python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn def quant_noise(module, p, block_size): """ Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product Quantization as described in "Training with Quantization Noise for Extreme Model Compression" Args: - module: nn.Module - p: amount of Quantization Noise - block_size: size of the blocks for subsequent quantization with iPQ Remarks: - Module weights must have the right sizes wrt the block size - Only Linear, Embedding and Conv2d modules are supported for the moment - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping blocks """ # if no quantization noise, don't register hook if p <= 0: return module # supported modules assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) # test whether module.weight has the right sizes wrt block_size is_conv = module.weight.ndim == 4 # 2D matrix if not is_conv: assert ( module.weight.size(1) % block_size == 0 ), "Input features must be a multiple of block sizes" # 4D matrix else: # 1x1 convolutions if module.kernel_size == (1, 1): assert ( module.in_channels % block_size == 0 ), "Input channels must be a multiple of block sizes" # regular convolutions else: k = module.kernel_size[0] * module.kernel_size[1] assert k % block_size == 0, "Kernel size must be a multiple of block size" def _forward_pre_hook(mod, input): # no noise for evaluation if mod.training: if not is_conv: # gather weight and sizes weight = mod.weight in_features = weight.size(1) out_features = weight.size(0) # split weight matrix into blocks and randomly drop selected blocks mask = torch.zeros( in_features // block_size * out_features, device=weight.device ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) else: # gather weight and sizes weight = mod.weight in_channels = mod.in_channels out_channels = mod.out_channels # split weight matrix into blocks and randomly drop selected blocks if mod.kernel_size == (1, 1): mask = torch.zeros( int(in_channels // block_size * out_channels), device=weight.device, ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) else: mask = torch.zeros( weight.size(0), weight.size(1), device=weight.device ) mask.bernoulli_(p) mask = ( mask.unsqueeze(2) .unsqueeze(3) .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) ) # scale weights and apply mask mask = mask.to( torch.bool ) # x.bool() is not currently supported in TorchScript s = 1 / (1 - p) mod.weight.data = s * weight.masked_fill(mask, 0) module.register_forward_pre_hook(_forward_pre_hook) return module
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quant_noise.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch import torch.nn.functional as F class LocationAttention(nn.Module): """ Attention-Based Models for Speech Recognition https://arxiv.org/pdf/1506.07503.pdf :param int encoder_dim: # projection-units of encoder :param int decoder_dim: # units of decoder :param int attn_dim: attention dimension :param int conv_dim: # channels of attention convolution :param int conv_kernel_size: filter size of attention convolution """ def __init__( self, attn_dim, encoder_dim, decoder_dim, attn_state_kernel_size, conv_dim, conv_kernel_size, scaling=2.0, ): super(LocationAttention, self).__init__() self.attn_dim = attn_dim self.decoder_dim = decoder_dim self.scaling = scaling self.proj_enc = nn.Linear(encoder_dim, attn_dim) self.proj_dec = nn.Linear(decoder_dim, attn_dim, bias=False) self.proj_attn = nn.Linear(conv_dim, attn_dim, bias=False) self.conv = nn.Conv1d( attn_state_kernel_size, conv_dim, 2 * conv_kernel_size + 1, padding=conv_kernel_size, bias=False, ) self.proj_out = nn.Sequential(nn.Tanh(), nn.Linear(attn_dim, 1)) self.proj_enc_out = None # cache def clear_cache(self): self.proj_enc_out = None def forward(self, encoder_out, encoder_padding_mask, decoder_h, attn_state): """ :param torch.Tensor encoder_out: padded encoder hidden state B x T x D :param torch.Tensor encoder_padding_mask: encoder padding mask :param torch.Tensor decoder_h: decoder hidden state B x D :param torch.Tensor attn_prev: previous attention weight B x K x T :return: attention weighted encoder state (B, D) :rtype: torch.Tensor :return: previous attention weights (B x T) :rtype: torch.Tensor """ bsz, seq_len, _ = encoder_out.size() if self.proj_enc_out is None: self.proj_enc_out = self.proj_enc(encoder_out) # B x K x T -> B x C x T attn = self.conv(attn_state) # B x C x T -> B x T x C -> B x T x D attn = self.proj_attn(attn.transpose(1, 2)) if decoder_h is None: decoder_h = encoder_out.new_zeros(bsz, self.decoder_dim) dec_h = self.proj_dec(decoder_h).view(bsz, 1, self.attn_dim) out = self.proj_out(attn + self.proj_enc_out + dec_h).squeeze(2) out.masked_fill_(encoder_padding_mask, -float("inf")) w = F.softmax(self.scaling * out, dim=1) c = torch.sum(encoder_out * w.view(bsz, seq_len, 1), dim=1) return c, w
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/location_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Layer norm done in fp32 (for fp16 training) """ import torch.nn as nn import torch.nn.functional as F class Fp32GroupNorm(nn.GroupNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.group_norm( input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/fp32_group_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from .unfold import unfold1d def DynamicConv( input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, renorm_padding=False, bias=False, conv_bias=False, query_size=None, in_proj=False, ): if torch.cuda.is_available(): try: from fairseq.modules.dynamicconv_layer import DynamicconvLayer return DynamicconvLayer( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, renorm_padding=renorm_padding, bias=bias, conv_bias=conv_bias, query_size=query_size, ) except ImportError as e: print(e) return DynamicConv1dTBC( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, renorm_padding=renorm_padding, bias=bias, conv_bias=conv_bias, query_size=query_size, ) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @with_incremental_state class DynamicConv1dTBC(nn.Module): """Dynamic lightweight convolution taking T x B x C inputs Args: input_size: # of channels of the input kernel_size: convolution channels padding_l: padding to the left when using "same" padding num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size) weight_dropout: the drop rate of the DropConnect to drop the weight weight_softmax: normalize the weight with softmax before the convolution renorm_padding: re-normalize the filters to ignore the padded part (only the non-padding parts sum up to 1) bias: use bias conv_bias: bias of the convolution query_size: specified when feeding a different input as the query in_proj: project the input and generate the filter together Shape: Input: TxBxC, i.e. (timesteps, batch_size, input_size) Output: TxBxC, i.e. (timesteps, batch_size, input_size) Attributes: weight: the learnable weights of the module of shape `(num_heads, 1, kernel_size)` bias: the learnable bias of the module of shape `(input_size)` """ def __init__( self, input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, renorm_padding=False, bias=False, conv_bias=False, query_size=None, in_proj=False, ): super().__init__() self.input_size = input_size self.query_size = input_size if query_size is None else query_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.weight_softmax = weight_softmax self.renorm_padding = renorm_padding if in_proj: self.weight_linear = Linear( self.input_size, self.input_size + num_heads * kernel_size * 1 ) else: self.weight_linear = Linear( self.query_size, num_heads * kernel_size * 1, bias=bias ) if conv_bias: self.conv_bias = nn.Parameter(torch.Tensor(input_size)) else: self.conv_bias = None self.reset_parameters() @property def in_proj(self): return ( self.weight_linear.out_features == self.input_size + self.num_heads * self.kernel_size ) def reset_parameters(self): self.weight_linear.reset_parameters() if self.conv_bias is not None: nn.init.constant_(self.conv_bias, 0.0) def forward(self, x, incremental_state=None, query=None, unfold=None): """Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C args: x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size) incremental_state: A dict to keep the state unfold: unfold the input or not. If not, we use the matrix trick instead query: use the specified query to predict the conv filters """ unfold = ( x.size(0) > 512 if unfold is None else unfold ) # use unfold mode as default for long sequence to save memory unfold = unfold or (incremental_state is not None) assert query is None or not self.in_proj if query is None: query = x if unfold: output = self._forward_unfolded(x, incremental_state, query) else: output = self._forward_expanded(x, incremental_state, query) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output def _forward_unfolded(self, x, incremental_state, query): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size if self.in_proj: proj = self.weight_linear(x) x = proj.narrow(2, 0, self.input_size).contiguous() weight = ( proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1) ) else: weight = self.weight_linear(query).view(T * B * H, -1) # renorm_padding is only implemented in _forward_expanded assert not self.renorm_padding or incremental_state is not None if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: padding_l = self.padding_l if K > T and padding_l == K - 1: weight = weight.narrow(1, K - T, T) K, padding_l = T, T - 1 # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, K, padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax and not self.renorm_padding: weight = F.softmax(weight, dim=1) weight = weight.narrow(1, 0, K) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) if self.weight_softmax and self.renorm_padding: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_stat, query): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size if self.in_proj: proj = self.weight_linear(x) x = proj.narrow(2, 0, self.input_size).contiguous() weight = ( proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1) ) else: weight = self.weight_linear(query).view(T * B * H, -1) if not self.renorm_padding: if self.weight_softmax: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) weight = weight.narrow(1, 0, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) if self.weight_softmax and self.renorm_padding: # turn the convolution filters into band matrices weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf")) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, self.padding_l, T) # normalize the weight over valid positions like self-attention weight_expanded = F.softmax(weight_expanded, dim=2) weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) else: P = self.padding_l # For efficiency, we cut the kernel size and reduce the padding when the kernel is larger than the length if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def extra_repr(self): s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, conv_bias={}, renorm_padding={}, in_proj={}".format( self.input_size, self.kernel_size, self.padding_l, self.num_heads, self.weight_softmax, self.conv_bias is not None, self.renorm_padding, self.in_proj, ) if self.query_size != self.input_size: s += ", query_size={}".format(self.query_size) if self.weight_dropout_module.p > 0.0: s += ", weight_dropout={}".format(self.weight_dropout_module.p) return s
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/dynamic_convolution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import List, Optional import torch.nn as nn import torch.nn.functional as F logger = logging.getLogger(__name__) class FairseqDropout(nn.Module): def __init__(self, p, module_name=None): super().__init__() self.p = p self.module_name = module_name self.apply_during_inference = False def forward(self, x, inplace: bool = False): if self.p > 0 and (self.training or self.apply_during_inference): return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x def make_generation_fast_( self, name: str, retain_dropout: bool = False, retain_dropout_modules: Optional[List[str]] = None, **kwargs ): if retain_dropout: if retain_dropout_modules is not None and self.module_name is None: logger.warning( "Cannot enable dropout during inference for module {} " "because module_name was not set".format(name) ) elif ( retain_dropout_modules is None # if None, apply to all modules or self.module_name in retain_dropout_modules ): logger.info( "Enabling dropout during inference for module: {}".format(name) ) self.apply_during_inference = True else: logger.info("Disabling dropout for module: {}".format(name))
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/fairseq_dropout.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class GumbelVectorQuantizer(nn.Module): def __init__( self, dim, num_vars, temp, groups, combine_groups, vq_dim, time_first, activation=nn.GELU(), weight_proj_depth=1, weight_proj_factor=1, ): """Vector quantization using gumbel softmax Args: dim: input dimension (channels) num_vars: number of quantized vectors per group temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor) groups: number of groups for vector quantization combine_groups: whether to use the vectors for all groups vq_dim: dimensionality of the resulting quantized vector time_first: if true, expect input in BxTxC format, otherwise in BxCxT activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1 weight_proj_depth: number of layers (with activation in between) to project input before computing logits weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of projections by this factor """ super().__init__() self.groups = groups self.combine_groups = combine_groups self.input_dim = dim self.num_vars = num_vars self.time_first = time_first assert ( vq_dim % groups == 0 ), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" var_dim = vq_dim // groups num_groups = groups if not combine_groups else 1 self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * num_vars, var_dim)) nn.init.uniform_(self.vars) if weight_proj_depth > 1: def block(input_dim, output_dim): return nn.Sequential(nn.Linear(input_dim, output_dim), activation) inner_dim = self.input_dim * weight_proj_factor self.weight_proj = nn.Sequential( *[ block(self.input_dim if i == 0 else inner_dim, inner_dim) for i in range(weight_proj_depth - 1) ], nn.Linear(inner_dim, groups * num_vars), ) else: self.weight_proj = nn.Linear(self.input_dim, groups * num_vars) nn.init.normal_(self.weight_proj.weight, mean=0, std=1) nn.init.zeros_(self.weight_proj.bias) if isinstance(temp, str): import ast temp = ast.literal_eval(temp) assert len(temp) == 3, f"{temp}, {len(temp)}" self.max_temp, self.min_temp, self.temp_decay = temp self.curr_temp = self.max_temp self.codebook_indices = None def set_num_updates(self, num_updates): self.curr_temp = max( self.max_temp * self.temp_decay ** num_updates, self.min_temp ) def get_codebook_indices(self): if self.codebook_indices is None: from itertools import product p = [range(self.num_vars)] * self.groups inds = list(product(*p)) self.codebook_indices = torch.tensor( inds, dtype=torch.long, device=self.vars.device ).flatten() if not self.combine_groups: self.codebook_indices = self.codebook_indices.view( self.num_vars ** self.groups, -1 ) for b in range(1, self.groups): self.codebook_indices[:, b] += self.num_vars * b self.codebook_indices = self.codebook_indices.flatten() return self.codebook_indices def codebook(self): indices = self.get_codebook_indices() return ( self.vars.squeeze(0) .index_select(0, indices) .view(self.num_vars ** self.groups, -1) ) def sample_from_codebook(self, b, n): indices = self.get_codebook_indices() indices = indices.view(-1, self.groups) cb_size = indices.size(0) assert ( n < cb_size ), f"sample size {n} is greater than size of codebook {cb_size}" sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,)) indices = indices[sample_idx] z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b, n, -1) return z def to_codebook_index(self, indices): res = indices.new_full(indices.shape[:-1], 0) for i in range(self.groups): exponent = self.groups - i - 1 res += indices[..., i] * (self.num_vars ** exponent) return res def forward_idx(self, x): res = self.forward(x, produce_targets=True) return res["x"], res["targets"] def forward(self, x, produce_targets=False): result = {"num_vars": self.num_vars * self.groups} if not self.time_first: x = x.transpose(1, 2) bsz, tsz, fsz = x.shape x = x.reshape(-1, fsz) x = self.weight_proj(x) x = x.view(bsz * tsz * self.groups, -1) _, k = x.max(-1) hard_x = ( x.new_zeros(*x.shape) .scatter_(-1, k.view(-1, 1), 1.0) .view(bsz * tsz, self.groups, -1) ) hard_probs = torch.mean(hard_x.float(), dim=0) result["code_perplexity"] = torch.exp( -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) ).sum() avg_probs = torch.softmax( x.view(bsz * tsz, self.groups, -1).float(), dim=-1 ).mean(dim=0) result["prob_perplexity"] = torch.exp( -torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1) ).sum() result["temp"] = self.curr_temp if self.training: x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=True).type_as(x) else: x = hard_x x = x.view(bsz * tsz, -1) vars = self.vars if self.combine_groups: vars = vars.repeat(1, self.groups, 1) if produce_targets: result["targets"] = ( x.view(bsz * tsz * self.groups, -1) .argmax(dim=-1) .view(bsz, tsz, self.groups) .detach() ) x = x.unsqueeze(-1) * vars x = x.view(bsz * tsz, self.groups, self.num_vars, -1) x = x.sum(-2) x = x.view(bsz, tsz, -1) if not self.time_first: x = x.transpose(1, 2) # BTC -> BCT result["x"] = x return result
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/gumbel_vector_quantizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from fairseq.modules import Fp32GroupNorm class KmeansVectorQuantizer(nn.Module): def __init__( self, dim, num_vars, groups, combine_groups, vq_dim, time_first, gamma=0.25 ): """Vector quantization using straight pass-through estimator (i.e. kmeans) Args: dim: input dimension (channels) num_vars: number of quantized vectors per group groups: number of groups for vector quantization combine_groups: whether to use the vectors for all groups vq_dim: dimensionality of the resulting quantized vector time_first: if true, expect input in BxTxC format, otherwise in BxCxT gamma: commitment loss coefficient """ super().__init__() self.groups = groups self.combine_groups = combine_groups self.input_dim = dim self.num_vars = num_vars self.vq_dim = vq_dim self.time_first = time_first assert ( vq_dim % groups == 0 ), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" self.var_dim = vq_dim // groups num_groups = groups if not combine_groups else 1 self.embedding = nn.Parameter( 0.01 * torch.randn(num_vars, num_groups, self.var_dim) ) self.projection = nn.Sequential( nn.Conv1d(dim, dim, kernel_size=1, groups=groups, bias=False), Fp32GroupNorm(groups, dim), ) self.gamma = gamma self.mse_mean = nn.MSELoss(reduction="mean") def _pass_grad(self, x, y): """Manually set gradient for backward pass. for y = f(x), ensure that during the backward pass, dL/dy = dL/dx regardless of f(x). Returns: y, with the gradient forced to be dL/dy = dL/dx. """ return y.detach() + (x - x.detach()) @property def expand_embedding(self): if self.combine_groups: return self.embedding.expand(self.num_vars, self.groups, self.var_dim) return self.embedding def forward_idx(self, x): res = self.forward(x, produce_targets=True) return res["x"], res["targets"] def forward(self, x, produce_targets=False): result = {"num_vars": self.num_vars} if self.time_first: x = x.transpose(1, 2) bsz, fsz, tsz = x.shape ze = self.projection(x) ze_ = ze.view(bsz, self.groups, self.var_dim, tsz).permute(0, 3, 1, 2) d = ( (ze_.unsqueeze(0) - self.expand_embedding.unsqueeze(1).unsqueeze(1)) .view(self.num_vars, bsz, tsz, self.groups, -1) .norm(dim=-1, p=2) ) idx = d.argmin(dim=0) zq = ( torch.stack( [ self.expand_embedding[idx[..., group], group] for group in range(self.groups) ], dim=-2, ) .view(bsz, tsz, self.groups * self.var_dim) .permute(0, 2, 1) ) assert ze.shape == zq.shape, (ze.shape, zq.shape) x = self._pass_grad(ze, zq) hard_x = ( idx.new_zeros(bsz * tsz * self.groups, self.num_vars) .scatter_(-1, idx.view(-1, 1), 1.0) .view(bsz * tsz, self.groups, -1) ) hard_probs = torch.mean(hard_x.float(), dim=0) result["code_perplexity"] = torch.exp( -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) ).sum() if produce_targets: result["targets"] = idx if self.time_first: x = x.transpose(1, 2) # BCT -> BTC result["x"] = x ze = ze.float() zq = zq.float() latent_loss = self.mse_mean(zq, ze.detach()) commitment_loss = self.mse_mean(ze, zq.detach()) result["kmeans_loss"] = latent_loss + self.gamma * commitment_loss return result
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/kmeans_vector_quantizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn class LSTMCellWithZoneOut(nn.Module): """ Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations https://arxiv.org/abs/1606.01305 """ def __init__( self, prob: float, input_size: int, hidden_size: int, bias: bool = True ): super(LSTMCellWithZoneOut, self).__init__() self.lstm_cell = nn.LSTMCell(input_size, hidden_size, bias=bias) self.prob = prob if prob > 1.0 or prob < 0.0: raise ValueError( "zoneout probability must be in the range from " "0.0 to 1.0." ) def zoneout(self, h, next_h, prob): if isinstance(h, tuple): return tuple([self.zoneout(h[i], next_h[i], prob) for i in range(len(h))]) if self.training: mask = h.new_zeros(*h.size()).bernoulli_(prob) return mask * h + (1 - mask) * next_h return prob * h + (1 - prob) * next_h def forward(self, x, h): return self.zoneout(h, self.lstm_cell(x, h), self.prob)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/lstm_cell_with_zoneout.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch from fairseq.modules.quant_noise import quant_noise from torch import nn class AdaptiveInput(nn.Module): def __init__( self, vocab_size: int, padding_idx: int, initial_dim: int, factor: float, output_dim: int, cutoff: List[int], q_noise: float = 0, qn_block_size: int = 8, ): super().__init__() if vocab_size > cutoff[-1]: cutoff = cutoff + [vocab_size] else: assert ( vocab_size == cutoff[-1] ), "cannot specify cutoff larger than vocab size" self.cutoff = cutoff self.embedding_dim = output_dim self.padding_idx = padding_idx self.embeddings = nn.ModuleList() for i in range(len(self.cutoff)): prev = self.cutoff[i - 1] if i > 0 else 0 size = self.cutoff[i] - prev dim = int(initial_dim // (factor ** i)) seq = nn.Sequential( nn.Embedding(size, dim, self.padding_idx), quant_noise( nn.Linear(dim, output_dim, bias=False), q_noise, qn_block_size ), ) self.embeddings.append(seq) self.padding_idx = None self.padding_idx = padding_idx def init_weights(m): if isinstance(m, nn.Embedding): nn.init.normal_(m.weight, mean=0, std=m.weight.shape[1] ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) elif hasattr(m, "weight"): nn.init.xavier_uniform_(m.weight) self.apply(init_weights) self.register_buffer("_float_tensor", torch.FloatTensor(1)) def weights_for_band(self, band: int): return self.embeddings[band][0].weight, self.embeddings[band][1].weight def forward(self, input: torch.Tensor): result = self._float_tensor.new(input.shape + (self.embedding_dim,)) for i in range(len(self.cutoff)): mask = input.lt(self.cutoff[i]) if i > 0: mask.mul_(input.ge(self.cutoff[i - 1])) chunk_input = input[mask] - self.cutoff[i - 1] else: chunk_input = input[mask] if mask.any(): result[mask] = self.embeddings[i](chunk_input) return result
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/adaptive_input.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.unfold import unfold1d def LightweightConv( input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, bias=False, ): if torch.cuda.is_available(): try: from fairseq.modules.lightconv_layer import LightconvLayer return LightconvLayer( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, bias=bias, ) except ImportError as e: print(e) return LightweightConv1dTBC( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, bias=bias, ) class LightweightConv1d(nn.Module): """Lightweight Convolution assuming the input is BxCxT This is just an example that explains LightConv clearer than the TBC version. We don't use this module in the model. Args: input_size: # of channels of the input and output kernel_size: convolution channels padding: padding num_heads: number of heads used. The weight is of shape `(num_heads, 1, kernel_size)` weight_softmax: normalize the weight with softmax before the convolution Shape: Input: BxCxT, i.e. (batch_size, input_size, timesteps) Output: BxCxT, i.e. (batch_size, input_size, timesteps) Attributes: weight: the learnable weights of the module of shape `(num_heads, 1, kernel_size)` bias: the learnable bias of the module of shape `(input_size)` """ def __init__( self, input_size, kernel_size=1, padding=0, num_heads=1, weight_softmax=False, bias=False, weight_dropout=0.0, ): super().__init__() self.input_size = input_size self.kernel_size = kernel_size self.num_heads = num_heads self.padding = padding self.weight_softmax = weight_softmax self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(input_size)) else: self.bias = None self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, input): """ input size: B x C x T output size: B x C x T """ B, C, T = input.size() H = self.num_heads weight = self.weight if self.weight_softmax: weight = F.softmax(weight, dim=-1) weight = self.weight_dropout_module(weight) # Merge every C/H entries into the batch dimension (C = self.input_size) # B x C x T -> (B * C/H) x H x T # One can also expand the weight to C x 1 x K by a factor of C/H # and do not reshape the input instead, which is slow though input = input.view(-1, H, T) output = F.conv1d(input, weight, padding=self.padding, groups=self.num_heads) output = output.view(B, C, T) if self.bias is not None: output = output + self.bias.view(1, -1, 1) return output @with_incremental_state class LightweightConv1dTBC(nn.Module): """Lightweight Convolution assuming the input is TxBxC Args: input_size: # of channels of the input kernel_size: convolution channels padding_l: padding to the left when using "same" padding num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size) weight_dropout: the drop rate of the DropConnect to drop the weight weight_softmax: normalize the weight with softmax before the convolution bias: use bias Shape: Input: TxBxC, i.e. (timesteps, batch_size, input_size) Output: TxBxC, i.e. (timesteps, batch_size, input_size) Attributes: weight: the learnable weights of the module of shape `(num_heads, 1, kernel_size)` bias: the learnable bias of the module of shape `(input_size)` """ def __init__( self, input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, bias=False, ): super().__init__() self.input_size = input_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.weight_softmax = weight_softmax self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(input_size)) else: self.bias = None self.reset_parameters() self.onnx_trace = False def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, x, incremental_state=None, unfold=False): """Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C args: x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size) incremental_state: A dict to keep the state unfold: unfold the input or not. If not, we use the matrix trick instead """ unfold = unfold or (incremental_state is not None) if unfold: output = self._forward_unfolded(x, incremental_state) else: output = self._forward_expanded(x, incremental_state) if self.bias is not None: output = output + self.bias.view(1, 1, -1) return output def prepare_for_onnx_export_(self): self.onnx_trace = True def _forward_unfolded(self, x, incremental_state): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight.view(H, K) if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, self.kernel_size, self.padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax: weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as( weight ) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) weight = ( weight.view(1, H, K).expand(T * B, H, K).contiguous().view(T * B * H, K, 1) ) weight = self.weight_dropout_module(weight) output = torch.bmm(x_unfold, weight) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_state): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight.view(H, K) if self.weight_softmax: weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as( weight ) weight = weight.view(1, H, K).expand(T * B, H, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) P = self.padding_l if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided((B * H, T, K), (T * (T + K - 1), T + K, 1)).copy_( weight ) weight_expanded = weight_expanded.narrow(2, P, T) weight_expanded = self.weight_dropout_module(weight_expanded) output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def extra_repr(self): s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, bias={}".format( self.input_size, self.kernel_size, self.padding_l, self.num_heads, self.weight_softmax, self.bias is not None, ) if self.weight_dropout_module.p > 0.0: s += ", weight_dropout={}".format(self.weight_dropout_module.p) return s
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/lightweight_convolution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import torch class ScalarBias(torch.autograd.Function): """ Adds a vector of scalars, used in self-attention mechanism to allow the model to optionally attend to this vector instead of the past """ @staticmethod def forward(ctx, input, dim, bias_init): size = list(input.size()) size[dim] += 1 output = input.new(*size).fill_(bias_init) output.narrow(dim, 1, size[dim] - 1).copy_(input) ctx.dim = dim return output @staticmethod def backward(ctx, grad): return grad.narrow(ctx.dim, 1, grad.size(ctx.dim) - 1), None, None def scalar_bias(input, dim, bias_init=0): return ScalarBias.apply(input, dim, bias_init)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/scalar_bias.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from .learned_positional_embedding import LearnedPositionalEmbedding from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, ): if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/positional_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from .multihead_attention import MultiheadAttention class SparseMultiheadAttention(MultiheadAttention): """Sparse Multi-Headed Attention. "Generating Long Sequences with Sparse Transformers". Implements fixed factorized self attention, where l=stride and c=expressivity. A(1) includes all words in the stride window and A(2) takes a summary of c words from the end of each stride window. If is_bidirectional=False, we do not include any words past the current word, as in the paper. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, stride=32, expressivity=8, is_bidirectional=True, ): super().__init__( embed_dim, num_heads, kdim, vdim, dropout, bias, add_bias_kv, add_zero_attn, self_attention, encoder_decoder_attention, ) self.is_bidirectional = is_bidirectional self.stride = stride self.expressivity = expressivity assert self.stride > 0 and self.stride >= self.expressivity # Used for Ai(2) calculations - beginning of [l-c, l] range def compute_checkpoint(self, word_index): if word_index % self.stride == 0 and word_index != 0: checkpoint_index = word_index - self.expressivity else: checkpoint_index = ( math.floor(word_index / self.stride) * self.stride + self.stride - self.expressivity ) return checkpoint_index # Computes Ai(2) def compute_subset_summaries(self, absolute_max): checkpoint_index = self.compute_checkpoint(0) subset_two = set() while checkpoint_index <= absolute_max - 1: summary = set( range( checkpoint_index, min(checkpoint_index + self.expressivity + 1, absolute_max), ) ) subset_two = subset_two.union(summary) checkpoint_index = self.compute_checkpoint(checkpoint_index + self.stride) return subset_two # Sparse Transformer Fixed Attention Pattern: https://arxiv.org/pdf/1904.10509.pdf def compute_fixed_attention_subset(self, word_index, tgt_len): # +1s account for range function; [min, max) -> [min, max] if not self.is_bidirectional: absolute_max = word_index + 1 else: absolute_max = tgt_len # Subset 1 - whole window rounded_index = ( math.floor((word_index + self.stride) / self.stride) * self.stride ) if word_index % self.stride == 0 and word_index != 0: subset_one = set( range(word_index - self.stride, min(absolute_max, word_index + 1)) ) else: subset_one = set( range( max(0, rounded_index - self.stride), min(absolute_max, rounded_index + 1), ) ) # Subset 2 - summary per window # If bidirectional, subset 2 is the same for every index subset_two = set() if not self.is_bidirectional: subset_two = self.compute_subset_summaries(absolute_max) return subset_one.union(subset_two) # Compute sparse mask - if bidirectional, can pre-compute and store def buffered_sparse_mask(self, tensor, tgt_len, src_len): assert tgt_len > self.stride sparse_mask = torch.empty((tgt_len, src_len)).float().fill_(float("-inf")) # If bidirectional, subset 2 is the same for every index subset_summaries = set() if self.is_bidirectional: subset_summaries = self.compute_subset_summaries(tgt_len) for i in range(tgt_len): fixed_attention_subset = self.compute_fixed_attention_subset(i, tgt_len) fixed_attention_subset = fixed_attention_subset.union(subset_summaries) included_word_indices = torch.LongTensor(list(fixed_attention_subset)) sparse_mask[i].index_fill_(0, included_word_indices, 0) return sparse_mask.type_as(tensor) def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): sparse_mask = self.buffered_sparse_mask(attn_weights, tgt_len, src_len) sparse_mask = sparse_mask.unsqueeze(0).expand( bsz * self.num_heads, tgt_len, src_len ) attn_weights += sparse_mask
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/sparse_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import math import torch class PositionalEncoding(nn.Module): """Positional encoding. Args: d_model: Embedding dimension. dropout_rate: Dropout rate. max_len: Maximum input length. reverse: Whether to reverse the input position. """ def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): """Construct an PositionalEncoding object.""" super(PositionalEncoding, self).__init__() self.d_model = d_model self.reverse = reverse self.xscale = math.sqrt(self.d_model) self.dropout = nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.d_model) if self.reverse: position = torch.arange( x.size(1) - 1, -1, -1.0, dtype=torch.float32 ).unsqueeze(1) else: position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, x: torch.Tensor): """Add positional encoding. Args: x (torch.Tensor): Input tensor B X T X C Returns: torch.Tensor: Encoded tensor B X T X C """ self.extend_pe(x) x = x * self.xscale + self.pe[:, : x.size(1)] return self.dropout(x) class RelPositionalEncoding(nn.Module): """Relative positional encoding module (new implementation). Args: d_model: Embedding dimension. dropout_rate: Dropout rate. max_len: Maximum input length. """ def __init__(self, max_len, d_model): """Construct an PositionalEncoding object.""" super(RelPositionalEncoding, self).__init__() self.d_model = d_model self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` means to the position of query vecotr and `j` means the # position of key vector. We use position relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pe_positive = torch.zeros(x.size(1), self.d_model) pe_negative = torch.zeros(x.size(1), self.d_model) position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model) ) pe_positive[:, 0::2] = torch.sin(position * div_term) pe_positive[:, 1::2] = torch.cos(position * div_term) pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reserve the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) pe_negative = pe_negative[1:].unsqueeze(0) pe = torch.cat([pe_positive, pe_negative], dim=1) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, x: torch.Tensor): """Add positional encoding. Args: x : Input tensor T X B X C. Returns: torch.Tensor: Encoded tensor T X B X C. """ x = x.transpose(0, 1) # Change TBC to BTC self.extend_pe(x) pos_emb = self.pe[ :, self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1), ] pos_emb = pos_emb.transpose(0, 1) # change to TBC return pos_emb
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/positional_encoding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from typing import Optional from fairseq.modules import ( LayerNorm, MultiheadAttention, ESPNETMultiHeadedAttention, RelPositionMultiHeadedAttention, RotaryPositionMultiHeadedAttention, ) from fairseq.utils import get_activation_fn class ConvolutionModule(torch.nn.Module): """Convolution block used in the conformer block""" def __init__( self, embed_dim, channels, depthwise_kernel_size, dropout, activation_fn="swish", bias=False, export=False, ): """ Args: embed_dim: Embedding dimension channels: Number of channels in depthwise conv layers depthwise_kernel_size: Depthwise conv layer kernel size dropout: dropout value activation_fn: Activation function to use after depthwise convolution kernel bias: If bias should be added to conv layers export: If layernorm should be exported to jit """ super(ConvolutionModule, self).__init__() assert ( depthwise_kernel_size - 1 ) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding" self.layer_norm = LayerNorm(embed_dim, export=export) self.pointwise_conv1 = torch.nn.Conv1d( embed_dim, 2 * channels, kernel_size=1, stride=1, padding=0, bias=bias, ) self.glu = torch.nn.GLU(dim=1) self.depthwise_conv = torch.nn.Conv1d( channels, channels, depthwise_kernel_size, stride=1, padding=(depthwise_kernel_size - 1) // 2, groups=channels, bias=bias, ) self.batch_norm = torch.nn.BatchNorm1d(channels) self.activation = get_activation_fn(activation_fn)(channels) self.pointwise_conv2 = torch.nn.Conv1d( channels, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, ) self.dropout = torch.nn.Dropout(dropout) def forward(self, x): """ Args: x: Input of shape B X T X C Returns: Tensor of shape B X T X C """ x = self.layer_norm(x) # exchange the temporal dimension and the feature dimension x = x.transpose(1, 2) # GLU mechanism x = self.pointwise_conv1(x) # (batch, 2*channel, dim) x = self.glu(x) # (batch, channel, dim) # 1D Depthwise Conv x = self.depthwise_conv(x) x = self.batch_norm(x) x = self.activation(x) x = self.pointwise_conv2(x) x = self.dropout(x) return x.transpose(1, 2) class FeedForwardModule(torch.nn.Module): """Positionwise feed forward layer used in conformer""" def __init__( self, input_feat, hidden_units, dropout1, dropout2, activation_fn="swish", bias=True, ): """ Args: input_feat: Input feature dimension hidden_units: Hidden unit dimension dropout1: dropout value for layer1 dropout2: dropout value for layer2 activation_fn: Name of activation function bias: If linear layers should have bias """ super(FeedForwardModule, self).__init__() self.layer_norm = LayerNorm(input_feat) self.w_1 = torch.nn.Linear(input_feat, hidden_units, bias=bias) self.w_2 = torch.nn.Linear(hidden_units, input_feat, bias=bias) self.dropout1 = torch.nn.Dropout(dropout1) self.dropout2 = torch.nn.Dropout(dropout2) self.activation = get_activation_fn(activation_fn)(hidden_units) def forward(self, x): """ Args: x: Input Tensor of shape T X B X C Returns: Tensor of shape T X B X C """ x = self.layer_norm(x) x = self.w_1(x) x = self.activation(x) x = self.dropout1(x) x = self.w_2(x) return self.dropout2(x) class ConformerEncoderLayer(torch.nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100. We currently don't support relative positional encoding in MHA""" def __init__( self, embed_dim, ffn_embed_dim, attention_heads, dropout, use_fp16, depthwise_conv_kernel_size=31, activation_fn="swish", attn_type=None, pos_enc_type="abs", ): """ Args: embed_dim: Input embedding dimension ffn_embed_dim: FFN layer dimension attention_heads: Number of attention heads in MHA dropout: dropout value depthwise_conv_kernel_size: Size of kernel in depthwise conv layer in convolution module activation_fn: Activation function name to use in convulation block and feed forward block attn_type: MHA implementation from ESPNET vs fairseq pos_enc_type: Positional encoding type - abs, rope, rel_pos """ self.pos_enc_type = pos_enc_type super(ConformerEncoderLayer, self).__init__() self.ffn1 = FeedForwardModule( embed_dim, ffn_embed_dim, dropout, dropout, ) self.self_attn_layer_norm = LayerNorm(embed_dim, export=False) self.self_attn_dropout = torch.nn.Dropout(dropout) if attn_type == "espnet": if self.pos_enc_type == "rel_pos": self.self_attn = RelPositionMultiHeadedAttention( embed_dim, attention_heads, dropout=dropout, ) elif self.pos_enc_type == "rope": self.self_attn = RotaryPositionMultiHeadedAttention( embed_dim, attention_heads, dropout=dropout, precision=use_fp16 ) elif self.pos_enc_type == "abs": self.self_attn = ESPNETMultiHeadedAttention( embed_dim, attention_heads, dropout=dropout, ) else: raise Exception(f"Unsupported attention type {self.pos_enc_type}") else: # Default to fairseq MHA self.self_attn = MultiheadAttention( embed_dim, attention_heads, dropout=dropout, ) self.conv_module = ConvolutionModule( embed_dim=embed_dim, channels=embed_dim, depthwise_kernel_size=depthwise_conv_kernel_size, dropout=dropout, activation_fn=activation_fn, ) self.ffn2 = FeedForwardModule( embed_dim, ffn_embed_dim, dropout, dropout, activation_fn=activation_fn, ) self.final_layer_norm = LayerNorm(embed_dim, export=False) def forward( self, x, encoder_padding_mask: Optional[torch.Tensor], position_emb: Optional[torch.Tensor] = None, ): """ Args: x: Tensor of shape T X B X C encoder_padding_mask: Optional mask tensor positions: Returns: Tensor of shape T X B X C """ residual = x x = self.ffn1(x) x = x * 0.5 + residual residual = x x = self.self_attn_layer_norm(x) if self.pos_enc_type == "rel_pos": x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, pos_emb=position_emb, need_weights=False, ) else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=False, ) x = self.self_attn_dropout(x) x = x + residual residual = x # TBC to BTC x = x.transpose(0, 1) x = self.conv_module(x) # BTC to TBC x = x.transpose(0, 1) x = residual + x residual = x x = self.ffn2(x) x = x * 0.5 + residual x = self.final_layer_norm(x) return x, attn class ConformerWav2Vec2EncoderLayer(ConformerEncoderLayer): """Encoder layer for Wav2vec2 encoder""" def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, att_args=None, position_emb=None, ): return super().forward(x, self_attn_padding_mask, position_emb)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/conformer_layer.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Shigeki Karita # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Multi-Head Attention layer definition.""" import math import torch from torch import nn from fairseq.modules.rotary_positional_embedding import ( RotaryPositionalEmbedding, apply_rotary_pos_emb, ) class ESPNETMultiHeadedAttention(nn.Module): """Multi-Head Attention layer. Args: n_head: The number of heads. n_feat: The number of features. dropout: Dropout rate. """ def __init__(self, n_feat, n_head, dropout): """Construct an MultiHeadedAttention object.""" super(ESPNETMultiHeadedAttention, self).__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward_qkv(self, query, key, value, **kwargs): """Transform query, key and value. Args: query: Query tensor B X T1 X C key: Key tensor B X T2 X C value: Value tensor B X T2 X C Returns: torch.Tensor: Transformed query tensor B X n_head X T1 X d_k torch.Tensor: Transformed key tensor B X n_head X T2 X d_k torch.Tensor: Transformed value tensor B X n_head X T2 X d_k """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) # (batch, head, time1, d_k) k = k.transpose(1, 2) # (batch, head, time2, d_k) v = v.transpose(1, 2) # (batch, head, time2, d_k) return q, k, v def forward_attention(self, value, scores, mask): """Compute attention context vector. Args: value: Transformed value B X n_head X T2 X d_k. scores: Attention score B X n_head X T1 X T2 mask: Mask T2 X B Returns: torch.Tensor: Transformed value B X T1 X d_model weighted by the attention score B X T1 X T2 """ n_batch = value.size(0) if mask is not None: scores = scores.masked_fill( mask.unsqueeze(1).unsqueeze(2).to(bool), float("-inf"), # (batch, head, time1, time2) ) self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = ( x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward(self, query, key, value, key_padding_mask=None, **kwargs): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor T X B X C key (torch.Tensor): Key tensor T X B X C value (torch.Tensor): Value tensor T X B X C mask (torch.Tensor): Mask tensor T X B Returns: torch.Tensor: Output tensor T X B X D. """ query = query.transpose(0, 1) key = key.transpose(0, 1) value = value.transpose(0, 1) q, k, v = self.forward_qkv(query, key, value) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) scores = self.forward_attention(v, scores, key_padding_mask) scores = scores.transpose(0, 1) return scores, None class RelPositionMultiHeadedAttention(ESPNETMultiHeadedAttention): """Multi-Head Attention layer with relative position encoding. Paper: https://arxiv.org/abs/1901.02860 Args: n_head: The number of heads. n_feat: The number of features. dropout: Dropout rate. zero_triu: Whether to zero the upper triangular part of attention matrix. """ def __init__(self, n_feat, n_head, dropout, zero_triu=False): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_feat, n_head, dropout) self.zero_triu = zero_triu # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) def rel_shift(self, x): """Compute relative positional encoding. Args: x: Input tensor B X n_head X T X 2T-1 Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x)[ :, :, :, : x.size(-1) // 2 + 1 ] # only keep the positions from 0 to time2 if self.zero_triu: ones = torch.ones((x.size(2), x.size(3)), device=x.device) x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] return x def forward(self, query, key, value, pos_emb, key_padding_mask=None, **kwargs): """Compute scaled dot product attention. Args: query: Query tensor T X B X C key: Key tensor T X B X C value: Value tensor T X B X C pos_emb: Positional embedding tensor B X 2T-1 X C key_padding_mask: Mask tensor T X B Returns: torch.Tensor: Output tensor T X B X C. """ query = query.transpose(0, 1) key = key.transpose(0, 1) value = value.transpose(0, 1) pos_emb = pos_emb.transpose(0, 1) q, k, v = self.forward_qkv(query, key, value) q = q.transpose(1, 2) # (batch, time1, head, d_k) n_batch_pos = pos_emb.size(0) p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, 2*time1-1) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k ) # (batch, head, time1, time2) scores = self.forward_attention(v, scores, key_padding_mask) scores = scores.transpose(0, 1) return scores, None class RotaryPositionMultiHeadedAttention(ESPNETMultiHeadedAttention): def __init__( self, n_feat, n_head, dropout, precision, rotary_emd_base=10000, ): """Construct an RotaryPositionMultiHeadedAttention object.""" super().__init__(n_feat, n_head, dropout) precision = torch.float self.rotary_ndims = self.d_k # also try self.d_k//2 if precision == "fp16": precision = torch.half self.rotary_emb = RotaryPositionalEmbedding( self.rotary_ndims, base=rotary_emd_base, precision=precision ) def forward(self, query, key, value, key_padding_mask=None, **kwargs): """Compute rotary position attention. Args: query: Query tensor T X B X C key: Key tensor T X B X C value: Value tensor T X B X C key_padding_mask: Mask tensor T X B Returns: torch.Tensor: Output tensor T X B X D. Notes: Assumes self attn """ T, B, C = value.size() query = query.view(T, B, self.h, self.d_k) key = key.view(T, B, self.h, self.d_k) value = value.view(T, B, self.h, self.d_k) cos, sin = self.rotary_emb(value, seq_len=T) query, key = apply_rotary_pos_emb( query, key, cos, sin, offset=0 ) # offset is based on layer_past query = query.view(T, B, self.h * self.d_k) key = key.view(T, B, self.h * self.d_k) value = value.view(T, B, self.h * self.d_k) # TBD to BTD query = query.transpose(0, 1) key = key.transpose(0, 1) value = value.transpose(0, 1) q, k, v = self.forward_qkv(query, key, value) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) scores = self.forward_attention(v, scores, key_padding_mask) scores = scores.transpose(0, 1) return scores, None
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/espnet_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ transpose last 2 dimensions of the input """ import torch.nn as nn class TransposeLast(nn.Module): def __init__(self, deconstruct_idx=None): super().__init__() self.deconstruct_idx = deconstruct_idx def forward(self, x): if self.deconstruct_idx is not None: x = x[self.deconstruct_idx] return x.transpose(-2, -1)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/transpose_last.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Optional import torch import torch.onnx.operators from fairseq import utils from torch import Tensor, nn class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx if padding_idx is not None else 0 self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx ) self.onnx_trace = False self.register_buffer("_float_tensor", torch.FloatTensor(1)) self.max_positions = int(1e5) def prepare_for_onnx_export_(self): self.onnx_trace = True @staticmethod def get_embedding( num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None ): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze( 1 ) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view( num_embeddings, -1 ) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward( self, input, incremental_state: Optional[Any] = None, timestep: Optional[Tensor] = None, positions: Optional[Any] = None, ): """Input is expected to be of size [bsz x seqlen].""" bspair = torch.onnx.operators.shape_as_tensor(input) bsz, seq_len = bspair[0], bspair[1] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None and len(incremental_state) > 0: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len if self.onnx_trace: return ( self.weights.index_select(index=self.padding_idx + pos, dim=0) .unsqueeze(1) .repeat(bsz, 1, 1) ) return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = utils.make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) if self.onnx_trace: flat_embeddings = self.weights.detach().index_select(0, positions.view(-1)) embedding_shape = torch.cat( (bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long)) ) embeddings = torch.onnx.operators.reshape_from_tensor_shape( flat_embeddings, embedding_shape ) return embeddings return ( self.weights.index_select(0, positions.view(-1)) .view(bsz, seq_len, -1) .detach() )
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/sinusoidal_positional_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F try: from apex.normalization import FusedLayerNorm as _FusedLayerNorm has_fused_layernorm = True class FusedLayerNorm(_FusedLayerNorm): @torch.jit.unused def forward(self, x): if not x.is_cuda: return super().forward(x) else: with torch.cuda.device(x.device): return super().forward(x) except ImportError: has_fused_layernorm = False def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): if torch.jit.is_scripting() or torch.jit.is_tracing(): export = True if not export and torch.cuda.is_available() and has_fused_layernorm: return FusedLayerNorm(normalized_shape, eps, elementwise_affine) return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/layer_norm.py
import torch import torch.nn as nn import torch.nn.functional as F import math from inspect import isfunction from operator import mul from functools import reduce, wraps from aml.multimodal_video.utils.einops.lib import rearrange, repeat from aml.multimodal_video.utils.einops.lib.layers.torch import Rearrange from fairseq.modules.local_attention import LocalAttention # constants TOKEN_SELF_ATTN_VALUE = -5e4 KMEAN_INIT_ITERS = 10 # helper functions def exists(val): return val is not None def identity(x, *args, **kwargs): return x def default(x, d): if not exists(x): return d if not isfunction(d) else d() return x def cast_tuple(x): return x if isinstance(x, tuple) else (x,) def cache_fn(f): cache = None @wraps(f) def cached_fn(*args, **kwargs): nonlocal cache if exists(cache): return cache cache = f(*args, **kwargs) return cache return cached_fn def to(t): return {"device": t.device, "dtype": t.dtype} def find_modules(nn_module, type): return [module for module in nn_module.modules() if isinstance(module, type)] def is_empty(t): return t.nelement() == 0 def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def batched_index_select(values, indices): last_dim = values.shape[-1] return values.gather(2, expand_dim(indices, -1, last_dim)) def merge_dims(ind_from, ind_to, tensor): shape = list(tensor.shape) arr_slice = slice(ind_from, ind_to + 1) shape[arr_slice] = [reduce(mul, shape[arr_slice])] return tensor.reshape(*shape) def expand_dim(t, dim, k): t = t.unsqueeze(dim) expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def scatter_mean(src, t, index, dim, eps=1e-5): numer = src.scatter_add(dim, index, t) denom = src.scatter_add(dim, index, torch.ones_like(t)) return numer / (denom + eps) def split_at_index(dim, index, t): pre_slices = (slice(None),) * dim l = (*pre_slices, slice(None, index)) r = (*pre_slices, slice(index, None)) return t[l], t[r] def reshape_dim(t, dim, split_dims): shape = list(t.shape) num_dims = len(shape) dim = (dim + num_dims) % num_dims shape[dim : dim + 1] = split_dims return t.reshape(shape) def ema(old, new, decay): if not exists(old): return new return old * decay + new * (1 - decay) def ema_inplace(moving_avg, new, decay): if is_empty(moving_avg): moving_avg.data.copy_(new) return moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) # helper classes def map_first_tuple_or_el(x, fn): if isinstance(x, tuple): return (fn(x[0]),) + x[1:] return fn(x) class Chunk(nn.Module): def __init__(self, chunks, fn, along_dim=-1): super().__init__() self.dim = along_dim self.chunks = chunks self.fn = fn def forward(self, x, **kwargs): if self.chunks <= 1: return self.fn(x, **kwargs) chunks = x.chunk(self.chunks, dim=self.dim) return torch.cat([self.fn(c, **kwargs) for c in chunks], dim=self.dim) class PreNorm(nn.ModuleList): def __init__(self, norm_class, dim, fn): super().__init__() self.norm = norm_class(dim) self.fn = fn def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) class ReZero(nn.Module): def __init__(self, fn): super().__init__() self.residual_weight = nn.Parameter(torch.zeros(1)) self.fn = fn def forward(self, x, **kwargs): x = self.fn(x, **kwargs) return map_first_tuple_or_el(x, lambda t: t * self.residual_weight) class ScaleNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.g = nn.Parameter(torch.ones(1)) self.eps = eps def forward(self, x): def norm(t): n = torch.norm(t, dim=-1, keepdim=True).clamp(min=self.eps) return t / n * self.g return map_first_tuple_or_el(x, norm) class ProjectInOut(nn.Module): def __init__(self, fn, dim_in, dim_out, project_out=True): super().__init__() self.fn = fn self.project_in = nn.Linear(dim_in, dim_out) self.project_out = nn.Linear(dim_out, dim_in) if project_out else identity def forward(self, x, **kwargs): x = self.project_in(x) x, loss = self.fn(x, **kwargs) x = self.project_out(x) return x, loss class MatrixMultiply(nn.Module): def __init__(self, tensor, transpose=False): super().__init__() self.tensor = tensor self.transpose = transpose def forward(self, x): tensor = self.tensor if self.transpose: tensor = tensor.t() return x @ tensor # positional embeddings class DepthWiseConv1d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, stride=1, bias=True, causal=False): super().__init__() self.padding = ( ((kernel_size - 1), 0) if causal else (kernel_size // 2, kernel_size // 2) ) self.net = nn.Sequential( nn.Conv1d( dim_in, dim_in, kernel_size=kernel_size, groups=dim_in, stride=stride, bias=bias, ), nn.Conv1d(dim_in, dim_out, 1, bias=bias), ) def forward(self, x): x = F.pad(x, self.padding, value=0.0) return self.net(x) class FixedPositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) position = torch.arange(0, max_seq_len, dtype=torch.float) sinusoid_inp = torch.einsum("i,j->ij", position, inv_freq) emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) self.register_buffer("emb", emb) def forward(self, x): return self.emb[None, : x.shape[1], :].to(x) def rotate_every_two(x): x = rearrange(x, "... (d j) -> ... d j", j=2) x1, x2 = x.unbind(dim=-1) x = torch.stack((-x2, x1), dim=-1) return rearrange(x, "... d j -> ... (d j)") def apply_rotary_pos_emb(q, k, sinu_pos): sinu_pos = rearrange(sinu_pos, "() n (j d) -> n j d", j=2) sin, cos = sinu_pos.unbind(dim=-2) sin, cos = map(lambda t: repeat(t, "b n -> b (n j)", j=2), (sin, cos)) q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k)) return q, k # kmeans related function and class def update_kmeans_on_backwards(module): module.kmean_modules = find_modules(module, Kmeans) def hook(_, grad_in, grad_out): for m in module.kmean_modules: m.update() return module.register_backward_hook(hook) def similarity(x, means): return torch.einsum("bhld,hcd->bhlc", x, means) def dists_and_buckets(x, means): dists = similarity(x, means) _, buckets = torch.max(dists, dim=-1) return dists, buckets def batched_bincount(index, num_classes, dim=-1): shape = list(index.shape) shape[dim] = num_classes out = index.new_zeros(shape) out.scatter_add_(dim, index, torch.ones_like(index, dtype=index.dtype)) return out def kmeans_iter(x, means, buckets=None): b, h, _, d, dtype, num_clusters = *x.shape, x.dtype, means.shape[1] if not exists(buckets): _, buckets = dists_and_buckets(x, means) bins = batched_bincount(buckets, num_clusters).sum(0, keepdim=True) zero_mask = bins.long() == 0 means_ = buckets.new_zeros(b, h, num_clusters, d, dtype=dtype) means_.scatter_add_(-2, expand_dim(buckets, -1, d), x) means_ = F.normalize(means_.sum(0, keepdim=True), dim=-1).type(dtype) means = torch.where(zero_mask.unsqueeze(-1), means, means_) means = means.squeeze(0) return means def distribution(dists, window_size): _, topk_indices = dists.topk(k=window_size, dim=-2) indices = topk_indices.transpose(-2, -1) return indices.reshape(*indices.size()[:2], -1) class Kmeans(nn.Module): def __init__( self, num_heads, head_dim, num_clusters, ema_decay=0.999, commitment=1e-4 ): super().__init__() self.commitment = commitment self.ema_decay = ema_decay self.register_buffer("means", torch.randn(num_heads, num_clusters, head_dim)) self.register_buffer("initted", torch.tensor(False)) self.num_new_means = 0 self.new_means = None @torch.no_grad() def init(self, x): if self.initted: return _, h, _, d, device, _ = *x.shape, x.device, x.dtype num_clusters = self.means.shape[1] means = x.transpose(0, 1).contiguous().view(h, -1, d) num_samples = means.shape[1] if num_samples >= num_clusters: indices = torch.randperm(num_samples, device=device)[:num_clusters] else: indices = torch.randint(0, num_samples, (num_clusters,), device=device) means = means[:, indices] for _ in range(KMEAN_INIT_ITERS): means = kmeans_iter(x, means) self.num_new_means = 0 self.means.data.copy_(means) self.initted.data.copy_(torch.tensor(True)) @torch.no_grad() def update(self, new_means=None): new_means = default(new_means, self.new_means) assert exists(new_means), "new kmeans has not been supplied" ema_inplace(self.means, new_means, self.ema_decay) del self.new_means self.new_means = None self.num_new_means = 0 def forward(self, x, update_means=False): self.init(x) b, dtype = x.shape[0], x.dtype means = self.means.type(dtype) x = F.normalize(x, 2, dim=-1).type(dtype) with torch.no_grad(): dists, buckets = dists_and_buckets(x, means) routed_means = batched_index_select(expand_dim(means, 0, b), buckets) loss = F.mse_loss(x, routed_means) * self.commitment if update_means: with torch.no_grad(): means = kmeans_iter(x, means, buckets) self.new_means = ema( self.new_means, means, self.num_new_means / (self.num_new_means + 1) ) self.num_new_means += 1 return dists, loss # kmeans attention class class KmeansAttention(nn.Module): def __init__( self, num_clusters, window_size, num_heads, head_dim, causal=False, dropout=0.0, ema_decay=0.999, commitment=1e-4, context_window_size=None, receives_context=False, num_mem_kv=0, shared_qk=False, ): super().__init__() self.num_heads = num_heads self.num_clusters = num_clusters self.head_dim = head_dim self.window_size = window_size self.context_window_size = default(context_window_size, window_size) self.causal = causal self.shared_qk = shared_qk self.receives_context = receives_context self.kmeans = Kmeans(num_heads, head_dim, num_clusters, ema_decay, commitment) self.dropout = nn.Dropout(dropout) self.num_mem_kv = max(num_mem_kv, 1 if causal and not shared_qk else 0) self.mem_key = nn.Parameter( torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim) ) self.mem_value = nn.Parameter( torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim) ) def forward(self, q, k, v, query_mask=None, key_mask=None, **kwargs): b, h, t, d, kv_t, wsz, c_wsz, nc, device, dtype = ( *q.shape, k.shape[2], self.window_size, self.context_window_size, self.num_clusters, q.device, q.dtype, ) is_reverse = kwargs.pop("_reverse", False) out = torch.zeros_like(q, dtype=dtype) update_kmeans = self.training and not is_reverse key_mask = ( default(key_mask, query_mask) if not self.receives_context else key_mask ) kv_wsz = wsz if not self.receives_context else c_wsz wsz = min(wsz, t) kv_wsz = min(kv_wsz, kv_t) if not self.shared_qk or self.receives_context: dists, aux_loss = self.kmeans(torch.cat((q, k), dim=2), update_kmeans) q_dists, k_dists = split_at_index(2, t, dists) indices = distribution(q_dists, wsz) kv_indices = distribution(k_dists, kv_wsz) else: dists, aux_loss = self.kmeans(q, update_kmeans) k = F.normalize(k, dim=-1).to(q) indices = distribution(dists, wsz) kv_indices = indices q = batched_index_select(q, indices) k = batched_index_select(k, kv_indices) v = batched_index_select(v, kv_indices) def reshape_with_window(x): return x.reshape(b, h, nc, -1, d) q, k, v = map(reshape_with_window, (q, k, v)) m_k, m_v = map( lambda x: expand_dim(x, 0, b).to(q), (self.mem_key, self.mem_value) ) k, v = map(lambda x: torch.cat(x, dim=3), ((m_k, k), (m_v, v))) dots = torch.einsum("bhnid,bhnjd->bhnij", q, k) * (d ** -0.5) mask_value = max_neg_value(dots) if exists(query_mask) or exists(key_mask): query_mask = default( query_mask, lambda: torch.ones((b, t), device=device).bool() ) key_mask = default( key_mask, lambda: torch.ones((b, kv_t), device=device).bool() ) q_mask = expand_dim(query_mask, 1, h).gather(2, indices) kv_mask = expand_dim(key_mask, 1, h).gather(2, kv_indices) q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (q_mask, kv_mask)) mask = q_mask[:, :, :, :, None] * kv_mask[:, :, :, None, :] mask = F.pad(mask, (self.num_mem_kv, 0), value=1) dots.masked_fill_(~mask, mask_value) del mask if self.causal: q_mask, kv_mask = map( lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices) ) mask = q_mask[:, :, :, :, None] >= kv_mask[:, :, :, None, :] mask = F.pad(mask, (self.num_mem_kv, 0), value=1) dots.masked_fill_(~mask, mask_value) del mask if self.shared_qk: q_mask, kv_mask = map( lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices) ) mask = q_mask[:, :, :, :, None] == kv_mask[:, :, :, None, :] mask = F.pad(mask, (self.num_mem_kv, 0), value=0) dots.masked_fill_(mask, TOKEN_SELF_ATTN_VALUE) del mask dots = dots.softmax(dim=-1) dots = self.dropout(dots) bo = torch.einsum("bhcij,bhcjd->bhcid", dots, v) so = torch.reshape(bo, (b, h, -1, bo.shape[-1])).type(dtype) out = scatter_mean(out, so, indices.unsqueeze(-1).expand_as(so), -2) return out, aux_loss # feedforward class GELU_(nn.Module): def forward(self, x): return ( 0.5 * x * ( 1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))) ) ) GELU = nn.GELU if hasattr(nn, "GELU") else GELU_ class FeedForward(nn.Module): def __init__(self, dim, mult=4, dropout=0.0, activation=None, glu=False): super().__init__() activation = default(activation, GELU) self.glu = glu self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1)) self.act = activation() self.dropout = nn.Dropout(dropout) self.w2 = nn.Linear(dim * mult, dim) def forward(self, x, **kwargs): if not self.glu: x = self.w1(x) x = self.act(x) else: x, v = self.w1(x).chunk(2, dim=-1) x = self.act(x) * v x = self.dropout(x) x = self.w2(x) return x # self attention class SelfAttention(nn.Module): def __init__( self, dim, max_seq_len, heads, local_attn_heads, window_size, dim_head=None, local_attn_window_size=None, local_attn_radius_blocks=1, causal=False, attn_dropout=0.0, dropout=0.0, kmeans_ema_decay=0.999, commitment_factor=1e-4, receives_context=False, context_window_size=None, rel_pos_emb=True, num_mem_kv=0, shared_qk=False, conv_query_kernel=9, ): super().__init__() assert ( dim_head or (dim % heads) == 0 ), "hidden dimension must be divisible by number of heads" assert ( max_seq_len % window_size ) == 0, "maximum sequence length must be divisible by the target window size" assert ( local_attn_heads <= heads ), "number of local attention heads must be less than total heads" assert not ( receives_context and local_attn_heads > 0 ), "local attention cannot be used for self attention with context" assert not ( receives_context and causal ), "contextual attention layer cannot be causal" local_attn_window_size = default(local_attn_window_size, window_size) context_window_size = default(context_window_size, window_size) self.shared_qk = shared_qk self.receives_context = receives_context self.heads = heads self.local_attn_heads = local_attn_heads self.global_attn_heads = heads - local_attn_heads self.causal = causal self.window_size = window_size dim_head = default(dim_head, dim // heads) dim_heads = dim_head * heads self.dim_head = dim_head num_clusters = max_seq_len // window_size # local local_dim_heads = dim_head * self.local_attn_heads if self.local_attn_heads > 0: rel_pos_emb_config = (dim_head, local_attn_heads) if rel_pos_emb else None self.local_attn = LocalAttention( dim=dim_head, window_size=local_attn_window_size, causal=causal, dropout=attn_dropout, rel_pos_emb_config=rel_pos_emb_config, look_backward=local_attn_radius_blocks, look_forward=0 if causal else local_attn_radius_blocks, ) self.local_to_qkv = nn.Linear(dim, 3 * local_dim_heads) # global global_dim_heads = dim_head * self.global_attn_heads if self.global_attn_heads > 0: self.global_attn = KmeansAttention( num_clusters, window_size, self.global_attn_heads, dim_head, causal=causal, dropout=attn_dropout, ema_decay=kmeans_ema_decay, commitment=commitment_factor, receives_context=receives_context, num_mem_kv=num_mem_kv, shared_qk=shared_qk, ) self.to_q = nn.Sequential( Rearrange("b n c -> b c n"), DepthWiseConv1d(dim, global_dim_heads, conv_query_kernel, causal=causal), Rearrange("b c n -> b n c"), ) self.to_v = nn.Linear(dim, global_dim_heads, bias=False) if not self.shared_qk: self.to_k = nn.Linear(dim, global_dim_heads, bias=False) # out self.to_out = nn.Linear(dim_heads, dim, bias=False) self.dropout = nn.Dropout(dropout) def forward( self, query, key, value, context=None, key_padding_mask=None, context_mask=None, pos_emb=None, **kwargs ): assert not ( self.receives_context and not exists(context) ), "context must be passed if self attention is set to receive context" input_mask = key_padding_mask x = query.transpose(0, 1) b, t, _, h, dh = *x.shape, self.heads, self.dim_head has_local, has_global = map( lambda x: x > 0, (self.local_attn_heads, self.global_attn_heads) ) def split_heads(v): return reshape_dim(v, -1, (-1, dh)).transpose(1, 2).contiguous() if has_local: local_qkv = self.local_to_qkv(x).chunk(3, dim=-1) lq, lk, lv = map(split_heads, local_qkv) if has_global: kv_input = x if not self.receives_context else context q, v = self.to_q(x), self.to_v(kv_input) if not self.shared_qk: k = self.to_k(kv_input) else: k = self.to_q(kv_input) if self.receives_context else q q, k, v = map(split_heads, (q, k, v)) out = [] total_loss = torch.tensor(0.0, requires_grad=True, **to(x)) if has_local: local_out = self.local_attn(lq, lk, lv, input_mask=input_mask) out.append(local_out) if has_global: if not self.receives_context and exists(pos_emb): q, k = apply_rotary_pos_emb(q, k, pos_emb) global_out, loss = self.global_attn( q, k, v, query_mask=input_mask, key_mask=context_mask ) total_loss = total_loss + loss out.append(global_out) out = torch.cat(out, dim=1) out = out.reshape(b, h, t, -1).transpose(1, 2).reshape(b, t, -1) out = self.dropout(out.transpose(0, 1)) # out = self.to_out(out) return out, total_loss
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/kmeans_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch import nn class SamePad(nn.Module): def __init__(self, kernel_size, causal=False): super().__init__() if causal: self.remove = kernel_size - 1 else: self.remove = 1 if kernel_size % 2 == 0 else 0 def forward(self, x): if self.remove > 0: x = x[:, :, : -self.remove] return x
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/same_pad.py
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def parse_config_yaml(yaml_data): # Initialize to default options. quantization_options = { "n_centroids": { "Linear": ["in_features", {"*": 256}], "Embedding": ["embedding_dim", {"*": 256}], }, "block_sizes": { "Linear": ["fuzzy_name", {"fc": 8, "attn": 4, "emb": 4}], "Embedding": ["fuzzy_name", {"emb": 8}], }, "layers_to_quantize": [ "decoder\\.layers\\.\\d+\\.fc[12]", "decoder\\.embed_tokens\\.embeddings\\.[012]\\.[01]", "decoder\\.layers\\.\\d+\\.self_attn\\.(k_proj|v_proj|q_proj|out_proj)", ], } if "n_centroids" in yaml_data: quantization_options["n_centroids"] = { layer: convert_yaml_to_tuple(layer_data) for layer, layer_data in yaml_data["n_centroids"].items() } if "block_sizes" in yaml_data: quantization_options["block_sizes"] = { layer: convert_yaml_to_tuple(layer_data) for layer, layer_data in yaml_data["block_sizes"].items() } if "layers_to_quantize" in yaml_data: quantization_options["layers_to_quantize"] = yaml_data["layers_to_quantize"] return quantization_options def convert_yaml_to_tuple(yaml_dictionary): """Converts a yaml dictionary with two keys: `key` and `value` into a two argument tuple of those values.""" return (yaml_dictionary["key"], yaml_dictionary["value"])
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/quantization_options.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .utils import SizeTracker, get_param, attrsetter, quantize_model_ # NOQA
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .em import EM, EmptyClusterResolveError class PQ(EM): """ Quantizes the layer weights W with the standard Product Quantization technique. This learns a codebook of codewords or centroids of size block_size from W. For further reference on using PQ to quantize neural networks, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks", Stock et al., ICLR 2020. PQ is performed in two steps: (1) The matrix W (weights or fully-connected or convolutional layer) is reshaped to (block_size, -1). - If W is fully-connected (2D), its columns are split into blocks of size block_size. - If W is convolutional (4D), its filters are split along the spatial dimension. (2) We apply the standard EM/k-means algorithm to the resulting reshaped matrix. Args: - W: weight matrix to quantize of size (in_features x out_features) - block_size: size of the blocks (subvectors) - n_centroids: number of centroids - n_iter: number of k-means iterations - eps: for cluster reassignment when an empty cluster is found - max_tentatives for cluster reassignment when an empty cluster is found - verbose: print information after each iteration Remarks: - block_size be compatible with the shape of W """ def __init__( self, W, block_size, n_centroids=256, n_iter=20, eps=1e-6, max_tentatives=30, verbose=True, ): self.block_size = block_size W_reshaped = self._reshape(W) super(PQ, self).__init__( W_reshaped, n_centroids=n_centroids, n_iter=n_iter, eps=eps, max_tentatives=max_tentatives, verbose=verbose, ) def _reshape(self, W): """ Reshapes the matrix W as expained in step (1). """ # fully connected: by convention the weight has size out_features x in_features if len(W.size()) == 2: self.out_features, self.in_features = W.size() assert ( self.in_features % self.block_size == 0 ), "Linear: n_blocks must be a multiple of in_features" return ( W.reshape(self.out_features, -1, self.block_size) .permute(2, 1, 0) .flatten(1, 2) ) # convolutional: we reshape along the spatial dimension elif len(W.size()) == 4: self.out_channels, self.in_channels, self.k_h, self.k_w = W.size() assert ( self.in_channels * self.k_h * self.k_w ) % self.block_size == 0, ( "Conv2d: n_blocks must be a multiple of in_channels * k_h * k_w" ) return ( W.reshape(self.out_channels, -1, self.block_size) .permute(2, 1, 0) .flatten(1, 2) ) # not implemented else: raise NotImplementedError(W.size()) def encode(self): """ Performs self.n_iter EM steps. """ self.initialize_centroids() for i in range(self.n_iter): try: self.step(i) except EmptyClusterResolveError: break def decode(self): """ Returns the encoded full weight matrix. Must be called after the encode function. """ # fully connected case if "k_h" not in self.__dict__: return ( self.centroids[self.assignments] .reshape(-1, self.out_features, self.block_size) .permute(1, 0, 2) .flatten(1, 2) ) # convolutional case else: return ( self.centroids[self.assignments] .reshape(-1, self.out_channels, self.block_size) .permute(1, 0, 2) .reshape(self.out_channels, self.in_channels, self.k_h, self.k_w) )
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/pq.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import random from collections import Counter import torch class EM: """ EM algorithm used to quantize the columns of W to minimize ||W - W_hat||^2 Args: - W: weight matrix of size (in_features x out_features) - n_iter: number of k-means iterations - n_centroids: number of centroids (size of codebook) - eps: for cluster reassignment when an empty cluster is found - max_tentatives for cluster reassignment when an empty cluster is found - verbose: print error after each iteration Remarks: - If one cluster is empty, the most populated cluster is split into two clusters - All the relevant dimensions are specified in the code """ def __init__( self, W, n_centroids=256, n_iter=20, eps=1e-6, max_tentatives=30, verbose=True ): self.W = W self.n_centroids = n_centroids self.n_iter = n_iter self.eps = eps self.max_tentatives = max_tentatives self.verbose = verbose self.centroids = torch.Tensor() self.assignments = torch.Tensor() self.objective = [] def initialize_centroids(self): """ Initializes the centroids by sampling random columns from W. """ in_features, out_features = self.W.size() indices = torch.randint( low=0, high=out_features, size=(self.n_centroids,) ).long() self.centroids = self.W[:, indices].t() # (n_centroids x in_features) def step(self, i): """ There are two standard steps for each iteration: expectation (E) and minimization (M). The E-step (assignment) is performed with an exhaustive search and the M-step (centroid computation) is performed with the exact solution. Args: - i: step number Remarks: - The E-step heavily uses PyTorch broadcasting to speed up computations and reduce the memory overhead """ # assignments (E-step) distances = self.compute_distances() # (n_centroids x out_features) self.assignments = torch.argmin(distances, dim=0) # (out_features) n_empty_clusters = self.resolve_empty_clusters() # centroids (M-step) for k in range(self.n_centroids): W_k = self.W[:, self.assignments == k] # (in_features x size_of_cluster_k) self.centroids[k] = W_k.mean(dim=1) # (in_features) # book-keeping obj = (self.centroids[self.assignments].t() - self.W).norm(p=2).item() self.objective.append(obj) if self.verbose: logging.info( f"Iteration: {i},\t" f"objective: {obj:.6f},\t" f"resolved empty clusters: {n_empty_clusters}" ) def resolve_empty_clusters(self): """ If one cluster is empty, the most populated cluster is split into two clusters by shifting the respective centroids. This is done iteratively for a fixed number of tentatives. """ # empty clusters counts = Counter(map(lambda x: x.item(), self.assignments)) empty_clusters = set(range(self.n_centroids)) - set(counts.keys()) n_empty_clusters = len(empty_clusters) tentatives = 0 while len(empty_clusters) > 0: # given an empty cluster, find most populated cluster and split it into two k = random.choice(list(empty_clusters)) m = counts.most_common(1)[0][0] e = torch.randn_like(self.centroids[m]) * self.eps self.centroids[k] = self.centroids[m].clone() self.centroids[k] += e self.centroids[m] -= e # recompute assignments distances = self.compute_distances() # (n_centroids x out_features) self.assignments = torch.argmin(distances, dim=0) # (out_features) # check for empty clusters counts = Counter(map(lambda x: x.item(), self.assignments)) empty_clusters = set(range(self.n_centroids)) - set(counts.keys()) # increment tentatives if tentatives == self.max_tentatives: logging.info( f"Could not resolve all empty clusters, {len(empty_clusters)} remaining" ) raise EmptyClusterResolveError tentatives += 1 return n_empty_clusters def compute_distances(self): """ For every centroid m, computes ||M - m[None, :]||_2 Remarks: - We rely on PyTorch's broadcasting to speed up computations and reduce the memory overhead - Without chunking, the sizes in the broadcasting are modified as: (n_centroids x n_samples x out_features) -> (n_centroids x out_features) - The broadcasting computation is automatically chunked so that the tensors fit into the memory of the GPU """ nb_centroids_chunks = 1 while True: try: return torch.cat( [ (self.W[None, :, :] - centroids_c[:, :, None]).norm(p=2, dim=1) for centroids_c in self.centroids.chunk( nb_centroids_chunks, dim=0 ) ], dim=0, ) except RuntimeError: nb_centroids_chunks *= 2 def assign(self): """ Assigns each column of W to its closest centroid, thus essentially performing the E-step in train(). Remarks: - The function must be called after train() or after loading centroids using self.load(), otherwise it will return empty tensors """ distances = self.compute_distances() # (n_centroids x out_features) self.assignments = torch.argmin(distances, dim=0) # (out_features) def save(self, path, layer): """ Saves centroids and assignments. Args: - path: folder used to save centroids and assignments """ torch.save(self.centroids, os.path.join(path, "{}_centroids.pth".format(layer))) torch.save( self.assignments, os.path.join(path, "{}_assignments.pth".format(layer)) ) torch.save(self.objective, os.path.join(path, "{}_objective.pth".format(layer))) def load(self, path, layer): """ Loads centroids and assignments from a given path Args: - path: folder use to load centroids and assignments """ self.centroids = torch.load( os.path.join(path, "{}_centroids.pth".format(layer)) ) self.assignments = torch.load( os.path.join(path, "{}_assignments.pth".format(layer)) ) self.objective = torch.load( os.path.join(path, "{}_objective.pth".format(layer)) ) class EmptyClusterResolveError(Exception): pass
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/em.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import re from operator import attrgetter, itemgetter import torch import numpy as np import torch.distributed as dist import torch.nn as nn from .modules import PQConv2d, PQEmbedding, PQLinear from .pq import PQ def quantize_model_( model, size_tracker, layers_to_quantize, block_sizes_config, n_centroids_config, step=0, n_iter=15, eps=1e-6, max_tentatives=100, remove_weights=False, verbose=True, state_dict=None, ): """ Quantize a model in-place by stages. All the targeted layers are replaced by their quantized counterpart, and the model is ready for the finetuning of the centroids in a standard training loop (no modifications required). Note that we do not quantize biases. Args: - model: a nn.Module - size_tracker: useful for tracking quatization statistics - layers_to_quantize: a list containing regexps for filtering the layers to quantize at each stage according to their name (as in model.named_parameters()) - block_sizes_config: dict like { 'Conv2d': ('kernel_size', {'(3, 3)': 9, '(1, 1)': 4}), 'Linear': ('in_features', {'*': 8}) } For instance, all conv2d layers with kernel size 3x3 have a block size of 9 and all Linear layers are quantized with a block size of 8, irrespective of their size. - n_centroids_config: dict like { 'Conv2d': ('kernel_size', {'*': 256}), 'Linear': ('in_features', {'*': 256}) } For instance, all conv2d layers are quantized with 256 centroids - step: the layers to quantize inplace corresponding to layers_to_quantize[step] """ quantized_layers = get_layers( model, layers_to_quantize[step], remove_weights=remove_weights ) for layer in quantized_layers: # book-keeping is_master_process = (not dist.is_initialized()) or ( dist.is_initialized() and dist.get_rank() == 0 ) verbose = verbose and is_master_process # get block size and centroids module = attrgetter(layer)(model) block_size = get_param(module, layer, block_sizes_config) n_centroids = get_param(module, layer, n_centroids_config) if verbose: logging.info( f"Quantizing layer {layer} with block size {block_size} and {n_centroids} centroids" ) # quantize layer weight = module.weight.data.clone() is_bias = "bias" in [x[0] for x in module.named_parameters()] bias = module.bias.data.clone() if is_bias else None quantizer = PQ( weight, block_size, n_centroids=n_centroids, n_iter=n_iter, eps=eps, max_tentatives=max_tentatives, verbose=verbose, ) # quantization performed on all GPUs with same seed quantizer.encode() centroids = quantizer.centroids.contiguous() assignments = quantizer.assignments.contiguous() # If n_iter = 0 and state_dict is provided, then # we initialize random assignments and centroids to # random values of the appropriate dimensions # because the quantized model parameters will # overwritten by the state_dict later on. if n_iter == 0 and state_dict: # Initialize random centroids of the correct size centroids = torch.rand(centroids.size()) centroids.cuda() # Get counts and assignment keys from layer in loaded checkpoint. counts_key = layer + "." + "counts" assignment_key = layer + "." + "assignments" # Get number of different bins to include. counts = list(state_dict[counts_key].shape)[0] print(layer) print(state_dict[counts_key]) print(counts) # Initialize random assignments of the correct size # with an appropriate number of bins. num_assignments = list(state_dict[assignment_key].shape)[0] num_extra = num_assignments - counts print(num_assignments) print(num_extra) assignments_bins = torch.arange(counts) assignments_rand = torch.randint(0, counts - 1, (num_extra,)) assignments = torch.cat((assignments_bins, assignments_rand), 0) # assignments = assignments.type(torch.IntTensor) assignments.cuda() print("assignments") print(assignments) # broadcast results to make sure weights are up-to-date if dist.is_initialized(): dist.broadcast(centroids, 0) dist.broadcast(assignments, 0) # instantiate the quantized counterpart if isinstance(module, nn.Linear): out_features, in_features = map( lambda k: module.__dict__[k], ["out_features", "in_features"] ) quantized_module = PQLinear( centroids, assignments, bias, in_features, out_features ) elif isinstance(module, nn.Embedding): num_embeddings, embedding_dim = map( lambda k: module.__dict__[k], ["num_embeddings", "embedding_dim"] ) quantized_module = PQEmbedding( centroids, assignments, num_embeddings, embedding_dim ) elif isinstance(module, nn.Conv2d): out_channels, in_channels, kernel_size = map( lambda k: module.__dict__[k], ["out_channels", "in_channels", "kernel_size"], ) stride, padding, dilation, groups, padding_mode = map( lambda k: module.__dict__[k], ["stride", "padding", "dilation", "groups", "padding_mode"], ) quantized_module = PQConv2d( centroids, assignments, bias, in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, padding_mode=padding_mode, ) else: raise ValueError(f"Module {module} not yet supported for quantization") # replace layer by its quantized counterpart attrsetter(layer)(model, quantized_module) # update statistics size_tracker.update(weight, block_size, n_centroids) # return name of quantized layers return quantized_layers def get_layers(model, filter_regexp, remove_weights=False): """ Filters out the layers according to a regexp. Note that we omit biases. Args: - model: a nn.Module - filter_regexp: a regexp to filter the layers to keep according to their name in model.named_parameters(). For instance, the regexp: down_layers\\.[123456]\\.(conv[12]|identity\\.conv)) is keeping blocks down_layers from 1 to 6, and inside each block is keeping conv1, conv2 and identity.conv. Remarks: - We add (module\\.)? at the beginning of the regexp to account for the possible use of nn.parallel.DataParallel """ # get all parameter names all_layers = map(itemgetter(0), model.named_parameters()) # remove biases all_layers = filter(lambda x: "bias" not in x, all_layers) # remove .weight in all other names (or .weight_orig is spectral norm) all_layers = map(lambda x: x.replace(".weight_orig", ""), all_layers) # remove weights indicates whether the weights extension should be removed, in addition to # weight_orig and weight extension on names if remove_weights: all_layers = map(lambda x: x.replace(".weights", ""), all_layers) all_layers = map(lambda x: x.replace(".weight", ""), all_layers) # return filtered layers filter_regexp = "(module\\.)?" + "(" + filter_regexp + ")" r = re.compile(filter_regexp) return list(filter(r.match, all_layers)) def get_param(module, layer_name, param_config): """ Given a quantization configuration, get the right parameter for the module to be quantized. Args: - module: a nn.Module - layer_name: the name of the layer - param_config: a dict like { 'Conv2d': ('kernel_size', {'(3, 3)': 9, '(1, 1)': 4}), 'Linear': ('in_features', {'*': 8}) } For instance, all conv2d layers with kernel size 3x3 have a block size of 9 and all Linear layers are quantized with a block size of 8, irrespective of their size. Remarks: - if 'fuzzy_name' is passed as a parameter, layers whose layer_name include 'fuzzy_name' will be assigned the given parameter. In the following example, conv.expand layers will have a block size of 9 while conv.reduce will have a block size of 4 and all other layers will have a block size of 2. { 'Conv2d': ('fuzzy_name', {'expand': 9, 'reduce': 4, '*': 2}), 'Linear': ('fuzzy_name', {'classifier': 8, 'projection': 4}) } """ layer_type = module.__class__.__name__ if layer_type not in param_config: raise KeyError(f"Layer type {layer_type} not in config for layer {module}") feature, params = param_config[module.__class__.__name__] if feature != "fuzzy_name": feature_value = str(getattr(module, feature)) if feature_value not in params: if "*" in params: feature_value = "*" else: raise KeyError( f"{feature}={feature_value} not in config for layer {module}" ) else: feature_values = [name for name in params if name in layer_name] if len(feature_values) == 0: if "*" in params: feature_value = "*" else: raise KeyError(f"name={layer_name} not in config for {module}") else: feature_value = feature_values[0] return params[feature_value] class SizeTracker(object): """ Class to keep track of the compressed network size with iPQ. Args: - model: a nn.Module Remarks: - The compressed size is the sum of three components for each layer in the network: (1) Storing the centroids given by iPQ in fp16 (2) Storing the assignments of the blocks in int8 (3) Storing all non-compressed elements such as biases - This cost in only valid if we use 256 centroids (then indexing can indeed by done with int8). """ def __init__(self, model): self.model = model self.size_non_compressed_model = self.compute_size() self.size_non_quantized = self.size_non_compressed_model self.size_index = 0 self.size_centroids = 0 self.n_quantized_layers = 0 def compute_size(self): """ Computes the size of the model (in MB). """ res = 0 for _, p in self.model.named_parameters(): res += p.numel() return res * 4 / 1024 / 1024 def update(self, W, block_size, n_centroids): """ Updates the running statistics when quantizing a new layer. """ # bits per weights bits_per_weight = np.log2(n_centroids) / block_size self.n_quantized_layers += 1 # size of indexing the subvectors of size block_size (in MB) size_index_layer = bits_per_weight * W.numel() / 8 / 1024 / 1024 self.size_index += size_index_layer # size of the centroids stored in float16 (in MB) size_centroids_layer = n_centroids * block_size * 2 / 1024 / 1024 self.size_centroids += size_centroids_layer # size of non-compressed layers, e.g. LayerNorms or biases (in MB) size_uncompressed_layer = W.numel() * 4 / 1024 / 1024 self.size_non_quantized -= size_uncompressed_layer def __repr__(self): size_compressed = ( self.size_index + self.size_centroids + self.size_non_quantized ) compression_ratio = self.size_non_compressed_model / size_compressed # NOQA return ( f"Non-compressed model size: {self.size_non_compressed_model:.2f} MB. " f"After quantizing {self.n_quantized_layers} layers, size " f"(indexing + centroids + other): {self.size_index:.2f} MB + " f"{self.size_centroids:.2f} MB + {self.size_non_quantized:.2f} MB = " f"{size_compressed:.2f} MB, compression ratio: {compression_ratio:.2f}x" ) def attrsetter(*items): def resolve_attr(obj, attr): attrs = attr.split(".") head = attrs[:-1] tail = attrs[-1] for name in head: obj = getattr(obj, name) return obj, tail def g(obj, val): for attr in items: resolved_obj, resolved_attr = resolve_attr(obj, attr) setattr(resolved_obj, resolved_attr, val) return g
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class PQLinear(nn.Module): """ Quantized counterpart of nn.Linear module. Stores the centroid, the assignments and the non-quantized biases. The full weight is re-instantiated at each forward pass. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_features x n_blocks - bias: the non-quantized bias Remarks: - We refer the reader to the official documentation of the nn.Linear module for the other arguments and the behavior of the module - Performance tests on GPU show that this implementation is 15% slower than the non-quantized nn.Linear module for a standard training loop. """ def __init__(self, centroids, assignments, bias, in_features, out_features): super(PQLinear, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.in_features = in_features self.out_features = out_features # check compatibility if self.in_features % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % self.out_features != 0: raise ValueError("Wrong PQ sizes") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) if bias is not None: self.bias = nn.Parameter(bias) else: self.register_parameter("bias", None) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.out_features, self.block_size) .permute(1, 0, 2) .flatten(1, 2) ) def forward(self, x): return F.linear( x, self.weight, self.bias, ) def extra_repr(self): return f"in_features={self.in_features},\ out_features={self.out_features},\ n_centroids={self.n_centroids},\ block_size={self.block_size},\ bias={self.bias is not None}"
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/modules/qlinear.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class PQConv2d(nn.Module): """ Quantized counterpart of nn.Conv2d module. Stores the centroid, the assignments and the non-quantized biases. The full weight is re-instantiated at each forward pass and autograd automatically computes the gradients with respect to the centroids. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_channels x n_blocks - bias: the non-quantized bias, must be either torch.Tensor or None Remarks: - We refer the reader to the official documentation of the nn.Conv2d module for the other arguments and the behavior of the module. - Performance tests on GPU show that this implementation is 10% slower than the non-quantized nn.Conv2d module for a standard training loop. - During the backward, the gradients are averaged by cluster and not summed. This explains the hook registered to the centroids. """ def __init__( self, centroids, assignments, bias, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode="zeros", ): super(PQConv2d, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.padding_mode = padding_mode # check compatibility if in_channels // groups * np.prod(self.kernel_size) % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % out_channels != 0: raise ValueError("Wrong PQ sizes") if in_channels % groups != 0: raise ValueError("in_channels must be divisible by groups") if out_channels % groups != 0: raise ValueError("out_channels must be divisible by groups") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) if bias is not None: self.bias = nn.Parameter(bias) else: self.register_parameter("bias", None) # register hook for averaging gradients per centroids instead of summing self.centroids.register_hook(lambda x: x / self.counts[:, None]) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.out_channels, self.block_size) .permute(1, 0, 2) .reshape( self.out_channels, self.in_channels // self.groups, *self.kernel_size ) ) def forward(self, x): return F.conv2d( x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) def extra_repr(self): s = "{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}" if self.padding != (0,) * len(self.padding): s += ", padding={padding}" if self.dilation != (1,) * len(self.dilation): s += ", dilation={dilation}" if self.groups != 1: s += ", groups={groups}" if self.bias is None: s += ", bias=False" if self.padding_mode != "zeros": s += ", padding_mode={padding_mode}" s += ", n_centroids={n_centroids}, block_size={block_size}" return s.format(**self.__dict__)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/modules/qconv.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .qconv import PQConv2d # NOQA from .qemb import PQEmbedding # NOQA from .qlinear import PQLinear # NOQA
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class PQEmbedding(nn.Module): """ Quantized counterpart of nn.Embedding module. Stores the centroids and the assignments. The full weight is re-instantiated at each forward pass. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_features x n_blocks - bias: the non-quantized bias Remarks: - We refer the reader to the official documentation of the nn.Embedding module for the other arguments and the behavior of the module - Performance tests on GPU show that this implementation is 10% slower than the non-quantized nn.Embedding module for a standard training loop. """ def __init__( self, centroids, assignments, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, ): super(PQEmbedding, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq self.sparse = sparse # check compatibility if self.embedding_dim % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % self.num_embeddings != 0: raise ValueError("Wrong PQ sizes") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.num_embeddings, self.block_size) .permute(1, 0, 2) .flatten(1, 2) ) def forward(self, input): return F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) def extra_repr(self): s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.max_norm is not None: s += ", max_norm={max_norm}" if self.norm_type != 2: s += ", norm_type={norm_type}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" s += ", n_centroids={n_centroids}, block_size={block_size}" return s.format(**self.__dict__)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/pq/modules/qemb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .utils import quantize_model_ # NOQA
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch try: import torch.ao.quantization as quantization except ImportError: import torch.quantization as quantization def emulate_int(w, bits, method, scale=None, zero_point=None): q = globals()[f"emulate_int8_{method}"] return q(w, scale=scale, zero_point=zero_point, bits=bits) def quantize(w, scale, zero_point, bits=8): # In the default behavior, max_val = 255. max_val = 2 ** bits - 1 return ( torch.clamp(torch.round(w / scale + zero_point), 0, max_val) - zero_point ) * scale def emulate_int8_histogram(w, scale=None, zero_point=None, bits=8): if scale is None: obs = quantization.observer.HistogramObserver() obs.to(device=w.device) _ = obs(w.float()) scale, zero_point = obs.calculate_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point, bits=bits), scale, zero_point def emulate_int8_channel(w, scale=None, zero_point=None, bits=8): if scale is None: obs = quantization.observer.PerChannelMinMaxObserver( ch_axis=-1, qscheme=torch.per_channel_symmetric ) obs.to(device=w.device) _ = obs(w) scale, zero_point, ch_axis = obs.get_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point, bits=bits), scale, zero_point def emulate_int8_tensor(w, scale=None, zero_point=None, bits=8): if scale is None: obs = quantization.observer.MinMaxObserver() obs.to(device=w.device) _ = obs(w) scale, zero_point = obs.calculate_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point, bits=bits), scale, zero_point
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/ops.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from operator import attrgetter import torch.distributed as dist import torch.nn as nn from ..pq.utils import attrsetter, get_layers from .modules import ActivationQuantizer, IntConv2d, IntEmbedding, IntLinear MAPPING = {nn.Linear: IntLinear, nn.Embedding: IntEmbedding, nn.Conv2d: IntConv2d} def quantize_model_( model, p=0.2, bits=8, update_step=3000, method="histogram", remove_weights=False ): """ Replaces all modules with their scalar quantized counterpart and registers hooks to quantize the post-ativations of those modules. Args: - model: a nn.Module - p: amount of noise (0 for no noise, 1 to quantize all the weights/activations) - bits: number of bits - update_step: update quantization parameters every update_step steps """ # quantize all layers # remove weights indicates whether the weights extension should be removed, in addition to # weight_orig and weight extension on names quantized_layers = get_layers(model, "(.*?)", remove_weights=remove_weights) for layer in quantized_layers: # book-keeping is_master_process = (not dist.is_initialized()) or ( dist.is_initialized() and dist.get_rank() == 0 ) # recover module module = attrgetter(layer)(model) if is_master_process: logging.info( f"Quantizing layer {layer} with bits={bits} and QuantNoise={p}" ) # quantization params q_params = { "p": p, "update_step": update_step, "bits": bits, "method": method, "counter": 0, } # instantiate the quantized counterpart if isinstance(module, tuple(MAPPING.keys())): QuantizedModule = MAPPING[module.__class__] quantized_module = QuantizedModule.__new__(QuantizedModule) params = module.__dict__ params.update(q_params) quantized_module.__dict__.update(params) else: if is_master_process: logging.info(f"Module {module} not yet supported for quantization") continue # activation quantization ActivationQuantizer(quantized_module, p=0, bits=bits, method=method) # replace layer by its quantized counterpart attrsetter(layer)(model, quantized_module) # return name of quantized layers return quantized_layers
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from ..ops import emulate_int class IntLinear(nn.Module): """ Quantized counterpart of the nn.Linear module that applies QuantNoise during training. Args: - in_features: input features - out_features: output features - bias: bias or not - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick. - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, in_features, out_features, bias=True, p=0, update_step=3000, bits=8, method="histogram", ): super(IntLinear, self).__init__() self.in_features = int(in_features) self.out_features = int(out_features) self.weight = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.chosen_bias = bias if self.chosen_bias: self.bias = torch.nn.Parameter(torch.Tensor(out_features)) else: self.register_parameter("bias", None) self.reset_parameters() # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.chosen_bias: nn.init.constant_(self.bias, 0.0) return def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 100 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = F.linear(input, weight, self.bias) return output def extra_repr(self): return "in_features={}, out_features={}, bias={}, quant_noise={}, bits={}, method={}".format( self.in_features, self.out_features, self.bias is not None, self.p, self.bits, self.method, )
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/modules/qlinear.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from torch.nn.modules.conv import _ConvNd from torch.nn.modules.utils import _pair from ..ops import emulate_int class IntConv2d(_ConvNd): """ Quantized counterpart of the nn.Conv2d module that applies QuantNoise during training. Args: - standard nn.Conv2d parameters - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-thgourh estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode="zeros", p=0, bits=8, method="histogram", update_step=1000, ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(IntConv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, ) # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def _conv_forward(self, input, weight): if self.padding_mode != "zeros": return F.conv2d( F.pad(input, self._padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups, ) return F.conv2d( input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 100 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = self._conv_forward(input, weight) return output def extra_repr(self): return ( "in_channels={}, out_channels={}, kernel_size={}, stride={}, " "padding={}, dilation={}, groups={}, bias={}, quant_noise={}, " "bits={}, method={}".format( self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding, self.dilation, self.groups, self.bias is not None, self.p, self.bits, self.method, ) )
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/modules/qconv.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .qact import ActivationQuantizer # NOQA from .qconv import IntConv2d # NOQA from .qemb import IntEmbedding # NOQA from .qlinear import IntLinear # NOQA
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from ..ops import emulate_int class IntEmbedding(nn.Module): """ Quantized counterpart of the nn.Embedding module that applies QuantNoise during training. Args: - num_embeddings: number of tokens - embedding_dim: embedding dimension - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, p=0, update_step=1000, bits=8, method="histogram", ): super(IntEmbedding, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq if _weight is None: self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) self.reset_parameters() else: assert list(_weight.shape) == [ num_embeddings, embedding_dim, ], "Shape of weight does not match num_embeddings and embedding_dim" self.weight = nn.Parameter(_weight) self.sparse = sparse # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def reset_parameters(self): nn.init.normal_(self.weight) if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 1000 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = F.embedding( input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return output def extra_repr(self): s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.max_norm is not None: s += ", max_norm={max_norm}" if self.norm_type != 2: s += ", norm_type={norm_type}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" s += "quant_noise={p}, bits={bits}, method={method}" return s.format(**self.__dict__)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/modules/qemb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from ..ops import emulate_int class ActivationQuantizer: """ Fake scalar quantization of the activations using a forward hook. Args: - module. a nn.Module for which we quantize the *post-activations* - p: proportion of activations to quantize, set by default to 1 - update_step: to recompute quantization parameters - bits: number of bits for quantization - method: choose among {"tensor", "histogram", "channel"} - clamp_threshold: to prevent gradients overflow Remarks: - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - For the list of quantization methods and number of bits, see ops.py - To remove the hook from the module, simply call self.handle.remove() - At test time, the activations are fully quantized - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - The activations are hard-clamped in [-clamp_threshold, clamp_threshold] to prevent overflow during the backward pass """ def __init__( self, module, p=1, update_step=1000, bits=8, method="histogram", clamp_threshold=5, ): self.module = module self.p = p self.update_step = update_step self.counter = 0 self.bits = bits self.method = method self.clamp_threshold = clamp_threshold self.handle = None self.register_hook() def register_hook(self): # forward hook def quantize_hook(module, x, y): # update parameters every 1000 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # train with QuantNoise and evaluate the fully quantized network p = self.p if self.module.training else 1 # quantize activations y_q, self.scale, self.zero_point = emulate_int( y.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(y) mask.bernoulli_(1 - p) noise = (y_q - y).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) return torch.clamp(y, clamp_low.item(), clamp_high.item()) + noise.detach() # register hook self.handle = self.module.register_forward_hook(quantize_hook)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/quantization/scalar/modules/qact.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def gen_forward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "lightconv_cuda.cuh" std::vector<at::Tensor> lightconv_cuda_forward(at::Tensor input, at::Tensor filters, int padding_l) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = filters.size(0); const auto filterSize = filters.size(1); const auto numFiltersInBlock = numFeatures / numHeads; const dim3 blocks(minibatch, numFeatures); auto output = at::zeros_like(input); auto stream = at::cuda::getCurrentCUDAStream(); """ sequence_if = """ if (sequenceLength <= {seq}) {{ switch(filterSize) {{ """ case_k = """ case {k}: """ main_block = """ if (padding_l == {pad}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_forward", ([&] {{ lightconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), filters.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, output.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl; } break; """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl; } """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ final_return = """ } return {output}; } """ with open("lightconv_cuda_forward.cu", "w") as forward: forward.write(head) for seq in seqs: forward.write(sequence_if.format(seq=seq)) for k in kernels: forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=seq, pad=pad)) forward.write(bad_padding) forward.write(bad_filter) forward.write(con_else) forward.write(final_else) for k in kernels: forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=seq, pad=pad)) forward.write(bad_padding) forward.write(bad_filter) forward.write(final_return) def gen_backward(): head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "lightconv_cuda.cuh" std::vector<at::Tensor> lightconv_cuda_backward( at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor filters) { // gradWrtInput const int minibatch = input.size(0); const int numFeatures = input.size(1); const int sequenceLength = input.size(2); const int numHeads = filters.size(0); const int filterSize = filters.size(1); const dim3 gradBlocks(minibatch, numFeatures); const dim3 weightGradFirstpassShortBlocks(minibatch, numHeads); const dim3 weightGradSecondpassBlocks(numHeads, filterSize); const int numFiltersInBlock = numFeatures / numHeads; auto gradInput = at::zeros_like(input); auto gradFilters = at::zeros_like(filters); at::DeviceGuard g(input.device()); auto stream = at::cuda::getCurrentCUDAStream(); switch(filterSize) { """ sequence_if = """ if (sequenceLength <= {seq}) {{ """ case_k = """ case {k}: """ main_block = """ if (padding_l == {p}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_backward", ([&] {{ lightconv_grad_wrt_input_kernel<{k}, {b_size}, {p}, scalar_t> <<<gradBlocks, {b_size}, 0, stream>>>( gradOutput.data<scalar_t>(), filters.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, gradInput.data<scalar_t>()); """ weight_grad_short = """ at::Tensor tempSumGradFilters = at::zeros({{minibatch, numHeads, filterSize}}, input.options().dtype(at::kFloat)); lightconv_grad_wrt_weights_firstpass_short_kernel<{k}, {b_size}, {p}, scalar_t> <<<weightGradFirstpassShortBlocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), gradOutput.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, tempSumGradFilters.data<float>() ); lightconv_grad_wrt_weights_secondpass_short_kernel<{k}, {b_size}, scalar_t> <<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>( tempSumGradFilters.data<float>(), minibatch, numFiltersInBlock, gradFilters.data<scalar_t>() ); }})); }} else """ weight_grad = """ at::Tensor tempSumGradFilters = at::zeros({{minibatch, numFeatures, filterSize}}, input.options().dtype(at::kFloat)); lightconv_grad_wrt_weights_firstpass_kernel<{k}, {b_size}, {p}, scalar_t> <<<gradBlocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), gradOutput.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, tempSumGradFilters.data<float>() ); lightconv_grad_wrt_weights_secondpass_kernel<{k}, {b_size}, scalar_t> <<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>( tempSumGradFilters.data<float>(), minibatch, numFiltersInBlock, gradFilters.data<scalar_t>() ); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl; } """ breakout = """ break; """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl; """ con_else = """ } else """ last_return = """ } return {gradInput, gradFilters}; } """ kernels = [3, 5, 7, 15, 31, 63, 127, 255] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] thresh = [32, 32, 64, 128, 256, -1, -1, -1] max_mem = [-1, -1, -1, -1, -1, 192, 96, 64] with open("lightconv_cuda_backward.cu", "w") as backward: backward.write(head) for (k, t, mem) in zip(kernels, thresh, max_mem): backward.write(case_k.format(k=k)) for seq in seqs: if (t == -1 or seq <= t) and (mem == -1 or seq < mem): backward.write(sequence_if.format(seq=seq)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=seq, p=p)) backward.write(weight_grad_short.format(k=k, b_size=seq, p=p)) backward.write(bad_padding) else: for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=32, p=p)) backward.write(weight_grad.format(k=k, b_size=32, p=p)) backward.write(bad_padding) backward.write(breakout) break backward.write(con_else) backward.write(bad_filter) backward.write(last_return) if __name__ == "__main__": gen_forward() gen_backward()
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/lightconv_layer/cuda_function_gen.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .lightconv_layer import LightconvLayer # noqa
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/lightconv_layer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import lightconv_cuda import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from torch import nn from torch.autograd import Function class lightconvFunction(Function): @staticmethod def forward(ctx, x, weights, padding_l): ctx.padding_l = padding_l outputs = lightconv_cuda.forward(x, weights, padding_l) variables = [x, weights] ctx.save_for_backward(*variables) return outputs[0] @staticmethod def backward(ctx, grad_output): outputs = lightconv_cuda.backward( grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors ) grad_input, grad_weights = outputs return grad_input, grad_weights, None @with_incremental_state class LightconvLayer(nn.Module): def __init__( self, input_size, kernel_size=1, padding_l=None, weight_softmax=False, num_heads=1, weight_dropout=0.0, bias=False, ): super(LightconvLayer, self).__init__() self.input_size = input_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_softmax = weight_softmax self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.weight = nn.Parameter(torch.Tensor(num_heads, kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(input_size)) else: self.bias = None self.reset_parameters() def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" for k, v in state_dict.items(): if k.endswith(prefix + "weight"): if v.dim() == 3 and v.size(1) == 1: state_dict[k] = v.squeeze(1) def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, x, incremental_state=None): # during inference time, incremental BMM is faster if incremental_state is not None: T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) weight = self.weight if self.weight_softmax: weight = F.softmax(weight.float(), dim=1).type_as(weight) weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) weight = ( weight.view(1, H, K) .expand(T * B, H, K) .contiguous() .view(T * B * H, K, 1) ) weight = self.weight_dropout_module(weight) output = torch.bmm(x_unfold, weight) # T*B*H x R x 1 output = output.view(T, B, C) return output # during training time, use CUDA kernel else: x = x.permute(1, 2, 0).contiguous() weight = self.weight if self.weight_softmax: weight = F.softmax(self.weight, -1) if self.weight_dropout_module.p: weight = self.weight_dropout_module(weight) return lightconvFunction.apply(x, weight, self.padding_l).permute(2, 0, 1) def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def half(self): return self._apply(lambda t: t.half() if t.is_floating_point() else t)
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/lightconv_layer/lightconv_layer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name="lightconv_layer", ext_modules=[ CUDAExtension( "lightconv_cuda", [ "lightconv_cuda.cpp", "lightconv_cuda_kernel.cu", ], ), ], cmdclass={"build_ext": BuildExtension}, )
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/lightconv_layer/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def gen_forward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] blocks = [32, 64, 128, 256] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "dynamicconv_cuda.cuh" std::vector<at::Tensor> dynamicconv_cuda_forward(at::Tensor input, at::Tensor weight, int padding_l) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = weight.size(1); const auto filterSize = weight.size(2); const auto numFiltersInBlock = numFeatures / numHeads; const dim3 blocks(minibatch, numFeatures); auto output = at::zeros_like(input); auto stream = at::cuda::getCurrentCUDAStream(); """ switch = """ switch(filterSize) { """ case_k = """ case {k}: """ main_block = """ if (padding_l == {pad}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "dynamicconv_forward", ([&] {{ dynamicconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), weight.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, output.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl; } break;\n """ end = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl; } return {output}; } """ with open("dynamicconv_cuda_forward.cu", "w") as forward: forward.write(head) forward.write(switch) for k in kernels: b_size = 32 for b in blocks: if b > k: b_size = b break forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=b_size, pad=pad)) forward.write(bad_padding) forward.write(end) def gen_backward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] thresh = [512, 512, 512, 512, 512, 380, 256, 256] min_block = [64, 64, 64, 64, 64, 64, 128, 256] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "dynamicconv_cuda.cuh" std::vector<at::Tensor> dynamicconv_cuda_backward(at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor weight) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = weight.size(1); const auto filterSize = weight.size(2); const auto numFiltersInBlock = numFeatures / numHeads; auto numChunks = 1; auto gradInput = at::zeros_like(input); auto gradWeight = at::zeros_like(weight); auto stream = at::cuda::getCurrentCUDAStream(); dim3 blocks(minibatch, numHeads, numChunks); """ sequence_if = """ if (sequenceLength < {seq}) {{ switch(filterSize) {{ """ case_k = """ case {k}: """ chunks_reset = """ numChunks = int(ceilf(sequenceLength/float({b_size}))); blocks = dim3(minibatch, numHeads, numChunks); """ main_block = """ if (padding_l == {p}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(gradOutput.scalar_type(), "dynamicconv_backward", ([&] {{ dynamicconv_backward_kernel<{k}, {b_size}, {p}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( gradOutput.data<scalar_t>(), input.data<scalar_t>(), weight.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, gradWeight.data<scalar_t>(), gradInput.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl; } break;\n """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl; } """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ last_return = """ } return {gradInput, gradWeight}; } """ with open("dynamicconv_cuda_backward.cu", "w") as backward: backward.write(head) for seq in seqs: backward.write(sequence_if.format(seq=seq)) for k, t, m in zip(kernels, thresh, min_block): backward.write(case_k.format(k=k)) if seq <= t: b_size = seq else: b_size = m backward.write(chunks_reset.format(b_size=b_size)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=b_size, p=p)) backward.write(bad_padding) backward.write(bad_filter) backward.write(con_else) backward.write(final_else) for k, m in zip(kernels, min_block): backward.write(case_k.format(k=k)) backward.write(chunks_reset.format(b_size=m)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=m, p=p)) backward.write(bad_padding) backward.write(bad_filter) backward.write(last_return) if __name__ == "__main__": gen_forward() gen_backward()
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/dynamicconv_layer/cuda_function_gen.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .dynamicconv_layer import DynamicconvLayer # noqa
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/dynamicconv_layer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import dynamicconv_cuda import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.unfold import unfold1d from torch import nn from torch.autograd import Function class dynamicconvFunction(Function): @staticmethod def forward(ctx, x, weights, padding_l): ctx.padding_l = padding_l outputs = dynamicconv_cuda.forward(x, weights, padding_l) variables = [x, weights] ctx.save_for_backward(*variables) return outputs[0] @staticmethod def backward(ctx, grad_output): outputs = dynamicconv_cuda.backward( grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors ) grad_input, grad_weights = outputs return grad_input, grad_weights, None @with_incremental_state class DynamicconvLayer(nn.Module): def __init__( self, input_size, kernel_size=1, padding_l=None, weight_softmax=False, num_heads=1, weight_dropout=0.0, bias=False, renorm_padding=False, conv_bias=False, query_size=None, ): super(DynamicconvLayer, self).__init__() self.input_size = input_size self.query_size = input_size if query_size is None else query_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_softmax = weight_softmax self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.renorm_padding = renorm_padding self.bias = bias self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias) if conv_bias: self.conv_bias = nn.Parameter(torch.Tensor(input_size)) else: self.conv_bias = None self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight_linear.weight) if self.conv_bias is not None: nn.init.constant_(self.conv_bias, 0.0) nn.init.constant_(self.weight_linaer.bias, 0.0) def forward(self, x, incremental_state=None, query=None, unfold=None): T, B, C = x.size() K, H = self.kernel_size, self.num_heads # R = C // H # during inference time, incremental BMM is faster if incremental_state is not None: unfold = ( x.size(0) > 512 if unfold is None else unfold ) # use unfold mode as default for long sequence to save memory unfold = unfold or (incremental_state is not None) assert query is None if query is None: query = x if unfold: output = self._forward_unfolded(x, incremental_state, query) else: output = self._forward_expanded(x, incremental_state, query) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output # during training time, use CUDA kernel else: weight = self.weight_linear(x).view(T, B, H, K) if self.weight_softmax: weight = F.softmax(weight, dim=-1) if self.weight_dropout_module.p: weight = self.weight_dropout_module(weight) weight = weight.permute(1, 2, 3, 0).contiguous() self.filters = weight x = x.permute(1, 2, 0).contiguous() output = dynamicconvFunction.apply(x, weight, self.padding_l).permute( 2, 0, 1 ) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def _forward_unfolded(self, x, incremental_state, query): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T * B * H, -1) # renorm_padding is only implemented in _forward_expanded assert not self.renorm_padding or incremental_state is not None if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: padding_l = self.padding_l if K > T and padding_l == K - 1: weight = weight.narrow(1, K - T, T) K, padding_l = T, T - 1 # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, K, padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax and not self.renorm_padding: weight = F.softmax(weight, dim=1) weight = weight.narrow(1, 0, K) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) if self.weight_softmax and self.renorm_padding: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_stat, query): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T * B * H, -1) if not self.renorm_padding: if self.weight_softmax: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) weight = weight.narrow(1, 0, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) if self.weight_softmax and self.renorm_padding: # turn the convolution filters into band matrices weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf")) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, self.padding_l, T) # normalize the weight over valid positions like self-attention weight_expanded = F.softmax(weight_expanded, dim=2) weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) else: P = self.padding_l # For efficiency, we cut the kernel size and reduce the padding when the kernel is larger than the length if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/dynamicconv_layer/dynamicconv_layer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name="dynamicconv_layer", ext_modules=[ CUDAExtension( name="dynamicconv_cuda", sources=[ "dynamicconv_cuda.cpp", "dynamicconv_cuda_kernel.cu", ], ), ], cmdclass={"build_ext": BuildExtension}, )
KosmosX-API-main
kosmosX/fairseq/fairseq/modules/dynamicconv_layer/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class OffsetTokensDataset(BaseWrapperDataset): def __init__(self, dataset, offset): super().__init__(dataset) self.offset = offset def __getitem__(self, idx): return self.dataset[idx] + self.offset
KosmosX-API-main
kosmosX/fairseq/fairseq/data/offset_tokens_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict import torch from torch.utils.data.dataloader import default_collate from . import FairseqDataset def _flatten(dico, prefix=None): """Flatten a nested dictionary.""" new_dico = OrderedDict() if isinstance(dico, dict): prefix = prefix + "." if prefix is not None else "" for k, v in dico.items(): if v is None: continue new_dico.update(_flatten(v, prefix + k)) elif isinstance(dico, list): for i, v in enumerate(dico): new_dico.update(_flatten(v, prefix + ".[" + str(i) + "]")) else: new_dico = OrderedDict({prefix: dico}) return new_dico def _unflatten(dico): """Unflatten a flattened dictionary into a nested dictionary.""" new_dico = OrderedDict() for full_k, v in dico.items(): full_k = full_k.split(".") node = new_dico for k in full_k[:-1]: if k.startswith("[") and k.endswith("]"): k = int(k[1:-1]) if k not in node: node[k] = OrderedDict() node = node[k] node[full_k[-1]] = v return new_dico class NestedDictionaryDataset(FairseqDataset): def __init__(self, defn, sizes=None): super().__init__() self.defn = _flatten(defn) self.sizes = [sizes] if not isinstance(sizes, (list, tuple)) else sizes first = None for v in self.defn.values(): if not isinstance( v, ( FairseqDataset, torch.utils.data.Dataset, ), ): raise ValueError("Expected Dataset but found: {}".format(v.__class__)) first = first or v if len(v) > 0: assert len(v) == len(first), "dataset lengths must match" self._len = len(first) def __getitem__(self, index): return OrderedDict((k, ds[index]) for k, ds in self.defn.items()) def __len__(self): return self._len def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ if len(samples) == 0: return {} sample = OrderedDict() for k, ds in self.defn.items(): try: sample[k] = ds.collater([s[k] for s in samples]) except NotImplementedError: sample[k] = default_collate([s[k] for s in samples]) return _unflatten(sample) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return max(s[index] for s in self.sizes) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" if len(self.sizes) == 1: return self.sizes[0][index] else: return (s[index] for s in self.sizes) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return any(ds.supports_prefetch for ds in self.defn.values()) def prefetch(self, indices): """Prefetch the data required for this epoch.""" for ds in self.defn.values(): if getattr(ds, "supports_prefetch", False): ds.prefetch(indices) @property def can_reuse_epoch_itr_across_epochs(self): return all(ds.can_reuse_epoch_itr_across_epochs for ds in self.defn.values()) def set_epoch(self, epoch): super().set_epoch(epoch) for ds in self.defn.values(): ds.set_epoch(epoch)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/nested_dictionary_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import time from collections import OrderedDict from typing import Dict, List, Optional import numpy as np from fairseq.data import data_utils from . import FairseqDataset logger = logging.getLogger(__name__) class MultiCorpusDataset(FairseqDataset): """ Stores multiple instances of FairseqDataset together. Unless batch_sample=True, requires each instance to be the same dataset, as the collate method needs to work on batches with samples from each dataset. Allows specifying a distribution over the datasets to use. Note that unlike MultiCorpusSampledDataset, this distribution allows sampling for each item, rather than on a batch level. Note that datasets with sampling probabilty of 0 will be skipped. Each time ordered_indices() is called, a new sample is generated with the specified distribution. Args: datasets: a OrderedDict of FairseqDataset instances. distribution: a List containing the probability of getting an utterance from corresponding dataset seed: random seed for sampling the datsets sort_indices: if true, will sort the ordered indices by size batch_sample: if true, will ensure each batch is from a single dataset """ def __init__( self, datasets: Dict[str, FairseqDataset], distribution: List[float], seed: int, sort_indices: bool = False, batch_sample: bool = False, distributed_rank: Optional[int] = None, ): super().__init__() assert isinstance(datasets, OrderedDict) assert len(datasets) == len(distribution) assert sum(distribution) == 1 self.datasets = datasets self.distribution = distribution self.seed = seed self.sort_indices = sort_indices self.batch_sample = batch_sample self.distributed_rank = distributed_rank # Avoid repeated conversions to list later self.dataset_list = list(datasets.values()) self.total_num_instances = 0 first_dataset = self.dataset_list[0] self.num_instances_per_dataset = [] self.dataset_offsets = [] for i, dataset in enumerate(self.dataset_list): assert isinstance(dataset, FairseqDataset) assert type(dataset) is type(first_dataset) self.num_instances_per_dataset.append( 0 if self.distribution[i] == 0 else len(dataset) ) self.dataset_offsets.append(self.total_num_instances) self.total_num_instances += self.num_instances_per_dataset[i] def ordered_indices(self): start = time.time() with data_utils.numpy_seed(self.seed, self.epoch): logger.info( f"sampling new dataset with seed {self.seed} epoch {self.epoch}" ) sampled_indices = [] num_selected_instances = 0 # For each dataset i, sample self.distribution[i] * self.total_num_instances for i, key in enumerate(self.datasets): if self.distribution[i] == 0: # skip dataset if sampling probability is 0 continue if i < len(self.datasets) - 1: num_instances = int(self.distribution[i] * self.total_num_instances) high = self.dataset_offsets[i + 1] else: num_instances = self.total_num_instances - num_selected_instances high = self.total_num_instances logger.info(f"sampling {num_instances} from {key} dataset") num_selected_instances += num_instances # First, add k copies of the dataset where k = num_instances // len(dataset). # This ensures an equal distribution of the data points as much as possible. # For the remaining entries randomly sample them dataset_size = len(self.datasets[key]) num_copies = num_instances // dataset_size dataset_indices = ( np.random.permutation(high - self.dataset_offsets[i]) + self.dataset_offsets[i] )[: num_instances - num_copies * dataset_size] if num_copies > 0: sampled_indices += list( np.concatenate( ( np.repeat( np.arange(self.dataset_offsets[i], high), num_copies ), dataset_indices, ) ) ) else: sampled_indices += list(dataset_indices) assert ( len(sampled_indices) == self.total_num_instances ), f"{len(sampled_indices)} vs {self.total_num_instances}" np.random.shuffle(sampled_indices) if self.sort_indices: sampled_indices.sort(key=lambda i: self.num_tokens(i)) logger.info( "multi_corpus_dataset ordered_indices took {}s".format( time.time() - start ) ) return np.array(sampled_indices, dtype=np.int64) def _map_index(self, index: int): """ If dataset A has length N and dataset B has length M then index 1 maps to index 1 of dataset A, and index N + 1 maps to index 1 of B. """ counter = 0 for num_instances, key in zip(self.num_instances_per_dataset, self.datasets): if index < counter + num_instances: return index - counter, key counter += num_instances raise ValueError( "Invalid index: {}, max: {}".format(index, self.total_num_instances) ) def __len__(self): """ Length of this dataset is the sum of individual datasets """ return self.total_num_instances def __getitem__(self, index): new_index, key = self._map_index(index) try: item = self.datasets[key][new_index] item["full_id"] = index return item except Exception as e: e.args = (f"Error from {key} dataset", *e.args) raise def collater(self, samples): """ If we are doing batch sampling, then pick the right collater to use. Otherwise we assume all collaters are the same. """ if len(samples) == 0: return None if "full_id" in samples[0]: _, key = self._map_index(samples[0]["full_id"]) try: batch = self.datasets[key].collater(samples) except Exception: print(f"Collating failed for key {key}", flush=True) raise return batch else: # Subclasses may override __getitem__ to not specify full_id return list(self.datasets.values())[0].collater(samples) def num_tokens(self, index: int): index, key = self._map_index(index) return self.datasets[key].num_tokens(index) def size(self, index: int): index, key = self._map_index(index) return self.datasets[key].size(index) @property def can_reuse_epoch_itr_across_epochs(self): return False def set_epoch(self, epoch, **unused): super().set_epoch(epoch) logger.info(f"setting epoch of multi_corpus_dataset to {epoch}") self.epoch = epoch @property def supports_prefetch(self): return False @property def supports_fetch_outside_dataloader(self): return all( self.datasets[key].supports_fetch_outside_dataloader for key in self.datasets ) def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): if not self.batch_sample: return super().batch_by_size( indices, max_tokens, max_sentences, required_batch_size_multiple ) dataset_indices = {key: [] for key in self.datasets} for i in indices: _, key = self._map_index(i) dataset_indices[key].append(i) batches = [] for key in dataset_indices: cur_batches = super().batch_by_size( np.array(dataset_indices[key], dtype=np.int64), max_tokens, max_sentences, required_batch_size_multiple, ) logger.info(f"Created {len(cur_batches)} batches for dataset {key}") batches += cur_batches # If this dataset is used in a distributed training setup, # then shuffle such that the order is seeded by the distributed rank # as well if self.distributed_rank is not None: with data_utils.numpy_seed(self.seed, self.epoch, self.distributed_rank): np.random.shuffle(batches) return batches
KosmosX-API-main
kosmosX/fairseq/fairseq/data/multi_corpus_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import bisect import numpy as np from torch.utils.data.dataloader import default_collate from . import FairseqDataset class ConcatDataset(FairseqDataset): @staticmethod def cumsum(sequence, sample_ratios): r, s = [], 0 for e, ratio in zip(sequence, sample_ratios): curr_len = int(ratio * len(e)) r.append(curr_len + s) s += curr_len return r def __init__(self, datasets, sample_ratios=1): super(ConcatDataset, self).__init__() assert len(datasets) > 0, "datasets should not be an empty iterable" self.datasets = list(datasets) if isinstance(sample_ratios, int): sample_ratios = [sample_ratios] * len(self.datasets) self.sample_ratios = sample_ratios self.cumulative_sizes = self.cumsum(self.datasets, sample_ratios) self.real_sizes = [len(d) for d in self.datasets] def __len__(self): return self.cumulative_sizes[-1] def __getitem__(self, idx): dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx) return self.datasets[dataset_idx][sample_idx] def _get_dataset_and_sample_index(self, idx: int): dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) if dataset_idx == 0: sample_idx = idx else: sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] sample_idx = sample_idx % self.real_sizes[dataset_idx] return dataset_idx, sample_idx def collater(self, samples, **extra_args): # For now only supports datasets with same underlying collater implementations if hasattr(self.datasets[0], "collater"): return self.datasets[0].collater(samples, **extra_args) else: return default_collate(samples, **extra_args) def size(self, idx: int): """ Return an example's size as a float or tuple. """ dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx) return self.datasets[dataset_idx].size(sample_idx) def num_tokens(self, index: int): return np.max(self.size(index)) def attr(self, attr: str, index: int): dataset_idx = bisect.bisect_right(self.cumulative_sizes, index) return getattr(self.datasets[dataset_idx], attr, None) @property def sizes(self): _dataset_sizes = [] for ds, sr in zip(self.datasets, self.sample_ratios): if isinstance(ds.sizes, np.ndarray): _dataset_sizes.append(np.tile(ds.sizes, sr)) else: # Only support underlying dataset with single size array. assert isinstance(ds.sizes, list) _dataset_sizes.append(np.tile(ds.sizes[0], sr)) return np.concatenate(_dataset_sizes) @property def supports_prefetch(self): return all(d.supports_prefetch for d in self.datasets) def ordered_indices(self): """ Returns indices sorted by length. So less padding is needed. """ if isinstance(self.sizes, np.ndarray) and len(self.sizes.shape) > 1: # special handling for concatenating lang_pair_datasets indices = np.arange(len(self)) sizes = self.sizes tgt_sizes = ( sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None ) src_sizes = ( sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes ) # sort by target length, then source length if tgt_sizes is not None: indices = indices[np.argsort(tgt_sizes[indices], kind="mergesort")] return indices[np.argsort(src_sizes[indices], kind="mergesort")] else: return np.argsort(self.sizes) def prefetch(self, indices): frm = 0 for to, ds in zip(self.cumulative_sizes, self.datasets): real_size = len(ds) if getattr(ds, "supports_prefetch", False): ds.prefetch([(i - frm) % real_size for i in indices if frm <= i < to]) frm = to @property def can_reuse_epoch_itr_across_epochs(self): return all(d.can_reuse_epoch_itr_across_epochs for d in self.datasets) def set_epoch(self, epoch): super().set_epoch(epoch) for ds in self.datasets: if hasattr(ds, "set_epoch"): ds.set_epoch(epoch)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/concat_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class ReplaceDataset(BaseWrapperDataset): """Replaces tokens found in the dataset by a specified replacement token Args: dataset (~torch.utils.data.Dataset): dataset to replace tokens in replace_map(Dictionary[int,int]): map of token to replace -> replacement token offsets (List[int]): do not replace tokens before (from left if pos, right if neg) this offset. should be as many as the number of objects returned by the underlying dataset __getitem__ method. """ def __init__(self, dataset, replace_map, offsets): super().__init__(dataset) assert len(replace_map) > 0 self.replace_map = replace_map self.offsets = offsets def __getitem__(self, index): item = self.dataset[index] is_tuple = isinstance(item, tuple) srcs = item if is_tuple else [item] for offset, src in zip(self.offsets, srcs): for k, v in self.replace_map.items(): src_off = src[offset:] if offset >= 0 else src[:offset] src_off.masked_fill_(src_off == k, v) item = srcs if is_tuple else srcs[0] return item
KosmosX-API-main
kosmosX/fairseq/fairseq/data/replace_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq import utils from . import FairseqDataset def backtranslate_samples(samples, collate_fn, generate_fn, cuda=True): """Backtranslate a list of samples. Given an input (*samples*) of the form: [{'id': 1, 'source': 'hallo welt'}] this will return: [{'id': 1, 'source': 'hello world', 'target': 'hallo welt'}] Args: samples (List[dict]): samples to backtranslate. Individual samples are expected to have a 'source' key, which will become the 'target' after backtranslation. collate_fn (callable): function to collate samples into a mini-batch generate_fn (callable): function to generate backtranslations cuda (bool): use GPU for generation (default: ``True``) Returns: List[dict]: an updated list of samples with a backtranslated source """ collated_samples = collate_fn(samples) s = utils.move_to_cuda(collated_samples) if cuda else collated_samples generated_sources = generate_fn(s) id_to_src = {sample["id"]: sample["source"] for sample in samples} # Go through each tgt sentence in batch and its corresponding best # generated hypothesis and create a backtranslation data pair # {id: id, source: generated backtranslation, target: original tgt} return [ { "id": id.item(), "target": id_to_src[id.item()], "source": hypos[0]["tokens"].cpu(), } for id, hypos in zip(collated_samples["id"], generated_sources) ] class BacktranslationDataset(FairseqDataset): """ Sets up a backtranslation dataset which takes a tgt batch, generates a src using a tgt-src backtranslation function (*backtranslation_fn*), and returns the corresponding `{generated src, input tgt}` batch. Args: tgt_dataset (~fairseq.data.FairseqDataset): the dataset to be backtranslated. Only the source side of this dataset will be used. After backtranslation, the source sentences in this dataset will be returned as the targets. src_dict (~fairseq.data.Dictionary): the dictionary of backtranslated sentences. tgt_dict (~fairseq.data.Dictionary, optional): the dictionary of sentences to be backtranslated. backtranslation_fn (callable, optional): function to call to generate backtranslations. This is typically the `generate` method of a :class:`~fairseq.sequence_generator.SequenceGenerator` object. Pass in None when it is not available at initialization time, and use set_backtranslation_fn function to set it when available. output_collater (callable, optional): function to call on the backtranslated samples to create the final batch (default: ``tgt_dataset.collater``). cuda: use GPU for generation """ def __init__( self, tgt_dataset, src_dict, tgt_dict=None, backtranslation_fn=None, output_collater=None, cuda=True, **kwargs ): self.tgt_dataset = tgt_dataset self.backtranslation_fn = backtranslation_fn self.output_collater = ( output_collater if output_collater is not None else tgt_dataset.collater ) self.cuda = cuda if torch.cuda.is_available() else False self.src_dict = src_dict self.tgt_dict = tgt_dict def __getitem__(self, index): """ Returns a single sample from *tgt_dataset*. Note that backtranslation is not applied in this step; use :func:`collater` instead to backtranslate a batch of samples. """ return self.tgt_dataset[index] def __len__(self): return len(self.tgt_dataset) def set_backtranslation_fn(self, backtranslation_fn): self.backtranslation_fn = backtranslation_fn def collater(self, samples): """Merge and backtranslate a list of samples to form a mini-batch. Using the samples from *tgt_dataset*, load a collated target sample to feed to the backtranslation model. Then take the backtranslation with the best score as the source and the original input as the target. Note: we expect *tgt_dataset* to provide a function `collater()` that will collate samples into the format expected by *backtranslation_fn*. After backtranslation, we will feed the new list of samples (i.e., the `(backtranslated source, original source)` pairs) to *output_collater* and return the result. Args: samples (List[dict]): samples to backtranslate and collate Returns: dict: a mini-batch with keys coming from *output_collater* """ if samples[0].get("is_dummy", False): return samples samples = backtranslate_samples( samples=samples, collate_fn=self.tgt_dataset.collater, generate_fn=(lambda net_input: self.backtranslation_fn(net_input)), cuda=self.cuda, ) return self.output_collater(samples) def num_tokens(self, index): """Just use the tgt dataset num_tokens""" return self.tgt_dataset.num_tokens(index) def ordered_indices(self): """Just use the tgt dataset ordered_indices""" return self.tgt_dataset.ordered_indices() def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``. Note: we use *tgt_dataset* to approximate the length of the source sentence, since we do not know the actual length until after backtranslation. """ tgt_size = self.tgt_dataset.size(index)[0] return (tgt_size, tgt_size) @property def supports_prefetch(self): return getattr(self.tgt_dataset, "supports_prefetch", False) def prefetch(self, indices): return self.tgt_dataset.prefetch(indices)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/backtranslation_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import FairseqDataset class IdDataset(FairseqDataset): def __getitem__(self, index): return index def __len__(self): return 0 def collater(self, samples): return torch.tensor(samples)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/id_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class PrependDataset(BaseWrapperDataset): def __init__(self, dataset, prepend_getter, ensure_first_token_is=None): super().__init__(dataset) self.prepend_getter = prepend_getter self.ensure_first_token = ensure_first_token_is def __getitem__(self, idx): item = self.dataset[idx] is_tuple = isinstance(item, tuple) src = item[0] if is_tuple else item assert self.ensure_first_token is None or src[0] == self.ensure_first_token prepend_idx = self.prepend_getter(self.dataset, idx) assert isinstance(prepend_idx, int) src[0] = prepend_idx item = tuple((src,) + item[1:]) if is_tuple else src return item
KosmosX-API-main
kosmosX/fairseq/fairseq/data/prepend_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from typing import Callable, Dict, List import numpy as np from . import FairseqDataset def uniform_sampler(x): # Sample from uniform distribution return np.random.choice(x, 1).item() class MultiCorpusSampledDataset(FairseqDataset): """ Stores multiple instances of FairseqDataset together and in every iteration creates a batch by first sampling a dataset according to a specified probability distribution and then getting instances from that dataset. Args: datasets: an OrderedDict of FairseqDataset instances. sampling_func: A function for sampling over list of dataset keys. The default strategy is to sample uniformly. """ def __init__( self, datasets: Dict[str, FairseqDataset], sampling_func: Callable[[List], int] = None, ): super().__init__() assert isinstance(datasets, OrderedDict) self.datasets = datasets if sampling_func is None: sampling_func = uniform_sampler self.sampling_func = sampling_func self.total_num_instances = 0 for _, dataset in datasets.items(): assert isinstance(dataset, FairseqDataset) self.total_num_instances += len(dataset) self._ordered_indices = None def __len__(self): """ Length of this dataset is the sum of individual datasets """ return self.total_num_instances def ordered_indices(self): """ Ordered indices for batching. Here we call the underlying dataset's ordered_indices() so that we get the same random ordering as we would have from using the underlying dataset directly. """ if self._ordered_indices is None: self._ordered_indices = OrderedDict( [ (key, dataset.ordered_indices()) for key, dataset in self.datasets.items() ] ) return np.arange(len(self)) def _map_index_to_dataset(self, key: int, index: int): """ Different underlying datasets have different lengths. In order to ensure we are not accessing an index outside the range of the current dataset size, we wrap around. This function should be called after we have created an ordering for this and all underlying datasets. """ assert ( self._ordered_indices is not None ), "Must call MultiCorpusSampledDataset.ordered_indices() first" mapped_index = index % len(self.datasets[key]) return self._ordered_indices[key][mapped_index] def __getitem__(self, index: int): """ Get the item associated with index from each underlying dataset. Since index is in the range of [0, TotalNumInstances], we need to map the index to the dataset before retrieving the item. """ return OrderedDict( [ (key, dataset[self._map_index_to_dataset(key, index)]) for key, dataset in self.datasets.items() ] ) def collater(self, samples: List[Dict]): """ Generate a mini-batch for this dataset. To convert this into a regular mini-batch we use the following logic: 1. Select a dataset using the specified probability distribution. 2. Call the collater function of the selected dataset. """ if len(samples) == 0: return None selected_key = self.sampling_func(list(self.datasets.keys())) selected_samples = [sample[selected_key] for sample in samples] return self.datasets[selected_key].collater(selected_samples) def num_tokens(self, index: int): """ Return an example's length (number of tokens), used for batching. Here we return the max across all examples at index across all underlying datasets. """ return max( dataset.num_tokens(self._map_index_to_dataset(key, index)) for key, dataset in self.datasets.items() ) def size(self, index: int): """ Return an example's size as a float or tuple. Here we return the max across all underlying datasets. This value is used when filtering a dataset with max-positions. """ return max( dataset.size(self._map_index_to_dataset(key, index)) for key, dataset in self.datasets.items() ) @property def supports_prefetch(self): return all( getattr(dataset, "supports_prefetch", False) for dataset in self.datasets.values() ) def prefetch(self, indices): for key, dataset in self.datasets.items(): dataset.prefetch( [self._map_index_to_dataset(key, index) for index in indices] ) @property def supports_fetch_outside_dataloader(self): return all( self.datasets[key].supports_fetch_outside_dataloader for key in self.datasets )
KosmosX-API-main
kosmosX/fairseq/fairseq/data/multi_corpus_sampled_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import FairseqDataset class NumSamplesDataset(FairseqDataset): def __getitem__(self, index): return 1 def __len__(self): return 0 def collater(self, samples): return sum(samples)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/num_samples_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from fairseq.data import data_utils class WordNoising(object): """Generate a noisy version of a sentence, without changing words themselves.""" def __init__(self, dictionary, bpe_cont_marker="@@", bpe_end_marker=None): self.dictionary = dictionary self.bpe_end = None if bpe_cont_marker: self.bpe_end = np.array( [ not self.dictionary[i].endswith(bpe_cont_marker) for i in range(len(self.dictionary)) ] ) elif bpe_end_marker: self.bpe_end = np.array( [ self.dictionary[i].endswith(bpe_end_marker) for i in range(len(self.dictionary)) ] ) self.get_word_idx = ( self._get_bpe_word_idx if self.bpe_end is not None else self._get_token_idx ) def noising(self, x, lengths, noising_prob=0.0): raise NotImplementedError() def _get_bpe_word_idx(self, x): """ Given a list of BPE tokens, for every index in the tokens list, return the index of the word grouping that it belongs to. For example, for input x corresponding to ["how", "are", "y@@", "ou"], return [[0], [1], [2], [2]]. """ # x: (T x B) bpe_end = self.bpe_end[x] if x.size(0) == 1 and x.size(1) == 1: # Special case when we only have one word in x. If x = [[N]], # bpe_end is a scalar (bool) instead of a 2-dim array of bools, # which makes the sum operation below fail. return np.array([[0]]) # do a reduce front sum to generate word ids word_idx = bpe_end[::-1].cumsum(0)[::-1] word_idx = word_idx.max(0)[None, :] - word_idx return word_idx def _get_token_idx(self, x): """ This is to extend noising functions to be able to apply to non-bpe tokens, e.g. word or characters. """ x = torch.t(x) word_idx = np.array([range(len(x_i)) for x_i in x]) return np.transpose(word_idx) class WordDropout(WordNoising): """Randomly drop input words. If not passing blank_idx (default is None), then dropped words will be removed. Otherwise, it will be replaced by the blank_idx.""" def __init__( self, dictionary, default_dropout_prob=0.1, bpe_cont_marker="@@", bpe_end_marker=None, ): super().__init__(dictionary, bpe_cont_marker, bpe_end_marker) self.default_dropout_prob = default_dropout_prob def noising(self, x, lengths, dropout_prob=None, blank_idx=None): if dropout_prob is None: dropout_prob = self.default_dropout_prob # x: (T x B), lengths: B if dropout_prob == 0: return x, lengths assert 0 < dropout_prob < 1 # be sure to drop entire words word_idx = self.get_word_idx(x) sentences = [] modified_lengths = [] for i in range(lengths.size(0)): # Since dropout probabilities need to apply over non-pad tokens, # it is not trivial to generate the keep mask without consider # input lengths; otherwise, this could be done outside the loop # We want to drop whole words based on word_idx grouping num_words = max(word_idx[:, i]) + 1 # ith example: [x0, x1, ..., eos, pad, ..., pad] # We should only generate keep probs for non-EOS tokens. Thus if the # input sentence ends in EOS, the last word idx is not included in # the dropout mask generation and we append True to always keep EOS. # Otherwise, just generate the dropout mask for all word idx # positions. has_eos = x[lengths[i] - 1, i] == self.dictionary.eos() if has_eos: # has eos? keep = np.random.rand(num_words - 1) >= dropout_prob keep = np.append(keep, [True]) # keep EOS symbol else: keep = np.random.rand(num_words) >= dropout_prob words = x[: lengths[i], i].tolist() # TODO: speed up the following loop # drop words from the input according to keep new_s = [ w if keep[word_idx[j, i]] else blank_idx for j, w in enumerate(words) ] new_s = [w for w in new_s if w is not None] # we need to have at least one word in the sentence (more than the # start / end sentence symbols) if len(new_s) <= 1: # insert at beginning in case the only token left is EOS # EOS should be at end of list. new_s.insert(0, words[np.random.randint(0, len(words))]) assert len(new_s) >= 1 and ( not has_eos # Either don't have EOS at end or last token is EOS or (len(new_s) >= 2 and new_s[-1] == self.dictionary.eos()) ), "New sentence is invalid." sentences.append(new_s) modified_lengths.append(len(new_s)) # re-construct input modified_lengths = torch.LongTensor(modified_lengths) modified_x = torch.LongTensor( modified_lengths.max(), modified_lengths.size(0) ).fill_(self.dictionary.pad()) for i in range(modified_lengths.size(0)): modified_x[: modified_lengths[i], i].copy_(torch.LongTensor(sentences[i])) return modified_x, modified_lengths class WordShuffle(WordNoising): """Shuffle words by no more than k positions.""" def __init__( self, dictionary, default_max_shuffle_distance=3, bpe_cont_marker="@@", bpe_end_marker=None, ): super().__init__(dictionary, bpe_cont_marker, bpe_end_marker) self.default_max_shuffle_distance = 3 def noising(self, x, lengths, max_shuffle_distance=None): if max_shuffle_distance is None: max_shuffle_distance = self.default_max_shuffle_distance # x: (T x B), lengths: B if max_shuffle_distance == 0: return x, lengths # max_shuffle_distance < 1 will return the same sequence assert max_shuffle_distance > 1 # define noise word scores noise = np.random.uniform( 0, max_shuffle_distance, size=(x.size(0), x.size(1)), ) noise[0] = -1 # do not move start sentence symbol # be sure to shuffle entire words word_idx = self.get_word_idx(x) x2 = x.clone() for i in range(lengths.size(0)): length_no_eos = lengths[i] if x[lengths[i] - 1, i] == self.dictionary.eos(): length_no_eos = lengths[i] - 1 # generate a random permutation scores = word_idx[:length_no_eos, i] + noise[word_idx[:length_no_eos, i], i] # ensure no reordering inside a word scores += 1e-6 * np.arange(length_no_eos.item()) permutation = scores.argsort() # shuffle words x2[:length_no_eos, i].copy_( x2[:length_no_eos, i][torch.from_numpy(permutation)] ) return x2, lengths class UnsupervisedMTNoising(WordNoising): """ Implements the default configuration for noising in UnsupervisedMT (github.com/facebookresearch/UnsupervisedMT) """ def __init__( self, dictionary, max_word_shuffle_distance, word_dropout_prob, word_blanking_prob, bpe_cont_marker="@@", bpe_end_marker=None, ): super().__init__(dictionary) self.max_word_shuffle_distance = max_word_shuffle_distance self.word_dropout_prob = word_dropout_prob self.word_blanking_prob = word_blanking_prob self.word_dropout = WordDropout( dictionary=dictionary, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker, ) self.word_shuffle = WordShuffle( dictionary=dictionary, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker, ) def noising(self, x, lengths): # 1. Word Shuffle noisy_src_tokens, noisy_src_lengths = self.word_shuffle.noising( x=x, lengths=lengths, max_shuffle_distance=self.max_word_shuffle_distance, ) # 2. Word Dropout noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising( x=noisy_src_tokens, lengths=noisy_src_lengths, dropout_prob=self.word_dropout_prob, ) # 3. Word Blanking noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising( x=noisy_src_tokens, lengths=noisy_src_lengths, dropout_prob=self.word_blanking_prob, blank_idx=self.dictionary.unk(), ) return noisy_src_tokens class NoisingDataset(torch.utils.data.Dataset): def __init__( self, src_dataset, src_dict, seed, noiser=None, noising_class=UnsupervisedMTNoising, **kwargs ): """ Wrap a :class:`~torch.utils.data.Dataset` and apply noise to the samples based on the supplied noising configuration. Args: src_dataset (~torch.utils.data.Dataset): dataset to wrap. to build self.src_dataset -- a LanguagePairDataset with src dataset as the source dataset and None as the target dataset. Should NOT have padding so that src_lengths are accurately calculated by language_pair_dataset collate function. We use language_pair_dataset here to encapsulate the tgt_dataset so we can re-use the LanguagePairDataset collater to format the batches in the structure that SequenceGenerator expects. src_dict (~fairseq.data.Dictionary): source dictionary seed (int): seed to use when generating random noise noiser (WordNoising): a pre-initialized :class:`WordNoising` instance. If this is None, a new instance will be created using *noising_class* and *kwargs*. noising_class (class, optional): class to use to initialize a default :class:`WordNoising` instance. kwargs (dict, optional): arguments to initialize the default :class:`WordNoising` instance given by *noiser*. """ self.src_dataset = src_dataset self.src_dict = src_dict self.seed = seed self.noiser = ( noiser if noiser is not None else noising_class( dictionary=src_dict, **kwargs, ) ) self.sizes = src_dataset.sizes def __getitem__(self, index): """ Returns a single noisy sample. Multiple samples are fed to the collater create a noising dataset batch. """ src_tokens = self.src_dataset[index] src_lengths = torch.LongTensor([len(src_tokens)]) src_tokens = src_tokens.unsqueeze(0) # Transpose src tokens to fit expected shape of x in noising function # (batch size, sequence length) -> (sequence length, batch size) src_tokens_t = torch.t(src_tokens) with data_utils.numpy_seed(self.seed + index): noisy_src_tokens = self.noiser.noising(src_tokens_t, src_lengths) # Transpose back to expected src_tokens format # (sequence length, 1) -> (1, sequence length) noisy_src_tokens = torch.t(noisy_src_tokens) return noisy_src_tokens[0] def __len__(self): """ The length of the noising dataset is the length of src. """ return len(self.src_dataset) @property def supports_prefetch(self): return self.src_dataset.supports_prefetch def prefetch(self, indices): if self.src_dataset.supports_prefetch: self.src_dataset.prefetch(indices)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/noising.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from fairseq.data import data_utils from . import BaseWrapperDataset class TruncateDataset(BaseWrapperDataset): """Truncate a sequence by returning the first truncation_length tokens""" def __init__(self, dataset, truncation_length): super().__init__(dataset) assert truncation_length is not None self.truncation_length = truncation_length self.dataset = dataset def __getitem__(self, index): item = self.dataset[index] item_len = item.size(0) if item_len > self.truncation_length: item = item[: self.truncation_length] return item @property def sizes(self): return np.minimum(self.dataset.sizes, self.truncation_length) def __len__(self): return len(self.dataset) class RandomCropDataset(TruncateDataset): """Truncate a sequence by returning a random crop of truncation_length tokens""" def __init__(self, dataset, truncation_length, seed=1): super().__init__(dataset, truncation_length) self.seed = seed self.epoch = 0 @property def can_reuse_epoch_itr_across_epochs(self): return True # only the crop changes, not item sizes def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def __getitem__(self, index): with data_utils.numpy_seed(self.seed, self.epoch, index): item = self.dataset[index] item_len = item.size(0) excess = item_len - self.truncation_length if excess > 0: start_idx = np.random.randint(0, excess) item = item[start_idx : start_idx + self.truncation_length] return item def maybe_shorten_dataset( dataset, split, shorten_data_split_list, shorten_method, tokens_per_sample, seed, ): truncate_split = ( split in shorten_data_split_list.split(",") or len(shorten_data_split_list) == 0 ) if shorten_method == "truncate" and truncate_split: dataset = TruncateDataset(dataset, tokens_per_sample) elif shorten_method == "random_crop" and truncate_split: dataset = RandomCropDataset(dataset, tokens_per_sample, seed) return dataset
KosmosX-API-main
kosmosX/fairseq/fairseq/data/shorten_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np from . import BaseWrapperDataset logger = logging.getLogger(__name__) class SubsampleDataset(BaseWrapperDataset): """Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples Args: dataset (~torch.utils.data.Dataset): dataset to subsample size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive) """ def __init__(self, dataset, size_ratio, shuffle=False): super().__init__(dataset) assert size_ratio < 1 self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int) self.indices = np.random.choice( list(range(len(self.dataset))), self.actual_size, replace=False ) self.shuffle = shuffle logger.info( "subsampled dataset from {} to {} (ratio={})".format( len(self.dataset), self.actual_size, size_ratio ) ) def __getitem__(self, index): return self.dataset[self.indices[index]] def __len__(self): return self.actual_size def collater(self, samples): return self.dataset.collater(samples) @property def sizes(self): return self.dataset.sizes[self.indices] @property def name(self): return self.dataset.name def num_tokens(self, index): return self.dataset.num_tokens(self.indices[index]) def size(self, index): return self.dataset.size(self.indices[index]) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order) def prefetch(self, indices): self.dataset.prefetch(self.indices[indices])
KosmosX-API-main
kosmosX/fairseq/fairseq/data/subsample_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from . import BaseWrapperDataset class SortDataset(BaseWrapperDataset): def __init__(self, dataset, sort_order): super().__init__(dataset) if not isinstance(sort_order, (list, tuple)): sort_order = [sort_order] self.sort_order = sort_order assert all(len(so) == len(dataset) for so in sort_order) def ordered_indices(self): return np.lexsort(self.sort_order)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/sort_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum class TextCompressionLevel(Enum): none = 0 low = 1 high = 2 class TextCompressor(object): def __init__( self, level: TextCompressionLevel, max_input_byte_length: int = 2 ** 16 ): self.level = level self.max_input_length = max_input_byte_length def compress(self, text: str) -> bytes: if self.level == TextCompressionLevel.low: import zlib # zlib: built-in, fast return zlib.compress(text.encode(), level=0) elif self.level == TextCompressionLevel.high: try: import unishox2 # unishox2: optimized for short text but slower except ImportError: raise ImportError( "Please install unishox2 for the text compression feature: " "pip install unishox2-py3" ) assert len(text.encode()) <= self.max_input_length return unishox2.compress(text)[0] else: return text.encode() def decompress(self, compressed: bytes) -> str: if self.level == TextCompressionLevel.low: import zlib return zlib.decompress(compressed).decode() elif self.level == TextCompressionLevel.high: try: import unishox2 except ImportError: raise ImportError( "Please install unishox2 for the text compression feature: " "pip install unishox2-py3" ) return unishox2.decompress(compressed, self.max_input_length) else: return compressed.decode()
KosmosX-API-main
kosmosX/fairseq/fairseq/data/text_compressor.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import FairseqDataset, data_utils def collate(samples, pad_idx, eos_idx, fixed_pad_length=None, pad_to_bsz=None): if len(samples) == 0: return {} def merge(key, is_list=False): if is_list: res = [] for i in range(len(samples[0][key])): res.append( data_utils.collate_tokens( [s[key][i] for s in samples], pad_idx, eos_idx, left_pad=False, pad_to_length=fixed_pad_length, pad_to_bsz=pad_to_bsz, ) ) return res else: return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad=False, pad_to_length=fixed_pad_length, pad_to_bsz=pad_to_bsz, ) src_tokens = merge("source") if samples[0]["target"] is not None: is_target_list = isinstance(samples[0]["target"], list) target = merge("target", is_target_list) else: target = src_tokens return { "id": torch.LongTensor([s["id"] for s in samples]), "nsentences": len(samples), "ntokens": sum(len(s["source"]) for s in samples), "net_input": { "src_tokens": src_tokens, "src_lengths": torch.LongTensor([s["source"].numel() for s in samples]), }, "target": target, } class MonolingualDataset(FairseqDataset): """ A wrapper around torch.utils.data.Dataset for monolingual data. Args: dataset (torch.utils.data.Dataset): dataset to wrap sizes (List[int]): sentence lengths vocab (~fairseq.data.Dictionary): vocabulary shuffle (bool, optional): shuffle the elements before batching (default: True). """ def __init__( self, dataset, sizes, src_vocab, tgt_vocab=None, add_eos_for_other_targets=False, shuffle=False, targets=None, add_bos_token=False, fixed_pad_length=None, pad_to_bsz=None, src_lang_idx=None, tgt_lang_idx=None, ): self.dataset = dataset self.sizes = np.array(sizes) self.vocab = src_vocab self.tgt_vocab = tgt_vocab or src_vocab self.add_eos_for_other_targets = add_eos_for_other_targets self.shuffle = shuffle self.add_bos_token = add_bos_token self.fixed_pad_length = fixed_pad_length self.pad_to_bsz = pad_to_bsz self.src_lang_idx = src_lang_idx self.tgt_lang_idx = tgt_lang_idx assert targets is None or all( t in {"self", "future", "past"} for t in targets ), "targets must be none or one of 'self', 'future', 'past'" if targets is not None and len(targets) == 0: targets = None self.targets = targets def __getitem__(self, index): if self.targets is not None: # *future_target* is the original sentence # *source* is shifted right by 1 (maybe left-padded with eos) # *past_target* is shifted right by 2 (left-padded as needed) # # Left-to-right language models should condition on *source* and # predict *future_target*. # Right-to-left language models should condition on *source* and # predict *past_target*. source, future_target, past_target = self.dataset[index] source, target = self._make_source_target( source, future_target, past_target ) else: source = self.dataset[index] target = None source, target = self._maybe_add_bos(source, target) return {"id": index, "source": source, "target": target} def __len__(self): return len(self.dataset) def _make_source_target(self, source, future_target, past_target): if self.targets is not None: target = [] if ( self.add_eos_for_other_targets and (("self" in self.targets) or ("past" in self.targets)) and source[-1] != self.vocab.eos() ): # append eos at the end of source source = torch.cat([source, source.new([self.vocab.eos()])]) if "future" in self.targets: future_target = torch.cat( [future_target, future_target.new([self.vocab.pad()])] ) if "past" in self.targets: # first token is before the start of sentence which is only used in "none" break mode when # add_eos_for_other_targets is False past_target = torch.cat( [ past_target.new([self.vocab.pad()]), past_target[1:], source[-2, None], ] ) for t in self.targets: if t == "self": target.append(source) elif t == "future": target.append(future_target) elif t == "past": target.append(past_target) else: raise Exception("invalid target " + t) if len(target) == 1: target = target[0] else: target = future_target return source, self._filter_vocab(target) def _maybe_add_bos(self, source, target): if self.add_bos_token: source = torch.cat([source.new([self.vocab.bos()]), source]) if target is not None: target = torch.cat([target.new([self.tgt_vocab.bos()]), target]) return source, target def num_tokens_vec(self, indices): """Return the number of tokens for a set of positions defined by indices. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[indices] def _filter_vocab(self, target): if len(self.tgt_vocab) != len(self.vocab): def _filter(target): mask = target.ge(len(self.tgt_vocab)) if mask.any(): target[mask] = self.tgt_vocab.unk() return target if isinstance(target, list): return [_filter(t) for t in target] return _filter(target) return target def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch with the following keys: - `id` (LongTensor): example IDs in the original input order - `ntokens` (int): total number of tokens in the batch - `net_input` (dict): the input to the Model, containing keys: - `src_tokens` (LongTensor): a padded 2D Tensor of tokens in the source sentence of shape `(bsz, src_len)`. Padding will appear on the right. - `target` (LongTensor): a padded 2D Tensor of tokens in the target sentence of shape `(bsz, tgt_len)`. Padding will appear on the right. """ return collate( samples, self.vocab.pad(), self.vocab.eos(), self.fixed_pad_length, self.pad_to_bsz, ) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return self.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch(indices)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/monolingual_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import subprocess import threading from pathlib import Path import numpy as np import torch def fasta_file_path(prefix_path): return prefix_path + ".fasta" class FastaDataset(torch.utils.data.Dataset): """ For loading protein sequence datasets in the common FASTA data format """ def __init__(self, path: str, cache_indices=False): self.fn = fasta_file_path(path) self.threadlocal = threading.local() self.cache = Path(f"{path}.fasta.idx.npy") if cache_indices: if self.cache.exists(): self.offsets, self.sizes = np.load(self.cache) else: self.offsets, self.sizes = self._build_index(path) np.save(self.cache, np.stack([self.offsets, self.sizes])) else: self.offsets, self.sizes = self._build_index(path) def _get_file(self): if not hasattr(self.threadlocal, "f"): self.threadlocal.f = open(self.fn, "r") return self.threadlocal.f def __getitem__(self, idx): f = self._get_file() f.seek(self.offsets[idx]) desc = f.readline().strip() line = f.readline() seq = "" while line != "" and line[0] != ">": seq += line.strip() line = f.readline() return desc, seq def __len__(self): return self.offsets.size def _build_index(self, path: str): # Use grep and awk to get 100M/s on local SSD. # Should process your enormous 100G fasta in ~10 min single core... path = fasta_file_path(path) bytes_offsets = subprocess.check_output( f"cat {path} | tqdm --bytes --total $(wc -c < {path})" "| grep --byte-offset '^>' -o | cut -d: -f1", shell=True, ) fasta_lengths = subprocess.check_output( f"cat {path} | tqdm --bytes --total $(wc -c < {path})" "| awk '/^>/ {print \"\";next;} { printf(\"%s\",$0);}' | tail -n+2 | awk '{print length($1)}'", shell=True, ) bytes_np = np.fromstring(bytes_offsets, dtype=np.int64, sep=" ") sizes_np = np.fromstring(fasta_lengths, dtype=np.int64, sep=" ") return bytes_np, sizes_np def __setstate__(self, state): self.__dict__ = state self.threadlocal = threading.local() def __getstate__(self): d = {} for i, v in self.__dict__.items(): if i != "threadlocal": d[i] = v return d def __del__(self): if hasattr(self.threadlocal, "f"): self.threadlocal.f.close() del self.threadlocal.f @staticmethod def exists(path): return os.path.exists(fasta_file_path(path)) class EncodedFastaDataset(FastaDataset): """ The FastaDataset returns raw sequences - this allows us to return indices with a dictionary instead. """ def __init__(self, path, dictionary): super().__init__(path, cache_indices=True) self.dictionary = dictionary def __getitem__(self, idx): desc, seq = super().__getitem__(idx) return self.dictionary.encode_line(seq, line_tokenizer=list).long()
KosmosX-API-main
kosmosX/fairseq/fairseq/data/fasta_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch.utils.data.dataloader import default_collate from . import FairseqDataset class BaseWrapperDataset(FairseqDataset): def __init__(self, dataset): super().__init__() self.dataset = dataset def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) def collater(self, samples): if hasattr(self.dataset, "collater"): return self.dataset.collater(samples) else: return default_collate(samples) @property def sizes(self): return self.dataset.sizes def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): return self.dataset.size(index) def ordered_indices(self): return self.dataset.ordered_indices() @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def attr(self, attr: str, index: int): return self.dataset.attr(attr, index) def prefetch(self, indices): self.dataset.prefetch(indices) def get_batch_shapes(self): return self.dataset.get_batch_shapes() def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): return self.dataset.batch_by_size( indices, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) def filter_indices_by_size(self, indices, max_sizes): return self.dataset.filter_indices_by_size(indices, max_sizes) @property def can_reuse_epoch_itr_across_epochs(self): return self.dataset.can_reuse_epoch_itr_across_epochs def set_epoch(self, epoch): super().set_epoch(epoch) if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(epoch)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/base_wrapper_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class NumelDataset(BaseWrapperDataset): def __init__(self, dataset, reduce=False): super().__init__(dataset) self.reduce = reduce def __getitem__(self, index): item = self.dataset[index] if torch.is_tensor(item): return torch.numel(item) else: return np.size(item) def __len__(self): return len(self.dataset) def collater(self, samples): if self.reduce: return sum(samples) else: return torch.tensor(samples)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/numel_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .dictionary import Dictionary, TruncatedDictionary from .fairseq_dataset import FairseqDataset, FairseqIterableDataset from .base_wrapper_dataset import BaseWrapperDataset from .add_target_dataset import AddTargetDataset from .append_token_dataset import AppendTokenDataset from .audio.raw_audio_dataset import BinarizedAudioDataset, FileAudioDataset from .audio.hubert_dataset import HubertDataset from .backtranslation_dataset import BacktranslationDataset from .bucket_pad_length_dataset import BucketPadLengthDataset from .colorize_dataset import ColorizeDataset from .concat_dataset import ConcatDataset from .concat_sentences_dataset import ConcatSentencesDataset from .denoising_dataset import DenoisingDataset from .id_dataset import IdDataset from .indexed_dataset import ( IndexedCachedDataset, IndexedDataset, IndexedRawTextDataset, MMapIndexedDataset, ) from .language_pair_dataset import LanguagePairDataset from .list_dataset import ListDataset from .lm_context_window_dataset import LMContextWindowDataset from .lru_cache_dataset import LRUCacheDataset from .mask_tokens_dataset import MaskTokensDataset from .monolingual_dataset import MonolingualDataset from .multi_corpus_sampled_dataset import MultiCorpusSampledDataset from .nested_dictionary_dataset import NestedDictionaryDataset from .noising import NoisingDataset from .numel_dataset import NumelDataset from .num_samples_dataset import NumSamplesDataset from .offset_tokens_dataset import OffsetTokensDataset from .pad_dataset import LeftPadDataset, PadDataset, RightPadDataset from .prepend_dataset import PrependDataset from .prepend_token_dataset import PrependTokenDataset from .raw_label_dataset import RawLabelDataset from .replace_dataset import ReplaceDataset from .resampling_dataset import ResamplingDataset from .roll_dataset import RollDataset from .round_robin_zip_datasets import RoundRobinZipDatasets from .sort_dataset import SortDataset from .strip_token_dataset import StripTokenDataset from .subsample_dataset import SubsampleDataset from .token_block_dataset import TokenBlockDataset from .transform_eos_dataset import TransformEosDataset from .transform_eos_lang_pair_dataset import TransformEosLangPairDataset from .shorten_dataset import TruncateDataset, RandomCropDataset from .multilingual.sampled_multi_dataset import SampledMultiDataset from .multilingual.sampled_multi_epoch_dataset import SampledMultiEpochDataset from .fasta_dataset import FastaDataset, EncodedFastaDataset from .transform_eos_concat_langpair_dataset import TransformEosConcatLangPairDataset from .iterators import ( CountingIterator, EpochBatchIterator, GroupedIterator, ShardedIterator, ) __all__ = [ "AddTargetDataset", "AppendTokenDataset", "BacktranslationDataset", "BaseWrapperDataset", "BinarizedAudioDataset", "BucketPadLengthDataset", "ColorizeDataset", "ConcatDataset", "ConcatSentencesDataset", "CountingIterator", "DenoisingDataset", "Dictionary", "EncodedFastaDataset", "EpochBatchIterator", "FairseqDataset", "FairseqIterableDataset", "FastaDataset", "FileAudioDataset", "GroupedIterator", "HubertDataset", "IdDataset", "IndexedCachedDataset", "IndexedDataset", "IndexedRawTextDataset", "LanguagePairDataset", "LeftPadDataset", "ListDataset", "LMContextWindowDataset", "LRUCacheDataset", "MaskTokensDataset", "MMapIndexedDataset", "MonolingualDataset", "MultiCorpusSampledDataset", "NestedDictionaryDataset", "NoisingDataset", "NumelDataset", "NumSamplesDataset", "OffsetTokensDataset", "PadDataset", "PrependDataset", "PrependTokenDataset", "RandomCropDataset", "RawLabelDataset", "ResamplingDataset", "ReplaceDataset", "RightPadDataset", "RollDataset", "RoundRobinZipDatasets", "SampledMultiDataset", "SampledMultiEpochDataset", "ShardedIterator", "SortDataset", "StripTokenDataset", "SubsampleDataset", "TokenBlockDataset", "TransformEosDataset", "TransformEosLangPairDataset", "TransformEosConcatLangPairDataset", "TruncateDataset", "TruncatedDictionary", ]
KosmosX-API-main
kosmosX/fairseq/fairseq/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import FairseqDataset class ConcatSentencesDataset(FairseqDataset): def __init__(self, *datasets): super().__init__() self.datasets = datasets assert all( len(ds) == len(datasets[0]) for ds in datasets ), "datasets must have the same length" def __getitem__(self, index): return torch.cat([ds[index] for ds in self.datasets]) def __len__(self): return len(self.datasets[0]) def collater(self, samples): return self.datasets[0].collater(samples) @property def sizes(self): return sum(ds.sizes for ds in self.datasets) def num_tokens(self, index): return sum(ds.num_tokens(index) for ds in self.datasets) def size(self, index): return sum(ds.size(index) for ds in self.datasets) def ordered_indices(self): return self.datasets[0].ordered_indices() @property def supports_prefetch(self): return any(getattr(ds, "supports_prefetch", False) for ds in self.datasets) def prefetch(self, indices): for ds in self.datasets: if getattr(ds, "supports_prefetch", False): ds.prefetch(indices) def set_epoch(self, epoch): super().set_epoch(epoch) for ds in self.datasets: if hasattr(ds, "set_epoch"): ds.set_epoch(epoch)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/concat_sentences_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache import numpy as np import torch from fairseq.data import Dictionary, data_utils from . import BaseWrapperDataset, LRUCacheDataset class MaskTokensDataset(BaseWrapperDataset): """ A wrapper Dataset for masked language modeling. Input items are masked according to the specified masking probability. Args: dataset: Dataset to wrap. sizes: Sentence lengths vocab: Dictionary with the vocabulary and special tokens. pad_idx: Id of pad token in vocab mask_idx: Id of mask token in vocab return_masked_tokens: controls whether to return the non-masked tokens (the default) or to return a tensor with the original masked token IDs (and *pad_idx* elsewhere). The latter is useful as targets for masked LM training. seed: Seed for random number generator for reproducibility. mask_prob: probability of replacing a token with *mask_idx*. leave_unmasked_prob: probability that a masked token is unmasked. random_token_prob: probability of replacing a masked token with a random token from the vocabulary. freq_weighted_replacement: sample random replacement words based on word frequencies in the vocab. mask_whole_words: only mask whole words. This should be a byte mask over vocab indices, indicating whether it is the beginning of a word. We will extend any mask to encompass the whole word. bpe: BPE to use for whole-word masking. mask_multiple_length : repeat each mask index multiple times. Default value is 1. mask_stdev : standard deviation of masks distribution in case of multiple masking. Default value is 0. """ @classmethod def apply_mask(cls, dataset: torch.utils.data.Dataset, *args, **kwargs): """Return the source and target datasets for masked LM training.""" dataset = LRUCacheDataset(dataset) return ( LRUCacheDataset(cls(dataset, *args, **kwargs, return_masked_tokens=False)), LRUCacheDataset(cls(dataset, *args, **kwargs, return_masked_tokens=True)), ) def __init__( self, dataset: torch.utils.data.Dataset, vocab: Dictionary, pad_idx: int, mask_idx: int, return_masked_tokens: bool = False, seed: int = 1, mask_prob: float = 0.15, leave_unmasked_prob: float = 0.1, random_token_prob: float = 0.1, freq_weighted_replacement: bool = False, mask_whole_words: torch.Tensor = None, mask_multiple_length: int = 1, mask_stdev: float = 0.0, ): assert 0.0 < mask_prob < 1.0 assert 0.0 <= random_token_prob <= 1.0 assert 0.0 <= leave_unmasked_prob <= 1.0 assert random_token_prob + leave_unmasked_prob <= 1.0 assert mask_multiple_length >= 1 assert mask_stdev >= 0.0 self.dataset = dataset self.vocab = vocab self.pad_idx = pad_idx self.mask_idx = mask_idx self.return_masked_tokens = return_masked_tokens self.seed = seed self.mask_prob = mask_prob self.leave_unmasked_prob = leave_unmasked_prob self.random_token_prob = random_token_prob self.mask_whole_words = mask_whole_words self.mask_multiple_length = mask_multiple_length self.mask_stdev = mask_stdev if random_token_prob > 0.0: if freq_weighted_replacement: weights = np.array(self.vocab.count) else: weights = np.ones(len(self.vocab)) weights[: self.vocab.nspecial] = 0 self.weights = weights / weights.sum() self.epoch = 0 @property def can_reuse_epoch_itr_across_epochs(self): return True # only the noise changes, not item sizes def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def __getitem__(self, index: int): return self.__getitem_cached__(self.seed, self.epoch, index) @lru_cache(maxsize=8) def __getitem_cached__(self, seed: int, epoch: int, index: int): with data_utils.numpy_seed(self.seed, self.epoch, index): item = self.dataset[index] sz = len(item) assert ( self.mask_idx not in item ), "Dataset contains mask_idx (={}), this is not expected!".format( self.mask_idx, ) if self.mask_whole_words is not None: word_begins_mask = self.mask_whole_words.gather(0, item) word_begins_idx = word_begins_mask.nonzero().view(-1) sz = len(word_begins_idx) words = np.split(word_begins_mask, word_begins_idx)[1:] assert len(words) == sz word_lens = list(map(len, words)) # decide elements to mask mask = np.full(sz, False) num_mask = int( # add a random number for probabilistic rounding self.mask_prob * sz / float(self.mask_multiple_length) + np.random.rand() ) # multiple masking as described in the vq-wav2vec paper (https://arxiv.org/abs/1910.05453) mask_idc = np.random.choice(sz, num_mask, replace=False) if self.mask_stdev > 0.0: lengths = np.random.normal( self.mask_multiple_length, self.mask_stdev, size=num_mask ) lengths = [max(0, int(round(x))) for x in lengths] mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ], dtype=np.int64, ) else: mask_idc = np.concatenate( [mask_idc + i for i in range(self.mask_multiple_length)] ) mask_idc = mask_idc[mask_idc < len(mask)] try: mask[mask_idc] = True except: # something wrong print( "Assigning mask indexes {} to mask {} failed!".format( mask_idc, mask ) ) raise if self.return_masked_tokens: # exit early if we're just returning the masked tokens # (i.e., the targets for masked LM training) if self.mask_whole_words is not None: mask = np.repeat(mask, word_lens) new_item = np.full(len(mask), self.pad_idx) new_item[mask] = item[torch.from_numpy(mask.astype(np.uint8)) == 1] return torch.from_numpy(new_item) # decide unmasking and random replacement rand_or_unmask_prob = self.random_token_prob + self.leave_unmasked_prob if rand_or_unmask_prob > 0.0: rand_or_unmask = mask & (np.random.rand(sz) < rand_or_unmask_prob) if self.random_token_prob == 0.0: unmask = rand_or_unmask rand_mask = None elif self.leave_unmasked_prob == 0.0: unmask = None rand_mask = rand_or_unmask else: unmask_prob = self.leave_unmasked_prob / rand_or_unmask_prob decision = np.random.rand(sz) < unmask_prob unmask = rand_or_unmask & decision rand_mask = rand_or_unmask & (~decision) else: unmask = rand_mask = None if unmask is not None: mask = mask ^ unmask if self.mask_whole_words is not None: mask = np.repeat(mask, word_lens) new_item = np.copy(item) new_item[mask] = self.mask_idx if rand_mask is not None: num_rand = rand_mask.sum() if num_rand > 0: if self.mask_whole_words is not None: rand_mask = np.repeat(rand_mask, word_lens) num_rand = rand_mask.sum() new_item[rand_mask] = np.random.choice( len(self.vocab), num_rand, p=self.weights, ) return torch.from_numpy(new_item)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/mask_tokens_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache from . import BaseWrapperDataset class LRUCacheDataset(BaseWrapperDataset): def __init__(self, dataset, token=None): super().__init__(dataset) @lru_cache(maxsize=8) def __getitem__(self, index): return self.dataset[index] @lru_cache(maxsize=8) def collater(self, samples): return self.dataset.collater(samples)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/lru_cache_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import numpy as np import torch from . import FairseqDataset, data_utils def collate( samples, pad_idx, eos_idx, vocab, left_pad_source=False, left_pad_target=False, input_feeding=True, pad_to_length=None, ): assert input_feeding if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx=None, # use eos_idx of each sample instead of vocab.eos() left_pad=left_pad, move_eos_to_beginning=move_eos_to_beginning, pad_to_length=pad_to_length, ) id = torch.LongTensor([s["id"] for s in samples]) src_tokens = merge( "source", left_pad=left_pad_source, pad_to_length=pad_to_length["source"] if pad_to_length is not None else None, ) # sort by descending source length src_lengths = torch.LongTensor([s["source"].numel() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge( "target", left_pad=left_pad_target, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) target = target.index_select(0, sort_order) ntokens = sum(len(s["target"]) for s in samples) if input_feeding: # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( "target", left_pad=left_pad_target, move_eos_to_beginning=True, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) else: ntokens = sum(len(s["source"]) for s in samples) batch = { "id": id, "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, "target": target, "nsentences": samples[0]["source"].size(0), "sort_order": sort_order, } if prev_output_tokens is not None: batch["net_input"]["prev_output_tokens"] = prev_output_tokens return batch class DenoisingDataset(FairseqDataset): """ A wrapper around TokenBlockDataset for BART dataset. Args: dataset (TokenBlockDataset): dataset to wrap sizes (List[int]): sentence lengths vocab (~fairseq.data.Dictionary): vocabulary mask_idx (int): dictionary index used for masked token mask_whole_words: only mask whole words. This should be a byte mask over vocab indices, indicating whether it is the beginning of a word. We will extend any mask to encompass the whole word. shuffle (bool, optional): shuffle the elements before batching. Default: ``True`` seed: Seed for random number generator for reproducibility. args: argparse arguments. """ def __init__( self, dataset, sizes, vocab, mask_idx, mask_whole_words, shuffle, seed, args, eos=None, item_transform_func=None, ): self.dataset = dataset self.sizes = sizes self.vocab = vocab self.shuffle = shuffle self.seed = seed self.mask_idx = mask_idx self.mask_whole_word = mask_whole_words self.mask_ratio = args.mask self.random_ratio = args.mask_random self.insert_ratio = args.insert self.rotate_ratio = args.rotate self.permute_sentence_ratio = args.permute_sentences self.eos = eos if eos is not None else vocab.eos() self.item_transform_func = item_transform_func if args.bpe != "gpt2": self.full_stop_index = self.vocab.eos() else: assert args.bpe == "gpt2" self.full_stop_index = self.vocab.index("13") self.replace_length = args.replace_length if self.replace_length not in [-1, 0, 1]: raise ValueError(f"invalid arg: replace_length={self.replace_length}") if args.mask_length not in ["subword", "word", "span-poisson"]: raise ValueError(f"invalid arg: mask-length={args.mask_length}") if args.mask_length == "subword" and args.replace_length not in [0, 1]: raise ValueError("if using subwords, use replace-length=1 or 0") self.mask_span_distribution = None if args.mask_length == "span-poisson": _lambda = args.poisson_lambda lambda_to_the_k = 1 e_to_the_minus_lambda = math.exp(-_lambda) k_factorial = 1 ps = [] for k in range(0, 128): ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial) lambda_to_the_k *= _lambda k_factorial *= k + 1 if ps[-1] < 0.0000001: break ps = torch.FloatTensor(ps) self.mask_span_distribution = torch.distributions.Categorical(ps) self.epoch = 0 @property def can_reuse_epoch_itr_across_epochs(self): return True # only the noise changes, not item sizes def set_epoch(self, epoch, **unused): self.epoch = epoch def __getitem__(self, index): with data_utils.numpy_seed(self.seed, self.epoch, index): tokens = self.dataset[index] assert tokens[-1] == self.eos source, target = tokens, tokens.clone() if self.permute_sentence_ratio > 0.0: source = self.permute_sentences(source, self.permute_sentence_ratio) if self.mask_ratio > 0: source = self.add_whole_word_mask(source, self.mask_ratio) if self.insert_ratio > 0: source = self.add_insertion_noise(source, self.insert_ratio) if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio: source = self.add_rolling_noise(source) # there can additional changes to make: if self.item_transform_func is not None: source, target = self.item_transform_func(source, target) assert (source >= 0).all() assert (source[1:-1] >= 1).all() assert (source <= len(self.vocab)).all() assert source[0] == self.vocab.bos() assert source[-1] == self.eos return { "id": index, "source": source, "target": target, } def __len__(self): return len(self.dataset) def permute_sentences(self, source, p=1.0): full_stops = source == self.full_stop_index # Pretend it ends with a full stop so last span is a sentence full_stops[-2] = 1 # Tokens that are full stops, where the previous token is not sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2 result = source.clone() num_sentences = sentence_ends.size(0) num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0) substitutions = torch.randperm(num_sentences)[:num_to_permute] ordering = torch.arange(0, num_sentences) ordering[substitutions] = substitutions[torch.randperm(num_to_permute)] # Ignore <bos> at start index = 1 for i in ordering: sentence = source[(sentence_ends[i - 1] if i > 0 else 1) : sentence_ends[i]] result[index : index + sentence.size(0)] = sentence index += sentence.size(0) return result def word_starts(self, source): if self.mask_whole_word is not None: is_word_start = self.mask_whole_word.gather(0, source) else: is_word_start = torch.ones(source.size()) is_word_start[0] = 0 is_word_start[-1] = 0 return is_word_start def add_whole_word_mask(self, source, p): is_word_start = self.word_starts(source) num_to_mask = int(math.ceil(is_word_start.float().sum() * p)) num_inserts = 0 if num_to_mask == 0: return source if self.mask_span_distribution is not None: lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,)) # Make sure we have enough to mask cum_length = torch.cumsum(lengths, 0) while cum_length[-1] < num_to_mask: lengths = torch.cat( [ lengths, self.mask_span_distribution.sample(sample_shape=(num_to_mask,)), ], dim=0, ) cum_length = torch.cumsum(lengths, 0) # Trim to masking budget i = 0 while cum_length[i] < num_to_mask: i += 1 lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1]) num_to_mask = i + 1 lengths = lengths[:num_to_mask] # Handle 0-length mask (inserts) separately lengths = lengths[lengths > 0] num_inserts = num_to_mask - lengths.size(0) num_to_mask -= num_inserts if num_to_mask == 0: return self.add_insertion_noise(source, num_inserts / source.size(0)) assert (lengths > 0).all() else: lengths = torch.ones((num_to_mask,)).long() assert is_word_start[-1] == 0 word_starts = is_word_start.nonzero(as_tuple=False) indices = word_starts[ torch.randperm(word_starts.size(0))[:num_to_mask] ].squeeze(1) mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio source_length = source.size(0) assert source_length - 1 not in indices to_keep = torch.ones(source_length, dtype=torch.bool) is_word_start[ -1 ] = 255 # acts as a long length, so spans don't go over the end of doc if self.replace_length == 0: to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) if self.mask_span_distribution is not None: assert len(lengths.size()) == 1 assert lengths.size() == indices.size() lengths -= 1 while indices.size(0) > 0: assert lengths.size() == indices.size() lengths -= is_word_start[indices + 1].long() uncompleted = lengths >= 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] lengths = lengths[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) else: # A bit faster when all lengths are 1 while indices.size(0) > 0: uncompleted = is_word_start[indices + 1] == 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) assert source_length - 1 not in indices source = source[to_keep] if num_inserts > 0: source = self.add_insertion_noise(source, num_inserts / source.size(0)) return source def add_permuted_noise(self, tokens, p): num_words = len(tokens) num_to_permute = math.ceil(((num_words * 2) * p) / 2.0) substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1 tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]] return tokens def add_rolling_noise(self, tokens): offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1) tokens = torch.cat( (tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]), dim=0, ) return tokens def add_insertion_noise(self, tokens, p): if p == 0.0: return tokens num_tokens = len(tokens) n = int(math.ceil(num_tokens * p)) noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1 noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool) noise_mask[noise_indices] = 1 result = torch.LongTensor(n + len(tokens)).fill_(-1) num_random = int(math.ceil(n * self.random_ratio)) result[noise_indices[num_random:]] = self.mask_idx result[noise_indices[:num_random]] = torch.randint( low=1, high=len(self.vocab), size=(num_random,) ) result[~noise_mask] = tokens assert (result >= 0).all() return result def collater(self, samples, pad_to_length=None): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch of data """ return collate( samples, self.vocab.pad(), self.eos, self.vocab, pad_to_length=pad_to_length ) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return self.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) else: indices = np.arange(len(self)) return indices[np.argsort(self.sizes[indices], kind="mergesort")] def prefetch(self, indices): self.src.prefetch(indices) self.tgt.prefetch(indices) @property def supports_prefetch(self): return ( hasattr(self.src, "supports_prefetch") and self.src.supports_prefetch and hasattr(self.tgt, "supports_prefetch") and self.tgt.supports_prefetch )
KosmosX-API-main
kosmosX/fairseq/fairseq/data/denoising_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class StripTokenDataset(BaseWrapperDataset): def __init__(self, dataset, id_to_strip): super().__init__(dataset) self.id_to_strip = id_to_strip def __getitem__(self, index): item = self.dataset[index] while len(item) > 0 and item[-1] == self.id_to_strip: item = item[:-1] while len(item) > 0 and item[0] == self.id_to_strip: item = item[1:] return item
KosmosX-API-main
kosmosX/fairseq/fairseq/data/strip_token_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. try: from collections.abc import Iterable except ImportError: from collections import Iterable import contextlib import itertools import logging import re import warnings from typing import Optional, Tuple import numpy as np import torch from fairseq.file_io import PathManager from fairseq import utils import os logger = logging.getLogger(__name__) def infer_language_pair(path): """Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx""" src, dst = None, None for filename in PathManager.ls(path): parts = filename.split(".") if len(parts) >= 3 and len(parts[1].split("-")) == 2: return parts[1].split("-") return src, dst def collate_tokens( values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False, pad_to_length=None, pad_to_multiple=1, pad_to_bsz=None, ): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) size = size if pad_to_length is None else max(size, pad_to_length) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) batch_size = len(values) if pad_to_bsz is None else max(len(values), pad_to_bsz) res = values[0].new(batch_size, size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if move_eos_to_beginning: if eos_idx is None: # if no eos_idx is specified, then use the last token in src dst[0] = src[-1] else: dst[0] = eos_idx dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)]) return res def load_indexed_dataset( path, dictionary=None, dataset_impl=None, combine=False, default="cached" ): """A helper function for loading indexed datasets. Args: path (str): path to indexed dataset (e.g., 'data-bin/train') dictionary (~fairseq.data.Dictionary): data dictionary dataset_impl (str, optional): which dataset implementation to use. If not provided, it will be inferred automatically. For legacy indexed data we use the 'cached' implementation by default. combine (bool, optional): automatically load and combine multiple datasets. For example, if *path* is 'data-bin/train', then we will combine 'data-bin/train', 'data-bin/train1', ... and return a single ConcatDataset instance. """ import fairseq.data.indexed_dataset as indexed_dataset from fairseq.data.concat_dataset import ConcatDataset datasets = [] for k in itertools.count(): path_k = path + (str(k) if k > 0 else "") try: path_k = indexed_dataset.get_indexed_dataset_to_local(path_k) except Exception as e: if "StorageException: [404] Path not found" in str(e): logger.warning(f"path_k: {e} not found") else: raise e dataset_impl_k = dataset_impl if dataset_impl_k is None: dataset_impl_k = indexed_dataset.infer_dataset_impl(path_k) dataset = indexed_dataset.make_dataset( path_k, impl=dataset_impl_k or default, fix_lua_indexing=True, dictionary=dictionary, ) if dataset is None: break logger.info("loaded {:,} examples from: {}".format(len(dataset), path_k)) datasets.append(dataset) if not combine: break if len(datasets) == 0: return None elif len(datasets) == 1: return datasets[0] else: return ConcatDataset(datasets) @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def collect_filtered(function, iterable, filtered): """ Similar to :func:`filter` but collects filtered elements in ``filtered``. Args: function (callable): function that returns ``False`` for elements that should be filtered iterable (iterable): iterable to filter filtered (list): list to store filtered elements """ for el in iterable: if function(el): yield el else: filtered.append(el) def _filter_by_size_dynamic(indices, size_fn, max_positions, raise_exception=False): def compare_leq(a, b): return a <= b if not isinstance(a, tuple) else max(a) <= b def check_size(idx): if isinstance(max_positions, float) or isinstance(max_positions, int): return size_fn(idx) <= max_positions elif isinstance(max_positions, dict): idx_size = size_fn(idx) assert isinstance(idx_size, dict) intersect_keys = set(max_positions.keys()) & set(idx_size.keys()) return all( all( a is None or b is None or a <= b for a, b in zip(idx_size[key], max_positions[key]) ) for key in intersect_keys ) else: # For MultiCorpusSampledDataset, will generalize it later if not isinstance(size_fn(idx), Iterable): return all(size_fn(idx) <= b for b in max_positions) return all( a is None or b is None or a <= b for a, b in zip(size_fn(idx), max_positions) ) ignored = [] itr = collect_filtered(check_size, indices, ignored) indices = np.fromiter(itr, dtype=np.int64, count=-1) return indices, ignored def filter_by_size(indices, dataset, max_positions, raise_exception=False): """ [deprecated] Filter indices based on their size. Use `FairseqDataset::filter_indices_by_size` instead. Args: indices (List[int]): ordered list of dataset indices dataset (FairseqDataset): fairseq dataset instance max_positions (tuple): filter elements larger than this size. Comparisons are done component-wise. raise_exception (bool, optional): if ``True``, raise an exception if any elements are filtered (default: False). """ warnings.warn( "data_utils.filter_by_size is deprecated. " "Use `FairseqDataset::filter_indices_by_size` instead.", stacklevel=2, ) if isinstance(max_positions, float) or isinstance(max_positions, int): if hasattr(dataset, "sizes") and isinstance(dataset.sizes, np.ndarray): ignored = indices[dataset.sizes[indices] > max_positions].tolist() indices = indices[dataset.sizes[indices] <= max_positions] elif ( hasattr(dataset, "sizes") and isinstance(dataset.sizes, list) and len(dataset.sizes) == 1 ): ignored = indices[dataset.sizes[0][indices] > max_positions].tolist() indices = indices[dataset.sizes[0][indices] <= max_positions] else: indices, ignored = _filter_by_size_dynamic( indices, dataset.size, max_positions ) else: indices, ignored = _filter_by_size_dynamic(indices, dataset.size, max_positions) if len(ignored) > 0 and raise_exception: raise Exception( ( "Size of sample #{} is invalid (={}) since max_positions={}, " "skip this example with --skip-invalid-size-inputs-valid-test" ).format(ignored[0], dataset.size(ignored[0]), max_positions) ) if len(ignored) > 0: logger.warning( ( "{} samples have invalid sizes and will be skipped, " "max_positions={}, first few sample ids={}" ).format(len(ignored), max_positions, ignored[:10]) ) return indices def filter_paired_dataset_indices_by_size(src_sizes, tgt_sizes, indices, max_sizes): """Filter a list of sample indices. Remove those that are longer than specified in max_sizes. Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if max_sizes is None: return indices, [] if type(max_sizes) in (int, float): max_src_size, max_tgt_size = max_sizes, max_sizes else: max_src_size, max_tgt_size = max_sizes if tgt_sizes is None: ignored = indices[src_sizes[indices] > max_src_size] else: ignored = indices[ (src_sizes[indices] > max_src_size) | (tgt_sizes[indices] > max_tgt_size) ] if len(ignored) > 0: if tgt_sizes is None: indices = indices[src_sizes[indices] <= max_src_size] else: indices = indices[ (src_sizes[indices] <= max_src_size) & (tgt_sizes[indices] <= max_tgt_size) ] return indices, ignored.tolist() def batch_by_size( indices, num_tokens_fn, num_tokens_vec=None, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, fixed_shapes=None, ): """ Yield mini-batches of indices bucketed by size. Batches may contain sequences of different lengths. Args: indices (List[int]): ordered list of dataset indices num_tokens_fn (callable): function that returns the number of tokens at a given index num_tokens_vec (List[int], optional): precomputed vector of the number of tokens for each index in indices (to enable faster batch generation) max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). required_batch_size_multiple (int, optional): require batch size to be less than N or a multiple of N (default: 1). fixed_shapes (List[Tuple[int, int]], optional): if given, batches will only be created with the given shapes. *max_sentences* and *required_batch_size_multiple* will be ignored (default: None). """ try: from fairseq.data.data_utils_fast import ( batch_by_size_fn, batch_by_size_vec, batch_fixed_shapes_fast, ) except ImportError: raise ImportError( "Please build Cython components with: " "`python setup.py build_ext --inplace`" ) except ValueError: raise ValueError( "Please build (or rebuild) Cython components with `python setup.py build_ext --inplace`." ) # added int() to avoid TypeError: an integer is required max_tokens = int(max_tokens) if max_tokens is not None else -1 max_sentences = max_sentences if max_sentences is not None else -1 bsz_mult = required_batch_size_multiple if not isinstance(indices, np.ndarray): indices = np.fromiter(indices, dtype=np.int64, count=-1) if num_tokens_vec is not None and not isinstance(num_tokens_vec, np.ndarray): num_tokens_vec = np.fromiter(num_tokens_vec, dtype=np.int64, count=-1) if fixed_shapes is None: if num_tokens_vec is None: return batch_by_size_fn( indices, num_tokens_fn, max_tokens, max_sentences, bsz_mult, ) else: return batch_by_size_vec( indices, num_tokens_vec, max_tokens, max_sentences, bsz_mult, ) else: fixed_shapes = np.array(fixed_shapes, dtype=np.int64) sort_order = np.lexsort( [ fixed_shapes[:, 1].argsort(), # length fixed_shapes[:, 0].argsort(), # bsz ] ) fixed_shapes_sorted = fixed_shapes[sort_order] return batch_fixed_shapes_fast(indices, num_tokens_fn, fixed_shapes_sorted) def post_process(sentence: str, symbol: str): if symbol == "sentencepiece": sentence = sentence.replace(" ", "").replace("\u2581", " ").strip() elif symbol == "wordpiece": sentence = sentence.replace(" ", "").replace("_", " ").strip() elif symbol == "letter": sentence = sentence.replace(" ", "").replace("|", " ").strip() elif symbol == "silence": import re sentence = sentence.replace("<SIL>", "") sentence = re.sub(" +", " ", sentence).strip() elif symbol == "_EOW": sentence = sentence.replace(" ", "").replace("_EOW", " ").strip() elif symbol in {"subword_nmt", "@@ ", "@@"}: if symbol == "subword_nmt": symbol = "@@ " sentence = (sentence + " ").replace(symbol, "").rstrip() elif symbol == "none": pass elif symbol is not None: raise NotImplementedError(f"Unknown post_process option: {symbol}") return sentence def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, require_same_masks: bool = True, pct_holes: float = 0.0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len and require_same_masks: mask_idc = np.random.choice(mask_idc, min_len, replace=False) if pct_holes > 0: num_holes = np.rint(len(mask_idc) * pct_holes).astype(int) mask_idc = np.random.choice( mask_idc, len(mask_idc) - num_holes, replace=False ) mask[i, mask_idc] = True return mask def get_mem_usage(): try: import psutil mb = 1024 * 1024 return f"used={psutil.virtual_memory().used / mb}Mb; avail={psutil.virtual_memory().available / mb}Mb" except ImportError: return "N/A" # lens: torch.LongTensor # returns: torch.BoolTensor def lengths_to_padding_mask(lens): bsz, max_lens = lens.size(0), torch.max(lens).item() mask = torch.arange(max_lens).to(lens.device).view(1, max_lens) mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens) return mask # lens: torch.LongTensor # returns: torch.BoolTensor def lengths_to_mask(lens): return ~lengths_to_padding_mask(lens) def get_buckets(sizes, num_buckets): buckets = np.unique( np.percentile( sizes, np.linspace(0, 100, num_buckets + 1), interpolation="lower", )[1:] ) return buckets def get_bucketed_sizes(orig_sizes, buckets): sizes = np.copy(orig_sizes) assert np.min(sizes) >= 0 start_val = -1 for end_val in buckets: mask = (sizes > start_val) & (sizes <= end_val) sizes[mask] = end_val start_val = end_val return sizes def _find_extra_valid_paths(dataset_path: str) -> set: paths = utils.split_paths(dataset_path) all_valid_paths = set() for sub_dir in paths: contents = PathManager.ls(sub_dir) valid_paths = [c for c in contents if re.match("valid*[0-9].*", c) is not None] all_valid_paths |= {os.path.basename(p) for p in valid_paths} # Remove .bin, .idx etc roots = {os.path.splitext(p)[0] for p in all_valid_paths} return roots def raise_if_valid_subsets_unintentionally_ignored(train_cfg) -> None: """Raises if there are paths matching 'valid*[0-9].*' which are not combined or ignored.""" if ( train_cfg.dataset.ignore_unused_valid_subsets or train_cfg.dataset.combine_valid_subsets or train_cfg.dataset.disable_validation or not hasattr(train_cfg.task, "data") ): return other_paths = _find_extra_valid_paths(train_cfg.task.data) specified_subsets = train_cfg.dataset.valid_subset.split(",") ignored_paths = [p for p in other_paths if p not in specified_subsets] if ignored_paths: advice = "Set --combine-val to combine them or --ignore-unused-valid-subsets to ignore them." msg = f"Valid paths {ignored_paths} will be ignored. {advice}" raise ValueError(msg)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/data_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class PrependTokenDataset(BaseWrapperDataset): def __init__(self, dataset, token=None): super().__init__(dataset) self.token = token if token is not None: self._sizes = np.array(dataset.sizes) + 1 else: self._sizes = dataset.sizes def __getitem__(self, idx): item = self.dataset[idx] if self.token is not None: item = torch.cat([item.new([self.token]), item]) return item @property def sizes(self): return self._sizes def num_tokens(self, index): n = self.dataset.num_tokens(index) if self.token is not None: n += 1 return n def size(self, index): n = self.dataset.size(index) if self.token is not None: n += 1 return n
KosmosX-API-main
kosmosX/fairseq/fairseq/data/prepend_token_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import FairseqDataset class TransformEosDataset(FairseqDataset): """A :class:`~fairseq.data.FairseqDataset` wrapper that appends/prepends/strips EOS. Note that the transformation is applied in :func:`collater`. Args: dataset (~fairseq.data.FairseqDataset): dataset to wrap eos (int): index of the end-of-sentence symbol append_eos_to_src (bool, optional): append EOS to the end of src remove_eos_from_src (bool, optional): remove EOS from the end of src append_eos_to_tgt (bool, optional): append EOS to the end of tgt remove_eos_from_tgt (bool, optional): remove EOS from the end of tgt """ def __init__( self, dataset, eos, append_eos_to_src=False, remove_eos_from_src=False, append_eos_to_tgt=False, remove_eos_from_tgt=False, has_target=True, ): if not isinstance(dataset, FairseqDataset): raise ValueError("dataset must be an instance of FairseqDataset") if append_eos_to_src and remove_eos_from_src: raise ValueError("cannot combine append_eos_to_src and remove_eos_from_src") if append_eos_to_tgt and remove_eos_from_tgt: raise ValueError("cannot combine append_eos_to_tgt and remove_eos_from_tgt") self.dataset = dataset self.eos = torch.LongTensor([eos]) self.append_eos_to_src = append_eos_to_src self.remove_eos_from_src = remove_eos_from_src self.append_eos_to_tgt = append_eos_to_tgt self.remove_eos_from_tgt = remove_eos_from_tgt self.has_target = has_target # precompute how we should adjust the reported sizes self._src_delta = 0 self._src_delta += 1 if append_eos_to_src else 0 self._src_delta -= 1 if remove_eos_from_src else 0 self._tgt_delta = 0 self._tgt_delta += 1 if append_eos_to_tgt else 0 self._tgt_delta -= 1 if remove_eos_from_tgt else 0 self._checked_src = False self._checked_tgt = False def _check_src(self, src, expect_eos): if not self._checked_src: assert (src[-1] == self.eos[0]) == expect_eos self._checked_src = True def _check_tgt(self, tgt, expect_eos): if self.has_target and not self._checked_tgt: assert (tgt[-1] == self.eos[0]) == expect_eos self._checked_tgt = True def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) def collater(self, samples): def transform(item): if self.append_eos_to_src: self.eos = self.eos.to(device=item["source"].device) self._check_src(item["source"], expect_eos=False) item["source"] = torch.cat([item["source"], self.eos]) if self.remove_eos_from_src: self.eos = self.eos.to(device=item["source"].device) self._check_src(item["source"], expect_eos=True) item["source"] = item["source"][:-1] if self.append_eos_to_tgt: self.eos = self.eos.to(device=item["target"].device) self._check_tgt(item["target"], expect_eos=False) item["target"] = torch.cat([item["target"], self.eos]) if self.remove_eos_from_tgt: self.eos = self.eos.to(device=item["target"].device) self._check_tgt(item["target"], expect_eos=True) item["target"] = item["target"][:-1] return item samples = list(map(transform, samples)) return self.dataset.collater(samples) def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): if self.has_target: src_len, tgt_len = self.dataset.size(index) return (src_len + self._src_delta, tgt_len + self._tgt_delta) else: return self.dataset.size(index) def ordered_indices(self): # NOTE: we assume that the ordering does not change based on the # addition or removal of eos return self.dataset.ordered_indices() @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): return self.dataset.prefetch(indices)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/transform_eos_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import BaseWrapperDataset class ColorizeDataset(BaseWrapperDataset): """Adds 'colors' property to net input that is obtained from the provided color getter for use by models""" def __init__(self, dataset, color_getter): super().__init__(dataset) self.color_getter = color_getter def collater(self, samples): base_collate = super().collater(samples) if len(base_collate) > 0: base_collate["net_input"]["colors"] = torch.tensor( list(self.color_getter(self.dataset, s["id"]) for s in samples), dtype=torch.long, ) return base_collate
KosmosX-API-main
kosmosX/fairseq/fairseq/data/colorize_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import FairseqDataset class RawLabelDataset(FairseqDataset): def __init__(self, labels): super().__init__() self.labels = labels def __getitem__(self, index): return self.labels[index] def __len__(self): return len(self.labels) def collater(self, samples): return torch.tensor(samples)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/raw_label_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class ListDataset(BaseWrapperDataset): def __init__(self, dataset, sizes=None): super().__init__(dataset) self._sizes = sizes def __iter__(self): for x in self.dataset: yield x def collater(self, samples): return samples @property def sizes(self): return self._sizes def num_tokens(self, index): return self.sizes[index] def size(self, index): return self.sizes[index] def set_epoch(self, epoch): pass
KosmosX-API-main
kosmosX/fairseq/fairseq/data/list_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from collections import OrderedDict from typing import Dict, Sequence import numpy as np from . import FairseqDataset, LanguagePairDataset logger = logging.getLogger(__name__) class RoundRobinZipDatasets(FairseqDataset): """Zip multiple :class:`~fairseq.data.FairseqDataset` instances together. Shorter datasets are repeated in a round-robin fashion to match the length of the longest one. Args: datasets (Dict[~fairseq.data.FairseqDataset]): a dictionary of :class:`~fairseq.data.FairseqDataset` instances. eval_key (str, optional): a key used at evaluation time that causes this instance to pass-through batches from *datasets[eval_key]*. """ def __init__(self, datasets, eval_key=None): super().__init__() if isinstance(datasets, dict): datasets = OrderedDict(datasets) assert isinstance(datasets, OrderedDict) assert datasets, "Can't make a RoundRobinZipDatasets out of nothing" for dataset in datasets.values(): assert isinstance(dataset, FairseqDataset) self.datasets = datasets self.eval_key = eval_key self.longest_dataset_key = max(datasets, key=lambda k: len(datasets[k])) self.longest_dataset = datasets[self.longest_dataset_key] self._ordered_indices: Dict[str, Sequence[int]] = None def _map_index(self, key, index): assert ( self._ordered_indices is not None ), "Must call RoundRobinZipDatasets.ordered_indices() first" o = self._ordered_indices[key] return o[index % len(o)] def __getitem__(self, index): if self.eval_key is None: return OrderedDict( [ (key, dataset[self._map_index(key, index)]) for key, dataset in self.datasets.items() ] ) else: # at evaluation time it's useful to pass-through batches from a single key return self.datasets[self.eval_key][self._map_index(self.eval_key, index)] def __len__(self): if self._ordered_indices is not None: return len(self._ordered_indices[self.longest_dataset_key]) return len(self.longest_dataset) def collater(self, samples): """Merge a list of samples to form a mini-batch.""" if len(samples) == 0: return None if self.eval_key is None: return OrderedDict( [ (key, dataset.collater([sample[key] for sample in samples])) for key, dataset in self.datasets.items() ] ) else: # at evaluation time it's useful to pass-through batches from a single key return self.datasets[self.eval_key].collater(samples) def num_tokens(self, index): """Return an example's length (number of tokens), used for batching.""" # TODO make it configurable whether to use max() or sum() here return max( dataset.num_tokens(self._map_index(key, index)) for key, dataset in self.datasets.items() ) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return { key: dataset.size(self._map_index(key, index)) for key, dataset in self.datasets.items() } def ordered_indices(self): """Ordered indices for batching.""" if self._ordered_indices is None: # Call the underlying dataset's ordered_indices() here, so that we # get the same random ordering as we would have from using the # underlying sub-datasets directly. self._ordered_indices = OrderedDict( [ (key, dataset.ordered_indices()) for key, dataset in self.datasets.items() ] ) return np.arange(len(self)) def filter_indices_by_size(self, indices, max_positions=None): """ Filter each sub-dataset independently, then update the round robin to work on the filtered sub-datasets. """ def _deep_until_language_pair(dataset): if isinstance(dataset, LanguagePairDataset): return dataset if hasattr(dataset, "tgt_dataset"): return _deep_until_language_pair(dataset.tgt_dataset) if hasattr(dataset, "dataset"): return _deep_until_language_pair(dataset.dataset) raise Exception(f"Don't know how to unwrap this dataset: {dataset}") if not isinstance(max_positions, dict): max_positions = {k: max_positions for k in self.datasets.keys()} ignored_some = False for key, dataset in self.datasets.items(): dataset = _deep_until_language_pair(dataset) self._ordered_indices[key], ignored = dataset.filter_indices_by_size( self._ordered_indices[key], max_positions[key] ) if len(ignored) > 0: ignored_some = True logger.warning( f"{len(ignored)} samples from {key} have invalid sizes and will be skipped, " f"max_positions={max_positions[key]}, first few sample ids={ignored[:10]}" ) # Since we are modifying in place the _ordered_indices, # it's not possible anymore to return valid ignored indices. # Hopefully the extra debug information print above should be enough to debug. # Ideally we would receive ignore_invalid_inputs so that we could have # a proper error message. return (np.arange(len(self)), [0] if ignored_some else []) @property def supports_prefetch(self): return all( getattr(dataset, "supports_prefetch", False) for dataset in self.datasets.values() ) def prefetch(self, indices): for key, dataset in self.datasets.items(): dataset.prefetch([self._map_index(key, index) for index in indices])
KosmosX-API-main
kosmosX/fairseq/fairseq/data/round_robin_zip_datasets.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import math import operator import os import queue import time from threading import Thread import numpy as np import torch from fairseq.data import data_utils logger = logging.getLogger(__name__) # Object used by _background_consumer to signal the source is exhausted # to the main thread. _sentinel = object() class CountingIterator(object): """Wrapper around an iterable that maintains the iteration count. Args: iterable (iterable): iterable to wrap start (int): starting iteration count. Note that this doesn't actually advance the iterator. total (int): override the iterator length returned by ``__len``. This can be used to truncate *iterator*. Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, start=None, total=None): self._itr = iter(iterable) self.n = start or getattr(iterable, "n", 0) self.total = total if total is not None else self.n + len(iterable) def __len__(self): return self.total def __iter__(self): return self def __next__(self): if not self.has_next(): raise StopIteration try: x = next(self._itr) except StopIteration: raise IndexError( f"Iterator expected to have length {self.total}, " "but exhausted at position {self.n}." ) self.n += 1 return x def has_next(self): """Whether the iterator has been exhausted.""" return self.n < self.total def skip(self, n): """Fast-forward the iterator by skipping n elements.""" for _ in range(n): next(self) return self def take(self, n): """Truncate the iterator to n elements at most.""" self.total = min(self.total, n) # Propagate this change to the underlying iterator if hasattr(self._itr, "take"): self._itr.take(max(n - self.n, 0)) return self class EpochBatchIterating(object): def __len__(self) -> int: raise NotImplementedError @property def next_epoch_idx(self): raise NotImplementedError def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): """Return a new iterator over the dataset. Args: shuffle (bool, optional): shuffle batches before returning the iterator (default: True). fix_batches_to_gpus (bool, optional): ensure that batches are always allocated to the same shards across epochs. Requires that :attr:`dataset` supports prefetching (default: False). set_dataset_epoch (bool, optional): update the wrapped Dataset with the new epoch number (default: True). """ raise NotImplementedError def end_of_epoch(self) -> bool: """Returns whether the most recent epoch iterator has been exhausted""" raise NotImplementedError @property def iterations_in_epoch(self) -> int: """The number of consumed batches in the current epoch.""" raise NotImplementedError def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" raise NotImplementedError def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" raise NotImplementedError @property def first_batch(self): return "DUMMY" class StreamingEpochBatchIterator(EpochBatchIterating): """A steaming-style iterator over a :class:`torch.utils.data.IterableDataset`. Args: dataset (~torch.utils.data.Dataset): dataset from which to load the data max_sentences: batch size collate_fn (callable): merges a list of samples to form a mini-batch num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). buffer_size (int, optional): the number of batches to keep ready in the queue. Helps speeding up dataloading. When buffer_size is zero, the default torch.utils.data.DataLoader preloading is used. timeout (int, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative (default: ``0``). """ def __init__( self, dataset, max_sentences=1, collate_fn=None, epoch=1, num_workers=0, buffer_size=0, timeout=0, ): assert isinstance(dataset, torch.utils.data.IterableDataset) self.dataset = dataset self.max_sentences = max_sentences self.collate_fn = collate_fn self.epoch = max(epoch, 1) # we use 1-based indexing for epochs self.num_workers = num_workers # This upper limit here is to prevent people from abusing this feature # in a shared computing environment. self.buffer_size = min(buffer_size, 20) self.timeout = timeout self._current_epoch_iterator = None @property def next_epoch_idx(self): """Return the epoch index after *next_epoch_itr* is called.""" if self._current_epoch_iterator is not None and self.end_of_epoch(): return self.epoch + 1 else: return self.epoch def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): self.epoch = self.next_epoch_idx if set_dataset_epoch and hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(self.epoch) self._current_epoch_iterator = self._get_iterator_for_epoch(self.epoch, shuffle) return self._current_epoch_iterator def end_of_epoch(self) -> bool: return not self._current_epoch_iterator.has_next() @property def iterations_in_epoch(self) -> int: if self._current_epoch_iterator is not None: return self._current_epoch_iterator.n return 0 def state_dict(self): return { "epoch": self.epoch, } def load_state_dict(self, state_dict): self.epoch = state_dict["epoch"] def _get_iterator_for_epoch(self, epoch, shuffle, offset=0): if self.num_workers > 0: os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" # Create data loader worker_init_fn = getattr(self.dataset, "worker_init_fn", None) itr = torch.utils.data.DataLoader( self.dataset, batch_size=self.max_sentences, collate_fn=self.collate_fn, num_workers=self.num_workers, timeout=self.timeout, worker_init_fn=worker_init_fn, pin_memory=True, ) # Wrap with a BufferedIterator if needed if self.buffer_size > 0: itr = BufferedIterator(self.buffer_size, itr) # Wrap with CountingIterator itr = CountingIterator(itr, start=offset) return itr class EpochBatchIterator(EpochBatchIterating): """A multi-epoch iterator over a :class:`torch.utils.data.Dataset`. Compared to :class:`torch.utils.data.DataLoader`, this iterator: - can be reused across multiple epochs with the :func:`next_epoch_itr` method (optionally shuffled between epochs) - can be serialized/deserialized with the :func:`state_dict` and :func:`load_state_dict` methods - supports sharding with the *num_shards* and *shard_id* arguments Args: dataset (~torch.utils.data.Dataset): dataset from which to load the data collate_fn (callable): merges a list of samples to form a mini-batch batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of indices, or a callable to create such an iterator (~torch.utils.data.Sampler). A callable batch_sampler will be called for each epoch to enable per epoch dynamic batch iterators defined by this callable batch_sampler. seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). buffer_size (int, optional): the number of batches to keep ready in the queue. Helps speeding up dataloading. When buffer_size is zero, the default torch.utils.data.DataLoader preloading is used. timeout (int, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative (default: ``0``). disable_shuffling (bool, optional): force disable shuffling (default: ``False``). skip_remainder_batch (bool, optional): if set, discard the last batch in an epoch for the sake of training stability, as the last batch is usually smaller than local_batch_size * distributed_word_size (default: ``False``). grouped_shuffling (bool, optional): enable shuffling batches in groups of num_shards. Ensures that each GPU receives similar length sequences when batches are sorted by length. """ def __init__( self, dataset, collate_fn, batch_sampler, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, buffer_size=0, timeout=0, disable_shuffling=False, skip_remainder_batch=False, grouped_shuffling=False, ): assert isinstance(dataset, torch.utils.data.Dataset) self.dataset = dataset self.collate_fn = collate_fn self.batch_sampler = batch_sampler self._frozen_batches = ( tuple(batch_sampler) if not callable(batch_sampler) else None ) self.seed = seed self.num_shards = num_shards self.shard_id = shard_id self.num_workers = num_workers # This upper limit here is to prevent people from abusing this feature # in a shared computing environment. self.buffer_size = min(buffer_size, 20) self.timeout = timeout self.disable_shuffling = disable_shuffling self.skip_remainder_batch = skip_remainder_batch self.grouped_shuffling = grouped_shuffling self.epoch = max(epoch, 1) # we use 1-based indexing for epochs self.shuffle = not disable_shuffling self._cur_epoch_itr = None self._next_epoch_itr = None self._supports_prefetch = getattr(dataset, "supports_prefetch", False) @property def frozen_batches(self): if self._frozen_batches is None: self._frozen_batches = tuple(self.batch_sampler(self.dataset, self.epoch)) return self._frozen_batches @property def first_batch(self): if len(self.frozen_batches) == 0: raise Exception( "The dataset is empty. This could indicate " "that all elements in the dataset have been skipped. " "Try increasing the max number of allowed tokens or using " "a larger dataset." ) if getattr(self.dataset, "supports_fetch_outside_dataloader", True): return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0]]) else: return "DUMMY" def __len__(self): return int(math.ceil(len(self.frozen_batches) / float(self.num_shards))) @property def n(self): return self.iterations_in_epoch @property def next_epoch_idx(self): """Return the epoch index after *next_epoch_itr* is called.""" if self._next_epoch_itr is not None: return self.epoch elif self._cur_epoch_itr is not None and self.end_of_epoch(): return self.epoch + 1 else: return self.epoch def next_epoch_itr( self, shuffle=True, fix_batches_to_gpus=False, set_dataset_epoch=True ): """Return a new iterator over the dataset. Args: shuffle (bool, optional): shuffle batches before returning the iterator (default: True). fix_batches_to_gpus (bool, optional): ensure that batches are always allocated to the same shards across epochs. Requires that :attr:`dataset` supports prefetching (default: False). set_dataset_epoch (bool, optional): update the wrapped Dataset with the new epoch number (default: True). """ if self.disable_shuffling: shuffle = False prev_epoch = self.epoch self.epoch = self.next_epoch_idx if set_dataset_epoch and hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(self.epoch) if self._next_epoch_itr is not None: self._cur_epoch_itr = self._next_epoch_itr self._next_epoch_itr = None else: if callable(self.batch_sampler) and prev_epoch != self.epoch: # reset _frozen_batches to refresh the next epoch self._frozen_batches = None self._cur_epoch_itr = self._get_iterator_for_epoch( self.epoch, shuffle, fix_batches_to_gpus=fix_batches_to_gpus, ) self.shuffle = shuffle return self._cur_epoch_itr def end_of_epoch(self) -> bool: """Returns whether the most recent epoch iterator has been exhausted""" return not self._cur_epoch_itr.has_next() @property def iterations_in_epoch(self): """The number of consumed batches in the current epoch.""" if self._cur_epoch_itr is not None: return self._cur_epoch_itr.n elif self._next_epoch_itr is not None: return self._next_epoch_itr.n return 0 def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" if self.end_of_epoch(): epoch = self.epoch + 1 iter_in_epoch = 0 else: epoch = self.epoch iter_in_epoch = self.iterations_in_epoch return { "version": 2, "epoch": epoch, "iterations_in_epoch": iter_in_epoch, "shuffle": self.shuffle, } def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.epoch = state_dict["epoch"] itr_pos = state_dict.get("iterations_in_epoch", 0) version = state_dict.get("version", 1) if itr_pos > 0: # fast-forward epoch iterator self._next_epoch_itr = self._get_iterator_for_epoch( self.epoch, shuffle=state_dict.get("shuffle", True), offset=itr_pos, ) if self._next_epoch_itr is None: if version == 1: # legacy behavior: we finished the epoch, increment epoch counter self.epoch += 1 else: raise RuntimeError( "Cannot resume training due to dataloader mismatch, please " "report this to the fairseq developers. You can relaunch " "training with `--reset-dataloader` and it should work." ) else: self._next_epoch_itr = None def _get_iterator_for_epoch( self, epoch, shuffle, fix_batches_to_gpus=False, offset=0 ): def shuffle_batches(batches, seed): with data_utils.numpy_seed(seed): if self.grouped_shuffling: grouped_batches = [ batches[(i * self.num_shards) : ((i + 1) * self.num_shards)] for i in range((len(batches) // self.num_shards)) ] np.random.shuffle(grouped_batches) batches = list(itertools.chain(*grouped_batches)) else: np.random.shuffle(batches) return batches if self._supports_prefetch: batches = self.frozen_batches if shuffle and not fix_batches_to_gpus: batches = shuffle_batches(list(batches), self.seed + epoch) batches = list( ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) ) self.dataset.prefetch([i for s in batches for i in s]) if shuffle and fix_batches_to_gpus: batches = shuffle_batches(batches, self.seed + epoch + self.shard_id) else: if shuffle: batches = shuffle_batches(list(self.frozen_batches), self.seed + epoch) else: batches = self.frozen_batches batches = list( ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) ) if offset > 0 and offset >= len(batches): return None if self.num_workers > 0: os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" # Create data loader itr = torch.utils.data.DataLoader( self.dataset, collate_fn=self.collate_fn, batch_sampler=batches[offset:], num_workers=self.num_workers, timeout=self.timeout, pin_memory=True, ) # Wrap with a BufferedIterator if needed if self.buffer_size > 0: itr = BufferedIterator(self.buffer_size, itr) # Wrap with CountingIterator itr = CountingIterator(itr, start=offset) if self.skip_remainder_batch: # TODO: Below is a lazy implementation which discard the final batch regardless # of whether it is a full batch or not. total_num_itrs = len(batches) - 1 itr.take(total_num_itrs) logger.info(f"skip final residual batch, total_num_itrs = {total_num_itrs}") return itr class GroupedIterator(CountingIterator): """Wrapper around an iterable that returns groups (chunks) of items. Args: iterable (iterable): iterable to wrap chunk_size (int): size of each chunk skip_remainder_batch (bool, optional): if set, discard the last grouped batch in each training epoch, as the last grouped batch is usually smaller than local_batch_size * distributed_word_size * chunk_size (default: ``False``). Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, chunk_size, skip_remainder_batch=False): if skip_remainder_batch: total_num_itrs = int(math.floor(len(iterable) / float(chunk_size))) logger.info( f"skip final residual batch, grouped total_num_itrs = {total_num_itrs}" ) else: total_num_itrs = int(math.ceil(len(iterable) / float(chunk_size))) logger.info(f"grouped total_num_itrs = {total_num_itrs}") itr = _chunk_iterator(iterable, chunk_size, skip_remainder_batch) super().__init__( itr, start=int(math.ceil(getattr(iterable, "n", 0) / float(chunk_size))), total=total_num_itrs, ) self.chunk_size = chunk_size if skip_remainder_batch: self.take(total_num_itrs) # TODO: [Hack] Here the grouped iterator modifies the base iterator size so that # training can move into the next epoch once the grouped iterator is exhausted. # Double-check this implementation in case unexpected behavior occurs. iterable.take(total_num_itrs * chunk_size) def _chunk_iterator(itr, chunk_size, skip_remainder_batch=False): chunk = [] for x in itr: chunk.append(x) if len(chunk) == chunk_size: yield chunk chunk = [] if not skip_remainder_batch and len(chunk) > 0: yield chunk class ShardedIterator(CountingIterator): """A sharded wrapper around an iterable, padded to length. Args: iterable (iterable): iterable to wrap num_shards (int): number of shards to split the iterable into shard_id (int): which shard to iterator over fill_value (Any, optional): padding value when the iterable doesn't evenly divide *num_shards* (default: None). Attributes: n (int): number of elements consumed from this iterator """ def __init__( self, iterable, num_shards, shard_id, fill_value=None, skip_remainder_batch=None ): """ Args: skip_remainder_batch: ignored""" if shard_id < 0 or shard_id >= num_shards: raise ValueError("shard_id must be between 0 and num_shards") sharded_len = int(math.ceil(len(iterable) / float(num_shards))) itr = map( operator.itemgetter(1), itertools.zip_longest( range(sharded_len), itertools.islice(iterable, shard_id, len(iterable), num_shards), fillvalue=fill_value, ), ) super().__init__( itr, start=int(math.ceil(getattr(iterable, "n", 0) / float(num_shards))), total=sharded_len, ) class BackgroundConsumer(Thread): def __init__(self, queue, source, max_len, cuda_device): Thread.__init__(self) self._queue = queue self._source = source self._max_len = max_len self.count = 0 self.cuda_device = cuda_device def run(self): # set_device to avoid creation of GPU0 context when using pin_memory if self.cuda_device is not None: torch.cuda.set_device(self.cuda_device) try: for item in self._source: self._queue.put(item) # Stop if we reached the maximum length self.count += 1 if self._max_len is not None and self.count >= self._max_len: break # Signal the consumer we are done. self._queue.put(_sentinel) except Exception as e: self._queue.put(e) class BufferedIterator(object): def __init__(self, size, iterable): self._queue = queue.Queue(size) self._iterable = iterable self._consumer = None self.start_time = time.time() self.warning_time = None self.total = len(iterable) def _create_consumer(self): self._consumer = BackgroundConsumer( self._queue, self._iterable, self.total, torch.cuda.current_device() if torch.cuda.is_available() else None, ) self._consumer.daemon = True self._consumer.start() def __iter__(self): return self def __len__(self): return self.total def take(self, n): self.total = min(self.total, n) # Propagate this change to the underlying iterator if hasattr(self._iterable, "take"): self._iterable.take(n) return self def __next__(self): # Create consumer if not created yet if self._consumer is None: self._create_consumer() # Notify the user if there is a data loading bottleneck if self._queue.qsize() < min(2, max(1, self._queue.maxsize // 2)): if time.time() - self.start_time > 5 * 60: if ( self.warning_time is None or time.time() - self.warning_time > 15 * 60 ): logger.debug( "Data loading buffer is empty or nearly empty. This may " "indicate a data loading bottleneck, and increasing the " "number of workers (--num-workers) may help." ) self.warning_time = time.time() # Get next example item = self._queue.get(True) if isinstance(item, Exception): raise item if item is _sentinel: raise StopIteration() return item class GroupedEpochBatchIterator(EpochBatchIterator): """Grouped version of EpochBatchIterator It takes several samplers from different datasets. Each epoch shuffle the dataset wise sampler individually with different random seed. The those sub samplers are combined with into one big samplers with deterministic permutation to mix batches from different datasets. It will act like EpochBatchIterator but make sure 1) data from one data set each time 2) for different workers, they use the same order to fetch the data so they will use data from the same dataset everytime mult_rate is used for update_freq > 1 case where we want to make sure update_freq mini-batches come from same source """ def __init__( self, dataset, collate_fn, batch_samplers, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=0, mult_rate=1, buffer_size=0, skip_remainder_batch=False, ): super().__init__( dataset, collate_fn, batch_samplers, seed, num_shards, shard_id, num_workers, epoch, buffer_size, skip_remainder_batch=skip_remainder_batch, ) # level 0: sub-samplers 1: batch_idx 2: batches self._frozen_batches = tuple([tuple(sub_batch) for sub_batch in batch_samplers]) self.step_size = mult_rate * num_shards self.lengths = [ (len(x) // self.step_size) * self.step_size for x in self.frozen_batches ] def __len__(self): return sum(self.lengths) @property def first_batch(self): if len(self.frozen_batches) == 0: raise Exception( "The dataset is empty. This could indicate " "that all elements in the dataset have been skipped. " "Try increasing the max number of allowed tokens or using " "a larger dataset." ) if self.dataset.supports_fetch_outside_dataloader: return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0][0]]) else: return "DUMMY" def _get_iterator_for_epoch( self, epoch, shuffle, fix_batches_to_gpus=False, offset=0 ): def shuffle_batches(batches, seed): with data_utils.numpy_seed(seed): np.random.shuffle(batches) return batches def return_full_batches(batch_sets, seed, shuffle): if shuffle: batch_sets = [shuffle_batches(list(x), seed) for x in batch_sets] batch_sets = [ batch_sets[i][: self.lengths[i]] for i in range(len(batch_sets)) ] batches = list(itertools.chain.from_iterable(batch_sets)) if shuffle: with data_utils.numpy_seed(seed): idx = np.random.permutation(len(batches) // self.step_size) if len(idx) * self.step_size != len(batches): raise ValueError( "ERROR: %d %d %d %d" % (len(idx), self.step_size, len(batches), self.shard_id), ":".join(["%d" % x for x in self.lengths]), ) mini_shards = [ batches[i * self.step_size : (i + 1) * self.step_size] for i in idx ] batches = list(itertools.chain.from_iterable(mini_shards)) return batches if self._supports_prefetch: raise NotImplementedError("To be implemented") else: batches = return_full_batches( self.frozen_batches, self.seed + epoch, shuffle ) batches = list( ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) ) if offset > 0 and offset >= len(batches): return None if self.num_workers > 0: os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" itr = torch.utils.data.DataLoader( self.dataset, collate_fn=self.collate_fn, batch_sampler=batches[offset:], num_workers=self.num_workers, ) if self.buffer_size > 0: itr = BufferedIterator(self.buffer_size, itr) return CountingIterator(itr, start=offset)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/iterators.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import subprocess import json import tempfile import hashlib from typing import Hashable try: import pyarrow.plasma as plasma PYARROW_AVAILABLE = True except ImportError: plasma = None PYARROW_AVAILABLE = False class PlasmaArray: """ Wrapper around numpy arrays that automatically moves the data to shared memory upon serialization. This is particularly helpful when passing numpy arrays through multiprocessing, so that data is not unnecessarily duplicated or pickled. """ def __init__(self, array): super().__init__() self.array = array self.disable = array.nbytes < 134217728 # disable for arrays <128MB self.object_id = None self.path = None # variables with underscores shouldn't be pickled self._client = None self._server = None self._server_tmp = None self._plasma = None @property def plasma(self): if self._plasma is None and not self.disable: self._plasma = plasma return self._plasma def start_server(self): if self.plasma is None or self._server is not None: return assert self.object_id is None assert self.path is None self._server_tmp = tempfile.NamedTemporaryFile() self.path = self._server_tmp.name self._server = subprocess.Popen( ["plasma_store", "-m", str(int(1.05 * self.array.nbytes)), "-s", self.path] ) @property def client(self): if self._client is None: assert self.path is not None self._client = self.plasma.connect(self.path, num_retries=200) return self._client def __getstate__(self): """Called on pickle load""" if self.plasma is None: return self.__dict__ if self.object_id is None: self.start_server() self.object_id = self.client.put(self.array) state = self.__dict__.copy() del state["array"] state["_client"] = None state["_server"] = None state["_server_tmp"] = None state["_plasma"] = None return state def __setstate__(self, state): """Called on pickle save""" self.__dict__.update(state) if self.plasma is None: return self.array = self.client.get(self.object_id) def __del__(self): if self._server is not None: self._server.kill() self._server = None self._server_tmp.close() self._server_tmp = None DEFAULT_PLASMA_PATH = "/tmp/plasma" class PlasmaView: """Interface to write and read from shared memory. Whereas PlasmaArray writes to plasma on serialization, PlasmaView writes to shared memory on instantiation.""" def __init__(self, array, split_path: str, hash_data: Hashable, plasma_path=None): """ Args: array: numpy array to store. This can be read with ``PlasmaView().array`` split_path: the path whence the data was read, used for hashing hash_data: other metadata about the array that can be used to create a unique key. as of writing, the 3 callers in ``TokenBlockDataset`` use:: hash_data = ((block_size, document_sep_len, str(break_mode), len(dataset)), 0|1|2) """ assert PYARROW_AVAILABLE assert split_path is not None if plasma_path is None: plasma_path = DEFAULT_PLASMA_PATH self.path = plasma_path self.split_path = split_path self._client = None # Initialize lazily for pickle. plasma clients should not be deep copied or serialized. self._n = None self.object_id = self.get_object_id(self.split_path, hash_data) try: self.client.put(array, object_id=self.object_id) except plasma.PlasmaObjectExists: pass @property def client(self): if self._client is None: self._client = plasma.connect(self.path, num_retries=200) return self._client @property def array(self): """Fetch a read only view of an np.array, stored in plasma.""" ret = self.client.get(self.object_id) return ret @staticmethod def get_object_id(split_path: str, hash_data: Hashable): """Returns plasma.ObjectID from hashing split_path and object_num.""" hash = hashlib.blake2b(bytes(split_path, "utf-8"), digest_size=20) harg = json.dumps(hash_data).encode("utf-8") hash.update(harg) return plasma.ObjectID(hash.digest()) def __getstate__(self): """Called on pickle save""" self.disconnect() state = self.__dict__.copy() assert state["_client"] is None assert "object_id" in state return state def __setstate__(self, state): """Called on pickle load""" self.__dict__.update(state) def __del__(self): self.disconnect() def disconnect(self): if self._client is not None: self._client.disconnect() self._client = None def __len__(self): """Save reads by caching len""" if self._n is None: self._n = len(self.array) return self._n GB100 = (1024 ** 3) * 100 class PlasmaStore: def __init__(self, path=DEFAULT_PLASMA_PATH, nbytes: int = GB100): self.server = self.start(path, nbytes) def __del__(self): self.server.kill() @staticmethod def start(path=DEFAULT_PLASMA_PATH, nbytes: int = GB100) -> subprocess.Popen: if not PYARROW_AVAILABLE: raise ImportError("please run pip install pyarrow to use --use_plasma_view") # best practice is to allocate more space than we need. The limitation seems to be the size of /dev/shm _server = subprocess.Popen(["plasma_store", "-m", str(nbytes), "-s", path]) plasma.connect(path, num_retries=200) # If we can't connect we fail immediately return _server
KosmosX-API-main
kosmosX/fairseq/fairseq/data/plasma_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np from fairseq.data import BaseWrapperDataset, plasma_utils logger = logging.getLogger(__name__) class ResamplingDataset(BaseWrapperDataset): """Randomly samples from a given dataset at each epoch. Sampling is done with or without replacement, depending on the "replace" parameter. Optionally, the epoch size can be rescaled. This is potentially desirable to increase per-epoch coverage of the base dataset (since sampling with replacement means that many items in the dataset will be left out). In the case of sampling without replacement, size_ratio should be strictly less than 1. Args: dataset (~torch.utils.data.Dataset): dataset on which to sample. weights (List[float]): list of probability weights (default: None, which corresponds to uniform sampling). replace (bool): sampling mode; True for "with replacement", or False for "without replacement" (default: True) size_ratio (float): the ratio to subsample to; must be positive (default: 1.0). batch_by_size (bool): whether or not to batch by sequence length (default: True). seed (int): RNG seed to use (default: 0). epoch (int): starting epoch number (default: 1). """ def __init__( self, dataset, weights=None, replace=True, size_ratio=1.0, batch_by_size=True, seed=0, epoch=1, ): super().__init__(dataset) if weights is None: self.weights = None else: assert len(weights) == len(dataset) weights_arr = np.array(weights, dtype=np.float64) weights_arr /= weights_arr.sum() self.weights = plasma_utils.PlasmaArray(weights_arr) self.replace = replace assert size_ratio > 0.0 if not self.replace: assert size_ratio < 1.0 self.size_ratio = float(size_ratio) self.actual_size = np.ceil(len(dataset) * self.size_ratio).astype(int) self.batch_by_size = batch_by_size self.seed = seed self._cur_epoch = None self._cur_indices = None self.set_epoch(epoch) def __getitem__(self, index): return self.dataset[self._cur_indices.array[index]] def __len__(self): return self.actual_size @property def sizes(self): if isinstance(self.dataset.sizes, list): return [s[self._cur_indices.array] for s in self.dataset.sizes] return self.dataset.sizes[self._cur_indices.array] def num_tokens(self, index): return self.dataset.num_tokens(self._cur_indices.array[index]) def size(self, index): return self.dataset.size(self._cur_indices.array[index]) def ordered_indices(self): if self.batch_by_size: order = [ np.arange(len(self)), self.sizes, ] # No need to handle `self.shuffle == True` return np.lexsort(order) else: return np.arange(len(self)) def prefetch(self, indices): self.dataset.prefetch(self._cur_indices.array[indices]) @property def can_reuse_epoch_itr_across_epochs(self): return False def set_epoch(self, epoch): logger.debug("ResamplingDataset.set_epoch: {}".format(epoch)) super().set_epoch(epoch) if epoch == self._cur_epoch: return self._cur_epoch = epoch # Generate a weighted sample of indices as a function of the # random seed and the current epoch. rng = np.random.RandomState( [ 42, # magic number self.seed % (2 ** 32), # global seed self._cur_epoch, # epoch index ] ) self._cur_indices = plasma_utils.PlasmaArray( rng.choice( len(self.dataset), self.actual_size, replace=self.replace, p=(None if self.weights is None else self.weights.array), ) )
KosmosX-API-main
kosmosX/fairseq/fairseq/data/resampling_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch from fairseq.data import FairseqDataset, data_utils logger = logging.getLogger(__name__) def collate( samples, pad_idx, eos_idx, left_pad_source=True, left_pad_target=False, input_feeding=True, pad_to_length=None, pad_to_multiple=1, ): if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad, move_eos_to_beginning, pad_to_length=pad_to_length, pad_to_multiple=pad_to_multiple, ) def check_alignment(alignment, src_len, tgt_len): if alignment is None or len(alignment) == 0: return False if ( alignment[:, 0].max().item() >= src_len - 1 or alignment[:, 1].max().item() >= tgt_len - 1 ): logger.warning("alignment size mismatch found, skipping alignment!") return False return True def compute_alignment_weights(alignments): """ Given a tensor of shape [:, 2] containing the source-target indices corresponding to the alignments, a weight vector containing the inverse frequency of each target index is computed. For e.g. if alignments = [[5, 7], [2, 3], [1, 3], [4, 2]], then a tensor containing [1., 0.5, 0.5, 1] should be returned (since target index 3 is repeated twice) """ align_tgt = alignments[:, 1] _, align_tgt_i, align_tgt_c = torch.unique( align_tgt, return_inverse=True, return_counts=True ) align_weights = align_tgt_c[align_tgt_i[np.arange(len(align_tgt))]] return 1.0 / align_weights.float() id = torch.LongTensor([s["id"] for s in samples]) src_tokens = merge( "source", left_pad=left_pad_source, pad_to_length=pad_to_length["source"] if pad_to_length is not None else None, ) # sort by descending source length src_lengths = torch.LongTensor( [s["source"].ne(pad_idx).long().sum() for s in samples] ) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge( "target", left_pad=left_pad_target, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) target = target.index_select(0, sort_order) tgt_lengths = torch.LongTensor( [s["target"].ne(pad_idx).long().sum() for s in samples] ).index_select(0, sort_order) ntokens = tgt_lengths.sum().item() if samples[0].get("prev_output_tokens", None) is not None: prev_output_tokens = merge("prev_output_tokens", left_pad=left_pad_target) elif input_feeding: # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( "target", left_pad=left_pad_target, move_eos_to_beginning=True, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) else: ntokens = src_lengths.sum().item() batch = { "id": id, "nsentences": len(samples), "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, "target": target, } if prev_output_tokens is not None: batch["net_input"]["prev_output_tokens"] = prev_output_tokens.index_select( 0, sort_order ) if samples[0].get("alignment", None) is not None: bsz, tgt_sz = batch["target"].shape src_sz = batch["net_input"]["src_tokens"].shape[1] offsets = torch.zeros((len(sort_order), 2), dtype=torch.long) offsets[:, 1] += torch.arange(len(sort_order), dtype=torch.long) * tgt_sz if left_pad_source: offsets[:, 0] += src_sz - src_lengths if left_pad_target: offsets[:, 1] += tgt_sz - tgt_lengths alignments = [ alignment + offset for align_idx, offset, src_len, tgt_len in zip( sort_order, offsets, src_lengths, tgt_lengths ) for alignment in [samples[align_idx]["alignment"].view(-1, 2)] if check_alignment(alignment, src_len, tgt_len) ] if len(alignments) > 0: alignments = torch.cat(alignments, dim=0) align_weights = compute_alignment_weights(alignments) batch["alignments"] = alignments batch["align_weights"] = align_weights if samples[0].get("constraints", None) is not None: # Collate the packed constraints across the samples, padding to # the length of the longest sample. lens = [sample.get("constraints").size(0) for sample in samples] max(lens) constraints = torch.zeros((len(samples), max(lens))).long() for i, sample in enumerate(samples): constraints[i, 0 : lens[i]] = samples[i].get("constraints") batch["constraints"] = constraints.index_select(0, sort_order) return batch class LanguagePairDataset(FairseqDataset): """ A pair of torch.utils.data.Datasets. Args: src (torch.utils.data.Dataset): source dataset to wrap src_sizes (List[int]): source sentence lengths src_dict (~fairseq.data.Dictionary): source vocabulary tgt (torch.utils.data.Dataset, optional): target dataset to wrap tgt_sizes (List[int], optional): target sentence lengths tgt_dict (~fairseq.data.Dictionary, optional): target vocabulary left_pad_source (bool, optional): pad source tensors on the left side (default: True). left_pad_target (bool, optional): pad target tensors on the left side (default: False). shuffle (bool, optional): shuffle dataset elements before batching (default: True). input_feeding (bool, optional): create a shifted version of the targets to be passed into the model for teacher forcing (default: True). remove_eos_from_source (bool, optional): if set, removes eos from end of source if it's present (default: False). append_eos_to_target (bool, optional): if set, appends eos to end of target if it's absent (default: False). align_dataset (torch.utils.data.Dataset, optional): dataset containing alignments. constraints (Tensor, optional): 2d tensor with a concatenated, zero- delimited list of constraints for each sentence. append_bos (bool, optional): if set, appends bos to the beginning of source/target sentence. num_buckets (int, optional): if set to a value greater than 0, then batches will be bucketed into the given number of batch shapes. src_lang_id (int, optional): source language ID, if set, the collated batch will contain a field 'src_lang_id' in 'net_input' which indicates the source language of the samples. tgt_lang_id (int, optional): target language ID, if set, the collated batch will contain a field 'tgt_lang_id' which indicates the target language of the samples. """ def __init__( self, src, src_sizes, src_dict, tgt=None, tgt_sizes=None, tgt_dict=None, left_pad_source=True, left_pad_target=False, shuffle=True, input_feeding=True, remove_eos_from_source=False, append_eos_to_target=False, align_dataset=None, constraints=None, append_bos=False, eos=None, num_buckets=0, src_lang_id=None, tgt_lang_id=None, pad_to_multiple=1, ): if tgt_dict is not None: assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() if tgt is not None: assert len(src) == len( tgt ), "Source and target must contain the same number of examples" self.src = src self.tgt = tgt self.src_sizes = np.array(src_sizes) self.tgt_sizes = np.array(tgt_sizes) if tgt_sizes is not None else None self.sizes = ( np.vstack((self.src_sizes, self.tgt_sizes)).T if self.tgt_sizes is not None else self.src_sizes ) self.src_dict = src_dict self.tgt_dict = tgt_dict self.left_pad_source = left_pad_source self.left_pad_target = left_pad_target self.shuffle = shuffle self.input_feeding = input_feeding self.remove_eos_from_source = remove_eos_from_source self.append_eos_to_target = append_eos_to_target self.align_dataset = align_dataset if self.align_dataset is not None: assert ( self.tgt_sizes is not None ), "Both source and target needed when alignments are provided" self.constraints = constraints self.append_bos = append_bos self.eos = eos if eos is not None else src_dict.eos() self.src_lang_id = src_lang_id self.tgt_lang_id = tgt_lang_id if num_buckets > 0: from fairseq.data import BucketPadLengthDataset self.src = BucketPadLengthDataset( self.src, sizes=self.src_sizes, num_buckets=num_buckets, pad_idx=self.src_dict.pad(), left_pad=self.left_pad_source, ) self.src_sizes = self.src.sizes logger.info("bucketing source lengths: {}".format(list(self.src.buckets))) if self.tgt is not None: self.tgt = BucketPadLengthDataset( self.tgt, sizes=self.tgt_sizes, num_buckets=num_buckets, pad_idx=self.tgt_dict.pad(), left_pad=self.left_pad_target, ) self.tgt_sizes = self.tgt.sizes logger.info( "bucketing target lengths: {}".format(list(self.tgt.buckets)) ) # determine bucket sizes using self.num_tokens, which will return # the padded lengths (thanks to BucketPadLengthDataset) num_tokens = np.vectorize(self.num_tokens, otypes=[np.compat.long]) self.bucketed_num_tokens = num_tokens(np.arange(len(self.src))) self.buckets = [ (None, num_tokens) for num_tokens in np.unique(self.bucketed_num_tokens) ] else: self.buckets = None self.pad_to_multiple = pad_to_multiple def get_batch_shapes(self): return self.buckets def __getitem__(self, index): tgt_item = self.tgt[index] if self.tgt is not None else None src_item = self.src[index] # Append EOS to end of tgt sentence if it does not have an EOS and remove # EOS from end of src sentence if it exists. This is useful when we use # use existing datasets for opposite directions i.e., when we want to # use tgt_dataset as src_dataset and vice versa if self.append_eos_to_target: eos = self.tgt_dict.eos() if self.tgt_dict else self.src_dict.eos() if self.tgt and self.tgt[index][-1] != eos: tgt_item = torch.cat([self.tgt[index], torch.LongTensor([eos])]) if self.append_bos: bos = self.tgt_dict.bos() if self.tgt_dict else self.src_dict.bos() if self.tgt and self.tgt[index][0] != bos: tgt_item = torch.cat([torch.LongTensor([bos]), self.tgt[index]]) bos = self.src_dict.bos() if self.src[index][0] != bos: src_item = torch.cat([torch.LongTensor([bos]), self.src[index]]) if self.remove_eos_from_source: eos = self.src_dict.eos() if self.src[index][-1] == eos: src_item = self.src[index][:-1] example = { "id": index, "source": src_item, "target": tgt_item, } if self.align_dataset is not None: example["alignment"] = self.align_dataset[index] if self.constraints is not None: example["constraints"] = self.constraints[index] return example def __len__(self): return len(self.src) def collater(self, samples, pad_to_length=None): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate pad_to_length (dict, optional): a dictionary of {'source': source_pad_to_length, 'target': target_pad_to_length} to indicate the max length to pad to in source and target respectively. Returns: dict: a mini-batch with the following keys: - `id` (LongTensor): example IDs in the original input order - `ntokens` (int): total number of tokens in the batch - `net_input` (dict): the input to the Model, containing keys: - `src_tokens` (LongTensor): a padded 2D Tensor of tokens in the source sentence of shape `(bsz, src_len)`. Padding will appear on the left if *left_pad_source* is ``True``. - `src_lengths` (LongTensor): 1D Tensor of the unpadded lengths of each source sentence of shape `(bsz)` - `prev_output_tokens` (LongTensor): a padded 2D Tensor of tokens in the target sentence, shifted right by one position for teacher forcing, of shape `(bsz, tgt_len)`. This key will not be present if *input_feeding* is ``False``. Padding will appear on the left if *left_pad_target* is ``True``. - `src_lang_id` (LongTensor): a long Tensor which contains source language IDs of each sample in the batch - `target` (LongTensor): a padded 2D Tensor of tokens in the target sentence of shape `(bsz, tgt_len)`. Padding will appear on the left if *left_pad_target* is ``True``. - `tgt_lang_id` (LongTensor): a long Tensor which contains target language IDs of each sample in the batch """ res = collate( samples, pad_idx=self.src_dict.pad(), eos_idx=self.eos, left_pad_source=self.left_pad_source, left_pad_target=self.left_pad_target, input_feeding=self.input_feeding, pad_to_length=pad_to_length, pad_to_multiple=self.pad_to_multiple, ) if self.src_lang_id is not None or self.tgt_lang_id is not None: src_tokens = res["net_input"]["src_tokens"] bsz = src_tokens.size(0) if self.src_lang_id is not None: res["net_input"]["src_lang_id"] = ( torch.LongTensor([[self.src_lang_id]]).expand(bsz, 1).to(src_tokens) ) if self.tgt_lang_id is not None: res["tgt_lang_id"] = ( torch.LongTensor([[self.tgt_lang_id]]).expand(bsz, 1).to(src_tokens) ) return res def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return max( self.src_sizes[index], self.tgt_sizes[index] if self.tgt_sizes is not None else 0, ) def num_tokens_vec(self, indices): """Return the number of tokens for a set of positions defined by indices. This value is used to enforce ``--max-tokens`` during batching.""" sizes = self.src_sizes[indices] if self.tgt_sizes is not None: sizes = np.maximum(sizes, self.tgt_sizes[indices]) return sizes def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return ( self.src_sizes[index], self.tgt_sizes[index] if self.tgt_sizes is not None else 0, ) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)).astype(np.int64) else: indices = np.arange(len(self), dtype=np.int64) if self.buckets is None: # sort by target length, then source length if self.tgt_sizes is not None: indices = indices[np.argsort(self.tgt_sizes[indices], kind="mergesort")] return indices[np.argsort(self.src_sizes[indices], kind="mergesort")] else: # sort by bucketed_num_tokens, which is: # max(padded_src_len, padded_tgt_len) return indices[ np.argsort(self.bucketed_num_tokens[indices], kind="mergesort") ] @property def supports_prefetch(self): return getattr(self.src, "supports_prefetch", False) and ( getattr(self.tgt, "supports_prefetch", False) or self.tgt is None ) def prefetch(self, indices): self.src.prefetch(indices) if self.tgt is not None: self.tgt.prefetch(indices) if self.align_dataset is not None: self.align_dataset.prefetch(indices) def filter_indices_by_size(self, indices, max_sizes): """Filter a list of sample indices. Remove those that are longer than specified in max_sizes. Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ return data_utils.filter_paired_dataset_indices_by_size( self.src_sizes, self.tgt_sizes, indices, max_sizes, )
KosmosX-API-main
kosmosX/fairseq/fairseq/data/language_pair_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class AppendTokenDataset(BaseWrapperDataset): def __init__(self, dataset, token=None): super().__init__(dataset) self.token = token if token is not None: self._sizes = np.array(dataset.sizes) + 1 else: self._sizes = dataset.sizes def __getitem__(self, idx): item = self.dataset[idx] if self.token is not None: item = torch.cat([item, item.new([self.token])]) return item @property def sizes(self): return self._sizes def num_tokens(self, index): n = self.dataset.num_tokens(index) if self.token is not None: n += 1 return n def size(self, index): n = self.dataset.size(index) if self.token is not None: n += 1 return n
KosmosX-API-main
kosmosX/fairseq/fairseq/data/append_token_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.data import data_utils from . import BaseWrapperDataset class PadDataset(BaseWrapperDataset): def __init__(self, dataset, pad_idx, left_pad, pad_length=None): super().__init__(dataset) self.pad_idx = pad_idx self.left_pad = left_pad self.pad_length = pad_length def collater(self, samples): return data_utils.collate_tokens(samples, self.pad_idx, left_pad=self.left_pad, pad_to_length=self.pad_length) class LeftPadDataset(PadDataset): def __init__(self, dataset, pad_idx, pad_length=None): super().__init__(dataset, pad_idx, left_pad=True, pad_length=pad_length) class RightPadDataset(PadDataset): def __init__(self, dataset, pad_idx, pad_length=None): super().__init__(dataset, pad_idx, left_pad=False, pad_length=pad_length)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/pad_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import shutil import struct from functools import lru_cache import numpy as np import torch from fairseq.dataclass.constants import DATASET_IMPL_CHOICES from fairseq.data.fasta_dataset import FastaDataset from fairseq.file_io import PathManager from fairseq.data.huffman import HuffmanMMapIndexedDataset, HuffmanMMapIndex from . import FairseqDataset from typing import Union def best_fitting_int_dtype( max_int_to_represent, ) -> Union[np.uint16, np.uint32, np.int64]: if max_int_to_represent is None: return np.uint32 # Safe guess elif max_int_to_represent < 65500: return np.uint16 elif max_int_to_represent < 4294967295: return np.uint32 else: return np.int64 # we avoid np.uint64 because it doesn't save space and its type promotion behaves unexpectedly # https://github.com/numpy/numpy/issues/5745 def get_available_dataset_impl(): return list(map(str, DATASET_IMPL_CHOICES)) def infer_dataset_impl(path): if IndexedRawTextDataset.exists(path): return "raw" elif IndexedDataset.exists(path): with open(index_file_path(path), "rb") as f: magic = f.read(8) if magic == IndexedDataset._HDR_MAGIC: return "cached" elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]: return "mmap" elif magic == HuffmanMMapIndex._HDR_MAGIC[:8]: return "huffman" else: return None elif FastaDataset.exists(path): return "fasta" else: return None def make_builder(out_file, impl, vocab_size=None): if impl == "mmap": return MMapIndexedDatasetBuilder( out_file, dtype=best_fitting_int_dtype(vocab_size) ) elif impl == "fasta": raise NotImplementedError elif impl == "huffman": raise ValueError( "Use HuffmanCodeBuilder directly as it has a different interface." ) else: return IndexedDatasetBuilder(out_file) def make_dataset(path, impl, fix_lua_indexing=False, dictionary=None): if impl == "raw" and IndexedRawTextDataset.exists(path): assert dictionary is not None return IndexedRawTextDataset(path, dictionary) elif impl == "lazy" and IndexedDataset.exists(path): return IndexedDataset(path, fix_lua_indexing=fix_lua_indexing) elif impl == "cached" and IndexedDataset.exists(path): return IndexedCachedDataset(path, fix_lua_indexing=fix_lua_indexing) elif impl == "mmap" and MMapIndexedDataset.exists(path): return MMapIndexedDataset(path) elif impl == "fasta" and FastaDataset.exists(path): from fairseq.data.fasta_dataset import EncodedFastaDataset return EncodedFastaDataset(path, dictionary) elif impl == "huffman" and HuffmanMMapIndexedDataset.exists(path): return HuffmanMMapIndexedDataset(path) return None def dataset_exists(path, impl): if impl == "raw": return IndexedRawTextDataset.exists(path) elif impl == "mmap": return MMapIndexedDataset.exists(path) elif impl == "huffman": return HuffmanMMapIndexedDataset.exists(path) else: return IndexedDataset.exists(path) def read_longs(f, n): a = np.empty(n, dtype=np.int64) f.readinto(a) return a def write_longs(f, a): f.write(np.array(a, dtype=np.int64)) _code_to_dtype = { 1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float, 7: np.double, 8: np.uint16, 9: np.uint32, 10: np.uint64, } def _dtype_header_code(dtype) -> int: for k in _code_to_dtype.keys(): if _code_to_dtype[k] == dtype: return k raise ValueError(dtype) def index_file_path(prefix_path): return prefix_path + ".idx" def data_file_path(prefix_path): return prefix_path + ".bin" class IndexedDataset(FairseqDataset): """Loader for TorchNet IndexedDataset""" _HDR_MAGIC = b"TNTIDX\x00\x00" def __init__(self, path, fix_lua_indexing=False): super().__init__() self.path = path self.fix_lua_indexing = fix_lua_indexing self.data_file = None self.read_index(path) def read_index(self, path): with open(index_file_path(path), "rb") as f: magic = f.read(8) assert magic == self._HDR_MAGIC, ( "Index file doesn't match expected format. " "Make sure that --dataset-impl is configured properly." ) version = f.read(8) assert struct.unpack("<Q", version) == (1,) code, self.element_size = struct.unpack("<QQ", f.read(16)) self.dtype = _code_to_dtype[code] self._len, self.s = struct.unpack("<QQ", f.read(16)) self.dim_offsets = read_longs(f, self._len + 1) self.data_offsets = read_longs(f, self._len + 1) self.sizes = read_longs(f, self.s) def read_data(self, path): self.data_file = open(data_file_path(path), "rb", buffering=0) def check_index(self, i): if i < 0 or i >= self._len: raise IndexError("index out of range") def __del__(self): if self.data_file: self.data_file.close() @lru_cache(maxsize=8) def __getitem__(self, i) -> torch.Tensor: if not self.data_file: self.read_data(self.path) self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) self.data_file.seek(self.data_offsets[i] * self.element_size) self.data_file.readinto(a) item = torch.from_numpy(a).long() if self.fix_lua_indexing: item -= 1 # subtract 1 for 0-based indexing return item def __len__(self): return self._len def num_tokens(self, index): return self.sizes[index] def size(self, index): return self.sizes[index] @staticmethod def exists(path): return PathManager.exists(index_file_path(path)) and PathManager.exists( data_file_path(path) ) @property def supports_prefetch(self): return False # avoid prefetching to save memory class IndexedCachedDataset(IndexedDataset): def __init__(self, path, fix_lua_indexing=False): super().__init__(path, fix_lua_indexing=fix_lua_indexing) self.cache = None self.cache_index = {} @property def supports_prefetch(self): return True def prefetch(self, indices): if all(i in self.cache_index for i in indices): return if not self.data_file: self.read_data(self.path) indices = sorted(set(indices)) total_size = 0 for i in indices: total_size += self.data_offsets[i + 1] - self.data_offsets[i] self.cache = np.empty(total_size, dtype=self.dtype) ptx = 0 self.cache_index.clear() for i in indices: self.cache_index[i] = ptx size = self.data_offsets[i + 1] - self.data_offsets[i] a = self.cache[ptx : ptx + size] self.data_file.seek(self.data_offsets[i] * self.element_size) self.data_file.readinto(a) ptx += size if self.data_file: # close and delete data file after prefetch so we can pickle self.data_file.close() self.data_file = None @lru_cache(maxsize=8) def __getitem__(self, i): self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) ptx = self.cache_index[i] np.copyto(a, self.cache[ptx : ptx + a.size]) item = torch.from_numpy(a).long() if self.fix_lua_indexing: item -= 1 # subtract 1 for 0-based indexing return item class IndexedRawTextDataset(FairseqDataset): """Takes a text file as input and binarizes it in memory at instantiation. Original lines are also kept in memory""" def __init__(self, path, dictionary, append_eos=True, reverse_order=False): self.tokens_list = [] self.lines = [] self.sizes = [] self.append_eos = append_eos self.reverse_order = reverse_order self.read_data(path, dictionary) self.size = len(self.tokens_list) def read_data(self, path, dictionary): with open(path, "r", encoding="utf-8") as f: for line in f: self.lines.append(line.strip("\n")) tokens = dictionary.encode_line( line, add_if_not_exist=False, append_eos=self.append_eos, reverse_order=self.reverse_order, ).long() self.tokens_list.append(tokens) self.sizes.append(len(tokens)) self.sizes = np.array(self.sizes) def check_index(self, i): if i < 0 or i >= self.size: raise IndexError("index out of range") @lru_cache(maxsize=8) def __getitem__(self, i): self.check_index(i) return self.tokens_list[i] def get_original_text(self, i): self.check_index(i) return self.lines[i] def __del__(self): pass def __len__(self): return self.size def num_tokens(self, index): return self.sizes[index] def size(self, index): return self.sizes[index] @staticmethod def exists(path): return PathManager.exists(path) class IndexedDatasetBuilder: element_sizes = { np.uint8: 1, np.int8: 1, np.int16: 2, np.int32: 4, np.int64: 8, np.float: 4, np.double: 8, } def __init__(self, out_file, dtype=np.int32): self.out_file = open(out_file, "wb") self.dtype = dtype self.data_offsets = [0] self.dim_offsets = [0] self.sizes = [] self.element_size = self.element_sizes[self.dtype] def add_item(self, tensor): # +1 for Lua compatibility bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype)) self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size) for s in tensor.size(): self.sizes.append(s) self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size())) def merge_file_(self, another_file): index = IndexedDataset(another_file) assert index.dtype == self.dtype begin = self.data_offsets[-1] for offset in index.data_offsets[1:]: self.data_offsets.append(begin + offset) self.sizes.extend(index.sizes) begin = self.dim_offsets[-1] for dim_offset in index.dim_offsets[1:]: self.dim_offsets.append(begin + dim_offset) with open(data_file_path(another_file), "rb") as f: while True: data = f.read(1024) if data: self.out_file.write(data) else: break def finalize(self, index_file): self.out_file.close() index = open(index_file, "wb") index.write(b"TNTIDX\x00\x00") index.write(struct.pack("<Q", 1)) index.write( struct.pack("<QQ", _dtype_header_code(self.dtype), self.element_size) ) index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes))) write_longs(index, self.dim_offsets) write_longs(index, self.data_offsets) write_longs(index, self.sizes) index.close() def _warmup_mmap_file(path): with open(path, "rb") as stream: while stream.read(100 * 1024 * 1024): pass class MMapIndexedDataset(torch.utils.data.Dataset): class Index: _HDR_MAGIC = b"MMIDIDX\x00\x00" @classmethod def writer(cls, path, dtype): class _Writer: def __enter__(self): self._file = open(path, "wb") self._file.write(cls._HDR_MAGIC) self._file.write(struct.pack("<Q", 1)) self._file.write(struct.pack("<B", _dtype_header_code(dtype))) return self @staticmethod def _get_pointers(sizes): dtype_size = dtype().itemsize address = 0 pointers = [] for size in sizes: pointers.append(address) address += size * dtype_size return pointers def write(self, sizes): pointers = self._get_pointers(sizes) self._file.write(struct.pack("<Q", len(sizes))) sizes = np.array(sizes, dtype=np.int32) self._file.write(sizes.tobytes(order="C")) del sizes pointers = np.array(pointers, dtype=np.int64) self._file.write(pointers.tobytes(order="C")) del pointers def __exit__(self, exc_type, exc_val, exc_tb): self._file.close() return _Writer() def __init__(self, path): with open(path, "rb") as stream: magic_test = stream.read(9) assert self._HDR_MAGIC == magic_test, ( "Index file doesn't match expected format. " "Make sure that --dataset-impl is configured properly." ) version = struct.unpack("<Q", stream.read(8)) assert (1,) == version (dtype_code,) = struct.unpack("<B", stream.read(1)) self._dtype = _code_to_dtype[dtype_code] self._dtype_size = self._dtype().itemsize self._len = struct.unpack("<Q", stream.read(8))[0] offset = stream.tell() _warmup_mmap_file(path) self._bin_buffer_mmap = np.memmap(path, mode="r", order="C") self._bin_buffer = memoryview(self._bin_buffer_mmap) self._sizes = np.frombuffer( self._bin_buffer, dtype=np.int32, count=self._len, offset=offset ) self._pointers = np.frombuffer( self._bin_buffer, dtype=np.int64, count=self._len, offset=offset + self._sizes.nbytes, ) def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap @property def dtype(self): return self._dtype @property def sizes(self): return self._sizes @lru_cache(maxsize=8) def __getitem__(self, i): return self._pointers[i], self._sizes[i] def __len__(self): return self._len def __init__(self, path): super().__init__() self._path = None self._index = None self._bin_buffer = None self._do_init(path) def __getstate__(self): return self._path def __setstate__(self, state): self._do_init(state) def _do_init(self, path): self._path = path self._index = self.Index(index_file_path(self._path)) _warmup_mmap_file(data_file_path(self._path)) self._bin_buffer_mmap = np.memmap( data_file_path(self._path), mode="r", order="C" ) self._bin_buffer = memoryview(self._bin_buffer_mmap) def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap del self._index def __len__(self): return len(self._index) @lru_cache(maxsize=8) def __getitem__(self, i): ptr, size = self._index[i] np_array = np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr ) if self._index.dtype != np.int64: np_array = np_array.astype(np.int64) return torch.from_numpy(np_array) @property def sizes(self): return self._index.sizes @property def supports_prefetch(self): return False @staticmethod def exists(path): return PathManager.exists(index_file_path(path)) and PathManager.exists( data_file_path(path) ) def get_indexed_dataset_to_local(path) -> str: local_index_path = PathManager.get_local_path(index_file_path(path)) local_data_path = PathManager.get_local_path(data_file_path(path)) assert local_index_path.endswith(".idx") and local_data_path.endswith(".bin"), ( "PathManager.get_local_path does not return files with expected patterns: " f"{local_index_path} and {local_data_path}" ) local_path = local_data_path[:-4] # stripping surfix ".bin" assert local_path == local_index_path[:-4] # stripping surfix ".idx" return local_path class MMapIndexedDatasetBuilder: def __init__(self, out_file, dtype=np.int64): self._data_file = open(out_file, "wb") self._dtype = dtype self._sizes = [] def add_item(self, tensor): np_array = np.array(tensor.numpy(), dtype=self._dtype) self._data_file.write(np_array.tobytes(order="C")) self._sizes.append(np_array.size) def merge_file_(self, another_file): # Concatenate index index = MMapIndexedDataset.Index(index_file_path(another_file)) assert index.dtype == self._dtype for size in index.sizes: self._sizes.append(size) # Concatenate data with open(data_file_path(another_file), "rb") as f: shutil.copyfileobj(f, self._data_file) def finalize(self, index_file): self._data_file.close() with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index: index.write(self._sizes)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/indexed_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import BaseWrapperDataset class RollDataset(BaseWrapperDataset): def __init__(self, dataset, shifts): super().__init__(dataset) self.shifts = shifts def __getitem__(self, index): item = self.dataset[index] return torch.roll(item, self.shifts)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/roll_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from collections import Counter from multiprocessing import Pool import torch from fairseq import utils from fairseq.data import data_utils from fairseq.file_chunker_utils import Chunker, find_offsets from fairseq.file_io import PathManager from fairseq.tokenizer import tokenize_line class Dictionary: """A mapping from symbols to consecutive integers""" def __init__( self, *, # begin keyword-only arguments bos="<s>", pad="<pad>", eos="</s>", unk="<unk>", extra_special_symbols=None, ): self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos self.symbols = [] self.count = [] self.indices = {} self.bos_index = self.add_symbol(bos) self.pad_index = self.add_symbol(pad) self.eos_index = self.add_symbol(eos) self.unk_index = self.add_symbol(unk) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(s) self.nspecial = len(self.symbols) def __eq__(self, other): return self.indices == other.indices def __getitem__(self, idx): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def get_count(self, idx): return self.count[idx] def __len__(self): """Returns the number of symbols in the dictionary""" return len(self.symbols) def __contains__(self, sym): return sym in self.indices def index(self, sym): """Returns the index of the specified symbol""" assert isinstance(sym, str) if sym in self.indices: return self.indices[sym] return self.unk_index def string( self, tensor, bpe_symbol=None, escape_unk=False, extra_symbols_to_ignore=None, unk_string=None, include_eos=False, separator=" ", ): """Helper for converting a tensor of token indices to a string. Can optionally remove BPE symbols or escape <unk> words. """ if torch.is_tensor(tensor) and tensor.dim() == 2: return "\n".join( self.string( t, bpe_symbol, escape_unk, extra_symbols_to_ignore, include_eos=include_eos, ) for t in tensor ) extra_symbols_to_ignore = set(extra_symbols_to_ignore or []) if not include_eos: extra_symbols_to_ignore.add(self.eos()) def token_string(i): if i == self.unk(): if unk_string is not None: return unk_string else: return self.unk_string(escape_unk) else: return self[i] if hasattr(self, "bos_index"): extra_symbols_to_ignore.add(self.bos()) sent = separator.join( token_string(i) for i in tensor if utils.item(i) not in extra_symbols_to_ignore ) return data_utils.post_process(sent, bpe_symbol) def unk_string(self, escape=False): """Return unknown string, optionally escaped as: <<unk>>""" if escape: return "<{}>".format(self.unk_word) else: return self.unk_word def add_symbol(self, word, n=1, overwrite=False): """Adds a word to the dictionary""" if word in self.indices and not overwrite: idx = self.indices[word] self.count[idx] = self.count[idx] + n return idx else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(n) return idx def update(self, new_dict): """Updates counts from new dictionary.""" for word in new_dict.symbols: idx2 = new_dict.indices[word] if word in self.indices: idx = self.indices[word] self.count[idx] = self.count[idx] + new_dict.count[idx2] else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(new_dict.count[idx2]) def finalize(self, threshold=-1, nwords=-1, padding_factor=8): """Sort symbols by frequency in descending order, ignoring special ones. Args: - threshold defines the minimum word count - nwords defines the total number of words in the final dictionary, including special symbols - padding_factor can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ if nwords <= 0: nwords = len(self) new_indices = dict(zip(self.symbols[: self.nspecial], range(self.nspecial))) new_symbols = self.symbols[: self.nspecial] new_count = self.count[: self.nspecial] c = Counter( dict( sorted(zip(self.symbols[self.nspecial :], self.count[self.nspecial :])) ) ) for symbol, count in c.most_common(nwords - self.nspecial): if count >= threshold: new_indices[symbol] = len(new_symbols) new_symbols.append(symbol) new_count.append(count) else: break assert len(new_symbols) == len(new_indices) self.count = list(new_count) self.symbols = list(new_symbols) self.indices = new_indices self.pad_to_multiple_(padding_factor) def pad_to_multiple_(self, padding_factor): """Pad Dictionary size to be a multiple of *padding_factor*.""" if padding_factor > 1: i = 0 while len(self) % padding_factor != 0: symbol = "madeupword{:04d}".format(i) self.add_symbol(symbol, n=0) i += 1 def bos(self): """Helper to get index of beginning-of-sentence symbol""" return self.bos_index def pad(self): """Helper to get index of pad symbol""" return self.pad_index def eos(self): """Helper to get index of end-of-sentence symbol""" return self.eos_index def unk(self): """Helper to get index of unk symbol""" return self.unk_index @classmethod def load(cls, f): """Loads the dictionary from a text file with the format: ``` <symbol0> <count0> <symbol1> <count1> ... ``` """ d = cls() d.add_from_file(f) return d def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(PathManager.get_local_path(f), "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception( "Incorrect encoding detected in {}, please " "rebuild the dataset".format(f) ) return lines = f.readlines() indices_start_line = self._load_meta(lines) for line in lines[indices_start_line:]: try: line, field = line.rstrip().rsplit(" ", 1) if field == "#fairseq:overwrite": overwrite = True line, field = line.rsplit(" ", 1) else: overwrite = False count = int(field) word = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(word) ) self.add_symbol(word, n=count, overwrite=overwrite) except ValueError: raise ValueError( f"Incorrect dictionary format, expected '<token> <cnt> [flags]': \"{line}\"" ) def _save(self, f, kv_iterator): if isinstance(f, str): PathManager.mkdirs(os.path.dirname(f)) with PathManager.open(f, "w", encoding="utf-8") as fd: return self.save(fd) for k, v in kv_iterator: print("{} {}".format(k, v), file=f) def _get_meta(self): return [], [] def _load_meta(self, lines): return 0 def save(self, f): """Stores dictionary into a text file""" ex_keys, ex_vals = self._get_meta() self._save( f, zip( ex_keys + self.symbols[self.nspecial :], ex_vals + self.count[self.nspecial :], ), ) def dummy_sentence(self, length): t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long() t[-1] = self.eos() return t def encode_line( self, line, line_tokenizer=tokenize_line, add_if_not_exist=True, consumer=None, append_eos=True, reverse_order=False, ) -> torch.IntTensor: words = line_tokenizer(line) if reverse_order: words = list(reversed(words)) nwords = len(words) ids = torch.IntTensor(nwords + 1 if append_eos else nwords) for i, word in enumerate(words): if add_if_not_exist: idx = self.add_symbol(word) else: idx = self.index(word) if consumer is not None: consumer(word, idx) ids[i] = idx if append_eos: ids[nwords] = self.eos_index return ids @staticmethod def _add_file_to_dictionary_single_worker( filename, tokenize, eos_word, start_offset, end_offset, ): counter = Counter() with Chunker(filename, start_offset, end_offset) as line_iterator: for line in line_iterator: for word in tokenize(line): counter.update([word]) counter.update([eos_word]) return counter @staticmethod def add_file_to_dictionary(filename, dict, tokenize, num_workers): def merge_result(counter): for w, c in sorted(counter.items()): dict.add_symbol(w, c) local_file = PathManager.get_local_path(filename) offsets = find_offsets(local_file, num_workers) if num_workers > 1: chunks = zip(offsets, offsets[1:]) pool = Pool(processes=num_workers) results = [] for (start_offset, end_offset) in chunks: results.append( pool.apply_async( Dictionary._add_file_to_dictionary_single_worker, ( local_file, tokenize, dict.eos_word, start_offset, end_offset, ), ) ) pool.close() pool.join() for r in results: merge_result(r.get()) else: merge_result( Dictionary._add_file_to_dictionary_single_worker( local_file, tokenize, dict.eos_word, offsets[0], offsets[1] ) ) class TruncatedDictionary(object): def __init__(self, wrapped_dict, length): self.__class__ = type( wrapped_dict.__class__.__name__, (self.__class__, wrapped_dict.__class__), {}, ) self.__dict__ = wrapped_dict.__dict__ self.wrapped_dict = wrapped_dict self.length = min(len(self.wrapped_dict), length) def __len__(self): return self.length def __getitem__(self, i): if i < self.length: return self.wrapped_dict[i] return self.wrapped_dict.unk()
KosmosX-API-main
kosmosX/fairseq/fairseq/data/dictionary.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch.utils.data from fairseq.data import data_utils logger = logging.getLogger(__name__) class EpochListening: """Mixin for receiving updates whenever the epoch increments.""" @property def can_reuse_epoch_itr_across_epochs(self): """ Whether we can reuse the :class:`fairseq.data.EpochBatchIterator` for this dataset across epochs. This needs to return ``False`` if the sample sizes can change across epochs, in which case we may need to regenerate batches at each epoch. If your dataset relies in ``set_epoch`` then you should consider setting this to ``False``. """ return True def set_epoch(self, epoch): """Will receive the updated epoch number at the beginning of the epoch.""" pass class FairseqDataset(torch.utils.data.Dataset, EpochListening): """A dataset that provides helpers for batching.""" def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ raise NotImplementedError def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def num_tokens_vec(self, indices): """Return the number of tokens for a set of positions defined by indices. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" raise NotImplementedError def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" return np.arange(len(self), dtype=np.int64) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return False def attr(self, attr: str, index: int): return getattr(self, attr, None) def prefetch(self, indices): """Prefetch the data required for this epoch.""" raise NotImplementedError def get_batch_shapes(self): """ Return a list of valid batch shapes, for example:: [(8, 512), (16, 256), (32, 128)] The first dimension of each tuple is the batch size and can be ``None`` to automatically infer the max batch size based on ``--max-tokens``. The second dimension of each tuple is the max supported length as given by :func:`fairseq.data.FairseqDataset.num_tokens`. This will be used by :func:`fairseq.data.FairseqDataset.batch_by_size` to restrict batch shapes. This is useful on TPUs to avoid too many dynamic shapes (and recompilations). """ return None def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): """ Given an ordered set of indices, return batches according to *max_tokens*, *max_sentences* and *required_batch_size_multiple*. """ from fairseq.data import data_utils fixed_shapes = self.get_batch_shapes() if fixed_shapes is not None: def adjust_bsz(bsz, num_tokens): if bsz is None: assert max_tokens is not None, "Must specify --max-tokens" bsz = max_tokens // num_tokens if max_sentences is not None: bsz = min(bsz, max_sentences) elif ( bsz >= required_batch_size_multiple and bsz % required_batch_size_multiple != 0 ): bsz -= bsz % required_batch_size_multiple return bsz fixed_shapes = np.array( [ [adjust_bsz(bsz, num_tokens), num_tokens] for (bsz, num_tokens) in fixed_shapes ] ) try: num_tokens_vec = self.num_tokens_vec(indices).astype("int64") except NotImplementedError: num_tokens_vec = None return data_utils.batch_by_size( indices, num_tokens_fn=self.num_tokens, num_tokens_vec=num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, fixed_shapes=fixed_shapes, ) def filter_indices_by_size(self, indices, max_sizes): """ Filter a list of sample indices. Remove those that are longer than specified in *max_sizes*. WARNING: don't update, override method in child classes Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if isinstance(max_sizes, float) or isinstance(max_sizes, int): if hasattr(self, "sizes") and isinstance(self.sizes, np.ndarray): ignored = indices[self.sizes[indices] > max_sizes].tolist() indices = indices[self.sizes[indices] <= max_sizes] elif ( hasattr(self, "sizes") and isinstance(self.sizes, list) and len(self.sizes) == 1 ): ignored = indices[self.sizes[0][indices] > max_sizes].tolist() indices = indices[self.sizes[0][indices] <= max_sizes] else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) return indices, ignored @property def supports_fetch_outside_dataloader(self): """Whether this dataset supports fetching outside the workers of the dataloader.""" return True class FairseqIterableDataset(torch.utils.data.IterableDataset, EpochListening): """ For datasets that need to be read sequentially, usually because the data is being streamed or otherwise can't be manipulated on a single machine. """ def __iter__(self): raise NotImplementedError
KosmosX-API-main
kosmosX/fairseq/fairseq/data/fairseq_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from typing import Dict from fairseq.data.monolingual_dataset import MonolingualDataset from . import FairseqDataset class LMContextWindowDataset(FairseqDataset): """ Wraps a MonolingualDataset and provides more context for evaluation. Each item in the new dataset will have a maximum size of ``tokens_per_sample + context_window``. Args: dataset: dataset to wrap tokens_per_sample (int): the max number of tokens in each dataset item context_window (int): the number of accumulated tokens to add to each dataset item pad_idx (int): padding symbol """ def __init__( self, dataset: MonolingualDataset, tokens_per_sample: int, context_window: int, pad_idx: int, ): assert context_window > 0 self.dataset = dataset self.tokens_per_sample = tokens_per_sample self.context_window = context_window self.pad_idx = pad_idx self.prev_tokens = np.empty([0]) def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) def collater(self, samples) -> Dict: sample = self.dataset.collater(samples) pad = self.pad_idx max_sample_len = self.tokens_per_sample + self.context_window bsz, tsz = sample["net_input"]["src_tokens"].shape start_idxs = [0] * bsz toks = sample["net_input"]["src_tokens"] lengths = sample["net_input"]["src_lengths"] tgt = sample["target"] new_toks = np.empty([bsz, tsz + self.context_window], dtype=np.int64) new_tgt = np.full([bsz, tsz + self.context_window], pad, dtype=np.int64) sample_lens = toks.ne(pad).long().sum(dim=1).cpu() for i in range(bsz): sample_len = sample_lens[i] extra = len(self.prev_tokens) + sample_len - max_sample_len if extra > 0: self.prev_tokens = self.prev_tokens[extra:] pads = np.full(self.context_window - len(self.prev_tokens), pad) new_toks[i] = np.concatenate([self.prev_tokens, toks[i].numpy(), pads]) new_tgt[ i, len(self.prev_tokens) : len(self.prev_tokens) + len(tgt[i]) ] = tgt[i] start_idxs[i] = len(self.prev_tokens) lengths[i] += len(self.prev_tokens) self.prev_tokens = new_toks[i][new_toks[i] != pad][-self.context_window :] sample["net_input"]["src_tokens"] = torch.from_numpy(new_toks) sample["target"] = torch.from_numpy(new_tgt) sample["start_indices"] = start_idxs return sample def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): return self.dataset.size(index) def ordered_indices(self): # NOTE we don't shuffle the data to retain access to the previous dataset elements return np.arange(len(self.dataset)) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): return self.dataset.prefetch(indices)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/lm_context_window_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch from torch.utils.data.dataloader import default_collate from fairseq.data import ConcatDataset logger = logging.getLogger(__name__) class TransformEosConcatLangPairDataset(ConcatDataset): """ It is a combination of TransformEosLangPairDataset and ConcatDataset for multiple LangPairDataset datasets. Assume all datasets share the same src_eos, tgt_bos, left_pad_source and left_pad_target """ def __init__( self, datasets, src_eos, tgt_bos, new_src_eos=None, new_tgt_bos=None, ): super().__init__(datasets) if new_src_eos is not None: assert len(new_src_eos) == len(datasets) else: new_src_eos = [] if new_tgt_bos is not None: assert len(new_tgt_bos) == len(datasets) else: new_tgt_bos = [] self.src_eos = src_eos self.tgt_bos = tgt_bos self.new_src_eos = ( torch.LongTensor(new_src_eos).cpu() if len(new_src_eos) > 0 else [] ) self.new_tgt_bos = ( torch.LongTensor(new_tgt_bos).cpu() if len(new_tgt_bos) > 0 else [] ) self.left_pad_source = self.is_left_pad_source(datasets) self.left_pad_target = self.is_left_pad_target(datasets) self.pad_idx = self.src_dict_pad() def src_dict_pad(self): if hasattr(self.datasets[0], "src_dict"): return self.datasets[0].src_dict.pad() if hasattr(self.datasets[0], "dataset"): return self.datasets[0].dataset.src_dict.pad() raise NotImplementedError("No src_dict is found") def __getitem__(self, idx): dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx) return dataset_idx, self.datasets[dataset_idx][sample_idx] def is_left_pad_source(self, datasets): def _left_pad_source(ds): if hasattr(ds, "left_pad_source"): return ds.left_pad_source if hasattr(ds, "dataset"): return _left_pad_source(ds.dataset) logger.warn(f"{type(ds)} has no left_pad_source, using default True") return True left_pad_source = _left_pad_source(datasets[0]) for ds in datasets: if left_pad_source != _left_pad_source(ds): raise ValueError("Different left_pad_source setting detected!") return left_pad_source def is_left_pad_target(self, datasets): def _left_pad_target(ds): if hasattr(ds, "left_pad_target"): return ds.left_pad_target if hasattr(ds, "dataset"): return _left_pad_target(ds.dataset) logger.warn(f"{type(ds)} has no left_pad_target, using default False") return False left_pad_target = _left_pad_target(datasets[0]) for ds in datasets: if left_pad_target != _left_pad_target(ds): raise ValueError("Different left_pad_target setting detected!") return left_pad_target def collater(self, samples, **extra_args): if len(samples) == 0: return samples dataset_ids = [s[0] for s in samples] samples = [s[1] for s in samples] if hasattr(self.datasets[0], "collater"): samples = self.datasets[0].collater(samples, **extra_args) else: samples = default_collate(samples, **extra_args) if len(self.new_src_eos) > 0: if self.left_pad_source: assert ( samples["net_input"]["src_tokens"][:, -1] != self.src_eos ).sum() == 0 samples["net_input"]["src_tokens"][:, -1] = self.new_src_eos[ dataset_ids ] else: eos_idx = samples["net_input"]["src_lengths"] - 1 assert ( samples["net_input"]["src_tokens"][ torch.arange(eos_idx.size(0)), eos_idx ] != self.src_eos ).sum() == 0 samples["net_input"]["src_tokens"].scatter_( 1, eos_idx.view(-1, 1), self.new_src_eos[dataset_ids].view(-1, 1) ) if len(self.new_tgt_bos) > 0 and "prev_output_tokens" in samples["net_input"]: if self.left_pad_target: # TODO: support different padding direction on target side raise NotImplementedError( "TransformEosLangPairDataset does not implement --left-pad-target True option" ) else: assert ( samples["net_input"]["prev_output_tokens"][:, 0] != self.tgt_bos ).sum() == 0 samples["net_input"]["prev_output_tokens"][:, 0] = self.new_tgt_bos[ dataset_ids ] return samples
KosmosX-API-main
kosmosX/fairseq/fairseq/data/transform_eos_concat_langpair_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn.functional as F from fairseq.data import BaseWrapperDataset from fairseq.data.data_utils import get_buckets, get_bucketed_sizes class BucketPadLengthDataset(BaseWrapperDataset): """ Bucket and pad item lengths to the nearest bucket size. This can be used to reduce the number of unique batch shapes, which is important on TPUs since each new batch shape requires a recompilation. Args: dataset (FairseqDatset): dataset to bucket sizes (List[int]): all item sizes num_buckets (int): number of buckets to create pad_idx (int): padding symbol left_pad (bool): if True, pad on the left; otherwise right pad """ def __init__( self, dataset, sizes, num_buckets, pad_idx, left_pad, tensor_key=None, ): super().__init__(dataset) self.pad_idx = pad_idx self.left_pad = left_pad assert num_buckets > 0 self.buckets = get_buckets(sizes, num_buckets) self._bucketed_sizes = get_bucketed_sizes(sizes, self.buckets) self._tensor_key = tensor_key def _set_tensor(self, item, val): if self._tensor_key is None: return val item[self._tensor_key] = val return item def _get_tensor(self, item): if self._tensor_key is None: return item return item[self._tensor_key] def _pad(self, tensor, bucket_size, dim=-1): num_pad = bucket_size - tensor.size(dim) return F.pad( tensor, (num_pad if self.left_pad else 0, 0 if self.left_pad else num_pad), value=self.pad_idx, ) def __getitem__(self, index): item = self.dataset[index] bucket_size = self._bucketed_sizes[index] tensor = self._get_tensor(item) padded = self._pad(tensor, bucket_size) return self._set_tensor(item, padded) @property def sizes(self): return self._bucketed_sizes def num_tokens(self, index): return self._bucketed_sizes[index] def size(self, index): return self._bucketed_sizes[index]
KosmosX-API-main
kosmosX/fairseq/fairseq/data/bucket_pad_length_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from fairseq.data import FairseqDataset, plasma_utils from fairseq.data.indexed_dataset import best_fitting_int_dtype from typing import Tuple class TokenBlockDataset(FairseqDataset): """Break a Dataset of tokens into blocks. Args: dataset (~torch.utils.data.Dataset): dataset to break into blocks sizes (List[int]): sentence lengths (required for 'complete' and 'eos') block_size (int): maximum block size (ignored in 'eos' break mode) break_mode (str, optional): Mode used for breaking tokens. Values can be one of: - 'none': break tokens into equally sized blocks (up to block_size) - 'complete': break tokens into blocks (up to block_size) such that blocks contains complete sentences, although block_size may be exceeded if some sentences exceed block_size - 'complete_doc': similar to 'complete' mode, but do not cross document boundaries - 'eos': each block contains one sentence (block_size is ignored) include_targets (bool, optional): return next tokens as targets (default: False). document_sep_len (int, optional): document separator size (required for 'complete_doc' break mode). Typically 1 if the sentences have eos and 0 otherwise. """ def __init__( self, dataset, sizes, block_size, pad, eos, break_mode=None, include_targets=False, document_sep_len=1, use_plasma_view=False, split_path=None, plasma_path=None, ): super().__init__() self.dataset = dataset self.pad = pad self.eos = eos self.include_targets = include_targets assert len(dataset) > 0 assert len(dataset) == len(sizes) _sizes, block_to_dataset_index, slice_indices = self._build_slice_indices( sizes, break_mode, document_sep_len, block_size ) if use_plasma_view: plasma_id = (block_size, document_sep_len, str(break_mode), len(dataset)) self._slice_indices = plasma_utils.PlasmaView( slice_indices, split_path, (plasma_id, 0), plasma_path=plasma_path ) self._sizes = plasma_utils.PlasmaView( _sizes, split_path, (plasma_id, 1), plasma_path=plasma_path ) self._block_to_dataset_index = plasma_utils.PlasmaView( block_to_dataset_index, split_path, (plasma_id, 2), plasma_path=plasma_path, ) else: self._slice_indices = plasma_utils.PlasmaArray(slice_indices) self._sizes = plasma_utils.PlasmaArray(_sizes) self._block_to_dataset_index = plasma_utils.PlasmaArray( block_to_dataset_index ) @staticmethod def _build_slice_indices( sizes, break_mode, document_sep_len, block_size ) -> Tuple[np.ndarray]: """Use token_block_utils_fast to build arrays for indexing into self.dataset""" try: from fairseq.data.token_block_utils_fast import ( _get_slice_indices_fast, _get_block_to_dataset_index_fast, ) except ImportError: raise ImportError( "Please build Cython components with: `pip install --editable .` " "or `python setup.py build_ext --inplace`" ) if isinstance(sizes, list): sizes = np.array(sizes, dtype=np.int64) else: if torch.is_tensor(sizes): sizes = sizes.numpy() sizes = sizes.astype(np.int64) break_mode = break_mode if break_mode is not None else "none" # For "eos" break-mode, block_size is not required parameters. if break_mode == "eos" and block_size is None: block_size = 0 slice_indices = _get_slice_indices_fast( sizes, str(break_mode), block_size, document_sep_len ) _sizes = slice_indices[:, 1] - slice_indices[:, 0] # build index mapping block indices to the underlying dataset indices if break_mode == "eos": # much faster version for eos break mode block_to_dataset_index = np.stack( [ np.arange(len(sizes)), # starting index in dataset np.zeros( len(sizes), dtype=np.compat.long ), # starting offset within starting index np.arange(len(sizes)), # ending index in dataset ], 1, ) else: block_to_dataset_index = _get_block_to_dataset_index_fast( sizes, slice_indices, ) size_dtype = np.uint16 if block_size < 65535 else np.uint32 num_tokens = slice_indices[-1].max() slice_indices_dtype = best_fitting_int_dtype(num_tokens) slice_indices = slice_indices.astype(slice_indices_dtype) _sizes = _sizes.astype(size_dtype) block_to_dataset_index = block_to_dataset_index.astype(slice_indices_dtype) return _sizes, block_to_dataset_index, slice_indices @property def slice_indices(self): return self._slice_indices.array @property def sizes(self): return self._sizes.array @property def block_to_dataset_index(self): return self._block_to_dataset_index.array def attr(self, attr: str, index: int): start_ds_idx, _, _ = self.block_to_dataset_index[index] return self.dataset.attr(attr, start_ds_idx) def __getitem__(self, index): start_ds_idx, start_offset, end_ds_idx = self.block_to_dataset_index[index] buffer = torch.cat( [self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)] ) slice_s, slice_e = self.slice_indices[index] length = slice_e - slice_s s, e = start_offset, start_offset + length item = buffer[s:e] if self.include_targets: # *target* is the original sentence (=item) # *source* is shifted right by 1 (maybe left-padded with eos) # *past_target* is shifted right by 2 (left-padded as needed) if s == 0: source = torch.cat([item.new([self.eos]), buffer[0 : e - 1]]) past_target = torch.cat( [item.new([self.pad, self.eos]), buffer[0 : e - 2]] ) else: source = buffer[s - 1 : e - 1] if s == 1: past_target = torch.cat([item.new([self.eos]), buffer[0 : e - 2]]) else: past_target = buffer[s - 2 : e - 2] return source, item, past_target return item def __len__(self): return len(self.slice_indices) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch( { ds_idx for index in indices for start_ds_idx, _, end_ds_idx in [self.block_to_dataset_index[index]] for ds_idx in range(start_ds_idx, end_ds_idx + 1) } )
KosmosX-API-main
kosmosX/fairseq/fairseq/data/token_block_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch from . import FairseqDataset class TransformEosLangPairDataset(FairseqDataset): """A :class:`~fairseq.data.FairseqDataset` wrapper that transform bos on collated samples of language pair dataset. Note that the transformation is applied in :func:`collater`. Args: dataset (~fairseq.data.FairseqDataset): dataset that collates sample into LanguagePairDataset schema src_eos (int): original source end-of-sentence symbol index to be replaced new_src_eos (int, optional): new end-of-sentence symbol index to replace source eos symbol tgt_bos (int, optional): original target beginning-of-sentence symbol index to be replaced new_tgt_bos (int, optional): new beginning-of-sentence symbol index to replace at the beginning of 'prev_output_tokens' """ def __init__( self, dataset: FairseqDataset, src_eos: int, new_src_eos: Optional[int] = None, tgt_bos: Optional[int] = None, new_tgt_bos: Optional[int] = None, ): self.dataset = dataset self.src_eos = src_eos self.new_src_eos = new_src_eos self.tgt_bos = tgt_bos self.new_tgt_bos = new_tgt_bos def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) def collater(self, samples, **extra_args): samples = self.dataset.collater(samples, **extra_args) if len(samples) == 0: return samples if "net_input" not in samples: return samples if self.new_src_eos is not None: if self.dataset.left_pad_source: assert ( samples["net_input"]["src_tokens"][:, -1] != self.src_eos ).sum() == 0 samples["net_input"]["src_tokens"][:, -1] = self.new_src_eos else: eos_idx = samples["net_input"]["src_lengths"] - 1 assert ( samples["net_input"]["src_tokens"][ torch.arange(eos_idx.size(0)), eos_idx ] != self.src_eos ).sum() == 0 eos_idx = eos_idx.resize_(len(samples["net_input"]["src_lengths"]), 1) samples["net_input"]["src_tokens"].scatter_( 1, eos_idx, self.new_src_eos ) if ( self.new_tgt_bos is not None and "prev_output_tokens" in samples["net_input"] ): if self.dataset.left_pad_target: # TODO: support different padding direction on target side raise NotImplementedError( "TransformEosLangPairDataset does not implement --left-pad-target True option" ) else: assert ( samples["net_input"]["prev_output_tokens"][:, 0] != self.tgt_bos ).sum() == 0 samples["net_input"]["prev_output_tokens"][:, 0] = self.new_tgt_bos return samples def num_tokens(self, index): return self.dataset.num_tokens(index) def size(self, index): return self.dataset.size(index) @property def sizes(self): # dataset.sizes can be a dynamically computed sizes: return self.dataset.sizes def ordered_indices(self): return self.dataset.ordered_indices() @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): return self.dataset.prefetch(indices)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/transform_eos_lang_pair_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import BaseWrapperDataset, data_utils from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel class AddTargetDataset(BaseWrapperDataset): def __init__( self, dataset, labels, pad, eos, batch_targets, process_label=None, label_len_fn=None, add_to_input=False, text_compression_level=TextCompressionLevel.none, ): super().__init__(dataset) self.labels = labels self.batch_targets = batch_targets self.pad = pad self.eos = eos self.process_label = process_label self.label_len_fn = label_len_fn self.add_to_input = add_to_input self.text_compressor = TextCompressor(level=text_compression_level) def get_label(self, index, process_fn=None): lbl = self.labels[index] lbl = self.text_compressor.decompress(lbl) return lbl if process_fn is None else process_fn(lbl) def __getitem__(self, index): item = self.dataset[index] item["label"] = self.get_label(index, process_fn=self.process_label) return item def size(self, index): sz = self.dataset.size(index) own_sz = self.label_len_fn(self.get_label(index)) return sz, own_sz def collater(self, samples): collated = self.dataset.collater(samples) if len(collated) == 0: return collated indices = set(collated["id"].tolist()) target = [s["label"] for s in samples if s["id"] in indices] if self.batch_targets: collated["target_lengths"] = torch.LongTensor([len(t) for t in target]) target = data_utils.collate_tokens(target, pad_idx=self.pad, left_pad=False) collated["ntokens"] = collated["target_lengths"].sum().item() else: collated["ntokens"] = sum([len(t) for t in target]) collated["target"] = target if self.add_to_input: eos = target.new_full((target.size(0), 1), self.eos) collated["target"] = torch.cat([target, eos], dim=-1).long() collated["net_input"]["prev_output_tokens"] = torch.cat( [eos, target], dim=-1 ).long() collated["ntokens"] += target.size(0) return collated def filter_indices_by_size(self, indices, max_sizes): indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) return indices, ignored
KosmosX-API-main
kosmosX/fairseq/fairseq/data/add_target_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.data import Dictionary class MaskedLMDictionary(Dictionary): """ Dictionary for Masked Language Modelling tasks. This extends Dictionary by adding the mask symbol. """ def __init__( self, pad="<pad>", eos="</s>", unk="<unk>", mask="<mask>", ): super().__init__(pad=pad, eos=eos, unk=unk) self.mask_word = mask self.mask_index = self.add_symbol(mask) self.nspecial = len(self.symbols) def mask(self): """Helper to get index of mask symbol""" return self.mask_index class BertDictionary(MaskedLMDictionary): """ Dictionary for BERT task. This extends MaskedLMDictionary by adding support for cls and sep symbols. """ def __init__( self, pad="<pad>", eos="</s>", unk="<unk>", mask="<mask>", cls="<cls>", sep="<sep>", ): super().__init__(pad=pad, eos=eos, unk=unk, mask=mask) self.cls_word = cls self.sep_word = sep self.cls_index = self.add_symbol(cls) self.sep_index = self.add_symbol(sep) self.nspecial = len(self.symbols) def cls(self): """Helper to get index of cls symbol""" return self.cls_index def sep(self): """Helper to get index of sep symbol""" return self.sep_index
KosmosX-API-main
kosmosX/fairseq/fairseq/data/legacy/masked_lm_dictionary.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import numpy as np import torch from fairseq.data import FairseqDataset class BlockPairDataset(FairseqDataset): """Break a Dataset of tokens into sentence pair blocks for next sentence prediction as well as masked language model. High-level logics are: 1. break input tensor to tensor blocks 2. pair the blocks with 50% next sentence and 50% random sentence 3. return paired blocks as well as related segment labels Args: dataset (~torch.utils.data.Dataset): dataset to break into blocks sizes: array of sentence lengths dictionary: dictionary for the task block_size: maximum block size break_mode: mode for breaking copurs into block pairs. currently we support 2 modes doc: respect document boundaries and each part of the pair should belong to on document none: don't respect any boundary and cut tokens evenly short_seq_prob: probability for generating shorter block pairs doc_break_size: Size for empty line separating documents. Typically 1 if the sentences have eos, 0 otherwise. """ def __init__( self, dataset, dictionary, sizes, block_size, break_mode="doc", short_seq_prob=0.1, doc_break_size=1, ): super().__init__() self.dataset = dataset self.pad = dictionary.pad() self.eos = dictionary.eos() self.cls = dictionary.cls() self.mask = dictionary.mask() self.sep = dictionary.sep() self.break_mode = break_mode self.dictionary = dictionary self.short_seq_prob = short_seq_prob self.block_indices = [] assert len(dataset) == len(sizes) if break_mode == "doc": cur_doc = [] for sent_id, sz in enumerate(sizes): assert doc_break_size == 0 or sz != 0, ( "when doc_break_size is non-zero, we expect documents to be" "separated by a blank line with a single eos." ) # empty line as document separator if sz == doc_break_size: if len(cur_doc) == 0: continue self.block_indices.append(cur_doc) cur_doc = [] else: cur_doc.append(sent_id) max_num_tokens = block_size - 3 # Account for [CLS], [SEP], [SEP] self.sent_pairs = [] self.sizes = [] for doc_id, doc in enumerate(self.block_indices): self._generate_sentence_pair(doc, doc_id, max_num_tokens, sizes) elif break_mode is None or break_mode == "none": # each block should have half of the block size since we are constructing block pair sent_length = (block_size - 3) // 2 total_len = sum(dataset.sizes) length = math.ceil(total_len / sent_length) def block_at(i): start = i * sent_length end = min(start + sent_length, total_len) return (start, end) sent_indices = np.array([block_at(i) for i in range(length)]) sent_sizes = np.array([e - s for s, e in sent_indices]) dataset_index = self._sent_to_dataset_index(sent_sizes) # pair sentences self._pair_sentences(dataset_index) else: raise ValueError("Invalid break_mode: " + break_mode) def _pair_sentences(self, dataset_index): """ Give a list of evenly cut blocks/sentences, pair these sentences with 50% consecutive sentences and 50% random sentences. This is used for none break mode """ # pair sentences for sent_id, sent in enumerate(dataset_index): next_sent_label = ( 1 if np.random.rand() > 0.5 and sent_id != len(dataset_index) - 1 else 0 ) if next_sent_label: next_sent = dataset_index[sent_id + 1] else: next_sent = dataset_index[ self._skip_sampling(len(dataset_index), [sent_id, sent_id + 1]) ] self.sent_pairs.append((sent, next_sent, next_sent_label)) # The current blocks don't include the special tokens but the # sizes already account for this self.sizes.append(3 + sent[3] + next_sent[3]) def _sent_to_dataset_index(self, sent_sizes): """ Build index mapping block indices to the underlying dataset indices """ dataset_index = [] ds_idx, ds_remaining = -1, 0 for to_consume in sent_sizes: sent_size = to_consume if ds_remaining == 0: ds_idx += 1 ds_remaining = sent_sizes[ds_idx] start_ds_idx = ds_idx start_offset = sent_sizes[ds_idx] - ds_remaining while to_consume > ds_remaining: to_consume -= ds_remaining ds_idx += 1 ds_remaining = sent_sizes[ds_idx] ds_remaining -= to_consume dataset_index.append( ( start_ds_idx, # starting index in dataset start_offset, # starting offset within starting index ds_idx, # ending index in dataset sent_size, # sentence length ) ) assert ds_remaining == 0 assert ds_idx == len(self.dataset) - 1 return dataset_index def _generate_sentence_pair(self, doc, doc_id, max_num_tokens, sizes): """ Go through a single document and genrate sentence paris from it """ current_chunk = [] current_length = 0 curr = 0 # To provide more randomness, we decrease target seq length for parts of # samples (10% by default). Note that max_num_tokens is the hard threshold # for batching and will never be changed. target_seq_length = max_num_tokens if np.random.random() < self.short_seq_prob: target_seq_length = np.random.randint(2, max_num_tokens) # loop through all sentences in document while curr < len(doc): sent_id = doc[curr] current_chunk.append(sent_id) current_length = sum(sizes[current_chunk]) # split chunk and generate pair when exceed target_seq_length or # finish the loop if curr == len(doc) - 1 or current_length >= target_seq_length: # split the chunk into 2 parts a_end = 1 if len(current_chunk) > 2: a_end = np.random.randint(1, len(current_chunk) - 1) sent_a = current_chunk[:a_end] len_a = sum(sizes[sent_a]) # generate next sentence label, note that if there is only 1 sentence # in current chunk, label is always 0 next_sent_label = ( 1 if np.random.rand() > 0.5 and len(current_chunk) != 1 else 0 ) if not next_sent_label: # if next sentence label is 0, sample sent_b from a random doc target_b_length = target_seq_length - len_a rand_doc_id = self._skip_sampling(len(self.block_indices), [doc_id]) random_doc = self.block_indices[rand_doc_id] random_start = np.random.randint(0, len(random_doc)) sent_b = [] len_b = 0 for j in range(random_start, len(random_doc)): sent_b.append(random_doc[j]) len_b = sum(sizes[sent_b]) if len_b >= target_b_length: break # return the second part of the chunk since it's not used num_unused_segments = len(current_chunk) - a_end curr -= num_unused_segments else: # if next sentence label is 1, use the second part of chunk as sent_B sent_b = current_chunk[a_end:] len_b = sum(sizes[sent_b]) # currently sent_a and sent_B may be longer than max_num_tokens, # truncate them and return block idx and offsets for them sent_a, sent_b = self._truncate_sentences( sent_a, sent_b, max_num_tokens ) self.sent_pairs.append((sent_a, sent_b, next_sent_label)) self.sizes.append(3 + sent_a[3] + sent_b[3]) current_chunk = [] curr += 1 def _skip_sampling(self, total, skip_ids): """ Generate a random integer which is not in skip_ids. Sample range is [0, total) TODO: ids in skip_ids should be consecutive, we can extend it to more generic version later """ rand_id = np.random.randint(total - len(skip_ids)) return rand_id if rand_id < min(skip_ids) else rand_id + len(skip_ids) def _truncate_sentences(self, sent_a, sent_b, max_num_tokens): """ Trancate a pair of sentence to limit total length under max_num_tokens Logics: 1. Truncate longer sentence 2. Tokens to be truncated could be at the beginning or the end of the sentnce Returns: Truncated sentences represented by dataset idx """ len_a, len_b = sum(self.dataset.sizes[sent_a]), sum(self.dataset.sizes[sent_b]) front_cut_a = front_cut_b = end_cut_a = end_cut_b = 0 while True: total_length = ( len_a + len_b - front_cut_a - front_cut_b - end_cut_a - end_cut_b ) if total_length <= max_num_tokens: break if len_a - front_cut_a - end_cut_a > len_b - front_cut_b - end_cut_b: if np.random.rand() < 0.5: front_cut_a += 1 else: end_cut_a += 1 else: if np.random.rand() < 0.5: front_cut_b += 1 else: end_cut_b += 1 # calculate ds indices as well as offsets and return truncated_sent_a = self._cut_sentence(sent_a, front_cut_a, end_cut_a) truncated_sent_b = self._cut_sentence(sent_b, front_cut_b, end_cut_b) return truncated_sent_a, truncated_sent_b def _cut_sentence(self, sent, front_cut, end_cut): """ Cut a sentence based on the numbers of tokens to be cut from beginning and end Represent the sentence as dataset idx and return """ start_ds_idx, end_ds_idx, offset = sent[0], sent[-1], 0 target_len = sum(self.dataset.sizes[sent]) - front_cut - end_cut while front_cut > 0: if self.dataset.sizes[start_ds_idx] > front_cut: offset += front_cut break else: front_cut -= self.dataset.sizes[start_ds_idx] start_ds_idx += 1 while end_cut > 0: if self.dataset.sizes[end_ds_idx] > end_cut: break else: end_cut -= self.dataset.sizes[end_ds_idx] end_ds_idx -= 1 return start_ds_idx, offset, end_ds_idx, target_len def _fetch_block(self, start_ds_idx, offset, end_ds_idx, length): """ Fetch a block of tokens based on its dataset idx """ buffer = torch.cat( [self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)] ) s, e = offset, offset + length return buffer[s:e] def __getitem__(self, index): block1, block2, next_sent_label = self.sent_pairs[index] block1 = self._fetch_block(*block1) block2 = self._fetch_block(*block2) return block1, block2, next_sent_label def __len__(self): return len(self.sizes) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): prefetch_idx = set() for index in indices: for block1, block2, _ in [self.sent_pairs[index]]: for ds_idx in range(block1[0], block1[2] + 1): prefetch_idx.add(ds_idx) for ds_idx in range(block2[0], block2[2] + 1): prefetch_idx.add(ds_idx) self.dataset.prefetch(prefetch_idx)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/legacy/block_pair_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .block_pair_dataset import BlockPairDataset from .masked_lm_dataset import MaskedLMDataset from .masked_lm_dictionary import BertDictionary, MaskedLMDictionary __all__ = [ "BertDictionary", "BlockPairDataset", "MaskedLMDataset", "MaskedLMDictionary", ]
KosmosX-API-main
kosmosX/fairseq/fairseq/data/legacy/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, List, Tuple import numpy as np import torch from fairseq.data import Dictionary, FairseqDataset, data_utils from fairseq.data.concat_dataset import ConcatDataset from fairseq.data.legacy.block_pair_dataset import BlockPairDataset from fairseq.data.token_block_dataset import TokenBlockDataset class MaskedLMDataset(FairseqDataset): """ A wrapper Dataset for masked language modelling. The dataset wraps around TokenBlockDataset or BlockedPairDataset and creates a batch where the input blocks are masked according to the specified masking probability. Additionally the batch can also contain sentence level targets if this is specified. Args: dataset: Dataset which generates blocks of data. Only BlockPairDataset and TokenBlockDataset are supported. sizes: Sentence lengths vocab: Dictionary with the vocabulary and special tokens. pad_idx: Id of padding token in dictionary mask_idx: Id of mask token in dictionary classif_token_idx: Id of classification token in dictionary. This is the token associated with the sentence embedding (Eg: CLS for BERT) sep_token_idx: Id of separator token in dictionary (Eg: SEP in BERT) seed: Seed for random number generator for reproducibility. shuffle: Shuffle the elements before batching. has_pairs: Specifies whether the underlying dataset generates a pair of blocks along with a sentence_target or not. Setting it to True assumes that the underlying dataset generates a label for the pair of sentences which is surfaced as sentence_target. The default value assumes a single block with no sentence target. segment_id: An optional segment id for filling in the segment labels when we are in the single block setting (Eg: XLM). Default is 0. masking_ratio: specifies what percentage of the blocks should be masked. masking_prob: specifies the probability of a given token being replaced with the "MASK" token. random_token_prob: specifies the probability of a given token being replaced by a random token from the vocabulary. """ def __init__( self, dataset: FairseqDataset, sizes: np.ndarray, vocab: Dictionary, pad_idx: int, mask_idx: int, classif_token_idx: int, sep_token_idx: int, seed: int = 1, shuffle: bool = True, has_pairs: bool = True, segment_id: int = 0, masking_ratio: float = 0.15, masking_prob: float = 0.8, random_token_prob: float = 0.1, ): # Make sure the input datasets are the ones supported assert ( isinstance(dataset, TokenBlockDataset) or isinstance(dataset, BlockPairDataset) or isinstance(dataset, ConcatDataset) ), ( "MaskedLMDataset only wraps TokenBlockDataset or BlockPairDataset or " "ConcatDataset" ) self.dataset = dataset self.sizes = np.array(sizes) self.vocab = vocab self.pad_idx = pad_idx self.mask_idx = mask_idx self.classif_token_idx = classif_token_idx self.sep_token_idx = sep_token_idx self.shuffle = shuffle self.seed = seed self.has_pairs = has_pairs self.segment_id = segment_id self.masking_ratio = masking_ratio self.masking_prob = masking_prob self.random_token_prob = random_token_prob # If we have only one block then sizes needs to be updated to include # the classification token if not has_pairs: self.sizes = self.sizes + 1 def __getitem__(self, index: int): # if has_pairs, then expect 2 blocks and a sentence target if self.has_pairs: (block_one, block_two, sentence_target) = self.dataset[index] else: block_one = self.dataset[index] return { "id": index, "block_one": block_one, "block_two": block_two if self.has_pairs else None, "sentence_target": sentence_target if self.has_pairs else None, } def __len__(self): return len(self.dataset) def _mask_block( self, sentence: np.ndarray, mask_idx: int, pad_idx: int, dictionary_token_range: Tuple, ): """ Mask tokens for Masked Language Model training Samples mask_ratio tokens that will be predicted by LM. Note:This function may not be efficient enough since we had multiple conversions between np and torch, we can replace them with torch operators later. Args: sentence: 1d tensor to be masked mask_idx: index to use for masking the sentence pad_idx: index to use for masking the target for tokens we aren't predicting dictionary_token_range: range of indices in dictionary which can be used for random word replacement (e.g. without special characters) Return: masked_sent: masked sentence target: target with words which we are not predicting replaced by pad_idx """ masked_sent = np.copy(sentence) sent_length = len(sentence) mask_num = math.ceil(sent_length * self.masking_ratio) mask = np.random.choice(sent_length, mask_num, replace=False) target = np.copy(sentence) for i in range(sent_length): if i in mask: rand = np.random.random() # replace with mask if probability is less than masking_prob # (Eg: 0.8) if rand < self.masking_prob: masked_sent[i] = mask_idx # replace with random token if probability is less than # masking_prob + random_token_prob (Eg: 0.9) elif rand < (self.masking_prob + self.random_token_prob): # sample random token from dictionary masked_sent[i] = np.random.randint( dictionary_token_range[0], dictionary_token_range[1] ) else: target[i] = pad_idx return masked_sent, target def _collate(self, samples: List[Dict], pad_idx: int, eos_idx: int): """ Does the heavy lifting for creating a batch from the input list of examples. The logic is as follows: 1. Mask the input blocks. In case has_pair is True then we have 2 blocks to mask. 2. Prepend the first masked block tensor with the special token used as sentence embedding. Eg: CLS in BERT. This happens irrespective of the value of has_pair. 3. If has_pair is True, then append the first masked block with the special separator token (eg: SEP for BERT) and compute segment label accordingly. In this case, also append the second masked block with this special separator token and compute its segment label. 4. For the targets tensor, prepend and append with padding index accordingly. 5. Concatenate all tensors. """ if len(samples) == 0: return {} # To ensure determinism, we reset the state of the PRNG after every # batch based on the seed and the first id of the batch. This ensures # that across epochs we get the same mask for the same example. This # is needed for reproducibility and is how BERT does masking # TODO: Can we add deteminism without this constraint? with data_utils.numpy_seed(self.seed + samples[0]["id"]): for s in samples: # token range is needed for replacing with random token during # masking token_range = (self.vocab.nspecial, len(self.vocab)) # mask according to specified probabilities. masked_blk_one, masked_tgt_one = self._mask_block( s["block_one"], self.mask_idx, self.pad_idx, token_range, ) tokens = np.concatenate([[self.classif_token_idx], masked_blk_one]) targets = np.concatenate([[self.pad_idx], masked_tgt_one]) segments = np.ones(len(tokens)) * self.segment_id # if has_pairs is True then we need to add the SEP token to both # the blocks after masking and re-compute segments based on the new # lengths. if self.has_pairs: tokens_one = np.concatenate([tokens, [self.sep_token_idx]]) targets_one = np.concatenate([targets, [self.pad_idx]]) masked_blk_two, masked_tgt_two = self._mask_block( s["block_two"], self.mask_idx, self.pad_idx, token_range ) tokens_two = np.concatenate([masked_blk_two, [self.sep_token_idx]]) targets_two = np.concatenate([masked_tgt_two, [self.pad_idx]]) # block + 1 sep + 1 special (CLS) segments_one = np.zeros(len(tokens_one)) # block + 1 sep segments_two = np.ones(len(tokens_two)) tokens = np.concatenate([tokens_one, tokens_two]) targets = np.concatenate([targets_one, targets_two]) segments = np.concatenate([segments_one, segments_two]) s["source"] = torch.LongTensor(tokens) s["segment_labels"] = torch.LongTensor(segments) s["lm_target"] = torch.LongTensor(targets) def merge(key): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad=False ) return { "id": torch.LongTensor([s["id"] for s in samples]), "ntokens": sum(len(s["source"]) for s in samples), "net_input": { "src_tokens": merge("source"), "segment_labels": merge("segment_labels"), }, "lm_target": merge("lm_target"), "sentence_target": torch.LongTensor([s["sentence_target"] for s in samples]) if self.has_pairs else None, "nsentences": len(samples), } def collater(self, samples: List[Dict]): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch of data """ return self._collate(samples, self.vocab.pad(), self.vocab.eos()) def num_tokens(self, index: int): """ Return the number of tokens in a sample. This value is used to enforce max-tokens during batching. """ return self.sizes[index] def size(self, index: int): """ Return an example's size as a float or tuple. This value is used when filtering a dataset with max-positions. """ return self.sizes[index] def ordered_indices(self): """ Return an ordered list of indices. Batches will be constructed based on this order. """ if self.shuffle: return np.random.permutation(len(self)) else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch(indices)
KosmosX-API-main
kosmosX/fairseq/fairseq/data/legacy/masked_lm_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hashlib import logging import math import numpy as np from fairseq.data import SampledMultiDataset from .sampled_multi_dataset import CollateFormat, default_virtual_size_func logger = logging.getLogger(__name__) class SampledMultiEpochDataset(SampledMultiDataset): """Samples from multiple sub-datasets according to sampling ratios using virtual epoch sizes to speed up dataloading. Args: datasets ( List[~torch.utils.data.Dataset] or OrderedDict[str, ~torch.utils.data.Dataset] ): datasets sampling_ratios (List[float]): list of probability of each dataset to be sampled (default: None, which corresponds to concating all dataset together). seed (int): RNG seed to use (default: 2). epoch (int): starting epoch number (default: 1). eval_key (str, optional): a key used at evaluation time that causes this instance to pass-through batches from *datasets[eval_key]*. collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures the collater to output batches of data mixed from all sub-datasets, and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys of sub-datasets. Note that not all sub-datasets will present in a single batch in both formats. virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func). split (str): the split of the data, e.g. 'train', 'valid' or 'test'. virtual_epoch_size (int): virtual epoch size, the dataset will go through the data by this virtual epoch size one by one to speed up data loading, e.g. indicing and filtering can be performed whenever a virtual epoch is loaded without waiting for the whole dataset to be loaded. shared_collater (bool): whether or not to all sub-datasets have the same collater. shard_epoch (int): the real epoch number for shard selection. shuffle (bool): whether or not to shuffle data (default: True). """ def __init__( self, datasets, sampling_ratios=None, seed=2, epoch=1, eval_key=None, collate_format=CollateFormat.single, virtual_size=default_virtual_size_func, split="", virtual_epoch_size=None, shared_collater=False, shard_epoch=1, shuffle=True, ): self.virtual_epoch_size = virtual_epoch_size self._current_epoch_start_index = None self._random_global_indices = None self.shard_epoch = shard_epoch if shard_epoch is not None else 1 self.load_next_shard = None self._epoch_sizes = None super().__init__( datasets=datasets, sampling_ratios=sampling_ratios, seed=seed, epoch=epoch, eval_key=eval_key, collate_format=collate_format, virtual_size=virtual_size, split=split, shared_collater=shared_collater, shuffle=shuffle, ) def _setup(self, epoch): self.virtual_epoch_size = ( self.virtual_epoch_size if self.virtual_epoch_size is not None else self.virtual_size ) if self.virtual_epoch_size > self.virtual_size: logger.warning( f"virtual epoch size {self.virtual_epoch_size} " f"is greater than virtual dataset size {self.virtual_size}" ) self.virtual_epoch_size = self.virtual_size self.num_virtual_epochs = math.ceil(self.virtual_size / self.virtual_epoch_size) self._current_epoch_start_index = self._get_epoch_start_index(epoch) logger.info( f"virtual epoch size {self.virtual_epoch_size}; virtual dataset size {self.virtual_size}" ) def _map_epoch_index_to_global(self, index): index = self._current_epoch_start_index + index # add randomness return self._random_global_indices[index] @property def sizes(self): if self._epoch_sizes is not None: return self._epoch_sizes _sizes = super().sizes indices = self._random_global_indices[ self._current_epoch_start_index : self._current_epoch_start_index + len(self) ] self._epoch_sizes = _sizes[indices] # del super()._sizes to save memory del self._sizes self._sizes = None return self._epoch_sizes def _get_dataset_and_index(self, index): i = self._map_epoch_index_to_global(index) return super()._get_dataset_and_index(i) def __len__(self): return ( self.virtual_epoch_size if self._current_epoch_start_index + self.virtual_epoch_size < self.virtual_size else self.virtual_size - self._current_epoch_start_index ) def set_epoch(self, epoch): if self._current_epoch_start_index is None: # initializing epoch idnices of a virtual dataset self._setup(epoch) self._next_virtual_epoch(epoch) else: # working on already intialized epoch indices if epoch == self._cur_epoch: # re-enter so return return self._next_virtual_epoch(epoch) def _get_epoch_start_index(self, epoch): assert epoch >= 1 # fairseq is using 1-based epoch everywhere return ((epoch - 1) % self.num_virtual_epochs) * self.virtual_epoch_size def _next_global_indices(self, epoch): rng = np.random.RandomState( [ int( hashlib.sha1( str(self.__class__.__name__).encode("utf-8") ).hexdigest(), 16, ) % (2 ** 32), self.seed % (2 ** 32), # global seed epoch, # epoch index, ] ) del self._random_global_indices self._random_global_indices = rng.choice( self.virtual_size, self.virtual_size, replace=False ) if self.load_next_shard is None: self.load_next_shard = False else: # increase shard epoch for next loading self.shard_epoch += 1 self.load_next_shard = True logger.info( "to load next epoch/shard in next load_dataset: " f"epoch={epoch}/shard_epoch={self.shard_epoch}" ) def _next_virtual_epoch(self, epoch): index = self._get_epoch_start_index(epoch) if index == 0 or self._random_global_indices is None: # need to start from the beginning, # so call super().set_epoch(epoch) to establish the global virtual indices logger.info( "establishing a new set of global virtual indices for " f"epoch={epoch}/shard_epoch={self.shard_epoch}" ) super().set_epoch(epoch) self._next_global_indices(epoch) else: self._cur_epoch = epoch # reset cache sizes and ordered_indices for the epoch after moving to a new epoch self._clean_if_not_none( [ self._epoch_sizes, ] ) self._epoch_sizes = None self._current_epoch_start_index = index
KosmosX-API-main
kosmosX/fairseq/fairseq/data/multilingual/sampled_multi_epoch_dataset.py