to store the preprocessed nbest list, for backwards rescoring backwards_preprocessed_dir = pre_gen + "/backwards" if target_prefix_frac is not None: backwards_preprocessed_dir = ( backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac) ) elif prefix_len is not None: backwards_preprocessed_dir = ( backwards_preprocessed_dir + "/prefix_" + str(prefix_len) ) # the directory to store the preprocessed nbest list, for rescoring with P(T) lm_preprocessed_dir = pre_gen + "/lm_preprocessed" return ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) def lm_scoring( preprocess_directory, bpe_status, gen_output, pre_gen, cur_lm_dict, cur_lm_name, cur_language_model, cur_lm_bpe_code, batch_size, lm_score_file, target_lang, source_lang, prefix_len=None, ): if prefix_len is not None: assert ( bpe_status == "different" ), "bpe status must be different to use prefix len" if bpe_status == "no bpe": # run lm on output without bpe write_reprocessed( gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, pre_gen + "/rescore_data_no_bpe.de", pre_gen + "/rescore_data_no_bpe.en", pre_gen + "/reference_file_no_bpe", ) preprocess_lm_param = [ "--only-source", "--trainpref", pre_gen + "/rescore_data_no_bpe." + target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_directory, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [ preprocess_directory, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--max-tokens", "1024", "--sample-break-mode", "eos", "--gen-subset", "train", ] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, "w") as f: with redirect_stdout(f): eval_lm.main(input_args) elif bpe_status == "shared": preprocess_lm_param = [ "--only-source", "--trainpref", pre_gen + "/rescore_data." + target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_directory, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [ preprocess_directory, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--sample-break-mode", "eos", "--gen-subset", "train", ] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, "w") as f: with redirect_stdout(f): eval_lm.main(input_args) elif bpe_status == "different": rescore_file = pre_gen + "/rescore_data_no_bpe" rescore_bpe = pre_gen + "/rescore_data_new_bpe" rescore_file += "." rescore_bpe += "." write_reprocessed( gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, rescore_file + source_lang, rescore_file + target_lang, pre_gen + "/reference_file_no_bpe", bpe_symbol=None, ) # apply LM bpe to nbest list bpe_src_param = [ "-c", cur_lm_bpe_code, "--input", rescore_file + target_lang, "--output", rescore_bpe + target_lang, ] subprocess.call( [ "python", os.path.join( os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" ), ] + bpe_src_param, shell=False, ) # uncomment to use fastbpe instead of subword-nmt bpe # bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code] # subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False) preprocess_dir = preprocess_directory preprocess_lm_param = [ "--only-source", "--trainpref", rescore_bpe + target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [ preprocess_dir, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--max-tokens", "1024", "--sample-break-mode", "eos", "--gen-subset", "train", ] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, "w") as f: with redirect_stdout(f): eval_lm.main(input_args) def rescore_file_name( nbest_dir, prefix_len, scorer_name, lm_file=False, target_prefix_frac=None, source_prefix_frac=None, backwards=None, ): if lm_file: score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt" else: score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt" if backwards: if prefix_len is not None: score_file += "prefix_len" + str(prefix_len) elif target_prefix_frac is not None: score_file += "target_prefix_frac" + str(target_prefix_frac) else: if source_prefix_frac is not None: score_file += "source_prefix_frac" + str(source_prefix_frac) return score_file
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/rerank_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from fairseq import options from examples.noisychannel import rerank_options, rerank_utils def score_lm(args): using_nbest = args.nbest_list is not None ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, args.shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) predictions_bpe_file = pre_gen + "/generate_output_bpe.txt" if using_nbest: print("Using predefined n-best list from interactive.py") predictions_bpe_file = args.nbest_list gen_output = rerank_utils.BitextOutputFromGen( predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest ) if args.language_model is not None: lm_score_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.lm_name, lm_file=True ) if args.language_model is not None and not os.path.isfile(lm_score_file): print("STEP 4.5: language modeling for P(T)") if args.lm_bpe_code is None: bpe_status = "no bpe" elif args.lm_bpe_code == "shared": bpe_status = "shared" else: bpe_status = "different" rerank_utils.lm_scoring( lm_preprocessed_dir, bpe_status, gen_output, pre_gen, args.lm_dict, args.lm_name, args.language_model, args.lm_bpe_code, 128, lm_score_file, args.target_lang, args.source_lang, prefix_len=args.prefix_len, ) def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) score_lm(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/rerank_score_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from contextlib import redirect_stdout from fairseq import options from fairseq_cli import generate from examples.noisychannel import rerank_options, rerank_utils def score_bw(args): if args.backwards1: scorer1_src = args.target_lang scorer1_tgt = args.source_lang else: scorer1_src = args.source_lang scorer1_tgt = args.target_lang if args.score_model2 is not None: if args.backwards2: scorer2_src = args.target_lang scorer2_tgt = args.source_lang else: scorer2_src = args.source_lang scorer2_tgt = args.target_lang rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, args.shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) if args.right_to_left1: rerank_data1 = right_to_left_preprocessed_dir elif args.backwards1: rerank_data1 = backwards_preprocessed_dir else: rerank_data1 = left_to_right_preprocessed_dir gen_param = ["--batch-size", str(128), "--score-reference", "--gen-subset", "train"] if not rerank1_is_gen and not os.path.isfile(score1_file): print("STEP 4: score the translations for model 1") model_param1 = [ "--path", args.score_model1, "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, ] gen_model1_param = [rerank_data1] + gen_param + model_param1 gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, gen_model1_param) with open(score1_file, "w") as f: with redirect_stdout(f): generate.main(input_args) if ( args.score_model2 is not None and not os.path.isfile(score2_file) and not rerank2_is_gen ): print("STEP 4: score the translations for model 2") if args.right_to_left2: rerank_data2 = right_to_left_preprocessed_dir elif args.backwards2: rerank_data2 = backwards_preprocessed_dir else: rerank_data2 = left_to_right_preprocessed_dir model_param2 = [ "--path", args.score_model2, "--source-lang", scorer2_src, "--target-lang", scorer2_tgt, ] gen_model2_param = [rerank_data2] + gen_param + model_param2 gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, gen_model2_param) with open(score2_file, "w") as f: with redirect_stdout(f): generate.main(input_args) def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) score_bw(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/noisychannel/rerank_score_bw.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from itertools import zip_longest def replace_oovs(source_in, target_in, vocabulary, source_out, target_out): """Replaces out-of-vocabulary words in source and target text with <unk-N>, where N in is the position of the word in the source sequence. """ def format_unk(pos): return "<unk-{}>".format(pos) if target_in is None: target_in = [] for seq_num, (source_seq, target_seq) in enumerate( zip_longest(source_in, target_in) ): source_seq_out = [] target_seq_out = [] word_to_pos = dict() for position, token in enumerate(source_seq.strip().split()): if token in vocabulary: token_out = token else: if token in word_to_pos: oov_pos = word_to_pos[token] else: word_to_pos[token] = position oov_pos = position token_out = format_unk(oov_pos) source_seq_out.append(token_out) source_out.write(" ".join(source_seq_out) + "\n") if target_seq is not None: for token in target_seq.strip().split(): if token in word_to_pos: token_out = format_unk(word_to_pos[token]) else: token_out = token target_seq_out.append(token_out) if target_out is not None: target_out.write(" ".join(target_seq_out) + "\n") def main(): parser = argparse.ArgumentParser( description="Replaces out-of-vocabulary words in both source and target " "sequences with tokens that indicate the position of the word " "in the source sequence." ) parser.add_argument( "--source", type=str, help="text file with source sequences", required=True ) parser.add_argument( "--target", type=str, help="text file with target sequences", default=None ) parser.add_argument("--vocab", type=str, help="vocabulary file", required=True) parser.add_argument( "--source-out", type=str, help="where to write source sequences with <unk-N> entries", required=True, ) parser.add_argument( "--target-out", type=str, help="where to write target sequences with <unk-N> entries", default=None, ) args = parser.parse_args() with open(args.vocab, encoding="utf-8") as vocab: vocabulary = vocab.read().splitlines() target_in = ( open(args.target, "r", encoding="utf-8") if args.target is not None else None ) target_out = ( open(args.target_out, "w", encoding="utf-8") if args.target_out is not None else None ) with open(args.source, "r", encoding="utf-8") as source_in, open( args.source_out, "w", encoding="utf-8" ) as source_out: replace_oovs(source_in, target_in, vocabulary, source_out, target_out) if target_in is not None: target_in.close() if target_out is not None: target_out.close() if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/pointer_generator/preprocess.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import re import sys class OOVIndexError(IndexError): def __init__(self, pos, source_seq, target_seq): super(OOVIndexError, self).__init__( "A <unk-N> tag in the target sequence refers to a position that is " "outside the source sequence. Most likely there was a mismatch in " "provided source and target sequences. Otherwise this would mean that " "the pointing mechanism somehow attended to a position that is past " "the actual sequence end." ) self.source_pos = pos self.source_seq = source_seq self.target_seq = target_seq def replace_oovs(source_in, target_in, target_out): """Replaces <unk-N> tokens in the target text with the corresponding word in the source text. """ oov_re = re.compile("^<unk-([0-9]+)>$") for source_seq, target_seq in zip(source_in, target_in): target_seq_out = [] pos_to_word = source_seq.strip().split() for token in target_seq.strip().split(): m = oov_re.match(token) if m: pos = int(m.group(1)) if pos >= len(pos_to_word): raise OOVIndexError(pos, source_seq, target_seq) token_out = pos_to_word[pos] else: token_out = token target_seq_out.append(token_out) target_out.write(" ".join(target_seq_out) + "\n") def main(): parser = argparse.ArgumentParser( description="Replaces <unk-N> tokens in target sequences with words from " "the corresponding position in the source sequence." ) parser.add_argument( "--source", type=str, help="text file with source sequences", required=True ) parser.add_argument( "--target", type=str, help="text file with target sequences", required=True ) parser.add_argument( "--target-out", type=str, help="where to write target sequences without <unk-N> " "entries", required=True, ) args = parser.parse_args() target_in = ( open(args.target, "r", encoding="utf-8") if args.target is not None else None ) target_out = ( open(args.target_out, "w", encoding="utf-8") if args.target_out is not None else None ) with open(args.source, "r", encoding="utf-8") as source_in, open( args.target, "r", encoding="utf-8" ) as target_in, open(args.target_out, "w", encoding="utf-8") as target_out: replace_oovs(source_in, target_in, target_out) if __name__ == "__main__": try: main() except OOVIndexError as e: print(e, file=sys.stderr) print("Source sequence:", e.source_seq.strip(), file=sys.stderr) print("Target sequence:", e.target_seq.strip(), file=sys.stderr) print( "Source sequence length:", len(e.source_seq.strip().split()), file=sys.stderr, ) print("The offending tag points to:", e.source_pos) sys.exit(2)
EXA-1-master
exa/libraries/fairseq/examples/pointer_generator/postprocess.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Any, Dict, Optional, List, Tuple import torch import torch.nn as nn from fairseq import utils from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( DEFAULT_MAX_SOURCE_POSITIONS, DEFAULT_MAX_TARGET_POSITIONS, TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture, ) from torch import Tensor logger = logging.getLogger(__name__) @register_model("transformer_pointer_generator") class TransformerPointerGeneratorModel(TransformerModel): """ Transformer model from `"Attention Is All You Need" (Vaswani et al, 2017) <https://arxiv.org/abs/1706.03762>`_, augmented with a pointer-generator network from `"Get To The Point: Summarization with Pointer-Generator Networks" (See et al, 2017) <https://arxiv.org/abs/1704.04368>`_. Args: encoder (TransformerPointerGeneratorEncoder): the encoder decoder (TransformerPointerGeneratorDecoder): the decoder The Transformer pointer-generator model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_pointer_generator_parser :prog: """ @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off TransformerModel.add_args(parser) parser.add_argument('--alignment-heads', type=int, metavar='N', help='number of attention heads to be used for ' 'pointing') parser.add_argument('--alignment-layer', type=int, metavar='I', help='layer number to be used for pointing (0 ' 'corresponding to the bottommost layer)') parser.add_argument('--source-position-markers', type=int, metavar='N', help='dictionary includes N additional items that ' 'represent an OOV token at a particular input ' 'position') parser.add_argument('--force-generation', type=float, metavar='P', default=None, help='set the vocabulary distribution weight to P, ' 'instead of predicting it from the input (1.0 ' 'corresponding to generation, 0.0 to pointing)') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS if getattr(args, "source_position_markers", None) is None: args.source_position_markers = args.max_source_positions src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if src_dict != tgt_dict: raise ValueError("Pointer-generator requires a joined dictionary") def build_embedding(dictionary, embed_dim, path=None): # The dictionary may include additional items that can be used in # place of the normal OOV token and that all map to the same # embedding. Using a different token for each input position allows # one to restore the word identities from the original source text. num_embeddings = len(dictionary) - args.source_position_markers padding_idx = dictionary.pad() unk_idx = dictionary.unk() logger.info( "dictionary indices from {0} to {1} will be mapped to {2}".format( num_embeddings, len(dictionary) - 1, unk_idx ) ) emb = Embedding(num_embeddings, embed_dim, padding_idx, unk_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return cls(args, encoder, decoder) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerPointerGeneratorEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerPointerGeneratorDecoder(args, tgt_dict, embed_tokens) class TransformerPointerGeneratorEncoder(TransformerEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. The pointer-generator variant adds the source tokens to the encoder output as these are otherwise not passed to the decoder. """ def forward( self, src_tokens, src_lengths: Optional[Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[Tensor] = None ): """ Runs the `forward()` method of the parent Transformer class. Then adds the source tokens into the encoder output tuple. While it might be more elegant that the model would pass the source tokens to the `forward()` method of the decoder too, this would require changes to `SequenceGenerator`. Args: src_tokens (torch.LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: namedtuple: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. - **src_tokens** (Tensor): input token ids of shape `(batch, src_len)` """ encoder_out = self.forward_scriptable(src_tokens, src_lengths, return_all_hiddens, token_embeddings) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": encoder_out["encoder_out"], # T x B x C "encoder_padding_mask": encoder_out["encoder_padding_mask"], # B x T "encoder_embedding": encoder_out["encoder_embedding"], # B x T x C "encoder_states": encoder_out["encoder_states"], # List[T x B x C] "src_tokens": [src_tokens], # B x T "src_lengths": [], } class TransformerPointerGeneratorDecoder(TransformerDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. The pointer-generator variant mixes the output probabilities with an attention distribution in the output layer. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False) # In the pointer-generator model these arguments define the decoder # layer and the number of attention heads that will be averaged to # create the alignment for pointing. self.alignment_heads = args.alignment_heads self.alignment_layer = args.alignment_layer input_embed_dim = embed_tokens.embedding_dim # Generation probabilities / interpolation coefficients are predicted # from the current decoder input embedding and the decoder output, which # is the size of output_embed_dim. p_gen_input_size = input_embed_dim + self.output_embed_dim self.project_p_gens = nn.Linear(p_gen_input_size, 1) nn.init.zeros_(self.project_p_gens.bias) # The dictionary may include a separate entry for an OOV token in each # input position, so that their identity can be restored from the # original source text. self.num_types = len(dictionary) self.num_oov_types = args.source_position_markers self.num_embeddings = self.num_types - self.num_oov_types self.force_p_gen = args.force_generation def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, alignment_layer: Optional[int] = 0, alignment_heads: Optional[int] = 1, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict, optional): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False) alignment_layer (int, optional): 0-based index of the layer to be used for pointing (default: 0) alignment_heads (int, optional): number of attention heads to be used for pointing (default: 1) Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ # The normal Transformer model doesn't pass the alignment_layer and # alignment_heads parameters correctly. We use our local variables. x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, alignment_layer=self.alignment_layer, alignment_heads=self.alignment_heads, ) if not features_only: # Embedding the tokens again for generation probability prediction, # so that we don't have to reimplement the whole extract_features() # method. if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] prev_output_embed = self.embed_tokens(prev_output_tokens) prev_output_embed *= self.embed_scale predictors = torch.cat((prev_output_embed, x), 2) p_gens = self.project_p_gens(predictors) p_gens = torch.sigmoid(p_gens.float()) # Torchscript complains if encoder_out or attn are None because # `output_layer()` signature expects tensors instead attn: Optional[Tensor] = extra["attn"][0] assert encoder_out is not None assert attn is not None x = self.output_layer(x, attn, encoder_out["src_tokens"][0], p_gens) return x, extra def output_layer( self, features: Tensor, attn: Tensor, src_tokens: Tensor, p_gens: Tensor ) -> Tensor: """ Project features to the vocabulary size and mix with the attention distributions. """ if self.force_p_gen is not None: p_gens = self.force_p_gen # project back to size of vocabulary if self.adaptive_softmax is None: logits = self.output_projection(features) else: logits = features batch_size = logits.shape[0] output_length = logits.shape[1] assert logits.shape[2] == self.num_embeddings assert src_tokens.shape[0] == batch_size src_length = src_tokens.shape[1] # The final output distribution will be a mixture of the normal output # distribution (softmax of logits) and attention weights. gen_dists = self.get_normalized_probs_scriptable( (logits, None), log_probs=False, sample=None ) gen_dists = torch.mul(gen_dists, p_gens) padding_size = (batch_size, output_length, self.num_oov_types) padding = gen_dists.new_zeros(padding_size) gen_dists = torch.cat((gen_dists, padding), 2) assert gen_dists.shape[2] == self.num_types # Scatter attention distributions to distributions over the extended # vocabulary in a tensor of shape [batch_size, output_length, # vocab_size]. Each attention weight will be written into a location # that is for other dimensions the same as in the index tensor, but for # the third dimension it's the value of the index tensor (the token ID). attn = torch.mul(attn.float(), 1 - p_gens) index = src_tokens[:, None, :] index = index.expand(batch_size, output_length, src_length) attn_dists_size = (batch_size, output_length, self.num_types) attn_dists = attn.new_zeros(attn_dists_size) attn_dists.scatter_add_(2, index, attn.float()) # Final distributions, [batch_size, output_length, num_types]. return gen_dists + attn_dists def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """ Get normalized probabilities (or log probs) from a net's output. Pointer-generator network output is already normalized. """ probs = net_output[0] # Make sure the probabilities are greater than zero when returning log # probabilities. return probs.clamp(1e-10, 1.0).log() if log_probs else probs class Embedding(nn.Embedding): r"""A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. This subclass differs from the standard PyTorch Embedding class by allowing additional vocabulary entries that will be mapped to the unknown token embedding. Args: num_embeddings (int): size of the dictionary of embeddings embedding_dim (int): the size of each embedding vector padding_idx (int): Pads the output with the embedding vector at :attr:`padding_idx` (initialized to zeros) whenever it encounters the index. unk_idx (int): Maps all token indices that are greater than or equal to num_embeddings to this index. Attributes: weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from :math:`\mathcal{N}(0, 1)` Shape: - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` .. note:: Keep in mind that only a limited number of optimizers support sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) .. note:: With :attr:`padding_idx` set, the embedding vector at :attr:`padding_idx` is initialized to all zeros. However, note that this vector can be modified afterwards, e.g., using a customized initialization method, and thus changing the vector used to pad the output. The gradient for this vector from :class:`~torch.nn.Embedding` is always zero. """ __constants__ = ["unk_idx"] # Torchscript: Inheriting from Embedding class produces an error when exporting to Torchscript # -> RuntimeError: Unable to cast Python instance to C++ type (compile in debug mode for details # It's happening because max_norm attribute from nn.Embedding is None by default and it cannot be # cast to a C++ type def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int], unk_idx: int, max_norm: Optional[float] = float("inf"), ): super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx, max_norm=max_norm) self.unk_idx = unk_idx nn.init.normal_(self.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(self.weight[padding_idx], 0) def forward(self, input): input = torch.where( input >= self.num_embeddings, torch.ones_like(input) * self.unk_idx, input ) return nn.functional.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse ) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator" ) def transformer_pointer_generator(args): args.alignment_heads = getattr(args, "alignment_heads", 1) args.alignment_layer = getattr(args, "alignment_layer", -1) base_architecture(args) if args.alignment_layer < 0: args.alignment_layer = args.decoder_layers + args.alignment_layer @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_iwslt_de_en" ) def transformer_pointer_generator_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) transformer_pointer_generator(args) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de" ) def transformer_pointer_generator_wmt_en_de(args): transformer_pointer_generator(args) # Transformer pointer-generator with the base Transformer parameters as used in # the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_vaswani_wmt_en_de_big", ) def transformer_pointer_generator_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) transformer_pointer_generator(args) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_vaswani_wmt_en_fr_big", ) def transformer_pointer_generator_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) transformer_pointer_generator_vaswani_wmt_en_de_big(args) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big" ) def transformer_pointer_generator_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) transformer_pointer_generator_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big_t2t" ) def transformer_pointer_generator_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) transformer_pointer_generator_vaswani_wmt_en_de_big(args)
EXA-1-master
exa/libraries/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import transformer_pg # noqa
EXA-1-master
exa/libraries/fairseq/examples/pointer_generator/pointer_generator_src/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging from pathlib import Path import random import soundfile as sf import torch from tqdm import tqdm from fairseq import utils from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder logging.basicConfig() logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def dump_result(args, sample_id, pred_wav, suffix=""): sf.write( f"{args.results_path}/{sample_id}{suffix}_pred.wav", pred_wav.detach().cpu().numpy(), 16000, ) def load_code(in_file): with open(in_file) as f: out = [list(map(int, line.strip().split())) for line in f] return out def main(args): logger.info(args) use_cuda = torch.cuda.is_available() and not args.cpu with open(args.vocoder_cfg) as f: vocoder_cfg = json.load(f) vocoder = CodeHiFiGANVocoder(args.vocoder, vocoder_cfg) if use_cuda: vocoder = vocoder.cuda() multispkr = vocoder.model.multispkr if multispkr: logger.info("multi-speaker vocoder") num_speakers = vocoder_cfg.get( "num_speakers", 200 ) # following the default in codehifigan to set to 200 assert ( args.speaker_id < num_speakers ), f"invalid --speaker-id ({args.speaker_id}) with total #speakers = {num_speakers}" data = load_code(args.in_code_file) Path(args.results_path).mkdir(exist_ok=True, parents=True) for i, d in tqdm(enumerate(data), total=len(data)): x = { "code": torch.LongTensor(d).view(1, -1), } suffix = "" if multispkr: spk = ( random.randint(0, num_speakers - 1) if args.speaker_id == -1 else args.speaker_id ) suffix = f"_spk{spk}" x["spkr"] = torch.LongTensor([spk]).view(1, 1) x = utils.move_to_cuda(x) if use_cuda else x wav = vocoder(x, args.dur_prediction) dump_result(args, i, wav, suffix=suffix) def cli_main(): parser = argparse.ArgumentParser() parser.add_argument( "--in-code-file", type=str, required=True, help="one unit sequence per line" ) parser.add_argument( "--vocoder", type=str, required=True, help="path to the CodeHiFiGAN vocoder" ) parser.add_argument( "--vocoder-cfg", type=str, required=True, help="path to the CodeHiFiGAN vocoder config", ) parser.add_argument("--results-path", type=str, required=True) parser.add_argument( "--dur-prediction", action="store_true", help="enable duration prediction (for reduced/unique code sequences)", ) parser.add_argument( "--speaker-id", type=int, default=-1, help="Speaker id (for vocoder that supports multispeaker). Set to -1 to randomly sample speakers.", ) parser.add_argument("--cpu", action="store_true", help="run on CPU") args = parser.parse_args() main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/generate_waveform_from_code.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import unity # noqa
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from fairseq import search class MultiDecoderSequenceGenerator(nn.Module): def __init__( self, models, tgt_dict, tgt_dict_mt, beam_size=1, beam_size_mt=1, max_len_a=0, max_len_b=200, max_len_a_mt=0, max_len_b_mt=200, max_len=0, min_len=1, normalize_scores=True, len_penalty=1.0, len_penalty_mt=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, eos=None, eos_mt=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, ): """Generates translations of a given source sentence. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length for the second pass max_len_a_mt/b_mt (int, optional): generate sequences of maximum length ax + b, where x is the source length for the first pass max_len (int, optional): the maximum length of the generated output (not including end-of-sentence) min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty in the second pass, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) len_penalty (float, optional): length penalty in the first pass, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) """ super().__init__() from examples.speech_to_speech.unity.sequence_generator import SequenceGenerator self.generator = SequenceGenerator( models, tgt_dict, beam_size=beam_size, max_len_a=max_len_a, max_len_b=max_len_b, max_len=max_len, min_len=min_len, normalize_scores=normalize_scores, len_penalty=len_penalty, unk_penalty=unk_penalty, temperature=temperature, match_source_len=match_source_len, no_repeat_ngram_size=no_repeat_ngram_size, search_strategy=search.BeamSearch(tgt_dict), eos=eos, symbols_to_strip_from_output=symbols_to_strip_from_output, lm_model=lm_model, lm_weight=lm_weight, ) self.eos = self.generator.eos self.generator_mt = SequenceGenerator( models, tgt_dict_mt, beam_size=beam_size_mt, max_len_a=max_len_a_mt, max_len_b=max_len_b_mt, max_len=max_len, min_len=min_len, normalize_scores=normalize_scores, len_penalty=len_penalty_mt, unk_penalty=unk_penalty, temperature=temperature, match_source_len=match_source_len, no_repeat_ngram_size=no_repeat_ngram_size, search_strategy=search.BeamSearch(tgt_dict_mt), eos=eos_mt, symbols_to_strip_from_output=symbols_to_strip_from_output, ) @torch.no_grad() def generate( self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs ) -> List[List[Dict[str, Tensor]]]: """Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens constraints (torch.LongTensor, optional): force decoder to include the list of constraints bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): net_input = sample["net_input"] if "src_tokens" in net_input: src_tokens = net_input["src_tokens"] # length of the source text being the character length except EndOfSentence and pad # if src_lengths exists in net_input (speech_to_text dataset case), then use it if "src_lengths" in net_input: src_lengths = net_input["src_lengths"] else: src_lengths = ( ( src_tokens.ne(self.generator.eos) & src_tokens.ne(self.generator.pad) ) .long() .sum(dim=1) ) else: raise Exception( "expected src_tokens or source in net input. input keys: " + str(net_input.keys()) ) if constraints is not None and not self.generator.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.generator.search.init_constraints(constraints, self.generator.beam_size) self.generator_mt.search.init_constraints( constraints, self.generator_mt.beam_size ) # compute the encoder output for each beam with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"): encoder_outs = self.generator.model.forward_encoder(net_input) single_model = self.generator.model.single_model mt_decoder = getattr(single_model, f"{single_model.mt_task_name}_decoder") # 1. MT decoder finalized_mt = self.generator_mt.generate_decoder( encoder_outs, src_tokens, src_lengths, sample, prefix_tokens, constraints, bos_token, aux_task_name=single_model.mt_task_name, ) # extract decoder output corresponding to the best hypothesis max_tgt_len = max([len(hypo[0]["tokens"]) for hypo in finalized_mt]) prev_output_tokens_mt = ( src_tokens.new_zeros(src_tokens.shape[0], max_tgt_len) .fill_(mt_decoder.padding_idx) .int() ) # B x T for i, hypo in enumerate(finalized_mt): i_beam = 0 tmp = hypo[i_beam]["tokens"].int() # hyp + eos prev_output_tokens_mt[i, 0] = self.generator_mt.eos if tmp[-1] == self.generator_mt.eos: tmp = tmp[:-1] prev_output_tokens_mt[i, 1 : len(tmp) + 1] = tmp text = "".join([self.generator_mt.tgt_dict[c] for c in tmp]) text = text.replace("_", " ") text = text.replace("▁", " ") text = text.replace("<unk>", " ") text = text.replace("<s>", "") text = text.replace("</s>", "") if len(text) > 0 and text[0] == " ": text = text[1:] sample_id = sample["id"].tolist()[i] print("{} (None-{})".format(text, sample_id)) x = mt_decoder( prev_output_tokens_mt, encoder_out=encoder_outs[0], features_only=True, )[0].transpose(0, 1) if getattr(single_model, "proj", None) is not None: x = single_model.proj(x) mt_decoder_padding_mask = None if prev_output_tokens_mt.eq(mt_decoder.padding_idx).any(): mt_decoder_padding_mask = prev_output_tokens_mt.eq(mt_decoder.padding_idx) # 2. T2U encoder if getattr(single_model, "synthesizer_encoder", None) is not None: t2u_encoder_out = single_model.synthesizer_encoder( x, mt_decoder_padding_mask, ) else: t2u_encoder_out = { "encoder_out": [x], # T x B x C "encoder_padding_mask": [mt_decoder_padding_mask] if mt_decoder_padding_mask is not None else [], # B x T "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], } if getattr(single_model, "t2u_augmented_cross_attn", False): encoder_outs_aug = [t2u_encoder_out] else: encoder_outs = [t2u_encoder_out] encoder_outs_aug = None # 3. T2U decoder finalized = self.generator.generate_decoder( encoder_outs, src_tokens, src_lengths, sample, prefix_tokens, constraints, bos_token, encoder_outs_aug=encoder_outs_aug, ) return finalized
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/unity/sequence_generator_multi_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import sequence_generator # noqa from . import sequence_generator_multi_decoder # noqa
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/unity/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import sys from typing import Dict, List, Optional import torch from torch import Tensor from fairseq.sequence_generator import EnsembleModel as EnsembleModelBase from fairseq.sequence_generator import SequenceGenerator as SequenceGeneratorBase class SequenceGenerator(SequenceGeneratorBase): def __init__( self, models, tgt_dict, beam_size=1, max_len_a=0, max_len_b=200, max_len=0, min_len=1, normalize_scores=True, len_penalty=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, search_strategy=None, eos=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, tokens_to_suppress=(), ): """Generates translations of a given source sentence. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length max_len (int, optional): the maximum length of the generated output (not including end-of-sentence) min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) """ super().__init__( models=models, tgt_dict=tgt_dict, beam_size=beam_size, max_len_a=max_len_a, max_len_b=max_len_b, max_len=max_len, min_len=min_len, normalize_scores=normalize_scores, len_penalty=len_penalty, unk_penalty=unk_penalty, temperature=temperature, match_source_len=match_source_len, no_repeat_ngram_size=no_repeat_ngram_size, search_strategy=search_strategy, eos=eos, symbols_to_strip_from_output=symbols_to_strip_from_output, lm_model=lm_model, lm_weight=lm_weight, tokens_to_suppress=tokens_to_suppress, ) if isinstance(models, EnsembleModel): self.model = models else: self.model = EnsembleModel(models) self.model.set_decoder_beam_size(self.beam_size) self.model.eval() def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): net_input = sample["net_input"] if "src_tokens" in net_input: src_tokens = net_input["src_tokens"] # length of the source text being the character length except EndOfSentence and pad # if src_lengths exists in net_input (speech_to_text dataset case), then use it if "src_lengths" in net_input: src_lengths = net_input["src_lengths"] else: src_lengths = ( (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)) .long() .sum(dim=1) ) elif "source" in net_input: src_tokens = net_input["source"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) elif "features" in net_input: src_tokens = net_input["features"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) else: raise Exception( "expected src_tokens or source in net input. input keys: " + str(net_input.keys()) ) if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, self.beam_size) # compute the encoder output for each beam with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"): encoder_outs = self.model.forward_encoder(net_input) finalized = self.generate_decoder( encoder_outs, src_tokens, src_lengths, sample, prefix_tokens, constraints, bos_token, ) return finalized def generate_decoder( self, encoder_outs, src_tokens, src_lengths, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, aux_task_name="", encoder_outs_aug: Optional[ Tensor ] = None, # an additional/augmented encoder_outs ): incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size decoder_name = f"{aux_task_name}_decoder" if aux_task_name else "decoder" max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), self.max_len - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None if encoder_outs_aug is not None: encoder_outs_aug = self.model.reorder_encoder_out( encoder_outs_aug, new_order ) # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step # a boolean array indicating if the sentence at the index is finished or not finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state( incremental_states, reorder_state, decoder_name ) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) if encoder_outs_aug is not None: encoder_outs_aug = self.model.reorder_encoder_out( encoder_outs_aug, reorder_state ) with torch.autograd.profiler.record_function( "EnsembleModel: forward_decoder" ): lprobs, avg_attn_scores = self.model.forward_decoder( tokens[:, : step + 1], encoder_outs, incremental_states, self.temperature, decoder_name=decoder_name, encoder_outs_aug=encoder_outs_aug, ) if self.lm_model is not None and not aux_task_name: lm_out = self.lm_model(tokens[:, : step + 1]) probs = self.lm_model.get_normalized_probs( lm_out, log_probs=True, sample=None ) probs = probs[:, -1, :] * self.lm_weight lprobs += probs lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): lprobs, tokens, scores = self._prefix_tokens( step, lprobs, scores, tokens, prefix_tokens, beam_size ) else: if step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf if self.token_indices_to_suppress is not None: lprobs[:, self.token_indices_to_suppress] = -math.inf # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized class EnsembleModel(EnsembleModelBase): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) @torch.jit.export def forward_decoder( self, tokens, encoder_outs: List[Dict[str, List[Tensor]]], incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], temperature: float = 1.0, decoder_name="decoder", encoder_outs_aug: List[Dict[str, List[Tensor]]] = None, ): log_probs = [] avg_attn: Optional[Tensor] = None encoder_out: Optional[Dict[str, List[Tensor]]] = None encoder_out_aug: Optional[Dict[str, List[Tensor]]] = None for i, model in enumerate(self.models): if self.has_encoder(): encoder_out = encoder_outs[i] if encoder_outs_aug is not None: encoder_out_aug = encoder_outs_aug[i] # decode each model if self.has_incremental_states(): if encoder_out_aug is not None: decoder_out = getattr(model, decoder_name).forward( tokens, encoder_out=encoder_out, encoder_out_aug=encoder_out_aug, incremental_state=incremental_states[i], ) else: decoder_out = getattr(model, decoder_name).forward( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i], ) else: if hasattr(model, decoder_name): decoder_out = getattr(model, decoder_name).forward( tokens, encoder_out=encoder_out ) else: decoder_out = model.forward(tokens) attn: Optional[Tensor] = None decoder_len = len(decoder_out) if decoder_len > 1 and decoder_out[1] is not None: if isinstance(decoder_out[1], Tensor): attn = decoder_out[1] else: attn_holder = decoder_out[1]["attn"] if isinstance(attn_holder, Tensor): attn = attn_holder elif attn_holder is not None: attn = attn_holder[0] if attn is not None: attn = attn[:, -1, :] decoder_out_tuple = ( decoder_out[0][:, -1:, :].div_(temperature), None if decoder_len <= 1 else decoder_out[1], ) probs = getattr(model, decoder_name).get_normalized_probs( decoder_out_tuple, log_probs=True, sample=None ) probs = probs[:, -1, :] if self.models_size == 1: return probs, attn log_probs.append(probs) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log( self.models_size ) if avg_attn is not None: avg_attn.div_(self.models_size) return avg_probs, avg_attn @torch.jit.export def reorder_incremental_state( self, incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order, decoder_name="decoder", ): if not self.has_incremental_states(): return for i, model in enumerate(self.models): getattr(model, decoder_name).reorder_incremental_state_scripting( incremental_states[i], new_order )
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/unity/sequence_generator.py
import os from typing import Dict, List import sacrebleu import pandas as pd from glob import glob from pathlib import Path from utils import retrieve_asr_config, ASRGenerator from tqdm import tqdm from argparse import ArgumentParser def merge_tailo_init_final(text): """ Hokkien ASR hypothesis post-processing. """ sps = text.strip().split() results = [] last_syllable = "" for sp in sps: if sp == "NULLINIT" or sp == "nullinit": continue last_syllable += sp if sp[-1].isnumeric(): results.append(last_syllable) last_syllable = "" if last_syllable != "": results.append(last_syllable) return " ".join(results) def remove_tone(text): """ Used for tone-less evaluation of Hokkien """ return " ".join([t[:-1] for t in text.split()]) def extract_audio_for_eval(audio_dirpath: str, audio_format: str): if audio_format == "n_pred.wav": """ The assumption here is that 0_pred.wav corresponds to the reference at line position 0 from the reference manifest """ audio_list = [] audio_fp_list = glob((Path(audio_dirpath) / "*_pred.wav").as_posix()) audio_fp_list = sorted( audio_fp_list, key=lambda x: int(os.path.basename(x).split("_")[0]) ) for i in range(len(audio_fp_list)): try: audio_fp = (Path(audio_dirpath) / f"{i}_pred.wav").as_posix() assert ( audio_fp in audio_fp_list ), f"{Path(audio_fp).name} does not exist in {audio_dirpath}" except AssertionError: # check the audio with random speaker audio_fp = Path(audio_dirpath) / f"{i}_spk*_pred.wav" audio_fp = glob( audio_fp.as_posix() ) # resolve audio filepath with random speaker assert len(audio_fp) == 1 audio_fp = audio_fp[0] audio_list.append(audio_fp) else: raise NotImplementedError return audio_list def extract_text_for_eval( references_filepath: str, reference_format: str, reference_tsv_column: str = None ): if reference_format == "txt": reference_sentences = open(references_filepath, "r").readlines() reference_sentences = [l.strip() for l in reference_sentences] elif reference_format == "tsv": tsv_df = pd.read_csv(references_filepath, sep="\t", quoting=3) reference_sentences = tsv_df[reference_tsv_column].to_list() reference_sentences = [l.strip() for l in reference_sentences] else: raise NotImplementedError return reference_sentences def compose_eval_data( audio_dirpath: str, audio_format: str, references_filepath: str, reference_format: str, reference_tsv_column: str = None, save_manifest_filepath=None, ): """ Speech matrix decoding pipeline produces audio with the following mask "N_pred.wav" where N is the order of the corresponding input sample """ reference_sentences = extract_text_for_eval( references_filepath, reference_format, reference_tsv_column ) predicted_audio_fp_list = extract_audio_for_eval(audio_dirpath, audio_format) assert len(predicted_audio_fp_list) == len(reference_sentences) audio_text_pairs = [ (audio, reference) for audio, reference in zip(predicted_audio_fp_list, reference_sentences) ] tsv_manifest = pd.DataFrame(audio_text_pairs, columns=["prediction", "reference"]) if save_manifest_filepath is not None: tsv_manifest.to_csv(save_manifest_filepath, sep="\t", quoting=3) return tsv_manifest def load_eval_data_from_tsv(eval_data_filepath: str): """ We may load the result of `compose_eval_data` directly if needed """ eval_df = pd.from_csv(eval_data_filepath, sep="\t") return eval_df def run_asr_bleu(args): asr_config = retrieve_asr_config( args.lang, args.asr_version, json_path="./asr_model_cfgs.json" ) asr_model = ASRGenerator(asr_config) eval_manifest = compose_eval_data( audio_dirpath=args.audio_dirpath, audio_format=args.audio_format, references_filepath=args.reference_path, reference_format=args.reference_format, reference_tsv_column=args.reference_tsv_column, save_manifest_filepath=None, ) prediction_transcripts = [] for _, eval_pair in tqdm( eval_manifest.iterrows(), desc="Transcribing predictions", total=len(eval_manifest), ): transcription = asr_model.transcribe_audiofile(eval_pair.prediction) prediction_transcripts.append(transcription.lower()) if args.lang == "hok": prediction_transcripts = [ merge_tailo_init_final(text) for text in prediction_transcripts ] references = eval_manifest["reference"].tolist() bleu_score = sacrebleu.corpus_bleu(prediction_transcripts, [references]) print(bleu_score) return prediction_transcripts, bleu_score def main(): parser = ArgumentParser( description="This script computes the ASR-BLEU metric between model's generated audio and the text reference sequences." ) parser.add_argument( "--lang", help="The target language used to initialize ASR model, see asr_model_cfgs.json for available languages", type=str, ) parser.add_argument( "--asr_version", type=str, default="oct22", help="For future support we add and extra layer of asr versions. The current most recent version is oct22 meaning October 2022", ) parser.add_argument( "--audio_dirpath", type=str, help="Path to the directory containing the audio predictions from the translation model", ) parser.add_argument( "--reference_path", type=str, help="Path to the file containing reference translations in the form of normalized text (to be compared to ASR predictions", ) parser.add_argument( "--reference_format", choices=["txt", "tsv"], help="Format of reference file. Txt means plain text format where each line represents single reference sequence", ) parser.add_argument( "--reference_tsv_column", default=None, type=str, help="If format is tsv, then specify the column name which contains reference sequence", ) parser.add_argument( "--audio_format", default="n_pred.wav", choices=["n_pred.wav"], help="Audio format n_pred.wav corresponds to names like 94_pred.wav or 94_spk7_pred.wav where spk7 is the speaker id", ) parser.add_argument( "--results_dirpath", default=None, type=str, help="If specified, the resulting BLEU score will be written to this file path as txt file", ) parser.add_argument( "--transcripts_path", default=None, type=str, help="If specified, the predicted transcripts will be written to this path as a txt file.", ) args = parser.parse_args() prediction_transcripts, bleu_score = run_asr_bleu(args) result_filename = f"{args.reference_format}_{args.lang}_bleu.txt" if args.results_dirpath is not None: if not Path(args.results_dirpath).exists(): Path(args.results_dirpath).mkdir(parents=True) with open(Path(args.results_dirpath) / result_filename, "w") as f: f.write(bleu_score.format(width=2)) if args.transcripts_path is not None: with open(args.transcripts_path, "w") as f: for transcript in prediction_transcripts: f.write(transcript + "\n") if __name__ == "__main__": main() """ Example to load Sl audio and references, compute BLEU: export lang=fi; split=vp && python compute_asr_bleu.py --lang $lang --audio_dirpath /checkpoint/hygong/S2S/speech_matrix_release_ckpts/generated_waveform_release/en-$lang/test_$split/checkpoint.pt --audio_format n_pred.wav --reference_path /large_experiments/ust/hygong/S2S/SpeechEncoder/manifests/vp-vp/en-$lang/test_$split.$lang --reference_format txt --results_dirpath ./ """
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/asr_bleu/compute_asr_bleu.py
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/asr_bleu/__init__.py
import json import re import urllib.request from pathlib import Path import fairseq import torch from fairseq.data.data_utils import lengths_to_padding_mask from tqdm import tqdm try: import torchaudio from torchaudio.models.decoder import ctc_decoder except ImportError: raise ImportError("Upgrade torchaudio to 0.12 to enable CTC decoding") class DownloadProgressBar(tqdm): """A class to represent a download progress bar""" def update_to(self, b=1, bsize=1, tsize=None) -> None: """ Update the download progress """ if tsize is not None: self.total = tsize self.update(b * bsize - self.n) def retrieve_asr_config(lang_key: str, asr_version: str, json_path: str) -> dict: """ Retrieve the asr model configs Args: lang_key: the lanuage type as the key name json_path: the path of the config json file Returns: Dict of all the configs in the json file """ with open(json_path, "r") as f: asr_model_cfgs = json.load(f) return asr_model_cfgs[lang_key][asr_version] class ASRGenerator(object): """A class to represent a ASR generator""" def __init__( self, model_cfg: dict, cache_dirpath: str = (Path.home() / ".cache" / "ust_asr").as_posix(), ) -> None: """ Construct all the necessary attributes of the ASRGenerator class Args: model_cfg: the dict of the asr model config cache_dirpath: the default cache path is "Path.home()/.cache/ust_asr" """ self.cache_dirpath = Path(cache_dirpath) / model_cfg["lang"] self.model_cfg = model_cfg self.use_cuda = torch.cuda.is_available() torchaudio.set_audio_backend("sox_io") if self.model_cfg["model_type"] == "hf": self.prepare_hf_model(self.model_cfg) elif self.model_cfg["model_type"] == "fairseq": self.prepare_fairseq_model(self.model_cfg) else: raise NotImplementedError( f"Model type {self.model_cfg['model_type']} is not supported" ) if self.model_cfg["post_process"] == "collapse": self.post_process_fn = lambda hypo: "".join(hypo).replace( self.sil_token, " " ) elif self.model_cfg["post_process"] == "none": self.post_process_fn = lambda hypo: " ".join(hypo).replace( self.sil_token, " " ) else: raise NotImplementedError if self.use_cuda: self.model.cuda() self.model.eval() self.decoder = ctc_decoder( lexicon=None, tokens=self.tokens, lm=None, nbest=1, beam_size=1, beam_size_token=None, lm_weight=0.0, word_score=0.0, unk_score=float("-inf"), sil_token=self.sil_token, sil_score=0.0, log_add=False, blank_token=self.blank_token, ) def prepare_hf_model(self, model_cfg: dict) -> None: """ Prepare the huggingface asr model Args: model_cfg: dict with the relevant ASR config """ def infer_silence_token(vocab: list): """ Different HF checkpoints have different notion of silence token such as | or " " (space) Important: when adding new HF asr model in, check what silence token it uses """ if "|" in vocab: return "|" elif " " in vocab: return " " else: raise RuntimeError("Silence token is not found in the vocabulary") try: from transformers import (AutoFeatureExtractor, AutoTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor) except ImportError: raise ImportError("Install transformers to load HF wav2vec model") model_path = model_cfg["model_path"] self.model = Wav2Vec2ForCTC.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.preprocessor = AutoFeatureExtractor.from_pretrained(model_path) self.processor = Wav2Vec2Processor.from_pretrained(model_path) # extra unk tokens are there to make some models work e.g. Finnish ASR has some vocab issue vocab_list = [ self.tokenizer.decoder.get(i, f"{self.tokenizer.unk_token}1") for i in range(self.tokenizer.vocab_size) ] self.sampling_rate = self.preprocessor.sampling_rate self.normalize_input = self.preprocessor.do_normalize self.tokens = vocab_list self.sil_token = infer_silence_token(vocab_list) self.blank_token = self.tokenizer.pad_token def prepare_fairseq_model(self, model_cfg: dict) -> None: """ Prepare the fairseq asr model Args: model_cfg: the specific model config dict must have: (1) ckpt_path, (2) dict_path """ def download_file(url: str, cache_dir: Path): download_path = cache_dir / url.split("/")[-1] if not (cache_dir / url.split("/")[-1]).exists(): with DownloadProgressBar( unit="B", unit_scale=True, miniters=1, desc=url.split("/")[-1] ) as t: cache_dir.mkdir(parents=True, exist_ok=True) urllib.request.urlretrieve( url, filename=download_path.as_posix(), reporthook=t.update_to ) else: print(f"'{url}' exists in {cache_dir}") return download_path.as_posix() try: ckpt_path = model_cfg["ckpt_path"] dict_path = model_cfg["dict_path"] except KeyError: raise KeyError( "Fairseq model cfg must provide (1) ckpt_path, (2) dict_path" ) if re.search("^https", ckpt_path): ckpt_path = download_file(ckpt_path, self.cache_dirpath) if re.search("^https", dict_path): dict_path = download_file(dict_path, self.cache_dirpath) model, saved_cfg, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [ckpt_path], arg_overrides={ "task": "audio_finetuning", "data": self.cache_dirpath.as_posix(), }, # data must have dict in it ) dict_lines = open(dict_path, "r").readlines() tokens = [l.split()[0] for l in dict_lines] # adding default fairseq special tokens tokens = ["<s>", "<pad>", "</s>", "<unk>"] + tokens self.model = model[0] self.tokens = tokens if "|" in tokens: self.sil_token = "|" else: self.sil_token = tokens[ 2 ] # use eos as silence token if | not presented e.g., Hok ASR model print(f"Inferring silence token from the dict: {self.sil_token}") self.blank_token = self.tokens[0] self.sampling_rate = saved_cfg.task.sample_rate self.normalize_input = saved_cfg.task.normalize @torch.inference_mode() def load_audiofile(self, audio_path: str) -> torch.Tensor: """ Load the audio files and apply resampling and normalizaion Args: audio_path: the audio file path Returns: audio_waveform: the audio waveform as a torch.Tensor object """ audio_waveform, sampling_rate = torchaudio.load(audio_path) if audio_waveform.dim == 2: audio_waveform = audio_waveform.mean(-1) if self.sampling_rate != sampling_rate: audio_waveform = torchaudio.functional.resample( audio_waveform, sampling_rate, self.sampling_rate ) if self.normalize_input: # following fairseq raw audio dataset audio_waveform = torch.nn.functional.layer_norm( audio_waveform, audio_waveform.shape ) return audio_waveform @torch.inference_mode() def compute_emissions(self, audio_input: torch.Tensor) -> torch.Tensor: """ Compute the emissions for either fairseq or huggingface asr model Args: audio_path: the input audio waveform Returns: emissions: the logits of the encoded prediction. """ if self.use_cuda: audio_input = audio_input.to("cuda") if isinstance(self.model, fairseq.models.wav2vec.wav2vec2_asr.Wav2VecCtc): padding_mask = lengths_to_padding_mask(torch.tensor([audio_input.numel()])) emissions = self.model.w2v_encoder(audio_input, padding_mask)[ "encoder_out" ].transpose(0, 1) else: emissions = self.model(audio_input).logits return emissions def decode_emissions(self, emissions: torch.Tensor) -> str: """ Decode the emissions and apply post process functions Args: emissions: the input Tensor object Returns: hypo: the str as the decoded transcriptions """ emissions = emissions.cpu() results = self.decoder(emissions) # assuming the lexicon-free decoder and working with tokens hypo = self.decoder.idxs_to_tokens(results[0][0].tokens) hypo = self.post_process_fn(hypo) return hypo def transcribe_audiofile(self, audio_path: str, lower=True) -> str: """ Transcribe the audio into string Args: audio_path: the input audio waveform lower: the case of the transcriptions with lowercase as the default Returns: hypo: the transcription result """ asr_input = self.load_audiofile(audio_path) emissions = self.compute_emissions(asr_input) hypo = self.decode_emissions(emissions) return hypo.strip().lower() if lower else hypo.strip()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/asr_bleu/utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from pathlib import Path from tqdm import tqdm def process(args): args.output_root.mkdir(exist_ok=True) # load units units = {} with open(args.in_unit) as f: for line in f: unit_seq, utt_id = line.strip().rsplit(" ", 1) utt_id = int(utt_id[6:-1]) # remove "(None-" units[utt_id] = unit_seq with open(args.in_audio) as f, open( args.output_root / f"{args.in_audio.stem}.txt", "w" ) as o: f.readline() for i, line in enumerate(tqdm(f.readlines())): audio, _ = line.strip().split("\t", 1) sample_id = Path(audio).stem o.write(f"{sample_id}|{units[i]}\n") def main(): parser = argparse.ArgumentParser() parser.add_argument( "--in-unit", required=True, type=Path, help="unit file (output from the speech normalizer)", ) parser.add_argument( "--in-audio", required=True, type=Path, help="tsv file (input to the normalizer)", ) parser.add_argument( "--output-root", required=True, type=Path, help="output directory" ) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/preprocessing/prep_sn_output_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/preprocessing/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import soundfile as sf from tqdm import tqdm import pandas as pd from examples.speech_to_speech.preprocessing.data_utils import ( gen_config_yaml, load_units, process_units, ) from examples.speech_to_text.data_utils import save_df_to_tsv logger = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "src_audio", "src_n_frames", "tgt_audio", "tgt_n_frames"] def process(args): args.output_root.mkdir(exist_ok=True) print("Generating manifest...") for split in args.data_split: print(f"Processing {split}") # load target units target_unit_data = load_units(args.target_dir / f"{split}.txt") manifest = {c: [] for c in MANIFEST_COLUMNS} missing_tgt_audios = [] src_audios = list(args.source_dir.glob(f"{split}/*.wav")) for src_audio in tqdm(src_audios): sample_id = src_audio.stem if sample_id not in target_unit_data: missing_tgt_audios.append(sample_id) continue src_n_frames = sf.info(src_audio.as_posix()).frames manifest["id"].append(sample_id) manifest["src_audio"].append(src_audio.as_posix()) manifest["src_n_frames"].append( src_n_frames // 160 ) # estimation of 10-ms frame for 16kHz audio target_units = process_units(target_unit_data[sample_id], args.reduce_unit) manifest["tgt_audio"].append(" ".join(target_units)) manifest["tgt_n_frames"].append(len(target_units)) print(f"Processed {len(manifest['id'])} samples") if len(missing_tgt_audios) > 0: print( f"{len(missing_tgt_audios)} with missing target data (first 3 examples: {', '.join(missing_tgt_audios[:3])})" ) out_manifest = args.output_root / f"{split}.tsv" print(f"Writing manifest to {out_manifest}...") save_df_to_tsv(pd.DataFrame.from_dict(manifest), out_manifest) # Generate config YAML gen_config_yaml( args.output_root, specaugment_policy="lb", feature_transform=["utterance_cmvn"], vocoder_type="code_hifigan", vocoder_checkpoint=args.vocoder_checkpoint, vocoder_cfg=args.vocoder_cfg, ) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--source-dir", required=True, type=Path, help="source audio directory" ) parser.add_argument( "--target-dir", required=True, type=Path, help="target audio directory" ) parser.add_argument( "--data-split", default=["train", "valid", "test"], nargs="+", help="data split names", ) parser.add_argument( "--output-root", required=True, type=Path, help="output directory" ) parser.add_argument( "--reduce-unit", action="store_true", help="reduce a target unit sequence to a unique unit sequence, i.e. '1 1 1 2 2' -> '1 2'", ) parser.add_argument( "--vocoder-checkpoint", default=None, type=str, help="vocoder checkpoint" ) parser.add_argument( "--vocoder-cfg", default=None, type=str, help="vocoder config file" ) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/preprocessing/prep_s2ut_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from typing import List, Optional from examples.speech_to_text.data_utils import S2TDataConfigWriter def gen_config_yaml( manifest_root: Path, yaml_filename: str = "config.yaml", specaugment_policy: Optional[str] = "lb", feature_transform: Optional[List[str]] = None, input_channels: Optional[int] = 1, input_feat_per_channel: Optional[int] = 80, audio_root: str = "", vocoder_type: Optional[str] = None, vocoder_checkpoint: Optional[str] = None, vocoder_cfg: Optional[str] = None, extra=None, ): manifest_root = manifest_root.absolute() writer = S2TDataConfigWriter(manifest_root / yaml_filename) if input_channels is not None: writer.set_input_channels(input_channels) if input_feat_per_channel is not None: writer.set_input_feat_per_channel(input_feat_per_channel) specaugment_setters = { "lb": writer.set_specaugment_lb_policy, "ld": writer.set_specaugment_ld_policy, "sm": writer.set_specaugment_sm_policy, "ss": writer.set_specaugment_ss_policy, } specaugment_setter = specaugment_setters.get(specaugment_policy, None) if specaugment_setter is not None: specaugment_setter() if feature_transform is None: feature_transform = [] else: writer.set_feature_transforms("*", feature_transform) if specaugment_policy is not None: writer.set_feature_transforms("_train", feature_transform + ["specaugment"]) if len(audio_root) > 0: writer.set_audio_root(audio_root) if ( vocoder_type is not None and vocoder_checkpoint is not None and vocoder_cfg is not None ): writer.set_extra( { "vocoder": { "type": vocoder_type, "config": vocoder_cfg, "checkpoint": vocoder_checkpoint, } } ) if extra is not None: writer.set_extra(extra) writer.flush() def load_units(in_file): out = {} with open(in_file) as f: for line in f: sample_id, units = line.strip().split("|", 1) out[sample_id] = units.split() return out def process_units(units, reduce=False): if not reduce: return units out = [u for i, u in enumerate(units) if i == 0 or u != units[i - 1]] return out
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/preprocessing/data_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Adapted from examples/wav2vec/wav2vec_manifest.py """ Data preparation for the speech normalizer """ import argparse import glob import os import soundfile from examples.speech_to_speech.preprocessing.data_utils import load_units, process_units def process(args): assert ( args.for_inference or args.target_unit is not None ), "missing --target-unit or --for-inference" if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) dir_path = os.path.realpath(args.audio_dir) search_path = os.path.join(dir_path, "**/*." + args.ext) if args.target_unit: unit_data = load_units(args.target_unit) with open(os.path.join(args.output_dir, f"{args.data_name}.tsv"), "w") as o_t, open( os.path.join(args.output_dir, f"{args.data_name}.unit"), "w" ) as o_u: print(dir_path, file=o_t) for fname in glob.iglob(search_path, recursive=True): file_path = os.path.realpath(fname) frames = soundfile.info(fname).frames print( "{}\t{}".format(os.path.relpath(file_path, dir_path), frames), file=o_t ) if args.for_inference: print("0", file=o_u) else: sample_id = os.path.basename(file_path)[: -len(args.ext) - 1] assert ( sample_id in unit_data ), f'{fname} does not have unit data in {args.target_unit}. Expecting sample_id "{sample_id}".' target_units = process_units(unit_data[sample_id], reduce=True) print(" ".join(target_units), file=o_u) def main(): parser = argparse.ArgumentParser() parser.add_argument("--audio-dir", required=True, type=str, help="audio directory") parser.add_argument("--ext", default="flac", type=str, help="audio extension") parser.add_argument( "--data-name", required=True, type=str, help="dataset name", ) parser.add_argument( "--output-dir", required=True, type=str, help="output directory" ) parser.add_argument( "--for-inference", action="store_true", help="set this if preparing data for running inference with a speech normalizer", ) parser.add_argument( "--target-unit", default=None, type=str, help="a file containing unit sequences in the format: sample_id|u1 u2 ...", ) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/preprocessing/prep_sn_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path import shutil import torchaudio import soundfile as sf from tqdm import tqdm import pandas as pd from examples.speech_synthesis.data_utils import extract_logmel_spectrogram from examples.speech_to_speech.preprocessing.data_utils import gen_config_yaml from examples.speech_to_text.data_utils import create_zip, get_zip_manifest, save_df_to_tsv from fairseq.data.audio.audio_utils import convert_waveform logger = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "src_audio", "src_n_frames", "tgt_audio", "tgt_n_frames"] def prepare_target_data(args, tgt_audios): feature_name = "logmelspec80" zip_path = args.output_root / f"{feature_name}.zip" if zip_path.exists(): print(f"{zip_path} exists.") return zip_path feature_root = args.output_root / feature_name feature_root.mkdir(exist_ok=True) print("Extracting Mel spectrogram features...") for tgt_audio in tqdm(tgt_audios): sample_id = tgt_audio.stem waveform, sample_rate = torchaudio.load(tgt_audio.as_posix()) waveform, sample_rate = convert_waveform( waveform, sample_rate, normalize_volume=args.normalize_volume, to_sample_rate=args.sample_rate ) extract_logmel_spectrogram( waveform, sample_rate, feature_root / f"{sample_id}.npy", win_length=args.win_length, hop_length=args.hop_length, n_fft=args.n_fft, n_mels=args.n_mels, f_min=args.f_min, f_max=args.f_max ) print("ZIPing features...") create_zip(feature_root, zip_path) shutil.rmtree(feature_root) return zip_path def process(args): os.makedirs(args.output_root, exist_ok=True) manifest = {} tgt_audios = [] for split in args.data_split: print(f"Processing {split}...") manifest[split] = {c: [] for c in MANIFEST_COLUMNS} missing_tgt_audios = [] src_audios = list(args.source_dir.glob(f"{split}/*.wav")) for src_audio in tqdm(src_audios): sample_id = src_audio.stem tgt_audio = args.target_dir / split / f"{sample_id}.wav" if not tgt_audio.is_file(): missing_tgt_audios.append(sample_id) continue tgt_audios.append(tgt_audio) src_n_frames = sf.info(src_audio.as_posix()).frames manifest[split]["id"].append(sample_id) manifest[split]["src_audio"].append(src_audio.as_posix()) manifest[split]["src_n_frames"].append( src_n_frames // 160 ) # estimation of 10-ms frame for 16kHz audio print(f"Processed {len(manifest[split]['id'])} samples") if len(missing_tgt_audios) > 0: print( f"{len(missing_tgt_audios)} with missing target data (first 3 examples: {', '.join(missing_tgt_audios[:3])})" ) # Extract features and pack features into ZIP zip_path = prepare_target_data(args, tgt_audios) print("Fetching ZIP manifest...") tgt_audio_paths, tgt_audio_lengths = get_zip_manifest(zip_path) print("Generating manifest...") for split in args.data_split: print(f"Processing {split}...") for sample_id in tqdm(manifest[split]["id"]): manifest[split]["tgt_audio"].append(tgt_audio_paths[sample_id]) manifest[split]["tgt_n_frames"].append(tgt_audio_lengths[sample_id]) out_manifest = args.output_root / f"{split}.tsv" print(f"Writing manifest to {out_manifest}...") save_df_to_tsv(pd.DataFrame.from_dict(manifest[split]), out_manifest) # Generate config YAML win_len_t = args.win_length / args.sample_rate hop_len_t = args.hop_length / args.sample_rate extra = { "features": { "type": "spectrogram+melscale+log", "sample_rate": args.sample_rate, "eps": 1e-5, "n_mels": args.n_mels, "n_fft": args.n_fft, "window_fn": "hann", "win_length": args.win_length, "hop_length": args.hop_length, "win_len_t": win_len_t, "hop_len_t": hop_len_t, "f_min": args.f_min, "f_max": args.f_max, "n_stft": args.n_fft // 2 + 1 } } gen_config_yaml( args.output_root, audio_root=args.output_root.as_posix(), specaugment_policy="lb", feature_transform=["utterance_cmvn", "delta_deltas"], extra=extra, ) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--source-dir", required=True, type=Path, help="source audio directory" ) parser.add_argument( "--target-dir", required=True, type=Path, help="target audio directory" ) parser.add_argument( "--data-split", default=["train", "valid", "test"], nargs="+", help="data split names", ) parser.add_argument( "--output-root", required=True, type=Path, help="output directory" ) # target feature related parser.add_argument("--win-length", type=int, default=1024) parser.add_argument("--hop-length", type=int, default=256) parser.add_argument("--n-fft", type=int, default=1024) parser.add_argument("--n-mels", type=int, default=80) parser.add_argument("--f-min", type=int, default=20) parser.add_argument("--f-max", type=int, default=8000) parser.add_argument("--sample-rate", type=int, default=22050) parser.add_argument("--normalize-volume", "-n", action="store_true") args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/preprocessing/prep_s2spect_data.py
import timeit import logging import torch from pypapi import events, papi_high as high from memory_profiler import memory_usage from torch import nn from argparse import Namespace from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.data import data_utils as fairseq_data_utils from fairseq import checkpoint_utils, tasks, utils from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder from examples.hubert.simple_kmeans.dump_hubert_feature import HubertFeatureReader from examples.hubert.simple_kmeans.dump_km_label import ApplyKmeans from fairseq_cli.generate import get_symbols_to_strip_from_output import soundfile as sf import ast import json logging.basicConfig() logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) torch.manual_seed(1) torch.set_deterministic(True) class BenchmarkingBase(nn.Module): def __init__(self): nn.Module.__init__(self) self.s2x_task = None def warm_up(self, sample, repeat): """Warm up the model""" for _i in range(repeat): self.forward(sample) logger.info(f"Model warmed up by running inference {repeat} times") def benchmark_run_time(self, dataset, repeat): """Benchmark average runtime for the model by calling benchmark_run_time_single_sample function""" logger.info("Starting run time benchmarking") time_elapsed = 0 for i, sample in enumerate(dataset): time_elapsed += self.benchmark_run_time_single_sample(sample, repeat=repeat) if i % 100 == 0: logger.info(f"Benchmarked run time for {i}/{len(dataset)} samples") total_time_elapsed = time_elapsed / len(dataset) return total_time_elapsed def benchmark_run_time_single_sample(self, sample, repeat): """Benchmark average runtime for a single sample using timeit library. Units are seconds""" timer = timeit.Timer(lambda: self.forward(sample)) time_elapsed = timer.timeit(repeat) return time_elapsed / repeat def count_flops( self, dataset, repeat, ): """Use PYPAPI library to count average flops for model inference. Note: It only works if the model is being run on cpu""" logger.info("Starting flop counter") high.start_counters([events.PAPI_DP_OPS]) for i, sample in enumerate(dataset): for _r in range(repeat): self.forward(sample) if i % 100 == 0: logger.info(f"Counted flops for {i}/{len(dataset)} samples") flops = high.stop_counters() flops = round(flops[0] / (repeat * len(dataset))) return flops def max_memory(self, dataset, repeat): """Compute average max memory consumed by model inference. Units are MiB""" logger.info("Starting memory benchmarking") total_memory = 0 for i, sample in enumerate(dataset): for _r in range(repeat): total_memory += max(memory_usage((self.forward, (sample,), {}))) if i % 100 == 0: logger.info(f"Benchmarked memory for {i}/{len(dataset)} samples") total_memory = total_memory / (repeat * len(dataset)) return total_memory def gather_all_metrics(self, dataset, repeat): run_time = self.benchmark_run_time(dataset, repeat) max_memory = self.max_memory(dataset, repeat) flops = self.count_flops(dataset, repeat) return run_time, max_memory, flops def dump_final_speech_output( self, dataset, output_dir, resample_fn, sample_rate, prefix=None ): for i, sample in enumerate(dataset): hypo = self.forward(sample)[0] def to_np(x): return x.detach().cpu().numpy() try: wave_preds = to_np(resample_fn(hypo["waveform"])) sf.write( f"{output_dir}/{prefix}_{i}_pred.wav", wave_preds, sample_rate, ) except Exception as e: raise Exception( f" Encountered {e} - Invalid waveform. Make sure the model outputs a waveform" ) class Processing(BenchmarkingBase): """Class similar to fairseq_cli/generate.py. Supports ASR, MT and ST model inference""" def __init__(self, args): super().__init__() self.use_cuda = not getattr(args, "cpu", False) self.setUp(args) self.training = False self.s2x_task = self.task def setUp(self, cfg): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) self.task = tasks.setup_task(cfg.task) self.tgt_dict = self.task.target_dictionary # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, _ = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), arg_overrides={}, task=self.task, suffix=cfg.checkpoint.checkpoint_suffix, strict=False, num_shards=cfg.checkpoint.checkpoint_shard_count, ) if len(models) > 1: raise Exception("Currently loading multiple models is not supported") self.model = models[0] # Optimize model for generation if cfg.common.fp16: self.model.half() if self.use_cuda: self.model.cuda() self.model.prepare_for_inference_(cfg) self.generator = self.task.build_generator( [self.model], cfg.generation, extra_gen_cls_kwargs={}, ) # Handle tokenization and BPE self.tokenizer = self.task.build_tokenizer(cfg.tokenizer) self.bpe = self.task.build_bpe(cfg.bpe) self.remove_bpe = cfg.common_eval.post_process def encode_source(self, src): """Method to generate source tokens from a string""" if self.tokenizer is not None: src = self.tokenizer.encode(src) if self.bpe is not None: src = self.bpe.encode(src) src_tokens = self.task.source_dictionary.encode_line(src).long() src_lens = src_tokens.size(0) return { "net_input": { "src_tokens": src_tokens.view(1, src_lens), "src_lengths": torch.tensor([src_lens]), } } def decode_target(self, hypos): """Method to decode target string from tokens""" hypo_str = self.tgt_dict.string( hypos[0][0]["tokens"].int().cpu(), self.remove_bpe, get_symbols_to_strip_from_output(self.generator), ) if self.bpe is not None: hypo_str = self.bpe.decode(hypo_str) if self.tokenizer is not None: hypo_str = self.tokenizer.decode(hypo_str) return hypo_str def forward(self, sample): hypos = self.task.inference_step( self.generator, [self.model], sample, prefix_tokens=None, constraints=None, ) return hypos class GenerateWaveformFromCode(BenchmarkingBase): """Class to support waveform generation from code. Currently, vocoder only supports single speaker""" def __init__(self, args): super().__init__() with open(args.vocoder_cfg) as f: vocoder_cfg = json.load(f) self.dur_prediction = args.dur_prediction self.vocoder = CodeHiFiGANVocoder(args.vocoder, vocoder_cfg) def format_units(self, input): code = torch.LongTensor(list(map(int, input.strip().split()))).view(1, -1) return {"code": code} def generate_vocoder_input(self, dataset): return [self.format_units(sample) for sample in dataset] def forward(self, sample): return [{"waveform": self.vocoder(sample, self.dur_prediction)}] class HubertUnitExtractor(BenchmarkingBase): def __init__(self, args): self.feature_reader = HubertFeatureReader( args.hubert_ckpt_path, args.hubert_layer ) self.kmeans = ApplyKmeans(args.hubert_km_path) def forward(self, sample): with torch.no_grad(): feat = [] for start in range(0, sample.size(1), self.feature_reader.max_chunk): x_chunk = sample[:, start : start + self.max_chunk] feat_chunk, _ = self.feature_reader.model.extract_features( source=x_chunk, padding_mask=None, mask=False, output_layer=self.layer, ) feat.append(feat_chunk) torch.cat(feat, 1).squeeze(0) return self.kmeans(feat).tolist() class SpeechGeneration(BenchmarkingBase): """Class similar to examples/text_to_speech/generate_waveform.py. Supports models with speech generation as end goal (TTS, Direct S2ST models etc)""" def __init__(self, args): super().__init__() self.use_cuda = not getattr(args, "cpu", False) self.setUp(args) self.s2x_task = self.task def setUp(self, args): if args.task == "speech_to_speech": args.normalize_waveform = False self.task = tasks.setup_task(args) self.pre_tokenizer = self.task.build_tokenizer(args) self.bpe_tokenizer = self.task.build_bpe(args) try: self.src_dict = self.task.src_dict except Exception: self.src_dict = None ensemble, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [args.path], arg_overrides=ast.literal_eval(args.model_overrides), task=self.task, strict=False, ) self.model = ensemble[0] if self.use_cuda: self.model.cuda() # criterion.cuda() self.model.eval() self.generator = self.task.build_generator( [self.model], args, ) def processTextInput(self, text): """Generate source tokens from text input""" if self.pre_tokenizer is not None: text = self.pre_tokenizer.encode(text) if self.bpe_tokenizer is not None: text = self.bpe_tokenizer.encode(text) target = self.src_dict.encode_line( text, add_if_not_exist=False, append_eos=True ).long() target = fairseq_data_utils.collate_tokens( [target], self.src_dict.pad(), self.src_dict.eos(), left_pad=False, move_eos_to_beginning=False, ) src_lengths = torch.tensor([target.size(1)], dtype=torch.long) prev_output_tokens = None sample = { "net_input": { "src_tokens": target, "src_lengths": src_lengths, "prev_output_tokens": prev_output_tokens, } } sample = utils.move_to_cuda(sample) if self.use_cuda else sample return sample def forward(self, sample): sample["speaker"] = None output = self.generator.generate(self.model, sample) # , has_targ=False return output class S2UT(BenchmarkingBase): """Class to support S2UT models. Also supports generating waveforms from the units predicted""" def __init__(self, s2u_args, vocoder_args=None): super().__init__() self.s2u = Processing(s2u_args) self.vocoder = None if vocoder_args: self.vocoder = GenerateWaveformFromCode(vocoder_args) self.vocoder_input = None def forward(self, sample): s2u_hypos = self.s2u(sample) s2u_output = self.s2u.decode_target(s2u_hypos) if not self.vocoder: return s2u_output units = self.vocoder.format_units(s2u_output) vocoder_output = self.vocoder(units) return vocoder_output def generate_s2u_outputs(self, dataset): return [self.s2u.decode_target(self.s2u(sample)) for sample in dataset] def compute_metrics(self, metric_type, dataset, repeat=None): """Generic function to compute metrics ignoring the io processing time""" if self.vocoder and not self.vocoder_input: self.s2u_output = self.generate_s2u_outputs(dataset) self.vocoder_input = self.vocoder.generate_vocoder_input(self.s2u_output) s2u_metrics = getattr(self.s2u, metric_type)( dataset, repeat, ) vocoder_metrics = 0 if self.vocoder: vocoder_metrics = getattr(self.vocoder, metric_type)( self.vocoder_input, repeat, ) print( f"metric_type = {metric_type} s2u_metrics = {s2u_metrics} \t vocoder_metrics = {vocoder_metrics}" ) if metric_type == "max_memory": return max(s2u_metrics, vocoder_metrics) else: return s2u_metrics + vocoder_metrics def benchmark_run_time(self, dataset, repeat): return self.compute_metrics("benchmark_run_time", dataset, repeat) def count_flops(self, dataset, repeat): return self.compute_metrics("count_flops", dataset, repeat) def max_memory(self, dataset, repeat): return self.compute_metrics("max_memory", dataset, repeat) class Cascaded2StageS2ST(BenchmarkingBase): """ST + TTS""" def __init__(self, s2t_args, tts_args): super().__init__() self.s2t = Processing(s2t_args) self.s2x_task = self.s2t.task self.tts = SpeechGeneration(tts_args) if tts_args else None self.training = False self.tts_inputs = None def forward(self, sample): if not self.tts: raise Exception( "Forward function is not callable without tts. Reinitialize the class with tts_args" ) s2t_hypos = self.s2t(sample) s2t_output = self.s2t.decode_target(s2t_hypos) tts_input = self.tts.processTextInput(s2t_output) tts_output = self.tts(tts_input) return tts_output def generate_s2t_outputs(self, dataset): """Process dataset and generate s2t outputs""" return [self.s2t.decode_target(self.s2t(sample)) for sample in dataset] def generate_tts_inputs(self, dataset): """Process dataset and generate tts inputs""" return [self.tts.processTextInput(sample) for sample in dataset] def compute_metrics(self, metric_type, dataset, repeat=None): """Generic function to compute metrics ignoring the io processing time""" if not self.tts_inputs: s2t_outputs = self.generate_s2t_outputs(dataset) self.tts_inputs = self.generate_tts_inputs(s2t_outputs) s2t_metrics = getattr(self.s2t, metric_type)( dataset, repeat, ) tts_metrics = getattr(self.tts, metric_type)( self.tts_inputs, repeat, ) print( f"metric_type = {metric_type} s2t_metrics = {s2t_metrics} \t tts_metrics = {tts_metrics}" ) if metric_type == "max_memory": return max(s2t_metrics, tts_metrics) else: return s2t_metrics + tts_metrics def benchmark_run_time(self, dataset, repeat): return self.compute_metrics("benchmark_run_time", dataset, repeat) def count_flops(self, dataset, repeat): return self.compute_metrics("count_flops", dataset, repeat) def max_memory(self, dataset, repeat): return self.compute_metrics("max_memory", dataset, repeat) class Cascaded3StageS2ST(Cascaded2StageS2ST): """ASR + MT + TTS""" def __init__(self, s2t_args, tts_args, mt_args): super().__init__(s2t_args, tts_args) self.mt = Processing(mt_args) self.mt_inputs = [] def forward(self, sample): s2t_hypos = self.s2t(sample) s2t_output = self.s2t.decode_target(s2t_hypos) mt_input = self.mt.encode_source(s2t_output) mt_hypos = self.mt(mt_input) mt_output = self.mt.decode_target(mt_hypos) tts_input = self.tts.processTextInput(mt_output) tts_output = self.tts(tts_input) return tts_output def generate_mt_inputs(self, dataset): """Process dataset to generate mt model inputs""" return [self.mt.encode_source(sample) for sample in dataset] def generate_mt_outputs(self, dataset): """Process dataset to generate mt model outputs""" return [self.mt.decode_target(self.mt(sample)) for sample in dataset] def compute_metrics(self, metric_type, dataset, repeat=None): """Generic function to compute metrics ignoring the io processing time""" if not self.tts_inputs: s2t_outputs = self.generate_s2t_outputs(dataset) self.mt_inputs = self.generate_mt_inputs(s2t_outputs) mt_outputs = self.generate_mt_outputs(self.mt_inputs) self.tts_inputs = self.generate_tts_inputs(mt_outputs) s2t_metrics = getattr(self.s2t, metric_type)( dataset, repeat, ) mt_metrics = getattr(self.mt, metric_type)(self.mt_inputs, repeat) tts_metrics = getattr(self.tts, metric_type)( self.tts_inputs, repeat, ) print( f"metric_type = {metric_type} s2t_metrics = {s2t_metrics} \t mt_metrics = {mt_metrics} \t tts_metrics = {tts_metrics}" ) if metric_type == "max_memory": return max(s2t_metrics, mt_metrics, tts_metrics) else: return s2t_metrics + mt_metrics + tts_metrics
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/benchmarking/core.py
from fairseq import tasks import numpy as np import logging import random from fairseq import options import torch import os import soundfile as sf from fairseq.data.audio.audio_utils import ( get_waveform, parse_path, ) logging.basicConfig() logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) random.seed(1) np.random.seed(1) random_number_generator = np.random.RandomState(30) def generate_random_data_sample(T, B=1, D=80): """Generate random data sample given the T, B, D values""" net_input = { "src_tokens": torch.tensor(random_number_generator.randn(B, T, D)).float(), "src_lengths": torch.tensor([T]), } return {"net_input": net_input} def generate_random_dataset(T_range_min, T_range_max, B=1, D=80, dataset_size=100): """Generate random dataset with T values within a given range, B, D""" T_values = [random.randint(T_range_min, T_range_max) for i in range(dataset_size)] dataset = [] for t in T_values: dataset.append(generate_random_data_sample(t, B, D)) return dataset, sum(T_values) / dataset_size def load_dataset_npy(file_name, dataset_size=None): """Load dataset from a .npy file.""" data = np.load(file_name, allow_pickle=True) if dataset_size: data = data[:dataset_size] return data def load_dataset_raw_to_waveforms( file_name, dataset_size=None, need_waveform=True, sample_rate=16000, read_using_soundfile=False, ): """Load raw dataset from w2v tsv file. Optionally get waveforms""" data = [] with open(file_name, "r") as fp: lines = fp.readlines() data = [ os.path.join(lines[0].strip(), line.strip().split("\t")[0]) for line in lines[1:] ] if dataset_size: data = data[:dataset_size] if not need_waveform: return data features = [] if read_using_soundfile: for _i, d in enumerate(data): wav = sf.read(d)[0] if wav.ndim == 2: wav = wav.mean(-1) features.append(torch.from_numpy(wav).float().view(1, -1)) else: for i, d in enumerate(data): _path, slice_ptr = parse_path(d) if len(slice_ptr) == 0: feat = get_waveform( _path, always_2d=True, output_sample_rate=sample_rate )[0] features.append( { "id": i, "net_input": { "src_tokens": torch.tensor(feat), "src_lengths": torch.tensor([feat.shape[1]]), }, } ) else: raise Exception("Currently unsupported data format") return features def load_dataset_task( args, batch_size=1, limit_size=None, ref_dataset=None, ): """Loads dataset based on args by creating a task""" if not args.data or not args.subset or not args.task: raise Exception( "Please provide necessary arguments to load the dataset - data, subset and task" ) task = tasks.setup_task(args) task.load_dataset(args.subset) if not limit_size: limit_size = len(task.dataset(args.subset)) iter = task.get_batch_iterator( dataset=task.dataset(args.subset), max_sentences=batch_size ).next_epoch_itr(shuffle=False) dataset = [] for i, sample in enumerate(iter): sample = { "id": task.datasets[args.subset].ids[sample["id"].item()], "net_input": { "src_tokens": sample["net_input"]["src_tokens"], "src_lengths": sample["net_input"]["src_lengths"], }, } dataset.append(sample) if i == limit_size - 1: break if ref_dataset: try: ids = get_ids_from_dataset(ref_dataset) except Exception as e: raise Exception(f"{e} - Cannot extract ids from reference dataset") filtered_dataset = [] for sample in dataset: if ( sample["id"] in ids or sample["id"][5:] in ids or f"dev_{sample['id']}" in ids ): filtered_dataset.append(sample) dataset = filtered_dataset max_len, min_len, avg_len = get_dataset_stats(dataset) print( f"{args.subset} dataset stats : num_samples={len(dataset)} max_len = {max_len} min_len = {min_len} avg_len = {avg_len}" ) return dataset def randomly_sample_subset(dataset, size=500): """Randomly sample subset from a dataset""" random_indices = [random.randint(0, len(dataset) - 1) for i in range(size)] return [dataset[i] for i in random_indices] def get_short_data_subset(dataset, size=500): """Get a subset of desired size by sorting based on src_lengths""" return sort_dataset(dataset)[:size] def get_long_data_subset(dataset, size=500): """Get a subset of desired size by sorting based on src_lengths descending""" return sort_dataset(dataset, reverse=True)[:size] def sort_dataset(dataset, reverse=False): return sorted( dataset, key=lambda x: x["net_input"]["src_lengths"].item(), reverse=reverse ) def save_dataset_npy(dataset, file_name): """Save a dataset as .npy file""" np.save(file_name, dataset) def get_dataset_stats(dataset): """Get stats about dataset based on src_lengths of samples""" max_len = 0 min_len = 100000 avg_len = 0 for d in dataset: max_len = max(max_len, d["net_input"]["src_lengths"].item()) min_len = min(min_len, d["net_input"]["src_lengths"].item()) avg_len += d["net_input"]["src_lengths"].item() return max_len, min_len, avg_len / len(dataset) def make_parser(): """ Additional args: 1. Provide the dataset dir path using --data. 2. Loading the dataset doesn't require config, provide --config-yaml to apply additional feature transforms """ parser = options.get_speech_generation_parser() parser.add_argument( "--subset", default=None, type=str, required=True, help="Subset to use for dataset generation", ) parser.add_argument( "--dataset-save-dir", default=None, type=str, required=False, help="Dir path in which the datasets are to be saved", ) parser.add_argument( "--ref-dataset", default=None, type=str, required=False, help="If provided, the ids in the reference dataset will be used to filter the new dataset generated.", ) parser.add_argument("--dataset-save-token", default="", type=str, required=False) options.add_generation_args(parser) return parser def get_ids_from_dataset(dataset): return {sample["id"]: 1 for sample in dataset} def cli_main(): parser = make_parser() args = options.parse_args_and_arch(parser) dataset = load_dataset_task(args) random_dataset = randomly_sample_subset(dataset) short_dataset = get_short_data_subset(dataset) long_dataset = get_long_data_subset(dataset) if args.dataset_save_token: args.dataset_save_token = f"_{args.dataset_save_token}_" if args.dataset_save_dir: save_dataset_npy( random_dataset, f"{args.dataset_save_dir}/random_dataset{args.dataset_save_token}w_ids.npy", ) save_dataset_npy( short_dataset, f"{args.dataset_save_dir}/short_dataset{args.dataset_save_token}w_ids.npy", ) save_dataset_npy( long_dataset, f"{args.dataset_save_dir}/long_dataset{args.dataset_save_token}w_ids.npy", ) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/benchmarking/data_utils.py
import copy import torch import logging from argparse import Namespace import yaml from fairseq import options from examples.speech_to_speech.benchmarking.core import ( Processing, SpeechGeneration, Cascaded2StageS2ST, Cascaded3StageS2ST, S2UT, ) from examples.speech_to_speech.benchmarking.data_utils import ( load_dataset_npy, load_dataset_raw_to_waveforms, ) logging.basicConfig() logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) torch.manual_seed(1) torch.set_deterministic(True) def make_parser(): """Note: As the names indicate use s2x_args(ex:ST, ASR etc) for models with speech input, x2s_args for models with speech output(ex:TTS) and mt_args for translation models (ex: mt, T2U etc). For direct S2ST models, use x2s_args to provide model details. """ parser = options.get_speech_generation_parser() parser.add_argument("--target-is-code", action="store_true", default=False) parser.add_argument("--config", type=str) parser.add_argument( "--model-type", default="S2U", choices=["S2S", "TTS", "S2UT", "MT", "S2T", "2StageS2ST", "3StageS2ST"], help="Choose one of the models. For model inference implementation, refer to core.py", ) parser.add_argument( "--dataset-path", type=str, help="""File to load dataset from. Assumes dataset is a list of samples. Each sample is a dict of format {'net_input':{'src_tokens':torch.tenor(),'src_lengths':torch.tensor()}}""", ) parser.add_argument( "--dataset-type", type=str, default="npy", choices=["npy", "raw"], help="""Type of input dataset file""", ) parser.add_argument( "--read-using-sf", type=str, default=False, help="""If sound file should be used to read the raw dataset""", ) parser.add_argument( "--dataset-size", default=None, type=int, help="Dataset size to use for benchmarking", ) parser.add_argument( "--dump-speech-waveforms-dir", default=None, type=str, help="Directory to dump the speech waveforms computed on the dataset.", ) parser.add_argument( "--dump-waveform-file-prefix", default="", type=str, help="File name prefix for the saved speech waveforms", ) parser.add_argument( "--feat-dim", default=80, type=int, help="Input feature dimension" ) parser.add_argument( "--target-sr", default=16000, type=int, help="Target sample rate for dumping waveforms", ) options.add_generation_args(parser) options.get_interactive_generation_parser(parser) return parser def cli_main(): parser = make_parser() args = options.parse_args_and_arch(parser) with open( args.config, "r", ) as f: config = yaml.load(f, Loader=yaml.FullLoader) dict_args = vars(args) dict_args.update(config["general"]) args = Namespace(**dict_args) i = 1 stage_args = [] while i <= 3: var = f"stage{i}" tmp_args = copy.deepcopy(dict_args) if var in config: tmp_args.update(config[var]) stage_args.append(Namespace(**tmp_args)) i += 1 else: break if args.model_type == "S2S" or args.model_type == "TTS": model = SpeechGeneration(stage_args[0]) elif args.model_type == "S2UT": model = S2UT(stage_args[0], stage_args[1] if len(stage_args) > 1 else None) elif args.model_type == "MT" or args.model_type == "S2T": model = Processing(stage_args[0]) elif args.model_type == "2StageS2ST": model = Cascaded2StageS2ST(stage_args[0], stage_args[1]) elif args.model_type == "3StageS2ST": model = Cascaded3StageS2ST(stage_args[0], stage_args[2], stage_args[1]) else: raise Exception(f"Currently unsupported model type {args.model_type}") print(f"Evaluating on dataset - {args.dataset_path}\n") if args.dataset_type == "npy": dataset = load_dataset_npy(args.dataset_path, dataset_size=args.dataset_size) elif args.dataset_type == "raw": dataset = load_dataset_raw_to_waveforms( args.dataset_path, dataset_size=args.dataset_size, read_using_soundfile=args.read_using_sf, ) else: raise Exception(f"Invalid dataset type {args.dataset_type}") model.warm_up(sample=dataset[0], repeat=2) run_time, memory, flops = model.gather_all_metrics(dataset, repeat=1) print(f"run_time = {run_time}sec \tmemory = {memory}MiB \tflops = {flops}") if args.dump_speech_waveforms_dir: model.dump_final_speech_output( dataset, args.dump_speech_waveforms_dir, lambda x: x, args.target_sr, prefix=args.dump_waveform_file_prefix, ) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_speech/benchmarking/get_metrics.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import fileinput from tqdm import tqdm def main(): parser = argparse.ArgumentParser( description=( "Extract back-translations from the stdout of fairseq-generate. " "If there are multiply hypotheses for a source, we only keep the first one. " ) ) parser.add_argument("--output", required=True, help="output prefix") parser.add_argument( "--srclang", required=True, help="source language (extracted from H-* lines)" ) parser.add_argument( "--tgtlang", required=True, help="target language (extracted from S-* lines)" ) parser.add_argument("--minlen", type=int, help="min length filter") parser.add_argument("--maxlen", type=int, help="max length filter") parser.add_argument("--ratio", type=float, help="ratio filter") parser.add_argument("files", nargs="*", help="input files") args = parser.parse_args() def validate(src, tgt): srclen = len(src.split(" ")) if src != "" else 0 tgtlen = len(tgt.split(" ")) if tgt != "" else 0 if ( (args.minlen is not None and (srclen < args.minlen or tgtlen < args.minlen)) or ( args.maxlen is not None and (srclen > args.maxlen or tgtlen > args.maxlen) ) or ( args.ratio is not None and (max(srclen, tgtlen) / float(min(srclen, tgtlen)) > args.ratio) ) ): return False return True def safe_index(toks, index, default): try: return toks[index] except IndexError: return default with open(args.output + "." + args.srclang, "w") as src_h, open( args.output + "." + args.tgtlang, "w" ) as tgt_h: for line in tqdm(fileinput.input(args.files)): if line.startswith("S-"): tgt = safe_index(line.rstrip().split("\t"), 1, "") elif line.startswith("H-"): if tgt is not None: src = safe_index(line.rstrip().split("\t"), 2, "") if validate(src, tgt): print(src, file=src_h) print(tgt, file=tgt_h) tgt = None if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/backtranslation/extract_bt_data.py
#!/usr/bin/python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import fileinput import hashlib import sys from multiprocessing import Pool def get_hashes_and_lines(raw_line): hash = hashlib.md5(raw_line).hexdigest() return hash, raw_line def main(): parser = argparse.ArgumentParser() parser.add_argument("--workers", type=int, default=10) parser.add_argument("files", nargs="*", help="input files") args = parser.parse_args() seen = set() with fileinput.input(args.files, mode="rb") as h: pool = Pool(args.workers) results = pool.imap_unordered(get_hashes_and_lines, h, 1000) for i, (hash, raw_line) in enumerate(results): if hash not in seen: seen.add(hash) sys.stdout.buffer.write(raw_line) if i % 1000000 == 0: print(i, file=sys.stderr, end="", flush=True) elif i % 100000 == 0: print(".", file=sys.stderr, end="", flush=True) print(file=sys.stderr, flush=True) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/backtranslation/deduplicate_lines.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import shutil from tempfile import NamedTemporaryFile from typing import Optional, Tuple import pandas as pd import torchaudio from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, ) from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import download_url, extract_archive from tqdm import tqdm log = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] class CoVoST(Dataset): """Create a Dataset for CoVoST (https://github.com/facebookresearch/covost). Args: root (str): root path to the dataset and generated manifests/features source_language (str): source (audio) language target_language (str, optional): target (text) language, None for no translation (default: None) version (int, optional): CoVoST version. (default: 2) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ COVOST_URL_TEMPLATE = ( "https://dl.fbaipublicfiles.com/covost/" "covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz" ) VERSIONS = {2} SPLITS = ["train", "dev", "test"] XX_EN_LANGUAGES = { 1: ["fr", "de", "nl", "ru", "es", "it", "tr", "fa", "sv-SE", "mn", "zh-CN"], 2: [ "fr", "de", "es", "ca", "it", "ru", "zh-CN", "pt", "fa", "et", "mn", "nl", "tr", "ar", "sv-SE", "lv", "sl", "ta", "ja", "id", "cy", ], } EN_XX_LANGUAGES = { 1: [], 2: [ "de", "tr", "fa", "sv-SE", "mn", "zh-CN", "cy", "ca", "sl", "et", "id", "ar", "ta", "lv", "ja", ], } def __init__( self, root: str, split: str, source_language: str, target_language: Optional[str] = None, version: int = 2, ) -> None: assert version in self.VERSIONS and split in self.SPLITS assert source_language is not None self.no_translation = target_language is None if not self.no_translation: assert "en" in {source_language, target_language} if source_language == "en": assert target_language in self.EN_XX_LANGUAGES[version] else: assert source_language in self.XX_EN_LANGUAGES[version] else: # Hack here so that we can get "split" column from CoVoST TSV. # Note that we use CoVoST train split for ASR which is an extension # to Common Voice train split. target_language = "de" if source_language == "en" else "en" self.root: Path = Path(root) cv_tsv_path = self.root / "validated.tsv" assert cv_tsv_path.is_file() covost_url = self.COVOST_URL_TEMPLATE.format( src_lang=source_language, tgt_lang=target_language ) covost_archive = self.root / Path(covost_url).name if not covost_archive.is_file(): download_url(covost_url, self.root.as_posix(), hash_value=None) extract_archive(covost_archive.as_posix()) cv_tsv = load_df_from_tsv(cv_tsv_path) covost_tsv = load_df_from_tsv( self.root / Path(covost_url).name.replace(".tar.gz", "") ) df = pd.merge( left=cv_tsv[["path", "sentence", "client_id"]], right=covost_tsv[["path", "translation", "split"]], how="inner", on="path", ) if split == "train": df = df[(df["split"] == split) | (df["split"] == f"{split}_covost")] else: df = df[df["split"] == split] data = df.to_dict(orient="index").items() data = [v for k, v in sorted(data, key=lambda x: x[0])] self.data = [] for e in data: try: path = self.root / "clips" / e["path"] _ = torchaudio.info(path.as_posix()) self.data.append(e) except RuntimeError: pass def __getitem__( self, n: int ) -> Tuple[Tensor, int, str, str, Optional[str], str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: tuple: ``(waveform, sample_rate, sentence, translation, speaker_id, sample_id)`` """ data = self.data[n] path = self.root / "clips" / data["path"] waveform, sample_rate = torchaudio.load(path) sentence = data["sentence"] translation = None if self.no_translation else data["translation"] speaker_id = data["client_id"] _id = data["path"].replace(".mp3", "") return waveform, sample_rate, sentence, translation, speaker_id, _id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() / args.src_lang if not root.is_dir(): raise NotADirectoryError(f"{root} does not exist") # Extract features feature_root = root / "fbank80" feature_root.mkdir(exist_ok=True) for split in CoVoST.SPLITS: print(f"Fetching split {split}...") dataset = CoVoST(root, split, args.src_lang, args.tgt_lang) print("Extracting log mel filter bank features...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): extract_fbank_features( waveform, sample_rate, feature_root / f"{utt_id}.npy" ) # Pack features into ZIP zip_path = root / "fbank80.zip" print("ZIPing features...") create_zip(feature_root, zip_path) print("Fetching ZIP manifest...") audio_paths, audio_lengths = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] task = f"asr_{args.src_lang}" if args.tgt_lang is not None: task = f"st_{args.src_lang}_{args.tgt_lang}" for split in CoVoST.SPLITS: manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = CoVoST(root, split, args.src_lang, args.tgt_lang) for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset): manifest["id"].append(utt_id) manifest["audio"].append(audio_paths[utt_id]) manifest["n_frames"].append(audio_lengths[utt_id]) manifest["tgt_text"].append(src_utt if args.tgt_lang is None else tgt_utt) manifest["speaker"].append(speaker_id) is_train_split = split.startswith("train") if is_train_split: train_text.extend(manifest["tgt_text"]) df = pd.DataFrame.from_dict(manifest) df = filter_manifest_df(df, is_train_split=is_train_split) save_df_to_tsv(df, root / f"{split}_{task}.tsv") # Generate vocab vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{task}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), root / spm_filename_prefix, args.vocab_type, args.vocab_size ) # Generate config YAML gen_config_yaml( root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{task}.yaml", specaugment_policy="lb", ) # Clean up shutil.rmtree(feature_root) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--data-root", "-d", required=True, type=str, help="data root with sub-folders for each language <root>/<src_lang>" ) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=1000, type=int) parser.add_argument("--src-lang", "-s", required=True, type=str) parser.add_argument("--tgt-lang", "-t", type=str) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_text/prep_covost_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import soundfile as sf from examples.speech_to_text.prep_mustc_data import ( MUSTC ) from tqdm import tqdm log = logging.getLogger(__name__) def main(args): root = Path(args.data_root).absolute() lang = args.lang split = args.split cur_root = root / f"en-{lang}" assert cur_root.is_dir(), ( f"{cur_root.as_posix()} does not exist. Skipped." ) dataset = MUSTC(root.as_posix(), lang, split) output = Path(args.output).absolute() output.mkdir(exist_ok=True) f_text = open(output / f"{split}.{lang}", "w") f_wav_list = open(output / f"{split}.wav_list", "w") for waveform, sample_rate, _, text, _, utt_id in tqdm(dataset): sf.write( output / f"{utt_id}.wav", waveform.squeeze(0).numpy(), samplerate=int(sample_rate) ) f_text.write(text + "\n") f_wav_list.write(str(output / f"{utt_id}.wav") + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--data-root", "-d", required=True, type=str) parser.add_argument("--task", required=True, type=str, choices=["asr", "st"]) parser.add_argument("--lang", required=True, type=str) parser.add_argument("--output", required=True, type=str) parser.add_argument("--split", required=True, choices=MUSTC.SPLITS) args = parser.parse_args() main(args)
EXA-1-master
exa/libraries/fairseq/examples/speech_to_text/seg_mustc_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path import shutil from itertools import groupby from tempfile import NamedTemporaryFile from typing import Tuple import numpy as np import pandas as pd import soundfile as sf from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, cal_gcmvn_stats, ) import torch from torch.utils.data import Dataset from tqdm import tqdm from fairseq.data.audio.audio_utils import get_waveform, convert_waveform log = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] class MUSTC(Dataset): """ Create a Dataset for MuST-C. Each item is a tuple of the form: waveform, sample_rate, source utterance, target utterance, speaker_id, utterance_id """ SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"] LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru"] def __init__(self, root: str, lang: str, split: str) -> None: assert split in self.SPLITS and lang in self.LANGUAGES _root = Path(root) / f"en-{lang}" / "data" / split wav_root, txt_root = _root / "wav", _root / "txt" assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir() # Load audio segments try: import yaml except ImportError: print("Please install PyYAML to load the MuST-C YAML files") with open(txt_root / f"{split}.yaml") as f: segments = yaml.load(f, Loader=yaml.BaseLoader) # Load source and target utterances for _lang in ["en", lang]: with open(txt_root / f"{split}.{_lang}") as f: utterances = [r.strip() for r in f] assert len(segments) == len(utterances) for i, u in enumerate(utterances): segments[i][_lang] = u # Gather info self.data = [] for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]): wav_path = wav_root / wav_filename sample_rate = sf.info(wav_path.as_posix()).samplerate seg_group = sorted(_seg_group, key=lambda x: x["offset"]) for i, segment in enumerate(seg_group): offset = int(float(segment["offset"]) * sample_rate) n_frames = int(float(segment["duration"]) * sample_rate) _id = f"{wav_path.stem}_{i}" self.data.append( ( wav_path.as_posix(), offset, n_frames, sample_rate, segment["en"], segment[lang], segment["speaker_id"], _id, ) ) def __getitem__( self, n: int ) -> Tuple[torch.Tensor, int, str, str, str, str]: wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, \ utt_id = self.data[n] waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset) waveform = torch.from_numpy(waveform) return waveform, sr, src_utt, tgt_utt, spk_id, utt_id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() for lang in MUSTC.LANGUAGES: cur_root = root / f"en-{lang}" if not cur_root.is_dir(): print(f"{cur_root.as_posix()} does not exist. Skipped.") continue # Extract features audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80") audio_root.mkdir(exist_ok=True) for split in MUSTC.SPLITS: print(f"Fetching split {split}...") dataset = MUSTC(root.as_posix(), lang, split) if args.use_audio_input: print("Converting audios...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): tgt_sample_rate = 16_000 _wavform, _ = convert_waveform( waveform, sample_rate, to_mono=True, to_sample_rate=tgt_sample_rate ) sf.write( (audio_root / f"{utt_id}.flac").as_posix(), _wavform.T.numpy(), tgt_sample_rate ) else: print("Extracting log mel filter bank features...") gcmvn_feature_list = [] if split == 'train' and args.cmvn_type == "global": print("And estimating cepstral mean and variance stats...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): features = extract_fbank_features( waveform, sample_rate, audio_root / f"{utt_id}.npy" ) if split == 'train' and args.cmvn_type == "global": if len(gcmvn_feature_list) < args.gcmvn_max_num: gcmvn_feature_list.append(features) if split == 'train' and args.cmvn_type == "global": # Estimate and save cmv stats = cal_gcmvn_stats(gcmvn_feature_list) with open(cur_root / "gcmvn.npz", "wb") as f: np.savez(f, mean=stats["mean"], std=stats["std"]) # Pack features into ZIP zip_path = cur_root / f"{audio_root.name}.zip" print("ZIPing audios/features...") create_zip(audio_root, zip_path) print("Fetching ZIP manifest...") audio_paths, audio_lengths = get_zip_manifest( zip_path, is_audio=args.use_audio_input, ) # Generate TSV manifest print("Generating manifest...") train_text = [] for split in MUSTC.SPLITS: is_train_split = split.startswith("train") manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = MUSTC(args.data_root, lang, split) for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset): manifest["id"].append(utt_id) manifest["audio"].append(audio_paths[utt_id]) manifest["n_frames"].append(audio_lengths[utt_id]) manifest["tgt_text"].append( src_utt if args.task == "asr" else tgt_utt ) manifest["speaker"].append(speaker_id) if is_train_split: train_text.extend(manifest["tgt_text"]) df = pd.DataFrame.from_dict(manifest) df = filter_manifest_df(df, is_train_split=is_train_split) save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv") # Generate vocab v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, ) # Generate config YAML if args.use_audio_input: gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy=None, extra={"use_audio_input": True} ) else: gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="lb", cmvn_type=args.cmvn_type, gcmvn_path=( cur_root / "gcmvn.npz" if args.cmvn_type == "global" else None ), ) # Clean up shutil.rmtree(audio_root) def process_joint(args): cur_root = Path(args.data_root) assert all( (cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES ), "do not have downloaded data available for all 8 languages" # Generate vocab vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for lang in MUSTC.LANGUAGES: tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv" df = load_df_from_tsv(tsv_path) for t in df["tgt_text"]: f.write(t + "\n") special_symbols = None if args.task == 'st': special_symbols = [f'<lang:{lang}>' for lang in MUSTC.LANGUAGES] gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, special_symbols=special_symbols ) # Generate config YAML gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="ld", prepend_tgt_lang_tag=(args.task == "st"), ) # Make symbolic links to manifests for lang in MUSTC.LANGUAGES: for split in MUSTC.SPLITS: src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv" desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv" if not desc_path.is_symlink(): os.symlink(src_path, desc_path) def main(): parser = argparse.ArgumentParser() parser.add_argument("--data-root", "-d", required=True, type=str) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=8000, type=int) parser.add_argument("--task", type=str, choices=["asr", "st"]) parser.add_argument("--joint", action="store_true", help="") parser.add_argument( "--cmvn-type", default="utterance", choices=["global", "utterance"], help="The type of cepstral mean and variance normalization" ) parser.add_argument( "--gcmvn-max-num", default=150000, type=int, help="Maximum number of sentences to use to estimate global mean and " "variance" ) parser.add_argument("--use-audio-input", action="store_true") args = parser.parse_args() if args.joint: process_joint(args) else: process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_text/prep_mustc_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path import shutil from itertools import groupby from tempfile import NamedTemporaryFile from typing import Tuple import pandas as pd import soundfile as sf from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, ) import torch from torch.utils.data import Dataset from tqdm import tqdm from fairseq.data.audio.audio_utils import get_waveform, convert_waveform log = logging.getLogger(__name__) MANIFEST_COLUMNS = [ "id", "audio", "n_frames", "tgt_text", "speaker", "tgt_lang" ] class mTEDx(Dataset): """ Create a Dataset for Multilingual TEDx. Each item is a tuple of the form: waveform, sample_rate, source utterance, target utterance, speaker_id, utterance_id """ SPLITS = ["train", "valid", "test"] LANGPAIRS = ["es-es", "fr-fr", "pt-pt", "it-it", "ru-ru", "el-el", "ar-ar", "de-de", "es-en", "es-fr", "es-pt", "es-it", "fr-en", "fr-es", "fr-pt", "pt-en", "pt-es", "it-en", "it-es", "ru-en", "el-en"] def __init__(self, root: str, lang: str, split: str) -> None: assert split in self.SPLITS and lang in self.LANGPAIRS _root = Path(root) / f"{lang}" / "data" / split wav_root, txt_root = _root / "wav", _root / "txt" assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir() # Load audio segments try: import yaml except ImportError: print( "Please install PyYAML to load the Multilingual TEDx YAML files" ) with open(txt_root / f"{split}.yaml") as f: segments = yaml.load(f, Loader=yaml.BaseLoader) # Load source and target utterances src, tgt = lang.split("-") for _lang in [src, tgt]: with open(txt_root / f"{split}.{_lang}") as f: utterances = [r.strip() for r in f] assert len(segments) == len(utterances) for i, u in enumerate(utterances): segments[i][_lang] = u # Gather info self.data = [] for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]): wav_filename = wav_filename.replace(".wav", ".flac") wav_path = wav_root / wav_filename sample_rate = sf.info(wav_path.as_posix()).samplerate seg_group = sorted(_seg_group, key=lambda x: float(x["offset"])) for i, segment in enumerate(seg_group): offset = int(float(segment["offset"]) * sample_rate) n_frames = int(float(segment["duration"]) * sample_rate) _id = f"{wav_path.stem}_{i}" self.data.append( ( wav_path.as_posix(), offset, n_frames, sample_rate, segment[src], segment[tgt], segment["speaker_id"], tgt, _id, ) ) def __getitem__( self, n: int ) -> Tuple[torch.Tensor, int, str, str, str, str, str]: wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, tgt_lang, \ utt_id = self.data[n] waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset) waveform = torch.from_numpy(waveform) return waveform, sr, src_utt, tgt_utt, spk_id, tgt_lang, utt_id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() for lang in mTEDx.LANGPAIRS: cur_root = root / f"{lang}" if not cur_root.is_dir(): print(f"{cur_root.as_posix()} does not exist. Skipped.") continue # Extract features audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80") audio_root.mkdir(exist_ok=True) for split in mTEDx.SPLITS: print(f"Fetching split {split}...") dataset = mTEDx(root.as_posix(), lang, split) if args.use_audio_input: print("Converting audios...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): tgt_sample_rate = 16_000 _wavform, _ = convert_waveform( waveform, sample_rate, to_mono=True, to_sample_rate=tgt_sample_rate ) sf.write( (audio_root / f"{utt_id}.flac").as_posix(), _wavform.numpy(), tgt_sample_rate ) else: print("Extracting log mel filter bank features...") for waveform, sample_rate, _, _, _, _, utt_id in tqdm(dataset): extract_fbank_features( waveform, sample_rate, audio_root / f"{utt_id}.npy" ) # Pack features into ZIP zip_path = cur_root / f"{audio_root.name}.zip" print("ZIPing audios/features...") create_zip(audio_root, zip_path) print("Fetching ZIP manifest...") audio_paths, audio_lengths = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] for split in mTEDx.SPLITS: is_train_split = split.startswith("train") manifest = {c: [] for c in MANIFEST_COLUMNS} ds = mTEDx(args.data_root, lang, split) for _, _, src_utt, tgt_utt, spk_id, tgt_lang, utt_id in tqdm(ds): manifest["id"].append(utt_id) manifest["audio"].append(audio_paths[utt_id]) manifest["n_frames"].append(audio_lengths[utt_id]) manifest["tgt_text"].append( src_utt if args.task == "asr" else tgt_utt ) manifest["speaker"].append(spk_id) manifest["tgt_lang"].append(tgt_lang) if is_train_split: train_text.extend(manifest["tgt_text"]) df = pd.DataFrame.from_dict(manifest) df = filter_manifest_df(df, is_train_split=is_train_split) save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv") # Generate vocab v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, ) # Generate config YAML if args.use_audio_input: gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy=None, extra={"use_audio_input": True} ) else: gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="lb", ) # Clean up shutil.rmtree(audio_root) def process_joint(args): cur_root = Path(args.data_root) assert all((cur_root / f"{lang}").is_dir() for lang in mTEDx.LANGPAIRS), \ "do not have downloaded data available for all languages" # Generate vocab vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for lang in mTEDx.LANGPAIRS: tsv_path = cur_root / f"{lang}" / f"train_{args.task}.tsv" df = load_df_from_tsv(tsv_path) for t in df["tgt_text"]: f.write(t + "\n") special_symbols = None if args.joint: # Add tgt_lang tags to dict special_symbols = list( {f'<lang:{lang.split("-")[1]}>' for lang in mTEDx.LANGPAIRS} ) gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, special_symbols=special_symbols ) # Generate config YAML gen_config_yaml( cur_root, spm_filename=spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="ld", prepend_tgt_lang_tag=(args.joint), ) # Make symbolic links to manifests for lang in mTEDx.LANGPAIRS: for split in mTEDx.SPLITS: src_path = cur_root / f"{lang}" / f"{split}_{args.task}.tsv" desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv" if not desc_path.is_symlink(): os.symlink(src_path, desc_path) def main(): parser = argparse.ArgumentParser() parser.add_argument("--data-root", "-d", required=True, type=str) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=8000, type=int) parser.add_argument("--task", type=str, choices=["asr", "st"]) parser.add_argument("--joint", action="store_true", help="") parser.add_argument("--use-audio-input", action="store_true") args = parser.parse_args() if args.joint: process_joint(args) else: process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_text/prep_mtedx_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import csv from pathlib import Path import zipfile from functools import reduce from multiprocessing import cpu_count from typing import Any, Dict, List, Optional, Union import io import numpy as np import pandas as pd import sentencepiece as sp from fairseq.data.audio.audio_utils import ( convert_waveform, _get_kaldi_fbank, _get_torchaudio_fbank, is_npy_data, is_sf_audio_data ) import torch import soundfile as sf from tqdm import tqdm UNK_TOKEN, UNK_TOKEN_ID = "<unk>", 3 BOS_TOKEN, BOS_TOKEN_ID = "<s>", 0 EOS_TOKEN, EOS_TOKEN_ID = "</s>", 2 PAD_TOKEN, PAD_TOKEN_ID = "<pad>", 1 def gen_vocab( input_path: Path, output_path_prefix: Path, model_type="bpe", vocab_size=1000, special_symbols: Optional[List[str]] = None ): # Train SentencePiece Model arguments = [ f"--input={input_path.as_posix()}", f"--model_prefix={output_path_prefix.as_posix()}", f"--model_type={model_type}", f"--vocab_size={vocab_size}", "--character_coverage=1.0", f"--num_threads={cpu_count()}", f"--unk_id={UNK_TOKEN_ID}", f"--bos_id={BOS_TOKEN_ID}", f"--eos_id={EOS_TOKEN_ID}", f"--pad_id={PAD_TOKEN_ID}", ] if special_symbols is not None: _special_symbols = ",".join(special_symbols) arguments.append(f"--user_defined_symbols={_special_symbols}") sp.SentencePieceTrainer.Train(" ".join(arguments)) # Export fairseq dictionary spm = sp.SentencePieceProcessor() spm.Load(output_path_prefix.as_posix() + ".model") vocab = {i: spm.IdToPiece(i) for i in range(spm.GetPieceSize())} assert ( vocab.get(UNK_TOKEN_ID) == UNK_TOKEN and vocab.get(PAD_TOKEN_ID) == PAD_TOKEN and vocab.get(BOS_TOKEN_ID) == BOS_TOKEN and vocab.get(EOS_TOKEN_ID) == EOS_TOKEN ) vocab = { i: s for i, s in vocab.items() if s not in {UNK_TOKEN, BOS_TOKEN, EOS_TOKEN, PAD_TOKEN} } with open(output_path_prefix.as_posix() + ".txt", "w") as f_out: for _, s in sorted(vocab.items(), key=lambda x: x[0]): f_out.write(f"{s} 1\n") def extract_fbank_features( waveform: torch.FloatTensor, sample_rate: int, output_path: Optional[Path] = None, n_mel_bins: int = 80, overwrite: bool = False, ): if output_path is not None and output_path.is_file() and not overwrite: return _waveform, _ = convert_waveform(waveform, sample_rate, to_mono=True) # Kaldi compliance: 16-bit signed integers _waveform = _waveform * (2 ** 15) _waveform = _waveform.numpy() features = _get_kaldi_fbank(_waveform, sample_rate, n_mel_bins) if features is None: features = _get_torchaudio_fbank(_waveform, sample_rate, n_mel_bins) if features is None: raise ImportError( "Please install pyKaldi or torchaudio to enable fbank feature extraction" ) if output_path is not None: np.save(output_path.as_posix(), features) return features def create_zip(data_root: Path, zip_path: Path): paths = list(data_root.glob("*.npy")) paths.extend(data_root.glob("*.flac")) with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_STORED) as f: for path in tqdm(paths): f.write(path, arcname=path.name) def get_zip_manifest( zip_path: Path, zip_root: Optional[Path] = None, is_audio=False ): _zip_path = Path.joinpath(zip_root or Path(""), zip_path) with zipfile.ZipFile(_zip_path, mode="r") as f: info = f.infolist() paths, lengths = {}, {} for i in tqdm(info): utt_id = Path(i.filename).stem offset, file_size = i.header_offset + 30 + len(i.filename), i.file_size paths[utt_id] = f"{zip_path.as_posix()}:{offset}:{file_size}" with open(_zip_path, "rb") as f: f.seek(offset) byte_data = f.read(file_size) assert len(byte_data) > 1 if is_audio: assert is_sf_audio_data(byte_data), i else: assert is_npy_data(byte_data), i byte_data_fp = io.BytesIO(byte_data) if is_audio: lengths[utt_id] = sf.info(byte_data_fp).frames else: lengths[utt_id] = np.load(byte_data_fp).shape[0] return paths, lengths def gen_config_yaml( manifest_root: Path, spm_filename: Optional[str] = None, vocab_name: Optional[str] = None, yaml_filename: str = "config.yaml", specaugment_policy: Optional[str] = "lb", prepend_tgt_lang_tag: bool = False, sampling_alpha: Optional[float] = None, input_channels: Optional[int] = 1, input_feat_per_channel: Optional[int] = 80, audio_root: str = "", cmvn_type: str = "utterance", gcmvn_path: Optional[Path] = None, extra=None ): manifest_root = manifest_root.absolute() writer = S2TDataConfigWriter(manifest_root / yaml_filename) assert spm_filename is not None or vocab_name is not None vocab_name = spm_filename.replace(".model", ".txt") if vocab_name is None \ else vocab_name writer.set_vocab_filename(vocab_name) if input_channels is not None: writer.set_input_channels(input_channels) if input_feat_per_channel is not None: writer.set_input_feat_per_channel(input_feat_per_channel) specaugment_setters = { "lb": writer.set_specaugment_lb_policy, "ld": writer.set_specaugment_ld_policy, "sm": writer.set_specaugment_sm_policy, "ss": writer.set_specaugment_ss_policy, } specaugment_setter = specaugment_setters.get(specaugment_policy, None) if specaugment_setter is not None: specaugment_setter() if spm_filename is not None: writer.set_bpe_tokenizer( { "bpe": "sentencepiece", "sentencepiece_model": (manifest_root / spm_filename).as_posix(), } ) if prepend_tgt_lang_tag: writer.set_prepend_tgt_lang_tag(True) if sampling_alpha is not None: writer.set_sampling_alpha(sampling_alpha) if cmvn_type not in ["global", "utterance"]: raise NotImplementedError if specaugment_policy is not None: writer.set_feature_transforms( "_train", [f"{cmvn_type}_cmvn", "specaugment"] ) writer.set_feature_transforms("*", [f"{cmvn_type}_cmvn"]) if cmvn_type == "global": if gcmvn_path is None: raise ValueError("Please provide path of global cmvn file.") else: writer.set_global_cmvn(gcmvn_path.as_posix()) if len(audio_root) > 0: writer.set_audio_root(audio_root) if extra is not None: writer.set_extra(extra) writer.flush() def load_df_from_tsv(path: Union[str, Path]) -> pd.DataFrame: _path = path if isinstance(path, str) else path.as_posix() return pd.read_csv( _path, sep="\t", header=0, encoding="utf-8", escapechar="\\", quoting=csv.QUOTE_NONE, na_filter=False, ) def save_df_to_tsv(dataframe, path: Union[str, Path]): _path = path if isinstance(path, str) else path.as_posix() dataframe.to_csv( _path, sep="\t", header=True, index=False, encoding="utf-8", escapechar="\\", quoting=csv.QUOTE_NONE, ) def load_tsv_to_dicts(path: Union[str, Path]) -> List[dict]: with open(path, "r") as f: reader = csv.DictReader( f, delimiter="\t", quotechar=None, doublequote=False, lineterminator="\n", quoting=csv.QUOTE_NONE, ) rows = [dict(e) for e in reader] return rows def filter_manifest_df( df, is_train_split=False, extra_filters=None, min_n_frames=5, max_n_frames=3000 ): filters = { "no speech": df["audio"] == "", f"short speech (<{min_n_frames} frames)": df["n_frames"] < min_n_frames, "empty sentence": df["tgt_text"] == "", } if is_train_split: filters[f"long speech (>{max_n_frames} frames)"] = df["n_frames"] > max_n_frames if extra_filters is not None: filters.update(extra_filters) invalid = reduce(lambda x, y: x | y, filters.values()) valid = ~invalid print( "| " + ", ".join(f"{n}: {f.sum()}" for n, f in filters.items()) + f", total {invalid.sum()} filtered, {valid.sum()} remained." ) return df[valid] def cal_gcmvn_stats(features_list): features = np.concatenate(features_list) square_sums = (features ** 2).sum(axis=0) mean = features.mean(axis=0) features = np.subtract(features, mean) var = square_sums / features.shape[0] - mean ** 2 std = np.sqrt(np.maximum(var, 1e-8)) return {"mean": mean.astype("float32"), "std": std.astype("float32")} class S2TDataConfigWriter(object): DEFAULT_VOCAB_FILENAME = "dict.txt" DEFAULT_INPUT_FEAT_PER_CHANNEL = 80 DEFAULT_INPUT_CHANNELS = 1 def __init__(self, yaml_path: Path): try: import yaml except ImportError: print("Please install PyYAML for S2T data config YAML files") self.yaml = yaml self.yaml_path = yaml_path self.config = {} def flush(self): with open(self.yaml_path, "w") as f: self.yaml.dump(self.config, f) def set_audio_root(self, audio_root=""): self.config["audio_root"] = audio_root def set_vocab_filename(self, vocab_filename: str = "dict.txt"): self.config["vocab_filename"] = vocab_filename def set_specaugment( self, time_wrap_w: int, freq_mask_n: int, freq_mask_f: int, time_mask_n: int, time_mask_t: int, time_mask_p: float, ): self.config["specaugment"] = { "time_wrap_W": time_wrap_w, "freq_mask_N": freq_mask_n, "freq_mask_F": freq_mask_f, "time_mask_N": time_mask_n, "time_mask_T": time_mask_t, "time_mask_p": time_mask_p, } def set_specaugment_lb_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=1, freq_mask_f=27, time_mask_n=1, time_mask_t=100, time_mask_p=1.0, ) def set_specaugment_ld_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=2, freq_mask_f=27, time_mask_n=2, time_mask_t=100, time_mask_p=1.0, ) def set_specaugment_sm_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=2, freq_mask_f=15, time_mask_n=2, time_mask_t=70, time_mask_p=0.2, ) def set_specaugment_ss_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=2, freq_mask_f=27, time_mask_n=2, time_mask_t=70, time_mask_p=0.2, ) def set_input_channels(self, input_channels: int = 1): self.config["input_channels"] = input_channels def set_input_feat_per_channel(self, input_feat_per_channel: int = 80): self.config["input_feat_per_channel"] = input_feat_per_channel def set_bpe_tokenizer(self, bpe_tokenizer: Dict[str, Any]): self.config["bpe_tokenizer"] = bpe_tokenizer def set_global_cmvn(self, stats_npz_path: str): self.config["global_cmvn"] = {"stats_npz_path": stats_npz_path} def set_feature_transforms(self, split: str, transforms: List[str]): if "transforms" not in self.config: self.config["transforms"] = {} self.config["transforms"][split] = transforms def set_prepend_tgt_lang_tag(self, flag: bool = True): self.config["prepend_tgt_lang_tag"] = flag def set_sampling_alpha(self, sampling_alpha: float = 1.0): self.config["sampling_alpha"] = sampling_alpha def set_extra(self, data): self.config.update(data)
EXA-1-master
exa/libraries/fairseq/examples/speech_to_text/data_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import shutil from tempfile import NamedTemporaryFile import pandas as pd from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, gen_config_yaml, gen_vocab, get_zip_manifest, save_df_to_tsv, ) from torchaudio.datasets import LIBRISPEECH from tqdm import tqdm log = logging.getLogger(__name__) SPLITS = [ "train-clean-100", "train-clean-360", "train-other-500", "dev-clean", "dev-other", "test-clean", "test-other", ] MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] def process(args): out_root = Path(args.output_root).absolute() out_root.mkdir(exist_ok=True) # Extract features feature_root = out_root / "fbank80" feature_root.mkdir(exist_ok=True) for split in SPLITS: print(f"Fetching split {split}...") dataset = LIBRISPEECH(out_root.as_posix(), url=split, download=True) print("Extracting log mel filter bank features...") for wav, sample_rate, _, spk_id, chapter_no, utt_no in tqdm(dataset): sample_id = f"{spk_id}-{chapter_no}-{utt_no}" extract_fbank_features( wav, sample_rate, feature_root / f"{sample_id}.npy" ) # Pack features into ZIP zip_path = out_root / "fbank80.zip" print("ZIPing features...") create_zip(feature_root, zip_path) print("Fetching ZIP manifest...") audio_paths, audio_lengths = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] for split in SPLITS: manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = LIBRISPEECH(out_root.as_posix(), url=split) for _, _, utt, spk_id, chapter_no, utt_no in tqdm(dataset): sample_id = f"{spk_id}-{chapter_no}-{utt_no}" manifest["id"].append(sample_id) manifest["audio"].append(audio_paths[sample_id]) manifest["n_frames"].append(audio_lengths[sample_id]) manifest["tgt_text"].append(utt.lower()) manifest["speaker"].append(spk_id) save_df_to_tsv( pd.DataFrame.from_dict(manifest), out_root / f"{split}.tsv" ) if split.startswith("train"): train_text.extend(manifest["tgt_text"]) # Generate vocab vocab_size = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), out_root / spm_filename_prefix, args.vocab_type, args.vocab_size, ) # Generate config YAML gen_config_yaml( out_root, spm_filename=spm_filename_prefix + ".model", specaugment_policy="ld" ) # Clean up shutil.rmtree(feature_root) def main(): parser = argparse.ArgumentParser() parser.add_argument("--output-root", "-o", required=True, type=str) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=10000, type=int) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_to_text/prep_librispeech_data.py
import math import os import json import numpy as np import torch import torchaudio.compliance.kaldi as kaldi import yaml from fairseq import checkpoint_utils, tasks from fairseq.file_io import PathManager try: from simuleval import READ_ACTION, WRITE_ACTION, DEFAULT_EOS from simuleval.agents import SpeechAgent from simuleval.states import ListEntry, SpeechStates except ImportError: print("Please install simuleval 'pip install simuleval'") SHIFT_SIZE = 10 WINDOW_SIZE = 25 SAMPLE_RATE = 16000 FEATURE_DIM = 80 BOW_PREFIX = "\u2581" class OnlineFeatureExtractor: """ Extract speech feature on the fly. """ def __init__(self, args): self.shift_size = args.shift_size self.window_size = args.window_size assert self.window_size >= self.shift_size self.sample_rate = args.sample_rate self.feature_dim = args.feature_dim self.num_samples_per_shift = int(self.shift_size * self.sample_rate / 1000) self.num_samples_per_window = int(self.window_size * self.sample_rate / 1000) self.len_ms_to_samples = lambda x: x * self.sample_rate / 1000 self.previous_residual_samples = [] self.global_cmvn = args.global_cmvn def clear_cache(self): self.previous_residual_samples = [] def __call__(self, new_samples): samples = self.previous_residual_samples + new_samples if len(samples) < self.num_samples_per_window: self.previous_residual_samples = samples return # num_frames is the number of frames from the new segment num_frames = math.floor( (len(samples) - self.len_ms_to_samples(self.window_size - self.shift_size)) / self.num_samples_per_shift ) # the number of frames used for feature extraction # including some part of thte previous segment effective_num_samples = int( num_frames * self.len_ms_to_samples(self.shift_size) + self.len_ms_to_samples(self.window_size - self.shift_size) ) input_samples = samples[:effective_num_samples] self.previous_residual_samples = samples[ num_frames * self.num_samples_per_shift: ] torch.manual_seed(1) output = kaldi.fbank( torch.FloatTensor(input_samples).unsqueeze(0), num_mel_bins=self.feature_dim, frame_length=self.window_size, frame_shift=self.shift_size, ).numpy() output = self.transform(output) return torch.from_numpy(output) def transform(self, input): if self.global_cmvn is None: return input mean = self.global_cmvn["mean"] std = self.global_cmvn["std"] x = np.subtract(input, mean) x = np.divide(x, std) return x class TensorListEntry(ListEntry): """ Data structure to store a list of tensor. """ def append(self, value): if len(self.value) == 0: self.value = value return self.value = torch.cat([self.value] + [value], dim=0) def info(self): return { "type": str(self.new_value_type), "length": self.__len__(), "value": "" if type(self.value) is list else self.value.size(), } class FairseqSimulSTAgent(SpeechAgent): speech_segment_size = 40 # in ms, 4 pooling ratio * 10 ms step size def __init__(self, args): super().__init__(args) self.eos = DEFAULT_EOS self.gpu = getattr(args, "gpu", False) self.args = args self.load_model_vocab(args) if getattr( self.model.decoder.layers[0].encoder_attn, 'pre_decision_ratio', None ) is not None: self.speech_segment_size *= ( self.model.decoder.layers[0].encoder_attn.pre_decision_ratio ) args.global_cmvn = None if args.config: with open(os.path.join(args.data_bin, args.config), "r") as f: config = yaml.load(f, Loader=yaml.BaseLoader) if "global_cmvn" in config: args.global_cmvn = np.load(config["global_cmvn"]["stats_npz_path"]) if args.global_stats: with PathManager.open(args.global_stats, "r") as f: global_cmvn = json.loads(f.read()) self.global_cmvn = {"mean": global_cmvn["mean"], "std": global_cmvn["stddev"]} self.feature_extractor = OnlineFeatureExtractor(args) self.max_len = args.max_len self.force_finish = args.force_finish torch.set_grad_enabled(False) def build_states(self, args, client, sentence_id): # Initialize states here, for example add customized entry to states # This function will be called at beginning of every new sentence states = SpeechStates(args, client, sentence_id, self) self.initialize_states(states) return states def to_device(self, tensor): if self.gpu: return tensor.cuda() else: return tensor.cpu() @staticmethod def add_args(parser): # fmt: off parser.add_argument('--model-path', type=str, required=True, help='path to your pretrained model.') parser.add_argument("--data-bin", type=str, required=True, help="Path of data binary") parser.add_argument("--config", type=str, default=None, help="Path to config yaml file") parser.add_argument("--global-stats", type=str, default=None, help="Path to json file containing cmvn stats") parser.add_argument("--tgt-splitter-type", type=str, default="SentencePiece", help="Subword splitter type for target text") parser.add_argument("--tgt-splitter-path", type=str, default=None, help="Subword splitter model path for target text") parser.add_argument("--user-dir", type=str, default="examples/simultaneous_translation", help="User directory for simultaneous translation") parser.add_argument("--max-len", type=int, default=200, help="Max length of translation") parser.add_argument("--force-finish", default=False, action="store_true", help="Force the model to finish the hypothsis if the source is not finished") parser.add_argument("--shift-size", type=int, default=SHIFT_SIZE, help="Shift size of feature extraction window.") parser.add_argument("--window-size", type=int, default=WINDOW_SIZE, help="Window size of feature extraction window.") parser.add_argument("--sample-rate", type=int, default=SAMPLE_RATE, help="Sample rate") parser.add_argument("--feature-dim", type=int, default=FEATURE_DIM, help="Acoustic feature dimension.") # fmt: on return parser def load_model_vocab(self, args): filename = args.model_path if not os.path.exists(filename): raise IOError("Model file not found: {}".format(filename)) state = checkpoint_utils.load_checkpoint_to_cpu(filename) task_args = state["cfg"]["task"] task_args.data = args.data_bin if args.config is not None: task_args.config_yaml = args.config task = tasks.setup_task(task_args) # build model for ensemble state["cfg"]["model"].load_pretrained_encoder_from = None state["cfg"]["model"].load_pretrained_decoder_from = None self.model = task.build_model(state["cfg"]["model"]) self.model.load_state_dict(state["model"], strict=True) self.model.eval() self.model.share_memory() if self.gpu: self.model.cuda() # Set dictionary self.dict = {} self.dict["tgt"] = task.target_dictionary def initialize_states(self, states): self.feature_extractor.clear_cache() states.units.source = TensorListEntry() states.units.target = ListEntry() states.incremental_states = dict() def segment_to_units(self, segment, states): # Convert speech samples to features features = self.feature_extractor(segment) if features is not None: return [features] else: return [] def units_to_segment(self, units, states): # Merge sub word to full word. if self.model.decoder.dictionary.eos() == units[0]: return DEFAULT_EOS segment = [] if None in units.value: units.value.remove(None) for index in units: if index is None: units.pop() token = self.model.decoder.dictionary.string([index]) if token.startswith(BOW_PREFIX): if len(segment) == 0: segment += [token.replace(BOW_PREFIX, "")] else: for j in range(len(segment)): units.pop() string_to_return = ["".join(segment)] if self.model.decoder.dictionary.eos() == units[0]: string_to_return += [DEFAULT_EOS] return string_to_return else: segment += [token.replace(BOW_PREFIX, "")] if ( len(units) > 0 and self.model.decoder.dictionary.eos() == units[-1] or len(states.units.target) > self.max_len ): tokens = [self.model.decoder.dictionary.string([unit]) for unit in units] return ["".join(tokens).replace(BOW_PREFIX, "")] + [DEFAULT_EOS] return None def update_model_encoder(self, states): if len(states.units.source) == 0: return src_indices = self.to_device( states.units.source.value.unsqueeze(0) ) src_lengths = self.to_device( torch.LongTensor([states.units.source.value.size(0)]) ) states.encoder_states = self.model.encoder(src_indices, src_lengths) torch.cuda.empty_cache() def update_states_read(self, states): # Happens after a read action. self.update_model_encoder(states) def policy(self, states): if not getattr(states, "encoder_states", None): return READ_ACTION tgt_indices = self.to_device( torch.LongTensor( [self.model.decoder.dictionary.eos()] + [x for x in states.units.target.value if x is not None] ).unsqueeze(0) ) states.incremental_states["steps"] = { "src": states.encoder_states["encoder_out"][0].size(0), "tgt": 1 + len(states.units.target), } states.incremental_states["online"] = {"only": torch.tensor(not states.finish_read())} x, outputs = self.model.decoder.forward( prev_output_tokens=tgt_indices, encoder_out=states.encoder_states, incremental_state=states.incremental_states, ) states.decoder_out = x states.decoder_out_extra = outputs torch.cuda.empty_cache() if outputs.action == 0: return READ_ACTION else: return WRITE_ACTION def predict(self, states): decoder_states = states.decoder_out lprobs = self.model.get_normalized_probs( [decoder_states[:, -1:]], log_probs=True ) index = lprobs.argmax(dim=-1) index = index[0, 0].item() if ( self.force_finish and index == self.model.decoder.dictionary.eos() and not states.finish_read() ): # If we want to force finish the translation # (don't stop before finish reading), return a None # self.model.decoder.clear_cache(states.incremental_states) index = None return index
EXA-1-master
exa/libraries/fairseq/examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Use: echo {text} | python tokenize_indic.py {language} import sys from indicnlp.normalize.indic_normalize import IndicNormalizerFactory from indicnlp.tokenize.indic_tokenize import trivial_tokenize factory = IndicNormalizerFactory() normalizer = factory.get_normalizer( sys.argv[1], remove_nuktas=False, nasals_mode="do_nothing" ) for line in sys.stdin: normalized_line = normalizer.normalize(line.strip()) tokenized_line = " ".join(trivial_tokenize(normalized_line, sys.argv[1])) print(tokenized_line)
EXA-1-master
exa/libraries/fairseq/examples/m2m_100/tokenizers/tokenize_indic.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys from pythainlp import word_tokenize for line in sys.stdin: print(" ".join(word_tokenize(line.strip())))
EXA-1-master
exa/libraries/fairseq/examples/m2m_100/tokenizers/tokenize_thai.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import fileinput import sacrebleu for line in fileinput.input(): print(sacrebleu.tokenize_zh(line))
EXA-1-master
exa/libraries/fairseq/examples/m2m_100/tokenizers/tokenize_zh.py
import argparse from collections import namedtuple import os DATADIR = "/path/to/train_data" DEDUP_FROM_DIR = "/path/to/eval/data" OUTPUT_DIR = "/path/to/output/data" def main(args): languages = set() for language_directory in os.listdir(DATADIR): if "_" in language_directory: src, tgt = language_directory.split("_") languages.add(LanguagePair(src=src, tgt=tgt)) data = existing_data() train_languages = sorted(languages) for language_pair in train_languages[args.start_index:args.start_index + args.size]: print(language_pair) dedup(language_pair, data) LanguagePair = namedtuple("LanguagePair", ["src", "tgt"]) def existing_data(): data = set() for file in os.listdir(DEDUP_FROM_DIR): with open(os.path.join(DEDUP_FROM_DIR, file)) as f: data |= set(f.readlines()) return data def dedup(language_pair, data, verbose=True, output=True): train_filenames = LanguagePair( src=f"{DATADIR}/{language_pair.src}_{language_pair.tgt}/train.{language_pair.src}", tgt=f"{DATADIR}/{language_pair.src}_{language_pair.tgt}/train.{language_pair.tgt}", ) output_filenames = LanguagePair( src=f"{OUTPUT_DIR}/train.dedup.{language_pair.src}-{language_pair.tgt}.{language_pair.src}", tgt=f"{OUTPUT_DIR}/train.dedup.{language_pair.src}-{language_pair.tgt}.{language_pair.tgt}" ) # If output exists, skip this pair. It has already been done. if (os.path.exists(output_filenames.src) and os.path.exists(output_filenames.tgt)): if verbose: print(f"{language_pair.src}-{language_pair.tgt} already done.") return if verbose: print(f"{language_pair.src}-{language_pair.tgt} ready, will check dups.") # If there is no output, no need to actually do the loop. if not output: return if os.path.exists(train_filenames.src) and os.path.exists(train_filenames.tgt): with open(train_filenames.src) as f: train_source = f.readlines() with open(train_filenames.tgt) as f: train_target = f.readlines() # do dedup new_train_source = [] new_train_target = [] for i, train_line in enumerate(train_source): if train_line not in data and train_target[i] not in data: new_train_source.append(train_line) new_train_target.append(train_target[i]) assert len(train_source) == len(train_target) assert len(new_train_source) == len(new_train_target) assert len(new_train_source) <= len(train_source) with open(output_filenames.src, "w") as o: for line in new_train_source: o.write(line) with open(output_filenames.tgt, "w") as o: for line in new_train_target: o.write(line) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-s", "--start-index", required=True, type=int) parser.add_argument("-n", "--size", required=True, type=int) main(parser.parse_args())
EXA-1-master
exa/libraries/fairseq/examples/m2m_100/process_data/dedup_data.py
import gzip import argparse from string import punctuation def len_no_punc(s, punc): return len([ch for ch in s if ch in punc]) def filter_overpunc(len_npunc, len_sen): return len_npunc < 0.5*len_sen def main(args): punc = punctuation + "—|–" print('Processing file {}'.format(args.input)) with gzip.open(args.input, 'rt', encoding=args.encoding) as tsv: with open(args.bitext + '.' + args.src_lang, 'wt', encoding=args.encoding) as fsrc: with open(args.bitext + '.' + args.tgt_lang, 'wt', encoding=args.encoding) as ftgt: line = tsv.readline() fields = line.split('\t') src, tgt = fields[1], fields[2] nchar_npunc_src = len_no_punc(src, punc) nchar_npunc_tgt = len_no_punc(tgt, punc) if filter_overpunc(nchar_npunc_src, len(src)) and filter_overpunc(nchar_npunc_tgt, len(tgt)): fsrc.write(src.strip() + '\n') ftgt.write(tgt.strip() + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--input", required=True, type=str) parser.add_argument('--encoding', default='utf-8', help='character encoding for input/output') parser.add_argument('--bitext', type=str, required=True, help='language direction') parser.add_argument('--src-lang', type=str, required=True, help='Source language') parser.add_argument('--tgt-lang', type=str, required=True, help='Target language') main(parser.parse_args())
EXA-1-master
exa/libraries/fairseq/examples/m2m_100/process_data/remove_too_much_punc.py
import argparse parser = argparse.ArgumentParser() parser.add_argument('--src', type=str, help='Source language') parser.add_argument('--tgt', type=str, help='Target language') parser.add_argument('--src-file', type=str, help='Input source file') parser.add_argument('--tgt-file', type=str, help='Input target file') parser.add_argument('--src-output-file', type=str, help='Output source file') parser.add_argument('--tgt-output-file', type=str, help='Output target file') parser.add_argument('--threshold', type=float, default=0.5, help='Threshold') parser.add_argument('--threshold-character', type=str, default=']', help='Threshold character') parser.add_argument('--histograms', type=str, help='Path to histograms') args = parser.parse_args() def read_hist(f): ch = [] for line in f: c = line[0] if c == args.threshold_character: break ch.append(c) return ch with(open("{}/{}".format(args.histograms, args.src), 'r', encoding='utf8')) as f: ch1 = read_hist(f) with(open("{}/{}".format(args.histograms, args.tgt), 'r', encoding='utf8')) as f: ch2 = read_hist(f) print("Accepted characters for {}: {}".format(args.src, ch1)) print("Accepted characters for {}: {}".format(args.tgt, ch2)) with open(args.src_file, 'r', encoding='utf8') as fs1, open(args.tgt_file, 'r', encoding='utf8') as fs2, open(args.src_output_file, 'w', encoding='utf8') as fos1, open(args.tgt_output_file, 'w', encoding='utf8') as fos2: ls1 = fs1.readline() ls2 = fs2.readline() while ls1 or ls2: cnt1 = len([c for c in ls1.strip() if c in ch1]) cnt2 = len([c for c in ls2.strip() if c in ch2]) if cnt1 / len(ls1) > args.threshold and cnt2 / len(ls2) > args.threshold: fos1.write(ls1) fos2.write(ls2) else: print("{} {} {} \n{} {} {}".format(args.src, cnt1 / len(ls1), ls1.strip(), args.tgt, cnt2 / len(ls2), ls2.strip())) ls1 = fs1.readline() ls2 = fs2.readline()
EXA-1-master
exa/libraries/fairseq/examples/m2m_100/process_data/clean_histogram.py
#!/usr/bin/env python3 -u import argparse import fileinput import logging import os import sys from fairseq.models.transformer import TransformerModel logging.getLogger().setLevel(logging.INFO) def main(): parser = argparse.ArgumentParser(description="") parser.add_argument("--en2fr", required=True, help="path to en2fr model") parser.add_argument( "--fr2en", required=True, help="path to fr2en mixture of experts model" ) parser.add_argument( "--user-dir", help="path to fairseq examples/translation_moe/src directory" ) parser.add_argument( "--num-experts", type=int, default=10, help="(keep at 10 unless using a different model)", ) parser.add_argument( "files", nargs="*", default=["-"], help='input files to paraphrase; "-" for stdin', ) args = parser.parse_args() if args.user_dir is None: args.user_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), # examples/ "translation_moe", "src", ) if os.path.exists(args.user_dir): logging.info("found user_dir:" + args.user_dir) else: raise RuntimeError( "cannot find fairseq examples/translation_moe/src " "(tried looking here: {})".format(args.user_dir) ) logging.info("loading en2fr model from:" + args.en2fr) en2fr = TransformerModel.from_pretrained( model_name_or_path=args.en2fr, tokenizer="moses", bpe="sentencepiece", ).eval() logging.info("loading fr2en model from:" + args.fr2en) fr2en = TransformerModel.from_pretrained( model_name_or_path=args.fr2en, tokenizer="moses", bpe="sentencepiece", user_dir=args.user_dir, task="translation_moe", ).eval() def gen_paraphrases(en): fr = en2fr.translate(en) return [ fr2en.translate(fr, inference_step_args={"expert": i}) for i in range(args.num_experts) ] logging.info("Type the input sentence and press return:") for line in fileinput.input(args.files): line = line.strip() if len(line) == 0: continue for paraphrase in gen_paraphrases(line): print(paraphrase) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/paraphraser/paraphrase.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys import numpy as np aggregate_funcs = { "std": np.std, "var": np.var, "median": np.median, "mean": np.mean, "min": np.min, "max": np.max, } def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_file", required=True, type=str) parser.add_argument("-n", "--repeat_times", required=True, type=int) parser.add_argument("-o", "--output_file", required=False) parser.add_argument("-f", "--func", required=False, default="mean") args = parser.parse_args() stream = open(args.output_file, "w") if args.output_file else sys.stdout segment_scores = [] for line in open(args.input_file): segment_scores.append(float(line.strip())) if len(segment_scores) == args.repeat_times: stream.write("{}\n".format(aggregate_funcs[args.func](segment_scores))) segment_scores = [] if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/unsupervised_quality_estimation/aggregate_scores.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys def _normalize_spaces(line): return " ".join(line.split()) def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_file", required=True, type=str) parser.add_argument("-n", "--repeat_times", required=True, type=int) parser.add_argument("-o", "--output_file", required=False, type=str) args = parser.parse_args() stream = open(args.output_file, "w") if args.output_file else sys.stdout for line in open(args.input_file): for _ in range(args.repeat_times): stream.write(_normalize_spaces(line) + "\n") if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/unsupervised_quality_estimation/repeat_lines.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import math import os import subprocess import sys import tempfile from collections import defaultdict from itertools import combinations def read_translations(path, n_repeats): segment_counter = 0 segment_translations = [] translations = defaultdict(list) for line in open(path): segment_translations.append(" ".join(line.split())) if len(segment_translations) == n_repeats: translations[segment_counter] = segment_translations segment_translations = [] segment_counter += 1 return translations def generate_input(translations, n_repeats): _, ref_path = tempfile.mkstemp() _, mt_path = tempfile.mkstemp() ref_fh = open(ref_path, "w") mt_fh = open(mt_path, "w") for segid in sorted(translations.keys()): assert len(translations[segid]) == n_repeats indexes = combinations(range(n_repeats), 2) for idx1, idx2 in indexes: mt_fh.write(translations[segid][idx1].strip() + "\n") ref_fh.write(translations[segid][idx2].strip() + "\n") sys.stderr.write("\nSaved translations to %s and %s" % (ref_path, mt_path)) return ref_path, mt_path def run_meteor(ref_path, mt_path, metric_path, lang="en"): _, out_path = tempfile.mkstemp() subprocess.call( [ "java", "-Xmx2G", "-jar", metric_path, mt_path, ref_path, "-p", "0.5 0.2 0.6 0.75", # default parameters, only changed alpha to give equal weight to P and R "-norm", "-l", lang, ], stdout=open(out_path, "w"), ) os.remove(ref_path) os.remove(mt_path) sys.stderr.write("\nSaved Meteor output to %s" % out_path) return out_path def read_output(meteor_output_path, n_repeats): n_combinations = math.factorial(n_repeats) / ( math.factorial(2) * math.factorial(n_repeats - 2) ) raw_scores = [] average_scores = [] for line in open(meteor_output_path): if not line.startswith("Segment "): continue score = float(line.strip().split("\t")[1]) raw_scores.append(score) if len(raw_scores) == n_combinations: average_scores.append(sum(raw_scores) / n_combinations) raw_scores = [] os.remove(meteor_output_path) return average_scores def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--infile") parser.add_argument("-n", "--repeat_times", type=int) parser.add_argument("-m", "--meteor") parser.add_argument("-o", "--output") args = parser.parse_args() translations = read_translations(args.infile, args.repeat_times) sys.stderr.write("\nGenerating input for Meteor...") ref_path, mt_path = generate_input(translations, args.repeat_times) sys.stderr.write("\nRunning Meteor...") out_path = run_meteor(ref_path, mt_path, args.meteor) sys.stderr.write("\nReading output...") scores = read_output(out_path, args.repeat_times) sys.stderr.write("\nWriting results...") with open(args.output, "w") as o: for scr in scores: o.write("{}\n".format(scr)) o.close() if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/unsupervised_quality_estimation/meteor.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import models # noqa
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/__init__.py
import argparse import unittest from typing import Any, Dict import torch from examples.simultaneous_translation.models import ( transformer_monotonic_attention ) from tests.test_roberta import FakeTask DEFAULT_CONFIG = { "attention_eps": 1e-6, "mass_preservation": True, "noise_type": "flat", "noise_mean": 0.0, "noise_var": 1.0, "energy_bias_init": -2, "energy_bias": True } PAD_INDEX = 1 def generate_config(overrides_kv): new_dict = {key: value for key, value in DEFAULT_CONFIG.items()} for key, value in overrides_kv.items(): new_dict[key] = value return new_dict def make_sample_with_padding(longer_src=False) -> Dict[str, Any]: tokens_1 = torch.LongTensor( [ [2, 10, 11, 12, 13, 14, 15, 10, 11, 12, 13, 14, 15, 2], [ 2, 11, 12, 14, 15, 10, 11, 12, 13, 14, 15, 2, PAD_INDEX, PAD_INDEX ], ] ) tokens_2 = torch.LongTensor( [ [2, 11, 12, 13, 14, 2, PAD_INDEX, PAD_INDEX], [2, 11, 22, 33, 2, PAD_INDEX, PAD_INDEX, PAD_INDEX] ] ) if longer_src: src_tokens = tokens_1[:, 1:] prev_output_tokens = tokens_2 else: src_tokens = tokens_2[:, 1:8] prev_output_tokens = tokens_1 src_lengths = src_tokens.ne(PAD_INDEX).sum(dim=1).long() sample = { "net_input": { "src_tokens": src_tokens, "prev_output_tokens": prev_output_tokens, "src_lengths": src_lengths, }, "target": prev_output_tokens[:, 1:], } return sample def build_transformer_monotonic_attention(**extra_args: Any): overrides = { # Use characteristics dimensions "encoder_embed_dim": 12, "encoder_ffn_embed_dim": 14, "decoder_embed_dim": 12, "decoder_ffn_embed_dim": 14, # Disable dropout so we have comparable tests. "dropout": 0, "attention_dropout": 0, "activation_dropout": 0, "encoder_layerdrop": 0, } overrides.update(extra_args) # Overrides the defaults from the parser args = argparse.Namespace(**overrides) transformer_monotonic_attention.monotonic_tiny_architecture(args) torch.manual_seed(0) task = FakeTask(args) return ( transformer_monotonic_attention .TransformerModelSimulTrans .build_model(args, task) ) def expected_alignment_formula( p_choose, mass_perservation=True, padding_mask=None ): # Online and Linear-Time Attention by Enforcing Monotonic Alignments # https://arxiv.org/pdf/1704.00784.pdf # Eq 18, 19 bsz, tgt_len, src_len = p_choose.size() alpha = torch.zeros_like(p_choose) if padding_mask is not None: bsz_pad = padding_mask.size(0) num_heads = int(bsz / bsz_pad) padding_mask = ( padding_mask .unsqueeze(1) .expand([bsz_pad, num_heads, src_len]) .contiguous() .view(-1, src_len) ) p_choose = p_choose.masked_fill(padding_mask.unsqueeze(1), 0) for bsz_i in range(bsz): for i in range(tgt_len): for j in range(src_len): if i == 0: if j == 0: # First source token alpha[bsz_i, i, j] = p_choose[bsz_i, i, j] else: # First target token alpha[bsz_i, i, j] = ( p_choose[bsz_i, i, j] * torch.prod( 1 - p_choose[bsz_i, i, :j] ) ) else: alpha[bsz_i, i, j] = alpha[bsz_i, i - 1, j] for k in range(j): alpha[bsz_i, i, j] += ( alpha[bsz_i, i - 1, k] * torch.prod( 1 - p_choose[bsz_i, i, k:j] ) ) alpha[bsz_i, i, j] *= p_choose[bsz_i, i, j] alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0) if mass_perservation: alpha = mass_perservation_formula(alpha, False, padding_mask) return alpha def mass_perservation_formula(alpha, left_padding=False, padding_mask=None): if padding_mask is None or alpha.size(-1) == 1: if alpha.size(-1) > 1: alpha[:, :, -1] = 1 - alpha[:, :, :-1].sum(dim=-1) return alpha src_lens = (padding_mask.logical_not()).sum(dim=1).long() bsz, tgt_len, src_len = alpha.size() assert ( not left_padding or (left_padding and (not padding_mask[:, 0].any())) ) alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0) for bsz_i in range(bsz): if left_padding: alpha[bsz_i, :, -1] = ( 1 - alpha[bsz_i, :, :-1].sum(dim=-1) ) else: alpha[bsz_i, :, src_lens[bsz_i] - 1] = ( 1 - alpha[bsz_i, :, :src_lens[bsz_i] - 1].sum(dim=-1) ) return alpha def expected_soft_attention_formula( alpha, soft_energy, padding_mask=None, chunksize=1e10, ): # Monotonic Infinite Lookback Attention for Simultaneous Machine Translation # https://arxiv.org/pdf/1906.05218.pdf # Eq 14 # Monotonic Chunkwise Attention # https://arxiv.org/abs/1712.05382 # Eq 17 bsz, tgt_len, src_len = alpha.size() beta = torch.zeros_like(alpha) if padding_mask is not None: bsz_pad = padding_mask.size(0) num_heads = int(bsz / bsz_pad) # Expanding for potential head dimension padding_mask = ( padding_mask .unsqueeze(1) .expand([bsz_pad, num_heads, src_len]) .contiguous() .view(-1, src_len) ) soft_energy = soft_energy.masked_fill(padding_mask.unsqueeze(1), float('-inf')) for bsz_i in range(bsz): for i in range(tgt_len): for j in range(src_len): for k in range(j, min([src_len, j + chunksize])): if not padding_mask[bsz_i, j]: beta[bsz_i, i, j] += ( alpha[bsz_i, i, k] * torch.exp(soft_energy[bsz_i, i, j]) / torch.sum(torch.exp(soft_energy[bsz_i, i, max([0, k - chunksize + 1]):k + 1])) ) return beta class MonotonicAttentionTestAbstractClass(object): def test_forward(self): sample = make_sample_with_padding() out, _ = self.model.forward(**sample["net_input"]) loss = out.sum() loss.backward() def test_p_choose(self): sample = make_sample_with_padding() _, extra_out = self.model.forward(**sample["net_input"]) for item in extra_out.attn_list: p_choose = item["p_choose"] self.assertTrue(p_choose.le(1.0).all()) self.assertTrue(p_choose.ge(0.0).all()) def test_expected_alignment(self): for longer_src in [True, False]: sample = make_sample_with_padding(longer_src) _, extra_out = self.model.forward(**sample["net_input"]) for item in extra_out.attn_list: p_choose = item["p_choose"] alpha_system = item["alpha"] self.assertTrue(p_choose.size() == alpha_system.size()) bsz, num_head, tgt_len, src_len = alpha_system.size() alpha_system = alpha_system.view(-1, tgt_len, src_len) p_choose = p_choose.view(-1, tgt_len, src_len) alpha_real = expected_alignment_formula( p_choose, self.model.decoder.layers[0].encoder_attn.mass_preservation, sample["net_input"]["src_tokens"].eq(PAD_INDEX) ) self.assertTrue( torch.abs(alpha_system - alpha_real).le(5e-5).all(), ) class HardMonotonicAttentionTestCase( unittest.TestCase, MonotonicAttentionTestAbstractClass ): def setUp(self): self.model = build_transformer_monotonic_attention( **generate_config({"simul_type": "hard_aligned"}) ) class InfiniteLookbackTestCase( unittest.TestCase, MonotonicAttentionTestAbstractClass ): def setUp(self): self.model = build_transformer_monotonic_attention( **generate_config( { "simul_type": "infinite_lookback" } ) ) self.model.train() def test_fp16_for_long_input(self): sample = { "net_input": { "src_tokens": torch.LongTensor([7] * 1000 + [2]).cuda().unsqueeze(0), "prev_output_tokens": torch.LongTensor([7] * 1000 + [2]).cuda().unsqueeze(0), "src_lengths": torch.LongTensor([1000]).cuda(), }, "target": torch.LongTensor([2] + [7] * 1000).unsqueeze(0).cuda() } self.model.cuda().half() _, extra_out = self.model.forward(**sample["net_input"]) for item in extra_out.attn_list: for key in ["p_choose", "alpha", "beta", "soft_energy"]: self.assertFalse(torch.isnan(item[key]).any()) def test_expected_attention(self): for longer_src in [True, False]: sample = make_sample_with_padding(longer_src) _, extra_out = self.model.forward(**sample["net_input"]) for item in extra_out.attn_list: p_choose = item["p_choose"] alpha_system = item["alpha"] beta_system = item["beta"] soft_energy_system = item["soft_energy"] self.assertTrue(beta_system.size() == alpha_system.size()) self.assertTrue(p_choose.size() == alpha_system.size()) bsz, num_head, tgt_len, src_len = alpha_system.size() alpha_system = alpha_system.view(-1, tgt_len, src_len) beta_system = beta_system.view(-1, tgt_len, src_len) p_choose = p_choose.view(-1, tgt_len, src_len) soft_energy_system = soft_energy_system.view(-1, tgt_len, src_len) alpha_real = expected_alignment_formula( p_choose, self.model.decoder.layers[0].encoder_attn.mass_preservation, sample["net_input"]["src_tokens"].eq(PAD_INDEX) ) beta_real = expected_soft_attention_formula( alpha_real, soft_energy_system, sample["net_input"]["src_tokens"].eq(PAD_INDEX), chunksize=getattr( self.model.decoder.layers[0].encoder_attn, "chunk_size", int(1e10) ) or int(1e10) ) self.assertTrue( torch.abs(beta_system - beta_real).le(1e-5).all(), ) class ChunkwiswTestCase( InfiniteLookbackTestCase ): def setUp(self): self.model = build_transformer_monotonic_attention( **generate_config( { "simul_type": "chunkwise", "mocha_chunk_size": 3 } ) ) class WaitkTestCase(InfiniteLookbackTestCase): def setUp(self): self.model = build_transformer_monotonic_attention( **generate_config( { "simul_type": "waitk", "waitk_lagging": 3, } ) ) def check_waitk(self, p_choose, lagging, padding_mask): bsz, tgt_len, src_len = p_choose.size() for bsz_i in range(bsz): for i in range(tgt_len): for j in range(src_len): if not padding_mask[bsz_i, j]: if j - i == lagging - 1: self.assertTrue(p_choose[bsz_i, i, j] == 1) else: self.assertTrue(p_choose[bsz_i, i, j] == 0) def test_waitk_p_choose(self): for longer_src in [True, False]: for k in [1, 3, 10, 20, 100]: sample = make_sample_with_padding(longer_src) model = build_transformer_monotonic_attention( **generate_config( { "simul_type": "waitk", "waitk_lagging": k, } ) ) model.train() _, extra_out = model.forward(**sample["net_input"]) for item in extra_out.attn_list: p_choose = item["p_choose"] bsz, num_heads, tgt_len, src_len = p_choose.size() padding_mask = sample["net_input"]["src_tokens"].eq(PAD_INDEX) padding_mask = ( padding_mask .unsqueeze(1) .expand([bsz, num_heads, src_len]) .contiguous() .view(-1, src_len) ) p_choose = p_choose.view(bsz * num_heads, tgt_len, src_len) self.check_waitk(p_choose, k, padding_mask)
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/tests/test_text_models.py
import unittest import numpy as np import torch import hypothesis.strategies as st from hypothesis import assume, given, settings from torch.testing._internal.common_utils import TestCase from examples.simultaneous_translation.utils.functions import exclusive_cumprod TEST_CUDA = torch.cuda.is_available() class AlignmentTrainTest(TestCase): def _test_custom_alignment_train_ref(self, p_choose, eps): cumprod_1mp = exclusive_cumprod(1 - p_choose, dim=2, eps=eps) cumprod_1mp_clamp = torch.clamp(cumprod_1mp, eps, 1.0) bsz = p_choose.size(0) tgt_len = p_choose.size(1) src_len = p_choose.size(2) alpha_0 = p_choose.new_zeros([bsz, 1, src_len]) alpha_0[:, :, 0] = 1.0 previous_alpha = [alpha_0] for i in range(tgt_len): # p_choose: bsz , tgt_len, src_len # cumprod_1mp_clamp : bsz, tgt_len, src_len # previous_alpha[i]: bsz, 1, src_len # alpha_i: bsz, src_len alpha_i = ( p_choose[:, i] * cumprod_1mp[:, i] * torch.cumsum( previous_alpha[i][:, 0] / cumprod_1mp_clamp[:, i], dim=1 ) ).clamp(0, 1.0) previous_alpha.append(alpha_i.unsqueeze(1)) # alpha: bsz * num_heads, tgt_len, src_len alpha = torch.cat(previous_alpha[1:], dim=1) return alpha def _test_custom_alignment_train_impl(self, p_choose, alpha, eps): if p_choose.is_cuda: from alignment_train_cuda_binding import alignment_train_cuda # @manual=//deeplearning/projects/fairseq-py:alignment_train_cuda_binding alignment_train_cuda(p_choose, alpha, eps) else: from alignment_train_cpu_binding import alignment_train_cpu # @manual=//deeplearning/projects/fairseq-py:alignment_train_cpu_binding alignment_train_cpu(p_choose, alpha, eps) @settings(deadline=None) @given( bsz=st.integers(1, 100), tgt_len=st.integers(1, 100), src_len=st.integers(1, 550), device=st.sampled_from(["cpu", "cuda"]), ) def test_alignment_train(self, bsz, tgt_len, src_len, device): eps = 1e-6 assume(device == "cpu" or TEST_CUDA) p_choose = torch.rand(bsz, tgt_len, src_len, device=device) # run the alignment with the custom operator alpha_act = p_choose.new_zeros([bsz, tgt_len, src_len]) self._test_custom_alignment_train_impl(p_choose, alpha_act, eps) # runu the alignment with the ref implementation alpha_ref = self._test_custom_alignment_train_ref(p_choose, eps) # verify the results alpha_act = alpha_act.cpu().detach().numpy() alpha_ref = alpha_ref.cpu().detach().numpy() np.testing.assert_allclose( alpha_act, alpha_ref, atol=1e-3, rtol=1e-3, ) if __name__ == "__main__": unittest.main()
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/tests/test_alignment_train.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch def prob_check(tensor, eps=1e-10): assert not torch.isnan(tensor).any(), ( "Nan in a probability tensor." ) # Add the eps here to prevent errors introduced by precision assert tensor.le(1.0 + eps).all() and tensor.ge(0.0 - eps).all(), ( "Incorrect values in a probability tensor" ", 0.0 <= tensor <= 1.0" ) def exclusive_cumprod(tensor, dim: int, eps: float = 1e-10): """ Implementing exclusive cumprod. There is cumprod in pytorch, however there is no exclusive mode. cumprod(x) = [x1, x1x2, x2x3x4, ..., prod_{i=1}^n x_i] exclusive means cumprod(x) = [1, x1, x1x2, x1x2x3, ..., prod_{i=1}^{n-1} x_i] """ tensor_size = list(tensor.size()) tensor_size[dim] = 1 return_tensor = safe_cumprod( torch.cat([torch.ones(tensor_size).type_as(tensor), tensor], dim=dim), dim=dim, eps=eps, ) if dim == 0: return return_tensor[:-1] elif dim == 1: return return_tensor[:, :-1] elif dim == 2: return return_tensor[:, :, :-1] else: raise RuntimeError( "Cumprod on dimension 3 and more is not implemented" ) def safe_cumprod(tensor, dim: int, eps: float = 1e-10): """ An implementation of cumprod to prevent precision issue. cumprod(x) = [x1, x1x2, x1x2x3, ....] = [exp(log(x1)), exp(log(x1) + log(x2)), exp(log(x1) + log(x2) + log(x3)), ...] = exp(cumsum(log(x))) """ if (tensor + eps < 0).any().item(): raise RuntimeError( "Safe cumprod can only take non-negative tensors as input." "Consider use torch.cumprod if you want to calculate negative values." ) log_tensor = torch.log(tensor + eps) cumsum_log_tensor = torch.cumsum(log_tensor, dim) exp_cumsum_log_tensor = torch.exp(cumsum_log_tensor) return exp_cumsum_log_tensor def moving_sum(x, start_idx: int, end_idx: int): """ From MONOTONIC CHUNKWISE ATTENTION https://arxiv.org/pdf/1712.05382.pdf Equation (18) x = [x_1, x_2, ..., x_N] MovingSum(x, start_idx, end_idx)_n = Sigma_{m=n−(start_idx−1)}^{n+end_idx-1} x_m for n in {1, 2, 3, ..., N} x : src_len, batch_size start_idx : start idx end_idx : end idx Example src_len = 5 batch_size = 3 x = [[ 0, 5, 10], [ 1, 6, 11], [ 2, 7, 12], [ 3, 8, 13], [ 4, 9, 14]] MovingSum(x, 3, 1) = [[ 0, 5, 10], [ 1, 11, 21], [ 3, 18, 33], [ 6, 21, 36], [ 9, 24, 39]] MovingSum(x, 1, 3) = [[ 3, 18, 33], [ 6, 21, 36], [ 9, 24, 39], [ 7, 17, 27], [ 4, 9, 14]] """ # TODO: Make dimension configurable assert start_idx > 0 and end_idx > 0 batch_size, tgt_len, src_len = x.size() x = x.view(-1, src_len).unsqueeze(1) # batch_size, 1, src_len moving_sum_weight = torch.ones([1, 1, end_idx + start_idx - 1]).type_as(x) moving_sum = torch.nn.functional.conv1d( x, moving_sum_weight, padding=start_idx + end_idx - 1 ).squeeze(1) moving_sum = moving_sum[:, end_idx:-start_idx] assert src_len == moving_sum.size(1) assert batch_size * tgt_len == moving_sum.size(0) moving_sum = moving_sum.view(batch_size, tgt_len, src_len) return moving_sum
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/utils/functions.py
from typing import Optional, Dict from torch import Tensor import torch def waitk_p_choose( tgt_len: int, src_len: int, bsz: int, waitk_lagging: int, key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None ): max_src_len = src_len if incremental_state is not None: # Retrieve target length from incremental states # For inference the length of query is always 1 max_tgt_len = incremental_state["steps"]["tgt"] assert max_tgt_len is not None max_tgt_len = int(max_tgt_len) else: max_tgt_len = tgt_len if max_src_len < waitk_lagging: if incremental_state is not None: max_tgt_len = 1 return torch.zeros( bsz, max_tgt_len, max_src_len ) # Assuming the p_choose looks like this for wait k=3 # src_len = 6, max_tgt_len = 5 # [0, 0, 1, 0, 0, 0, 0] # [0, 0, 0, 1, 0, 0, 0] # [0, 0, 0, 0, 1, 0, 0] # [0, 0, 0, 0, 0, 1, 0] # [0, 0, 0, 0, 0, 0, 1] # linearize the p_choose matrix: # [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0...] # The indices of linearized matrix that equals 1 is # 2 + 6 * 0 # 3 + 6 * 1 # ... # n + src_len * n + k - 1 = n * (src_len + 1) + k - 1 # n from 0 to max_tgt_len - 1 # # First, generate the indices (activate_indices_offset: bsz, max_tgt_len) # Second, scatter a zeros tensor (bsz, max_tgt_len * src_len) # with activate_indices_offset # Third, resize the tensor to (bsz, max_tgt_len, src_len) activate_indices_offset = ( ( torch.arange(max_tgt_len) * (max_src_len + 1) + waitk_lagging - 1 ) .unsqueeze(0) .expand(bsz, max_tgt_len) .long() ) if key_padding_mask is not None: if key_padding_mask[:, 0].any(): # Left padding activate_indices_offset += ( key_padding_mask.sum(dim=1, keepdim=True) ) # Need to clamp the indices that are too large activate_indices_offset = ( activate_indices_offset .clamp( 0, min( [ max_tgt_len, max_src_len - waitk_lagging + 1 ] ) * max_src_len - 1 ) ) p_choose = torch.zeros(bsz, max_tgt_len * max_src_len) p_choose = p_choose.scatter( 1, activate_indices_offset, 1.0 ).view(bsz, max_tgt_len, max_src_len) if key_padding_mask is not None: p_choose = p_choose.to(key_padding_mask) p_choose = p_choose.masked_fill(key_padding_mask.unsqueeze(1), 0) if incremental_state is not None: p_choose = p_choose[:, -1:] return p_choose.float() def learnable_p_choose( energy, noise_mean: float = 0.0, noise_var: float = 0.0, training: bool = True ): """ Calculating step wise prob for reading and writing 1 to read, 0 to write energy: bsz, tgt_len, src_len """ noise = 0 if training: # add noise here to encourage discretness noise = ( torch.normal(noise_mean, noise_var, energy.size()) .type_as(energy) .to(energy.device) ) p_choose = torch.sigmoid(energy + noise) # p_choose: bsz * self.num_heads, tgt_len, src_len return p_choose
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/utils/p_choose_strategy.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the criterions/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("examples.simultaneous_translation.utils." + module)
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/utils/__init__.py
from typing import Optional import torch from torch import Tensor from examples.simultaneous_translation.utils.functions import ( exclusive_cumprod, prob_check, moving_sum, ) def expected_alignment_from_p_choose( p_choose: Tensor, padding_mask: Optional[Tensor] = None, eps: float = 1e-6 ): """ Calculating expected alignment for from stepwise probability Reference: Online and Linear-Time Attention by Enforcing Monotonic Alignments https://arxiv.org/pdf/1704.00784.pdf q_ij = (1 − p_{ij−1})q_{ij−1} + a+{i−1j} a_ij = p_ij q_ij Parallel solution: ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi)) ============================================================ Expected input size p_choose: bsz, tgt_len, src_len """ prob_check(p_choose) # p_choose: bsz, tgt_len, src_len bsz, tgt_len, src_len = p_choose.size() dtype = p_choose.dtype p_choose = p_choose.float() if padding_mask is not None: p_choose = p_choose.masked_fill(padding_mask.unsqueeze(1), 0.0) if p_choose.is_cuda: p_choose = p_choose.contiguous() from alignment_train_cuda_binding import alignment_train_cuda as alignment_train else: from alignment_train_cpu_binding import alignment_train_cpu as alignment_train alpha = p_choose.new_zeros([bsz, tgt_len, src_len]) alignment_train(p_choose, alpha, eps) # Mix precision to prevent overflow for fp16 alpha = alpha.type(dtype) prob_check(alpha) return alpha def expected_soft_attention( alpha: Tensor, soft_energy: Tensor, padding_mask: Optional[Tensor] = None, chunk_size: Optional[int] = None, eps: float = 1e-10 ): """ Function to compute expected soft attention for monotonic infinite lookback attention from expected alignment and soft energy. Reference: Monotonic Chunkwise Attention https://arxiv.org/abs/1712.05382 Monotonic Infinite Lookback Attention for Simultaneous Machine Translation https://arxiv.org/abs/1906.05218 alpha: bsz, tgt_len, src_len soft_energy: bsz, tgt_len, src_len padding_mask: bsz, src_len left_padding: bool """ if padding_mask is not None: alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0) soft_energy = soft_energy.masked_fill( padding_mask.unsqueeze(1), -float("inf") ) prob_check(alpha) dtype = alpha.dtype alpha = alpha.float() soft_energy = soft_energy.float() soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0] exp_soft_energy = torch.exp(soft_energy) + eps if chunk_size is not None: # Chunkwise beta = ( exp_soft_energy * moving_sum( alpha / (eps + moving_sum(exp_soft_energy, chunk_size, 1)), 1, chunk_size ) ) else: # Infinite lookback # Notice that infinite lookback is a special case of chunkwise # where chunksize = inf inner_items = alpha / (eps + torch.cumsum(exp_soft_energy, dim=2)) beta = ( exp_soft_energy * torch.cumsum(inner_items.flip(dims=[2]), dim=2) .flip(dims=[2]) ) if padding_mask is not None: beta = beta.masked_fill( padding_mask.unsqueeze(1).to(torch.bool), 0.0) # Mix precision to prevent overflow for fp16 beta = beta.type(dtype) beta = beta.clamp(0, 1) prob_check(beta) return beta def mass_preservation( alpha: Tensor, padding_mask: Optional[Tensor] = None, left_padding: bool = False ): """ Function to compute the mass perservation for alpha. This means that the residual weights of alpha will be assigned to the last token. Reference: Monotonic Infinite Lookback Attention for Simultaneous Machine Translation https://arxiv.org/abs/1906.05218 alpha: bsz, tgt_len, src_len padding_mask: bsz, src_len left_padding: bool """ prob_check(alpha) if padding_mask is not None: if not left_padding: assert not padding_mask[:, 0].any(), ( "Find padding on the beginning of the sequence." ) alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0) if left_padding or padding_mask is None: residuals = 1 - alpha[:, :, :-1].sum(dim=-1).clamp(0, 1) alpha[:, :, -1] = residuals else: # right padding _, tgt_len, src_len = alpha.size() residuals = 1 - alpha.sum(dim=-1, keepdim=True).clamp(0, 1) src_lens = src_len - padding_mask.sum(dim=1, keepdim=True) src_lens = src_lens.expand(-1, tgt_len).contiguous() # add back the last value residuals += alpha.gather(2, src_lens.unsqueeze(2) - 1) alpha = alpha.scatter(2, src_lens.unsqueeze(2) - 1, residuals) prob_check(alpha) return alpha
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/utils/monotonic_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, NamedTuple, Optional import torch import torch.nn as nn from examples.simultaneous_translation.modules.monotonic_transformer_layer import ( TransformerMonotonicDecoderLayer, TransformerMonotonicEncoderLayer, ) from fairseq.models import ( register_model, register_model_architecture, ) from fairseq.models.transformer import ( TransformerModel, TransformerEncoder, TransformerDecoder, base_architecture, transformer_iwslt_de_en, transformer_vaswani_wmt_en_de_big, tiny_architecture ) from torch import Tensor DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 READ_ACTION = 0 WRITE_ACTION = 1 TransformerMonotonicDecoderOut = NamedTuple( "TransformerMonotonicDecoderOut", [ ("action", int), ("p_choose", Optional[Tensor]), ("attn_list", Optional[List[Optional[Dict[str, Tensor]]]]), ("encoder_out", Optional[Dict[str, List[Tensor]]]), ("encoder_padding_mask", Optional[Tensor]), ], ) @register_model("transformer_unidirectional") class TransformerUnidirectionalModel(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerMonotonicEncoder(args, src_dict, embed_tokens) @register_model("transformer_monotonic") class TransformerModelSimulTrans(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerMonotonicEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerMonotonicDecoder(args, tgt_dict, embed_tokens) class TransformerMonotonicEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) self.dictionary = dictionary self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerMonotonicEncoderLayer(args) for i in range(args.encoder_layers) ] ) class TransformerMonotonicDecoder(TransformerDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False) self.dictionary = dictionary self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerMonotonicDecoderLayer(args) for _ in range(args.decoder_layers) ] ) self.policy_criterion = getattr(args, "policy_criterion", "any") self.num_updates = None def set_num_updates(self, num_updates): self.num_updates = num_updates def pre_attention( self, prev_output_tokens, encoder_out_dict: Dict[str, List[Tensor]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_out = encoder_out_dict["encoder_out"][0] if "encoder_padding_mask" in encoder_out_dict: encoder_padding_mask = ( encoder_out_dict["encoder_padding_mask"][0] if encoder_out_dict["encoder_padding_mask"] and len(encoder_out_dict["encoder_padding_mask"]) > 0 else None ) else: encoder_padding_mask = None return x, encoder_out, encoder_padding_mask def post_attention(self, x): if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x def clean_cache( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], end_id: Optional[int] = None, ): """ Clean cache in the monotonic layers. The cache is generated because of a forward pass of decoder has run but no prediction, so that the self attention key value in decoder is written in the incremental state. end_id is the last idx of the layers """ if end_id is None: end_id = len(self.layers) for index, layer in enumerate(self.layers): if index < end_id: layer.prune_incremental_state(incremental_state) def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, # unused alignment_layer: Optional[int] = None, # unused alignment_heads: Optional[int] = None, # unsed ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # incremental_state = None assert encoder_out is not None (x, encoder_outs, encoder_padding_mask) = self.pre_attention( prev_output_tokens, encoder_out, incremental_state ) attn = None inner_states = [x] attn_list: List[Optional[Dict[str, Tensor]]] = [] p_choose = torch.tensor([1.0]) for i, layer in enumerate(self.layers): x, attn, _ = layer( x=x, encoder_out=encoder_outs, encoder_padding_mask=encoder_padding_mask, incremental_state=incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) attn_list.append(attn) if incremental_state is not None: if_online = incremental_state["online"]["only"] assert if_online is not None if if_online.to(torch.bool): # Online indicates that the encoder states are still changing assert attn is not None if self.policy_criterion == "any": # Any head decide to read than read head_read = layer.encoder_attn._get_monotonic_buffer(incremental_state)["head_read"] assert head_read is not None if head_read.any(): # We need to prune the last self_attn saved_state # if model decide not to read # otherwise there will be duplicated saved_state self.clean_cache(incremental_state, i + 1) return x, TransformerMonotonicDecoderOut( action=0, p_choose=p_choose, attn_list=None, encoder_out=None, encoder_padding_mask=None, ) x = self.post_attention(x) return x, TransformerMonotonicDecoderOut( action=1, p_choose=p_choose, attn_list=attn_list, encoder_out=encoder_out, encoder_padding_mask=encoder_padding_mask, ) @register_model_architecture("transformer_monotonic", "transformer_monotonic") def base_monotonic_architecture(args): base_architecture(args) args.encoder_unidirectional = getattr(args, "encoder_unidirectional", False) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_iwslt_de_en" ) def transformer_monotonic_iwslt_de_en(args): transformer_iwslt_de_en(args) base_monotonic_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_de_big" ) def transformer_monotonic_vaswani_wmt_en_de_big(args): transformer_vaswani_wmt_en_de_big(args) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_fr_big" ) def transformer_monotonic_vaswani_wmt_en_fr_big(args): transformer_monotonic_vaswani_wmt_en_fr_big(args) @register_model_architecture( "transformer_unidirectional", "transformer_unidirectional_iwslt_de_en" ) def transformer_unidirectional_iwslt_de_en(args): transformer_iwslt_de_en(args) @register_model_architecture("transformer_monotonic", "transformer_monotonic_tiny") def monotonic_tiny_architecture(args): tiny_architecture(args) base_monotonic_architecture(args)
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/models/transformer_monotonic_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module( "examples.simultaneous_translation.models." + model_name )
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/models/__init__.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from fairseq import checkpoint_utils from fairseq.models import ( register_model, register_model_architecture, ) from fairseq.models.speech_to_text import ( ConvTransformerModel, convtransformer_espnet, ConvTransformerEncoder, ) from fairseq.models.speech_to_text.modules.augmented_memory_attention import ( augmented_memory, SequenceEncoder, AugmentedMemoryConvTransformerEncoder, ) from torch import nn, Tensor from typing import Dict, List from fairseq.models.speech_to_text.modules.emformer import NoSegAugmentedMemoryTransformerEncoderLayer @register_model("convtransformer_simul_trans") class SimulConvTransformerModel(ConvTransformerModel): """ Implementation of the paper: SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End Simultaneous Speech Translation https://www.aclweb.org/anthology/2020.aacl-main.58.pdf """ @staticmethod def add_args(parser): super(SimulConvTransformerModel, SimulConvTransformerModel).add_args(parser) parser.add_argument( "--train-monotonic-only", action="store_true", default=False, help="Only train monotonic attention", ) @classmethod def build_decoder(cls, args, task, embed_tokens): tgt_dict = task.tgt_dict from examples.simultaneous_translation.models.transformer_monotonic_attention import ( TransformerMonotonicDecoder, ) decoder = TransformerMonotonicDecoder(args, tgt_dict, embed_tokens) if getattr(args, "load_pretrained_decoder_from", None): decoder = checkpoint_utils.load_pretrained_component_from_model( component=decoder, checkpoint=args.load_pretrained_decoder_from ) return decoder @register_model_architecture( "convtransformer_simul_trans", "convtransformer_simul_trans_espnet" ) def convtransformer_simul_trans_espnet(args): convtransformer_espnet(args) @register_model("convtransformer_augmented_memory") @augmented_memory class AugmentedMemoryConvTransformerModel(SimulConvTransformerModel): @classmethod def build_encoder(cls, args): encoder = SequenceEncoder(args, AugmentedMemoryConvTransformerEncoder(args)) if getattr(args, "load_pretrained_encoder_from", None) is not None: encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) return encoder @register_model_architecture( "convtransformer_augmented_memory", "convtransformer_augmented_memory" ) def augmented_memory_convtransformer_espnet(args): convtransformer_espnet(args) # ============================================================================ # # Convtransformer # with monotonic attention decoder # with emformer encoder # ============================================================================ # class ConvTransformerEmformerEncoder(ConvTransformerEncoder): def __init__(self, args): super().__init__(args) stride = self.conv_layer_stride(args) trf_left_context = args.segment_left_context // stride trf_right_context = args.segment_right_context // stride context_config = [trf_left_context, trf_right_context] self.transformer_layers = nn.ModuleList( [ NoSegAugmentedMemoryTransformerEncoderLayer( input_dim=args.encoder_embed_dim, num_heads=args.encoder_attention_heads, ffn_dim=args.encoder_ffn_embed_dim, num_layers=args.encoder_layers, dropout_in_attn=args.dropout, dropout_on_attn=args.dropout, dropout_on_fc1=args.dropout, dropout_on_fc2=args.dropout, activation_fn=args.activation_fn, context_config=context_config, segment_size=args.segment_length, max_memory_size=args.max_memory_size, scaled_init=True, # TODO: use constant for now. tanh_on_mem=args.amtrf_tanh_on_mem, ) ] ) self.conv_transformer_encoder = ConvTransformerEncoder(args) def forward(self, src_tokens, src_lengths): encoder_out: Dict[str, List[Tensor]] = self.conv_transformer_encoder(src_tokens, src_lengths.to(src_tokens.device)) output = encoder_out["encoder_out"][0] encoder_padding_masks = encoder_out["encoder_padding_mask"] return { "encoder_out": [output], # This is because that in the original implementation # the output didn't consider the last segment as right context. "encoder_padding_mask": [encoder_padding_masks[0][:, : output.size(0)]] if len(encoder_padding_masks) > 0 else [], "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], } @staticmethod def conv_layer_stride(args): # TODO: make it configurable from the args return 4 @register_model("convtransformer_emformer") class ConvtransformerEmformer(SimulConvTransformerModel): @staticmethod def add_args(parser): super(ConvtransformerEmformer, ConvtransformerEmformer).add_args(parser) parser.add_argument( "--segment-length", type=int, metavar="N", help="length of each segment (not including left context / right context)", ) parser.add_argument( "--segment-left-context", type=int, help="length of left context in a segment", ) parser.add_argument( "--segment-right-context", type=int, help="length of right context in a segment", ) parser.add_argument( "--max-memory-size", type=int, default=-1, help="Right context for the segment.", ) parser.add_argument( "--amtrf-tanh-on-mem", default=False, action="store_true", help="whether to use tanh on memory vector", ) @classmethod def build_encoder(cls, args): encoder = ConvTransformerEmformerEncoder(args) if getattr(args, "load_pretrained_encoder_from", None): encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) return encoder @register_model_architecture( "convtransformer_emformer", "convtransformer_emformer", ) def convtransformer_emformer_base(args): convtransformer_espnet(args)
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/models/convtransformer_simul_trans.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from fairseq import checkpoint_utils, tasks import sentencepiece as spm import torch try: from simuleval import READ_ACTION, WRITE_ACTION, DEFAULT_EOS from simuleval.agents import TextAgent except ImportError: print("Please install simuleval 'pip install simuleval'") BOS_PREFIX = "\u2581" class SimulTransTextAgentJA(TextAgent): """ Simultaneous Translation Text agent for Japanese """ def __init__(self, args): # Whether use gpu self.gpu = getattr(args, "gpu", False) # Max len self.max_len = args.max_len # Load Model self.load_model_vocab(args) # build word splitter self.build_word_splitter(args) self.eos = DEFAULT_EOS def initialize_states(self, states): states.incremental_states = dict() states.incremental_states["online"] = dict() def to_device(self, tensor): if self.gpu: return tensor.cuda() else: return tensor.cpu() def load_model_vocab(self, args): filename = args.model_path if not os.path.exists(filename): raise IOError("Model file not found: {}".format(filename)) state = checkpoint_utils.load_checkpoint_to_cpu(filename) task_args = state["cfg"]["task"] task_args.data = args.data_bin task = tasks.setup_task(task_args) # build model for ensemble state["cfg"]["model"].load_pretrained_encoder_from = None state["cfg"]["model"].load_pretrained_decoder_from = None self.model = task.build_model(state["cfg"]["model"]) self.model.load_state_dict(state["model"], strict=True) self.model.eval() self.model.share_memory() if self.gpu: self.model.cuda() # Set dictionary self.dict = {} self.dict["tgt"] = task.target_dictionary self.dict["src"] = task.source_dictionary @staticmethod def add_args(parser): # fmt: off parser.add_argument('--model-path', type=str, required=True, help='path to your pretrained model.') parser.add_argument("--data-bin", type=str, required=True, help="Path of data binary") parser.add_argument("--max-len", type=int, default=100, help="Max length of translation") parser.add_argument("--tgt-splitter-type", type=str, default="SentencePiece", help="Subword splitter type for target text.") parser.add_argument("--tgt-splitter-path", type=str, default=None, help="Subword splitter model path for target text.") parser.add_argument("--src-splitter-type", type=str, default="SentencePiece", help="Subword splitter type for source text.") parser.add_argument("--src-splitter-path", type=str, default=None, help="Subword splitter model path for source text.") # fmt: on return parser def build_word_splitter(self, args): self.spm = {} for lang in ['src', 'tgt']: if getattr(args, f'{lang}_splitter_type', None): path = getattr(args, f'{lang}_splitter_path', None) if path: self.spm[lang] = spm.SentencePieceProcessor() self.spm[lang].Load(path) def segment_to_units(self, segment, states): # Split a full word (segment) into subwords (units) return self.spm['src'].EncodeAsPieces(segment) def update_model_encoder(self, states): if len(states.units.source) == 0: return src_indices = [ self.dict['src'].index(x) for x in states.units.source.value ] if states.finish_read(): # Append the eos index when the prediction is over src_indices += [self.dict["tgt"].eos_index] src_indices = self.to_device( torch.LongTensor(src_indices).unsqueeze(0) ) src_lengths = self.to_device( torch.LongTensor([src_indices.size(1)]) ) states.encoder_states = self.model.encoder(src_indices, src_lengths) torch.cuda.empty_cache() def update_states_read(self, states): # Happens after a read action. self.update_model_encoder(states) def units_to_segment(self, units, states): # Merge sub words (units) to full word (segment). # For Japanese, we can directly send # the untokenized token to server except the BOS token # with following option # --sacrebleu-tokenizer MeCab # --eval-latency-unit char # --no-space token = units.value.pop() if ( token == self.dict["tgt"].eos_word or len(states.segments.target) > self.max_len ): return DEFAULT_EOS if BOS_PREFIX == token: return None if token[0] == BOS_PREFIX: return token[1:] else: return token def policy(self, states): if not getattr(states, "encoder_states", None): # No encoder states, read a token first return READ_ACTION # encode previous predicted target tokens tgt_indices = self.to_device( torch.LongTensor( [self.model.decoder.dictionary.eos()] + [ self.dict['tgt'].index(x) for x in states.units.target.value if x is not None ] ).unsqueeze(0) ) # Current steps states.incremental_states["steps"] = { "src": states.encoder_states["encoder_out"][0].size(0), "tgt": 1 + len(states.units.target), } # Online only means the reading is not finished states.incremental_states["online"]["only"] = ( torch.BoolTensor([not states.finish_read()]) ) x, outputs = self.model.decoder.forward( prev_output_tokens=tgt_indices, encoder_out=states.encoder_states, incremental_state=states.incremental_states, ) states.decoder_out = x torch.cuda.empty_cache() if outputs.action == 0: return READ_ACTION else: return WRITE_ACTION def predict(self, states): # Predict target token from decoder states decoder_states = states.decoder_out lprobs = self.model.get_normalized_probs( [decoder_states[:, -1:]], log_probs=True ) index = lprobs.argmax(dim=-1)[0, 0].item() if index != self.dict['tgt'].eos_index: token = self.dict['tgt'].string([index]) else: token = self.dict['tgt'].eos_word return token
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/eval/agents/simul_t2t_enja.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.modules import TransformerDecoderLayer, TransformerEncoderLayer from . import build_monotonic_attention from typing import Dict, Optional, List from torch import Tensor import torch class TransformerMonotonicEncoderLayer(TransformerEncoderLayer): def forward(self, x, encoder_padding_mask): seq_len, _, _ = x.size() attn_mask = x.new_ones([seq_len, seq_len]).triu(1) attn_mask = attn_mask.masked_fill(attn_mask.bool(), float("-inf")) return super().forward(x, encoder_padding_mask, attn_mask) class TransformerMonotonicDecoderLayer(TransformerDecoderLayer): def __init__(self, args): super().__init__(args) assert args.simul_type is not None, "A --simul-type is needed." self.encoder_attn = build_monotonic_attention(args) def prune_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ): input_buffer = self.self_attn._get_input_buffer(incremental_state) for key in ["prev_key", "prev_value"]: input_buffer_key = input_buffer[key] assert input_buffer_key is not None if input_buffer_key.size(2) > 1: input_buffer[key] = input_buffer_key[:, :, :-1, :] else: typed_empty_dict: Dict[str, Optional[Tensor]] = {} input_buffer = typed_empty_dict break assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, input_buffer) def forward( self, x, encoder_out: Optional[Tensor] = None, encoder_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[Tensor]] = None, prev_attn_state: Optional[List[Tensor]] = None, self_attn_mask: Optional[Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) assert self.encoder_attn is not None residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/modules/monotonic_transformer_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from torch import Tensor import torch.nn as nn from examples.simultaneous_translation.utils.p_choose_strategy import ( learnable_p_choose, waitk_p_choose ) from examples.simultaneous_translation.utils.monotonic_attention import ( expected_alignment_from_p_choose, expected_soft_attention, mass_preservation, ) from fairseq.modules import MultiheadAttention from . import register_monotonic_attention from typing import Dict, Optional @register_monotonic_attention("hard_aligned") class MonotonicAttention(MultiheadAttention): """ Abstract class of monotonic attentions """ k_in_proj: Dict[str, nn.Linear] q_in_proj: Dict[str, nn.Linear] def __init__(self, args): super().__init__( embed_dim=args.decoder_embed_dim, num_heads=args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, ) self.soft_attention = False self.eps = getattr(args, "attention_eps", True) self.mass_preservation = getattr(args, "mass_preservation", True) self.noise_type = args.noise_type self.noise_mean = args.noise_mean self.noise_var = args.noise_var self.energy_bias_init = args.energy_bias_init self.energy_bias = ( nn.Parameter(self.energy_bias_init * torch.ones([1])) if args.energy_bias is True else 0 ) self.k_in_proj = {"monotonic": self.k_proj} self.q_in_proj = {"monotonic": self.q_proj} self.chunk_size = None @staticmethod def add_args(parser): # fmt: off parser.add_argument('--no-mass-preservation', action="store_false", dest="mass_preservation", help='Do not stay on the last token when decoding') parser.add_argument('--mass-preservation', action="store_true", dest="mass_preservation", help='Stay on the last token when decoding') parser.set_defaults(mass_preservation=True) parser.add_argument('--noise-var', type=float, default=1.0, help='Variance of discretness noise') parser.add_argument('--noise-mean', type=float, default=0.0, help='Mean of discretness noise') parser.add_argument('--noise-type', type=str, default="flat", help='Type of discretness noise') parser.add_argument('--energy-bias', action="store_true", default=False, help='Bias for energy') parser.add_argument('--energy-bias-init', type=float, default=-2.0, help='Initial value of the bias for energy') parser.add_argument('--attention-eps', type=float, default=1e-6, help='Epsilon when calculating expected attention') def energy_from_qk( self, query: Tensor, key: Tensor, energy_type: str, key_padding_mask: Optional[Tensor] = None, bias: int = 0 ): """ Compute energy from query and key q_func_value is a tuple looks like (q_proj_func, q_tensor) q_tensor size: bsz, tgt_len, emb_dim k_tensor size: bsz, src_len, emb_dim key_padding_mask size: bsz, src_len attn_mask: bsz, src_len """ length, bsz, _ = query.size() q = self.q_in_proj[energy_type].forward(query) q = ( q.contiguous() .view(length, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) q = q * self.scaling length, bsz, _ = key.size() k = self.k_in_proj[energy_type].forward(key) k = ( k.contiguous() .view(length, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) energy = torch.bmm(q, k.transpose(1, 2)) + bias if key_padding_mask is not None: energy = energy.masked_fill( key_padding_mask.unsqueeze(1).to(torch.bool), - float("inf") ) return energy def p_choose_from_qk(self, query, key, key_padding_mask, incremental_states=None): monotonic_energy = self.energy_from_qk( query, key, "monotonic", key_padding_mask=key_padding_mask, bias=self.energy_bias, ) p_choose = learnable_p_choose( monotonic_energy, self.noise_mean, self.noise_var, self.training ) return p_choose def p_choose(self, query, key, key_padding_mask, incremental_states=None): return self.p_choose_from_qk(self, query, key, key_padding_mask) def monotonic_attention_process_infer( self, query: Optional[Tensor], key: Optional[Tensor], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], ): """ Monotonic attention at inference time Notice that this function is designed for simuleval not sequence_generator """ assert query is not None assert key is not None if query.size(1) != 1: raise RuntimeError( "Simultaneous translation models don't support batch decoding." ) # 1. compute stepwise probability p_choose = self.p_choose( query, key, None, incremental_state ).squeeze(1) # 2. Compute the alpha src_len = key.size(0) # Maximum steps allows in this iteration max_steps = src_len - 1 if self.mass_preservation else src_len monotonic_cache = self._get_monotonic_buffer(incremental_state) # Step for each head monotonic_step = monotonic_cache.get( 'head_step', p_choose.new_zeros(1, self.num_heads).long() ) assert monotonic_step is not None finish_read = monotonic_step.eq(max_steps) p_choose_i = torch.tensor(1) while finish_read.sum().item() < self.num_heads: # p_choose: self.num_heads, src_len # only choose the p at monotonic steps # p_choose_i: 1, self.num_heads p_choose_i = ( p_choose.gather( 1, monotonic_step .clamp(0, src_len - 1), ) ) read_one_step = ( (p_choose_i < 0.5) .type_as(monotonic_step) .masked_fill(finish_read, 0) ) # 1 x bsz # sample actions on unfinished seq # 0 means stay, finish reading # 1 means leave, continue reading monotonic_step += read_one_step finish_read = monotonic_step.eq(max_steps) | (read_one_step == 0) # p_choose at last steps p_choose_i = ( p_choose.gather( 1, monotonic_step .clamp(0, src_len - 1), ) ) monotonic_cache["head_step"] = monotonic_step # Whether a head is looking for new input monotonic_cache["head_read"] = ( monotonic_step.eq(max_steps) & (p_choose_i < 0.5) ) self._set_monotonic_buffer(incremental_state, monotonic_cache) # 2. Update alpha alpha = ( p_choose .new_zeros([self.num_heads, src_len]) .scatter( 1, (monotonic_step) .view(self.num_heads, 1).clamp(0, src_len - 1), 1 ) ) if not self.mass_preservation: alpha = alpha.masked_fill( (monotonic_step == max_steps) .view(self.num_heads, 1), 0 ) # 4. Compute Beta if self.soft_attention: monotonic_step = monotonic_step.t() beta_mask = torch.arange(src_len).expand_as(alpha).gt(monotonic_step).unsqueeze(1) # If it's soft attention just do softmax on current context soft_energy = self.energy_from_qk( query, key, "soft" ) beta = torch.nn.functional.softmax( soft_energy.masked_fill(beta_mask, -float("inf")), dim=-1 ) # It could happen that a head doesn't move at all beta = beta.masked_fill(monotonic_step.eq(0).unsqueeze(1), 0) else: # If it's hard attention just select the last state beta = alpha return p_choose, alpha, beta def monotonic_attention_process_train( self, query: Optional[Tensor], key: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, ): """ Calculating monotonic attention process for training Including: stepwise probability: p_choose expected hard alignment: alpha expected soft attention: beta """ assert query is not None assert key is not None # 1. compute stepwise probability p_choose = self.p_choose_from_qk(query, key, key_padding_mask) # 2. compute expected_alignment alpha = expected_alignment_from_p_choose( p_choose, key_padding_mask, eps=self.eps, ) if self.mass_preservation: alpha = mass_preservation( alpha, key_padding_mask ) # 3. compute expected soft attention (soft aligned model only) if self.soft_attention: soft_energy = self.energy_from_qk( query, key, "soft", key_padding_mask=None, ) beta = expected_soft_attention( alpha, soft_energy, padding_mask=key_padding_mask, chunk_size=self.chunk_size, eps=self.eps, ) else: beta = alpha soft_energy = alpha return p_choose, alpha, beta, soft_energy def forward( self, query: Optional[Tensor], key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, need_head_weights: bool = False, ): """ query: tgt_len, bsz, embed_dim key: src_len, bsz, embed_dim value: src_len, bsz, embed_dim """ assert attn_mask is None assert query is not None assert key is not None assert value is not None tgt_len, bsz, embed_dim = query.size() src_len = value.size(0) if key_padding_mask is not None: assert not key_padding_mask[:, 0].any(), ( "Only right padding is supported." ) key_padding_mask = ( key_padding_mask .unsqueeze(1) .expand([bsz, self.num_heads, src_len]) .contiguous() .view(-1, src_len) ) if incremental_state is not None: # Inference ( p_choose, alpha, beta ) = self.monotonic_attention_process_infer( query, key, incremental_state ) soft_energy = beta else: # Train ( p_choose, alpha, beta, soft_energy ) = self.monotonic_attention_process_train( query, key, key_padding_mask ) v = self.v_proj(value) length, bsz, _ = v.size() v = ( v.contiguous() .view(length, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) attn = torch.bmm(beta.type_as(v), v) attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) p_choose = p_choose.view(bsz, self.num_heads, tgt_len, src_len) alpha = alpha.view(bsz, self.num_heads, tgt_len, src_len) beta = beta.view(bsz, self.num_heads, tgt_len, src_len) return attn, { "p_choose": p_choose, "alpha": alpha, "beta": beta, "soft_energy": soft_energy, } def _get_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]): maybe_incremental_state = self.get_incremental_state( incremental_state, 'monotonic', ) if maybe_incremental_state is None: typed_empty_dict: Dict[str, Optional[Tensor]] = {} return typed_empty_dict else: return maybe_incremental_state def _set_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], buffer: Dict[str, Optional[Tensor]]): self.set_incremental_state( incremental_state, 'monotonic', buffer, ) @register_monotonic_attention("infinite_lookback") class MonotonicInfiniteLookbackAttention( MonotonicAttention ): def __init__(self, args): super().__init__(args) self.soft_attention = True self.init_soft_attention() def init_soft_attention(self): self.k_proj_soft = nn.Linear(self.kdim, self.embed_dim, bias=True) self.q_proj_soft = nn.Linear(self.embed_dim, self.embed_dim, bias=True) self.k_in_proj["soft"] = self.k_proj_soft self.q_in_proj["soft"] = self.q_proj_soft if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_( self.k_in_proj["soft"].weight, gain=1 / math.sqrt(2) ) nn.init.xavier_uniform_( self.q_in_proj["soft"].weight, gain=1 / math.sqrt(2) ) else: nn.init.xavier_uniform_(self.k_in_proj["soft"].weight) nn.init.xavier_uniform_(self.q_in_proj["soft"].weight) @register_monotonic_attention("waitk") class WaitKAttention( MonotonicInfiniteLookbackAttention ): """ STACL: Simultaneous Translation with Implicit Anticipation and Controllable Latency using Prefix-to-Prefix Framework https://www.aclweb.org/anthology/P19-1289/ """ def __init__(self, args): super().__init__(args) self.q_in_proj["soft"] = self.q_in_proj["monotonic"] self.k_in_proj["soft"] = self.k_in_proj["monotonic"] self.waitk_lagging = args.waitk_lagging assert self.waitk_lagging > 0, ( f"Lagging has to been larger than 0, get {self.waitk_lagging}." ) @staticmethod def add_args(parser): super( MonotonicInfiniteLookbackAttention, MonotonicInfiniteLookbackAttention ).add_args(parser) parser.add_argument( "--waitk-lagging", type=int, required=True, help="Wait K lagging" ) def p_choose_from_qk( self, query: Optional[Tensor], key: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): assert query is not None assert key is not None p_choose = waitk_p_choose( tgt_len=query.size(0), src_len=key.size(0), bsz=query.size(1) * self.num_heads, waitk_lagging=self.waitk_lagging, key_padding_mask=key_padding_mask, incremental_state=incremental_state, ) return p_choose.to(query) @register_monotonic_attention("chunkwise") class ChunkwiseAttention( MonotonicInfiniteLookbackAttention ): def __init__(self, args): super().__init__(args) self.chunk_size = args.mocha_chunk_size assert self.chunk_size > 1 @staticmethod def add_args(parser): super( MonotonicInfiniteLookbackAttention ).add_args(parser) parser.add_argument( "--mocha-chunk-size", type=int, required=True, help="Mocha chunk size" )
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/modules/monotonic_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import importlib from fairseq import registry ( build_monotonic_attention, register_monotonic_attention, MONOTONIC_ATTENTION_REGISTRY, _, ) = registry.setup_registry("--simul-type") for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module( "examples.simultaneous_translation.modules." + model_name )
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/modules/__init__.py
from functools import partial import torch from torch import Tensor import math import torch.nn.functional as F from . import register_monotonic_attention from .monotonic_multihead_attention import ( MonotonicAttention, MonotonicInfiniteLookbackAttention, WaitKAttention ) from typing import Dict, Optional def fixed_pooling_monotonic_attention(monotonic_attention): def create_model(monotonic_attention, klass): class FixedStrideMonotonicAttention(monotonic_attention): def __init__(self, args): self.waitk_lagging = 0 self.num_heads = 0 self.noise_mean = 0.0 self.noise_var = 0.0 super().__init__(args) self.pre_decision_type = args.fixed_pre_decision_type self.pre_decision_ratio = args.fixed_pre_decision_ratio self.pre_decision_pad_threshold = args.fixed_pre_decision_pad_threshold assert self.pre_decision_ratio > 1 if args.fixed_pre_decision_type == "average": self.pooling_layer = torch.nn.AvgPool1d( kernel_size=self.pre_decision_ratio, stride=self.pre_decision_ratio, ceil_mode=True, ) elif args.fixed_pre_decision_type == "last": def last(key): if key.size(2) < self.pre_decision_ratio: return key else: k = key[ :, :, self.pre_decision_ratio - 1:: self.pre_decision_ratio, ].contiguous() if key.size(-1) % self.pre_decision_ratio != 0: k = torch.cat([k, key[:, :, -1:]], dim=-1).contiguous() return k self.pooling_layer = last else: raise NotImplementedError @staticmethod def add_args(parser): super( FixedStrideMonotonicAttention, FixedStrideMonotonicAttention ).add_args(parser) parser.add_argument( "--fixed-pre-decision-ratio", type=int, required=True, help=( "Ratio for the fixed pre-decision," "indicating how many encoder steps will start" "simultaneous decision making process." ), ) parser.add_argument( "--fixed-pre-decision-type", default="average", choices=["average", "last"], help="Pooling type", ) parser.add_argument( "--fixed-pre-decision-pad-threshold", type=float, default=0.3, help="If a part of the sequence has pad" ",the threshold the pooled part is a pad.", ) def insert_zeros(self, x): bsz_num_heads, tgt_len, src_len = x.size() stride = self.pre_decision_ratio weight = F.pad(torch.ones(1, 1, 1).to(x), (stride - 1, 0)) x_upsample = F.conv_transpose1d( x.view(-1, src_len).unsqueeze(1), weight, stride=stride, padding=0, ) return x_upsample.squeeze(1).view(bsz_num_heads, tgt_len, -1) def p_choose( self, query: Optional[Tensor], key: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): assert key is not None assert query is not None src_len = key.size(0) tgt_len = query.size(0) batch_size = query.size(1) key_pool = self.pooling_layer(key.transpose(0, 2)).transpose(0, 2) if key_padding_mask is not None: key_padding_mask_pool = ( self.pooling_layer(key_padding_mask.unsqueeze(0).float()) .squeeze(0) .gt(self.pre_decision_pad_threshold) ) # Make sure at least one element is not pad key_padding_mask_pool[:, 0] = 0 else: key_padding_mask_pool = None if incremental_state is not None: # The floor instead of ceil is used for inference # But make sure the length key_pool at least 1 if ( max(1, math.floor(key.size(0) / self.pre_decision_ratio)) ) < key_pool.size(0): key_pool = key_pool[:-1] if key_padding_mask_pool is not None: key_padding_mask_pool = key_padding_mask_pool[:-1] p_choose_pooled = self.p_choose_from_qk( query, key_pool, key_padding_mask_pool, incremental_state=incremental_state, ) # Upsample, interpolate zeros p_choose = self.insert_zeros(p_choose_pooled) if p_choose.size(-1) < src_len: # Append zeros if the upsampled p_choose is shorter than src_len p_choose = torch.cat( [ p_choose, torch.zeros( p_choose.size(0), tgt_len, src_len - p_choose.size(-1) ).to(p_choose) ], dim=2 ) else: # can be larger than src_len because we used ceil before p_choose = p_choose[:, :, :src_len] p_choose[:, :, -1] = p_choose_pooled[:, :, -1] assert list(p_choose.size()) == [ batch_size * self.num_heads, tgt_len, src_len, ] return p_choose FixedStrideMonotonicAttention.__name__ = klass.__name__ return FixedStrideMonotonicAttention return partial(create_model, monotonic_attention) @register_monotonic_attention("waitk_fixed_pre_decision") @fixed_pooling_monotonic_attention(WaitKAttention) class WaitKAttentionFixedStride: pass @register_monotonic_attention("hard_aligned_fixed_pre_decision") @fixed_pooling_monotonic_attention(MonotonicAttention) class MonotonicAttentionFixedStride: pass @register_monotonic_attention("infinite_lookback_fixed_pre_decision") @fixed_pooling_monotonic_attention(MonotonicInfiniteLookbackAttention) class MonotonicInfiniteLookbackAttentionFixedStride: pass
EXA-1-master
exa/libraries/fairseq/examples/simultaneous_translation/modules/fixed_pre_decision.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .models import linformer_roberta # noqa
EXA-1-master
exa/libraries/fairseq/examples/linformer/linformer_src/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Linformer: Self-Attention with Linear Complexity """ import logging import torch from fairseq import utils from fairseq.models import register_model, register_model_architecture from fairseq.models.roberta import ( init_bert_params, roberta_base_architecture, roberta_large_architecture, RobertaEncoder, RobertaModel, ) from fairseq.utils import safe_hasattr from ..modules.linformer_sentence_encoder import LinformerTransformerEncoder logger = logging.getLogger(__name__) @register_model("linformer_roberta") class LinformerModel(RobertaModel): @staticmethod def add_args(parser): RobertaModel.add_args(parser) # add args for Linformer parser.add_argument( "--compressed", type=int, help="compressed ratio of sequence length" ) parser.add_argument( "--shared-kv-compressed", type=int, help="share compressed matrix between k and v, in each layer", ) parser.add_argument( "--shared-layer-kv-compressed", type=int, help="share compressed matrix between k and v and across all layers", ) parser.add_argument( "--freeze-compress", type=int, help="freeze the parameters in compressed layer", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present base_architecture(args) if not safe_hasattr(args, "max_positions"): args.max_positions = args.tokens_per_sample encoder = LinformerEncoder(args, task.source_dictionary) return cls(args, encoder) class LinformerEncoder(RobertaEncoder): """Linformer encoder.""" def __init__(self, args, dictionary): super().__init__(args, dictionary) self.register_buffer("version", torch.tensor(2)) def build_encoder(self, args, dictionary, embed_tokens): encoder = LinformerTransformerEncoder(args, dictionary, embed_tokens) encoder.apply(init_bert_params) return encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) prefix = name + "." if name != "" else "" # some old checkpoints had weight sharing implemented incorrectly # (note: this was correct in the original paper code) if utils.item(state_dict.get(f"{prefix}version", torch.tensor(1))) < 2: state_dict[f"{prefix}version"] = torch.tensor(1) # check if input embeddings and output embeddings were tied if not torch.allclose( state_dict[f"{prefix}sentence_encoder.embed_tokens.weight"], state_dict[f"{prefix}lm_head.weight"], ): # they weren't tied, re-init the LM head without weight sharing self.lm_head = self.build_lm_head( embed_dim=self.args.encoder_embed_dim, output_dim=len(self.dictionary), activation_fn=self.args.activation_fn, weight=None, # don't share weights ) @register_model_architecture("linformer_roberta", "linformer_roberta") def base_architecture(args): args.compressed = getattr(args, "compressed", 4) args.shared_kv_compressed = getattr(args, "shared_kv_compressed", 0) args.shared_layer_kv_compressed = getattr(args, "shared_layer_kv_compressed", 0) args.freeze_compress = getattr(args, "freeze_compress", 0) roberta_base_architecture(args) @register_model_architecture("linformer_roberta", "linformer_roberta_base") def linformer_roberta_base_architecture(args): base_architecture(args) @register_model_architecture("linformer_roberta", "linformer_roberta_large") def linformer_roberta_large_architecture(args): roberta_large_architecture(args) base_architecture(args)
EXA-1-master
exa/libraries/fairseq/examples/linformer/linformer_src/models/linformer_roberta.py
EXA-1-master
exa/libraries/fairseq/examples/linformer/linformer_src/models/__init__.py
EXA-1-master
exa/libraries/fairseq/examples/linformer/linformer_src/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.quant_noise import quant_noise from torch import Tensor, nn from torch.nn import Parameter @with_incremental_state class MultiheadLinearAttention(nn.Module): """Multi-headed linformer attention. Projects the key and values down to the compressed dimension, before computing self-attention. See "Linformer: Self-Attention with Linear Complexity" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, compressed=1, max_seq_len=256, shared_kv_compressed=0, shared_compress_layer=None, freeze_compress=0, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) self.k_proj = quant_noise( nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) # used for compress sequence to subsequence if shared_compress_layer is None: self.compress_seq_len = max_seq_len // compressed self.compress_k = nn.Linear(max_seq_len, self.compress_seq_len, bias=False) if shared_kv_compressed == 0: self.compress_v = nn.Linear( max_seq_len, self.compress_seq_len, bias=False ) self.layerwise_sharing = False else: self.compress_k = shared_compress_layer if shared_kv_compressed == 0: self.compress_v = shared_compress_layer self.layerwise_sharing = True self.shared_kv_compressed = shared_kv_compressed self.out_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() if freeze_compress == 1: self.compress_k.weight.requires_grad = False if shared_kv_compressed == 0: self.compress_v.weight.requires_grad = False self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) if ( not self.layerwise_sharing ): # otherwise, we already initialize the parameters nn.init.xavier_uniform_(self.compress_k.weight, gain=1 / math.sqrt(2)) if self.shared_kv_compressed == 0: nn.init.xavier_uniform_( self.compress_v.weight, gain=1 / math.sqrt(2) ) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) if ( not self.layerwise_sharing ): # otherwise, we already initialize the parameters nn.init.xavier_uniform_(self.compress_k.weight) if self.shared_kv_compressed == 0: nn.init.xavier_uniform_(self.compress_v.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k_input = query.permute(1, 2, 0).contiguous() # B * C * T k_input = ( F.linear(k_input, self.compress_k.weight[:, 0:tgt_len]) .permute(2, 0, 1) .contiguous() ) k = self.k_proj(k_input) v_input = query.permute(1, 2, 0).contiguous() # B * C * T if self.shared_kv_compressed == 0: v_input = ( F.linear(v_input, self.compress_v.weight[:, 0:tgt_len]) .permute(2, 0, 1) .contiguous() ) if self.shared_kv_compressed == 1: # use shared kv compressed linear layer v_input = ( F.linear(v_input, self.compress_k.weight[:, 0:tgt_len]) .permute(2, 0, 1) .contiguous() ) v = self.v_proj(v_input) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadLinearAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = MultiheadLinearAttention.apply_sparse_mask( attn_weights, tgt_len, src_len, bsz ) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout( attn_weights, p=self.dropout, training=self.training, ) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
EXA-1-master
exa/libraries/fairseq/examples/linformer/linformer_src/modules/multihead_linear_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn from fairseq.models.transformer import TransformerEncoder from .linformer_sentence_encoder_layer import LinformerTransformerEncoderLayer class LinformerTransformerEncoder(TransformerEncoder): """ Implementation for a Bi-directional Linformer based Sentence Encoder used in BERT/XLM style pre-trained models. This first computes the token embedding using the token embedding matrix, position embeddings (if specified) and segment embeddings (if specified). After applying the specified number of LinformerEncoderLayers, it outputs all the internal states of the encoder as well as the final representation associated with the first token (usually CLS token). Input: - tokens: B x T matrix representing sentences - segment_labels: B x T matrix representing segment label for tokens Output: - a tuple of the following: - a list of internal model states used to compute the predictions where each tensor has shape T x B x C - sentence representation associated with first input token in format B x C. """ def __init__(self, args, dictionary, embed_tokens): self.compress_layer = None super().__init__(args, dictionary, embed_tokens) def build_encoder_layer(self, args): if self.args.shared_layer_kv_compressed == 1 and self.compress_layer is None: compress_layer = nn.Linear( self.args.max_positions, self.args.max_positions // self.args.compressed, ) # intialize parameters for compressed layer nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2)) if self.args.freeze_compress == 1: compress_layer.weight.requires_grad = False self.compress_layer = compress_layer return LinformerTransformerEncoderLayer(args, self.compress_layer)
EXA-1-master
exa/libraries/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq import utils from fairseq.modules import TransformerEncoderLayer from .multihead_linear_attention import MultiheadLinearAttention class LinformerTransformerEncoderLayer(TransformerEncoderLayer): """ Implements a Linformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__(self, args, shared_compress_layer): # wrap in a list so it's not automatically registered by PyTorch self.shared_compress_layer = [shared_compress_layer] super().__init__(args) self.register_buffer("version", torch.tensor(2)) def build_self_attention(self, embed_dim, args): return MultiheadLinearAttention( embed_dim, args.encoder_attention_heads, dropout=args.dropout, self_attention=True, q_noise=args.quant_noise_pq, qn_block_size=args.quant_noise_pq_block_size, compressed=args.compressed, max_seq_len=args.max_positions, shared_kv_compressed=args.shared_kv_compressed, shared_compress_layer=self.shared_compress_layer[0], freeze_compress=args.freeze_compress, ) def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) prefix = name + "." if name != "" else "" # some old checkpoints had weight sharing implemented incorrectly # (note: this was correct in the original paper code) if utils.item(state_dict.get(f"{prefix}version", torch.tensor(1))) < 2: state_dict[f"{prefix}version"] = torch.tensor(1) # check compression layer sharing if f"{prefix}shared_compress_layer.weight" in state_dict: # reinitialize block without sharing compression layer to match # old behavior self.shared_compress_layer = [ torch.nn.Linear( self.shared_compress_layer[0].weight.size(1), self.shared_compress_layer[0].weight.size(0), ) ] self.self_attn = self.build_self_attention(self.embed_dim, self.args) # delete shared_compress_layer, since it's already copied to # self_attn.compress_k.weight del state_dict[f"{prefix}shared_compress_layer.weight"] if f"{prefix}shared_compress_layer.bias" in state_dict: del state_dict[f"{prefix}shared_compress_layer.bias"]
EXA-1-master
exa/libraries/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py