python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/multilingual/__init__.py |
from enum import Enum
from typing import Dict, List, Optional, Sequence
import torch
from fairseq.data import Dictionary
class EncoderLangtok(Enum):
"""
Prepend to the beginning of source sentence either the
source or target language token. (src/tgt).
"""
src = "src"
tgt = "tgt"
class LangTokSpec(Enum):
main = "main"
mono_dae = "mono_dae"
class LangTokStyle(Enum):
multilingual = "multilingual"
mbart = "mbart"
@torch.jit.export
def get_lang_tok(
lang: str, lang_tok_style: str, spec: str = LangTokSpec.main.value
) -> str:
# TOKEN_STYLES can't be defined outside this fn since it needs to be
# TorchScriptable.
TOKEN_STYLES: Dict[str, str] = {
LangTokStyle.mbart.value: "[{}]",
LangTokStyle.multilingual.value: "__{}__",
}
if spec.endswith("dae"):
lang = f"{lang}_dae"
elif spec.endswith("mined"):
lang = f"{lang}_mined"
style = TOKEN_STYLES[lang_tok_style]
return style.format(lang)
def augment_dictionary(
dictionary: Dictionary,
language_list: List[str],
lang_tok_style: str,
langtoks_specs: Sequence[str] = (LangTokSpec.main.value,),
extra_data: Optional[Dict[str, str]] = None,
) -> None:
for spec in langtoks_specs:
for language in language_list:
dictionary.add_symbol(
get_lang_tok(lang=language, lang_tok_style=lang_tok_style, spec=spec)
)
if lang_tok_style == LangTokStyle.mbart.value or (
extra_data is not None and LangTokSpec.mono_dae.value in extra_data
):
dictionary.add_symbol("<mask>")
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/multilingual/multilingual_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import List
logger = logging.getLogger(__name__)
def uniform(dataset_sizes: List[int]):
return [1.0] * len(dataset_sizes)
def temperature_sampling(dataset_sizes, temp):
total_size = sum(dataset_sizes)
return [(size / total_size) ** (1.0 / temp) for size in dataset_sizes]
def make_temperature_sampling(temp=1.0):
def sampling_func(dataset_sizes):
return temperature_sampling(dataset_sizes, temp)
return sampling_func
def make_ratio_sampling(ratios):
def sampling_func(dataset_sizes):
return ratios
return sampling_func
class SamplingMethod:
@staticmethod
def add_arguments(parser):
parser.add_argument(
"--sampling-method",
choices=[
"uniform",
"temperature",
"concat",
"RoundRobin",
],
type=str,
default="concat",
help="The method to sample data per language pairs",
)
parser.add_argument(
"--sampling-temperature",
default=1.5,
type=float,
help="only work with --sampling-method temperature",
)
@staticmethod
def build_sampler(args, task):
return SamplingMethod(args, task)
def __init__(self, args, task):
self.args = args
self.task = task
def is_adaptive(self):
return False
def sampling_method_selector(self):
args = self.args
logger.info(f"selected sampler: {args.sampling_method}")
if args.sampling_method == "uniform":
return uniform
elif args.sampling_method == "temperature" or self.is_adaptive():
return make_temperature_sampling(float(args.sampling_temperature))
else:
# default to concating all data set together
return None
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/multilingual/sampling_method.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import hashlib
import logging
import time
from bisect import bisect_right
from collections import OrderedDict, defaultdict
from enum import Enum
from typing import List
import numpy as np
import torch
from fairseq.data import FairseqDataset, data_utils
from fairseq.distributed import utils as distributed_utils
def get_time_gap(s, e):
return (
datetime.datetime.fromtimestamp(e) - datetime.datetime.fromtimestamp(s)
).__str__()
logger = logging.getLogger(__name__)
def default_virtual_size_func(datasets, ratios, max_scale_up=1.5):
sizes = [len(d) for d in datasets]
if ratios is None:
return sum(sizes)
largest_idx = np.argmax(sizes)
largest_r = ratios[largest_idx]
largest_s = sizes[largest_idx]
# set virtual sizes relative to the largest dataset
virtual_sizes = [(r / largest_r) * largest_s for r in ratios]
vsize = sum(virtual_sizes)
max_size = sum(sizes) * max_scale_up
return int(vsize if vsize < max_size else max_size)
class CollateFormat(Enum):
single = 1
ordered_dict = 2
class SampledMultiDataset(FairseqDataset):
"""Samples from multiple sub-datasets according to given sampling ratios.
Args:
datasets (
List[~torch.utils.data.Dataset]
or OrderedDict[str, ~torch.utils.data.Dataset]
): datasets
sampling_ratios (List[float]): list of probability of each dataset to be sampled
(default: None, which corresponds to concatenating all dataset together).
seed (int): RNG seed to use (default: 2).
epoch (int): starting epoch number (default: 1).
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or
CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures
the collater to output batches of data mixed from all sub-datasets,
and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys
of sub-datasets.
Note that not all sub-datasets will present in a single batch in both formats.
virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func).
split (str): the split of the data, e.g. 'train', 'valid' or 'test'.
shared_collater (bool): whether or not to all sub-datasets have the same collater.
shuffle (bool): whether or not to shuffle data (default: True).
"""
def __init__(
self,
datasets,
sampling_ratios=None,
seed=2,
epoch=1,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=default_virtual_size_func,
split="",
shared_collater=False,
shuffle=True,
):
super().__init__()
self.shared_collater = shared_collater
self.shuffle = shuffle
if isinstance(datasets, OrderedDict):
self.keys = list(datasets.keys())
datasets = list(datasets.values())
elif isinstance(datasets, List):
self.keys = list(range(len(datasets)))
else:
raise AssertionError()
self.datasets = datasets
self.split = split
self.eval_key = eval_key
if self.eval_key is not None:
self.collate_format = CollateFormat.single
else:
self.collate_format = collate_format
self.seed = seed
self._cur_epoch = None
self.cumulated_sizes = None
# self.datasets[k][self._cur_indices[i]] is the data item i in this sampled dataset
# namely, data item i is sampled from the kth sub-dataset self.datasets[k]
# where self.cumulated_sizes[k-1] <= i < self.cumulated_sizes[k]
self._cur_indices = None
self._sizes = None
self.virtual_size_per_dataset = None
# caching properties
self._reset_cached_properties()
self.setup_sampling(sampling_ratios, virtual_size)
self.set_epoch(epoch)
def _clean_if_not_none(self, var_list):
for v in var_list:
if v is not None:
del v
def _reset_cached_properties(self):
self._clean_if_not_none([self._sizes, self._cur_indices])
self._sizes = None
self._cur_indices = None
def setup_sampling(self, sample_ratios, virtual_size):
sizes = [len(d) for d in self.datasets]
if sample_ratios is None:
# default back to concating datasets
self.sample_ratios = None
self.virtual_size = sum(sizes)
else:
if not isinstance(sample_ratios, np.ndarray):
sample_ratios = np.array(sample_ratios)
self.sample_ratios = sample_ratios
virtual_size = (
default_virtual_size_func if virtual_size is None else virtual_size
)
self.virtual_size = (
virtual_size(self.datasets, self.sample_ratios)
if callable(virtual_size)
else virtual_size
)
def adjust_sampling(self, epoch, sampling_ratios, virtual_size):
if sampling_ratios is not None:
sampling_ratios = self._sync_sample_ratios(sampling_ratios)
self.setup_sampling(sampling_ratios, virtual_size)
def _sync_sample_ratios(self, ratios):
# in case the ratios are not precisely the same across processes
# also to ensure every procresses update the ratios in the same pace
ratios = torch.DoubleTensor(ratios)
if torch.distributed.is_initialized():
if torch.cuda.is_available():
distributed_utils.all_reduce(
ratios.cuda(), group=distributed_utils.get_data_parallel_group()
)
else:
distributed_utils.all_reduce(
ratios, group=distributed_utils.get_data_parallel_group()
)
ret = ratios.cpu()
ret = ret.numpy()
return ret
def random_choice_in_dataset(self, rng, dataset, choice_size):
if hasattr(dataset, "random_choice_in_dataset"):
return dataset.random_choice_in_dataset(rng, choice_size)
dataset_size = len(dataset)
return rng.choice(
dataset_size, choice_size, replace=(choice_size > dataset_size)
)
def get_virtual_indices(self, rng, datasets, sample_ratios, virtual_size):
def get_counts(sample_ratios):
counts = np.array([virtual_size * r for r in sample_ratios], dtype=np.int64)
diff = virtual_size - counts.sum()
assert diff >= 0
# due to round-offs, the size might not match the desired sizes
if diff > 0:
dataset_indices = rng.choice(
len(sample_ratios), size=diff, p=sample_ratios
)
for i in dataset_indices:
counts[i] += 1
return counts
def get_in_dataset_indices(datasets, sizes, sample_ratios):
counts = get_counts(sample_ratios)
# uniformally sample desired counts for each dataset
# if the desired counts are large, sample with replacement:
indices = [
self.random_choice_in_dataset(rng, d, c)
for c, d in zip(counts, datasets)
]
return indices
sizes = [len(d) for d in datasets]
if sample_ratios is None:
# default back to concating datasets
in_dataset_indices = [list(range(s)) for s in sizes]
virtual_sizes_per_dataset = sizes
else:
ratios = sample_ratios / sample_ratios.sum()
in_dataset_indices = get_in_dataset_indices(datasets, sizes, ratios)
virtual_sizes_per_dataset = [len(d) for d in in_dataset_indices]
virtual_sizes_per_dataset = np.array(virtual_sizes_per_dataset, np.int64)
cumulative_sizes = np.cumsum(virtual_sizes_per_dataset)
assert sum(virtual_sizes_per_dataset) == virtual_size
assert cumulative_sizes[-1] == virtual_size
if virtual_size < sum(sizes):
logger.warning(
f"virtual data size ({virtual_size}) is less than real data size ({sum(sizes)})."
" If virtual size << real data size, there could be data coverage issue."
)
in_dataset_indices = np.hstack(in_dataset_indices)
return in_dataset_indices, cumulative_sizes, virtual_sizes_per_dataset
def _get_dataset_and_index(self, index):
i = bisect_right(self.cumulated_sizes, index)
return i, self._cur_indices[index]
def __getitem__(self, index):
# self.__getitem__(index) returns self.datasets[k][self._cur_indices[index]]
# where k satisfies self.cumulated_sizes[k - 1] <= k < self.cumulated_sizes[k]
ds_idx, ds_sample_idx = self._get_dataset_and_index(index)
ret = (ds_idx, self.datasets[ds_idx][ds_sample_idx])
return ret
def num_tokens(self, index):
return self.sizes[index].max()
def num_tokens_vec(self, indices):
sizes_vec = self.sizes[np.array(indices)]
# max across all dimensions but first one
return np.amax(sizes_vec, axis=tuple(range(1, len(sizes_vec.shape))))
def size(self, index):
return self.sizes[index]
def __len__(self):
return self.virtual_size
def collater(self, samples, **extra_args):
"""Merge a list of samples to form a mini-batch."""
if len(samples) == 0:
return None
if self.collate_format == "ordered_dict":
collect_samples = [[] for _ in range(len(self.datasets))]
for (i, sample) in samples:
collect_samples[i].append(sample)
batch = OrderedDict(
[
(self.keys[i], dataset.collater(collect_samples[i]))
for i, (key, dataset) in enumerate(zip(self.keys, self.datasets))
if len(collect_samples[i]) > 0
]
)
elif self.shared_collater:
batch = self.datasets[0].collater([s for _, s in samples])
else:
samples_dict = defaultdict(list)
pad_to_length = (
defaultdict(int)
if "pad_to_length" not in extra_args
else extra_args["pad_to_length"]
)
for ds_idx, s in samples:
pad_to_length["source"] = max(
pad_to_length["source"], s["source"].size(0)
)
if s["target"] is not None:
pad_to_length["target"] = max(
pad_to_length["target"], s["target"].size(0)
)
samples_dict[ds_idx].append(s)
batches = [
self.datasets[i].collater(samples_dict[i], pad_to_length=pad_to_length)
for i in range(len(self.datasets))
if len(samples_dict[i]) > 0
]
def straight_data(tensors):
batch = torch.cat(tensors, dim=0)
return batch
src_lengths = straight_data(
[b["net_input"]["src_lengths"] for b in batches]
)
src_lengths, sort_order = src_lengths.sort(descending=True)
def straight_order(tensors):
batch = straight_data(tensors)
return batch.index_select(0, sort_order)
batch = {
"id": straight_order([b["id"] for b in batches]),
"nsentences": sum(b["nsentences"] for b in batches),
"ntokens": sum(b["ntokens"] for b in batches),
"net_input": {
"src_tokens": straight_order(
[b["net_input"]["src_tokens"] for b in batches]
),
"src_lengths": src_lengths,
},
"target": straight_order([b["target"] for b in batches])
if batches[0]["target"] is not None
else None,
}
if "prev_output_tokens" in batches[0]["net_input"]:
batch["net_input"]["prev_output_tokens"] = straight_order(
[b["net_input"]["prev_output_tokens"] for b in batches]
)
if "src_lang_id" in batches[0]["net_input"]:
batch["net_input"]["src_lang_id"] = straight_order(
[b["net_input"]["src_lang_id"] for b in batches]
)
if "tgt_lang_id" in batches[0]:
batch["tgt_lang_id"] = straight_order(
[b["tgt_lang_id"] for b in batches]
)
return batch
@property
def sizes(self):
if self._sizes is not None:
return self._sizes
start_time = time.time()
in_sub_dataset_indices = [
self._cur_indices[
0 if i == 0 else self.cumulated_sizes[i - 1] : self.cumulated_sizes[i]
]
for i in range(len(self.datasets))
]
sub_dataset_sizes = [
d.sizes[indices]
for d, indices in zip(self.datasets, in_sub_dataset_indices)
]
self._sizes = np.vstack(sub_dataset_sizes)
logger.info(f"sizes() calling time: {get_time_gap(start_time, time.time())}")
return self._sizes
def ordered_indices(self):
if self.shuffle:
indices = np.random.permutation(len(self))
else:
indices = np.arange(len(self))
sizes = self.sizes
tgt_sizes = sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None
src_sizes = (
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes
)
# sort by target length, then source length
if tgt_sizes is not None:
indices = indices[np.argsort(tgt_sizes[indices], kind="mergesort")]
sort_indices = indices[np.argsort(src_sizes[indices], kind="mergesort")]
return sort_indices
def prefetch(self, indices):
prefetch_indices = [[] for _ in range(len(self.datasets))]
for i in indices:
ds_idx, ds_sample_idx = self._get_dataset_and_index(i)
prefetch_indices[ds_idx].append(ds_sample_idx)
for i in range(len(prefetch_indices)):
self.datasets[i].prefetch(prefetch_indices[i])
@property
def can_reuse_epoch_itr_across_epochs(self):
return False
def set_epoch(self, epoch):
super().set_epoch(epoch)
if epoch == self._cur_epoch:
# re-enter so return
return
for d in self.datasets:
if hasattr(d, "set_epoch"):
d.set_epoch(epoch)
self._cur_epoch = epoch
self._establish_virtual_datasets()
def _establish_virtual_datasets(self):
if self.sample_ratios is None and self._cur_indices is not None:
# not a samping dataset, no need to resample if indices are already established
return
self._reset_cached_properties()
start_time = time.time()
# Generate a weighted sample of indices as a function of the
# random seed and the current epoch.
rng = np.random.RandomState(
[
int(
hashlib.sha1(
str(self.__class__.__name__).encode("utf-8")
).hexdigest(),
16,
)
% (2 ** 32),
self.seed % (2 ** 32), # global seed
self._cur_epoch, # epoch index,
]
)
self._clean_if_not_none(
[self.cumulated_sizes, self.virtual_size_per_dataset, self._sizes]
)
self._sizes = None
indices, cumulated_sizes, virtual_size_per_dataset = self.get_virtual_indices(
rng, self.datasets, self.sample_ratios, self.virtual_size
)
self._cur_indices = indices
self.cumulated_sizes = cumulated_sizes
self.virtual_size_per_dataset = virtual_size_per_dataset
raw_sizes = [len(d) for d in self.datasets]
sampled_sizes = self.virtual_size_per_dataset
logger.info(
f"[{self.split}] Raw sizes: {str(dict(zip(self.keys, raw_sizes)))}; "
f"raw total size: {sum(raw_sizes)}"
)
logger.info(
f"[{self.split}] Resampled sizes: {str(dict(zip(self.keys, sampled_sizes)))}; "
f"resampled total size: {sum(sampled_sizes)}"
)
if self.sample_ratios is not None:
logger.info(
f"[{self.split}] Upsampling ratios: {str(dict(zip(self.keys, self.sample_ratios)))}"
)
else:
logger.info(f"[{self.split}] A concat dataset")
logger.info(
f"[{self.split}] virtual dataset established time: {get_time_gap(start_time, time.time())}"
)
def filter_indices_by_size(self, indices, max_sizes):
"""Filter a list of sample indices. Remove those that are longer
than specified in max_sizes.
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
sizes = self.sizes
tgt_sizes = sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None
src_sizes = (
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes
)
return data_utils.filter_paired_dataset_indices_by_size(
src_sizes, tgt_sizes, indices, max_sizes
)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/multilingual/sampled_multi_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import json
import logging
import math
import os
from collections import OrderedDict, defaultdict
from argparse import ArgumentError
from fairseq import utils
from fairseq.data import (
AppendTokenDataset,
ConcatDataset,
Dictionary,
LanguagePairDataset,
PrependTokenDataset,
SampledMultiDataset,
SampledMultiEpochDataset,
StripTokenDataset,
TransformEosLangPairDataset,
TruncateDataset,
data_utils,
indexed_dataset,
)
from fairseq.data.multilingual.multilingual_utils import (
EncoderLangtok,
LangTokSpec,
LangTokStyle,
augment_dictionary,
get_lang_tok,
)
from fairseq.data.multilingual.sampled_multi_dataset import CollateFormat
from fairseq.file_io import PathManager
from fairseq.utils import FileContentsAction, csv_str_list, eval_str_dict
logger = logging.getLogger(__name__)
SRC_DICT_NAME = "src"
TGT_DICT_NAME = "tgt"
def _lang_id(dic: Dictionary, lang: str):
"""Return language ID index."""
idx = dic.index(lang)
assert idx != dic.unk_index, "cannot find language ID for lang {}".format(lang)
return idx
def load_sampling_weights(from_file):
with open(from_file) as f:
weights = json.load(f)
return weights
class MultilingualDatasetManager(object):
def __init__(self, args, lang_pairs, langs, dicts, sampling_method):
super().__init__()
self.args = args
self.seed = args.seed
self.lang_pairs = lang_pairs
self.extra_lang_pairs = (
list({p for _, v in args.extra_lang_pairs.items() for p in v.split(",")})
if args.extra_lang_pairs
else []
)
self.src_langs = {
p.split("-")[0] for p in args.lang_pairs + self.extra_lang_pairs
}
self.tgt_langs = {
p.split("-")[1] for p in args.lang_pairs + self.extra_lang_pairs
}
self.langs = langs
self.dicts = dicts
self.lang_dict = self.create_lang_dictionary(self.langs)
self.sampling_method = sampling_method
self.sampling_scheduler = None
self._has_sharded_data = False
self._num_shards_dict = {}
self._training_data_sizes = defaultdict(lambda: {})
@classmethod
def setup_data_manager(cls, args, lang_pairs, langs, dicts, sampling_method):
return MultilingualDatasetManager(
args, lang_pairs, langs, dicts, sampling_method
)
@staticmethod
def add_args(parser):
parser.add_argument(
"data",
help="colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner",
action=FileContentsAction,
)
parser.add_argument(
"--langs",
default=None,
type=csv_str_list,
help="a list of languages comma sperated languages which can appear in lang-pairs; "
"note that the ordering determines language token IDs",
)
parser.add_argument(
"--lang-dict",
default=None,
type=str,
help="an external file which contains a list of "
"languages which can appear in lang-pairs; "
"note that the ordering determines language token IDs; "
"--langs and --lang-dict are two exclusive options",
)
parser.add_argument(
"--source-dict",
default=None,
type=str,
help="path to source dictionary; if specified it will override per language dictionary loading",
)
parser.add_argument(
"--target-dict",
default=None,
type=str,
help="path to target dictionary; if specified it will override per language dictionary loading",
)
parser.add_argument(
"--lang-tok-style",
default=LangTokStyle.multilingual.value,
type=str,
choices=[LangTokStyle.multilingual.value, LangTokStyle.mbart.value],
help="language token styles",
)
parser.add_argument(
"--load-alignments",
action="store_true",
help="load the binarized alignments",
)
parser.add_argument(
"--left-pad-source",
default="True",
type=str,
metavar="BOOL",
help="pad the source on the left",
)
parser.add_argument(
"--left-pad-target",
default="False",
type=str,
metavar="BOOL",
help="pad the target on the left",
)
try:
parser.add_argument(
"--max-source-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
except ArgumentError:
# this might have already been defined. Once we transition this to hydra it should be fine to add it here.
pass
parser.add_argument(
"--upsample-primary",
default=1,
type=int,
help="amount to upsample primary dataset",
)
parser.add_argument(
"--truncate-source",
action="store_true",
default=False,
help="truncate source to max-source-positions",
)
parser.add_argument(
"--encoder-langtok",
default=None,
type=str,
choices=[EncoderLangtok.src.value, EncoderLangtok.tgt.value],
metavar="SRCTGT",
help="prepend to the beginning of source sentence the source or target "
"language token. (src/tgt)",
)
parser.add_argument(
"--decoder-langtok",
action="store_true",
help="prepend to the beginning of target sentence the target language token",
)
parser.add_argument(
"--lang-tok-replacing-bos-eos", action="store_true", default=False
)
parser.add_argument(
"--enable-lang-ids",
default=False,
action="store_true",
help="whether to include language IDs in samples",
)
parser.add_argument(
"--enable-reservsed-directions-shared-datasets",
default=False,
action="store_true",
help="whether to allow datasets be used in reversed directions",
)
parser.add_argument(
"--extra-data",
help='a dictionary of data name to this path, \
e.g. {"mined", path_to_mined_data, "denoised": path_to_denoised_data}',
type=lambda uf: eval_str_dict(uf, type=str),
default=None,
)
parser.add_argument(
"--extra-lang-pairs",
help='a dictionary of data name to the language pairs they serve, \
e.g. {"mined": comma-separated-lang-pairs, "denoised": comma-separated-lang-pairs}',
type=lambda uf: eval_str_dict(uf, type=str),
default=None,
)
parser.add_argument(
"--fixed-dictionary",
help="Fixed dictionary to use with model path",
default=None,
type=str,
)
parser.add_argument(
"--langtoks-specs",
help='a list of comma separated data types that a set of language tokens to be specialized for, \
e.g. "main,dae,mined". There will be a set of language tokens added to the vocab to \
distinguish languages in different training data types. If not specified, default language \
tokens per languages will be added',
default=LangTokSpec.main.value,
type=csv_str_list,
)
parser.add_argument(
"--langtoks",
help='a dictionary of how to add language tokens, \
e.g. {"mined": (None, "tgt"), "mono_dae": ("src.dae", "tgt"), "main": \
("src", "tgt")}, or {"mined": ("src.mined", "tgt")}',
default=None,
type=lambda uf: eval_str_dict(uf, type=str),
)
parser.add_argument(
"--sampling-weights-from-file",
help='a file contain a python dictionary of how to sample data sets, \
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }',
default=None,
type=str,
)
parser.add_argument(
"--sampling-weights",
help='a dictionary of how to sample data sets, \
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }',
default=None,
type=lambda uf: eval_str_dict(uf, type=str),
)
parser.add_argument(
"--virtual-epoch-size",
default=None,
type=int,
help="virtual epoch size to speed up data loading",
)
parser.add_argument(
"--virtual-data-size",
default=None,
type=int,
help="virtual data size of the whole joint dataset to speed"
"up data loading and have specific dynamic sampling strategy interval",
)
@classmethod
def load_langs(cls, args, **kwargs):
if args.lang_dict and args.langs:
raise ValueError("--langs and --lang-dict can not both be specified")
if args.lang_dict is None and args.langs is None:
logger.warning(
"External language dictionary is not provided; "
"use lang-pairs to infer the set of supported languages. "
"The language ordering is not stable which might cause "
"misalignment in pretraining and finetuning."
)
# infer from lang_pairs as it is
langs = list(
{x for lang_pair in args.lang_pairs for x in lang_pair.split("-")}
)
langs = sorted(langs)
logger.info(f"inferred language list: {langs}")
elif args.lang_dict:
with open(
PathManager.get_local_path(args.lang_dict), "r", encoding="utf-8"
) as f:
langs = [lang.strip() for lang in f.readlines() if lang.strip()]
logger.info(
f"loaded language list from {args.lang_dict} as they are ordered in file"
)
elif args.langs:
langs = args.langs
logger.info(
f"parsed the language list as they are ordered in the option: {langs}"
)
return langs
def has_sharded_data(self, split):
return self._has_sharded_data and split == getattr(
self.args, "train_subset", None
)
def _shared_collater(self):
return not (self.args.extra_data and "mono_dae" in self.args.extra_data) and (
not self.args.lang_tok_replacing_bos_eos
)
def estimate_global_pass_epoch(self, epoch):
if self.args.virtual_epoch_size is None or self.args.virtual_data_size is None:
return None
# one epoch more for remaining data in each shard
virtual_epochs_per_shard = math.ceil(
self.args.virtual_data_size / self.args.virtual_epoch_size
)
# note that fairseq epoch / shard_epoch starts from 1
shard_epoch = (epoch - 1) // virtual_epochs_per_shard + 1
return shard_epoch
@classmethod
def prepare(cls, load_dictionary, args, **kargs):
args.left_pad_source = utils.eval_bool(args.left_pad_source)
args.left_pad_target = utils.eval_bool(args.left_pad_target)
if not hasattr(args, "shuffle_instance"):
args.shuffle_instance = False
if args.langtoks is None:
args.langtoks = {}
if "main" not in args.langtoks:
src_langtok_spec = args.encoder_langtok if args.encoder_langtok else None
tgt_langtok_spec = "tgt" if args.decoder_langtok else None
args.langtoks["main"] = (src_langtok_spec, tgt_langtok_spec)
def check_langs(langs, pairs):
messages = []
for src, tgt in pairs:
if src not in langs or tgt not in langs:
messages.append(
f"language pair {src}-{tgt} contains languages "
"that are not in the language dictionary"
)
if len(messages) > 0:
raise ValueError(" ".join(messages) + f"; langs: {langs}")
if args.lang_pairs is None:
raise ValueError(
"--lang-pairs is required. List all the language pairs in the training objective."
)
if isinstance(args.lang_pairs, str):
args.lang_pairs = args.lang_pairs.split(",")
if args.source_lang is not None or args.target_lang is not None:
training = False
else:
training = True
language_list = cls.load_langs(args, **kargs)
check_langs(
language_list,
(
[p.split("-") for p in args.lang_pairs]
if training
else [(args.source_lang, args.target_lang)]
),
)
def load_dictionary_and_postproc(path):
d = load_dictionary(path)
augment_dictionary(
dictionary=d,
language_list=language_list,
lang_tok_style=args.lang_tok_style,
langtoks_specs=args.langtoks_specs,
extra_data=args.extra_data,
)
return d
dicts = cls.load_all_dictionaries(
args, language_list, load_dictionary_and_postproc, training
)
return language_list, dicts, training
@classmethod
def load_all_dictionaries(cls, args, language_list, load_dictionary, training):
dicts = OrderedDict()
if args.source_dict is not None:
dicts[SRC_DICT_NAME] = load_dictionary(args.source_dict)
if args.target_dict is not None:
dicts[TGT_DICT_NAME] = load_dictionary(args.target_dict)
if training:
extra_lang_pairs = (
list(
{p for _, v in args.extra_lang_pairs.items() for p in v.split(",")}
)
if args.extra_lang_pairs
else []
)
src_langs_to_load_dicts = sorted(
{p.split("-")[0] for p in (args.lang_pairs + extra_lang_pairs)}
)
tgt_langs_to_load_dicts = sorted(
{p.split("-")[1] for p in (args.lang_pairs + extra_lang_pairs)}
)
else:
src_langs_to_load_dicts = [args.source_lang]
tgt_langs_to_load_dicts = [args.target_lang]
paths = utils.split_paths(args.data)
assert len(paths) > 0
def load_dicts(langs_to_load_dicts):
for lang in langs_to_load_dicts:
dicts[lang] = load_dictionary(
os.path.join(paths[0], "dict.{}.txt".format(lang))
)
if len(dicts) > 0:
dict0 = next(iter(dicts.values()))
assert dicts[lang].pad() == dict0.pad()
assert dicts[lang].eos() == dict0.eos()
assert dicts[lang].unk() == dict0.unk()
logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang])))
if args.fixed_dictionary is not None:
fixed_dict = load_dictionary(args.fixed_dictionary)
dicts = {
lang: fixed_dict
for lang in src_langs_to_load_dicts + tgt_langs_to_load_dicts
}
else:
if args.source_dict is None:
load_dicts(src_langs_to_load_dicts)
if args.target_dict is None:
load_dicts(tgt_langs_to_load_dicts)
return dicts
def get_source_dictionary(self, lang):
if self.args.source_dict is not None:
return self.dicts[SRC_DICT_NAME]
else:
return self.dicts[lang]
def get_target_dictionary(self, lang):
if self.args.target_dict is not None:
return self.dicts[TGT_DICT_NAME]
else:
return self.dicts[lang]
@classmethod
def create_lang_dictionary(cls, langs):
unk = "<unk>"
# hack to remove symbols other than unk as they are not needed by lang dict
lang_dict = Dictionary(pad=unk, eos=unk, unk=unk, bos=unk)
for lang in langs:
lang_dict.add_symbol(lang)
return lang_dict
@classmethod
def get_langtok_index(cls, lang_tok, dic):
idx = dic.index(lang_tok)
assert (
idx != dic.unk_index
), "cannot find language token {} in the dictionary".format(lang_tok)
return idx
def get_encoder_langtok(self, src_lang, tgt_lang, spec=None):
if spec is None:
return None
if spec and spec.startswith("src"):
if src_lang is None:
return None
langtok = get_lang_tok(
lang=src_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
)
else:
if tgt_lang is None:
return None
langtok = get_lang_tok(
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
)
return self.get_langtok_index(
langtok,
self.get_source_dictionary(src_lang)
if src_lang
else self.get_target_dictionary(tgt_lang),
)
def get_decoder_langtok(self, tgt_lang, spec=None):
if spec is None:
return None
langtok = get_lang_tok(
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
)
return self.get_langtok_index(langtok, self.get_target_dictionary(tgt_lang))
@classmethod
def load_data(cls, path, vdict, impl):
dataset = data_utils.load_indexed_dataset(path, vdict, impl)
return dataset
@classmethod
def split_exists(cls, split, src, tgt, lang, data_path, dataset_impl):
filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang))
return indexed_dataset.dataset_exists(filename, impl=dataset_impl)
def load_lang_dataset(
self,
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
max_source_positions,
prepend_bos=False,
load_alignments=False,
truncate_source=False,
):
src_datasets = []
tgt_datasets = []
for k in itertools.count():
split_k = split + (str(k) if k > 0 else "")
# infer langcode
if self.split_exists(split_k, src, tgt, src, data_path, dataset_impl):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
elif self.split_exists(split_k, tgt, src, src, data_path, dataset_impl):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
else:
if k > 0:
break
else:
logger.error(
f"Dataset not found: {data_path}, {split_k}, {src}, {tgt}"
)
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
src_dataset = self.load_data(prefix + src, src_dict, dataset_impl)
if truncate_source:
src_dataset = AppendTokenDataset(
TruncateDataset(
StripTokenDataset(src_dataset, src_dict.eos()),
max_source_positions - 1,
),
src_dict.eos(),
)
src_datasets.append(src_dataset)
tgt_datasets.append(self.load_data(prefix + tgt, tgt_dict, dataset_impl))
logger.info(
"{} {} {}-{} {} examples".format(
data_path, split_k, src, tgt, len(src_datasets[-1])
)
)
if not combine:
break
assert len(src_datasets) == len(tgt_datasets)
if len(src_datasets) == 1:
src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0]
else:
sample_ratios = [1] * len(src_datasets)
sample_ratios[0] = upsample_primary
src_dataset = ConcatDataset(src_datasets, sample_ratios)
tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)
if prepend_bos:
assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index")
src_dataset = PrependTokenDataset(src_dataset, src_dict.bos())
tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos())
align_dataset = None
if load_alignments:
align_path = os.path.join(
data_path, "{}.align.{}-{}".format(split, src, tgt)
)
if indexed_dataset.dataset_exists(align_path, impl=dataset_impl):
align_dataset = data_utils.load_indexed_dataset(
align_path, None, dataset_impl
)
return src_dataset, tgt_dataset, align_dataset
def load_langpair_dataset(
self,
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
left_pad_source,
left_pad_target,
max_source_positions,
max_target_positions,
prepend_bos=False,
load_alignments=False,
truncate_source=False,
src_dataset_transform_func=lambda dataset: dataset,
tgt_dataset_transform_func=lambda dataset: dataset,
src_lang_id=None,
tgt_lang_id=None,
langpairs_sharing_datasets=None,
):
norm_direction = "-".join(sorted([src, tgt]))
if langpairs_sharing_datasets is not None:
src_dataset = langpairs_sharing_datasets.get(
(data_path, split, norm_direction, src), "NotInCache"
)
tgt_dataset = langpairs_sharing_datasets.get(
(data_path, split, norm_direction, tgt), "NotInCache"
)
align_dataset = langpairs_sharing_datasets.get(
(data_path, split, norm_direction, src, tgt), "NotInCache"
)
# a hack: any one is not in cache, we need to reload them
if (
langpairs_sharing_datasets is None
or src_dataset == "NotInCache"
or tgt_dataset == "NotInCache"
or align_dataset == "NotInCache"
or split != getattr(self.args, "train_subset", None)
):
# source and target datasets can be reused in reversed directions to save memory
# reversed directions of valid and test data will not share source and target datasets
src_dataset, tgt_dataset, align_dataset = self.load_lang_dataset(
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
max_source_positions=max_source_positions,
prepend_bos=prepend_bos,
load_alignments=load_alignments,
truncate_source=truncate_source,
)
src_dataset = src_dataset_transform_func(src_dataset)
tgt_dataset = tgt_dataset_transform_func(tgt_dataset)
if langpairs_sharing_datasets is not None:
langpairs_sharing_datasets[
(data_path, split, norm_direction, src)
] = src_dataset
langpairs_sharing_datasets[
(data_path, split, norm_direction, tgt)
] = tgt_dataset
langpairs_sharing_datasets[
(data_path, split, norm_direction, src, tgt)
] = align_dataset
if align_dataset is None:
# no align data so flag the reverse direction as well in sharing
langpairs_sharing_datasets[
(data_path, split, norm_direction, tgt, src)
] = align_dataset
else:
logger.info(
f"Reusing source and target datasets of [{split}] {tgt}-{src} for reversed direction: "
f"[{split}] {src}-{tgt}: src length={len(src_dataset)}; tgt length={len(tgt_dataset)}"
)
return LanguagePairDataset(
src_dataset,
src_dataset.sizes,
src_dict,
tgt_dataset,
tgt_dataset.sizes if tgt_dataset is not None else None,
tgt_dict,
left_pad_source=left_pad_source,
left_pad_target=left_pad_target,
align_dataset=align_dataset,
src_lang_id=src_lang_id,
tgt_lang_id=tgt_lang_id,
)
def src_dataset_tranform_func(self, src_lang, tgt_lang, dataset, spec=None):
if self.args.lang_tok_replacing_bos_eos:
# it is handled by self.alter_dataset_langtok
# TODO: Unifiy with alter_dataset_langtok
return dataset
if spec is None:
return dataset
tok = self.get_encoder_langtok(src_lang, tgt_lang, spec)
if tok:
return PrependTokenDataset(dataset, tok)
return dataset
def tgt_dataset_tranform_func(self, source_lang, target_lang, dataset, spec=None):
if dataset is None:
# note that target dataset can be None during inference time
return None
if self.args.lang_tok_replacing_bos_eos:
# TODO: Unifiy with alter_dataset_langtok
# It is handled by self.alter_dataset_langtok.
# The complication in self.alter_dataset_langtok
# makes a unified framework difficult.
return dataset
# if not self.args.decoder_langtok:
if not spec:
return dataset
tok = self.get_decoder_langtok(target_lang, spec)
if tok:
return PrependTokenDataset(dataset, tok)
return dataset
def alter_dataset_langtok(
self,
lang_pair_dataset,
src_eos=None,
src_lang=None,
tgt_eos=None,
tgt_lang=None,
src_langtok_spec=None,
tgt_langtok_spec=None,
):
if src_langtok_spec is None and tgt_langtok_spec is None:
return lang_pair_dataset
new_src_eos = None
if (
src_langtok_spec is not None
and src_eos is not None
and (src_lang is not None or tgt_lang is not None)
):
new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang, src_langtok_spec)
else:
src_eos = None
new_tgt_bos = None
if tgt_langtok_spec and tgt_eos is not None and tgt_lang is not None:
new_tgt_bos = self.get_decoder_langtok(tgt_lang, tgt_langtok_spec)
else:
tgt_eos = None
return TransformEosLangPairDataset(
lang_pair_dataset,
src_eos=src_eos,
new_src_eos=new_src_eos,
tgt_bos=tgt_eos,
new_tgt_bos=new_tgt_bos,
)
def load_a_dataset(
self,
split,
data_path,
src,
src_dict,
tgt,
tgt_dict,
combine,
prepend_bos=False,
langpairs_sharing_datasets=None,
data_category=None,
**extra_kwargs,
):
dataset_impl = self.args.dataset_impl
upsample_primary = self.args.upsample_primary
left_pad_source = self.args.left_pad_source
left_pad_target = self.args.left_pad_target
max_source_positions = self.args.max_source_positions
max_target_positions = self.args.max_target_positions
load_alignments = self.args.load_alignments
truncate_source = self.args.truncate_source
src_dataset_transform_func = self.src_dataset_tranform_func
tgt_dataset_transform_func = self.tgt_dataset_tranform_func
enable_lang_ids = self.args.enable_lang_ids
lang_dictionary = self.lang_dict
src_langtok_spec, tgt_langtok_spec = extra_kwargs["langtok_spec"]
src_langtok = self.get_encoder_langtok(src, tgt, src_langtok_spec)
tgt_langtok = self.get_decoder_langtok(tgt, tgt_langtok_spec)
logger.info(
f"{data_category}:{src}-{tgt} src_langtok: {src_langtok}; tgt_langtok: {tgt_langtok}"
)
langpair_ds = self.load_langpair_dataset(
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
left_pad_source,
left_pad_target,
max_source_positions,
max_target_positions,
prepend_bos,
load_alignments,
truncate_source,
src_dataset_transform_func=lambda dataset: src_dataset_transform_func(
src, tgt, dataset, src_langtok_spec
),
tgt_dataset_transform_func=lambda dataset: tgt_dataset_transform_func(
src, tgt, dataset, tgt_langtok_spec
),
src_lang_id=_lang_id(lang_dictionary, src)
if enable_lang_ids and lang_dictionary is not None
else None,
tgt_lang_id=_lang_id(lang_dictionary, tgt)
if enable_lang_ids and lang_dictionary is not None
else None,
langpairs_sharing_datasets=langpairs_sharing_datasets,
)
# TODO: handle modified lang toks for mined data and dae data
if self.args.lang_tok_replacing_bos_eos:
ds = self.alter_dataset_langtok(
langpair_ds,
src_eos=self.get_source_dictionary(src).eos()
if src
else self.get_target_dictionary(tgt).eos(),
src_lang=src,
tgt_eos=self.get_target_dictionary(tgt).eos(),
tgt_lang=tgt,
src_langtok_spec=src_langtok_spec,
tgt_langtok_spec=tgt_langtok_spec,
)
else:
ds = langpair_ds
return ds
def load_split_langpair_datasets(self, split, data_param_list):
datasets = []
langpairs_sharing_datasets = (
{} if self.args.enable_reservsed_directions_shared_datasets else None
)
for param in data_param_list:
ds = self.load_a_dataset(
split=split,
langpairs_sharing_datasets=langpairs_sharing_datasets,
**param,
)
datasets.append(ds)
return datasets
def get_data_paths_and_lang_pairs(self, split):
datapaths = {"main": self.args.data}
lang_pairs = {"main": self.lang_pairs}
if split == getattr(self.args, "train_subset", None):
# only training data can have extra data and extra language pairs
if self.args.extra_data:
extra_datapaths = self.args.extra_data
datapaths.update(extra_datapaths)
if self.args.extra_lang_pairs:
extra_lang_pairs = {
k: v.split(",") for k, v in self.args.extra_lang_pairs.items()
}
lang_pairs.update(extra_lang_pairs)
return datapaths, lang_pairs
@classmethod
def get_dataset_key(cls, data_category, src, tgt):
return f"{data_category}:{src}-{tgt}"
@classmethod
def _get_shard_num_dict(cls, split, paths):
shards = defaultdict(int)
for path in paths:
files = PathManager.ls(path)
directions = set()
for f in files:
if f.startswith(split) and f.endswith(".idx"):
# idx files of the form "{split}.{src}-{tgt}.{lang}.idx"
direction = f.split(".")[-3]
directions.add(direction)
for direction in directions:
shards[direction] += 1
return shards
def get_split_num_data_shards(self, split):
if split in self._num_shards_dict:
return self._num_shards_dict[split]
num_shards_dict = {}
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split)
for data_category, paths in data_paths.items():
if data_category not in lang_pairs:
continue
paths = utils.split_paths(paths)
shards_dict = self._get_shard_num_dict(split, paths)
lang_dirs = [
lang_pair.split("-") for lang_pair in lang_pairs[data_category]
]
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs]
for src, tgt in lang_dirs:
key = self.get_dataset_key(data_category, src, tgt)
if "mono_" in data_category:
# monolingual data requires tgt only
assert src is None or src == tgt, (
f"error: src={src}, "
"tgt={tgt} for data_category={data_category}"
)
num_shards_dict[key] = shards_dict[tgt]
else:
if f"{src}-{tgt}" in shards_dict:
num_shards_dict[key] = shards_dict[f"{src}-{tgt}"]
elif f"{tgt}-{src}" in shards_dict:
# follow the fairseq tradition to use reversed direction data if it is not available
num_shards_dict[key] = shards_dict[f"{tgt}-{src}"]
self._num_shards_dict[split] = num_shards_dict
logger.info(f"[{split}] num of shards: {num_shards_dict}")
return num_shards_dict
@classmethod
def get_shard_id(cls, num_shards, epoch, shard_epoch=None):
shard = epoch if shard_epoch is None else shard_epoch
shard = (shard - 1) % num_shards
return shard
def get_split_data_path(self, paths, epoch, shard_epoch, num_shards):
path = paths[self.get_shard_id(num_shards, epoch, shard_epoch)]
return path
def get_split_data_param_list(self, split, epoch, shard_epoch=None):
# TODO: to extend with extra datasets and keys and loop over different shard data paths
param_list = []
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split)
logger.info(f"langtoks settings: {self.args.langtoks}")
split_num_shards_dict = self.get_split_num_data_shards(split)
for data_category, paths in data_paths.items():
if data_category not in lang_pairs:
continue
paths = utils.split_paths(paths)
assert len(paths) > 0
if len(paths) > 1:
self._has_sharded_data = True
if split != getattr(self.args, "train_subset", None):
# if not training data set, use the first shard for valid and test
paths = paths[:1]
if data_category in self.args.langtoks:
lang_tok_spec = self.args.langtoks[data_category]
else:
# default to None
lang_tok_spec = (None, None)
# infer langcode
lang_dirs = [
lang_pair.split("-") for lang_pair in lang_pairs[data_category]
]
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs]
for src, tgt in lang_dirs:
assert src is not None or data_category == "mono_dae", (
f"error: src={src}, " "tgt={tgt} for data_category={data_category}"
)
# logger.info(f"preparing param for {data_category}: {src} - {tgt}")
key = self.get_dataset_key(data_category, src, tgt)
data_path = self.get_split_data_path(
paths, epoch, shard_epoch, split_num_shards_dict[key]
)
param_list.append(
{
"key": key,
"data_path": data_path,
"split": split,
"src": src,
"src_dict": self.get_source_dictionary(src)
if src and data_category != "mono_dae"
else None,
"tgt": tgt,
"tgt_dict": self.get_target_dictionary(tgt),
"data_category": data_category,
"langtok_spec": lang_tok_spec,
}
)
return param_list
def get_train_dataset_sizes(
self, data_param_list, datasets, epoch, shard_epoch=None
):
num_shards = [
self.get_split_num_data_shards(param["split"])[param["key"]]
for param in data_param_list
]
data_sizes = []
for (key, d), num_shard in zip(datasets, num_shards):
my_data_sizes = self._training_data_sizes[key]
shard_ind = self.get_shard_id(num_shard, epoch, shard_epoch)
if shard_ind not in my_data_sizes:
my_data_sizes[shard_ind] = len(d)
known_size = max(my_data_sizes.values())
data_sizes.append(
# If we don't know the data size of the shard yet,
# use the the max known data size to approximate.
# Note that we preprocess shards by a designated shard size
# and put any remaining data at the end into the last shard so
# the max shard size approximation is almost correct before loading
# the last shard; after loading the last shard, it will have the
# exact data sizes of the whole data size.
(key, sum(my_data_sizes.get(i, known_size) for i in range(num_shard)))
)
logger.info(
f"estimated total data sizes of all shards used in sampling ratios: {data_sizes}. "
"Note that if the data a shard has not been loaded yet, use the max known data size to approximate"
)
return [s for _, s in data_sizes]
def get_train_sampling_ratios(
self, data_param_list, datasets, epoch=1, shard_epoch=None
):
data_sizes = self.get_train_dataset_sizes(
data_param_list, datasets, epoch, shard_epoch
)
sampling_func = self.sampling_method.sampling_method_selector()
sample_ratios = sampling_func(data_sizes) if sampling_func is not None else None
return sample_ratios
def get_sampling_ratios(self, data_param_list, datasets, epoch, shard_epoch=None):
if self.args.sampling_weights_from_file:
weights = load_sampling_weights(self.args.sampling_weights_from_file)
sample_ratios = [weights[k] for k, _ in datasets]
logger.info(
"| ignoring --sampling-weights when loadding sampling weights "
f"from file {self.args.sampling_weights_from_file}"
)
elif self.args.sampling_weights:
sample_ratios = [self.args.sampling_weights[k] for k, _ in datasets]
else:
sample_ratios = self.get_train_sampling_ratios(
data_param_list, datasets, epoch, shard_epoch
)
if sample_ratios is not None:
logger.info(
"| Upsample ratios: {}".format(
list(zip(map(lambda x: x["key"], data_param_list), sample_ratios))
)
)
assert len(sample_ratios) == len(datasets)
return sample_ratios
def load_split_datasets(
self, split, training, epoch=1, combine=False, shard_epoch=None, **kwargs
):
data_param_list = self.get_split_data_param_list(
split, epoch, shard_epoch=shard_epoch
)
langpairs_sharing_datasets = (
{} if self.args.enable_reservsed_directions_shared_datasets else None
)
datasets = [
(
param["key"],
self.load_a_dataset(
combine=combine,
langpairs_sharing_datasets=langpairs_sharing_datasets,
**param,
),
)
for param in data_param_list
]
return datasets, data_param_list
def load_into_concat_dataset(self, split, datasets, data_param_list):
if self.args.lang_tok_replacing_bos_eos:
# TODO: to investigate why TransformEosLangPairDataset doesn't work with ConcatDataset
return SampledMultiDataset(
OrderedDict(datasets),
sampling_ratios=None,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=None,
split=split,
)
return ConcatDataset([d for _, d in datasets])
def load_sampled_multi_epoch_dataset(
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
):
datasets, data_param_list = self.load_split_datasets(
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs
)
if training and split == getattr(self.args, "train_subset", None):
sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch)
return SampledMultiEpochDataset(
OrderedDict(datasets),
epoch=epoch,
shard_epoch=shard_epoch,
# valid and test datasets will be degenerate to concating datasets:
sampling_ratios=sample_ratios,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=self.args.virtual_data_size,
split=split,
virtual_epoch_size=self.args.virtual_epoch_size,
# if not using lang_tok altering, simplified to use the same collater
shared_collater=self._shared_collater(),
)
else:
return self.load_into_concat_dataset(split, datasets, data_param_list)
def load_sampled_multi_dataset(
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
):
datasets, data_param_list = self.load_split_datasets(
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs
)
if training and split == getattr(self.args, "train_subset", None):
sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch)
return SampledMultiDataset(
OrderedDict(datasets),
epoch=epoch,
# valid and test datasets will be degerate to concating datasets:
sampling_ratios=sample_ratios,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=self.args.virtual_data_size,
split=split,
# if not using lang_tok altering, simplified to use the same collater
shared_collater=self._shared_collater(),
)
else:
return self.load_into_concat_dataset(split, datasets, data_param_list)
def load_dataset(
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
):
if self.args.virtual_epoch_size is None:
return self.load_sampled_multi_dataset(
split, training, epoch, combine, shard_epoch, **kwargs
)
else:
return self.load_sampled_multi_epoch_dataset(
split, training, epoch, combine, shard_epoch, **kwargs
)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/multilingual/multilingual_data_manager.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .huffman_coder import HuffmanCodeBuilder, HuffmanCoder
from .huffman_mmap_indexed_dataset import (
HuffmanMMapIndex,
HuffmanMMapIndexedDataset,
HuffmanMMapIndexedDatasetBuilder,
vocab_file_path,
)
__all__ = [
"HuffmanCoder",
"HuffmanCodeBuilder",
"HuffmanMMapIndexedDatasetBuilder",
"HuffmanMMapIndexedDataset",
"HuffmanMMapIndex",
"vocab_file_path",
]
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/huffman/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import mmap
import os
import shutil
import struct
import typing as tp
from functools import lru_cache
import numpy as np
import torch
from fairseq.data import indexed_dataset
from fairseq.data.huffman import HuffmanCoder
from fairseq.file_io import PathManager
class HuffmanMMapIndex:
"""
keep an index of the offsets in the huffman binary file.
First a header, then the list of sizes (num tokens) for each instance and finally
the addresses of each instance.
"""
_HDR_MAGIC = b"HUFFIDX\x00\x00"
_VERSION = 1
@classmethod
def writer(cls, path: str, data_len: int):
class _Writer:
def __enter__(self):
self._file = open(path, "wb")
# write header (magic + version)
self._file.write(cls._HDR_MAGIC)
self._file.write(struct.pack("<Q", cls._VERSION))
self._file.write(struct.pack("<Q", data_len))
return self
def write(self, sizes, pointers):
# add number of items in the index to the header
self._file.write(struct.pack("<Q", len(sizes)))
# write sizes
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
# write address pointers
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path):
with open(path, "rb") as stream:
# read headers
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
(version,) = struct.unpack("<Q", stream.read(8))
assert (
self._VERSION == version
), "Unexpected file version f{version} != code version f{self._VERSION}"
# read length of data file
(self._data_len,) = struct.unpack("<Q", stream.read(8))
# read number of items in data file/index
(self._len,) = struct.unpack("<Q", stream.read(8))
offset = stream.tell()
indexed_dataset._warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
def __iter__(self):
for i in range(self._len):
yield self[i]
@property
def data_len(self):
return self._data_len
@property
def sizes(self):
return self._sizes
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def vocab_file_path(prefix_path):
return prefix_path + ".vocab"
class HuffmanMMapIndexedDataset(torch.utils.data.Dataset):
"""
an indexed dataset that use mmap and memoryview to access data from disk
that was compressed with a HuffmanCoder.
"""
def __init__(self, prefix_path):
super().__init__()
self._prefix_path = None
self._index = None
self._bin_buffer = None
self._coder = None
self._file = None
self._bin_buffer_mmap = None
self._do_init(prefix_path)
def __getstate__(self):
return self._prefix_path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, prefix_path):
self._prefix_path = prefix_path
self._index = HuffmanMMapIndex(
indexed_dataset.index_file_path(self._prefix_path)
)
self._coder = HuffmanCoder.from_file(vocab_file_path(self._prefix_path))
indexed_dataset._warmup_mmap_file(
indexed_dataset.data_file_path(self._prefix_path)
)
self._file = os.open(
indexed_dataset.data_file_path(self._prefix_path), os.O_RDONLY
)
self._bin_buffer_mmap = mmap.mmap(
self._file,
self._index.data_len,
access=mmap.ACCESS_READ,
)
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
del self._bin_buffer
if self._file:
os.close(self._file)
del self._index
def __len__(self):
return len(self._index)
def _decode(self, i):
ptr, _ = self._index[i]
if i == 0:
raw_bytes = self._bin_buffer[:ptr]
else:
(prev_ptr, _) = self._index[i - 1]
raw_bytes = self._bin_buffer[prev_ptr:ptr]
return self._coder.decode(raw_bytes.tobytes())
@lru_cache(maxsize=8)
def __getitem__(self, i):
nodes = self._decode(i)
return torch.tensor([n.id for n in nodes], dtype=torch.int64)
def __iter__(self):
for idx in range(len(self)):
yield self[idx]
def get_symbols(self, i):
nodes = self._decode(i)
for n in nodes:
yield n.symbol
@property
def sizes(self):
return self._index.sizes
@property
def supports_prefetch(self):
return False
@property
def coder(self):
return self._coder
@staticmethod
def exists(prefix_path):
return (
PathManager.exists(indexed_dataset.index_file_path(prefix_path))
and PathManager.exists(indexed_dataset.data_file_path(prefix_path))
and PathManager.exists(vocab_file_path(prefix_path))
)
class HuffmanMMapIndexedDatasetBuilder:
"""
Helper to build a memory mapped datasets with a huffman encoder.
You can either open/close this manually or use it as a ContextManager.
Provide your own coder, it will then be stored alongside the dataset.
The builder will first write the vocab file, then open the binary file so you can stream
into it, finally the index will be written when the builder is closed (your index should fit in memory).
"""
def __init__(self, path_prefix: str, coder: HuffmanCoder) -> None:
self._path_prefix = path_prefix
self._coder = coder
self._sizes = []
self._ptrs = []
self._data_len = 0
def open(self):
self._coder.to_file(vocab_file_path(self._path_prefix))
self._data_file = open(indexed_dataset.data_file_path(self._path_prefix), "wb")
def __enter__(self) -> "HuffmanMMapIndexedDatasetBuilder":
self.open()
return self
def add_item(self, tokens: tp.List[str]) -> None:
"""
add a list of tokens to the dataset, they will compressed with the
provided coder before being written to file.
"""
encoded = self._coder.encode(tokens)
code_len = len(encoded)
last_ptr = 0
if len(self._ptrs) > 0:
last_ptr = self._ptrs[-1]
self._sizes.append(len(tokens))
self._ptrs.append(last_ptr + code_len)
self._data_len += code_len
self._data_file.write(encoded)
def append(self, other_dataset_path_prefix: str) -> None:
"""
append an existing dataset.
Beware, if it wasn't built with the same coder, you are in trouble.
"""
other_index = HuffmanMMapIndex(
indexed_dataset.index_file_path(other_dataset_path_prefix)
)
for (ptr, size) in other_index:
self._ptrs.append(ptr + self._data_len)
self._sizes.append(size)
# Concatenate data
with open(indexed_dataset.data_file_path(other_dataset_path_prefix), "rb") as f:
shutil.copyfileobj(f, self._data_file)
self._data_len += other_index.data_len
def close(self):
self._data_file.close()
with HuffmanMMapIndex.writer(
indexed_dataset.index_file_path(self._path_prefix), self._data_len
) as index:
index.write(self._sizes, self._ptrs)
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
self.close()
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/huffman/huffman_mmap_indexed_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
import typing as tp
from collections import Counter, deque
from dataclasses import dataclass
from bitarray import bitarray, util
from fairseq.data import Dictionary
# basically we have to write to addressable bytes for the memory mapped
# dataset loader. Sentences that get encoded to a length that is not a
# multiple of BLOCKSIZE (a byte) will be padded to fit. (see _pad in the coder)
BLOCKSIZE = 8
class HuffmanCoder:
def __init__(
self, root: "HuffmanNode", bos="<s>", pad="<pad>", eos="</s>", unk="<unk>"
):
self.root = root
self.table = root.code_table()
self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos
def _pad(self, a: bitarray) -> bitarray:
"""
bitpadding, 1 then 0.
If the array is already a multiple of blocksize, we add a full block.
"""
pad_len = BLOCKSIZE - (len(a) % BLOCKSIZE) - 1
padding = bitarray("1" + "0" * pad_len)
return a + padding
def _unpad(self, a: bitarray) -> bitarray:
"""
remove the bitpadding.
There will be a set of 0s preceded by a 1 at the end of the bitarray, we remove that
"""
# count the 0 padding at the end until we find the first 1
# we want to remove the one too
remove_cnt = util.rindex(a, 1)
return a[:remove_cnt]
def encode(self, iter: tp.List[str]) -> bytes:
"""
encode a list of tokens a return bytes. We use bitpadding to make sure the encoded bits fit in bytes.
"""
a = bitarray()
for token in iter:
code = self.get_code(token)
if code is None:
if self.unk_word is None:
raise Exception(f"unknown token {token} cannot be encoded.")
else:
token = self.unk_word
a = a + self.get_code(token)
return self._pad(a).tobytes()
def decode(self, bits: bytes) -> tp.Iterator["HuffmanNode"]:
"""
take bitpadded bytes and decode it to a set of leaves. You can then use each node to find the symbol/id
"""
a = bitarray()
a.frombytes(bits)
return self.root.decode(self._unpad(a))
def get_code(self, symbol: str) -> tp.Optional[bitarray]:
node = self.get_node(symbol)
return None if node is None else node.code
def get_node(self, symbol: str) -> "HuffmanNode":
return self.table.get(symbol)
@classmethod
def from_file(
cls,
filename: str,
bos="<s>",
pad="<pad>",
eos="</s>",
unk="<unk>",
) -> "HuffmanCoder":
builder = HuffmanCodeBuilder.from_file(filename)
return builder.build_code(bos=bos, pad=pad, eos=eos, unk=unk)
def to_file(self, filename, sep="\t"):
nodes = list(self.table.values())
nodes.sort(key=lambda n: n.id)
with open(filename, "w", encoding="utf-8") as output:
for n in nodes:
output.write(f"{n.symbol}{sep}{n.count}\n")
def __iter__(self):
for n in self.table.values():
yield n
def merge(self, other_coder: "HuffmanCoder") -> "HuffmanCoder":
builder = HuffmanCodeBuilder()
for n in self:
builder.increment(n.symbol, n.count)
for n in other_coder:
builder.increment(n.symbol, n.count)
return builder.build_code()
def __eq__(self, other: "HuffmanCoder") -> bool:
return self.table == other.table
def __len__(self) -> int:
return len(self.table)
def __contains__(self, sym: str) -> bool:
return sym in self.table
def to_dictionary(self) -> Dictionary:
dictionary = Dictionary(bos=self.bos, unk=self.unk, pad=self.pad, eos=self.eos)
for n in self:
dictionary.add_symbol(n.symbol, n=n.count)
dictionary.finalize()
return dictionary
@dataclass
class HuffmanNode:
"""
a node in a Huffman tree
"""
id: int
count: int
symbol: tp.Optional[str] = None
left: tp.Optional["HuffmanNode"] = None
right: tp.Optional["HuffmanNode"] = None
code: tp.Optional[bitarray] = None
def is_leaf(self) -> bool:
return self.left is None and self.right is None
def code_table(
self, prefix: tp.Optional[bitarray] = None
) -> tp.Dict[str, "HuffmanNode"]:
defaulted_prefix = prefix if prefix is not None else bitarray()
if self.is_leaf():
self.code = (
defaulted_prefix if len(defaulted_prefix) > 0 else bitarray("0")
) # leaf could be the root if there is only one symbol
return {self.symbol: self}
codes_right = self.right.code_table(defaulted_prefix + bitarray([0]))
codes_left = self.left.code_table(defaulted_prefix + bitarray([1]))
return {**codes_left, **codes_right}
def decode(self, bits: bitarray) -> tp.Iterator["HuffmanNode"]:
current_node = self
for bit in bits:
if bit == 0: # go right
current_node = current_node.right
else: # go left
current_node = current_node.left
if current_node is None:
# we shouldn't be on a leaf here
raise Exception("fell off a leaf")
if current_node.is_leaf():
yield current_node
current_node = self
if current_node != self:
raise Exception("couldn't decode all the bits")
class HuffmanCodeBuilder:
"""
build a dictionary with occurence count and then build the Huffman code for it.
"""
def __init__(self):
self.symbols = Counter()
def add_symbols(self, *syms) -> None:
self.symbols.update(syms)
def increment(self, symbol: str, cnt: int) -> None:
self.symbols[symbol] += cnt
@classmethod
def from_file(cls, filename):
c = cls()
with open(filename, "r", encoding="utf-8") as input:
for line in input:
split = re.split(r"[\s]+", line)
c.increment(split[0], int(split[1]))
return c
def to_file(self, filename, sep="\t"):
with open(filename, "w", encoding="utf-8") as output:
for (tok, cnt) in self.symbols.most_common():
output.write(f"{tok}{sep}{cnt}\n")
def _smallest(self, q1: deque, q2: deque) -> HuffmanNode:
if len(q1) == 0:
return q2.pop()
if len(q2) == 0:
return q1.pop()
if q1[-1].count < q2[-1].count:
return q1.pop()
return q2.pop()
def __add__(self, c: "HuffmanCodeBuilder") -> "HuffmanCodeBuilder":
new_c = self.symbols + c.symbols
new_b = HuffmanCodeBuilder()
new_b.symbols = new_c
return new_b
def build_code(
self,
bos="<s>",
pad="<pad>",
eos="</s>",
unk="<unk>",
) -> HuffmanCoder:
assert len(self.symbols) > 0, "cannot build code from empty list of symbols"
if self.symbols[bos] == 0:
self.add_symbols(bos)
if self.symbols[pad] == 0:
self.add_symbols(pad)
if self.symbols[eos] == 0:
self.add_symbols(eos)
if self.symbols[unk] == 0:
self.add_symbols(unk)
node_id = 0
leaves_queue = deque(
[
HuffmanNode(symbol=symbol, count=count, id=idx)
for idx, (symbol, count) in enumerate(self.symbols.most_common())
]
) # left are the most common, right are the least common
if len(leaves_queue) == 1:
root = leaves_queue.pop()
root.id = 0
return HuffmanCoder(root)
nodes_queue = deque()
while len(leaves_queue) > 0 or len(nodes_queue) != 1:
# get the lowest two nodes at the head of each queue
node1 = self._smallest(leaves_queue, nodes_queue)
node2 = self._smallest(leaves_queue, nodes_queue)
# add new node
nodes_queue.appendleft(
HuffmanNode(
count=node1.count + node2.count, left=node1, right=node2, id=node_id
)
)
node_id += 1
# we are left with the root
return HuffmanCoder(nodes_queue.pop(), bos=bos, pad=pad, eos=eos, unk=unk)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/huffman/huffman_coder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import logging
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import torch
from fairseq.data import (
ConcatDataset,
data_utils as fairseq_data_utils,
Dictionary,
)
from fairseq.data.audio.data_cfg import S2SDataConfig
from fairseq.data.audio.speech_to_text_dataset import (
_collate_frames,
get_features_or_waveform,
SpeechToTextDataset,
SpeechToTextDatasetCreator,
)
logger = logging.getLogger(__name__)
@dataclass
class SpeechToSpeechDatasetItem(object):
index: int
source: torch.Tensor
target: Optional[torch.Tensor] = None
target_speaker: Optional[torch.Tensor] = None
class SpeechToSpeechDataset(SpeechToTextDataset):
def __init__(
self,
split: str,
is_train_split: bool,
data_cfg: S2SDataConfig,
src_audio_paths: List[str],
src_n_frames: List[int],
tgt_audio_paths: List[str],
tgt_n_frames: List[int],
ids: Optional[List[str]] = None,
target_is_code: bool = False,
tgt_dict: Dictionary = None,
n_frames_per_step: int = 1,
):
tgt_texts = tgt_audio_paths if target_is_code else None
super().__init__(
split,
is_train_split,
data_cfg,
src_audio_paths,
src_n_frames,
ids=ids,
tgt_dict=tgt_dict,
tgt_texts=tgt_texts,
n_frames_per_step=n_frames_per_step,
)
self.tgt_audio_paths = tgt_audio_paths
self.tgt_lens = [t // self.n_frames_per_step for t in tgt_n_frames]
assert not target_is_code or tgt_dict is not None
self.target_is_code = target_is_code
assert len(tgt_audio_paths) == self.n_samples
assert len(tgt_n_frames) == self.n_samples
self.tgt_speakers = None
if self.cfg.target_speaker_embed:
samples = SpeechToTextDatasetCreator._load_samples_from_tsv(
self.cfg.target_speaker_embed, split
)
spk_emb_dict = {s["id"]: s["speaker_embed"] for s in samples}
self.tgt_speakers = [spk_emb_dict[id] for id in self.ids]
assert len(self.tgt_speakers) == self.n_samples
logger.info(self.__repr__())
def pack_units(self, input: torch.Tensor) -> torch.Tensor:
if self.n_frames_per_step <= 1:
return input
offset = 4
vocab_size = (
len(self.tgt_dict) - offset
) # remove offset from <bos>, <pad>, <eos>, <unk>, which is specific to fairseq dictionary
assert input.dim() == 1
stacked_input = (
input[:-1].view(-1, self.n_frames_per_step) - offset
) # remove <eos>
scale = [
pow(vocab_size, self.n_frames_per_step - 1 - i)
for i in range(self.n_frames_per_step)
]
scale = torch.LongTensor(scale).squeeze(0)
res = input.new((len(input) - 1) // self.n_frames_per_step + 1).fill_(input[-1])
res[:-1] = (stacked_input * scale).sum(dim=1) + offset
return res
def __getitem__(self, index: int) -> SpeechToSpeechDatasetItem:
source = self._get_source_audio(index)
if not self.target_is_code:
target = get_features_or_waveform(self.tgt_audio_paths[index])
target = torch.from_numpy(target).float()
target = self.pack_frames(target)
else:
target = self.tgt_dict.encode_line(
self.tgt_audio_paths[index],
add_if_not_exist=False,
append_eos=True,
).long()
if self.n_frames_per_step > 1:
n_tgt_frame = target.size(0) - 1 # exclude <eos>
keep_n_tgt_frame = n_tgt_frame - n_tgt_frame % self.n_frames_per_step
target = torch.cat(
(
target[:keep_n_tgt_frame],
target.new_full((1,), self.tgt_dict.eos()),
),
dim=0,
)
if self.tgt_speakers:
tgt_spk = get_features_or_waveform(self.tgt_speakers[index])
tgt_spk = torch.from_numpy(tgt_spk).float()
else:
tgt_spk = torch.FloatTensor([])
return SpeechToSpeechDatasetItem(
index=index, source=source, target=target, target_speaker=tgt_spk
)
def _collate_target(self, samples: List[SpeechToSpeechDatasetItem]) -> torch.Tensor:
if self.target_is_code:
target = fairseq_data_utils.collate_tokens(
[x.target for x in samples],
self.tgt_dict.pad(),
self.tgt_dict.eos(),
left_pad=False,
move_eos_to_beginning=False,
)
# convert stacked units to a single id
pack_targets = [self.pack_units(x.target) for x in samples]
prev_output_tokens = fairseq_data_utils.collate_tokens(
pack_targets,
self.tgt_dict.pad(),
self.tgt_dict.eos(),
left_pad=False,
move_eos_to_beginning=True,
)
target_lengths = torch.tensor(
[x.size(0) for x in pack_targets], dtype=torch.long
)
else:
target = _collate_frames([x.target for x in samples], is_audio_input=False)
bsz, _, d = target.size()
prev_output_tokens = torch.cat(
(target.new_full((bsz, 1, d), 0.0), target[:, :-1, :]), dim=1
)
target_lengths = torch.tensor(
[x.target.size(0) for x in samples], dtype=torch.long
)
return target, prev_output_tokens, target_lengths
def collater(
self, samples: List[SpeechToSpeechDatasetItem], return_order: bool = False
) -> Dict:
if len(samples) == 0:
return {}
indices = torch.tensor([x.index for x in samples], dtype=torch.long)
frames = _collate_frames([x.source for x in samples], self.cfg.use_audio_input)
# sort samples by descending number of frames
n_frames = torch.tensor([x.source.size(0) for x in samples], dtype=torch.long)
n_frames, order = n_frames.sort(descending=True)
indices = indices.index_select(0, order)
frames = frames.index_select(0, order)
target, prev_output_tokens, target_lengths = self._collate_target(samples)
target = target.index_select(0, order)
target_lengths = target_lengths.index_select(0, order)
prev_output_tokens = prev_output_tokens.index_select(0, order)
ntokens = sum(x.target.size(0) for x in samples)
tgt_speakers = None
if self.cfg.target_speaker_embed:
tgt_speakers = _collate_frames(
[x.target_speaker for x in samples], is_audio_input=True
).index_select(0, order)
net_input = {
"src_tokens": frames,
"src_lengths": n_frames,
"prev_output_tokens": prev_output_tokens,
"tgt_speaker": tgt_speakers, # TODO: unify "speaker" and "tgt_speaker"
}
out = {
"id": indices,
"net_input": net_input,
"speaker": tgt_speakers, # to support Tacotron2 loss for speech-to-spectrogram model
"target": target,
"target_lengths": target_lengths,
"ntokens": ntokens,
"nsentences": len(samples),
}
if return_order:
out["order"] = order
return out
class TextTargetMultitaskData(object):
# mandatory columns
KEY_ID, KEY_TEXT = "id", "tgt_text"
def __init__(self, args, split, tgt_dict):
samples = SpeechToTextDatasetCreator._load_samples_from_tsv(args.data, split)
self.data = {s[self.KEY_ID]: s[self.KEY_TEXT] for s in samples}
self.dict = tgt_dict
self.append_eos = args.decoder_type != "ctc"
def get(self, sample_id):
if sample_id in self.data:
return self.dict.encode_line(
self.data[sample_id],
add_if_not_exist=False,
append_eos=self.append_eos,
)
else:
logger.warning(f"no target for {sample_id}")
return torch.IntTensor([])
def collater(self, samples: List[torch.Tensor]) -> torch.Tensor:
out = fairseq_data_utils.collate_tokens(
samples,
self.dict.pad(),
self.dict.eos(),
left_pad=False,
move_eos_to_beginning=False,
).long()
prev_out = fairseq_data_utils.collate_tokens(
samples,
self.dict.pad(),
self.dict.eos(),
left_pad=False,
move_eos_to_beginning=True,
).long()
target_lengths = torch.tensor([t.size(0) for t in samples], dtype=torch.long)
ntokens = sum(t.size(0) for t in samples)
output = {
"prev_output_tokens": prev_out,
"target": out,
"target_lengths": target_lengths,
"ntokens": ntokens,
}
return output
class SpeechToSpeechMultitaskDataset(SpeechToSpeechDataset):
def __init__(self, *argv):
super().__init__(*argv)
self.multitask_data = {}
def add_multitask_dataset(self, task_name, task_data):
self.multitask_data[task_name] = task_data
def __getitem__(
self, index: int
) -> Tuple[SpeechToSpeechDatasetItem, Dict[str, torch.Tensor]]:
s2s_data = super().__getitem__(index)
multitask_target = {}
sample_id = self.ids[index]
for task_name, task_dataset in self.multitask_data.items():
multitask_target[task_name] = task_dataset.get(sample_id)
return s2s_data, multitask_target
def collater(
self, samples: List[Tuple[SpeechToSpeechDatasetItem, Dict[str, torch.Tensor]]]
) -> Dict:
if len(samples) == 0:
return {}
out = super().collater([s for s, _ in samples], return_order=True)
order = out["order"]
del out["order"]
for task_name, task_dataset in self.multitask_data.items():
if "multitask" not in out:
out["multitask"] = {}
d = [s[task_name] for _, s in samples]
task_target = task_dataset.collater(d)
out["multitask"][task_name] = {
"target": task_target["target"].index_select(0, order),
"target_lengths": task_target["target_lengths"].index_select(0, order),
"ntokens": task_target["ntokens"],
}
out["multitask"][task_name]["net_input"] = {
"prev_output_tokens": task_target["prev_output_tokens"].index_select(
0, order
),
}
return out
class SpeechToSpeechDatasetCreator(object):
# mandatory columns
KEY_ID, KEY_SRC_AUDIO, KEY_SRC_N_FRAMES = "id", "src_audio", "src_n_frames"
KEY_TGT_AUDIO, KEY_TGT_N_FRAMES = "tgt_audio", "tgt_n_frames"
@classmethod
def _from_list(
cls,
split_name: str,
is_train_split,
samples: List[Dict],
data_cfg: S2SDataConfig,
target_is_code: bool = False,
target_dictionary: Dictionary = None,
n_frames_per_step: int = 1,
multitask: Optional[Dict] = None,
) -> SpeechToSpeechDataset:
audio_root = Path(data_cfg.audio_root)
ids = [s[cls.KEY_ID] for s in samples]
src_audio_paths = [
(audio_root / s[cls.KEY_SRC_AUDIO]).as_posix() for s in samples
]
tgt_audio_paths = [
s[cls.KEY_TGT_AUDIO]
if target_is_code
else (audio_root / s[cls.KEY_TGT_AUDIO]).as_posix()
for s in samples
]
src_n_frames = [int(s[cls.KEY_SRC_N_FRAMES]) for s in samples]
tgt_n_frames = [int(s[cls.KEY_TGT_N_FRAMES]) for s in samples]
has_multitask = len(multitask) > 0
dataset_cls = (
SpeechToSpeechMultitaskDataset if has_multitask else SpeechToSpeechDataset
)
ds = dataset_cls(
split_name,
is_train_split,
data_cfg,
src_audio_paths,
src_n_frames,
tgt_audio_paths,
tgt_n_frames,
ids,
target_is_code,
target_dictionary,
n_frames_per_step,
)
if has_multitask:
for task_name, task_obj in multitask.items():
task_data = TextTargetMultitaskData(
task_obj.args, split_name, task_obj.target_dictionary
)
ds.add_multitask_dataset(task_name, task_data)
return ds
@classmethod
def from_tsv(
cls,
root: str,
data_cfg: S2SDataConfig,
splits: str,
is_train_split: bool,
epoch: int,
seed: int,
target_is_code: bool = False,
target_dictionary: Dictionary = None,
n_frames_per_step: int = 1,
multitask: Optional[Dict] = None,
) -> SpeechToSpeechDataset:
datasets = []
for split in splits.split(","):
samples = SpeechToTextDatasetCreator._load_samples_from_tsv(root, split)
ds = cls._from_list(
split,
is_train_split,
samples,
data_cfg,
target_is_code,
target_dictionary,
n_frames_per_step,
multitask,
)
datasets.append(ds)
return ConcatDataset(datasets) if len(datasets) > 1 else datasets[0]
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/speech_to_speech_dataset.py |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.abs
import csv
import logging
import os.path as op
from typing import List, Optional
import numpy as np
import torch
from fairseq.data import Dictionary
from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig
from fairseq.data.audio.text_to_speech_dataset import (
TextToSpeechDataset,
TextToSpeechDatasetCreator,
)
logger = logging.getLogger(__name__)
class FrmTextToSpeechDataset(TextToSpeechDataset):
def __init__(
self,
split: str,
is_train_split: bool,
data_cfg: S2TDataConfig,
audio_paths: List[str],
n_frames: List[int],
src_texts: Optional[List[str]] = None,
tgt_texts: Optional[List[str]] = None,
speakers: Optional[List[str]] = None,
src_langs: Optional[List[str]] = None,
tgt_langs: Optional[List[str]] = None,
ids: Optional[List[str]] = None,
tgt_dict: Optional[Dictionary] = None,
pre_tokenizer=None,
bpe_tokenizer=None,
n_frames_per_step=1,
speaker_to_id=None,
do_chunk=False,
chunk_bound=-1,
chunk_init=50,
chunk_incr=5,
add_eos=True,
dedup=True,
ref_fpu=-1,
):
# It assumes texts are encoded at a fixed frame-rate
super().__init__(
split=split,
is_train_split=is_train_split,
data_cfg=data_cfg,
audio_paths=audio_paths,
n_frames=n_frames,
src_texts=src_texts,
tgt_texts=tgt_texts,
speakers=speakers,
src_langs=src_langs,
tgt_langs=tgt_langs,
ids=ids,
tgt_dict=tgt_dict,
pre_tokenizer=pre_tokenizer,
bpe_tokenizer=bpe_tokenizer,
n_frames_per_step=n_frames_per_step,
speaker_to_id=speaker_to_id,
)
self.do_chunk = do_chunk
self.chunk_bound = chunk_bound
self.chunk_init = chunk_init
self.chunk_incr = chunk_incr
self.add_eos = add_eos
self.dedup = dedup
self.ref_fpu = ref_fpu
self.chunk_size = -1
if do_chunk:
assert self.chunk_incr >= 0
assert self.pre_tokenizer is None
def __getitem__(self, index):
index, source, target, speaker_id, _, _, _ = super().__getitem__(index)
if target[-1].item() == self.tgt_dict.eos_index:
target = target[:-1]
fpu = source.size(0) / target.size(0) # frame-per-unit
fps = self.n_frames_per_step
assert (
self.ref_fpu == -1 or abs((fpu * fps - self.ref_fpu) / self.ref_fpu) < 0.1
), f"{fpu*fps} != {self.ref_fpu}"
# only chunk training split
if self.is_train_split and self.do_chunk and self.chunk_size > 0:
lang = target[: int(self.data_cfg.prepend_tgt_lang_tag)]
text = target[int(self.data_cfg.prepend_tgt_lang_tag) :]
size = len(text)
chunk_size = min(self.chunk_size, size)
chunk_start = np.random.randint(size - chunk_size + 1)
text = text[chunk_start : chunk_start + chunk_size]
target = torch.cat((lang, text), 0)
f_size = int(np.floor(chunk_size * fpu))
f_start = int(np.floor(chunk_start * fpu))
assert f_size > 0
source = source[f_start : f_start + f_size, :]
if self.dedup:
target = torch.unique_consecutive(target)
if self.add_eos:
eos_idx = self.tgt_dict.eos_index
target = torch.cat((target, torch.LongTensor([eos_idx])), 0)
return index, source, target, speaker_id
def set_epoch(self, epoch):
if self.is_train_split and self.do_chunk:
old = self.chunk_size
self.chunk_size = self.chunk_init + epoch * self.chunk_incr
if self.chunk_bound > 0:
self.chunk_size = min(self.chunk_size, self.chunk_bound)
logger.info(
(
f"{self.split}: setting chunk size "
f"from {old} to {self.chunk_size}"
)
)
class FrmTextToSpeechDatasetCreator(TextToSpeechDatasetCreator):
# inherit for key names
@classmethod
def from_tsv(
cls,
root: str,
data_cfg: S2TDataConfig,
split: str,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
is_train_split: bool,
n_frames_per_step: int,
speaker_to_id,
do_chunk: bool = False,
chunk_bound: int = -1,
chunk_init: int = 50,
chunk_incr: int = 5,
add_eos: bool = True,
dedup: bool = True,
ref_fpu: float = -1,
) -> FrmTextToSpeechDataset:
tsv_path = op.join(root, f"{split}.tsv")
if not op.isfile(tsv_path):
raise FileNotFoundError(f"Dataset not found: {tsv_path}")
with open(tsv_path) as f:
reader = csv.DictReader(
f,
delimiter="\t",
quotechar=None,
doublequote=False,
lineterminator="\n",
quoting=csv.QUOTE_NONE,
)
s = [dict(e) for e in reader]
assert len(s) > 0
ids = [ss[cls.KEY_ID] for ss in s]
audio_paths = [op.join(data_cfg.audio_root, ss[cls.KEY_AUDIO]) for ss in s]
n_frames = [int(ss[cls.KEY_N_FRAMES]) for ss in s]
tgt_texts = [ss[cls.KEY_TGT_TEXT] for ss in s]
src_texts = [ss.get(cls.KEY_SRC_TEXT, cls.DEFAULT_SRC_TEXT) for ss in s]
speakers = [ss.get(cls.KEY_SPEAKER, cls.DEFAULT_SPEAKER) for ss in s]
src_langs = [ss.get(cls.KEY_SRC_LANG, cls.DEFAULT_LANG) for ss in s]
tgt_langs = [ss.get(cls.KEY_TGT_LANG, cls.DEFAULT_LANG) for ss in s]
return FrmTextToSpeechDataset(
split=split,
is_train_split=is_train_split,
data_cfg=data_cfg,
audio_paths=audio_paths,
n_frames=n_frames,
src_texts=src_texts,
tgt_texts=tgt_texts,
speakers=speakers,
src_langs=src_langs,
tgt_langs=tgt_langs,
ids=ids,
tgt_dict=tgt_dict,
pre_tokenizer=pre_tokenizer,
bpe_tokenizer=bpe_tokenizer,
n_frames_per_step=n_frames_per_step,
speaker_to_id=speaker_to_id,
do_chunk=do_chunk,
chunk_bound=chunk_bound,
chunk_init=chunk_init,
chunk_incr=chunk_incr,
add_eos=add_eos,
dedup=dedup,
ref_fpu=ref_fpu,
)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/frm_text_to_speech_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from pathlib import Path
from typing import Dict, List, Optional, NamedTuple
import torch
from fairseq.data import (
ConcatDataset,
Dictionary,
ResamplingDataset,
data_utils as fairseq_data_utils,
)
from fairseq.data.audio.speech_to_text_dataset import (
SpeechToTextDataset,
S2TDataConfig,
SpeechToTextDatasetCreator,
)
logger = logging.getLogger(__name__)
class S2TJointDataConfig(S2TDataConfig):
"""Wrapper class for data config YAML"""
@property
def src_vocab_filename(self):
"""fairseq vocabulary file under data root"""
return self.config.get("src_vocab_filename", "src_dict.txt")
@property
def src_pre_tokenizer(self) -> Dict:
"""Pre-tokenizer to apply before subword tokenization. Returning
a dictionary with `tokenizer` providing the tokenizer name and
the other items providing the tokenizer-specific arguments.
Tokenizers are defined in `fairseq.data.encoders.*`"""
return self.config.get("src_pre_tokenizer", {"tokenizer": None})
@property
def src_bpe_tokenizer(self) -> Dict:
"""Subword tokenizer to apply on source text after pre-tokenization.
Returning a dictionary with `bpe` providing the tokenizer name and
the other items providing the tokenizer-specific arguments.
Tokenizers are defined in `fairseq.data.encoders.*`"""
return self.config.get("src_bpe_tokenizer", {"bpe": None})
@property
def prepend_tgt_lang_tag_no_change(self) -> bool:
"""Prepend target lang ID token as the prev_output_tokens BOS (e.g. for
to-many multilingual setting). No change needed during inference.
"""
return self.config.get("prepend_tgt_lang_tag_no_change", False)
@property
def sampling_text_alpha(self):
"""Hyper-parameter alpha = 1/T for temperature-based resampling. (text
input only) (alpha = 1 for no resampling)"""
return self.config.get("sampling_text_alpha", 1.0)
class SpeechToTextJointDatasetItem(NamedTuple):
index: int
source: torch.Tensor
target: Optional[torch.Tensor] = None
src_txt_tokens: Optional[torch.Tensor] = None
tgt_lang_tag: Optional[int] = None
src_lang_tag: Optional[int] = None
tgt_alignment: Optional[torch.Tensor] = None
# use_src_lang_id:
# 0: don't use src_lang_id
# 1: attach src_lang_id to the src_txt_tokens as eos
class SpeechToTextJointDataset(SpeechToTextDataset):
def __init__(
self,
split: str,
is_train_split: bool,
cfg: S2TJointDataConfig,
audio_paths: List[str],
n_frames: List[int],
src_texts: Optional[List[str]] = None,
tgt_texts: Optional[List[str]] = None,
speakers: Optional[List[str]] = None,
src_langs: Optional[List[str]] = None,
tgt_langs: Optional[List[str]] = None,
ids: Optional[List[str]] = None,
tgt_dict: Optional[Dictionary] = None,
src_dict: Optional[Dictionary] = None,
pre_tokenizer=None,
bpe_tokenizer=None,
src_pre_tokenizer=None,
src_bpe_tokenizer=None,
append_eos: Optional[bool] = True,
alignment: Optional[List[str]] = None,
use_src_lang_id: Optional[int] = 0,
):
super().__init__(
split,
is_train_split,
cfg,
audio_paths,
n_frames,
src_texts=src_texts,
tgt_texts=tgt_texts,
speakers=speakers,
src_langs=src_langs,
tgt_langs=tgt_langs,
ids=ids,
tgt_dict=tgt_dict,
pre_tokenizer=pre_tokenizer,
bpe_tokenizer=bpe_tokenizer,
append_eos=append_eos,
)
self.src_dict = src_dict
self.src_pre_tokenizer = src_pre_tokenizer
self.src_bpe_tokenizer = src_bpe_tokenizer
self.alignment = None
self.use_src_lang_id = use_src_lang_id
if alignment is not None:
self.alignment = [
[float(s) for s in sample.split()] for sample in alignment
]
def get_tokenized_src_text(self, index: int):
text = self.tokenize(self.src_pre_tokenizer, self.src_texts[index])
text = self.tokenize(self.src_bpe_tokenizer, text)
return text
def __getitem__(self, index: int) -> SpeechToTextJointDatasetItem:
s2t_dataset_item = super().__getitem__(index)
src_tokens = None
src_lang_tag = None
if self.src_texts is not None and self.src_dict is not None:
src_tokens = self.get_tokenized_src_text(index)
src_tokens = self.src_dict.encode_line(
src_tokens, add_if_not_exist=False, append_eos=True
).long()
if self.use_src_lang_id > 0:
src_lang_tag = self.get_lang_tag_idx(
self.src_langs[index], self.src_dict
)
tgt_lang_tag = None
if self.cfg.prepend_tgt_lang_tag_no_change:
# prepend_tgt_lang_tag_no_change: modify prev_output_tokens instead
tgt_lang_tag = self.get_lang_tag_idx(self.tgt_langs[index], self.tgt_dict)
ali = None
if self.alignment is not None:
ali = torch.Tensor(self.alignment[index]).float()
return SpeechToTextJointDatasetItem(
index=index,
source=s2t_dataset_item.source,
target=s2t_dataset_item.target,
src_txt_tokens=src_tokens,
tgt_lang_tag=tgt_lang_tag,
src_lang_tag=src_lang_tag,
tgt_alignment=ali,
)
def __len__(self):
return self.n_samples
def collater(self, samples: List[SpeechToTextJointDatasetItem]) -> Dict:
s2t_out = super().collater(samples, return_order=True)
if s2t_out == {}:
return s2t_out
net_input, order = s2t_out["net_input"], s2t_out["order"]
if self.src_texts is not None and self.src_dict is not None:
src_txt_tokens = fairseq_data_utils.collate_tokens(
[x.src_txt_tokens for x in samples],
self.src_dict.pad(),
self.src_dict.eos(),
left_pad=False,
move_eos_to_beginning=False,
)
src_txt_lengths = torch.tensor(
[x.src_txt_tokens.size()[0] for x in samples], dtype=torch.long
)
if self.use_src_lang_id > 0:
src_lang_idxs = torch.tensor(
[s.src_lang_tag for s in samples], dtype=src_txt_tokens.dtype
)
if self.use_src_lang_id == 1: # replace eos with lang_id
eos_idx = src_txt_lengths - 1
src_txt_tokens.scatter_(
1, eos_idx.view(-1, 1), src_lang_idxs.view(-1, 1)
)
else:
raise NotImplementedError("Implementation is required")
src_txt_tokens = src_txt_tokens.index_select(0, order)
src_txt_lengths = src_txt_lengths.index_select(0, order)
net_input["src_txt_tokens"] = src_txt_tokens
net_input["src_txt_lengths"] = src_txt_lengths
net_input["alignment"] = None
if self.alignment is not None:
max_len = max([s.tgt_alignment.size(0) for s in samples])
alignment = torch.ones(len(samples), max_len).float()
for i, s in enumerate(samples):
cur_len = s.tgt_alignment.size(0)
alignment[i][:cur_len].copy_(s.tgt_alignment)
net_input["alignment"] = alignment.index_select(0, order)
if self.tgt_texts is not None and samples[0].tgt_lang_tag is not None:
for i in range(len(samples)):
net_input["prev_output_tokens"][i][0] = samples[order[i]].tgt_lang_tag
out = {
"id": s2t_out["id"],
"net_input": net_input,
"target": s2t_out["target"],
"target_lengths": s2t_out["target_lengths"],
"ntokens": s2t_out["ntokens"],
"nsentences": len(samples),
}
return out
class SpeechToTextJointDatasetCreator(SpeechToTextDatasetCreator):
KEY_ALIGN = "align"
@classmethod
def _from_list(
cls,
split_name: str,
is_train_split,
samples: List[Dict],
cfg: S2TJointDataConfig,
tgt_dict,
src_dict,
pre_tokenizer,
bpe_tokenizer,
src_pre_tokenizer,
src_bpe_tokenizer,
append_eos,
use_src_lang_id,
) -> SpeechToTextJointDataset:
audio_root = Path(cfg.audio_root)
ids = [s[cls.KEY_ID] for s in samples]
audio_paths = [(audio_root / s[cls.KEY_AUDIO]).as_posix() for s in samples]
n_frames = [int(s[cls.KEY_N_FRAMES]) for s in samples]
tgt_texts = [s[cls.KEY_TGT_TEXT] for s in samples]
src_texts = [s.get(cls.KEY_SRC_TEXT, cls.DEFAULT_SRC_TEXT) for s in samples]
speakers = [s.get(cls.KEY_SPEAKER, cls.DEFAULT_SPEAKER) for s in samples]
src_langs = [s.get(cls.KEY_SRC_LANG, cls.DEFAULT_LANG) for s in samples]
tgt_langs = [s.get(cls.KEY_TGT_LANG, cls.DEFAULT_LANG) for s in samples]
tgt_alignment = None
if cls.KEY_ALIGN in samples[0].keys():
tgt_alignment = [s[cls.KEY_ALIGN] for s in samples]
return SpeechToTextJointDataset(
split_name,
is_train_split,
cfg,
audio_paths,
n_frames,
src_texts=src_texts,
tgt_texts=tgt_texts,
speakers=speakers,
src_langs=src_langs,
tgt_langs=tgt_langs,
ids=ids,
tgt_dict=tgt_dict,
src_dict=src_dict,
pre_tokenizer=pre_tokenizer,
bpe_tokenizer=bpe_tokenizer,
src_pre_tokenizer=src_pre_tokenizer,
src_bpe_tokenizer=src_bpe_tokenizer,
append_eos=append_eos,
alignment=tgt_alignment,
use_src_lang_id=use_src_lang_id,
)
@classmethod
def _from_tsv(
cls,
root: str,
cfg: S2TJointDataConfig,
split: str,
tgt_dict,
src_dict,
is_train_split: bool,
pre_tokenizer,
bpe_tokenizer,
src_pre_tokenizer,
src_bpe_tokenizer,
append_eos: bool,
use_src_lang_id: int,
) -> SpeechToTextJointDataset:
samples = cls._load_samples_from_tsv(root, split)
return cls._from_list(
split,
is_train_split,
samples,
cfg,
tgt_dict,
src_dict,
pre_tokenizer,
bpe_tokenizer,
src_pre_tokenizer,
src_bpe_tokenizer,
append_eos,
use_src_lang_id,
)
@classmethod
def from_tsv(
cls,
root: str,
cfg: S2TJointDataConfig,
splits: str,
tgt_dict,
src_dict,
pre_tokenizer,
bpe_tokenizer,
src_pre_tokenizer,
src_bpe_tokenizer,
is_train_split: bool,
epoch: int,
seed: int,
append_eos: Optional[bool] = True,
use_src_lang_id: Optional[int] = 0,
) -> SpeechToTextJointDataset:
datasets = [
cls._from_tsv(
root,
cfg,
split,
tgt_dict,
src_dict,
is_train_split,
pre_tokenizer,
bpe_tokenizer,
src_pre_tokenizer,
src_bpe_tokenizer,
append_eos=append_eos,
use_src_lang_id=use_src_lang_id,
)
for split in splits.split(",")
]
if is_train_split and len(datasets) > 1 and cfg.sampling_alpha != 1.0:
# temperature-based sampling
size_ratios = cls.get_size_ratios(datasets, alpha=cfg.sampling_alpha)
datasets = [
ResamplingDataset(
d, size_ratio=r, seed=seed, epoch=epoch, replace=(r >= 1.0)
)
for r, d in zip(size_ratios, datasets)
]
return ConcatDataset(datasets) if len(datasets) > 1 else datasets[0]
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/speech_to_text_joint_dataset.py |
KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/__init__.py |
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from argparse import Namespace
from pathlib import Path
from typing import Dict, Optional
from fairseq.data import Dictionary
def get_config_from_yaml(yaml_path: Path):
try:
import yaml
except ImportError:
print("Please install PyYAML: pip install PyYAML")
config = {}
if yaml_path.is_file():
try:
with open(yaml_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
except Exception as e:
raise Exception(f"Failed to load config from {yaml_path.as_posix()}: {e}")
else:
raise FileNotFoundError(f"{yaml_path.as_posix()} not found")
return config
class S2TDataConfig(object):
"""Wrapper class for data config YAML"""
def __init__(self, yaml_path: Path):
self.config = get_config_from_yaml(yaml_path)
self.root = yaml_path.parent
def _auto_convert_to_abs_path(self, x):
if isinstance(x, str):
if not Path(x).exists() and (self.root / x).exists():
return (self.root / x).as_posix()
elif isinstance(x, dict):
return {k: self._auto_convert_to_abs_path(v) for k, v in x.items()}
return x
@property
def vocab_filename(self):
"""fairseq vocabulary file under data root"""
return self.config.get("vocab_filename", "dict.txt")
@property
def speaker_set_filename(self):
"""speaker set file under data root"""
return self.config.get("speaker_set_filename", None)
@property
def shuffle(self) -> bool:
"""Shuffle dataset samples before batching"""
return self.config.get("shuffle", False)
@property
def pre_tokenizer(self) -> Dict:
"""Pre-tokenizer to apply before subword tokenization. Returning
a dictionary with `tokenizer` providing the tokenizer name and
the other items providing the tokenizer-specific arguments.
Tokenizers are defined in `fairseq.data.encoders.*`"""
tokenizer = self.config.get("pre_tokenizer", {"tokenizer": None})
return self._auto_convert_to_abs_path(tokenizer)
@property
def bpe_tokenizer(self) -> Dict:
"""Subword tokenizer to apply after pre-tokenization. Returning
a dictionary with `bpe` providing the tokenizer name and
the other items providing the tokenizer-specific arguments.
Tokenizers are defined in `fairseq.data.encoders.*`"""
tokenizer = self.config.get("bpe_tokenizer", {"bpe": None})
return self._auto_convert_to_abs_path(tokenizer)
@property
def prepend_tgt_lang_tag(self) -> bool:
"""Prepend target lang ID token as the target BOS (e.g. for to-many
multilingual setting). During inference, this requires `--prefix-size 1`
to force BOS to be lang ID token."""
return self.config.get("prepend_tgt_lang_tag", False)
@property
def input_feat_per_channel(self):
"""The dimension of input features (per audio channel)"""
return self.config.get("input_feat_per_channel", 80)
@property
def input_channels(self):
"""The number of channels in the input audio"""
return self.config.get("input_channels", 1)
@property
def sample_rate(self):
return self.config.get("sample_rate", 16_000)
@property
def sampling_alpha(self):
"""Hyper-parameter alpha = 1/T for temperature-based resampling.
(alpha = 1 for no resampling)"""
return self.config.get("sampling_alpha", 1.0)
@property
def use_audio_input(self):
"""Needed by the dataset loader to see if the model requires
raw audio as inputs."""
return self.config.get("use_audio_input", False)
@property
def use_sample_rate(self):
"""Needed by the dataset loader to see if the model requires
raw audio with specific sample rate as inputs."""
return self.config.get("use_sample_rate", 16000)
@property
def audio_root(self):
"""Audio paths in the manifest TSV can be relative and this provides
the root path. Set this to empty string when using absolute paths."""
return self.config.get("audio_root", "")
def get_feature_transforms(self, split, is_train):
"""Split-specific feature transforms. Allowing train set
wildcard `_train`, evaluation set wildcard `_eval` and general
wildcard `*` for matching."""
from copy import deepcopy
cfg = deepcopy(self.config)
_cur = cfg.get("transforms", {})
cur = _cur.get(split)
cur = _cur.get("_train") if cur is None and is_train else cur
cur = _cur.get("_eval") if cur is None and not is_train else cur
cur = _cur.get("*") if cur is None else cur
cfg["transforms"] = cur
return cfg
@property
def global_cmvn_stats_npz(self) -> Optional[str]:
path = self.config.get("global_cmvn", {}).get("stats_npz_path", None)
return self._auto_convert_to_abs_path(path)
@property
def vocoder(self) -> Dict[str, str]:
vocoder = self.config.get("vocoder", {"type": "griffin_lim"})
return self._auto_convert_to_abs_path(vocoder)
@property
def hub(self) -> Dict[str, str]:
return self.config.get("hub", {})
class S2SDataConfig(S2TDataConfig):
"""Wrapper class for data config YAML"""
@property
def vocab_filename(self):
return None
@property
def pre_tokenizer(self) -> Dict:
return None
@property
def bpe_tokenizer(self) -> Dict:
return None
@property
def input_transformed_channels(self):
"""The number of channels in the audio after feature transforms"""
# TODO: move this into individual transforms
_cur = self.config.get("transforms", {})
cur = _cur.get("_train", [])
_channels = self.input_channels
if "delta_deltas" in cur:
_channels *= 3
return _channels
@property
def output_sample_rate(self):
"""The audio sample rate of output target speech"""
return self.config.get("output_sample_rate", 22050)
@property
def target_speaker_embed(self):
"""Target speaker embedding file (one line per target audio sample)"""
return self.config.get("target_speaker_embed", None)
class MultitaskConfig(object):
"""Wrapper class for data config YAML"""
def __init__(self, yaml_path: Path):
config = get_config_from_yaml(yaml_path)
self.config = {}
for k, v in config.items():
self.config[k] = SingleTaskConfig(k, v)
def get_all_tasks(self):
return self.config
def get_single_task(self, name):
assert name in self.config, f"multitask '{name}' does not exist!"
return self.config[name]
class SingleTaskConfig(object):
def __init__(self, name, config):
self.task_name = name
self.config = config
dict_path = config.get("dict", "")
self.tgt_dict = Dictionary.load(dict_path) if Path(dict_path).exists() else None
@property
def data(self):
return self.config.get("data", "")
@property
def decoder_type(self):
return self.config.get("decoder_type", "transformer")
@property
def decoder_args(self):
"""Decoder arch related args"""
args = self.config.get("decoder_args", {})
return Namespace(**args)
@property
def criterion_cfg(self):
"""cfg for the multitask criterion"""
if self.decoder_type == "ctc":
from fairseq.criterions.ctc import CtcCriterionConfig
cfg = CtcCriterionConfig
cfg.zero_infinity = self.config.get("zero_infinity", True)
else:
from fairseq.criterions.label_smoothed_cross_entropy import (
LabelSmoothedCrossEntropyCriterionConfig,
)
cfg = LabelSmoothedCrossEntropyCriterionConfig
cfg.label_smoothing = self.config.get("label_smoothing", 0.2)
return cfg
@property
def input_from(self):
"""Condition on encoder/decoder of the main model"""
return "decoder" if "decoder_layer" in self.config else "encoder"
@property
def input_layer(self):
if self.input_from == "decoder":
return self.config["decoder_layer"] - 1
else:
# default using the output from the last encoder layer (-1)
return self.config.get("encoder_layer", 0) - 1
@property
def loss_weight_schedule(self):
return (
"decay"
if "loss_weight_max" in self.config
and "loss_weight_decay_steps" in self.config
else "fixed"
)
def get_loss_weight(self, num_updates):
if self.loss_weight_schedule == "fixed":
weight = self.config.get("loss_weight", 1.0)
else: # "decay"
assert (
self.config.get("loss_weight_decay_steps", 0) > 0
), "loss_weight_decay_steps must be greater than 0 for a decay schedule"
loss_weight_min = self.config.get("loss_weight_min", 0.0001)
loss_weight_decay_stepsize = (
self.config["loss_weight_max"] - loss_weight_min
) / self.config["loss_weight_decay_steps"]
weight = max(
self.config["loss_weight_max"]
- loss_weight_decay_stepsize * num_updates,
loss_weight_min,
)
return weight
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/data_cfg.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import csv
import io
import logging
import re
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional
from dataclasses import dataclass
import numpy as np
import torch
from fairseq.data import (
ConcatDataset,
Dictionary,
FairseqDataset,
ResamplingDataset,
data_utils as fairseq_data_utils,
)
from fairseq.data.audio.audio_utils import (
get_fbank,
get_waveform,
read_from_stored_zip,
is_npy_data,
is_sf_audio_data,
parse_path,
FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS,
)
from fairseq.data.audio.feature_transforms import CompositeAudioFeatureTransform
from fairseq.data.audio.data_cfg import S2TDataConfig
logger = logging.getLogger(__name__)
def get_features_from_npy_or_audio(path):
ext = Path(path).suffix
if ext not in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS:
raise ValueError(f'Unsupported file format for "{path}"')
return np.load(path) if ext == ".npy" else get_fbank(path)
def get_features_or_waveform_from_stored_zip(
path,
byte_offset,
byte_size,
need_waveform=False,
use_sample_rate=None,
):
assert path.endswith(".zip")
data = read_from_stored_zip(path, byte_offset, byte_size)
f = io.BytesIO(data)
if is_npy_data(data):
features_or_waveform = np.load(f)
elif is_sf_audio_data(data):
features_or_waveform = (
get_waveform(f, always_2d=False, output_sample_rate=use_sample_rate)[0]
if need_waveform
else get_fbank(f)
)
else:
raise ValueError(f'Unknown file format for "{path}"')
return features_or_waveform
def get_features_or_waveform(path: str, need_waveform=False, use_sample_rate=None):
"""Get speech features from .npy file or waveform from .wav/.flac file.
The file may be inside an uncompressed ZIP file and is accessed via byte
offset and length.
Args:
path (str): File path in the format of "<.npy/.wav/.flac path>" or
"<zip path>:<byte offset>:<byte length>".
need_waveform (bool): return waveform instead of features.
use_sample_rate (int): change sample rate for the input wave file
Returns:
features_or_waveform (numpy.ndarray): speech features or waveform.
"""
_path, slice_ptr = parse_path(path)
if len(slice_ptr) == 0:
if need_waveform:
return get_waveform(
_path, always_2d=False, output_sample_rate=use_sample_rate
)[0]
return get_features_from_npy_or_audio(_path)
elif len(slice_ptr) == 2:
features_or_waveform = get_features_or_waveform_from_stored_zip(
_path,
slice_ptr[0],
slice_ptr[1],
need_waveform=need_waveform,
use_sample_rate=use_sample_rate,
)
else:
raise ValueError(f"Invalid path: {path}")
return features_or_waveform
def _collate_frames(
frames: List[torch.Tensor], is_audio_input: bool = False
) -> torch.Tensor:
"""
Convert a list of 2D frames into a padded 3D tensor
Args:
frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is
length of i-th frame and f_dim is static dimension of features
Returns:
3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i]
"""
max_len = max(frame.size(0) for frame in frames)
if is_audio_input:
out = frames[0].new_zeros((len(frames), max_len))
else:
out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1)))
for i, v in enumerate(frames):
out[i, : v.size(0)] = v
return out
@dataclass
class SpeechToTextDatasetItem(object):
index: int
source: torch.Tensor
target: Optional[torch.Tensor] = None
speaker_id: Optional[int] = None
class SpeechToTextDataset(FairseqDataset):
LANG_TAG_TEMPLATE = "<lang:{}>"
def __init__(
self,
split: str,
is_train_split: bool,
cfg: S2TDataConfig,
audio_paths: List[str],
n_frames: List[int],
src_texts: Optional[List[str]] = None,
tgt_texts: Optional[List[str]] = None,
speakers: Optional[List[str]] = None,
src_langs: Optional[List[str]] = None,
tgt_langs: Optional[List[str]] = None,
ids: Optional[List[str]] = None,
tgt_dict: Optional[Dictionary] = None,
pre_tokenizer=None,
bpe_tokenizer=None,
n_frames_per_step=1,
speaker_to_id=None,
append_eos=True,
):
self.split, self.is_train_split = split, is_train_split
self.cfg = cfg
self.audio_paths, self.n_frames = audio_paths, n_frames
self.n_samples = len(audio_paths)
assert len(n_frames) == self.n_samples > 0
assert src_texts is None or len(src_texts) == self.n_samples
assert tgt_texts is None or len(tgt_texts) == self.n_samples
assert speakers is None or len(speakers) == self.n_samples
assert src_langs is None or len(src_langs) == self.n_samples
assert tgt_langs is None or len(tgt_langs) == self.n_samples
assert ids is None or len(ids) == self.n_samples
assert (tgt_dict is None and tgt_texts is None) or (
tgt_dict is not None and tgt_texts is not None
)
self.src_texts, self.tgt_texts = src_texts, tgt_texts
self.src_langs, self.tgt_langs = src_langs, tgt_langs
self.speakers = speakers
self.tgt_dict = tgt_dict
self.check_tgt_lang_tag()
self.ids = ids
self.shuffle = cfg.shuffle if is_train_split else False
self.feature_transforms = CompositeAudioFeatureTransform.from_config_dict(
self.cfg.get_feature_transforms(split, is_train_split)
)
self.pre_tokenizer = pre_tokenizer
self.bpe_tokenizer = bpe_tokenizer
self.n_frames_per_step = n_frames_per_step
self.speaker_to_id = speaker_to_id
self.tgt_lens = self.get_tgt_lens_and_check_oov()
self.append_eos = append_eos
logger.info(self.__repr__())
def get_tgt_lens_and_check_oov(self):
if self.tgt_texts is None:
return [0 for _ in range(self.n_samples)]
tgt_lens = []
n_tokens, n_oov_tokens = 0, 0
for i in range(self.n_samples):
tokenized = self.get_tokenized_tgt_text(i).split(" ")
oov_tokens = [
t
for t in tokenized
if self.tgt_dict.index(t) == self.tgt_dict.unk_index
]
n_tokens += len(tokenized)
n_oov_tokens += len(oov_tokens)
tgt_lens.append(len(tokenized))
logger.info(f"'{self.split}' has {n_oov_tokens / n_tokens * 100:.2f}% OOV")
return tgt_lens
def __repr__(self):
return (
self.__class__.__name__
+ f'(split="{self.split}", n_samples={self.n_samples:_}, '
f"prepend_tgt_lang_tag={self.cfg.prepend_tgt_lang_tag}, "
f"shuffle={self.shuffle}, transforms={self.feature_transforms}, "
f"n_frames_per_step={self.n_frames_per_step}"
)
@classmethod
def is_lang_tag(cls, token):
pattern = cls.LANG_TAG_TEMPLATE.replace("{}", "(.*)")
return re.match(pattern, token)
def check_tgt_lang_tag(self):
if self.cfg.prepend_tgt_lang_tag:
assert self.tgt_langs is not None and self.tgt_dict is not None
tgt_lang_tags = [
self.LANG_TAG_TEMPLATE.format(t) for t in set(self.tgt_langs)
]
assert all(t in self.tgt_dict for t in tgt_lang_tags)
@classmethod
def tokenize(cls, tokenizer, text: str):
return text if tokenizer is None else tokenizer.encode(text)
def get_tokenized_tgt_text(self, index: int):
text = self.tokenize(self.pre_tokenizer, self.tgt_texts[index])
text = self.tokenize(self.bpe_tokenizer, text)
return text
def pack_frames(self, feature: torch.Tensor):
if self.n_frames_per_step == 1:
return feature
n_packed_frames = feature.shape[0] // self.n_frames_per_step
feature = feature[: self.n_frames_per_step * n_packed_frames]
return feature.reshape(n_packed_frames, -1)
@classmethod
def get_lang_tag_idx(cls, lang: str, dictionary: Dictionary):
lang_tag_idx = dictionary.index(cls.LANG_TAG_TEMPLATE.format(lang))
assert lang_tag_idx != dictionary.unk()
return lang_tag_idx
def _get_source_audio(self, index: int) -> torch.Tensor:
source = get_features_or_waveform(
self.audio_paths[index],
need_waveform=self.cfg.use_audio_input,
use_sample_rate=self.cfg.use_sample_rate,
)
if self.feature_transforms is not None:
assert not self.cfg.use_audio_input
source = self.feature_transforms(source)
source = torch.from_numpy(source).float()
return source
def __getitem__(self, index: int) -> SpeechToTextDatasetItem:
source = self._get_source_audio(index)
source = self.pack_frames(source)
target = None
if self.tgt_texts is not None:
tokenized = self.get_tokenized_tgt_text(index)
target = self.tgt_dict.encode_line(
tokenized, add_if_not_exist=False, append_eos=self.append_eos
).long()
if self.cfg.prepend_tgt_lang_tag:
lang_tag_idx = self.get_lang_tag_idx(
self.tgt_langs[index], self.tgt_dict
)
target = torch.cat((torch.LongTensor([lang_tag_idx]), target), 0)
speaker_id = None
if self.speaker_to_id is not None:
speaker_id = self.speaker_to_id[self.speakers[index]]
return SpeechToTextDatasetItem(
index=index, source=source, target=target, speaker_id=speaker_id
)
def __len__(self):
return self.n_samples
def collater(
self, samples: List[SpeechToTextDatasetItem], return_order: bool = False
) -> Dict:
if len(samples) == 0:
return {}
indices = torch.tensor([x.index for x in samples], dtype=torch.long)
frames = _collate_frames([x.source for x in samples], self.cfg.use_audio_input)
# sort samples by descending number of frames
n_frames = torch.tensor([x.source.size(0) for x in samples], dtype=torch.long)
n_frames, order = n_frames.sort(descending=True)
indices = indices.index_select(0, order)
frames = frames.index_select(0, order)
target, target_lengths = None, None
prev_output_tokens = None
ntokens = None
if self.tgt_texts is not None:
target = fairseq_data_utils.collate_tokens(
[x.target for x in samples],
self.tgt_dict.pad(),
self.tgt_dict.eos(),
left_pad=False,
move_eos_to_beginning=False,
)
target = target.index_select(0, order)
target_lengths = torch.tensor(
[x.target.size(0) for x in samples], dtype=torch.long
).index_select(0, order)
prev_output_tokens = fairseq_data_utils.collate_tokens(
[x.target for x in samples],
self.tgt_dict.pad(),
self.tgt_dict.eos(),
left_pad=False,
move_eos_to_beginning=True,
)
prev_output_tokens = prev_output_tokens.index_select(0, order)
ntokens = sum(x.target.size(0) for x in samples)
speaker = None
if self.speaker_to_id is not None:
speaker = (
torch.tensor([s.speaker_id for s in samples], dtype=torch.long)
.index_select(0, order)
.view(-1, 1)
)
net_input = {
"src_tokens": frames,
"src_lengths": n_frames,
"prev_output_tokens": prev_output_tokens,
}
out = {
"id": indices,
"net_input": net_input,
"speaker": speaker,
"target": target,
"target_lengths": target_lengths,
"ntokens": ntokens,
"nsentences": len(samples),
}
if return_order:
out["order"] = order
return out
def num_tokens(self, index):
return self.n_frames[index]
def size(self, index):
return self.n_frames[index], self.tgt_lens[index]
@property
def sizes(self):
return np.array(self.n_frames)
@property
def can_reuse_epoch_itr_across_epochs(self):
return True
def ordered_indices(self):
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
# first by descending order of # of frames then by original/random order
order.append([-n for n in self.n_frames])
return np.lexsort(order)
def prefetch(self, indices):
raise False
class SpeechToTextDatasetCreator(object):
# mandatory columns
KEY_ID, KEY_AUDIO, KEY_N_FRAMES = "id", "audio", "n_frames"
KEY_TGT_TEXT = "tgt_text"
# optional columns
KEY_SPEAKER, KEY_SRC_TEXT = "speaker", "src_text"
KEY_SRC_LANG, KEY_TGT_LANG = "src_lang", "tgt_lang"
# default values
DEFAULT_SPEAKER = DEFAULT_SRC_TEXT = DEFAULT_LANG = ""
@classmethod
def _from_list(
cls,
split_name: str,
is_train_split,
samples: List[Dict],
cfg: S2TDataConfig,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
n_frames_per_step,
speaker_to_id,
) -> SpeechToTextDataset:
audio_root = Path(cfg.audio_root)
ids = [s[cls.KEY_ID] for s in samples]
audio_paths = [(audio_root / s[cls.KEY_AUDIO]).as_posix() for s in samples]
n_frames = [int(s[cls.KEY_N_FRAMES]) for s in samples]
tgt_texts = [s[cls.KEY_TGT_TEXT] for s in samples]
src_texts = [s.get(cls.KEY_SRC_TEXT, cls.DEFAULT_SRC_TEXT) for s in samples]
speakers = [s.get(cls.KEY_SPEAKER, cls.DEFAULT_SPEAKER) for s in samples]
src_langs = [s.get(cls.KEY_SRC_LANG, cls.DEFAULT_LANG) for s in samples]
tgt_langs = [s.get(cls.KEY_TGT_LANG, cls.DEFAULT_LANG) for s in samples]
return SpeechToTextDataset(
split_name,
is_train_split,
cfg,
audio_paths,
n_frames,
src_texts=src_texts,
tgt_texts=tgt_texts,
speakers=speakers,
src_langs=src_langs,
tgt_langs=tgt_langs,
ids=ids,
tgt_dict=tgt_dict,
pre_tokenizer=pre_tokenizer,
bpe_tokenizer=bpe_tokenizer,
n_frames_per_step=n_frames_per_step,
speaker_to_id=speaker_to_id,
)
@classmethod
def get_size_ratios(
cls, datasets: List[SpeechToTextDataset], alpha: float = 1.0
) -> List[float]:
"""Size ratios for temperature-based sampling
(https://arxiv.org/abs/1907.05019)"""
id_to_lp, lp_to_sz = {}, defaultdict(int)
for ds in datasets:
lang_pairs = {f"{s}->{t}" for s, t in zip(ds.src_langs, ds.tgt_langs)}
assert len(lang_pairs) == 1
lang_pair = list(lang_pairs)[0]
id_to_lp[ds.split] = lang_pair
lp_to_sz[lang_pair] += sum(ds.n_frames)
sz_sum = sum(v for v in lp_to_sz.values())
lp_to_prob = {k: v / sz_sum for k, v in lp_to_sz.items()}
lp_to_tgt_prob = {k: v ** alpha for k, v in lp_to_prob.items()}
prob_sum = sum(v for v in lp_to_tgt_prob.values())
lp_to_tgt_prob = {k: v / prob_sum for k, v in lp_to_tgt_prob.items()}
lp_to_sz_ratio = {
k: (lp_to_tgt_prob[k] * sz_sum) / v for k, v in lp_to_sz.items()
}
size_ratio = [lp_to_sz_ratio[id_to_lp[ds.split]] for ds in datasets]
p_formatted = {
k: f"{lp_to_prob[k]:.3f}->{lp_to_tgt_prob[k]:.3f}" for k in lp_to_sz
}
logger.info(f"sampling probability balancing: {p_formatted}")
sr_formatted = {ds.split: f"{r:.3f}" for ds, r in zip(datasets, size_ratio)}
logger.info(f"balanced sampling size ratio: {sr_formatted}")
return size_ratio
@classmethod
def _load_samples_from_tsv(cls, root: str, split: str):
tsv_path = Path(root) / f"{split}.tsv"
if not tsv_path.is_file():
raise FileNotFoundError(f"Dataset not found: {tsv_path}")
with open(tsv_path) as f:
reader = csv.DictReader(
f,
delimiter="\t",
quotechar=None,
doublequote=False,
lineterminator="\n",
quoting=csv.QUOTE_NONE,
)
samples = [dict(e) for e in reader]
if len(samples) == 0:
raise ValueError(f"Empty manifest: {tsv_path}")
return samples
@classmethod
def _from_tsv(
cls,
root: str,
cfg: S2TDataConfig,
split: str,
tgt_dict,
is_train_split: bool,
pre_tokenizer,
bpe_tokenizer,
n_frames_per_step,
speaker_to_id,
) -> SpeechToTextDataset:
samples = cls._load_samples_from_tsv(root, split)
return cls._from_list(
split,
is_train_split,
samples,
cfg,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
n_frames_per_step,
speaker_to_id,
)
@classmethod
def from_tsv(
cls,
root: str,
cfg: S2TDataConfig,
splits: str,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
is_train_split: bool,
epoch: int,
seed: int,
n_frames_per_step: int = 1,
speaker_to_id=None,
) -> SpeechToTextDataset:
datasets = [
cls._from_tsv(
root,
cfg,
split,
tgt_dict,
is_train_split,
pre_tokenizer,
bpe_tokenizer,
n_frames_per_step,
speaker_to_id,
)
for split in splits.split(",")
]
if is_train_split and len(datasets) > 1 and cfg.sampling_alpha != 1.0:
# temperature-based sampling
size_ratios = cls.get_size_ratios(datasets, alpha=cfg.sampling_alpha)
datasets = [
ResamplingDataset(
d, size_ratio=r, seed=seed, epoch=epoch, replace=(r >= 1.0)
)
for r, d in zip(size_ratios, datasets)
]
return ConcatDataset(datasets) if len(datasets) > 1 else datasets[0]
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/speech_to_text_dataset.py |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.abs
from pathlib import Path
from typing import List, Dict, Optional, Any
from dataclasses import dataclass
import numpy as np
import torch
from fairseq.data.audio.speech_to_text_dataset import (
SpeechToTextDataset,
SpeechToTextDatasetCreator,
S2TDataConfig,
_collate_frames,
get_features_or_waveform,
)
from fairseq.data import Dictionary, data_utils as fairseq_data_utils
@dataclass
class TextToSpeechDatasetItem(object):
index: int
source: torch.Tensor
target: Optional[torch.Tensor] = None
speaker_id: Optional[int] = None
duration: Optional[torch.Tensor] = None
pitch: Optional[torch.Tensor] = None
energy: Optional[torch.Tensor] = None
class TextToSpeechDataset(SpeechToTextDataset):
def __init__(
self,
split: str,
is_train_split: bool,
cfg: S2TDataConfig,
audio_paths: List[str],
n_frames: List[int],
src_texts: Optional[List[str]] = None,
tgt_texts: Optional[List[str]] = None,
speakers: Optional[List[str]] = None,
src_langs: Optional[List[str]] = None,
tgt_langs: Optional[List[str]] = None,
ids: Optional[List[str]] = None,
tgt_dict: Optional[Dictionary] = None,
pre_tokenizer=None,
bpe_tokenizer=None,
n_frames_per_step=1,
speaker_to_id=None,
durations: Optional[List[List[int]]] = None,
pitches: Optional[List[str]] = None,
energies: Optional[List[str]] = None,
):
super(TextToSpeechDataset, self).__init__(
split,
is_train_split,
cfg,
audio_paths,
n_frames,
src_texts=src_texts,
tgt_texts=tgt_texts,
speakers=speakers,
src_langs=src_langs,
tgt_langs=tgt_langs,
ids=ids,
tgt_dict=tgt_dict,
pre_tokenizer=pre_tokenizer,
bpe_tokenizer=bpe_tokenizer,
n_frames_per_step=n_frames_per_step,
speaker_to_id=speaker_to_id,
)
self.durations = durations
self.pitches = pitches
self.energies = energies
def __getitem__(self, index: int) -> TextToSpeechDatasetItem:
s2t_item = super().__getitem__(index)
duration, pitch, energy = None, None, None
if self.durations is not None:
duration = torch.tensor(
self.durations[index] + [0], dtype=torch.long # pad 0 for EOS
)
if self.pitches is not None:
pitch = get_features_or_waveform(self.pitches[index])
pitch = torch.from_numpy(
np.concatenate((pitch, [0])) # pad 0 for EOS
).float()
if self.energies is not None:
energy = get_features_or_waveform(self.energies[index])
energy = torch.from_numpy(
np.concatenate((energy, [0])) # pad 0 for EOS
).float()
return TextToSpeechDatasetItem(
index=index,
source=s2t_item.source,
target=s2t_item.target,
speaker_id=s2t_item.speaker_id,
duration=duration,
pitch=pitch,
energy=energy,
)
def collater(self, samples: List[TextToSpeechDatasetItem]) -> Dict[str, Any]:
if len(samples) == 0:
return {}
src_lengths, order = torch.tensor(
[s.target.shape[0] for s in samples], dtype=torch.long
).sort(descending=True)
id_ = torch.tensor([s.index for s in samples], dtype=torch.long).index_select(
0, order
)
feat = _collate_frames(
[s.source for s in samples], self.cfg.use_audio_input
).index_select(0, order)
target_lengths = torch.tensor(
[s.source.shape[0] for s in samples], dtype=torch.long
).index_select(0, order)
src_tokens = fairseq_data_utils.collate_tokens(
[s.target for s in samples],
self.tgt_dict.pad(),
self.tgt_dict.eos(),
left_pad=False,
move_eos_to_beginning=False,
).index_select(0, order)
speaker = None
if self.speaker_to_id is not None:
speaker = (
torch.tensor([s.speaker_id for s in samples], dtype=torch.long)
.index_select(0, order)
.view(-1, 1)
)
bsz, _, d = feat.size()
prev_output_tokens = torch.cat(
(feat.new_zeros((bsz, 1, d)), feat[:, :-1, :]), dim=1
)
durations, pitches, energies = None, None, None
if self.durations is not None:
durations = fairseq_data_utils.collate_tokens(
[s.duration for s in samples], 0
).index_select(0, order)
assert src_tokens.shape[1] == durations.shape[1]
if self.pitches is not None:
pitches = _collate_frames([s.pitch for s in samples], True)
pitches = pitches.index_select(0, order)
assert src_tokens.shape[1] == pitches.shape[1]
if self.energies is not None:
energies = _collate_frames([s.energy for s in samples], True)
energies = energies.index_select(0, order)
assert src_tokens.shape[1] == energies.shape[1]
src_texts = [self.tgt_dict.string(samples[i].target) for i in order]
return {
"id": id_,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"prev_output_tokens": prev_output_tokens,
},
"speaker": speaker,
"target": feat,
"durations": durations,
"pitches": pitches,
"energies": energies,
"target_lengths": target_lengths,
"ntokens": sum(target_lengths).item(),
"nsentences": len(samples),
"src_texts": src_texts,
}
class TextToSpeechDatasetCreator(SpeechToTextDatasetCreator):
KEY_DURATION = "duration"
KEY_PITCH = "pitch"
KEY_ENERGY = "energy"
@classmethod
def _from_list(
cls,
split_name: str,
is_train_split,
samples: List[Dict],
cfg: S2TDataConfig,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
n_frames_per_step,
speaker_to_id,
) -> TextToSpeechDataset:
audio_root = Path(cfg.audio_root)
ids = [s[cls.KEY_ID] for s in samples]
audio_paths = [(audio_root / s[cls.KEY_AUDIO]).as_posix() for s in samples]
n_frames = [int(s[cls.KEY_N_FRAMES]) for s in samples]
tgt_texts = [s[cls.KEY_TGT_TEXT] for s in samples]
src_texts = [s.get(cls.KEY_SRC_TEXT, cls.DEFAULT_SRC_TEXT) for s in samples]
speakers = [s.get(cls.KEY_SPEAKER, cls.DEFAULT_SPEAKER) for s in samples]
src_langs = [s.get(cls.KEY_SRC_LANG, cls.DEFAULT_LANG) for s in samples]
tgt_langs = [s.get(cls.KEY_TGT_LANG, cls.DEFAULT_LANG) for s in samples]
durations = [s.get(cls.KEY_DURATION, None) for s in samples]
durations = [
None if dd is None else [int(d) for d in dd.split(" ")] for dd in durations
]
durations = None if any(dd is None for dd in durations) else durations
pitches = [s.get(cls.KEY_PITCH, None) for s in samples]
pitches = [
None if pp is None else (audio_root / pp).as_posix() for pp in pitches
]
pitches = None if any(pp is None for pp in pitches) else pitches
energies = [s.get(cls.KEY_ENERGY, None) for s in samples]
energies = [
None if ee is None else (audio_root / ee).as_posix() for ee in energies
]
energies = None if any(ee is None for ee in energies) else energies
return TextToSpeechDataset(
split_name,
is_train_split,
cfg,
audio_paths,
n_frames,
src_texts,
tgt_texts,
speakers,
src_langs,
tgt_langs,
ids,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
n_frames_per_step,
speaker_to_id,
durations,
pitches,
energies,
)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/text_to_speech_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
from typing import BinaryIO, Optional, Tuple, Union, List
import mmap
import numpy as np
import torch
import torch.nn.functional as F
SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"}
FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"}
def convert_waveform(
waveform: Union[np.ndarray, torch.Tensor],
sample_rate: int,
normalize_volume: bool = False,
to_mono: bool = False,
to_sample_rate: Optional[int] = None,
) -> Tuple[Union[np.ndarray, torch.Tensor], int]:
"""convert a waveform:
- to a target sample rate
- from multi-channel to mono channel
- volume normalization
Args:
waveform (numpy.ndarray or torch.Tensor): 2D original waveform
(channels x length)
sample_rate (int): original sample rate
normalize_volume (bool): perform volume normalization
to_mono (bool): convert to mono channel if having multiple channels
to_sample_rate (Optional[int]): target sample rate
Returns:
waveform (numpy.ndarray): converted 2D waveform (channels x length)
sample_rate (float): target sample rate
"""
try:
import torchaudio.sox_effects as ta_sox
except ImportError:
raise ImportError("Please install torchaudio: pip install torchaudio")
effects = []
if normalize_volume:
effects.append(["gain", "-n"])
if to_sample_rate is not None and to_sample_rate != sample_rate:
effects.append(["rate", f"{to_sample_rate}"])
if to_mono and waveform.shape[0] > 1:
effects.append(["channels", "1"])
if len(effects) > 0:
is_np_input = isinstance(waveform, np.ndarray)
_waveform = torch.from_numpy(waveform) if is_np_input else waveform
converted, converted_sample_rate = ta_sox.apply_effects_tensor(
_waveform, sample_rate, effects
)
if is_np_input:
converted = converted.numpy()
return converted, converted_sample_rate
return waveform, sample_rate
def get_waveform(
path_or_fp: Union[str, BinaryIO],
normalization: bool = True,
mono: bool = True,
frames: int = -1,
start: int = 0,
always_2d: bool = True,
output_sample_rate: Optional[int] = None,
normalize_volume: bool = False,
) -> Tuple[np.ndarray, int]:
"""Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio.
Args:
path_or_fp (str or BinaryIO): the path or file-like object
normalization (bool): normalize values to [-1, 1] (Default: True)
mono (bool): convert multi-channel audio to mono-channel one
frames (int): the number of frames to read. (-1 for reading all)
start (int): Where to start reading. A negative value counts from the end.
always_2d (bool): always return 2D array even for mono-channel audios
output_sample_rate (Optional[int]): output sample rate
normalize_volume (bool): normalize volume
Returns:
waveform (numpy.ndarray): 1D or 2D waveform (channels x length)
sample_rate (float): sample rate
"""
if isinstance(path_or_fp, str):
ext = Path(path_or_fp).suffix
if ext not in SF_AUDIO_FILE_EXTENSIONS:
raise ValueError(f"Unsupported audio format: {ext}")
try:
import soundfile as sf
except ImportError:
raise ImportError("Please install soundfile: pip install soundfile")
waveform, sample_rate = sf.read(
path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start
)
waveform = waveform.T # T x C -> C x T
waveform, sample_rate = convert_waveform(
waveform,
sample_rate,
normalize_volume=normalize_volume,
to_mono=mono,
to_sample_rate=output_sample_rate,
)
if not normalization:
waveform *= 2 ** 15 # denormalized to 16-bit signed integers
if not always_2d:
waveform = waveform.squeeze(axis=0)
return waveform, sample_rate
def _get_kaldi_fbank(
waveform: np.ndarray, sample_rate: int, n_bins=80
) -> Optional[np.ndarray]:
"""Get mel-filter bank features via PyKaldi."""
try:
from kaldi.feat.fbank import FbankOptions, Fbank
from kaldi.feat.mel import MelBanksOptions
from kaldi.feat.window import FrameExtractionOptions
from kaldi.matrix import Vector
mel_opts = MelBanksOptions()
mel_opts.num_bins = n_bins
frame_opts = FrameExtractionOptions()
frame_opts.samp_freq = sample_rate
opts = FbankOptions()
opts.mel_opts = mel_opts
opts.frame_opts = frame_opts
fbank = Fbank(opts=opts)
features = fbank.compute(Vector(waveform.squeeze()), 1.0).numpy()
return features
except ImportError:
return None
def _get_torchaudio_fbank(
waveform: np.ndarray, sample_rate, n_bins=80
) -> Optional[np.ndarray]:
"""Get mel-filter bank features via TorchAudio."""
try:
import torchaudio.compliance.kaldi as ta_kaldi
waveform = torch.from_numpy(waveform)
features = ta_kaldi.fbank(
waveform, num_mel_bins=n_bins, sample_frequency=sample_rate
)
return features.numpy()
except ImportError:
return None
def get_fbank(path_or_fp: Union[str, BinaryIO], n_bins=80) -> np.ndarray:
"""Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi
(faster CPP implementation) to TorchAudio (Python implementation). Note that
Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the
waveform should not be normalized."""
waveform, sample_rate = get_waveform(path_or_fp, normalization=False)
features = _get_kaldi_fbank(waveform, sample_rate, n_bins)
if features is None:
features = _get_torchaudio_fbank(waveform, sample_rate, n_bins)
if features is None:
raise ImportError(
"Please install pyKaldi or torchaudio to enable "
"online filterbank feature extraction"
)
return features
def is_npy_data(data: bytes) -> bool:
return data[0] == 147 and data[1] == 78
def is_sf_audio_data(data: bytes) -> bool:
is_wav = data[0] == 82 and data[1] == 73 and data[2] == 70
is_flac = data[0] == 102 and data[1] == 76 and data[2] == 97
is_ogg = data[0] == 79 and data[1] == 103 and data[2] == 103
return is_wav or is_flac or is_ogg
def mmap_read(path: str, offset: int, length: int) -> bytes:
with open(path, "rb") as f:
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_o:
data = mmap_o[offset : offset + length]
return data
def read_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes:
return mmap_read(zip_path, offset, length)
def parse_path(path: str) -> Tuple[str, List[int]]:
"""Parse data path which is either a path to
1. a .npy/.wav/.flac/.ogg file
2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]"
Args:
path (str): the data path to parse
Returns:
file_path (str): the file path
slice_ptr (list of int): empty in case 1;
byte offset and length for the slice in case 2
"""
if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS:
_path, slice_ptr = path, []
else:
_path, *slice_ptr = path.split(":")
if not Path(_path).is_file():
raise FileNotFoundError(f"File not found: {_path}")
assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}"
slice_ptr = [int(i) for i in slice_ptr]
return _path, slice_ptr
def get_window(window_fn: callable, n_fft: int, win_length: int) -> torch.Tensor:
padding = n_fft - win_length
assert padding >= 0
return F.pad(window_fn(win_length), (padding // 2, padding - padding // 2))
def get_fourier_basis(n_fft: int) -> torch.Tensor:
basis = np.fft.fft(np.eye(n_fft))
basis = np.vstack(
[np.real(basis[: n_fft // 2 + 1, :]), np.imag(basis[: n_fft // 2 + 1, :])]
)
return torch.from_numpy(basis).float()
def get_mel_filters(
sample_rate: int, n_fft: int, n_mels: int, f_min: float, f_max: float
) -> torch.Tensor:
try:
import librosa
except ImportError:
raise ImportError("Please install librosa: pip install librosa")
basis = librosa.filters.mel(sample_rate, n_fft, n_mels, f_min, f_max)
return torch.from_numpy(basis).float()
class TTSSpectrogram(torch.nn.Module):
def __init__(
self,
n_fft: int,
win_length: int,
hop_length: int,
window_fn: callable = torch.hann_window,
return_phase: bool = False,
) -> None:
super(TTSSpectrogram, self).__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.return_phase = return_phase
basis = get_fourier_basis(n_fft).unsqueeze(1)
basis *= get_window(window_fn, n_fft, win_length)
self.register_buffer("basis", basis)
def forward(
self, waveform: torch.Tensor
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
padding = (self.n_fft // 2, self.n_fft // 2)
x = F.pad(waveform.unsqueeze(1), padding, mode="reflect")
x = F.conv1d(x, self.basis, stride=self.hop_length)
real_part = x[:, : self.n_fft // 2 + 1, :]
imag_part = x[:, self.n_fft // 2 + 1 :, :]
magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2)
if self.return_phase:
phase = torch.atan2(imag_part, real_part)
return magnitude, phase
return magnitude
class TTSMelScale(torch.nn.Module):
def __init__(
self, n_mels: int, sample_rate: int, f_min: float, f_max: float, n_stft: int
) -> None:
super(TTSMelScale, self).__init__()
basis = get_mel_filters(sample_rate, (n_stft - 1) * 2, n_mels, f_min, f_max)
self.register_buffer("basis", basis)
def forward(self, specgram: torch.Tensor) -> torch.Tensor:
return torch.matmul(self.basis, specgram)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/audio_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import io
import numpy as np
import torch
import torch.nn.functional as F
from .. import FairseqDataset
from ..data_utils import compute_mask_indices, get_buckets, get_bucketed_sizes
from fairseq.data.audio.audio_utils import (
parse_path,
read_from_stored_zip,
is_sf_audio_data,
)
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel
logger = logging.getLogger(__name__)
class RawAudioDataset(FairseqDataset):
def __init__(
self,
sample_rate,
max_sample_size=None,
min_sample_size=0,
shuffle=True,
pad=False,
normalize=False,
compute_mask_indices=False,
**mask_compute_kwargs,
):
super().__init__()
self.sample_rate = sample_rate
self.sizes = []
self.max_sample_size = (
max_sample_size if max_sample_size is not None else sys.maxsize
)
self.min_sample_size = min_sample_size
self.pad = pad
self.shuffle = shuffle
self.normalize = normalize
self.compute_mask_indices = compute_mask_indices
if self.compute_mask_indices:
self.mask_compute_kwargs = mask_compute_kwargs
self._features_size_map = {}
self._C = mask_compute_kwargs["encoder_embed_dim"]
self._conv_feature_layers = eval(mask_compute_kwargs["conv_feature_layers"])
def __getitem__(self, index):
raise NotImplementedError()
def __len__(self):
return len(self.sizes)
def postprocess(self, feats, curr_sample_rate):
if feats.dim() == 2:
feats = feats.mean(-1)
if curr_sample_rate != self.sample_rate:
raise Exception(f"sample rate: {curr_sample_rate}, need {self.sample_rate}")
assert feats.dim() == 1, feats.dim()
if self.normalize:
with torch.no_grad():
feats = F.layer_norm(feats, feats.shape)
return feats
def crop_to_max_size(self, wav, target_size):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav
start = np.random.randint(0, diff + 1)
end = size - diff + start
return wav[start:end]
def _compute_mask_indices(self, dims, padding_mask):
B, T, C = dims
mask_indices, mask_channel_indices = None, None
if self.mask_compute_kwargs["mask_prob"] > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_compute_kwargs["mask_prob"],
self.mask_compute_kwargs["mask_length"],
self.mask_compute_kwargs["mask_selection"],
self.mask_compute_kwargs["mask_other"],
min_masks=2,
no_overlap=self.mask_compute_kwargs["no_mask_overlap"],
min_space=self.mask_compute_kwargs["mask_min_space"],
)
mask_indices = torch.from_numpy(mask_indices)
if self.mask_compute_kwargs["mask_channel_prob"] > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_compute_kwargs["mask_channel_prob"],
self.mask_compute_kwargs["mask_channel_length"],
self.mask_compute_kwargs["mask_channel_selection"],
self.mask_compute_kwargs["mask_channel_other"],
no_overlap=self.mask_compute_kwargs["no_mask_channel_overlap"],
min_space=self.mask_compute_kwargs["mask_channel_min_space"],
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices).unsqueeze(1).expand(-1, T, -1)
)
return mask_indices, mask_channel_indices
@staticmethod
def _bucket_tensor(tensor, num_pad, value):
return F.pad(tensor, (0, num_pad), value=value)
def collater(self, samples):
samples = [s for s in samples if s["source"] is not None]
if len(samples) == 0:
return {}
sources = [s["source"] for s in samples]
sizes = [len(s) for s in sources]
if self.pad:
target_size = min(max(sizes), self.max_sample_size)
else:
target_size = min(min(sizes), self.max_sample_size)
collated_sources = sources[0].new_zeros(len(sources), target_size)
padding_mask = (
torch.BoolTensor(collated_sources.shape).fill_(False) if self.pad else None
)
for i, (source, size) in enumerate(zip(sources, sizes)):
diff = size - target_size
if diff == 0:
collated_sources[i] = source
elif diff < 0:
assert self.pad
collated_sources[i] = torch.cat(
[source, source.new_full((-diff,), 0.0)]
)
padding_mask[i, diff:] = True
else:
collated_sources[i] = self.crop_to_max_size(source, target_size)
input = {"source": collated_sources}
out = {"id": torch.LongTensor([s["id"] for s in samples])}
if self.pad:
input["padding_mask"] = padding_mask
if hasattr(self, "num_buckets") and self.num_buckets > 0:
assert self.pad, "Cannot bucket without padding first."
bucket = max(self._bucketed_sizes[s["id"]] for s in samples)
num_pad = bucket - collated_sources.size(-1)
if num_pad:
input["source"] = self._bucket_tensor(collated_sources, num_pad, 0)
input["padding_mask"] = self._bucket_tensor(padding_mask, num_pad, True)
if self.compute_mask_indices:
B = input["source"].size(0)
T = self._get_mask_indices_dims(input["source"].size(-1))
padding_mask_reshaped = input["padding_mask"].clone()
extra = padding_mask_reshaped.size(1) % T
if extra > 0:
padding_mask_reshaped = padding_mask_reshaped[:, :-extra]
padding_mask_reshaped = padding_mask_reshaped.view(
padding_mask_reshaped.size(0), T, -1
)
padding_mask_reshaped = padding_mask_reshaped.all(-1)
input["padding_count"] = padding_mask_reshaped.sum(-1).max().item()
mask_indices, mask_channel_indices = self._compute_mask_indices(
(B, T, self._C),
padding_mask_reshaped,
)
input["mask_indices"] = mask_indices
input["mask_channel_indices"] = mask_channel_indices
out["sample_size"] = mask_indices.sum().item()
out["net_input"] = input
return out
def _get_mask_indices_dims(self, size, padding=0, dilation=1):
if size not in self._features_size_map:
L_in = size
for (_, kernel_size, stride) in self._conv_feature_layers:
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
L_out = 1 + L_out // stride
L_in = L_out
self._features_size_map[size] = L_out
return self._features_size_map[size]
def num_tokens(self, index):
return self.size(index)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
if self.pad:
return self.sizes[index]
return min(self.sizes[index], self.max_sample_size)
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
order.append(
np.minimum(
np.array(self.sizes),
self.max_sample_size,
)
)
return np.lexsort(order)[::-1]
else:
return np.arange(len(self))
def set_bucket_info(self, num_buckets):
self.num_buckets = num_buckets
if self.num_buckets > 0:
self._collated_sizes = np.minimum(
np.array(self.sizes),
self.max_sample_size,
)
self.buckets = get_buckets(
self._collated_sizes,
self.num_buckets,
)
self._bucketed_sizes = get_bucketed_sizes(
self._collated_sizes, self.buckets
)
logger.info(
f"{len(self.buckets)} bucket(s) for the audio dataset: "
f"{self.buckets}"
)
class FileAudioDataset(RawAudioDataset):
def __init__(
self,
manifest_path,
sample_rate,
max_sample_size=None,
min_sample_size=0,
shuffle=True,
pad=False,
normalize=False,
num_buckets=0,
compute_mask_indices=False,
text_compression_level=TextCompressionLevel.none,
**mask_compute_kwargs,
):
super().__init__(
sample_rate=sample_rate,
max_sample_size=max_sample_size,
min_sample_size=min_sample_size,
shuffle=shuffle,
pad=pad,
normalize=normalize,
compute_mask_indices=compute_mask_indices,
**mask_compute_kwargs,
)
self.text_compressor = TextCompressor(level=text_compression_level)
skipped = 0
self.fnames = []
sizes = []
self.skipped_indices = set()
with open(manifest_path, "r") as f:
self.root_dir = f.readline().strip()
for i, line in enumerate(f):
items = line.strip().split("\t")
assert len(items) == 2, line
sz = int(items[1])
if min_sample_size is not None and sz < min_sample_size:
skipped += 1
self.skipped_indices.add(i)
continue
self.fnames.append(self.text_compressor.compress(items[0]))
sizes.append(sz)
logger.info(f"loaded {len(self.fnames)}, skipped {skipped} samples")
self.sizes = np.array(sizes, dtype=np.int64)
try:
import pyarrow
self.fnames = pyarrow.array(self.fnames)
except:
logger.debug(
"Could not create a pyarrow array. Please install pyarrow for better performance"
)
pass
self.set_bucket_info(num_buckets)
def __getitem__(self, index):
import soundfile as sf
fn = self.fnames[index]
fn = fn if isinstance(self.fnames, list) else fn.as_py()
fn = self.text_compressor.decompress(fn)
path_or_fp = os.path.join(self.root_dir, fn)
_path, slice_ptr = parse_path(path_or_fp)
if len(slice_ptr) == 2:
byte_data = read_from_stored_zip(_path, slice_ptr[0], slice_ptr[1])
assert is_sf_audio_data(byte_data)
path_or_fp = io.BytesIO(byte_data)
wav, curr_sample_rate = sf.read(path_or_fp, dtype="float32")
feats = torch.from_numpy(wav).float()
feats = self.postprocess(feats, curr_sample_rate)
return {"id": index, "source": feats}
class BinarizedAudioDataset(RawAudioDataset):
def __init__(
self,
data_dir,
split,
sample_rate,
max_sample_size=None,
min_sample_size=0,
shuffle=True,
pad=False,
normalize=False,
num_buckets=0,
compute_mask_indices=False,
**mask_compute_kwargs,
):
super().__init__(
sample_rate=sample_rate,
max_sample_size=max_sample_size,
min_sample_size=min_sample_size,
shuffle=shuffle,
pad=pad,
normalize=normalize,
compute_mask_indices=compute_mask_indices,
**mask_compute_kwargs,
)
from fairseq.data import data_utils, Dictionary
self.fnames_dict = Dictionary.load(os.path.join(data_dir, "dict.txt"))
root_path = os.path.join(data_dir, f"{split}.root")
if os.path.exists(root_path):
with open(root_path, "r") as f:
self.root_dir = next(f).strip()
else:
self.root_dir = None
fnames_path = os.path.join(data_dir, split)
self.fnames = data_utils.load_indexed_dataset(fnames_path, self.fnames_dict)
lengths_path = os.path.join(data_dir, f"{split}.lengths")
with open(lengths_path, "r") as f:
for line in f:
sz = int(line.rstrip())
assert (
sz >= min_sample_size
), f"Min sample size is not supported for binarized dataset, but found a sample with size {sz}"
self.sizes.append(sz)
self.sizes = np.array(self.sizes, dtype=np.int64)
self.set_bucket_info(num_buckets)
logger.info(f"loaded {len(self.fnames)} samples")
def __getitem__(self, index):
import soundfile as sf
fname = self.fnames_dict.string(self.fnames[index], separator="")
if self.root_dir:
fname = os.path.join(self.root_dir, fname)
wav, curr_sample_rate = sf.read(fname)
feats = torch.from_numpy(wav).float()
feats = self.postprocess(feats, curr_sample_rate)
return {"id": index, "source": feats}
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/raw_audio_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import os
import sys
from typing import Any, List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
from fairseq.data import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
logger = logging.getLogger(__name__)
def load_audio(manifest_path, max_keep, min_keep):
n_long, n_short = 0, 0
names, inds, sizes = [], [], []
with open(manifest_path) as f:
root = f.readline().strip()
for ind, line in enumerate(f):
items = line.strip().split("\t")
assert len(items) == 2, line
sz = int(items[1])
if min_keep is not None and sz < min_keep:
n_short += 1
elif max_keep is not None and sz > max_keep:
n_long += 1
else:
names.append(items[0])
inds.append(ind)
sizes.append(sz)
tot = ind + 1
logger.info(
(
f"max_keep={max_keep}, min_keep={min_keep}, "
f"loaded {len(names)}, skipped {n_short} short and {n_long} long, "
f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}"
)
)
return root, names, inds, tot, sizes
def load_label(label_path, inds, tot):
with open(label_path) as f:
labels = [line.rstrip() for line in f]
assert (
len(labels) == tot
), f"number of labels does not match ({len(labels)} != {tot})"
labels = [labels[i] for i in inds]
return labels
def load_label_offset(label_path, inds, tot):
with open(label_path) as f:
code_lengths = [len(line.encode("utf-8")) for line in f]
assert (
len(code_lengths) == tot
), f"number of labels does not match ({len(code_lengths)} != {tot})"
offsets = list(itertools.accumulate([0] + code_lengths))
offsets = [(offsets[i], offsets[i + 1]) for i in inds]
return offsets
def verify_label_lengths(
audio_sizes,
audio_rate,
label_path,
label_rate,
inds,
tot,
tol=0.1, # tolerance in seconds
):
if label_rate < 0:
logger.info(f"{label_path} is sequence label. skipped")
return
with open(label_path) as f:
lengths = [len(line.rstrip().split()) for line in f]
assert len(lengths) == tot
lengths = [lengths[i] for i in inds]
num_invalid = 0
for i, ind in enumerate(inds):
dur_from_audio = audio_sizes[i] / audio_rate
dur_from_label = lengths[i] / label_rate
if abs(dur_from_audio - dur_from_label) > tol:
logger.warning(
(
f"audio and label duration differ too much "
f"(|{dur_from_audio} - {dur_from_label}| > {tol}) "
f"in line {ind+1} of {label_path}. Check if `label_rate` "
f"is correctly set (currently {label_rate}). "
f"num. of samples = {audio_sizes[i]}; "
f"label length = {lengths[i]}"
)
)
num_invalid += 1
if num_invalid > 0:
logger.warning(
f"total {num_invalid} (audio, label) pairs with mismatched lengths"
)
class HubertDataset(FairseqDataset):
def __init__(
self,
manifest_path: str,
sample_rate: float,
label_paths: List[str],
label_rates: Union[List[float], float], # -1 for sequence labels
pad_list: List[str],
eos_list: List[str],
label_processors: Optional[List[Any]] = None,
max_keep_sample_size: Optional[int] = None,
min_keep_sample_size: Optional[int] = None,
max_sample_size: Optional[int] = None,
shuffle: bool = True,
pad_audio: bool = False,
normalize: bool = False,
store_labels: bool = True,
random_crop: bool = False,
single_target: bool = False,
):
self.audio_root, self.audio_names, inds, tot, self.sizes = load_audio(
manifest_path, max_keep_sample_size, min_keep_sample_size
)
self.sample_rate = sample_rate
self.shuffle = shuffle
self.random_crop = random_crop
self.num_labels = len(label_paths)
self.pad_list = pad_list
self.eos_list = eos_list
self.label_processors = label_processors
self.single_target = single_target
self.label_rates = (
[label_rates for _ in range(len(label_paths))]
if isinstance(label_rates, int)
else label_rates
)
self.store_labels = store_labels
if store_labels:
self.label_list = [load_label(p, inds, tot) for p in label_paths]
else:
self.label_paths = label_paths
self.label_offsets_list = [
load_label_offset(p, inds, tot) for p in label_paths
]
assert label_processors is None or len(label_processors) == self.num_labels
for label_path, label_rate in zip(label_paths, self.label_rates):
verify_label_lengths(
self.sizes, sample_rate, label_path, label_rate, inds, tot
)
self.max_sample_size = (
max_sample_size if max_sample_size is not None else sys.maxsize
)
self.pad_audio = pad_audio
self.normalize = normalize
logger.info(
f"pad_audio={pad_audio}, random_crop={random_crop}, "
f"normalize={normalize}, max_sample_size={self.max_sample_size}"
)
def get_audio(self, index):
import soundfile as sf
wav_path = os.path.join(self.audio_root, self.audio_names[index])
wav, cur_sample_rate = sf.read(wav_path)
wav = torch.from_numpy(wav).float()
wav = self.postprocess(wav, cur_sample_rate)
return wav
def get_label(self, index, label_idx):
if self.store_labels:
label = self.label_list[label_idx][index]
else:
with open(self.label_paths[label_idx]) as f:
offset_s, offset_e = self.label_offsets_list[label_idx][index]
f.seek(offset_s)
label = f.read(offset_e - offset_s)
if self.label_processors is not None:
label = self.label_processors[label_idx](label)
return label
def get_labels(self, index):
return [self.get_label(index, i) for i in range(self.num_labels)]
def __getitem__(self, index):
wav = self.get_audio(index)
labels = self.get_labels(index)
return {"id": index, "source": wav, "label_list": labels}
def __len__(self):
return len(self.sizes)
def crop_to_max_size(self, wav, target_size):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav, 0
start, end = 0, target_size
if self.random_crop:
start = np.random.randint(0, diff + 1)
end = size - diff + start
return wav[start:end], start
def collater(self, samples):
# target = max(sizes) -> random_crop not used
# target = max_sample_size -> random_crop used for long
samples = [s for s in samples if s["source"] is not None]
if len(samples) == 0:
return {}
audios = [s["source"] for s in samples]
audio_sizes = [len(s) for s in audios]
if self.pad_audio:
audio_size = min(max(audio_sizes), self.max_sample_size)
else:
audio_size = min(min(audio_sizes), self.max_sample_size)
collated_audios, padding_mask, audio_starts = self.collater_audio(
audios, audio_size
)
targets_by_label = [
[s["label_list"][i] for s in samples] for i in range(self.num_labels)
]
targets_list, lengths_list, ntokens_list = self.collater_label(
targets_by_label, audio_size, audio_starts
)
net_input = {"source": collated_audios, "padding_mask": padding_mask}
batch = {
"id": torch.LongTensor([s["id"] for s in samples]),
"net_input": net_input,
}
if self.single_target:
batch["target_lengths"] = lengths_list[0]
batch["ntokens"] = ntokens_list[0]
batch["target"] = targets_list[0]
else:
batch["target_lengths_list"] = lengths_list
batch["ntokens_list"] = ntokens_list
batch["target_list"] = targets_list
return batch
def collater_audio(self, audios, audio_size):
collated_audios = audios[0].new_zeros(len(audios), audio_size)
padding_mask = (
torch.BoolTensor(collated_audios.shape).fill_(False)
# if self.pad_audio else None
)
audio_starts = [0 for _ in audios]
for i, audio in enumerate(audios):
diff = len(audio) - audio_size
if diff == 0:
collated_audios[i] = audio
elif diff < 0:
assert self.pad_audio
collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)])
padding_mask[i, diff:] = True
else:
collated_audios[i], audio_starts[i] = self.crop_to_max_size(
audio, audio_size
)
return collated_audios, padding_mask, audio_starts
def collater_frm_label(self, targets, audio_size, audio_starts, label_rate, pad):
assert label_rate > 0
s2f = label_rate / self.sample_rate
frm_starts = [int(round(s * s2f)) for s in audio_starts]
frm_size = int(round(audio_size * s2f))
if not self.pad_audio:
rem_size = [len(t) - s for t, s in zip(targets, frm_starts)]
frm_size = min(frm_size, *rem_size)
targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)]
logger.debug(f"audio_starts={audio_starts}")
logger.debug(f"frame_starts={frm_starts}")
logger.debug(f"frame_size={frm_size}")
lengths = torch.LongTensor([len(t) for t in targets])
ntokens = lengths.sum().item()
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False)
return targets, lengths, ntokens
def collater_seq_label(self, targets, pad):
lengths = torch.LongTensor([len(t) for t in targets])
ntokens = lengths.sum().item()
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False)
return targets, lengths, ntokens
def collater_label(self, targets_by_label, audio_size, audio_starts):
targets_list, lengths_list, ntokens_list = [], [], []
itr = zip(targets_by_label, self.label_rates, self.pad_list)
for targets, label_rate, pad in itr:
if label_rate == -1:
targets, lengths, ntokens = self.collater_seq_label(targets, pad)
else:
targets, lengths, ntokens = self.collater_frm_label(
targets, audio_size, audio_starts, label_rate, pad
)
targets_list.append(targets)
lengths_list.append(lengths)
ntokens_list.append(ntokens)
return targets_list, lengths_list, ntokens_list
def num_tokens(self, index):
return self.size(index)
def size(self, index):
if self.pad_audio:
return self.sizes[index]
return min(self.sizes[index], self.max_sample_size)
def ordered_indices(self):
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)[::-1]
def postprocess(self, wav, cur_sample_rate):
if wav.dim() == 2:
wav = wav.mean(-1)
assert wav.dim() == 1, wav.dim()
if cur_sample_rate != self.sample_rate:
raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}")
if self.normalize:
with torch.no_grad():
wav = F.layer_norm(wav, wav.shape)
return wav
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/hubert_dataset.py |
# Copyright (c) 2021-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import logging
import math
from typing import List, Optional, NamedTuple
import numpy as np
import torch
from fairseq.data import (
ConcatDataset,
LanguagePairDataset,
FileAudioDataset,
data_utils,
)
from fairseq.data import FairseqDataset
logger = logging.getLogger(__name__)
class ModalityDatasetItem(NamedTuple):
datasetname: str
dataset: any
max_positions: List[int]
max_tokens: Optional[int] = None
max_sentences: Optional[int] = None
# MultiModalityDataset: it concate multiple datasets with different modalities.
# Compared with ConcatDataset it can 1) sample data given the ratios for different datasets
# 2) it adds mode to indicate what type of the data samples come from.
# It will be used with GroupedEpochBatchIterator together to generate mini-batch with samples
# from the same type of dataset
# If only one dataset is used, it will perform like the original dataset with mode added
class MultiModalityDataset(ConcatDataset):
def __init__(self, datasets: List[ModalityDatasetItem]):
id_to_mode = []
dsets = []
max_tokens = []
max_sentences = []
max_positions = []
for dset in datasets:
id_to_mode.append(dset.datasetname)
dsets.append(dset.dataset)
max_tokens.append(dset.max_tokens)
max_positions.append(dset.max_positions)
max_sentences.append(dset.max_sentences)
weights = [1.0 for s in dsets]
super().__init__(dsets, weights)
self.max_tokens = max_tokens
self.max_positions = max_positions
self.max_sentences = max_sentences
self.id_to_mode = id_to_mode
self.raw_sub_batch_samplers = []
self._cur_epoch = 0
def set_epoch(self, epoch):
super().set_epoch(epoch)
self._cur_epoch = epoch
def __getitem__(self, idx):
dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
sample = self.datasets[dataset_idx][sample_idx]
return (dataset_idx, sample)
def collater(self, samples):
if len(samples) == 0:
return {}
dataset_idx = samples[0][0]
# make sure all samples in samples are from same dataset
assert sum([0 if dataset_idx == s[0] else 1 for s in samples]) == 0
samples = self.datasets[dataset_idx].collater([x[1] for x in samples])
# add mode
samples["net_input"]["mode"] = self.id_to_mode[dataset_idx]
return samples
def size(self, index: int):
if len(self.datasets) == 1:
return self.datasets[0].size(index)
return super().size(index)
@property
def sizes(self):
if len(self.datasets) == 1:
return self.datasets[0].sizes
super().sizes
def ordered_indices(self):
"""
Returns indices sorted by length. So less padding is needed.
"""
if len(self.datasets) == 1:
return self.datasets[0].ordered_indices()
indices_group = []
for d_idx, ds in enumerate(self.datasets):
sample_num = self.cumulative_sizes[d_idx]
if d_idx > 0:
sample_num = sample_num - self.cumulative_sizes[d_idx - 1]
assert sample_num == len(ds)
indices_group.append(ds.ordered_indices())
return indices_group
def get_raw_batch_samplers(self, required_batch_size_multiple, seed):
if len(self.raw_sub_batch_samplers) > 0:
logger.info(" raw_sub_batch_samplers exists. No action is taken")
return
with data_utils.numpy_seed(seed):
indices = self.ordered_indices()
for i, ds in enumerate(self.datasets):
indices[i] = ds.filter_indices_by_size(
indices[i],
self.max_positions[i],
)[0]
sub_batch_sampler = ds.batch_by_size(
indices[i],
max_tokens=self.max_tokens[i],
max_sentences=self.max_sentences[i],
required_batch_size_multiple=required_batch_size_multiple,
)
self.raw_sub_batch_samplers.append(sub_batch_sampler)
def get_batch_samplers(self, mult_ratios, required_batch_size_multiple, seed):
self.get_raw_batch_samplers(required_batch_size_multiple, seed)
batch_samplers = []
for i, _ in enumerate(self.datasets):
if i > 0:
sub_batch_sampler = [
[y + self.cumulative_sizes[i - 1] for y in x]
for x in self.raw_sub_batch_samplers[i]
]
else:
sub_batch_sampler = list(self.raw_sub_batch_samplers[i])
smp_r = mult_ratios[i]
if smp_r != 1:
is_increase = "increased" if smp_r > 1 else "decreased"
logger.info(
"number of batch for the dataset {} is {} from {} to {}".format(
self.id_to_mode[i],
is_increase,
len(sub_batch_sampler),
int(len(sub_batch_sampler) * smp_r),
)
)
mul_samplers = []
for _ in range(math.floor(smp_r)):
mul_samplers = mul_samplers + sub_batch_sampler
if math.floor(smp_r) != smp_r:
with data_utils.numpy_seed(seed + self._cur_epoch):
np.random.shuffle(sub_batch_sampler)
smp_num = int(
(smp_r - math.floor(smp_r)) * len(sub_batch_sampler)
)
mul_samplers = mul_samplers + sub_batch_sampler[:smp_num]
sub_batch_sampler = mul_samplers
else:
logger.info(
"dataset {} batch number is {} ".format(
self.id_to_mode[i], len(sub_batch_sampler)
)
)
batch_samplers.append(sub_batch_sampler)
return batch_samplers
class LangPairMaskDataset(FairseqDataset):
def __init__(
self,
dataset: LanguagePairDataset,
src_eos: int,
src_bos: Optional[int] = None,
noise_id: Optional[int] = -1,
mask_ratio: Optional[float] = 0,
mask_type: Optional[str] = "random",
):
self.dataset = dataset
self.src_eos = src_eos
self.src_bos = src_bos
self.noise_id = noise_id
self.mask_ratio = mask_ratio
self.mask_type = mask_type
assert mask_type in ("random", "tail")
@property
def src_sizes(self):
return self.dataset.src_sizes
@property
def tgt_sizes(self):
return self.dataset.tgt_sizes
@property
def sizes(self):
# dataset.sizes can be a dynamically computed sizes:
return self.dataset.sizes
def get_batch_shapes(self):
return self.dataset.buckets
def num_tokens_vec(self, indices):
return self.dataset.num_tokens_vec(indices)
def __len__(self):
return len(self.dataset)
def num_tokens(self, index):
return self.dataset.num_tokens(index)
def size(self, index):
return self.dataset.size(index)
def ordered_indices(self):
return self.dataset.ordered_indices()
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
return self.dataset.prefetch(indices)
def mask_src_tokens(self, sample):
src_item = sample["source"]
mask = None
if self.mask_type == "random":
mask = torch.rand(len(src_item)).le(self.mask_ratio)
else:
mask = torch.ones(len(src_item))
mask[: int(len(src_item) * (1 - self.mask_ratio))] = 0
mask = mask.eq(1)
if src_item[0] == self.src_bos:
mask[0] = False
if src_item[-1] == self.src_eos:
mask[-1] = False
mask_src_item = src_item.masked_fill(mask, self.noise_id)
smp = {"id": sample["id"], "source": mask_src_item, "target": sample["target"]}
return smp
def __getitem__(self, index):
sample = self.dataset[index]
if self.mask_ratio > 0:
sample = self.mask_src_tokens(sample)
return sample
def collater(self, samples, pad_to_length=None):
return self.dataset.collater(samples, pad_to_length)
class FileAudioDatasetWrapper(FileAudioDataset):
def collater(self, samples):
samples = super().collater(samples)
if len(samples) == 0:
return {}
samples["net_input"]["src_tokens"] = samples["net_input"]["source"]
samples["net_input"]["prev_output_tokens"] = None
del samples["net_input"]["source"]
samples["net_input"]["src_lengths"] = None
samples["net_input"]["alignment"] = None
return samples
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/multi_modality_dataset.py |
import numpy as np
import torch
from fairseq.data.audio.feature_transforms import (
AudioFeatureTransform,
register_audio_feature_transform,
)
@register_audio_feature_transform("delta_deltas")
class DeltaDeltas(AudioFeatureTransform):
"""Expand delta-deltas features from spectrum."""
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
return DeltaDeltas(_config.get("win_length", 5))
def __init__(self, win_length=5):
self.win_length = win_length
def __repr__(self):
return self.__class__.__name__
def __call__(self, spectrogram):
from torchaudio.functional import compute_deltas
assert len(spectrogram.shape) == 2, "spectrogram must be a 2-D tensor."
# spectrogram is T x F, while compute_deltas takes (…, F, T)
spectrogram = torch.from_numpy(spectrogram).transpose(0, 1)
delta = compute_deltas(spectrogram)
delta_delta = compute_deltas(delta)
out_feat = np.concatenate(
[spectrogram, delta.numpy(), delta_delta.numpy()], axis=0
)
out_feat = np.transpose(out_feat)
return out_feat
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/feature_transforms/delta_deltas.py |
import numpy as np
from fairseq.data.audio.feature_transforms import (
AudioFeatureTransform,
register_audio_feature_transform,
)
@register_audio_feature_transform("global_cmvn")
class GlobalCMVN(AudioFeatureTransform):
"""Global CMVN (cepstral mean and variance normalization). The global mean
and variance need to be pre-computed and stored in NumPy format (.npz)."""
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
return GlobalCMVN(_config.get("stats_npz_path"))
def __init__(self, stats_npz_path):
self.stats_npz_path = stats_npz_path
stats = np.load(stats_npz_path)
self.mean, self.std = stats["mean"], stats["std"]
def __repr__(self):
return self.__class__.__name__ + f'(stats_npz_path="{self.stats_npz_path}")'
def __call__(self, x):
x = np.subtract(x, self.mean)
x = np.divide(x, self.std)
return x
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/feature_transforms/global_cmvn.py |
import importlib
import os
from abc import ABC, abstractmethod
from typing import Dict, Optional
class AudioFeatureTransform(ABC):
@classmethod
@abstractmethod
def from_config_dict(cls, config: Optional[Dict] = None):
pass
AUDIO_FEATURE_TRANSFORM_REGISTRY = {}
AUDIO_FEATURE_TRANSFORM_CLASS_NAMES = set()
def register_audio_feature_transform(name):
def register_audio_feature_transform_cls(cls):
if name in AUDIO_FEATURE_TRANSFORM_REGISTRY:
raise ValueError(f"Cannot register duplicate transform ({name})")
if not issubclass(cls, AudioFeatureTransform):
raise ValueError(
f"Transform ({name}: {cls.__name__}) must extend "
"AudioFeatureTransform"
)
if cls.__name__ in AUDIO_FEATURE_TRANSFORM_CLASS_NAMES:
raise ValueError(
f"Cannot register audio feature transform with duplicate "
f"class name ({cls.__name__})"
)
AUDIO_FEATURE_TRANSFORM_REGISTRY[name] = cls
AUDIO_FEATURE_TRANSFORM_CLASS_NAMES.add(cls.__name__)
return cls
return register_audio_feature_transform_cls
def get_audio_feature_transform(name):
return AUDIO_FEATURE_TRANSFORM_REGISTRY[name]
transforms_dir = os.path.dirname(__file__)
for file in os.listdir(transforms_dir):
path = os.path.join(transforms_dir, file)
if (
not file.startswith("_")
and not file.startswith(".")
and (file.endswith(".py") or os.path.isdir(path))
):
name = file[: file.find(".py")] if file.endswith(".py") else file
importlib.import_module("fairseq.data.audio.feature_transforms." + name)
class CompositeAudioFeatureTransform(AudioFeatureTransform):
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
_transforms = _config.get("transforms")
if _transforms is None:
return None
transforms = [
get_audio_feature_transform(_t).from_config_dict(_config.get(_t))
for _t in _transforms
]
return CompositeAudioFeatureTransform(transforms)
def __init__(self, transforms):
self.transforms = [t for t in transforms if t is not None]
def __call__(self, x):
for t in self.transforms:
x = t(x)
return x
def __repr__(self):
format_string = (
[self.__class__.__name__ + "("]
+ [f" {t.__repr__()}" for t in self.transforms]
+ [")"]
)
return "\n".join(format_string)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/feature_transforms/__init__.py |
import math
import numbers
from typing import Optional
import numpy as np
from fairseq.data.audio.feature_transforms import (
AudioFeatureTransform,
register_audio_feature_transform,
)
@register_audio_feature_transform("specaugment")
class SpecAugmentTransform(AudioFeatureTransform):
"""SpecAugment (https://arxiv.org/abs/1904.08779)"""
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
return SpecAugmentTransform(
_config.get("time_warp_W", 0),
_config.get("freq_mask_N", 0),
_config.get("freq_mask_F", 0),
_config.get("time_mask_N", 0),
_config.get("time_mask_T", 0),
_config.get("time_mask_p", 0.0),
_config.get("mask_value", None),
)
def __init__(
self,
time_warp_w: int = 0,
freq_mask_n: int = 0,
freq_mask_f: int = 0,
time_mask_n: int = 0,
time_mask_t: int = 0,
time_mask_p: float = 0.0,
mask_value: Optional[float] = 0.0,
):
# Sanity checks
assert mask_value is None or isinstance(
mask_value, numbers.Number
), f"mask_value (type: {type(mask_value)}) must be None or a number"
if freq_mask_n > 0:
assert freq_mask_f > 0, (
f"freq_mask_F ({freq_mask_f}) "
f"must be larger than 0 when doing freq masking."
)
if time_mask_n > 0:
assert time_mask_t > 0, (
f"time_mask_T ({time_mask_t}) must be larger than 0 when "
f"doing time masking."
)
self.time_warp_w = time_warp_w
self.freq_mask_n = freq_mask_n
self.freq_mask_f = freq_mask_f
self.time_mask_n = time_mask_n
self.time_mask_t = time_mask_t
self.time_mask_p = time_mask_p
self.mask_value = mask_value
def __repr__(self):
return (
self.__class__.__name__
+ "("
+ ", ".join(
[
f"time_warp_w={self.time_warp_w}",
f"freq_mask_n={self.freq_mask_n}",
f"freq_mask_f={self.freq_mask_f}",
f"time_mask_n={self.time_mask_n}",
f"time_mask_t={self.time_mask_t}",
f"time_mask_p={self.time_mask_p}",
]
)
+ ")"
)
def __call__(self, spectrogram):
assert len(spectrogram.shape) == 2, "spectrogram must be a 2-D tensor."
distorted = spectrogram.copy() # make a copy of input spectrogram.
num_frames = spectrogram.shape[0] # or 'tau' in the paper.
num_freqs = spectrogram.shape[1] # or 'miu' in the paper.
mask_value = self.mask_value
if mask_value is None: # if no value was specified, use local mean.
mask_value = spectrogram.mean()
if num_frames == 0:
return spectrogram
if num_freqs < self.freq_mask_f:
return spectrogram
if self.time_warp_w > 0:
if 2 * self.time_warp_w < num_frames:
import cv2
w0 = np.random.randint(self.time_warp_w, num_frames - self.time_warp_w)
w = np.random.randint(-self.time_warp_w + 1, self.time_warp_w)
upper, lower = distorted[:w0, :], distorted[w0:, :]
upper = cv2.resize(
upper, dsize=(num_freqs, w0 + w), interpolation=cv2.INTER_LINEAR
)
lower = cv2.resize(
lower,
dsize=(num_freqs, num_frames - w0 - w),
interpolation=cv2.INTER_LINEAR,
)
distorted = np.concatenate((upper, lower), axis=0)
for _i in range(self.freq_mask_n):
f = np.random.randint(0, self.freq_mask_f)
f0 = np.random.randint(0, num_freqs - f)
if f != 0:
distorted[:, f0 : f0 + f] = mask_value
max_time_mask_t = min(
self.time_mask_t, math.floor(num_frames * self.time_mask_p)
)
if max_time_mask_t < 1:
return distorted
for _i in range(self.time_mask_n):
t = np.random.randint(0, max_time_mask_t)
t0 = np.random.randint(0, num_frames - t)
if t != 0:
distorted[t0 : t0 + t, :] = mask_value
return distorted
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/feature_transforms/specaugment.py |
import numpy as np
from fairseq.data.audio.feature_transforms import (
AudioFeatureTransform,
register_audio_feature_transform,
)
@register_audio_feature_transform("utterance_cmvn")
class UtteranceCMVN(AudioFeatureTransform):
"""Utterance-level CMVN (cepstral mean and variance normalization)"""
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
return UtteranceCMVN(
_config.get("norm_means", True),
_config.get("norm_vars", True),
)
def __init__(self, norm_means=True, norm_vars=True):
self.norm_means, self.norm_vars = norm_means, norm_vars
def __repr__(self):
return (
self.__class__.__name__
+ f"(norm_means={self.norm_means}, norm_vars={self.norm_vars})"
)
def __call__(self, x):
mean = x.mean(axis=0)
square_sums = (x ** 2).sum(axis=0)
if self.norm_means:
x = np.subtract(x, mean)
if self.norm_vars:
var = square_sums / x.shape[0] - mean ** 2
std = np.sqrt(np.maximum(var, 1e-10))
x = np.divide(x, std)
return x
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/audio/feature_transforms/utterance_cmvn.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class SentencepieceConfig(FairseqDataclass):
sentencepiece_model: str = field(
default="???", metadata={"help": "path to sentencepiece model"}
)
sentencepiece_enable_sampling: bool = field(
default=False, metadata={"help": "enable sampling"}
)
sentencepiece_alpha: Optional[float] = field(
default=None,
metadata={
"help": "soothing parameter for unigram sampling, "
"and merge probability for BPE-dropout"
},
)
@register_bpe("sentencepiece", dataclass=SentencepieceConfig)
class SentencepieceBPE(object):
def __init__(self, cfg):
self.enable_sampling = cfg.sentencepiece_enable_sampling
self.alpha = cfg.sentencepiece_alpha
sentencepiece_model = file_utils.cached_path(cfg.sentencepiece_model)
try:
import sentencepiece as spm
self.sp = spm.SentencePieceProcessor()
self.sp.Load(sentencepiece_model)
except ImportError:
raise ImportError(
"Please install sentencepiece with: pip install sentencepiece"
)
def encode(self, x: str) -> str:
return " ".join(
self.sp.Encode(
x, out_type=str, enable_sampling=self.enable_sampling, alpha=self.alpha
)
)
def decode(self, x: str) -> str:
return x.replace(" ", "").replace("\u2581", " ").strip()
def is_beginning_of_word(self, x: str) -> bool:
if x in ["<unk>", "<s>", "</s>", "<pad>"]:
# special elements are always considered beginnings
# HACK: this logic is already present in fairseq/tasks/masked_lm.py
# but these special tokens are also contained in the sentencepiece
# vocabulary which causes duplicate special tokens. This hack makes
# sure that they are all taken into account.
return True
return x.startswith("\u2581")
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/sentencepiece_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class fastBPEConfig(FairseqDataclass):
bpe_codes: str = field(default="???", metadata={"help": "path to fastBPE BPE"})
@register_bpe("fastbpe", dataclass=fastBPEConfig)
class fastBPE(object):
def __init__(self, cfg):
if cfg.bpe_codes is None:
raise ValueError("--bpe-codes is required for --bpe=fastbpe")
codes = file_utils.cached_path(cfg.bpe_codes)
try:
import fastBPE
self.bpe = fastBPE.fastBPE(codes)
self.bpe_symbol = "@@ "
except ImportError:
raise ImportError("Please install fastBPE with: pip install fastBPE")
def encode(self, x: str) -> str:
return self.bpe.apply([x])[0]
def decode(self, x: str) -> str:
return (x + " ").replace(self.bpe_symbol, "").rstrip()
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/fastbpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_tokenizer
from fairseq.dataclass import FairseqDataclass
@register_tokenizer("nltk", dataclass=FairseqDataclass)
class NLTKTokenizer(object):
def __init__(self, *unused):
try:
from nltk.tokenize import word_tokenize
self.word_tokenize = word_tokenize
except ImportError:
raise ImportError("Please install nltk with: pip install nltk")
def encode(self, x: str) -> str:
return " ".join(self.word_tokenize(x))
def decode(self, x: str) -> str:
return x
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/nltk_tokenizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
from .gpt2_bpe_utils import get_encoder
DEFAULT_ENCODER_JSON = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json"
DEFAULT_VOCAB_BPE = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe"
@dataclass
class GPT2BPEConfig(FairseqDataclass):
gpt2_encoder_json: str = field(
default=DEFAULT_ENCODER_JSON, metadata={"help": "path to encoder.json"}
)
gpt2_vocab_bpe: str = field(
default=DEFAULT_VOCAB_BPE, metadata={"help": "path to vocab.bpe"}
)
@register_bpe("gpt2", dataclass=GPT2BPEConfig)
class GPT2BPE(object):
def __init__(self, cfg):
encoder_json = file_utils.cached_path(cfg.gpt2_encoder_json)
vocab_bpe = file_utils.cached_path(cfg.gpt2_vocab_bpe)
self.bpe = get_encoder(encoder_json, vocab_bpe)
def encode(self, x: str) -> str:
return " ".join(map(str, self.bpe.encode(x)))
def decode(self, x: str) -> str:
return self.bpe.decode(
[int(tok) if tok not in {"<unk>", "<mask>"} else tok for tok in x.split()]
)
def is_beginning_of_word(self, x: str) -> bool:
return self.decode(x).startswith(" ")
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/gpt2_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class SubwordNMTBPEConfig(FairseqDataclass):
bpe_codes: str = field(default="???", metadata={"help": "path to subword NMT BPE"})
bpe_separator: str = field(default="@@", metadata={"help": "BPE separator"})
@register_bpe("subword_nmt", dataclass=SubwordNMTBPEConfig)
class SubwordNMTBPE(object):
def __init__(self, cfg):
if cfg.bpe_codes is None:
raise ValueError("--bpe-codes is required for --bpe=subword_nmt")
codes = file_utils.cached_path(cfg.bpe_codes)
try:
from subword_nmt import apply_bpe
bpe_parser = apply_bpe.create_parser()
bpe_args = bpe_parser.parse_args(
[
"--codes",
codes,
"--separator",
cfg.bpe_separator,
]
)
self.bpe = apply_bpe.BPE(
bpe_args.codes,
bpe_args.merges,
bpe_args.separator,
None,
bpe_args.glossaries,
)
self.bpe_symbol = bpe_args.separator + " "
except ImportError:
raise ImportError(
"Please install subword_nmt with: pip install subword-nmt"
)
def encode(self, x: str) -> str:
return self.bpe.process_line(x)
def decode(self, x: str) -> str:
return (x + " ").replace(self.bpe_symbol, "").rstrip()
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/subword_nmt_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
from fairseq import file_utils
@dataclass
class HuggingFaceByteLevelBPEConfig(FairseqDataclass):
bpe_merges: str = field(default="???", metadata={"help": "path to merges.txt"})
bpe_vocab: str = field(default="???", metadata={"help": "path to vocab.json"})
bpe_add_prefix_space: bool = field(
default=False, metadata={"help": "add prefix space before encoding"}
)
@register_bpe("hf_byte_bpe", dataclass=HuggingFaceByteLevelBPEConfig)
class HuggingFaceByteLevelBPE(object):
def __init__(self, cfg):
try:
from tokenizers import ByteLevelBPETokenizer
except ImportError:
raise ImportError(
"Please install huggingface/tokenizers with: " "pip install tokenizers"
)
bpe_vocab = file_utils.cached_path(cfg.bpe_vocab)
bpe_merges = file_utils.cached_path(cfg.bpe_merges)
self.bpe = ByteLevelBPETokenizer(
bpe_vocab,
bpe_merges,
add_prefix_space=cfg.bpe_add_prefix_space,
)
def encode(self, x: str) -> str:
return " ".join(map(str, self.bpe.encode(x).ids))
def decode(self, x: str) -> str:
return self.bpe.decode(
[int(tok) if tok not in {"<unk>", "<mask>"} else tok for tok in x.split()]
)
def is_beginning_of_word(self, x: str) -> bool:
return self.decode(x).startswith(" ")
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/hf_byte_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import importlib
import os
from fairseq import registry
build_tokenizer, register_tokenizer, TOKENIZER_REGISTRY, _ = registry.setup_registry(
"--tokenizer",
default=None,
)
build_bpe, register_bpe, BPE_REGISTRY, _ = registry.setup_registry(
"--bpe",
default=None,
)
# automatically import any Python files in the encoders/ directory
for file in sorted(os.listdir(os.path.dirname(__file__))):
if file.endswith(".py") and not file.startswith("_"):
module = file[: file.find(".py")]
importlib.import_module("fairseq.data.encoders." + module)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class BertBPEConfig(FairseqDataclass):
bpe_cased: bool = field(default=False, metadata={"help": "set for cased BPE"})
bpe_vocab_file: Optional[str] = field(
default=None, metadata={"help": "bpe vocab file"}
)
@register_bpe("bert", dataclass=BertBPEConfig)
class BertBPE(object):
def __init__(self, cfg):
try:
from transformers import BertTokenizer
except ImportError:
raise ImportError(
"Please install transformers with: pip install transformers"
)
if cfg.bpe_vocab_file:
self.bert_tokenizer = BertTokenizer(
cfg.bpe_vocab_file, do_lower_case=not cfg.bpe_cased
)
else:
vocab_file_name = (
"bert-base-cased" if cfg.bpe_cased else "bert-base-uncased"
)
self.bert_tokenizer = BertTokenizer.from_pretrained(vocab_file_name)
def encode(self, x: str) -> str:
return " ".join(self.bert_tokenizer.tokenize(x))
def decode(self, x: str) -> str:
return self.bert_tokenizer.clean_up_tokenization(
self.bert_tokenizer.convert_tokens_to_string(x.split(" "))
)
def is_beginning_of_word(self, x: str) -> bool:
return not x.startswith("##")
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/hf_bert_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.data.encoders.byte_utils import (
SPACE,
SPACE_ESCAPE,
byte_encode,
smart_byte_decode,
)
from fairseq.dataclass import FairseqDataclass
@dataclass
class ByteBpeConfig(FairseqDataclass):
sentencepiece_model_path: str = field(
default="???", metadata={"help": "path to sentencepiece model"}
)
@register_bpe("byte_bpe", dataclass=ByteBpeConfig)
class ByteBPE(object):
def __init__(self, cfg):
vocab = file_utils.cached_path(cfg.sentencepiece_model_path)
try:
import sentencepiece as spm
self.sp = spm.SentencePieceProcessor()
self.sp.Load(vocab)
except ImportError:
raise ImportError(
"Please install sentencepiece with: pip install sentencepiece"
)
def encode(self, x: str) -> str:
byte_encoded = byte_encode(x)
return SPACE.join(self.sp.EncodeAsPieces(byte_encoded))
@staticmethod
def decode(x: str) -> str:
unescaped = x.replace(SPACE, "").replace(SPACE_ESCAPE, SPACE)
return smart_byte_decode(unescaped)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/byte_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.data import encoders
def get_whole_word_mask(args, dictionary):
bpe = encoders.build_bpe(args)
if bpe is not None:
def is_beginning_of_word(i):
if i < dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = dictionary[i]
if tok.startswith("madeupword"):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
mask_whole_words = torch.ByteTensor(
list(map(is_beginning_of_word, range(len(dictionary))))
)
return mask_whole_words
return None
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
from fairseq.data.encoders import register_tokenizer
from fairseq.dataclass import FairseqDataclass
@register_tokenizer("space", dataclass=FairseqDataclass)
class SpaceTokenizer(object):
def __init__(self, *unused):
self.space_tok = re.compile(r"\s+")
def encode(self, x: str) -> str:
return self.space_tok.sub(" ", x)
def decode(self, x: str) -> str:
return x
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/space_tokenizer.py |
"""
Byte pair encoding utilities from GPT-2.
Original source: https://github.com/openai/gpt-2/blob/master/src/encoder.py
Original license: MIT
"""
import json
from functools import lru_cache
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class Encoder:
def __init__(self, encoder, bpe_merges, errors="replace"):
self.encoder = encoder
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
try:
import regex as re
self.re = re
except ImportError:
raise ImportError("Please install regex with: pip install regex")
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = self.re.compile(
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
for token in self.re.findall(self.pat, text):
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
bpe_tokens.extend(
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
)
return bpe_tokens
def decode(self, tokens):
text = "".join([self.decoder.get(token, token) for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode(
"utf-8", errors=self.errors
)
return text
def get_encoder(encoder_json_path, vocab_bpe_path):
with open(encoder_json_path, "r") as f:
encoder = json.load(f)
with open(vocab_bpe_path, "r", encoding="utf-8") as f:
bpe_data = f.read()
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split("\n")[1:-1]]
return Encoder(
encoder=encoder,
bpe_merges=bpe_merges,
)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/gpt2_bpe_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq.data.encoders import register_tokenizer
from fairseq.dataclass import FairseqDataclass
@dataclass
class MosesTokenizerConfig(FairseqDataclass):
source_lang: str = field(default="en", metadata={"help": "source language"})
target_lang: str = field(default="en", metadata={"help": "target language"})
moses_no_dash_splits: bool = field(
default=False, metadata={"help": "don't apply dash split rules"}
)
moses_no_escape: bool = field(
default=False,
metadata={"help": "don't perform HTML escaping on apostrophe, quotes, etc."},
)
@register_tokenizer("moses", dataclass=MosesTokenizerConfig)
class MosesTokenizer(object):
def __init__(self, cfg: MosesTokenizerConfig):
self.cfg = cfg
try:
from sacremoses import MosesTokenizer, MosesDetokenizer
self.tok = MosesTokenizer(cfg.source_lang)
self.detok = MosesDetokenizer(cfg.target_lang)
except ImportError:
raise ImportError(
"Please install Moses tokenizer with: pip install sacremoses"
)
def encode(self, x: str) -> str:
return self.tok.tokenize(
x,
aggressive_dash_splits=(not self.cfg.moses_no_dash_splits),
return_str=True,
escape=(not self.cfg.moses_no_escape),
)
def decode(self, x: str) -> str:
return self.detok.detokenize(x.split())
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/moses_tokenizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_bpe
SPACE = chr(32)
SPACE_ESCAPE = chr(9601)
@register_bpe("characters")
class Characters(object):
def __init__(self, *unused):
pass
@staticmethod
def add_args(parser):
pass
@staticmethod
def encode(x: str) -> str:
escaped = x.replace(SPACE, SPACE_ESCAPE)
return SPACE.join(list(escaped))
@staticmethod
def decode(x: str) -> str:
return x.replace(SPACE, "").replace(SPACE_ESCAPE, SPACE)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/characters.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_bpe
from fairseq.data.encoders.byte_utils import (
SPACE,
SPACE_ESCAPE,
byte_encode,
smart_byte_decode,
)
@register_bpe("bytes")
class Bytes(object):
def __init__(self, *unused):
pass
@staticmethod
def add_args(parser):
pass
@staticmethod
def encode(x: str) -> str:
encoded = byte_encode(x)
escaped = encoded.replace(SPACE, SPACE_ESCAPE)
return SPACE.join(list(escaped))
@staticmethod
def decode(x: str) -> str:
unescaped = x.replace(SPACE, "").replace(SPACE_ESCAPE, SPACE)
return smart_byte_decode(unescaped)
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/bytes.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
WHITESPACE_NORMALIZER = re.compile(r"\s+")
SPACE = chr(32)
SPACE_ESCAPE = chr(9601)
# excluding non-breaking space (160) here
PRINTABLE_LATIN = set(
list(range(32, 126 + 1)) + list(range(161, 172 + 1)) + list(range(174, 255 + 1))
)
BYTE_TO_BCHAR = {
b: chr(b) if b in PRINTABLE_LATIN else chr(256 + b) for b in range(256)
}
BCHAR_TO_BYTE = {bc: b for b, bc in BYTE_TO_BCHAR.items()}
def byte_encode(x: str) -> str:
normalized = WHITESPACE_NORMALIZER.sub(SPACE, x)
return "".join([BYTE_TO_BCHAR[b] for b in normalized.encode("utf-8")])
def byte_decode(x: str) -> str:
try:
return bytes([BCHAR_TO_BYTE[bc] for bc in x]).decode("utf-8")
except ValueError:
return ""
def smart_byte_decode(x: str) -> str:
output = byte_decode(x)
if output == "":
# DP the best recovery (max valid chars) if it's broken
n_bytes = len(x)
f = [0 for _ in range(n_bytes + 1)]
pt = [0 for _ in range(n_bytes + 1)]
for i in range(1, n_bytes + 1):
f[i], pt[i] = f[i - 1], i - 1
for j in range(1, min(4, i) + 1):
if f[i - j] + 1 > f[i] and len(byte_decode(x[i - j : i])) > 0:
f[i], pt[i] = f[i - j] + 1, i - j
cur_pt = n_bytes
while cur_pt > 0:
if f[cur_pt] == f[pt[cur_pt]] + 1:
output = byte_decode(x[pt[cur_pt] : cur_pt]) + output
cur_pt = pt[cur_pt]
return output
| KosmosX-API-main | kosmosX/fairseq/fairseq/data/encoders/byte_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
A standalone module for aggregating metrics.
Metrics can be logged from anywhere using the `log_*` functions defined
in this module. The logged values will be aggregated dynamically based
on the aggregation context in which the logging occurs. See the
:func:`aggregate` context manager for more details.
"""
import contextlib
import uuid
from collections import defaultdict
from typing import Callable, List, Optional
from .meters import *
# Aggregation contexts are considered "active" when inside the scope
# created by the :func:`aggregate` context manager.
_aggregators = OrderedDict()
_active_aggregators = OrderedDict()
_active_aggregators_cnt = defaultdict(lambda: 0)
def reset() -> None:
"""Reset all metrics aggregators."""
_aggregators.clear()
_active_aggregators.clear()
_active_aggregators_cnt.clear()
# The "default" aggregator observes all logged values.
_aggregators["default"] = MetersDict()
_active_aggregators["default"] = _aggregators["default"]
_active_aggregators_cnt["default"] = 1
reset()
@contextlib.contextmanager
def aggregate(name: Optional[str] = None, new_root: bool = False):
"""Context manager to aggregate metrics under a given name.
Aggregations can be nested. If *new_root* is ``False``, then logged
metrics will be recorded along the entire stack of nested
aggregators, including a global "default" aggregator. If *new_root*
is ``True``, then this aggregator will be the root of a new
aggregation stack, thus bypassing any parent aggregators.
Note that aggregation contexts are uniquely identified by their
*name* (e.g., train, valid). Creating a context with an existing
name will reuse the corresponding :class:`MetersDict` instance.
If no name is given, then a temporary aggregator will be created.
Usage::
with metrics.aggregate("train"):
for step, batch in enumerate(epoch):
with metrics.aggregate("train_inner") as agg:
metrics.log_scalar("loss", get_loss(batch))
if step % log_interval == 0:
print(agg.get_smoothed_value("loss"))
agg.reset()
print(metrics.get_smoothed_values("train")["loss"])
Args:
name (str): name of the aggregation. Defaults to a
random/temporary name if not given explicitly.
new_root (bool): make this aggregation the root of a new
aggregation stack.
"""
if name is None:
# generate a temporary name
name = str(uuid.uuid4())
assert name not in _aggregators
agg = MetersDict()
else:
assert name != "default"
agg = _aggregators.setdefault(name, MetersDict())
if new_root:
backup_aggregators = _active_aggregators.copy()
_active_aggregators.clear()
backup_aggregators_cnt = _active_aggregators_cnt.copy()
_active_aggregators_cnt.clear()
_active_aggregators[name] = agg
_active_aggregators_cnt[name] += 1
yield agg
_active_aggregators_cnt[name] -= 1
if _active_aggregators_cnt[name] == 0 and name in _active_aggregators:
del _active_aggregators[name]
if new_root:
_active_aggregators.clear()
_active_aggregators.update(backup_aggregators)
_active_aggregators_cnt.clear()
_active_aggregators_cnt.update(backup_aggregators_cnt)
def get_active_aggregators() -> List[MetersDict]:
return list(_active_aggregators.values())
def log_scalar(
key: str,
value: float,
weight: float = 1,
priority: int = 10,
round: Optional[int] = None,
):
"""Log a scalar value.
Args:
key (str): name of the field to log
value (float): value to log
weight (float): weight that this value contributes to the average.
A weight of 0 will always log the latest value.
priority (int): smaller values are logged earlier in the output
round (Optional[int]): number of digits to round to when displaying
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, AverageMeter(round=round), priority)
agg[key].update(value, weight)
def log_scalar_sum(
key: str,
value: float,
priority: int = 10,
round: Optional[int] = None,
):
"""Log a scalar value that is summed for reporting.
Args:
key (str): name of the field to log
value (float): value to log
priority (int): smaller values are logged earlier in the output
round (Optional[int]): number of digits to round to when displaying
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, SumMeter(round=round), priority)
agg[key].update(value)
def log_derived(key: str, fn: Callable[[MetersDict], float], priority: int = 20):
"""Log a scalar value derived from other meters.
Args:
key (str): name of the field to log
fn (Callable[[MetersDict], float]): function that takes a single
argument *meters* and returns the derived value
priority (int): smaller values are logged earlier in the output
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, MetersDict._DerivedMeter(fn), priority)
def log_speed(
key: str,
value: float,
priority: int = 30,
round: Optional[int] = None,
):
"""Log the rate of some quantity per second.
Args:
key (str): name of the field to log
value (float): value to log
priority (int): smaller values are logged earlier in the output
round (Optional[int]): number of digits to round to when displaying
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, TimeMeter(round=round), priority)
agg[key].reset() # reset meter on the first call
else:
agg[key].update(value)
def log_start_time(key: str, priority: int = 40, round: Optional[int] = None):
"""Log the duration of some event in seconds.
The duration will be computed once :func:`log_stop_time` is called.
Args:
key (str): name of the field to log
priority (int): smaller values are logged earlier in the output
round (Optional[int]): number of digits to round to when displaying
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, StopwatchMeter(round=round), priority)
agg[key].start()
def log_stop_time(key: str, weight: float = 0.0, prehook=None):
"""Log the duration of some event in seconds.
The duration will be computed since :func:`log_start_time` was called.
Set weight > 0 to report the average time instead of the sum.
Args:
key (str): name of the field to log
weight (float): weight that this time contributes to the average
prehook (function, no arguments): will be called before the timer
is stopped. For example, use prehook=torch.cuda.synchronize to
make sure all gpu operations are done before timer is stopped.
"""
for agg in get_active_aggregators():
if key in agg:
agg[key].stop(weight, prehook)
def log_custom(
new_meter_fn: Callable[[], Meter],
key: str,
*args,
priority: int = 50,
**kwargs,
):
"""Log using a custom Meter.
Any extra *args* or *kwargs* will be passed through to the Meter's
*update* method.
Args:
new_meter_fn (Callable[[], Meter]): function that returns a new
Meter instance
key (str): name of the field to log
priority (int): smaller values are logged earlier in the output
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, new_meter_fn(), priority)
agg[key].update(*args, **kwargs)
def reset_meter(name: str, key: str) -> None:
"""Reset Meter instance aggregated under a given *name* and *key*."""
meter = get_meter(name, key)
if meter is not None:
meter.reset()
def reset_meters(name: str) -> None:
"""Reset Meter instances aggregated under a given *name*."""
meters = get_meters(name)
if meters is not None:
meters.reset()
def get_meter(name: str, key: str) -> Meter:
"""Get a single Meter instance aggregated under *name* and *key*.
Returns:
Meter or None if no metrics have been logged under *name* and *key*.
"""
if name not in _aggregators:
return None
return _aggregators[name].get(key, None)
def get_meters(name: str) -> MetersDict:
"""Get Meter instances aggregated under a given *name*.
Returns:
MetersDict or None if no metrics have been logged under *name*.
"""
return _aggregators.get(name, None)
def get_smoothed_value(name: str, key: str) -> float:
"""Get a single smoothed value.
Raises:
KeyError: if no metrics have been logged under *name* and *key*.
"""
return _aggregators[name].get_smoothed_value(key)
def get_smoothed_values(name: str) -> Dict[str, float]:
"""Get smoothed values aggregated under a given *name*.
Raises:
KeyError: if no metrics have been logged under *name*.
"""
return _aggregators[name].get_smoothed_values()
def state_dict():
return OrderedDict([(name, agg.state_dict()) for name, agg in _aggregators.items()])
def load_state_dict(state_dict):
for name, agg_state in state_dict.items():
_aggregators[name] = MetersDict()
_aggregators[name].load_state_dict(agg_state)
def xla_metrics_report():
try:
import torch_xla.debug.metrics as met
print(met.metrics_report())
except ImportError:
return
| KosmosX-API-main | kosmosX/fairseq/fairseq/logging/metrics.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import bisect
import time
from collections import OrderedDict
from typing import Dict, Optional
try:
import torch
def type_as(a, b):
if torch.is_tensor(a) and torch.is_tensor(b):
return a.to(b)
else:
return a
except ImportError:
torch = None
def type_as(a, b):
return a
try:
import numpy as np
except ImportError:
np = None
class Meter(object):
"""Base class for Meters."""
def __init__(self):
pass
def state_dict(self):
return {}
def load_state_dict(self, state_dict):
pass
def reset(self):
raise NotImplementedError
@property
def smoothed_value(self) -> float:
"""Smoothed value used for logging."""
raise NotImplementedError
def safe_round(number, ndigits):
if hasattr(number, "__round__"):
return round(number, ndigits)
elif torch is not None and torch.is_tensor(number) and number.numel() == 1:
return safe_round(number.item(), ndigits)
elif np is not None and np.ndim(number) == 0 and hasattr(number, "item"):
return safe_round(number.item(), ndigits)
else:
return number
class AverageMeter(Meter):
"""Computes and stores the average and current value"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.reset()
def reset(self):
self.val = None # most recent update
self.sum = 0 # sum from all updates
self.count = 0 # total n from all updates
def update(self, val, n=1):
if val is not None:
self.val = val
if n > 0:
self.sum = type_as(self.sum, val) + (val * n)
self.count = type_as(self.count, n) + n
def state_dict(self):
return {
"val": self.val,
"sum": self.sum,
"count": self.count,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.val = state_dict["val"]
self.sum = state_dict["sum"]
self.count = state_dict["count"]
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.sum / self.count if self.count > 0 else self.val
@property
def smoothed_value(self) -> float:
val = self.avg
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class SumMeter(Meter):
"""Computes and stores the sum"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.reset()
def reset(self):
self.sum = 0 # sum from all updates
def update(self, val):
if val is not None:
self.sum = type_as(self.sum, val) + val
def state_dict(self):
return {
"sum": self.sum,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.sum = state_dict["sum"]
self.round = state_dict.get("round", None)
@property
def smoothed_value(self) -> float:
val = self.sum
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class TimeMeter(Meter):
"""Computes the average occurrence of some event per second"""
def __init__(
self,
init: int = 0,
n: int = 0,
round: Optional[int] = None,
):
self.round = round
self.reset(init, n)
def reset(self, init=0, n=0):
self.init = init
self.start = time.perf_counter()
self.n = n
self.i = 0
def update(self, val=1):
self.n = type_as(self.n, val) + val
self.i += 1
def state_dict(self):
return {
"init": self.elapsed_time,
"n": self.n,
"round": self.round,
}
def load_state_dict(self, state_dict):
if "start" in state_dict:
# backwards compatibility for old state_dicts
self.reset(init=state_dict["init"])
else:
self.reset(init=state_dict["init"], n=state_dict["n"])
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.n / self.elapsed_time
@property
def elapsed_time(self):
return self.init + (time.perf_counter() - self.start)
@property
def smoothed_value(self) -> float:
val = self.avg
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class StopwatchMeter(Meter):
"""Computes the sum/avg duration of some event in seconds"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.sum = 0
self.n = 0
self.start_time = None
def start(self):
self.start_time = time.perf_counter()
def stop(self, n=1, prehook=None):
if self.start_time is not None:
if prehook is not None:
prehook()
delta = time.perf_counter() - self.start_time
self.sum = self.sum + delta
self.n = type_as(self.n, n) + n
def reset(self):
self.sum = 0 # cumulative time during which stopwatch was active
self.n = 0 # total n across all start/stop
self.start()
def state_dict(self):
return {
"sum": self.sum,
"n": self.n,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.sum = state_dict["sum"]
self.n = state_dict["n"]
self.start_time = None
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.sum / self.n if self.n > 0 else self.sum
@property
def elapsed_time(self):
if self.start_time is None:
return 0.0
return time.perf_counter() - self.start_time
@property
def smoothed_value(self) -> float:
val = self.avg if self.sum > 0 else self.elapsed_time
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class MetersDict(OrderedDict):
"""A sorted dictionary of :class:`Meters`.
Meters are sorted according to a priority that is given when the
meter is first added to the dictionary.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.priorities = []
def __setitem__(self, key, value):
assert key not in self, "MetersDict doesn't support reassignment"
priority, value = value
bisect.insort(self.priorities, (priority, len(self.priorities), key))
super().__setitem__(key, value)
for _, _, key in self.priorities: # reorder dict to match priorities
self.move_to_end(key)
def add_meter(self, key, meter, priority):
self.__setitem__(key, (priority, meter))
def state_dict(self):
return [
(pri, key, self[key].__class__.__name__, self[key].state_dict())
for pri, _, key in self.priorities
# can't serialize DerivedMeter instances
if not isinstance(self[key], MetersDict._DerivedMeter)
]
def load_state_dict(self, state_dict):
self.clear()
self.priorities.clear()
for pri, key, meter_cls, meter_state in state_dict:
meter = globals()[meter_cls]()
meter.load_state_dict(meter_state)
self.add_meter(key, meter, pri)
def get_smoothed_value(self, key: str) -> float:
"""Get a single smoothed value."""
meter = self[key]
if isinstance(meter, MetersDict._DerivedMeter):
return meter.fn(self)
else:
return meter.smoothed_value
def get_smoothed_values(self) -> Dict[str, float]:
"""Get all smoothed values."""
return OrderedDict(
[
(key, self.get_smoothed_value(key))
for key in self.keys()
if not key.startswith("_")
]
)
def reset(self):
"""Reset Meter instances."""
for meter in self.values():
if isinstance(meter, MetersDict._DerivedMeter):
continue
meter.reset()
class _DerivedMeter(Meter):
"""A Meter whose values are derived from other Meters."""
def __init__(self, fn):
self.fn = fn
def reset(self):
pass
| KosmosX-API-main | kosmosX/fairseq/fairseq/logging/meters.py |
KosmosX-API-main | kosmosX/fairseq/fairseq/logging/__init__.py |
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Wrapper around various loggers and progress bars (e.g., tqdm).
"""
import atexit
import json
import logging
import os
import sys
from collections import OrderedDict
from contextlib import contextmanager
from numbers import Number
from typing import Optional
import torch
from .meters import AverageMeter, StopwatchMeter, TimeMeter
logger = logging.getLogger(__name__)
def progress_bar(
iterator,
log_format: Optional[str] = None,
log_interval: int = 100,
log_file: Optional[str] = None,
epoch: Optional[int] = None,
prefix: Optional[str] = None,
tensorboard_logdir: Optional[str] = None,
default_log_format: str = "tqdm",
wandb_project: Optional[str] = None,
wandb_run_name: Optional[str] = None,
azureml_logging: Optional[bool] = False,
):
if log_format is None:
log_format = default_log_format
if log_file is not None:
handler = logging.FileHandler(filename=log_file)
logger.addHandler(handler)
if log_format == "tqdm" and not sys.stderr.isatty():
log_format = "simple"
if log_format == "json":
bar = JsonProgressBar(iterator, epoch, prefix, log_interval)
elif log_format == "none":
bar = NoopProgressBar(iterator, epoch, prefix)
elif log_format == "simple":
bar = SimpleProgressBar(iterator, epoch, prefix, log_interval)
elif log_format == "tqdm":
bar = TqdmProgressBar(iterator, epoch, prefix)
else:
raise ValueError("Unknown log format: {}".format(log_format))
if tensorboard_logdir:
try:
# [FB only] custom wrapper for TensorBoard
import palaas # noqa
from .fb_tbmf_wrapper import FbTbmfWrapper
bar = FbTbmfWrapper(bar, log_interval)
except ImportError:
bar = TensorboardProgressBarWrapper(bar, tensorboard_logdir)
if wandb_project:
bar = WandBProgressBarWrapper(bar, wandb_project, run_name=wandb_run_name)
if azureml_logging:
bar = AzureMLProgressBarWrapper(bar)
return bar
def build_progress_bar(
args,
iterator,
epoch: Optional[int] = None,
prefix: Optional[str] = None,
default: str = "tqdm",
no_progress_bar: str = "none",
):
"""Legacy wrapper that takes an argparse.Namespace."""
if getattr(args, "no_progress_bar", False):
default = no_progress_bar
if getattr(args, "distributed_rank", 0) == 0:
tensorboard_logdir = getattr(args, "tensorboard_logdir", None)
else:
tensorboard_logdir = None
return progress_bar(
iterator,
log_format=args.log_format,
log_interval=args.log_interval,
epoch=epoch,
prefix=prefix,
tensorboard_logdir=tensorboard_logdir,
default_log_format=default,
)
def format_stat(stat):
if isinstance(stat, Number):
stat = "{:g}".format(stat)
elif isinstance(stat, AverageMeter):
stat = "{:.3f}".format(stat.avg)
elif isinstance(stat, TimeMeter):
stat = "{:g}".format(round(stat.avg))
elif isinstance(stat, StopwatchMeter):
stat = "{:g}".format(round(stat.sum))
elif torch.is_tensor(stat):
stat = stat.tolist()
return stat
class BaseProgressBar(object):
"""Abstract class for progress bars."""
def __init__(self, iterable, epoch=None, prefix=None):
self.iterable = iterable
self.n = getattr(iterable, "n", 0)
self.epoch = epoch
self.prefix = ""
if epoch is not None:
self.prefix += "epoch {:03d}".format(epoch)
if prefix is not None:
self.prefix += (" | " if self.prefix != "" else "") + prefix
def __len__(self):
return len(self.iterable)
def __enter__(self):
return self
def __exit__(self, *exc):
return False
def __iter__(self):
raise NotImplementedError
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
raise NotImplementedError
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
raise NotImplementedError
def update_config(self, config):
"""Log latest configuration."""
pass
def _str_commas(self, stats):
return ", ".join(key + "=" + stats[key].strip() for key in stats.keys())
def _str_pipes(self, stats):
return " | ".join(key + " " + stats[key].strip() for key in stats.keys())
def _format_stats(self, stats):
postfix = OrderedDict(stats)
# Preprocess stats according to datatype
for key in postfix.keys():
postfix[key] = str(format_stat(postfix[key]))
return postfix
@contextmanager
def rename_logger(logger, new_name):
old_name = logger.name
if new_name is not None:
logger.name = new_name
yield logger
logger.name = old_name
class JsonProgressBar(BaseProgressBar):
"""Log output in JSON format."""
def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000):
super().__init__(iterable, epoch, prefix)
self.log_interval = log_interval
self.i = None
self.size = None
def __iter__(self):
self.size = len(self.iterable)
for i, obj in enumerate(self.iterable, start=self.n):
self.i = i
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
step = step or self.i or 0
if step > 0 and self.log_interval is not None and step % self.log_interval == 0:
update = (
self.epoch - 1 + (self.i + 1) / float(self.size)
if self.epoch is not None
else None
)
stats = self._format_stats(stats, epoch=self.epoch, update=update)
with rename_logger(logger, tag):
logger.info(json.dumps(stats))
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self.stats = stats
if tag is not None:
self.stats = OrderedDict(
[(tag + "_" + k, v) for k, v in self.stats.items()]
)
stats = self._format_stats(self.stats, epoch=self.epoch)
with rename_logger(logger, tag):
logger.info(json.dumps(stats))
def _format_stats(self, stats, epoch=None, update=None):
postfix = OrderedDict()
if epoch is not None:
postfix["epoch"] = epoch
if update is not None:
postfix["update"] = round(update, 3)
# Preprocess stats according to datatype
for key in stats.keys():
postfix[key] = format_stat(stats[key])
return postfix
class NoopProgressBar(BaseProgressBar):
"""No logging."""
def __init__(self, iterable, epoch=None, prefix=None):
super().__init__(iterable, epoch, prefix)
def __iter__(self):
for obj in self.iterable:
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
pass
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
pass
class SimpleProgressBar(BaseProgressBar):
"""A minimal logger for non-TTY environments."""
def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000):
super().__init__(iterable, epoch, prefix)
self.log_interval = log_interval
self.i = None
self.size = None
def __iter__(self):
self.size = len(self.iterable)
for i, obj in enumerate(self.iterable, start=self.n):
self.i = i
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
step = step or self.i or 0
if step > 0 and self.log_interval is not None and step % self.log_interval == 0:
stats = self._format_stats(stats)
postfix = self._str_commas(stats)
with rename_logger(logger, tag):
logger.info(
"{}: {:5d} / {:d} {}".format(
self.prefix, self.i + 1, self.size, postfix
)
)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
postfix = self._str_pipes(self._format_stats(stats))
with rename_logger(logger, tag):
logger.info("{} | {}".format(self.prefix, postfix))
class TqdmProgressBar(BaseProgressBar):
"""Log to tqdm."""
def __init__(self, iterable, epoch=None, prefix=None):
super().__init__(iterable, epoch, prefix)
from tqdm import tqdm
self.tqdm = tqdm(
iterable,
self.prefix,
leave=False,
disable=(logger.getEffectiveLevel() > logging.INFO),
)
def __iter__(self):
return iter(self.tqdm)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
self.tqdm.set_postfix(self._format_stats(stats), refresh=False)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
postfix = self._str_pipes(self._format_stats(stats))
with rename_logger(logger, tag):
logger.info("{} | {}".format(self.prefix, postfix))
try:
_tensorboard_writers = {}
from torch.utils.tensorboard import SummaryWriter
except ImportError:
try:
from tensorboardX import SummaryWriter
except ImportError:
SummaryWriter = None
def _close_writers():
for w in _tensorboard_writers.values():
w.close()
atexit.register(_close_writers)
class TensorboardProgressBarWrapper(BaseProgressBar):
"""Log to tensorboard."""
def __init__(self, wrapped_bar, tensorboard_logdir):
self.wrapped_bar = wrapped_bar
self.tensorboard_logdir = tensorboard_logdir
if SummaryWriter is None:
logger.warning(
"tensorboard not found, please install with: pip install tensorboard"
)
def _writer(self, key):
if SummaryWriter is None:
return None
_writers = _tensorboard_writers
if key not in _writers:
_writers[key] = SummaryWriter(os.path.join(self.tensorboard_logdir, key))
_writers[key].add_text("sys.argv", " ".join(sys.argv))
return _writers[key]
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to tensorboard."""
self._log_to_tensorboard(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self._log_to_tensorboard(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def update_config(self, config):
"""Log latest configuration."""
# TODO add hparams to Tensorboard
self.wrapped_bar.update_config(config)
def _log_to_tensorboard(self, stats, tag=None, step=None):
writer = self._writer(tag or "")
if writer is None:
return
if step is None:
step = stats["num_updates"]
for key in stats.keys() - {"num_updates"}:
if isinstance(stats[key], AverageMeter):
writer.add_scalar(key, stats[key].val, step)
elif isinstance(stats[key], Number):
writer.add_scalar(key, stats[key], step)
elif torch.is_tensor(stats[key]) and stats[key].numel() == 1:
writer.add_scalar(key, stats[key].item(), step)
writer.flush()
try:
import wandb
except ImportError:
wandb = None
class WandBProgressBarWrapper(BaseProgressBar):
"""Log to Weights & Biases."""
def __init__(self, wrapped_bar, wandb_project, run_name=None):
self.wrapped_bar = wrapped_bar
if wandb is None:
logger.warning("wandb not found, pip install wandb")
return
# reinit=False to ensure if wandb.init() is called multiple times
# within one process it still references the same run
wandb.init(project=wandb_project, reinit=False, name=run_name)
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to tensorboard."""
self._log_to_wandb(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self._log_to_wandb(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def update_config(self, config):
"""Log latest configuration."""
if wandb is not None:
wandb.config.update(config)
self.wrapped_bar.update_config(config)
def _log_to_wandb(self, stats, tag=None, step=None):
if wandb is None:
return
if step is None:
step = stats["num_updates"]
prefix = "" if tag is None else tag + "/"
for key in stats.keys() - {"num_updates"}:
if isinstance(stats[key], AverageMeter):
wandb.log({prefix + key: stats[key].val}, step=step)
elif isinstance(stats[key], Number):
wandb.log({prefix + key: stats[key]}, step=step)
try:
from azureml.core import Run
except ImportError:
Run = None
class AzureMLProgressBarWrapper(BaseProgressBar):
"""Log to Azure ML"""
def __init__(self, wrapped_bar):
self.wrapped_bar = wrapped_bar
if Run is None:
logger.warning("azureml.core not found, pip install azureml-core")
return
self.run = Run.get_context()
def __exit__(self, *exc):
if Run is not None:
self.run.complete()
return False
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to AzureML"""
self._log_to_azureml(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats"""
self._log_to_azureml(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def update_config(self, config):
"""Log latest configuration."""
self.wrapped_bar.update_config(config)
def _log_to_azureml(self, stats, tag=None, step=None):
if Run is None:
return
if step is None:
step = stats["num_updates"]
prefix = "" if tag is None else tag + "/"
for key in stats.keys() - {"num_updates"}:
name = prefix + key
if isinstance(stats[key], AverageMeter):
self.run.log_row(name=name, **{"step": step, key: stats[key].val})
elif isinstance(stats[key], Number):
self.run.log_row(name=name, **{"step": step, key: stats[key]})
| KosmosX-API-main | kosmosX/fairseq/fairseq/logging/progress_bar.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import inspect
from typing import Any, Dict, List
from fairseq import metrics, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import gen_parser_from_dataclass
from torch.nn.modules.loss import _Loss
class FairseqCriterion(_Loss):
def __init__(self, task):
super().__init__()
self.task = task
if hasattr(task, "target_dictionary"):
tgt_dict = task.target_dictionary
self.padding_idx = tgt_dict.pad() if tgt_dict is not None else -100
@classmethod
def add_args(cls, parser):
"""Add criterion-specific arguments to the parser."""
dc = getattr(cls, "__dataclass", None)
if dc is not None:
gen_parser_from_dataclass(parser, dc())
@classmethod
def build_criterion(cls, cfg: FairseqDataclass, task):
"""Construct a criterion from command-line args."""
# arguments in the __init__.
init_args = {}
for p in inspect.signature(cls).parameters.values():
if (
p.kind == p.POSITIONAL_ONLY
or p.kind == p.VAR_POSITIONAL
or p.kind == p.VAR_KEYWORD
):
# we haven't implemented inference for these argument types,
# but PRs welcome :)
raise NotImplementedError("{} not supported".format(p.kind))
assert p.kind in {p.POSITIONAL_OR_KEYWORD, p.KEYWORD_ONLY}
if p.name == "task":
init_args["task"] = task
elif p.name == "cfg":
init_args["cfg"] = cfg
elif hasattr(cfg, p.name):
init_args[p.name] = getattr(cfg, p.name)
elif p.default != p.empty:
pass # we'll use the default value
else:
raise NotImplementedError(
"Unable to infer Criterion arguments, please implement "
"{}.build_criterion".format(cls.__name__)
)
return cls(**init_args)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
raise NotImplementedError
@staticmethod
def aggregate_logging_outputs(
logging_outputs: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Aggregate logging outputs from data parallel training."""
utils.deprecation_warning(
"The aggregate_logging_outputs API is deprecated. "
"Please use the reduce_metrics API instead."
)
raise NotImplementedError
@classmethod
def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None:
"""Aggregate logging outputs from data parallel training."""
utils.deprecation_warning(
"Criterions should implement the reduce_metrics API. "
"Falling back to deprecated aggregate_logging_outputs API."
)
agg_logging_outputs = cls.aggregate_logging_outputs(logging_outputs)
for k, v in agg_logging_outputs.items():
if k in {"nsentences", "ntokens", "sample_size"}:
continue
metrics.log_scalar(k, v)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False
class LegacyFairseqCriterion(FairseqCriterion):
def __init__(self, args, task):
super().__init__(task=task)
self.args = args
utils.deprecation_warning(
"Criterions should take explicit arguments instead of an "
"argparse.Namespace object, please update your criterion by "
"extending FairseqCriterion instead of LegacyFairseqCriterion."
)
@classmethod
def build_criterion(cls, args, task):
"""Construct a criterion from command-line args."""
return cls(args, task)
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/fairseq_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II
@dataclass
class CrossEntropyCriterionConfig(FairseqDataclass):
sentence_avg: bool = II("optimization.sentence_avg")
@register_criterion("cross_entropy", dataclass=CrossEntropyCriterionConfig)
class CrossEntropyCriterion(FairseqCriterion):
def __init__(self, task, sentence_avg):
super().__init__(task)
self.sentence_avg = sentence_avg
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"])
loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
}
return loss, sample_size, logging_output
def compute_loss(self, model, net_output, sample, reduce=True):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
lprobs = lprobs.view(-1, lprobs.size(-1))
target = model.get_targets(sample, net_output).view(-1)
loss = F.nll_loss(
lprobs,
target,
ignore_index=self.padding_idx,
reduction="sum" if reduce else "none",
)
return loss, loss
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
# we divide by log(2) to convert the loss from base e to base 2
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/cross_entropy.py |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
from typing import List, Dict, Any
from dataclasses import dataclass, field
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.data.data_utils import lengths_to_mask
from fairseq.models.fairseq_model import FairseqEncoderModel
@dataclass
class FastSpeech2CriterionConfig(FairseqDataclass):
ctc_weight: float = field(default=0.0, metadata={"help": "weight for CTC loss"})
@register_criterion("fastspeech2", dataclass=FastSpeech2CriterionConfig)
class FastSpeech2Loss(FairseqCriterion):
def __init__(self, task, ctc_weight):
super().__init__(task)
self.ctc_weight = ctc_weight
def forward(self, model: FairseqEncoderModel, sample, reduction="mean"):
src_tokens = sample["net_input"]["src_tokens"]
src_lens = sample["net_input"]["src_lengths"]
tgt_lens = sample["target_lengths"]
_feat_out, _feat_out_post, _, log_dur_out, pitch_out, energy_out = model(
src_tokens=src_tokens,
src_lengths=src_lens,
prev_output_tokens=sample["net_input"]["prev_output_tokens"],
incremental_state=None,
target_lengths=tgt_lens,
speaker=sample["speaker"],
durations=sample["durations"],
pitches=sample["pitches"],
energies=sample["energies"],
)
src_mask = lengths_to_mask(sample["net_input"]["src_lengths"])
tgt_mask = lengths_to_mask(sample["target_lengths"])
pitches, energies = sample["pitches"], sample["energies"]
pitch_out, pitches = pitch_out[src_mask], pitches[src_mask]
energy_out, energies = energy_out[src_mask], energies[src_mask]
feat_out, feat = _feat_out[tgt_mask], sample["target"][tgt_mask]
l1_loss = F.l1_loss(feat_out, feat, reduction=reduction)
if _feat_out_post is not None:
l1_loss += F.l1_loss(_feat_out_post[tgt_mask], feat, reduction=reduction)
pitch_loss = F.mse_loss(pitch_out, pitches, reduction=reduction)
energy_loss = F.mse_loss(energy_out, energies, reduction=reduction)
log_dur_out = log_dur_out[src_mask]
dur = sample["durations"].float()
dur = dur.half() if log_dur_out.type().endswith(".HalfTensor") else dur
log_dur = torch.log(dur + 1)[src_mask]
dur_loss = F.mse_loss(log_dur_out, log_dur, reduction=reduction)
ctc_loss = torch.tensor(0.0).type_as(l1_loss)
if self.ctc_weight > 0.0:
lprobs = model.get_normalized_probs((_feat_out,), log_probs=True)
lprobs = lprobs.transpose(0, 1) # T x B x C
src_mask = lengths_to_mask(src_lens)
src_tokens_flat = src_tokens.masked_select(src_mask)
ctc_loss = (
F.ctc_loss(
lprobs,
src_tokens_flat,
tgt_lens,
src_lens,
reduction=reduction,
zero_infinity=True,
)
* self.ctc_weight
)
loss = l1_loss + dur_loss + pitch_loss + energy_loss + ctc_loss
sample_size = sample["nsentences"]
logging_output = {
"loss": utils.item(loss.data),
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
"l1_loss": utils.item(l1_loss.data),
"dur_loss": utils.item(dur_loss.data),
"pitch_loss": utils.item(pitch_loss.data),
"energy_loss": utils.item(energy_loss.data),
"ctc_loss": utils.item(ctc_loss.data),
}
return loss, sample_size, logging_output
@classmethod
def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None:
ns = [log.get("sample_size", 0) for log in logging_outputs]
ntot = sum(ns)
ws = [n / (ntot + 1e-8) for n in ns]
for key in [
"loss",
"l1_loss",
"dur_loss",
"pitch_loss",
"energy_loss",
"ctc_loss",
]:
vals = [log.get(key, 0) for log in logging_outputs]
val = sum(val * w for val, w in zip(vals, ws))
metrics.log_scalar(key, val, ntot, round=3)
metrics.log_scalar("sample_size", ntot, len(logging_outputs))
# inference metrics
if "targ_frames" not in logging_outputs[0]:
return
n = sum(log.get("targ_frames", 0) for log in logging_outputs)
for key, new_key in [
("mcd_loss", "mcd_loss"),
("pred_frames", "pred_ratio"),
("nins", "ins_rate"),
("ndel", "del_rate"),
]:
val = sum(log.get(key, 0) for log in logging_outputs)
metrics.log_scalar(new_key, val / n, n, round=3)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
return False
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/fastspeech2_loss.py |
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import math
from argparse import Namespace
from dataclasses import dataclass, field
from omegaconf import II
from typing import Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.data.data_utils import post_process
from fairseq.tasks import FairseqTask
from fairseq.logging.meters import safe_round
@dataclass
class CtcCriterionConfig(FairseqDataclass):
zero_infinity: bool = field(
default=False,
metadata={"help": "zero inf loss when source length <= target length"},
)
sentence_avg: bool = II("optimization.sentence_avg")
post_process: str = field(
default="letter",
metadata={
"help": "how to post process predictions into words. can be letter, "
"wordpiece, BPE symbols, etc. "
"See fairseq.data.data_utils.post_process() for full list of options"
},
)
wer_kenlm_model: Optional[str] = field(
default=None,
metadata={
"help": "if this is provided, use kenlm to compute wer (along with other wer_* args)"
},
)
wer_lexicon: Optional[str] = field(
default=None,
metadata={"help": "lexicon to use with wer_kenlm_model"},
)
wer_lm_weight: float = field(
default=2.0,
metadata={"help": "lm weight to use with wer_kenlm_model"},
)
wer_word_score: float = field(
default=-1.0,
metadata={"help": "lm word score to use with wer_kenlm_model"},
)
wer_args: Optional[str] = field(
default=None,
metadata={
"help": "DEPRECATED: tuple of (wer_kenlm_model, wer_lexicon, wer_lm_weight, wer_word_score)"
},
)
@register_criterion("ctc", dataclass=CtcCriterionConfig)
class CtcCriterion(FairseqCriterion):
def __init__(self, cfg: CtcCriterionConfig, task: FairseqTask):
super().__init__(task)
self.blank_idx = (
task.target_dictionary.index(task.blank_symbol)
if hasattr(task, "blank_symbol")
else 0
)
self.pad_idx = task.target_dictionary.pad()
self.eos_idx = task.target_dictionary.eos()
self.post_process = cfg.post_process
if cfg.wer_args is not None:
(
cfg.wer_kenlm_model,
cfg.wer_lexicon,
cfg.wer_lm_weight,
cfg.wer_word_score,
) = eval(cfg.wer_args)
if cfg.wer_kenlm_model is not None and cfg.wer_kenlm_model != "":
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
dec_args = Namespace()
dec_args.nbest = 1
dec_args.criterion = "ctc"
dec_args.kenlm_model = cfg.wer_kenlm_model
dec_args.lexicon = cfg.wer_lexicon
dec_args.beam = 50
dec_args.beam_size_token = min(50, len(task.target_dictionary))
dec_args.beam_threshold = min(50, len(task.target_dictionary))
dec_args.lm_weight = cfg.wer_lm_weight
dec_args.word_score = cfg.wer_word_score
dec_args.unk_weight = -math.inf
dec_args.sil_weight = 0
self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary)
else:
self.w2l_decoder = None
self.zero_infinity = cfg.zero_infinity
self.sentence_avg = cfg.sentence_avg
def forward(self, model, sample, reduce=True):
net_output = model(**sample["net_input"])
lprobs = model.get_normalized_probs(
net_output, log_probs=True
).contiguous() # (T, B, C) from the encoder
if "src_lengths" in sample["net_input"]:
input_lengths = sample["net_input"]["src_lengths"]
else:
if net_output["padding_mask"] is not None:
non_padding_mask = ~net_output["padding_mask"]
input_lengths = non_padding_mask.long().sum(-1)
else:
input_lengths = lprobs.new_full(
(lprobs.size(1),), lprobs.size(0), dtype=torch.long
)
pad_mask = (sample["target"] != self.pad_idx) & (
sample["target"] != self.eos_idx
)
targets_flat = sample["target"].masked_select(pad_mask)
if "target_lengths" in sample:
target_lengths = sample["target_lengths"]
else:
target_lengths = pad_mask.sum(-1)
with torch.backends.cudnn.flags(enabled=False):
loss = F.ctc_loss(
lprobs,
targets_flat,
input_lengths,
target_lengths,
blank=self.blank_idx,
reduction="sum",
zero_infinity=self.zero_infinity,
)
ntokens = (
sample["ntokens"] if "ntokens" in sample else target_lengths.sum().item()
)
sample_size = sample["target"].size(0) if self.sentence_avg else ntokens
logging_output = {
"loss": utils.item(loss.data), # * sample['ntokens'],
"ntokens": ntokens,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
}
if not model.training:
import editdistance
with torch.no_grad():
lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu()
c_err = 0
c_len = 0
w_errs = 0
w_len = 0
wv_errs = 0
for lp, t, inp_l in zip(
lprobs_t,
sample["target_label"]
if "target_label" in sample
else sample["target"],
input_lengths,
):
lp = lp[:inp_l].unsqueeze(0)
decoded = None
if self.w2l_decoder is not None:
decoded = self.w2l_decoder.decode(lp)
if len(decoded) < 1:
decoded = None
else:
decoded = decoded[0]
if len(decoded) < 1:
decoded = None
else:
decoded = decoded[0]
p = (t != self.task.target_dictionary.pad()) & (
t != self.task.target_dictionary.eos()
)
targ = t[p]
targ_units = self.task.target_dictionary.string(targ)
targ_units_arr = targ.tolist()
toks = lp.argmax(dim=-1).unique_consecutive()
pred_units_arr = toks[toks != self.blank_idx].tolist()
c_err += editdistance.eval(pred_units_arr, targ_units_arr)
c_len += len(targ_units_arr)
targ_words = post_process(targ_units, self.post_process).split()
pred_units = self.task.target_dictionary.string(pred_units_arr)
pred_words_raw = post_process(pred_units, self.post_process).split()
if decoded is not None and "words" in decoded:
pred_words = decoded["words"]
w_errs += editdistance.eval(pred_words, targ_words)
wv_errs += editdistance.eval(pred_words_raw, targ_words)
else:
dist = editdistance.eval(pred_words_raw, targ_words)
w_errs += dist
wv_errs += dist
w_len += len(targ_words)
logging_output["wv_errors"] = wv_errs
logging_output["w_errors"] = w_errs
logging_output["w_total"] = w_len
logging_output["c_errors"] = c_err
logging_output["c_total"] = c_len
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
nsentences = utils.item(
sum(log.get("nsentences", 0) for log in logging_outputs)
)
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar("ntokens", ntokens)
metrics.log_scalar("nsentences", nsentences)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
c_errors = sum(log.get("c_errors", 0) for log in logging_outputs)
metrics.log_scalar("_c_errors", c_errors)
c_total = sum(log.get("c_total", 0) for log in logging_outputs)
metrics.log_scalar("_c_total", c_total)
w_errors = sum(log.get("w_errors", 0) for log in logging_outputs)
metrics.log_scalar("_w_errors", w_errors)
wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs)
metrics.log_scalar("_wv_errors", wv_errors)
w_total = sum(log.get("w_total", 0) for log in logging_outputs)
metrics.log_scalar("_w_total", w_total)
if c_total > 0:
metrics.log_derived(
"uer",
lambda meters: safe_round(
meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3
)
if meters["_c_total"].sum > 0
else float("nan"),
)
if w_total > 0:
metrics.log_derived(
"wer",
lambda meters: safe_round(
meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
metrics.log_derived(
"raw_wer",
lambda meters: safe_round(
meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/ctc.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.constants import DDP_BACKEND_CHOICES
from omegaconf import II
@dataclass
class AdaptiveLossConfig(FairseqDataclass):
sentence_avg: bool = II("optimization.sentence_avg")
ddp_backend: DDP_BACKEND_CHOICES = II("distributed_training.ddp_backend")
@register_criterion("adaptive_loss", dataclass=AdaptiveLossConfig)
class AdaptiveLoss(FairseqCriterion):
"""This is an implementation of the loss function accompanying the adaptive softmax approximation for
graphical processing units (GPU), described in the paper "Efficient softmax approximation for GPUs"
(http://arxiv.org/abs/1609.04309)."""
def __init__(self, task, sentence_avg):
super().__init__(task)
self.sentence_avg = sentence_avg
@classmethod
def build_criterion(cls, cfg: AdaptiveLossConfig, task):
if cfg.ddp_backend in {"c10d", "pytorch_ddp"}:
raise Exception(
"AdaptiveLoss is not compatible with the PyTorch "
"version of DistributedDataParallel. Please use "
"`--ddp-backend=legacy_ddp` instead."
)
return cls(task, cfg.sentence_avg)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
assert (
hasattr(model.decoder, "adaptive_softmax")
and model.decoder.adaptive_softmax is not None
)
adaptive_softmax = model.decoder.adaptive_softmax
net_output = model(**sample["net_input"])
orig_target = model.get_targets(sample, net_output)
nsentences = orig_target.size(0)
orig_target = orig_target.view(-1)
bsz = orig_target.size(0)
logits, target = adaptive_softmax(net_output[0], orig_target)
assert len(target) == len(logits)
loss = net_output[0].new(1 if reduce else bsz).zero_()
for i in range(len(target)):
if target[i] is not None:
assert target[i].min() >= 0 and target[i].max() <= logits[i].size(1)
loss += F.cross_entropy(
logits[i],
target[i],
ignore_index=self.padding_idx,
reduction="sum" if reduce else "none",
)
orig = utils.strip_pad(orig_target, self.padding_idx)
ntokens = orig.numel()
sample_size = sample["target"].size(0) if self.sentence_avg else ntokens
logging_output = {
"loss": loss.data,
"ntokens": ntokens,
"nsentences": nsentences,
"sample_size": sample_size,
}
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/adaptive_loss.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass, field
from typing import Dict, List
import torch
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
logger = logging.getLogger(__name__)
@dataclass
class ModelCriterionConfig(FairseqDataclass):
loss_weights: Dict[str, float] = field(
default_factory=dict,
metadata={"help": "weights for the loss terms"},
)
log_keys: List[str] = field(
default_factory=list,
metadata={"help": "additional output keys to log"},
)
@register_criterion("model", dataclass=ModelCriterionConfig)
class ModelCriterion(FairseqCriterion):
"""
This criterion relies on the model to supply losses.
The losses should be a dictionary of name -> scalar returned by
the model either by including it in the net_output dict or by
implementing a get_losses(net_output, sample) method. The final loss is
a scaled sum of all losses according to weights in loss_weights.
If no weights are provided, then all losses are scaled by 1.0.
The losses will be automatically logged. Additional keys from
net_output dict can be logged via the log_keys parameter.
"""
def __init__(self, task, loss_weights=None, log_keys=None):
super().__init__(task)
self.loss_weights = loss_weights
self.log_keys = log_keys
def forward(self, model, sample, reduce=True):
net_output = model(**sample["net_input"])
scaled_losses = {}
if hasattr(model, "get_losses"):
losses = model.get_losses(net_output, sample)
elif isinstance(net_output, dict) and "losses" in net_output:
losses = net_output["losses"]
else:
raise Exception("Could not retrieve losses")
for lk, p in losses.items():
try:
coef = 1.0 if len(self.loss_weights) == 0 else self.loss_weights[lk]
except KeyError:
logger.error(
f"weight for loss {lk} is not in loss_weights ({self.loss_weights})"
)
raise
if coef != 0 and p is not None:
scaled_losses[lk] = coef * p.float()
loss = sum(scaled_losses.values())
if "sample_size" in net_output:
sample_size = net_output["sample_size"]
else:
sample_size = loss.numel()
if reduce and loss.numel() > 1:
loss = loss.sum()
logging_output = {
"loss": loss.data,
"ntokens": sample_size,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
"_world_size": 1,
}
for lk in self.log_keys:
if lk in net_output and net_output[lk] is not None:
if not torch.is_tensor(net_output[lk]) or net_output[lk].numel() == 1:
logging_output[lk] = float(net_output[lk])
else:
for i, v in enumerate(net_output[lk]):
logging_output[f"{lk}_{i}"] = float(v)
if len(scaled_losses) > 1:
for lk, l in scaled_losses.items():
if l.numel() > 1:
l = l.sum()
logging_output[f"loss_{lk}"] = l.item()
if "logs" in net_output:
for lgw in net_output["logs"]:
logging_output[lgw] = net_output["logs"][lgw]
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
nsentences = utils.item(
sum(log.get("nsentences", 0) for log in logging_outputs)
)
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar("loss", loss_sum / sample_size, sample_size, round=3)
metrics.log_scalar("ntokens", ntokens)
metrics.log_scalar("nsentences", nsentences)
builtin_keys = {
"loss",
"ntokens",
"nsentences",
"sample_size",
"_world_size",
}
world_size = utils.item(
sum(log.get("_world_size", 0) for log in logging_outputs)
)
for k in logging_outputs[0]:
if k not in builtin_keys:
val = sum(log.get(k, 0) for log in logging_outputs)
if k.startswith("loss_"):
metrics.log_scalar(k, val / sample_size, sample_size, round=3)
else:
metrics.log_scalar(k, val / world_size, round=3)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/model_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
from typing import List, Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.logging.meters import safe_round
from fairseq.utils import is_xla_tensor
@dataclass
class Wav2VecCriterionConfig(FairseqDataclass):
infonce: bool = field(
default=False,
metadata={
"help": "if set, uses cross entropy instead of binary cross entropy (i.e. InfoNCE loss)"
},
)
loss_weights: Optional[List[float]] = field(
default=None,
metadata={"help": "weights for additional loss terms (not first one)"},
)
log_keys: List[str] = field(
default_factory=lambda: [],
metadata={"help": "output keys to log"},
)
@register_criterion("wav2vec", dataclass=Wav2VecCriterionConfig)
class Wav2vecCriterion(FairseqCriterion):
def __init__(self, task, infonce=False, loss_weights=None, log_keys=None):
super().__init__(task)
self.infonce = infonce
self.loss_weights = loss_weights
self.log_keys = [] if log_keys is None else log_keys
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"])
logits = model.get_logits(net_output).float()
target = model.get_targets(sample, net_output)
self.xla = is_xla_tensor(logits)
# XXX: handle weights on xla.
weights = None
if hasattr(model, "get_target_weights") and not self.infonce:
weights = model.get_target_weights(target, net_output)
if torch.is_tensor(weights):
weights = weights.float()
losses = []
reduction = "none" if ((not reduce) or self.xla) else "sum"
if self.infonce:
loss = F.cross_entropy(logits, target, reduction=reduction)
else:
loss = F.binary_cross_entropy_with_logits(
logits, target.float(), weights, reduction=reduction
)
if self.xla:
# tpu-comment: since dynamic shapes lead to recompilations on xla,
# we don't shrink tensors using mask_indices.
# Instead, we use mask indices to adjust loss.
mi = (
sample["net_input"]["mask_indices"]
.transpose(0, 1) # logits are transposed in `model.get_logits`
.reshape(logits.size(0))
)
loss = (loss * mi).sum() if reduce else (loss * mi)
if "sample_size" in sample:
sample_size = sample["sample_size"]
elif "mask_indices" in sample["net_input"]:
sample_size = sample["net_input"]["mask_indices"].sum()
else:
sample_size = target.numel() if self.infonce else target.long().sum().item()
losses.append(loss.detach().clone())
if self.loss_weights is not None:
assert hasattr(model, "get_extra_losses")
extra_losses = model.get_extra_losses(net_output)
if torch.is_tensor(extra_losses):
extra_losses = [extra_losses]
if len(self.loss_weights) == 1 and len(extra_losses) != 1:
self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
assert len(extra_losses) == len(
self.loss_weights
), f"{len(extra_losses)}, {len(self.loss_weights)}"
for p, coef in zip(extra_losses, self.loss_weights):
if coef != 0 and p is not None:
p = coef * p.float() * sample_size
loss += p
losses.append(p)
logging_output = {
"loss": loss.item() if (reduce and not self.xla) else loss.detach(),
"ntokens": sample_size,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
}
for lk in self.log_keys:
# Only store "logits" and "target" for computing MAP and MAUC
# during validation
if lk == "logits":
if not self.training:
logging_output["logits"] = logits.cpu().numpy()
elif lk == "target":
if not self.training:
# If the targets have been mixed with the predictions of
# teacher models, find the original targets
if hasattr(model, "get_original_targets"):
original_target = model.get_original_targets(sample, net_output)
else:
original_target = target
logging_output["target"] = original_target.cpu().numpy()
elif lk in net_output:
value = net_output[lk]
if not is_xla_tensor(value):
value = float(value)
logging_output[lk] = value
if len(losses) > 1:
for i, l in enumerate(losses):
logging_output[f"loss_{i}"] = l.item() if not self.xla else l.detach()
if self.infonce:
with torch.no_grad():
if logits.numel() == 0:
corr = 0
count = 0
else:
assert logits.dim() > 1, logits.shape
max = logits.argmax(-1) == 0
min = logits.argmin(-1) == 0
if is_xla_tensor(logits):
max, min = max * mi, min * mi
both = max & min
corr = max.long().sum() - both.long().sum()
count = mi.sum()
else:
both = max & min
corr = max.long().sum().item() - both.long().sum().item()
count = float(max.numel())
logging_output["correct"] = corr
logging_output["count"] = count
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
nsentences = utils.item(
sum(log.get("nsentences", 0) for log in logging_outputs)
)
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / (sample_size or 1) / math.log(2), sample_size, round=3
)
metrics.log_scalar("ntokens", ntokens)
metrics.log_scalar("nsentences", nsentences)
correct = sum(log.get("correct", 0) for log in logging_outputs)
metrics.log_scalar("_correct", correct)
total = sum(log.get("count", 0) for log in logging_outputs)
metrics.log_scalar("_total", total)
if total > 0:
metrics.log_derived(
"accuracy",
lambda meters: safe_round(
meters["_correct"].sum / meters["_total"].sum, 5
)
if meters["_total"].sum > 0
else float("nan"),
)
builtin_keys = {
"loss",
"ntokens",
"nsentences",
"sample_size",
"correct",
"count",
}
for k in logging_outputs[0]:
if k not in builtin_keys:
val = sum(log.get(k, 0) for log in logging_outputs)
if k.startswith("loss"):
metrics.log_scalar(
k, val / (sample_size or 1) / math.log(2), sample_size, round=3
)
else:
metrics.log_scalar(k, val / len(logging_outputs), round=3)
# FIXME: revert when gather based xla reduction is implemented
# @staticmethod
# def logging_outputs_can_be_summed() -> bool:
def logging_outputs_can_be_summed(self) -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
# XXX: Gather based reduction not implemented for xla yet.
# So we fall to sum based reduction for xla.
return self.xla
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/wav2vec_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
def compute_cross_entropy_loss(logits, targets, ignore_index=-100):
"""
Function to compute the cross entropy loss. The default value of
ignore_index is the same as the default value for F.cross_entropy in
pytorch.
"""
assert logits.size(0) == targets.size(
-1
), "Logits and Targets tensor shapes don't match up"
loss = F.nll_loss(
F.log_softmax(logits, -1, dtype=torch.float32),
targets,
reduction="sum",
ignore_index=ignore_index,
)
return loss
@register_criterion("legacy_masked_lm_loss")
class LegacyMaskedLmLoss(FairseqCriterion):
"""
Implementation for the loss used in masked language model (MLM) training.
This optionally also computes the next sentence prediction (NSP) loss and
adds it to the overall loss based on the specified args. There are three
cases to consider:
1) Generic MLM training without NSP loss. In this case sentence_targets
and sentence_logits are both None.
2) BERT training without NSP loss. In this case sentence_targets is
not None but sentence_logits is None and we should not be computing
a sentence level loss.
3) BERT training with NSP loss. In this case both sentence_targets and
sentence_logits are not None and we should be computing a sentence
level loss. The weight of the sentence level loss is specified as
an argument.
"""
def __init__(self, task, masked_lm_only, nsp_loss_weight):
super().__init__(task)
self.masked_lm_only = masked_lm_only
self.nsp_loss_weight = nsp_loss_weight
@staticmethod
def add_args(parser):
"""Args for MaskedLM Loss"""
# Default for masked_lm_only is False so as to not break BERT training
parser.add_argument(
"--masked-lm-only",
default=False,
action="store_true",
help="compute MLM loss only",
)
parser.add_argument(
"--nsp-loss-weight",
default=1.0,
type=float,
help="weight for next sentence prediction" " loss (default 1)",
)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
lm_logits, output_metadata = model(**sample["net_input"])
# reshape lm_logits from (N,T,C) to (N*T,C)
lm_logits = lm_logits.view(-1, lm_logits.size(-1))
lm_targets = sample["lm_target"].view(-1)
lm_loss = compute_cross_entropy_loss(lm_logits, lm_targets, self.padding_idx)
# compute the number of tokens for which loss is computed. This is used
# to normalize the loss
ntokens = utils.strip_pad(lm_targets, self.padding_idx).numel()
loss = lm_loss / ntokens
nsentences = sample["nsentences"]
# nsentences = 0
# Compute sentence loss if masked_lm_only is False
sentence_loss = None
if not self.masked_lm_only:
sentence_logits = output_metadata["sentence_logits"]
sentence_targets = sample["sentence_target"].view(-1)
# This needs to be recomputed due to some differences between
# TokenBlock and BlockPair dataset. This can be resolved with a
# refactor of BERTModel which we will do in the future.
# TODO: Remove this after refactor of BERTModel
nsentences = sentence_targets.size(0)
# Check for logits being none which can happen when remove_heads
# is set to true in the BERT model. Ideally we should set
# masked_lm_only to true in this case, but that requires some
# refactor in the BERT model.
if sentence_logits is not None:
sentence_loss = compute_cross_entropy_loss(
sentence_logits, sentence_targets
)
loss += self.nsp_loss_weight * (sentence_loss / nsentences)
# NOTE: as we are summing up per token mlm loss and per sentence nsp loss
# we don't need to use sample_size as denominator for the gradient
# here sample_size is just used for logging
sample_size = 1
logging_output = {
"loss": utils.item(loss.data) if reduce else loss.data,
"lm_loss": utils.item(lm_loss.data) if reduce else lm_loss.data,
# sentence loss is not always computed
"sentence_loss": (
(utils.item(sentence_loss.data) if reduce else sentence_loss.data)
if sentence_loss is not None
else 0.0
),
"ntokens": ntokens,
"nsentences": nsentences,
"sample_size": sample_size,
}
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
lm_loss_sum = sum(log.get("lm_loss", 0) for log in logging_outputs)
sentence_loss_sum = sum(log.get("sentence_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
agg_loss = sum(log.get("loss", 0) for log in logging_outputs)
metrics.log_scalar(
"loss",
agg_loss / sample_size / math.log(2) if sample_size > 0 else 0.0,
sample_size,
round=3,
)
metrics.log_scalar(
"lm_loss",
lm_loss_sum / ntokens / math.log(2) if ntokens > 0 else 0.0,
ntokens,
round=3,
)
metrics.log_scalar(
"sentence_loss",
sentence_loss_sum / nsentences / math.log(2) if nsentences > 0 else 0.0,
nsentences,
round=3,
)
metrics.log_scalar(
"nll_loss",
lm_loss_sum / ntokens / math.log(2) if ntokens > 0 else 0.0,
ntokens,
round=3,
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/legacy_masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from torch import Tensor
from dataclasses import dataclass, field
@dataclass
class LabelSmoothedDualImitationCriterionConfig(FairseqDataclass):
label_smoothing: float = field(
default=0.0,
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
)
@register_criterion("nat_loss", dataclass=LabelSmoothedDualImitationCriterionConfig)
class LabelSmoothedDualImitationCriterion(FairseqCriterion):
def __init__(self, task, label_smoothing):
super().__init__(task)
self.label_smoothing = label_smoothing
def _compute_loss(
self, outputs, targets, masks=None, label_smoothing=0.0, name="loss", factor=1.0
):
"""
outputs: batch x len x d_model
targets: batch x len
masks: batch x len
policy_logprob: if there is some policy
depends on the likelihood score as rewards.
"""
def mean_ds(x: Tensor, dim=None) -> Tensor:
return (
x.float().mean().type_as(x)
if dim is None
else x.float().mean(dim).type_as(x)
)
if masks is not None:
outputs, targets = outputs[masks], targets[masks]
if masks is not None and not masks.any():
nll_loss = torch.tensor(0)
loss = nll_loss
else:
logits = F.log_softmax(outputs, dim=-1)
if targets.dim() == 1:
losses = F.nll_loss(logits, targets.to(logits.device), reduction="none")
else: # soft-labels
losses = F.kl_div(logits, targets.to(logits.device), reduction="none")
losses = losses.sum(-1)
nll_loss = mean_ds(losses)
if label_smoothing > 0:
loss = (
nll_loss * (1 - label_smoothing) - mean_ds(logits) * label_smoothing
)
else:
loss = nll_loss
loss = loss * factor
return {"name": name, "loss": loss, "nll_loss": nll_loss, "factor": factor}
def _custom_loss(self, loss, name="loss", factor=1.0):
return {"name": name, "loss": loss, "factor": factor}
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
nsentences, ntokens = sample["nsentences"], sample["ntokens"]
# B x T
src_tokens, src_lengths = (
sample["net_input"]["src_tokens"],
sample["net_input"]["src_lengths"],
)
tgt_tokens, prev_output_tokens = sample["target"], sample["prev_target"]
outputs = model(src_tokens, src_lengths, prev_output_tokens, tgt_tokens)
losses, nll_loss = [], []
for obj in outputs:
if outputs[obj].get("loss", None) is None:
_losses = self._compute_loss(
outputs[obj].get("out"),
outputs[obj].get("tgt"),
outputs[obj].get("mask", None),
outputs[obj].get("ls", 0.0),
name=obj + "-loss",
factor=outputs[obj].get("factor", 1.0),
)
else:
_losses = self._custom_loss(
outputs[obj].get("loss"),
name=obj + "-loss",
factor=outputs[obj].get("factor", 1.0),
)
losses += [_losses]
if outputs[obj].get("nll_loss", False):
nll_loss += [_losses.get("nll_loss", 0.0)]
loss = sum(l["loss"] for l in losses)
nll_loss = sum(l for l in nll_loss) if len(nll_loss) > 0 else loss.new_tensor(0)
# NOTE:
# we don't need to use sample_size as denominator for the gradient
# here sample_size is just used for logging
sample_size = 1
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": ntokens,
"nsentences": nsentences,
"sample_size": sample_size,
}
for l in losses:
logging_output[l["name"]] = (
utils.item(l["loss"].data / l["factor"])
if reduce
else l[["loss"]].data / l["factor"]
)
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
loss = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
nll_loss = utils.item(sum(log.get("nll_loss", 0) for log in logging_outputs))
metrics.log_scalar(
"loss", loss / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss / sample_size / math.log(2), sample_size, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
for key in logging_outputs[0]:
if key[-5:] == "-loss":
val = sum(log.get(key, 0) for log in logging_outputs)
metrics.log_scalar(
key[:-5],
val / sample_size / math.log(2) if sample_size > 0 else 0.0,
sample_size,
round=3,
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/nat_loss.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import importlib
import os
from fairseq import registry
from fairseq.criterions.fairseq_criterion import ( # noqa
FairseqCriterion,
LegacyFairseqCriterion,
)
from omegaconf import DictConfig
(
build_criterion_,
register_criterion,
CRITERION_REGISTRY,
CRITERION_DATACLASS_REGISTRY,
) = registry.setup_registry(
"--criterion", base_class=FairseqCriterion, default="cross_entropy"
)
def build_criterion(cfg: DictConfig, task):
return build_criterion_(cfg, task)
# automatically import any Python files in the criterions/ directory
for file in sorted(os.listdir(os.path.dirname(__file__))):
if file.endswith(".py") and not file.startswith("_"):
file_name = file[: file.find(".py")]
importlib.import_module("fairseq.criterions." + file_name)
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
import torch
from fairseq import metrics, utils
from fairseq.criterions import register_criterion
from fairseq.criterions.label_smoothed_cross_entropy import (
LabelSmoothedCrossEntropyCriterion,
LabelSmoothedCrossEntropyCriterionConfig,
)
try:
from simuleval.metrics.latency import (
AverageLagging,
AverageProportion,
DifferentiableAverageLagging,
)
LATENCY_METRICS = {
"average_lagging": AverageLagging,
"average_proportion": AverageProportion,
"differentiable_average_lagging": DifferentiableAverageLagging,
}
except ImportError:
LATENCY_METRICS = None
@dataclass
class LabelSmoothedCrossEntropyCriterionLatencyAugmentConfig(
LabelSmoothedCrossEntropyCriterionConfig
):
latency_avg_weight: float = field(
default=0.0,
metadata={"help": "weight fot average latency loss."},
)
latency_var_weight: float = field(
default=0.0,
metadata={"help": "weight fot variance latency loss."},
)
latency_avg_type: str = field(
default="differentiable_average_lagging",
metadata={"help": "latency type for average loss"},
)
latency_var_type: str = field(
default="variance_delay",
metadata={"help": "latency typ for variance loss"},
)
latency_gather_method: str = field(
default="weighted_average",
metadata={"help": "method to gather latency loss for all heads"},
)
latency_update_after: int = field(
default=0,
metadata={"help": "Add latency loss after certain steps"},
)
@register_criterion(
"latency_augmented_label_smoothed_cross_entropy",
dataclass=LabelSmoothedCrossEntropyCriterionLatencyAugmentConfig,
)
class LatencyAugmentedLabelSmoothedCrossEntropyCriterion(
LabelSmoothedCrossEntropyCriterion
):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size,
report_accuracy,
latency_avg_weight,
latency_var_weight,
latency_avg_type,
latency_var_type,
latency_gather_method,
latency_update_after,
):
super().__init__(
task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy
)
assert LATENCY_METRICS is not None, "Please make sure SimulEval is installed."
self.latency_avg_weight = latency_avg_weight
self.latency_var_weight = latency_var_weight
self.latency_avg_type = latency_avg_type
self.latency_var_type = latency_var_type
self.latency_gather_method = latency_gather_method
self.latency_update_after = latency_update_after
def forward(self, model, sample, reduce=True):
net_output = model(**sample["net_input"])
# 1. Compute cross entropy loss
loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
# 2. Compute cross latency loss
latency_loss, expected_latency, expected_delays_var = self.compute_latency_loss(
model, sample, net_output
)
if self.latency_update_after > 0:
num_updates = getattr(model.decoder, "num_updates", None)
assert (
num_updates is not None
), "model.decoder doesn't have attribute 'num_updates'"
if num_updates <= self.latency_update_after:
latency_loss = 0
loss += latency_loss
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
"latency": expected_latency,
"delays_var": expected_delays_var,
"latency_loss": latency_loss,
}
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output, sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
return loss, sample_size, logging_output
def compute_latency_loss(self, model, sample, net_output):
assert (
net_output[-1].encoder_padding_mask is None
or not net_output[-1].encoder_padding_mask[:, 0].any()
), "Only right padding on source is supported."
# 1. Obtain the expected alignment
alpha_list = [item["alpha"] for item in net_output[1].attn_list]
num_layers = len(alpha_list)
bsz, num_heads, tgt_len, src_len = alpha_list[0].size()
# bsz * num_layers * num_heads, tgt_len, src_len
alpha_all = torch.cat(alpha_list, dim=1).view(-1, tgt_len, src_len)
# 2 compute expected delays
# bsz * num_heads * num_layers, tgt_len, src_len for MMA
steps = (
torch.arange(1, 1 + src_len)
.unsqueeze(0)
.unsqueeze(1)
.expand_as(alpha_all)
.type_as(alpha_all)
)
expected_delays = torch.sum(steps * alpha_all, dim=-1)
target_padding_mask = (
model.get_targets(sample, net_output)
.eq(self.padding_idx)
.unsqueeze(1)
.expand(bsz, num_layers * num_heads, tgt_len)
.contiguous()
.view(-1, tgt_len)
)
src_lengths = (
sample["net_input"]["src_lengths"]
.unsqueeze(1)
.expand(bsz, num_layers * num_heads)
.contiguous()
.view(-1)
)
expected_latency = LATENCY_METRICS[self.latency_avg_type](
expected_delays, src_lengths, None, target_padding_mask=target_padding_mask
)
# 2.1 average expected latency of heads
# bsz, num_layers * num_heads
expected_latency = expected_latency.view(bsz, -1)
if self.latency_gather_method == "average":
# bsz * tgt_len
expected_latency = expected_delays.mean(dim=1)
elif self.latency_gather_method == "weighted_average":
weights = torch.nn.functional.softmax(expected_latency, dim=1)
expected_latency = torch.sum(expected_latency * weights, dim=1)
elif self.latency_gather_method == "max":
expected_latency = expected_latency.max(dim=1)[0]
else:
raise NotImplementedError
expected_latency = expected_latency.sum()
avg_loss = self.latency_avg_weight * expected_latency
# 2.2 variance of expected delays
expected_delays_var = (
expected_delays.view(bsz, -1, tgt_len).var(dim=1).mean(dim=1)
)
expected_delays_var = expected_delays_var.sum()
var_loss = self.latency_avg_weight * expected_delays_var
# 3. Final loss
latency_loss = avg_loss + var_loss
return latency_loss, expected_latency, expected_delays_var
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
super().reduce_metrics(logging_outputs)
latency = sum(log.get("latency", 0) for log in logging_outputs)
delays_var = sum(log.get("delays_var", 0) for log in logging_outputs)
latency_loss = sum(log.get("latency_loss", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
metrics.log_scalar("latency", latency.float() / nsentences, nsentences, round=3)
metrics.log_scalar("delays_var", delays_var / nsentences, nsentences, round=3)
metrics.log_scalar(
"latency_loss", latency_loss / nsentences, nsentences, round=3
)
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/label_smoothed_cross_entropy_latency_augmented.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
import torch
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II
@dataclass
class LabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass):
label_smoothing: float = field(
default=0.0,
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
)
report_accuracy: bool = field(
default=False,
metadata={"help": "report accuracy metric"},
)
ignore_prefix_size: int = field(
default=0,
metadata={"help": "Ignore first N tokens"},
)
sentence_avg: bool = II("optimization.sentence_avg")
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True):
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
if reduce:
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
eps_i = epsilon / (lprobs.size(-1) - 1)
loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
return loss, nll_loss
@register_criterion(
"label_smoothed_cross_entropy", dataclass=LabelSmoothedCrossEntropyCriterionConfig
)
class LabelSmoothedCrossEntropyCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size=0,
report_accuracy=False,
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.eps = label_smoothing
self.ignore_prefix_size = ignore_prefix_size
self.report_accuracy = report_accuracy
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"])
loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
}
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output, sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
return loss, sample_size, logging_output
def get_lprobs_and_target(self, model, net_output, sample):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
target = model.get_targets(sample, net_output)
if self.ignore_prefix_size > 0:
# lprobs: B x T x C
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
return lprobs.view(-1, lprobs.size(-1)), target.view(-1)
def compute_loss(self, model, net_output, sample, reduce=True):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
loss, nll_loss = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
ignore_index=self.padding_idx,
reduce=reduce,
)
return loss, nll_loss
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.padding_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
if total > 0:
metrics.log_scalar("total", total)
n_correct = utils.item(
sum(log.get("n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("n_correct", n_correct)
metrics.log_derived(
"accuracy",
lambda meters: round(
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
)
if meters["total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/label_smoothed_cross_entropy.py |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import logging
from typing import Any, Dict, List
from functools import lru_cache
from dataclasses import dataclass, field
import torch
from omegaconf import II
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.data.data_utils import lengths_to_mask
import torch.nn.functional as F
logger = logging.getLogger(__name__)
@dataclass
class Tacotron2CriterionConfig(FairseqDataclass):
bce_pos_weight: float = field(
default=1.0,
metadata={"help": "weight of positive examples for BCE loss"},
)
use_guided_attention_loss: bool = field(
default=False,
metadata={"help": "use guided attention loss"},
)
guided_attention_loss_sigma: float = field(
default=0.4,
metadata={"help": "weight of positive examples for BCE loss"},
)
ctc_weight: float = field(default=0.0, metadata={"help": "weight for CTC loss"})
sentence_avg: bool = II("optimization.sentence_avg")
class GuidedAttentionLoss(torch.nn.Module):
"""
Efficiently Trainable Text-to-Speech System Based on Deep Convolutional
Networks with Guided Attention (https://arxiv.org/abs/1710.08969)
"""
def __init__(self, sigma):
super().__init__()
self.sigma = sigma
@staticmethod
@lru_cache(maxsize=8)
def _get_weight(s_len, t_len, sigma):
grid_x, grid_y = torch.meshgrid(torch.arange(t_len), torch.arange(s_len))
grid_x = grid_x.to(s_len.device)
grid_y = grid_y.to(s_len.device)
w = (grid_y.float() / s_len - grid_x.float() / t_len) ** 2
return 1.0 - torch.exp(-w / (2 * (sigma ** 2)))
def _get_weights(self, src_lens, tgt_lens):
bsz, max_s_len, max_t_len = len(src_lens), max(src_lens), max(tgt_lens)
weights = torch.zeros((bsz, max_t_len, max_s_len))
for i, (s_len, t_len) in enumerate(zip(src_lens, tgt_lens)):
weights[i, :t_len, :s_len] = self._get_weight(s_len, t_len, self.sigma)
return weights
@staticmethod
def _get_masks(src_lens, tgt_lens):
in_masks = lengths_to_mask(src_lens)
out_masks = lengths_to_mask(tgt_lens)
return out_masks.unsqueeze(2) & in_masks.unsqueeze(1)
def forward(self, attn, src_lens, tgt_lens, reduction="mean"):
weights = self._get_weights(src_lens, tgt_lens).to(attn.device)
masks = self._get_masks(src_lens, tgt_lens).to(attn.device)
loss = (weights * attn.transpose(1, 2)).masked_select(masks)
loss = torch.sum(loss) if reduction == "sum" else torch.mean(loss)
return loss
@register_criterion("tacotron2", dataclass=Tacotron2CriterionConfig)
class Tacotron2Criterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
use_guided_attention_loss,
guided_attention_loss_sigma,
bce_pos_weight,
ctc_weight,
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.bce_pos_weight = bce_pos_weight
self.guided_attn = None
if use_guided_attention_loss:
self.guided_attn = GuidedAttentionLoss(guided_attention_loss_sigma)
self.ctc_weight = ctc_weight
def forward(self, model, sample, reduction="mean"):
bsz, max_len, _ = sample["target"].size()
feat_tgt = sample["target"]
feat_len = sample["target_lengths"].view(bsz, 1).expand(-1, max_len)
eos_tgt = torch.arange(max_len).to(sample["target"].device)
eos_tgt = eos_tgt.view(1, max_len).expand(bsz, -1)
eos_tgt = (eos_tgt == (feat_len - 1)).float()
src_tokens = sample["net_input"]["src_tokens"]
src_lens = sample["net_input"]["src_lengths"]
tgt_lens = sample["target_lengths"]
feat_out, eos_out, extra = model(
src_tokens=src_tokens,
src_lengths=src_lens,
prev_output_tokens=sample["net_input"]["prev_output_tokens"],
incremental_state=None,
target_lengths=tgt_lens,
speaker=sample["speaker"],
)
l1_loss, mse_loss, eos_loss = self.compute_loss(
extra["feature_out"],
feat_out,
eos_out,
feat_tgt,
eos_tgt,
tgt_lens,
reduction,
)
attn_loss = torch.tensor(0.0).type_as(l1_loss)
if self.guided_attn is not None:
attn_loss = self.guided_attn(extra["attn"], src_lens, tgt_lens, reduction)
ctc_loss = torch.tensor(0.0).type_as(l1_loss)
if self.ctc_weight > 0.0:
net_output = (feat_out, eos_out, extra)
lprobs = model.get_normalized_probs(net_output, log_probs=True)
lprobs = lprobs.transpose(0, 1) # T x B x C
src_mask = lengths_to_mask(src_lens)
src_tokens_flat = src_tokens.masked_select(src_mask)
ctc_loss = (
F.ctc_loss(
lprobs,
src_tokens_flat,
tgt_lens,
src_lens,
reduction=reduction,
zero_infinity=True,
)
* self.ctc_weight
)
loss = l1_loss + mse_loss + eos_loss + attn_loss + ctc_loss
sample_size = sample["nsentences"] if self.sentence_avg else sample["ntokens"]
logging_output = {
"loss": utils.item(loss.data),
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
"l1_loss": utils.item(l1_loss.data),
"mse_loss": utils.item(mse_loss.data),
"eos_loss": utils.item(eos_loss.data),
"attn_loss": utils.item(attn_loss.data),
"ctc_loss": utils.item(ctc_loss.data),
}
return loss, sample_size, logging_output
def compute_loss(
self,
feat_out,
feat_out_post,
eos_out,
feat_tgt,
eos_tgt,
tgt_lens,
reduction="mean",
):
mask = lengths_to_mask(tgt_lens)
_eos_out = eos_out[mask].squeeze()
_eos_tgt = eos_tgt[mask]
_feat_tgt = feat_tgt[mask]
_feat_out = feat_out[mask]
_feat_out_post = feat_out_post[mask]
l1_loss = F.l1_loss(_feat_out, _feat_tgt, reduction=reduction) + F.l1_loss(
_feat_out_post, _feat_tgt, reduction=reduction
)
mse_loss = F.mse_loss(_feat_out, _feat_tgt, reduction=reduction) + F.mse_loss(
_feat_out_post, _feat_tgt, reduction=reduction
)
eos_loss = F.binary_cross_entropy_with_logits(
_eos_out,
_eos_tgt,
pos_weight=torch.tensor(self.bce_pos_weight),
reduction=reduction,
)
return l1_loss, mse_loss, eos_loss
@classmethod
def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None:
ns = [log.get("sample_size", 0) for log in logging_outputs]
ntot = sum(ns)
ws = [n / (ntot + 1e-8) for n in ns]
for key in ["loss", "l1_loss", "mse_loss", "eos_loss", "attn_loss", "ctc_loss"]:
vals = [log.get(key, 0) for log in logging_outputs]
val = sum(val * w for val, w in zip(vals, ws))
metrics.log_scalar(key, val, ntot, round=3)
metrics.log_scalar("sample_size", ntot, len(logging_outputs))
# inference metrics
if "targ_frames" not in logging_outputs[0]:
return
n = sum(log.get("targ_frames", 0) for log in logging_outputs)
for key, new_key in [
("mcd_loss", "mcd_loss"),
("pred_frames", "pred_ratio"),
("nins", "ins_rate"),
("ndel", "del_rate"),
]:
val = sum(log.get(key, 0) for log in logging_outputs)
metrics.log_scalar(new_key, val / n, n, round=3)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
return False
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/tacotron2_loss.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import utils
from fairseq.criterions import LegacyFairseqCriterion, register_criterion
from torch import nn
@register_criterion("composite_loss")
class CompositeLoss(LegacyFairseqCriterion):
"""This is a composite loss that, given a list of model outputs and a list of targets,
computes an average of losses for each output-target pair"""
def __init__(self, args, task):
super().__init__(args, task)
self.underlying_criterion = args.underlying_criterion
@staticmethod
def add_args(parser):
"""Add criterion-specific arguments to the parser."""
# fmt: off
parser.add_argument('--underlying-criterion', type=str, metavar='VAL', required=True,
help='underlying criterion to use for the composite loss')
# fmt: on
@staticmethod
def build_underlying_criterion(args, task):
saved_criterion = args.criterion
args.criterion = args.underlying_criterion
assert saved_criterion != args.underlying_criterion
underlying_criterion = task.build_criterion(args)
args.criterion = saved_criterion
return underlying_criterion
@classmethod
def build_criterion(cls, args, task):
underlying_criterion = CompositeLoss.build_underlying_criterion(args, task)
class FakeModel(nn.Module):
def __init__(self, model, net_out, target):
super().__init__()
self.model = model
self.net_out = net_out
self.target = target
def forward(self, **unused):
return self.net_out
def get_normalized_probs(self, net_output, log_probs, sample=None):
return self.model.get_normalized_probs(
net_output, log_probs, sample=sample
)
def get_targets(self, *unused):
return self.target
@property
def decoder(self):
return self.model.decoder
class _CompositeLoss(LegacyFairseqCriterion):
def __init__(self, args, task, underlying_criterion):
super().__init__(args, task)
self.underlying_criterion = underlying_criterion
def forward(self, model, sample, reduce=True):
net_outputs = model(**sample["net_input"])
targets = sample["target"]
bsz = targets[0].size(0)
loss = net_outputs[0][0].new(1 if reduce else bsz).float().zero_()
sample_size = 0
logging_output = {}
for o, t in zip(net_outputs[0], targets):
m = FakeModel(model, (o, net_outputs[1]), t)
sample["target"] = t
l, ss, logging_output = self.underlying_criterion(m, sample, reduce)
loss += l
sample_size += ss
loss.div_(len(targets))
sample_size /= len(targets)
logging_output["loss"] = utils.item(loss.data) if reduce else loss.data
return loss, sample_size, logging_output
@staticmethod
def aggregate_logging_outputs(logging_outputs):
return underlying_criterion.__class__.aggregate_logging_outputs(
logging_outputs
)
@staticmethod
def reduce_metrics(logging_outputs) -> None:
underlying_criterion.__class__.reduce_metrics(logging_outputs)
return _CompositeLoss(args, task, underlying_criterion)
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/composite_loss.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import re
from dataclasses import dataclass, field
from typing import List, Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
@dataclass
class HubertCriterionConfig(FairseqDataclass):
pred_masked_weight: float = field(
default=1.0,
metadata={"help": "weight for predictive loss for masked frames"},
)
pred_nomask_weight: float = field(
default=0.0,
metadata={"help": "weight for predictive loss for unmasked frames"},
)
loss_weights: Optional[List[float]] = field(
default=None,
metadata={"help": "weights for additional loss terms (not first one)"},
)
log_keys: List[str] = field(
default_factory=lambda: [],
metadata={"help": "output keys to log"},
)
@register_criterion("hubert", dataclass=HubertCriterionConfig)
class HubertCriterion(FairseqCriterion):
def __init__(
self,
task,
pred_masked_weight,
pred_nomask_weight,
loss_weights=None,
log_keys=None,
):
super().__init__(task)
self.pred_masked_weight = pred_masked_weight
self.pred_nomask_weight = pred_nomask_weight
self.loss_weights = loss_weights
self.log_keys = [] if log_keys is None else log_keys
def forward(self, model, sample, reduce=True, log_pred=False):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(target_list=sample["target_list"], **sample["net_input"])
loss = 0.0
sample_size = 0
logging_output = {}
reduction = "sum" if reduce else "none"
loss_m_list = []
logp_m_list = model.get_logits(net_output, True)
targ_m_list = model.get_targets(net_output, True)
assert self.pred_masked_weight == 0 or len(logp_m_list) > 0
for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)):
loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction)
loss_m_list.append(loss_m)
logging_output[f"loss_m_{i}"] = loss_m.detach().item()
if self.pred_masked_weight > 0:
loss += self.pred_masked_weight * sum(loss_m_list)
sample_size += targ_m_list[0].numel()
loss_u_list = []
logp_u_list = model.get_logits(net_output, False)
targ_u_list = model.get_targets(net_output, False)
assert self.pred_nomask_weight == 0 or len(logp_u_list) > 0
for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)):
loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction)
loss_u_list.append(loss_u)
logging_output[f"loss_u_{i}"] = loss_u.detach().item()
if self.pred_nomask_weight > 0:
loss += self.pred_nomask_weight * sum(loss_u_list)
sample_size += targ_u_list[0].numel()
if self.loss_weights is not None:
assert hasattr(model, "get_extra_losses")
extra_losses, names = model.get_extra_losses(net_output)
if torch.is_tensor(extra_losses):
extra_losses = [extra_losses]
names = [names]
if len(self.loss_weights) == 1 and len(extra_losses) != 1:
self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
assert len(extra_losses) == len(
self.loss_weights
), f"{len(extra_losses)}, {len(self.loss_weights)}"
for p, n, coef in zip(extra_losses, names, self.loss_weights):
if coef != 0 and p is not None:
p = coef * p.float() * sample_size
loss += p
logging_output[f"loss_{n}"] = p.item()
logging_output = {
"loss": loss.item() if reduce else loss,
"ntokens": sample_size,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
**logging_output,
}
for lk in self.log_keys:
if lk in net_output:
logging_output[lk] = float((net_output[lk]))
def compute_correct(logits):
if logits.numel() == 0:
return 0, 0
else:
assert logits.dim() > 1, logits.shape
max = logits.argmax(-1) == 0
min = logits.argmin(-1) == 0
both = max & min
corr = max.long().sum().item() - both.long().sum().item()
count = max.numel()
return corr, count
with torch.no_grad():
for i, logp_m in enumerate(logp_m_list):
corr_m, count_m = compute_correct(logp_m)
logging_output[f"correct_m_{i}"] = corr_m
logging_output[f"count_m_{i}"] = count_m
for i, logp_u in enumerate(logp_u_list):
corr_u, count_u = compute_correct(logp_u)
logging_output[f"correct_u_{i}"] = corr_u
logging_output[f"count_u_{i}"] = count_u
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training (copied from normal cross entropy)."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
counts = {}
for lk in logging_outputs[0].keys():
if lk.startswith("count_"):
val = sum(log[lk] for log in logging_outputs)
metrics.log_scalar(lk, val)
counts[lk] = val
for lk in logging_outputs[0].keys():
if lk.startswith("loss_"):
val = sum(log[lk] for log in logging_outputs)
metrics.log_scalar(lk, val / sample_size / math.log(2), round=3)
elif lk.startswith("correct_"):
val = sum(log[lk] for log in logging_outputs)
metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)])
@staticmethod
def aggregate_logging_outputs(logging_outputs):
"""Aggregate logging outputs from data parallel training."""
raise NotImplementedError()
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/hubert_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
import torch
import torch.nn.functional as F
from fairseq import metrics
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
@dataclass
class SentencePredictionConfig(FairseqDataclass):
classification_head_name: str = field(
default="sentence_classification_head",
metadata={"help": "name of the classification head to use"},
)
regression_target: bool = field(
default=False,
)
@register_criterion("sentence_prediction", dataclass=SentencePredictionConfig)
class SentencePredictionCriterion(FairseqCriterion):
def __init__(self, cfg: SentencePredictionConfig, task):
super().__init__(task)
self.classification_head_name = cfg.classification_head_name
self.regression_target = cfg.regression_target
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
assert (
hasattr(model, "classification_heads")
and self.classification_head_name in model.classification_heads
), "model must provide sentence classification head for --criterion=sentence_prediction"
logits, _ = model(
**sample["net_input"],
features_only=True,
classification_head_name=self.classification_head_name,
)
targets = model.get_targets(sample, [logits]).view(-1)
sample_size = targets.numel()
if not self.regression_target:
lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32)
task_loss = F.nll_loss(lprobs, targets, reduction="sum")
else:
logits = logits.view(-1).float()
targets = targets.float()
task_loss = F.mse_loss(logits, targets, reduction="sum")
logging_output = {}
loss = task_loss
# mha & ffn regularization update
if (
hasattr(model.args, "mha_reg_scale_factor")
and model.args.mha_reg_scale_factor != 0.0
):
mha_reg_loss = model._get_adaptive_head_loss()
loss += mha_reg_loss
logging_output.update({"mha_reg_loss": mha_reg_loss})
if (
hasattr(model.args, "ffn_reg_scale_factor")
and model.args.ffn_reg_scale_factor != 0.0
):
ffn_reg_loss = model._get_adaptive_ffn_loss()
loss += ffn_reg_loss
logging_output.update({"ffn_reg_loss": ffn_reg_loss})
logging_output.update(
{
"loss": loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample_size,
"sample_size": sample_size,
}
)
if not self.regression_target:
preds = logits.argmax(dim=1)
logging_output["ncorrect"] = (preds == targets).sum()
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
mha_reg_loss_sum = sum(log.get("mha_reg_loss", 0) for log in logging_outputs)
ffn_reg_loss_sum = sum(log.get("ffn_reg_loss", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if mha_reg_loss_sum:
metrics.log_scalar(
"mha_reg_loss",
mha_reg_loss_sum / sample_size / math.log(2),
sample_size,
round=3,
)
if ffn_reg_loss_sum:
metrics.log_scalar(
"ffn_reg_loss",
ffn_reg_loss_sum / sample_size / math.log(2),
sample_size,
round=3,
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]:
ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs)
metrics.log_scalar(
"accuracy", 100.0 * ncorrect / nsentences, nsentences, round=1
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/sentence_prediction.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from fairseq import metrics, utils
from fairseq.criterions import register_criterion
from .label_smoothed_cross_entropy import (
LabelSmoothedCrossEntropyCriterion,
LabelSmoothedCrossEntropyCriterionConfig,
)
from dataclasses import dataclass, field
@dataclass
class LabelSmoothedCrossEntropyCriterionWithAlignmentConfig(
LabelSmoothedCrossEntropyCriterionConfig
):
alignment_lambda: float = field(
default=0.05, metadata={"help": "weight for the alignment loss"}
)
@register_criterion(
"label_smoothed_cross_entropy_with_alignment",
dataclass=LabelSmoothedCrossEntropyCriterionWithAlignmentConfig,
)
class LabelSmoothedCrossEntropyCriterionWithAlignment(
LabelSmoothedCrossEntropyCriterion
):
def __init__(self, task, sentence_avg, label_smoothing, alignment_lambda):
super().__init__(task, sentence_avg, label_smoothing)
self.alignment_lambda = alignment_lambda
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"])
loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": utils.item(loss.data) if reduce else loss.data,
"nll_loss": utils.item(nll_loss.data) if reduce else nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
}
alignment_loss = None
# Compute alignment loss only for training set and non dummy batches.
if "alignments" in sample and sample["alignments"] is not None:
alignment_loss = self.compute_alignment_loss(sample, net_output)
if alignment_loss is not None:
logging_output["alignment_loss"] = utils.item(alignment_loss.data)
loss += self.alignment_lambda * alignment_loss
return loss, sample_size, logging_output
def compute_alignment_loss(self, sample, net_output):
attn_prob = net_output[1]["attn"][0]
bsz, tgt_sz, src_sz = attn_prob.shape
attn = attn_prob.view(bsz * tgt_sz, src_sz)
align = sample["alignments"]
align_weights = sample["align_weights"].float()
if len(align) > 0:
# Alignment loss computation. align (shape [:, 2]) contains the src-tgt index pairs corresponding to
# the alignments. align_weights (shape [:]) contains the 1 / frequency of a tgt index for normalizing.
loss = -(
(attn[align[:, 1][:, None], align[:, 0][:, None]]).log()
* align_weights[:, None]
).sum()
else:
return None
return loss
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
nll_loss_sum = utils.item(
sum(log.get("nll_loss", 0) for log in logging_outputs)
)
alignment_loss_sum = utils.item(
sum(log.get("alignment_loss", 0) for log in logging_outputs)
)
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_scalar(
"alignment_loss",
alignment_loss_sum / sample_size / math.log(2),
sample_size,
round=3,
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/label_smoothed_cross_entropy_with_alignment.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
from fairseq import metrics, utils
from fairseq.criterions import register_criterion
from fairseq.criterions.ctc import CtcCriterion
from fairseq.criterions.label_smoothed_cross_entropy import (
LabelSmoothedCrossEntropyCriterion,
LabelSmoothedCrossEntropyCriterionConfig,
)
from fairseq.criterions.tacotron2_loss import (
Tacotron2Criterion,
Tacotron2CriterionConfig,
)
class MultitaskCriterion:
def __init__(self, multitask_tasks):
self.multitask_criterion = {}
self.multitask_loss_weight = {}
for task_name, task_obj in multitask_tasks.items():
if task_obj.args.decoder_type == "ctc":
self.multitask_criterion[task_name] = CtcCriterion(
task_obj.args.criterion_cfg, task_obj
)
else:
self.multitask_criterion[
task_name
] = LabelSmoothedCrossEntropyCriterion(
task_obj,
task_obj.args.criterion_cfg.sentence_avg,
label_smoothing=task_obj.args.criterion_cfg.label_smoothing,
)
def set_multitask_loss_weight(self, task_name, weight=0.0):
self.multitask_loss_weight[task_name] = weight
def get_multitask_loss(self, model, sample, model_out):
logging_output = {}
loss = 0.0
for task_name, task_criterion in self.multitask_criterion.items():
layer_id = task_criterion.task.args.input_layer
if isinstance(task_criterion, CtcCriterion):
if task_criterion.task.args.input_from == "encoder":
non_padding_mask = ~model_out["encoder_padding_mask"][0]
input_lengths = non_padding_mask.long().sum(-1)
task_sample = {
"net_input": {
"src_tokens": model_out["encoder_states"][
layer_id
], # check batch idx
"src_lengths": input_lengths,
},
"id": sample["id"],
}
else:
task_sample = {
"net_input": {
"src_tokens": model_out["inner_states"][layer_id],
"src_lengths": sample["target_lengths"],
},
"id": sample["id"],
}
else:
task_sample = {
"net_input": {
"src_tokens": sample["multitask"][task_name]["net_input"][
"prev_output_tokens"
],
"encoder_out": {
"encoder_out": [model_out["encoder_states"][layer_id]],
"encoder_padding_mask": model_out["encoder_padding_mask"],
},
}
}
for key in ["target", "target_lengths", "ntokens"]:
task_sample[key] = sample["multitask"][task_name][key]
task_loss, task_sample_size, task_logging_output = task_criterion(
model.multitask_decoders[task_name], task_sample
)
loss = loss + self.multitask_loss_weight[task_name] * task_loss
task_logging_output["loss_weight"] = self.multitask_loss_weight[task_name]
logging_output[task_name] = task_logging_output
return loss, logging_output
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
for task_name in logging_outputs[0]["multitask"].keys():
# different criterion may return different logging
# currently only reduce on loss, the most common one
# ideally the way that losses are reduced should also depend on the task type
loss_sum = sum(
log["multitask"][task_name].get("loss", 0) for log in logging_outputs
)
sample_size = sum(
log["multitask"][task_name].get("sample_size", 0)
for log in logging_outputs
)
metrics.log_scalar(
f"multitask_{task_name}_loss",
loss_sum / sample_size / math.log(2),
sample_size,
round=3,
)
loss_weight = logging_outputs[0]["multitask"][task_name].get(
"loss_weight", 0
)
metrics.log_scalar(
f"multitask_{task_name}_loss_weight",
loss_weight,
weight=0,
priority=250,
)
@register_criterion(
"speech_to_unit", dataclass=LabelSmoothedCrossEntropyCriterionConfig
)
class SpeechToUnitMultitaskTaskCriterion(
LabelSmoothedCrossEntropyCriterion, MultitaskCriterion
):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size=0,
report_accuracy=False,
):
super().__init__(
task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy
)
MultitaskCriterion.__init__(self, task.multitask_tasks)
def forward(self, model, sample, reduce=True):
net_output, extra = model(
src_tokens=sample["net_input"]["src_tokens"],
src_lengths=sample["net_input"]["src_lengths"],
prev_output_tokens=sample["net_input"]["prev_output_tokens"],
tgt_speaker=sample["net_input"]["tgt_speaker"],
return_all_hiddens=True,
)
loss, nll_loss = self.compute_loss(model, [net_output], sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
}
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, [net_output], sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
if len(self.multitask_criterion) == 0:
return loss, sample_size, logging_output
# multitask
multitask_loss, multitask_log = self.get_multitask_loss(model, sample, extra)
loss += multitask_loss
logging_output["multitask"] = multitask_log
return loss, sample_size, logging_output
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
super().reduce_metrics(logging_outputs)
# inference metrics
if "targ_frames" in logging_outputs[0]:
n = sum(log.get("norm_frames", 0) for log in logging_outputs)
for key, new_key in [
("mcd_loss", "mcd_loss"),
("pred_frames", "pred_ratio"),
("nins", "ins_rate"),
("ndel", "del_rate"),
]:
val = sum(log.get(key, 0) for log in logging_outputs)
metrics.log_scalar(new_key, val / n, n, round=3)
if "multitask" not in logging_outputs[0]:
return
MultitaskCriterion.reduce_metrics(logging_outputs)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False
@register_criterion("speech_to_spectrogram", dataclass=Tacotron2CriterionConfig)
class SpeechToSpectrogramMultitaskTaskCriterion(Tacotron2Criterion, MultitaskCriterion):
def __init__(
self,
task,
sentence_avg,
use_guided_attention_loss,
guided_attention_loss_sigma,
bce_pos_weight,
ctc_weight,
):
super().__init__(
task,
sentence_avg,
use_guided_attention_loss,
guided_attention_loss_sigma,
bce_pos_weight,
ctc_weight,
)
MultitaskCriterion.__init__(self, task.multitask_tasks)
def forward(self, model, sample, reduction="mean"):
bsz, max_len, _ = sample["target"].size()
feat_tgt = sample["target"]
feat_len = sample["target_lengths"].view(bsz, 1).expand(-1, max_len)
eos_tgt = torch.arange(max_len).to(sample["target"].device)
eos_tgt = eos_tgt.view(1, max_len).expand(bsz, -1)
eos_tgt = (eos_tgt == (feat_len - 1)).float()
feat_out, eos_out, extra = model(
src_tokens=sample["net_input"]["src_tokens"],
src_lengths=sample["net_input"]["src_lengths"],
prev_output_tokens=sample["net_input"]["prev_output_tokens"],
tgt_speaker=sample["net_input"]["tgt_speaker"],
target_lengths=sample["target_lengths"],
return_all_hiddens=True,
)
l1_loss, mse_loss, eos_loss = self.compute_loss(
extra["feature_out"],
feat_out,
eos_out,
feat_tgt,
eos_tgt,
sample["target_lengths"],
reduction,
)
attn_loss = torch.tensor(0.0).type_as(l1_loss)
if self.guided_attn is not None:
attn_loss = self.guided_attn(
extra["attn"],
sample["net_input"]["src_lengths"],
sample["target_lengths"],
reduction,
)
loss = (
l1_loss + mse_loss + eos_loss + attn_loss
) # do not include ctc loss as there's no text target
sample_size = sample["nsentences"] if self.sentence_avg else sample["ntokens"]
logging_output = {
"loss": utils.item(loss.data),
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
"l1_loss": utils.item(l1_loss.data),
"mse_loss": utils.item(mse_loss.data),
"eos_loss": utils.item(eos_loss.data),
"attn_loss": utils.item(attn_loss.data),
}
if len(self.multitask_criterion) == 0:
return loss, sample_size, logging_output
# multitask
multitask_loss, multitask_log = self.get_multitask_loss(model, sample, extra)
loss += multitask_loss
logging_output["multitask"] = multitask_log
return loss, sample_size, logging_output
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
super().reduce_metrics(logging_outputs)
# inference metrics
if "targ_frames" in logging_outputs[0]:
n = sum(log.get("norm_frames", 0) for log in logging_outputs)
for key, new_key in [
("mcd_loss", "mcd_loss"),
("pred_frames", "pred_ratio"),
("nins", "ins_rate"),
("ndel", "del_rate"),
]:
val = sum(log.get(key, 0) for log in logging_outputs)
metrics.log_scalar(new_key, val / n, n, round=3)
if "multitask" not in logging_outputs[0]:
return
MultitaskCriterion.reduce_metrics(logging_outputs)
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/speech_to_speech_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
import math
from omegaconf import II
import torch
from fairseq import metrics, modules, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
@dataclass
class MaskedLmConfig(FairseqDataclass):
tpu: bool = II("common.tpu")
@register_criterion("masked_lm", dataclass=MaskedLmConfig)
class MaskedLmLoss(FairseqCriterion):
"""
Implementation for the loss used in masked language model (MLM) training.
"""
def __init__(self, cfg: MaskedLmConfig, task):
super().__init__(task)
self.tpu = cfg.tpu
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
masked_tokens = sample["target"].ne(self.padding_idx)
sample_size = masked_tokens.int().sum()
# Rare: when all tokens are masked, project all tokens.
# We use torch.where to avoid device-to-host transfers,
# except on CPU where torch.where is not well supported
# (see github.com/pytorch/pytorch/issues/26247).
if self.tpu:
masked_tokens = None # always project all tokens on TPU
elif masked_tokens.device == torch.device("cpu"):
if not masked_tokens.any():
masked_tokens = None
else:
masked_tokens = torch.where(
masked_tokens.any(),
masked_tokens,
masked_tokens.new([True]),
)
logits = model(**sample["net_input"], masked_tokens=masked_tokens)[0]
targets = model.get_targets(sample, [logits])
if masked_tokens is not None:
targets = targets[masked_tokens]
loss = modules.cross_entropy(
logits.view(-1, logits.size(-1)),
targets.view(-1),
reduction="sum",
ignore_index=self.padding_idx,
)
logging_output = {
"loss": loss if self.tpu else loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
}
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq import metrics
from fairseq.criterions import FairseqCriterion, register_criterion
@register_criterion("sentence_ranking")
class SentenceRankingCriterion(FairseqCriterion):
def __init__(self, task, ranking_head_name, save_predictions, num_classes):
super().__init__(task)
self.ranking_head_name = ranking_head_name
if save_predictions is not None:
self.prediction_h = open(save_predictions, "w")
else:
self.prediction_h = None
self.num_classes = num_classes
def __del__(self):
if self.prediction_h is not None:
self.prediction_h.close()
@staticmethod
def add_args(parser):
# fmt: off
parser.add_argument('--save-predictions', metavar='FILE',
help='file to save predictions to')
parser.add_argument('--ranking-head-name',
default='sentence_classification_head',
help='name of the ranking head to use')
# fmt: on
def forward(self, model, sample, reduce=True):
"""Compute ranking loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
assert (
hasattr(model, "classification_heads")
and self.ranking_head_name in model.classification_heads
), "model must provide sentence ranking head for --criterion=sentence_ranking"
scores = []
for idx in range(self.num_classes):
score, _ = model(
**sample["net_input{idx}".format(idx=idx + 1)],
classification_head_name=self.ranking_head_name,
)
scores.append(score)
logits = torch.cat(scores, dim=1)
sample_size = logits.size(0)
if "target" in sample:
targets = model.get_targets(sample, [logits]).view(-1)
lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32)
loss = F.nll_loss(lprobs, targets, reduction="sum")
else:
targets = None
loss = torch.tensor(0.0, requires_grad=True)
if self.prediction_h is not None:
preds = logits.argmax(dim=1)
for i, (id, pred) in enumerate(zip(sample["id"].tolist(), preds.tolist())):
if targets is not None:
label = targets[i].item()
print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h)
else:
print("{}\t{}".format(id, pred), file=self.prediction_h)
logging_output = {
"loss": loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample_size,
"sample_size": sample_size,
}
if targets is not None:
logging_output["ncorrect"] = (logits.argmax(dim=1) == targets).sum()
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]:
ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs)
metrics.log_scalar(
"accuracy", 100.0 * ncorrect / nsentences, nsentences, round=1
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| KosmosX-API-main | kosmosX/fairseq/fairseq/criterions/sentence_ranking.py |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# fairseq documentation build configuration file, created by
# sphinx-quickstart on Fri Aug 17 21:45:30 2018.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
import os
import sys
from fairseq import __version__
# source code directory, relative to this file, for sphinx-autobuild
sys.path.insert(0, os.path.abspath(".."))
source_suffix = [".rst"]
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.intersphinx",
"sphinx.ext.viewcode",
"sphinx.ext.napoleon",
"sphinxarg.ext",
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# The master toctree document.
master_doc = "index"
# General information about the project.
project = "fairseq"
copyright = "Facebook AI Research (FAIR)"
author = "Facebook AI Research (FAIR)"
github_doc_root = "https://github.com/pytorch/fairseq/tree/main/docs/"
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = __version__
# The full version, including alpha/beta/rc tags.
release = __version__
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = "sphinx"
highlight_language = "python"
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#
# html_theme_options = {}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
html_context = {
"css_files": [
"_static/theme_overrides.css", # override wide tables in RTD theme
],
}
# Custom sidebar templates, must be a dictionary that maps document names
# to template names.
#
# This is required for the alabaster theme
# refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars
# html_sidebars = {
# '**': [
# 'about.html',
# 'navigation.html',
# 'relations.html', # needs 'show_related': True theme option to display
# 'searchbox.html',
# 'donate.html',
# ]
# }
# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {
"numpy": ("http://docs.scipy.org/doc/numpy/", None),
"python": ("https://docs.python.org/", None),
"torch": ("https://pytorch.org/docs/master/", None),
}
| KosmosX-API-main | kosmosX/fairseq/docs/conf.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import hydra
import torch
from hydra.core.hydra_config import HydraConfig
from omegaconf import OmegaConf, open_dict
from fairseq import distributed_utils, metrics
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.initialize import add_defaults, hydra_init
from fairseq.dataclass.utils import omegaconf_no_object_check
from fairseq.utils import reset_logging
from fairseq_cli.train import main as pre_main
logger = logging.getLogger("fairseq_cli.hydra_train")
@hydra.main(config_path=os.path.join("..", "fairseq", "config"), config_name="config")
def hydra_main(cfg: FairseqConfig) -> float:
_hydra_main(cfg)
def _hydra_main(cfg: FairseqConfig, **kwargs) -> float:
add_defaults(cfg)
if cfg.common.reset_logging:
reset_logging() # Hydra hijacks logging, fix that
else:
# check if directly called or called through hydra_main
if HydraConfig.initialized():
with open_dict(cfg):
# make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
cfg.job_logging_cfg = OmegaConf.to_container(
HydraConfig.get().job_logging, resolve=True
)
with omegaconf_no_object_check():
cfg = OmegaConf.create(
OmegaConf.to_container(cfg, resolve=True, enum_to_str=True)
)
OmegaConf.set_struct(cfg, True)
try:
if cfg.common.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, pre_main, **kwargs)
else:
distributed_utils.call_main(cfg, pre_main, **kwargs)
except BaseException as e:
if not cfg.common.suppress_crashes:
raise
else:
logger.error("Crashed! " + str(e))
# get best val and return - useful for sweepers
try:
best_val = metrics.get_smoothed_value(
"valid", cfg.checkpoint.best_checkpoint_metric
)
except:
best_val = None
if best_val is None:
best_val = float("inf")
return best_val
def cli_main():
try:
from hydra._internal.utils import get_args
cfg_name = get_args().config_name or "config"
except:
logger.warning("Failed to get config name from hydra args")
cfg_name = "config"
hydra_init(cfg_name)
hydra_main()
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/hydra_train.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Data pre-processing: build vocabularies and binarize training data.
"""
import logging
import os
import shutil
import sys
import typing as tp
from argparse import Namespace
from itertools import zip_longest
from fairseq import options, tasks, utils
from fairseq.binarizer import (
AlignmentDatasetBinarizer,
FileBinarizer,
VocabularyDatasetBinarizer,
)
from fairseq.data import Dictionary
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.preprocess")
#####################################################################
# file name tools
#####################################################################
def _train_path(lang, trainpref):
return "{}{}".format(trainpref, ("." + lang) if lang else "")
def _file_name(prefix, lang):
fname = prefix
if lang is not None:
fname += ".{lang}".format(lang=lang)
return fname
def _dest_path(prefix, lang, destdir):
return os.path.join(destdir, _file_name(prefix, lang))
def _dict_path(lang, destdir):
return _dest_path("dict", lang, destdir) + ".txt"
def dataset_dest_prefix(args, output_prefix, lang):
base = os.path.join(args.destdir, output_prefix)
if lang is not None:
lang_part = f".{args.source_lang}-{args.target_lang}.{lang}"
elif args.only_source:
lang_part = ""
else:
lang_part = f".{args.source_lang}-{args.target_lang}"
return "{}{}".format(base, lang_part)
def dataset_dest_file(args, output_prefix, lang, extension):
return "{}.{}".format(dataset_dest_prefix(args, output_prefix, lang), extension)
#####################################################################
# dictionary tools
#####################################################################
def _build_dictionary(
filenames,
task,
args,
src=False,
tgt=False,
):
assert src ^ tgt
return task.build_dictionary(
filenames,
workers=args.workers,
threshold=args.thresholdsrc if src else args.thresholdtgt,
nwords=args.nwordssrc if src else args.nwordstgt,
padding_factor=args.padding_factor,
)
#####################################################################
# bin file creation logic
#####################################################################
def _make_binary_dataset(
vocab: Dictionary,
input_prefix: str,
output_prefix: str,
lang: tp.Optional[str],
num_workers: int,
args: Namespace,
):
logger.info("[{}] Dictionary: {} types".format(lang, len(vocab)))
binarizer = VocabularyDatasetBinarizer(
vocab,
append_eos=True,
)
input_file = "{}{}".format(input_prefix, ("." + lang) if lang is not None else "")
full_output_prefix = dataset_dest_prefix(args, output_prefix, lang)
final_summary = FileBinarizer.multiprocess_dataset(
input_file,
args.dataset_impl,
binarizer,
full_output_prefix,
vocab_size=len(vocab),
num_workers=num_workers,
)
logger.info(f"[{lang}] {input_file}: {final_summary} (by {vocab.unk_word})")
def _make_binary_alignment_dataset(
input_prefix: str, output_prefix: str, num_workers: int, args: Namespace
):
binarizer = AlignmentDatasetBinarizer(utils.parse_alignment)
input_file = input_prefix
full_output_prefix = dataset_dest_prefix(args, output_prefix, lang=None)
final_summary = FileBinarizer.multiprocess_dataset(
input_file,
args.dataset_impl,
binarizer,
full_output_prefix,
vocab_size=None,
num_workers=num_workers,
)
logger.info(
"[alignments] {}: parsed {} alignments".format(
input_file, final_summary.num_seq
)
)
#####################################################################
# routing logic
#####################################################################
def _make_dataset(
vocab: Dictionary,
input_prefix: str,
output_prefix: str,
lang: tp.Optional[str],
args: Namespace,
num_workers: int,
):
if args.dataset_impl == "raw":
# Copy original text file to destination folder
output_text_file = _dest_path(
output_prefix + ".{}-{}".format(args.source_lang, args.target_lang),
lang,
args.destdir,
)
shutil.copyfile(_file_name(input_prefix, lang), output_text_file)
else:
_make_binary_dataset(
vocab, input_prefix, output_prefix, lang, num_workers, args
)
def _make_all(lang, vocab, args):
if args.trainpref:
_make_dataset(
vocab, args.trainpref, "train", lang, args=args, num_workers=args.workers
)
if args.validpref:
for k, validpref in enumerate(args.validpref.split(",")):
outprefix = "valid{}".format(k) if k > 0 else "valid"
_make_dataset(
vocab, validpref, outprefix, lang, args=args, num_workers=args.workers
)
if args.testpref:
for k, testpref in enumerate(args.testpref.split(",")):
outprefix = "test{}".format(k) if k > 0 else "test"
_make_dataset(
vocab, testpref, outprefix, lang, args=args, num_workers=args.workers
)
def _make_all_alignments(args):
if args.trainpref and os.path.exists(args.trainpref + "." + args.align_suffix):
_make_binary_alignment_dataset(
args.trainpref + "." + args.align_suffix,
"train.align",
num_workers=args.workers,
args=args,
)
if args.validpref and os.path.exists(args.validpref + "." + args.align_suffix):
_make_binary_alignment_dataset(
args.validpref + "." + args.align_suffix,
"valid.align",
num_workers=args.workers,
args=args,
)
if args.testpref and os.path.exists(args.testpref + "." + args.align_suffix):
_make_binary_alignment_dataset(
args.testpref + "." + args.align_suffix,
"test.align",
num_workers=args.workers,
args=args,
)
#####################################################################
# align
#####################################################################
def _align_files(args, src_dict, tgt_dict):
assert args.trainpref, "--trainpref must be set if --alignfile is specified"
src_file_name = _train_path(args.source_lang, args.trainpref)
tgt_file_name = _train_path(args.target_lang, args.trainpref)
freq_map = {}
with open(args.alignfile, "r", encoding="utf-8") as align_file:
with open(src_file_name, "r", encoding="utf-8") as src_file:
with open(tgt_file_name, "r", encoding="utf-8") as tgt_file:
for a, s, t in zip_longest(align_file, src_file, tgt_file):
si = src_dict.encode_line(s, add_if_not_exist=False)
ti = tgt_dict.encode_line(t, add_if_not_exist=False)
ai = list(map(lambda x: tuple(x.split("-")), a.split()))
for sai, tai in ai:
srcidx = si[int(sai)]
tgtidx = ti[int(tai)]
if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk():
assert srcidx != src_dict.pad()
assert srcidx != src_dict.eos()
assert tgtidx != tgt_dict.pad()
assert tgtidx != tgt_dict.eos()
if srcidx not in freq_map:
freq_map[srcidx] = {}
if tgtidx not in freq_map[srcidx]:
freq_map[srcidx][tgtidx] = 1
else:
freq_map[srcidx][tgtidx] += 1
align_dict = {}
for srcidx in freq_map.keys():
align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get)
with open(
os.path.join(
args.destdir,
"alignment.{}-{}.txt".format(args.source_lang, args.target_lang),
),
"w",
encoding="utf-8",
) as f:
for k, v in align_dict.items():
print("{} {}".format(src_dict[k], tgt_dict[v]), file=f)
#####################################################################
# MAIN
#####################################################################
def main(args):
# setup some basic things
utils.import_user_module(args)
os.makedirs(args.destdir, exist_ok=True)
logger.addHandler(
logging.FileHandler(
filename=os.path.join(args.destdir, "preprocess.log"),
)
)
logger.info(args)
assert (
args.dataset_impl != "huffman"
), "preprocessing.py doesn't support Huffman yet, use HuffmanCodeBuilder directly."
# build dictionaries
target = not args.only_source
if not args.srcdict and os.path.exists(_dict_path(args.source_lang, args.destdir)):
raise FileExistsError(_dict_path(args.source_lang, args.destdir))
if (
target
and not args.tgtdict
and os.path.exists(_dict_path(args.target_lang, args.destdir))
):
raise FileExistsError(_dict_path(args.target_lang, args.destdir))
task = tasks.get_task(args.task)
if args.joined_dictionary:
assert (
not args.srcdict or not args.tgtdict
), "cannot use both --srcdict and --tgtdict with --joined-dictionary"
if args.srcdict:
src_dict = task.load_dictionary(args.srcdict)
elif args.tgtdict:
src_dict = task.load_dictionary(args.tgtdict)
else:
assert (
args.trainpref
), "--trainpref must be set if --srcdict is not specified"
src_dict = _build_dictionary(
{
_train_path(lang, args.trainpref)
for lang in [args.source_lang, args.target_lang]
},
task=task,
args=args,
src=True,
)
tgt_dict = src_dict
else:
if args.srcdict:
src_dict = task.load_dictionary(args.srcdict)
else:
assert (
args.trainpref
), "--trainpref must be set if --srcdict is not specified"
src_dict = _build_dictionary(
[_train_path(args.source_lang, args.trainpref)],
task=task,
args=args,
src=True,
)
if target:
if args.tgtdict:
tgt_dict = task.load_dictionary(args.tgtdict)
else:
assert (
args.trainpref
), "--trainpref must be set if --tgtdict is not specified"
tgt_dict = _build_dictionary(
[_train_path(args.target_lang, args.trainpref)],
task=task,
args=args,
tgt=True,
)
else:
tgt_dict = None
# save dictionaries
src_dict.save(_dict_path(args.source_lang, args.destdir))
if target and tgt_dict is not None:
tgt_dict.save(_dict_path(args.target_lang, args.destdir))
if args.dict_only:
return
_make_all(args.source_lang, src_dict, args)
if target:
_make_all(args.target_lang, tgt_dict, args)
# align the datasets if needed
if args.align_suffix:
_make_all_alignments(args)
logger.info("Wrote preprocessed data to {}".format(args.destdir))
if args.alignfile:
_align_files(args, src_dict=src_dict, tgt_dict=tgt_dict)
def cli_main():
parser = options.get_preprocessing_parser()
args = parser.parse_args()
main(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/preprocess.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""
import ast
import logging
import math
import os
import sys
from argparse import Namespace
from itertools import chain
import numpy as np
import torch
from omegaconf import DictConfig
from fairseq import checkpoint_utils, options, scoring, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter, TimeMeter
def main(cfg: DictConfig):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
assert cfg.common_eval.path is not None, "--path required for generation!"
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw"
), "--replace-unk requires a raw text dataset (--dataset-impl=raw)"
if cfg.common_eval.results_path is not None:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(
cfg.common_eval.results_path,
"generate-{}.txt".format(cfg.dataset.gen_subset),
)
with open(output_path, "w", buffering=1, encoding="utf-8") as h:
return _main(cfg, h)
else:
return _main(cfg, sys.stdout)
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.eos}
def _main(cfg: DictConfig, output_file):
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=output_file,
)
logger = logging.getLogger("fairseq_cli.generate")
utils.import_user_module(cfg.common)
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.max_tokens = 12000
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
# Load dataset splits
task = tasks.setup_task(cfg.task)
# Set dictionaries
try:
src_dict = getattr(task, "source_dictionary", None)
except NotImplementedError:
src_dict = None
tgt_dict = task.target_dictionary
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
if cfg.generation.lm_path is not None:
overrides["data"] = cfg.task.data
try:
lms, _ = checkpoint_utils.load_model_ensemble(
[cfg.generation.lm_path], arg_overrides=overrides, task=None
)
except:
logger.warning(
f"Failed to load language model! Please make sure that the language model dict is the same "
f"as target dict and is located in the data dir ({cfg.task.data})"
)
raise
assert len(lms) == 1
else:
lms = [None]
# Optimize ensemble for generation
for model in chain(models, lms):
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(cfg.generation.replace_unk)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(cfg.dataset.gen_subset),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
task.max_positions(), *[m.max_positions() for m in models]
),
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
seed=cfg.common.seed,
num_shards=cfg.distributed_training.distributed_world_size,
shard_id=cfg.distributed_training.distributed_rank,
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
# Initialize generator
gen_timer = StopwatchMeter()
extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight}
generator = task.build_generator(
models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
# Handle tokenization and BPE
tokenizer = task.build_tokenizer(cfg.tokenizer)
bpe = task.build_bpe(cfg.bpe)
def decode_fn(x):
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
scorer = scoring.build_scorer(cfg.scoring, tgt_dict)
num_sentences = 0
has_target = True
wps_meter = TimeMeter()
for sample in progress:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if "net_input" not in sample:
continue
prefix_tokens = None
if cfg.generation.prefix_size > 0:
prefix_tokens = sample["target"][:, : cfg.generation.prefix_size]
constraints = None
if "constraints" in sample:
constraints = sample["constraints"]
gen_timer.start()
hypos = task.inference_step(
generator,
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
)
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
gen_timer.stop(num_generated_tokens)
for i, sample_id in enumerate(sample["id"].tolist()):
has_target = sample["target"] is not None
# Remove padding
if "src_tokens" in sample["net_input"]:
src_tokens = utils.strip_pad(
sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
)
else:
src_tokens = None
target_tokens = None
if has_target:
target_tokens = (
utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu()
)
# Either retrieve the original sentences or regenerate them from tokens.
if align_dict is not None:
src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text(
sample_id
)
target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text(
sample_id
)
else:
if src_dict is not None:
src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
else:
src_str = ""
if has_target:
target_str = tgt_dict.string(
target_tokens,
cfg.common_eval.post_process,
escape_unk=True,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(
generator
),
)
src_str = decode_fn(src_str)
if has_target:
target_str = decode_fn(target_str)
if not cfg.common_eval.quiet:
if src_dict is not None:
print("S-{}\t{}".format(sample_id, src_str), file=output_file)
if has_target:
print("T-{}\t{}".format(sample_id, target_str), file=output_file)
# Process top predictions
for j, hypo in enumerate(hypos[i][: cfg.generation.nbest]):
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=src_str,
alignment=hypo["alignment"],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
detok_hypo_str = decode_fn(hypo_str)
if not cfg.common_eval.quiet:
score = hypo["score"] / math.log(2) # convert to base 2
# original hypothesis (after tokenization and BPE)
print(
"H-{}\t{}\t{}".format(sample_id, score, hypo_str),
file=output_file,
)
# detokenized hypothesis
print(
"D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str),
file=output_file,
)
print(
"P-{}\t{}".format(
sample_id,
" ".join(
map(
lambda x: "{:.4f}".format(x),
# convert from base e to base 2
hypo["positional_scores"]
.div_(math.log(2))
.tolist(),
)
),
),
file=output_file,
)
if cfg.generation.print_alignment == "hard":
print(
"A-{}\t{}".format(
sample_id,
" ".join(
[
"{}-{}".format(src_idx, tgt_idx)
for src_idx, tgt_idx in alignment
]
),
),
file=output_file,
)
if cfg.generation.print_alignment == "soft":
print(
"A-{}\t{}".format(
sample_id,
" ".join(
[",".join(src_probs) for src_probs in alignment]
),
),
file=output_file,
)
if cfg.generation.print_step:
print(
"I-{}\t{}".format(sample_id, hypo["steps"]),
file=output_file,
)
if cfg.generation.retain_iter_history:
for step, h in enumerate(hypo["history"]):
_, h_str, _ = utils.post_process_prediction(
hypo_tokens=h["tokens"].int().cpu(),
src_str=src_str,
alignment=None,
align_dict=None,
tgt_dict=tgt_dict,
remove_bpe=None,
)
print(
"E-{}_{}\t{}".format(sample_id, step, h_str),
file=output_file,
)
# Score only the top hypothesis
if has_target and j == 0:
if (
align_dict is not None
or cfg.common_eval.post_process is not None
):
# Convert back to tokens for evaluation with unk replacement and/or without BPE
target_tokens = tgt_dict.encode_line(
target_str, add_if_not_exist=True
)
hypo_tokens = tgt_dict.encode_line(
detok_hypo_str, add_if_not_exist=True
)
if hasattr(scorer, "add_string"):
scorer.add_string(target_str, detok_hypo_str)
else:
scorer.add(target_tokens, hypo_tokens)
wps_meter.update(num_generated_tokens)
progress.log({"wps": round(wps_meter.avg)})
num_sentences += (
sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
)
logger.info("NOTE: hypothesis and token scores are output in base 2")
logger.info(
"Translated {:,} sentences ({:,} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format(
num_sentences,
gen_timer.n,
gen_timer.sum,
num_sentences / gen_timer.sum,
1.0 / gen_timer.avg,
)
)
if has_target:
if cfg.bpe and not cfg.generation.sacrebleu:
if cfg.common_eval.post_process:
logger.warning(
"BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
)
else:
logger.warning(
"If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization"
)
# use print to be consistent with other main outputs: S-, H-, T-, D- and so on
print(
"Generate {} with beam={}: {}".format(
cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string()
),
file=output_file,
)
return scorer
def cli_main():
parser = options.get_generation_parser()
# TODO: replace this workaround with refactoring of `AudioPretraining`
parser.add_argument(
"--arch",
"-a",
metavar="ARCH",
default="wav2vec2",
help="Model architecture. For constructing tasks that rely on "
"model args (e.g. `AudioPretraining`)",
)
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/generate.py |
KosmosX-API-main | kosmosX/fairseq/fairseq_cli/__init__.py |
|
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
from argparse import Namespace
from itertools import chain
import torch
from omegaconf import DictConfig
from fairseq import checkpoint_utils, distributed_utils, options, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import metrics, progress_bar
from fairseq.utils import reset_logging
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.validate")
def main(cfg: DictConfig, override_args=None):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
reset_logging()
assert (
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
), "Must specify batch size either with --max-tokens or --batch-size"
use_fp16 = cfg.common.fp16
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
if use_cuda:
torch.cuda.set_device(cfg.distributed_training.device_id)
if cfg.distributed_training.distributed_world_size > 1:
data_parallel_world_size = distributed_utils.get_data_parallel_world_size()
data_parallel_rank = distributed_utils.get_data_parallel_rank()
else:
data_parallel_world_size = 1
data_parallel_rank = 0
if override_args is not None:
overrides = vars(override_args)
overrides.update(eval(getattr(override_args, "model_overrides", "{}")))
else:
overrides = None
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[cfg.common_eval.path],
arg_overrides=overrides,
suffix=cfg.checkpoint.checkpoint_suffix,
)
model = models[0]
# Move models to GPU
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda:
model.cuda()
# Print args
logger.info(saved_cfg)
# Build criterion
criterion = task.build_criterion(saved_cfg.criterion)
criterion.eval()
for subset in cfg.dataset.valid_subset.split(","):
try:
task.load_dataset(subset, combine=False, epoch=1, task_cfg=saved_cfg.task)
dataset = task.dataset(subset)
except KeyError:
raise Exception("Cannot find dataset: " + subset)
# Initialize data iterator
itr = task.get_batch_iterator(
dataset=dataset,
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
task.max_positions(),
*[m.max_positions() for m in models],
),
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
seed=cfg.common.seed,
num_shards=data_parallel_world_size,
shard_id=data_parallel_rank,
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
prefix=f"valid on '{subset}' subset",
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
log_outputs = []
for i, sample in enumerate(progress):
sample = utils.move_to_cuda(sample) if use_cuda else sample
_loss, _sample_size, log_output = task.valid_step(sample, model, criterion)
progress.log(log_output, step=i)
log_outputs.append(log_output)
if data_parallel_world_size > 1:
log_outputs = distributed_utils.all_gather_list(
log_outputs,
max_size=cfg.common.all_gather_list_size,
group=distributed_utils.get_data_parallel_group(),
)
log_outputs = list(chain.from_iterable(log_outputs))
with metrics.aggregate() as agg:
task.reduce_metrics(log_outputs, criterion)
log_output = agg.get_smoothed_values()
progress.print(log_output, tag=subset, step=i)
def cli_main():
parser = options.get_validation_parser()
args = options.parse_args_and_arch(parser)
# only override args that are explicitly given on the command line
override_parser = options.get_validation_parser()
override_args = options.parse_args_and_arch(override_parser, suppress_defaults=True)
distributed_utils.call_main(
convert_namespace_to_omegaconf(args), main, override_args=override_args
)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/validate.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate raw text with a trained model. Batches data on-the-fly.
"""
import ast
import fileinput
import logging
import math
import os
import sys
import time
from argparse import Namespace
from collections import namedtuple
import numpy as np
import torch
from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.interactive")
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints")
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments")
def buffered_read(input, buffer_size):
buffer = []
with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h:
for src_str in h:
buffer.append(src_str.strip())
if len(buffer) >= buffer_size:
yield buffer
buffer = []
if len(buffer) > 0:
yield buffer
def make_batches(lines, cfg, task, max_positions, encode_fn):
def encode_fn_target(x):
return encode_fn(x)
if cfg.generation.constraints:
# Strip (tab-delimited) contraints, if present, from input lines,
# store them in batch_constraints
batch_constraints = [list() for _ in lines]
for i, line in enumerate(lines):
if "\t" in line:
lines[i], *batch_constraints[i] = line.split("\t")
# Convert each List[str] to List[Tensor]
for i, constraint_list in enumerate(batch_constraints):
batch_constraints[i] = [
task.target_dictionary.encode_line(
encode_fn_target(constraint),
append_eos=False,
add_if_not_exist=False,
)
for constraint in constraint_list
]
if cfg.generation.constraints:
constraints_tensor = pack_constraints(batch_constraints)
else:
constraints_tensor = None
tokens, lengths = task.get_interactive_tokens_and_lengths(lines, encode_fn)
itr = task.get_batch_iterator(
dataset=task.build_dataset_for_inference(
tokens, lengths, constraints=constraints_tensor
),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=max_positions,
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
).next_epoch_itr(shuffle=False)
for batch in itr:
ids = batch["id"]
src_tokens = batch["net_input"]["src_tokens"]
src_lengths = batch["net_input"]["src_lengths"]
constraints = batch.get("constraints", None)
yield Batch(
ids=ids,
src_tokens=src_tokens,
src_lengths=src_lengths,
constraints=constraints,
)
def main(cfg: FairseqConfig):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
start_time = time.time()
total_translate_time = 0
utils.import_user_module(cfg.common)
if cfg.interactive.buffer_size < 1:
cfg.interactive.buffer_size = 1
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.batch_size = 1
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
not cfg.dataset.batch_size
or cfg.dataset.batch_size <= cfg.interactive.buffer_size
), "--batch-size cannot be larger than --buffer-size"
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
# Setup task, e.g., translation
task = tasks.setup_task(cfg.task)
# Load ensemble
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, _model_args = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# Set dictionaries
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
# Optimize ensemble for generation
for model in models:
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
# Handle tokenization and BPE
tokenizer = task.build_tokenizer(cfg.tokenizer)
bpe = task.build_bpe(cfg.bpe)
def encode_fn(x):
if tokenizer is not None:
x = tokenizer.encode(x)
if bpe is not None:
x = bpe.encode(x)
return x
def decode_fn(x):
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(cfg.generation.replace_unk)
max_positions = utils.resolve_max_positions(
task.max_positions(), *[model.max_positions() for model in models]
)
if cfg.generation.constraints:
logger.warning(
"NOTE: Constrained decoding currently assumes a shared subword vocabulary."
)
if cfg.interactive.buffer_size > 1:
logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size)
logger.info("NOTE: hypothesis and token scores are output in base 2")
logger.info("Type the input sentence and press return:")
start_id = 0
for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size):
results = []
for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
constraints = batch.constraints
if use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
}
translate_start_time = time.time()
translations = task.inference_step(
generator, models, sample, constraints=constraints
)
translate_time = time.time() - translate_start_time
total_translate_time += translate_time
list_constraints = [[] for _ in range(bsz)]
if cfg.generation.constraints:
list_constraints = [unpack_constraints(c) for c in constraints]
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
constraints = list_constraints[i]
results.append(
(
start_id + id,
src_tokens_i,
hypos,
{
"constraints": constraints,
"time": translate_time / len(translations),
},
)
)
# sort output to match input order
for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
src_str = ""
if src_dict is not None:
src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
print("S-{}\t{}".format(id_, src_str))
print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
for constraint in info["constraints"]:
print(
"C-{}\t{}".format(
id_,
tgt_dict.string(constraint, cfg.common_eval.post_process),
)
)
# Process top predictions
for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]:
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=src_str,
alignment=hypo["alignment"],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
detok_hypo_str = decode_fn(hypo_str)
score = hypo["score"] / math.log(2) # convert to base 2
# original hypothesis (after tokenization and BPE)
print("H-{}\t{}\t{}".format(id_, score, hypo_str))
# detokenized hypothesis
print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str))
print(
"P-{}\t{}".format(
id_,
" ".join(
map(
lambda x: "{:.4f}".format(x),
# convert from base e to base 2
hypo["positional_scores"].div_(math.log(2)).tolist(),
)
),
)
)
if cfg.generation.print_alignment:
alignment_str = " ".join(
["{}-{}".format(src, tgt) for src, tgt in alignment]
)
print("A-{}\t{}".format(id_, alignment_str))
# update running id_ counter
start_id += len(inputs)
logger.info(
"Total time: {:.3f} seconds; translation time: {:.3f}".format(
time.time() - start_time, total_translate_time
)
)
def cli_main():
parser = options.get_interactive_generation_parser()
args = options.parse_args_and_arch(parser)
distributed_utils.call_main(convert_namespace_to_omegaconf(args), main)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/interactive.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a new model on one or across multiple GPUs.
"""
import argparse
import logging
import math
import os
import sys
from typing import Any, Callable, Dict, List, Optional, Tuple
# We need to setup root logger before importing any fairseq libraries.
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.train")
import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from fairseq import checkpoint_utils, options, quantization_utils, tasks, utils
from fairseq.data import data_utils, iterators
from fairseq.data.plasma_utils import PlasmaStore
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import fsdp_enable_wrap, fsdp_wrap
from fairseq.distributed import utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics, progress_bar
from fairseq.model_parallel.megatron_trainer import MegatronTrainer
from fairseq.trainer import Trainer
from multiprocessing.pool import ThreadPool
def main(cfg: FairseqConfig) -> None:
if isinstance(cfg, argparse.Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
if (
distributed_utils.is_master(cfg.distributed_training)
and "job_logging_cfg" in cfg
):
# make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg))
assert (
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
), "Must specify batch size either with --max-tokens or --batch-size"
metrics.reset()
if cfg.common.log_file is not None:
handler = logging.FileHandler(filename=cfg.common.log_file)
logger.addHandler(handler)
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
ds_local_master = cfg.common.deepspeed and distributed_utils.is_local_master(cfg.distributed_training)
if distributed_utils.is_master(cfg.distributed_training) or ds_local_master:
checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir, rank=torch.distributed.get_rank())
ThreadPool(processes=1)
else:
pass
# if distributed_utils.is_master(cfg.distributed_training):
# checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)
# Print args
logger.info(cfg)
if cfg.checkpoint.write_checkpoints_asynchronously:
try:
import iopath # noqa: F401
except ImportError:
logging.exception(
"Asynchronous checkpoint writing is specified but iopath is "
"not installed: `pip install iopath`"
)
return
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(cfg.task)
assert cfg.criterion, "Please specify criterion to train a model"
# Build model and criterion
if cfg.distributed_training.ddp_backend == "fully_sharded":
with fsdp_enable_wrap(cfg.distributed_training):
model = fsdp_wrap(task.build_model(cfg.model))
else:
model = task.build_model(cfg.model)
criterion = task.build_criterion(cfg.criterion)
logger.info(model)
logger.info("task: {}".format(task.__class__.__name__))
logger.info("model: {}".format(model.__class__.__name__))
logger.info("criterion: {}".format(criterion.__class__.__name__))
logger.info(
"num. shared model params: {:,} (num. trained: {:,})".format(
sum(
p.numel() for p in model.parameters() if not getattr(p, "expert", False)
),
sum(
p.numel()
for p in model.parameters()
if not getattr(p, "expert", False) and p.requires_grad
),
)
)
logger.info(
"num. expert model params: {} (num. trained: {})".format(
sum(p.numel() for p in model.parameters() if getattr(p, "expert", False)),
sum(
p.numel()
for p in model.parameters()
if getattr(p, "expert", False) and p.requires_grad
),
)
)
# Load valid dataset (we load training data below, based on the latest checkpoint)
# We load the valid dataset AFTER building the model
data_utils.raise_if_valid_subsets_unintentionally_ignored(cfg)
if cfg.dataset.combine_valid_subsets:
task.load_dataset("valid", combine=True, epoch=1)
else:
for valid_sub_split in cfg.dataset.valid_subset.split(","):
task.load_dataset(valid_sub_split, combine=False, epoch=1)
# (optionally) Configure quantization
if cfg.common.quantization_config_path is not None:
quantizer = quantization_utils.Quantizer(
config_path=cfg.common.quantization_config_path,
max_epoch=cfg.optimization.max_epoch,
max_update=cfg.optimization.max_update,
)
else:
quantizer = None
# Build trainer
if cfg.common.deepspeed:
assert quantizer is None, "fairseq wuantizer is not currently supported on deepspeed"
from fairseq.ds_trainer import DeepSpeedTrainer
trainer = DeepSpeedTrainer(cfg, task, model, criterion)
elif cfg.common.model_parallel_size == 1:
trainer = Trainer(cfg, task, model, criterion, quantizer)
else:
trainer = MegatronTrainer(cfg, task, model, criterion)
logger.info(
"training on {} devices (GPUs/TPUs)".format(
cfg.distributed_training.distributed_world_size
)
)
logger.info(
"max tokens per device = {} and max sentences per device = {}".format(
cfg.dataset.max_tokens,
cfg.dataset.batch_size,
)
)
# Load the latest checkpoint if one is available and restore the
# corresponding train iterator
extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
cfg.checkpoint,
trainer,
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
if cfg.common.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("load_checkpoint") # wait for all workers
max_epoch = cfg.optimization.max_epoch or math.inf
lr = trainer.get_lr()
train_meter = meters.StopwatchMeter()
train_meter.start()
while epoch_itr.next_epoch_idx <= max_epoch:
if lr <= cfg.optimization.stop_min_lr:
logger.info(
f"stopping training because current learning rate ({lr}) is smaller "
"than or equal to minimum learning rate "
f"(--stop-min-lr={cfg.optimization.stop_min_lr})"
)
break
# train for one epoch
valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
if should_stop:
break
# only use first validation loss to update the learning rate
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
epoch_itr = trainer.get_train_iterator(
epoch_itr.next_epoch_idx,
# sharded data: get train iterator for next epoch
load_dataset=task.has_sharded_data("train"),
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
train_meter.stop()
logger.info("done training in {:.1f} seconds".format(train_meter.sum))
# ioPath implementation to wait for all asynchronous file writes to complete.
if cfg.checkpoint.write_checkpoints_asynchronously:
logger.info(
"ioPath PathManager waiting for all asynchronous checkpoint "
"writes to finish."
)
PathManager.async_close()
logger.info("ioPath PathManager finished waiting.")
def should_stop_early(cfg: DictConfig, valid_loss: float) -> bool:
# skip check if no validation was done in the current epoch
if valid_loss is None:
return False
if cfg.checkpoint.patience <= 0:
return False
def is_better(a, b):
return a > b if cfg.checkpoint.maximize_best_checkpoint_metric else a < b
prev_best = getattr(should_stop_early, "best", None)
if prev_best is None or is_better(valid_loss, prev_best):
should_stop_early.best = valid_loss
should_stop_early.num_runs = 0
return False
else:
should_stop_early.num_runs += 1
if should_stop_early.num_runs >= cfg.checkpoint.patience:
logger.info(
"early stop since valid performance hasn't improved for last {} runs".format(
cfg.checkpoint.patience
)
)
return True
else:
return False
@metrics.aggregate("train")
def train(
cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr
) -> Tuple[List[Optional[float]], bool]:
"""Train the model for one epoch and return validation losses."""
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(
fix_batches_to_gpus=cfg.distributed_training.fix_batches_to_gpus,
shuffle=(epoch_itr.next_epoch_idx > cfg.dataset.curriculum),
)
update_freq = (
cfg.optimization.update_freq[epoch_itr.epoch - 1]
if epoch_itr.epoch <= len(cfg.optimization.update_freq)
else cfg.optimization.update_freq[-1]
)
itr = iterators.GroupedIterator(
itr,
update_freq,
skip_remainder_batch=cfg.optimization.skip_remainder_batch,
)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_file=cfg.common.log_file,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
azureml_logging=(
cfg.common.azureml_logging
if distributed_utils.is_master(cfg.distributed_training)
else False
),
)
progress.update_config(_flatten_config(cfg))
trainer.begin_epoch(epoch_itr.epoch)
valid_subsets = cfg.dataset.valid_subset.split(",")
should_stop = False
num_updates = trainer.get_num_updates()
logger.info("Start iterating over samples")
for i, samples in enumerate(progress):
with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function(
"train_step-%d" % i
):
log_output = trainer.train_step(samples)
if log_output is not None: # not OOM, overflow, ...
# log mid-epoch stats
num_updates = trainer.get_num_updates()
if num_updates % cfg.common.log_interval == 0:
stats = get_training_stats(metrics.get_smoothed_values("train_inner"))
progress.log(stats, tag="train_inner", step=num_updates)
# reset mid-epoch stats after each log interval
# the end-of-epoch stats will still be preserved
metrics.reset_meters("train_inner")
end_of_epoch = not itr.has_next()
valid_losses, should_stop = validate_and_save(
cfg, trainer, task, epoch_itr, valid_subsets, end_of_epoch
)
if should_stop:
break
# log end-of-epoch stats
logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch))
stats = get_training_stats(metrics.get_smoothed_values("train"))
progress.print(stats, tag="train", step=num_updates)
# reset epoch-level meters
metrics.reset_meters("train")
return valid_losses, should_stop
def _flatten_config(cfg: DictConfig):
config = OmegaConf.to_container(cfg)
# remove any legacy Namespaces and replace with a single "args"
namespace = None
for k, v in list(config.items()):
if isinstance(v, argparse.Namespace):
namespace = v
del config[k]
if namespace is not None:
config["args"] = vars(namespace)
return config
def validate_and_save(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
valid_subsets: List[str],
end_of_epoch: bool,
) -> Tuple[List[Optional[float]], bool]:
num_updates = trainer.get_num_updates()
max_update = cfg.optimization.max_update or math.inf
# Stopping conditions (and an additional one based on validation loss later
# on)
should_stop = False
if num_updates >= max_update:
should_stop = True
logger.info(
f"Stopping training due to "
f"num_updates: {num_updates} >= max_update: {max_update}"
)
training_time_hours = trainer.cumulative_training_time() / (60 * 60)
if (
cfg.optimization.stop_time_hours > 0
and training_time_hours > cfg.optimization.stop_time_hours
):
should_stop = True
logger.info(
f"Stopping training due to "
f"cumulative_training_time: {training_time_hours} > "
f"stop_time_hours: {cfg.optimization.stop_time_hours} hour(s)"
)
do_save = (
(end_of_epoch and epoch_itr.epoch % cfg.checkpoint.save_interval == 0)
or should_stop
or (
cfg.checkpoint.save_interval_updates > 0
and num_updates > 0
and num_updates % cfg.checkpoint.save_interval_updates == 0
and num_updates >= cfg.dataset.validate_after_updates
)
)
do_validate = (
(
(not end_of_epoch and do_save) # validate during mid-epoch saves
or (end_of_epoch and epoch_itr.epoch % cfg.dataset.validate_interval == 0)
or should_stop
or (
cfg.dataset.validate_interval_updates > 0
and num_updates > 0
and num_updates % cfg.dataset.validate_interval_updates == 0
)
)
and not cfg.dataset.disable_validation
and num_updates >= cfg.dataset.validate_after_updates
)
# Validate
valid_losses = [None]
if do_validate:
valid_losses = validate(cfg, trainer, task, epoch_itr, valid_subsets)
should_stop |= should_stop_early(cfg, valid_losses[0])
# Save checkpoint
if do_save or should_stop:
checkpoint_utils.save_checkpoint(
cfg.checkpoint, trainer, epoch_itr, valid_losses[0]
)
return valid_losses, should_stop
def get_training_stats(stats: Dict[str, Any]) -> Dict[str, Any]:
stats["wall"] = round(metrics.get_meter("default", "wall").elapsed_time, 0)
return stats
def validate(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
subsets: List[str],
) -> List[Optional[float]]:
"""Evaluate the model on the validation set(s) and return the losses."""
if cfg.dataset.fixed_validation_seed is not None:
# set fixed seed for every validation
utils.set_torch_seed(cfg.dataset.fixed_validation_seed)
trainer.begin_valid_epoch(epoch_itr.epoch)
valid_losses = []
for subset in subsets:
logger.info('begin validation on "{}" subset'.format(subset))
# Initialize data iterator
itr = trainer.get_valid_iterator(subset).next_epoch_itr(
shuffle=False, set_dataset_epoch=False # use a fixed valid set
)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
prefix=f"valid on '{subset}' subset",
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
)
# create a new root metrics aggregator so validation metrics
# don't pollute other aggregators (e.g., train meters)
with metrics.aggregate(new_root=True) as agg:
for i, sample in enumerate(progress):
if (
cfg.dataset.max_valid_steps is not None
and i > cfg.dataset.max_valid_steps
):
break
trainer.valid_step(sample)
# log validation stats
stats = get_valid_stats(cfg, trainer, agg.get_smoothed_values())
if hasattr(task, "post_validate"):
task.post_validate(trainer.get_model(), stats, agg)
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(stats[cfg.checkpoint.best_checkpoint_metric])
return valid_losses
def get_valid_stats(
cfg: DictConfig, trainer: Trainer, stats: Dict[str, Any]
) -> Dict[str, Any]:
stats["num_updates"] = trainer.get_num_updates()
if hasattr(checkpoint_utils.save_checkpoint, "best"):
key = "best_{0}".format(cfg.checkpoint.best_checkpoint_metric)
best_function = max if cfg.checkpoint.maximize_best_checkpoint_metric else min
stats[key] = best_function(
checkpoint_utils.save_checkpoint.best,
stats[cfg.checkpoint.best_checkpoint_metric],
)
return stats
def cli_main(
modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None
) -> None:
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser, modify_parser=modify_parser)
cfg = convert_namespace_to_omegaconf(args)
if cfg.common.use_plasma_view:
server = PlasmaStore(path=cfg.common.plasma_path)
logger.info(
f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}"
)
if args.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, main)
else:
distributed_utils.call_main(cfg, main)
# if cfg.common.use_plasma_view:
# server.server.kill()
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/train.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Evaluate the perplexity of a trained language model.
"""
import logging
import math
import os
import sys
from argparse import Namespace
from typing import Iterable, List, Optional
import torch
import fairseq
from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter
from fairseq.sequence_scorer import SequenceScorer
from omegaconf import DictConfig
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.eval_lm")
def eval_lm(
models: List[fairseq.models.FairseqModel],
source_dictionary: fairseq.data.Dictionary,
batch_iterator: Iterable,
post_process: Optional[str] = None,
output_word_probs: bool = False,
output_word_stats: bool = False,
target_dictionary: Optional[fairseq.data.Dictionary] = None,
softmax_batch: int = 0,
remove_bos_token: bool = False,
device: Optional[torch.device] = None,
):
"""
Args:
models (List[~fairseq.models.FairseqModel]): list of models to
evaluate. Models are essentially `nn.Module` instances, but
must be compatible with fairseq's `SequenceScorer`.
source_dictionary (~fairseq.data.Dictionary): dictionary for
applying any relevant post processing or outputing word
probs/stats.
batch_iterator (Iterable): yield batches of data
post_process (Optional[str]): post-process text by removing BPE,
letter segmentation, etc. Valid options can be found in
fairseq.data.utils.post_process, although not all options
are implemented here.
output_word_probs (Optional[bool]): output words and their
predicted log probabilities
output_word_stats (Optional[bool]): output word statistics such
as word count and average probability
target_dictionary (Optional[~fairseq.data.Dictionary]): output
dictionary (defaults to *source_dictionary*)
softmax_batch (Optional[bool]): if BxT is more than this, will
batch the softmax over vocab to this amount of tokens, in
order to fit into GPU memory
remove_bos_token (Optional[bool]): if True, confirm that the
first token is the beginning-of-sentence symbol (according
to the relevant dictionary) and remove it from the output
device (Optional[torch.device]): device to use for evaluation
(defaults to device of first model parameter)
"""
if target_dictionary is None:
target_dictionary = source_dictionary
if device is None:
device = next(models[0].parameters()).device
gen_timer = StopwatchMeter()
scorer = SequenceScorer(target_dictionary, softmax_batch)
score_sum = 0.0
count = 0
if post_process is not None:
if post_process in {"subword_nmt", "@@ "}:
bpe_cont = post_process.rstrip()
bpe_toks = {
i
for i in range(len(source_dictionary))
if source_dictionary[i].endswith(bpe_cont)
}
else:
raise NotImplementedError(
"--post-process={post_process} is not implemented"
)
bpe_len = len(bpe_cont)
else:
bpe_toks = None
bpe_len = 0
word_stats = dict()
for sample in batch_iterator:
if "net_input" not in sample:
continue
sample = utils.move_to_cuda(sample, device=device)
gen_timer.start()
hypos = scorer.generate(models, sample)
gen_timer.stop(sample["ntokens"])
for i, hypos_i in enumerate(hypos):
hypo = hypos_i[0]
sample_id = sample["id"][i]
tokens = hypo["tokens"]
tgt_len = tokens.numel()
pos_scores = hypo["positional_scores"].float()
if remove_bos_token:
assert hypo["tokens"][0].item() == target_dictionary.bos()
tokens = tokens[1:]
pos_scores = pos_scores[1:]
skipped_toks = 0
if bpe_toks is not None:
for i in range(tgt_len - 1):
if tokens[i].item() in bpe_toks:
skipped_toks += 1
pos_scores[i + 1] += pos_scores[i]
pos_scores[i] = 0
inf_scores = pos_scores.eq(float("inf")) | pos_scores.eq(float("-inf"))
if inf_scores.any():
logger.info(
"skipping tokens with inf scores:",
target_dictionary.string(tokens[inf_scores.nonzero()]),
)
pos_scores = pos_scores[(~inf_scores).nonzero()]
score_sum += pos_scores.sum().cpu()
count += pos_scores.numel() - skipped_toks
if output_word_probs or output_word_stats:
w = ""
word_prob = []
is_bpe = False
for i in range(len(tokens)):
w_ind = tokens[i].item()
w += source_dictionary[w_ind]
if bpe_toks is not None and w_ind in bpe_toks:
w = w[:-bpe_len]
is_bpe = True
else:
word_prob.append((w, pos_scores[i].item()))
next_prob = None
ind = i + 1
while ind < len(tokens):
if pos_scores[ind].item() != 0:
next_prob = pos_scores[ind]
break
ind += 1
word_stats.setdefault(w, WordStat(w, is_bpe)).add(
pos_scores[i].item(), next_prob
)
is_bpe = False
w = ""
if output_word_probs:
logger.info(
str(int(sample_id))
+ " "
+ (
"\t".join(
"{} [{:2f}]".format(x[0], x[1]) for x in word_prob
)
)
)
avg_nll_loss = (
-score_sum / count / math.log(2) if count > 0 else 0
) # convert to base 2
logger.info(
"Evaluated {:,} tokens in {:.1f}s ({:.2f} tokens/s)".format(
gen_timer.n, gen_timer.sum, 1.0 / gen_timer.avg if gen_timer.avg > 0 else 0
)
)
if output_word_stats:
for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True):
logger.info(ws)
return {
"loss": avg_nll_loss,
"perplexity": 2 ** avg_nll_loss,
}
class WordStat(object):
def __init__(self, word, is_bpe):
self.word = word
self.is_bpe = is_bpe
self.log_prob = 0
self.next_word_prob = 0
self.count = 0
self.missing_next_words = 0
def add(self, log_prob, next_word_prob):
"""increments counters for the sum of log probs of current word and next
word (given context ending at current word). Since the next word might be at the end of the example,
or it might be not counted because it is not an ending subword unit,
also keeps track of how many of those we have seen"""
if next_word_prob is not None:
self.next_word_prob += next_word_prob
else:
self.missing_next_words += 1
self.log_prob += log_prob
self.count += 1
def __str__(self):
return "{}\t{}\t{}\t{}\t{}\t{}".format(
self.word,
self.count,
self.log_prob,
self.is_bpe,
self.next_word_prob,
self.count - self.missing_next_words,
)
def main(cfg: DictConfig, **unused_kwargs):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
logger.info(cfg)
if cfg.eval_lm.context_window > 0:
# reduce tokens per sample by the required context window size
cfg.task.tokens_per_sample -= cfg.eval_lm.context_window
# Initialize the task using the current *cfg*
task = tasks.setup_task(cfg.task)
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, model_args, task = checkpoint_utils.load_model_ensemble_and_task(
[cfg.common_eval.path],
arg_overrides=eval(cfg.common_eval.model_overrides),
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
task=task,
)
use_fp16 = cfg.common.fp16
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
if use_cuda:
torch.cuda.set_device(cfg.distributed_training.device_id)
# Optimize ensemble for generation and set the source and dest dicts on the model
# (required by scorer)
for model in models:
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
assert len(models) > 0
logger.info(
"num. model params: {:,}".format(sum(p.numel() for p in models[0].parameters()))
)
# Load dataset splits
task.load_dataset(cfg.dataset.gen_subset)
dataset = task.dataset(cfg.dataset.gen_subset)
logger.info(
"{} {} {:,} examples".format(
cfg.task.data, cfg.dataset.gen_subset, len(dataset)
)
)
itr = task.eval_lm_dataloader(
dataset=dataset,
max_tokens=cfg.dataset.max_tokens or 36000,
batch_size=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
*[model.max_positions() for model in models]
),
num_shards=max(
cfg.dataset.num_shards,
cfg.distributed_training.distributed_world_size,
),
shard_id=max(
cfg.dataset.shard_id,
cfg.distributed_training.distributed_rank,
),
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
context_window=cfg.eval_lm.context_window,
)
itr = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
results = eval_lm(
models=models,
source_dictionary=task.source_dictionary,
batch_iterator=itr,
post_process=cfg.common_eval.post_process,
output_word_probs=cfg.eval_lm.output_word_probs,
output_word_stats=cfg.eval_lm.output_word_stats,
target_dictionary=task.target_dictionary,
softmax_batch=cfg.eval_lm.softmax_batch,
remove_bos_token=getattr(cfg.task, "add_bos_token", False),
)
logger.info(
"Loss (base 2): {:.4f}, Perplexity: {:.2f}".format(
results["loss"], results["perplexity"]
)
)
return results
def cli_main():
parser = options.get_eval_lm_parser()
args = options.parse_args_and_arch(parser)
distributed_utils.call_main(convert_namespace_to_omegaconf(args), main)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/eval_lm.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
BLEU scoring of generated translations against reference translations.
"""
import argparse
import os
import sys
from fairseq.data import dictionary
from fairseq.scoring import bleu
def get_parser():
parser = argparse.ArgumentParser(
description="Command-line script for BLEU scoring."
)
# fmt: off
parser.add_argument('-s', '--sys', default='-', help='system output')
parser.add_argument('-r', '--ref', required=True, help='references')
parser.add_argument('-o', '--order', default=4, metavar='N',
type=int, help='consider ngrams up to this order')
parser.add_argument('--ignore-case', action='store_true',
help='case-insensitive scoring')
parser.add_argument('--sacrebleu', action='store_true',
help='score with sacrebleu')
parser.add_argument('--sentence-bleu', action='store_true',
help='report sentence-level BLEUs (i.e., with +1 smoothing)')
# fmt: on
return parser
def cli_main():
parser = get_parser()
args = parser.parse_args()
print(args)
assert args.sys == "-" or os.path.exists(
args.sys
), "System output file {} does not exist".format(args.sys)
assert os.path.exists(args.ref), "Reference file {} does not exist".format(args.ref)
dict = dictionary.Dictionary()
def readlines(fd):
for line in fd.readlines():
if args.ignore_case:
yield line.lower()
else:
yield line
if args.sacrebleu:
import sacrebleu
def score(fdsys):
with open(args.ref) as fdref:
print(sacrebleu.corpus_bleu(fdsys, [fdref]).format())
elif args.sentence_bleu:
def score(fdsys):
with open(args.ref) as fdref:
scorer = bleu.Scorer(dict.pad(), dict.eos(), dict.unk())
for i, (sys_tok, ref_tok) in enumerate(
zip(readlines(fdsys), readlines(fdref))
):
scorer.reset(one_init=True)
sys_tok = dict.encode_line(sys_tok)
ref_tok = dict.encode_line(ref_tok)
scorer.add(ref_tok, sys_tok)
print(i, scorer.result_string(args.order))
else:
def score(fdsys):
with open(args.ref) as fdref:
scorer = bleu.Scorer(
bleu.BleuConfig(
pad=dict.pad(),
eos=dict.eos(),
unk=dict.unk(),
)
)
for sys_tok, ref_tok in zip(readlines(fdsys), readlines(fdref)):
sys_tok = dict.encode_line(sys_tok)
ref_tok = dict.encode_line(ref_tok)
scorer.add(ref_tok, sys_tok)
print(scorer.result_string(args.order))
if args.sys == "-":
score(sys.stdin)
else:
with open(args.sys, "r") as f:
score(f)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/fairseq_cli/score.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
try:
from fairseq.version import __version__ # noqa
except ImportError:
pass
| KosmosX-API-main | kosmosX/fairseq/examples/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from multiprocessing import Pool
import numpy as np
from fairseq import options
from fairseq.data import dictionary
from fairseq.scoring import bleu
from examples.noisychannel import (
rerank_generate,
rerank_options,
rerank_score_bw,
rerank_score_lm,
rerank_utils,
)
def score_target_hypo(
args, a, b, c, lenpen, target_outfile, hypo_outfile, write_hypos, normalize
):
print("lenpen", lenpen, "weight1", a, "weight2", b, "weight3", c)
gen_output_lst, bitext1_lst, bitext2_lst, lm_res_lst = load_score_files(args)
dict = dictionary.Dictionary()
scorer = scorer = bleu.Scorer(
bleu.BleuConfig(
pad=dict.pad(),
eos=dict.eos(),
unk=dict.unk(),
)
)
ordered_hypos = {}
ordered_targets = {}
for shard_id in range(len(bitext1_lst)):
bitext1 = bitext1_lst[shard_id]
bitext2 = bitext2_lst[shard_id]
gen_output = gen_output_lst[shard_id]
lm_res = lm_res_lst[shard_id]
total = len(bitext1.rescore_source.keys())
source_lst = []
hypo_lst = []
score_lst = []
reference_lst = []
j = 1
best_score = -math.inf
for i in range(total):
# length is measured in terms of words, not bpe tokens, since models may not share the same bpe
target_len = len(bitext1.rescore_hypo[i].split())
if lm_res is not None:
lm_score = lm_res.score[i]
else:
lm_score = 0
if bitext2 is not None:
bitext2_score = bitext2.rescore_score[i]
bitext2_backwards = bitext2.backwards
else:
bitext2_score = None
bitext2_backwards = None
score = rerank_utils.get_score(
a,
b,
c,
target_len,
bitext1.rescore_score[i],
bitext2_score,
lm_score=lm_score,
lenpen=lenpen,
src_len=bitext1.source_lengths[i],
tgt_len=bitext1.target_lengths[i],
bitext1_backwards=bitext1.backwards,
bitext2_backwards=bitext2_backwards,
normalize=normalize,
)
if score > best_score:
best_score = score
best_hypo = bitext1.rescore_hypo[i]
if j == gen_output.num_hypos[i] or j == args.num_rescore:
j = 1
hypo_lst.append(best_hypo)
score_lst.append(best_score)
source_lst.append(bitext1.rescore_source[i])
reference_lst.append(bitext1.rescore_target[i])
best_score = -math.inf
best_hypo = ""
else:
j += 1
gen_keys = list(sorted(gen_output.no_bpe_target.keys()))
for key in range(len(gen_keys)):
if args.prefix_len is None:
assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], (
"pred and rescore hypo mismatch: i: "
+ str(key)
+ ", "
+ str(hypo_lst[key])
+ str(gen_keys[key])
+ str(gen_output.no_bpe_hypo[key])
)
sys_tok = dict.encode_line(hypo_lst[key])
ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]])
scorer.add(ref_tok, sys_tok)
else:
full_hypo = rerank_utils.get_full_from_prefix(
hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]]
)
sys_tok = dict.encode_line(full_hypo)
ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]])
scorer.add(ref_tok, sys_tok)
# if only one set of hyper parameters is provided, write the predictions to a file
if write_hypos:
# recover the orinal ids from n best list generation
for key in range(len(gen_output.no_bpe_target)):
if args.prefix_len is None:
assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], (
"pred and rescore hypo mismatch:"
+ "i:"
+ str(key)
+ str(hypo_lst[key])
+ str(gen_output.no_bpe_hypo[key])
)
ordered_hypos[gen_keys[key]] = hypo_lst[key]
ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[
gen_keys[key]
]
else:
full_hypo = rerank_utils.get_full_from_prefix(
hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]]
)
ordered_hypos[gen_keys[key]] = full_hypo
ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[
gen_keys[key]
]
# write the hypos in the original order from nbest list generation
if args.num_shards == (len(bitext1_lst)):
with open(target_outfile, "w") as t:
with open(hypo_outfile, "w") as h:
for key in range(len(ordered_hypos)):
t.write(ordered_targets[key])
h.write(ordered_hypos[key])
res = scorer.result_string(4)
if write_hypos:
print(res)
score = rerank_utils.parse_bleu_scoring(res)
return score
def match_target_hypo(args, target_outfile, hypo_outfile):
"""combine scores from the LM and bitext models, and write the top scoring hypothesis to a file"""
if len(args.weight1) == 1:
res = score_target_hypo(
args,
args.weight1[0],
args.weight2[0],
args.weight3[0],
args.lenpen[0],
target_outfile,
hypo_outfile,
True,
args.normalize,
)
rerank_scores = [res]
else:
print("launching pool")
with Pool(32) as p:
rerank_scores = p.starmap(
score_target_hypo,
[
(
args,
args.weight1[i],
args.weight2[i],
args.weight3[i],
args.lenpen[i],
target_outfile,
hypo_outfile,
False,
args.normalize,
)
for i in range(len(args.weight1))
],
)
if len(rerank_scores) > 1:
best_index = np.argmax(rerank_scores)
best_score = rerank_scores[best_index]
print("best score", best_score)
print("best lenpen", args.lenpen[best_index])
print("best weight1", args.weight1[best_index])
print("best weight2", args.weight2[best_index])
print("best weight3", args.weight3[best_index])
return (
args.lenpen[best_index],
args.weight1[best_index],
args.weight2[best_index],
args.weight3[best_index],
best_score,
)
else:
return (
args.lenpen[0],
args.weight1[0],
args.weight2[0],
args.weight3[0],
rerank_scores[0],
)
def load_score_files(args):
if args.all_shards:
shard_ids = list(range(args.num_shards))
else:
shard_ids = [args.shard_id]
gen_output_lst = []
bitext1_lst = []
bitext2_lst = []
lm_res1_lst = []
for shard_id in shard_ids:
using_nbest = args.nbest_list is not None
(
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
) = rerank_utils.get_directories(
args.data_dir_name,
args.num_rescore,
args.gen_subset,
args.gen_model_name,
shard_id,
args.num_shards,
args.sampling,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
rerank1_is_gen = (
args.gen_model == args.score_model1 and args.source_prefix_frac is None
)
rerank2_is_gen = (
args.gen_model == args.score_model2 and args.source_prefix_frac is None
)
score1_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model1_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards1,
)
if args.score_model2 is not None:
score2_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model2_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards2,
)
if args.language_model is not None:
lm_score_file = rerank_utils.rescore_file_name(
pre_gen, args.prefix_len, args.lm_name, lm_file=True
)
# get gen output
predictions_bpe_file = pre_gen + "/generate_output_bpe.txt"
if using_nbest:
print("Using predefined n-best list from interactive.py")
predictions_bpe_file = args.nbest_list
gen_output = rerank_utils.BitextOutputFromGen(
predictions_bpe_file,
bpe_symbol=args.post_process,
nbest=using_nbest,
prefix_len=args.prefix_len,
target_prefix_frac=args.target_prefix_frac,
)
if rerank1_is_gen:
bitext1 = gen_output
else:
bitext1 = rerank_utils.BitextOutput(
score1_file,
args.backwards1,
args.right_to_left1,
args.post_process,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
if args.score_model2 is not None or args.nbest_list is not None:
if rerank2_is_gen:
bitext2 = gen_output
else:
bitext2 = rerank_utils.BitextOutput(
score2_file,
args.backwards2,
args.right_to_left2,
args.post_process,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
assert (
bitext2.source_lengths == bitext1.source_lengths
), "source lengths for rescoring models do not match"
assert (
bitext2.target_lengths == bitext1.target_lengths
), "target lengths for rescoring models do not match"
else:
if args.diff_bpe:
assert args.score_model2 is None
bitext2 = gen_output
else:
bitext2 = None
if args.language_model is not None:
lm_res1 = rerank_utils.LMOutput(
lm_score_file,
args.lm_dict,
args.prefix_len,
args.post_process,
args.target_prefix_frac,
)
else:
lm_res1 = None
gen_output_lst.append(gen_output)
bitext1_lst.append(bitext1)
bitext2_lst.append(bitext2)
lm_res1_lst.append(lm_res1)
return gen_output_lst, bitext1_lst, bitext2_lst, lm_res1_lst
def rerank(args):
if type(args.lenpen) is not list:
args.lenpen = [args.lenpen]
if type(args.weight1) is not list:
args.weight1 = [args.weight1]
if type(args.weight2) is not list:
args.weight2 = [args.weight2]
if type(args.weight3) is not list:
args.weight3 = [args.weight3]
if args.all_shards:
shard_ids = list(range(args.num_shards))
else:
shard_ids = [args.shard_id]
for shard_id in shard_ids:
(
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
) = rerank_utils.get_directories(
args.data_dir_name,
args.num_rescore,
args.gen_subset,
args.gen_model_name,
shard_id,
args.num_shards,
args.sampling,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
rerank_generate.gen_and_reprocess_nbest(args)
rerank_score_bw.score_bw(args)
rerank_score_lm.score_lm(args)
if args.write_hypos is None:
write_targets = pre_gen + "/matched_targets"
write_hypos = pre_gen + "/matched_hypos"
else:
write_targets = args.write_hypos + "_targets" + args.gen_subset
write_hypos = args.write_hypos + "_hypos" + args.gen_subset
if args.all_shards:
write_targets += "_all_shards"
write_hypos += "_all_shards"
(
best_lenpen,
best_weight1,
best_weight2,
best_weight3,
best_score,
) = match_target_hypo(args, write_targets, write_hypos)
return best_lenpen, best_weight1, best_weight2, best_weight3, best_score
def cli_main():
parser = rerank_options.get_reranking_parser()
args = options.parse_args_and_arch(parser)
rerank(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/rerank.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import options
def get_reranking_parser(default_task="translation"):
parser = options.get_parser("Generation and reranking", default_task)
add_reranking_args(parser)
return parser
def get_tuning_parser(default_task="translation"):
parser = options.get_parser("Reranking tuning", default_task)
add_reranking_args(parser)
add_tuning_args(parser)
return parser
def add_reranking_args(parser):
group = parser.add_argument_group("Reranking")
# fmt: off
group.add_argument('--score-model1', '-s1', type=str, metavar='FILE', required=True,
help='path to first model or ensemble of models for rescoring')
group.add_argument('--score-model2', '-s2', type=str, metavar='FILE', required=False,
help='path to second model or ensemble of models for rescoring')
group.add_argument('--num-rescore', '-n', type=int, metavar='N', default=10,
help='the number of candidate hypothesis to rescore')
group.add_argument('-bz', '--batch-size', type=int, metavar='N', default=128,
help='batch size for generating the nbest list')
group.add_argument('--gen-subset', default='test', metavar='SET', choices=['test', 'train', 'valid'],
help='data subset to generate (train, valid, test)')
group.add_argument('--gen-model', default=None, metavar='FILE',
help='the model to generate translations')
group.add_argument('-b1', '--backwards1', action='store_true',
help='whether or not the first model group is backwards')
group.add_argument('-b2', '--backwards2', action='store_true',
help='whether or not the second model group is backwards')
group.add_argument('-a', '--weight1', default=1, nargs='+', type=float,
help='the weight(s) of the first model')
group.add_argument('-b', '--weight2', default=1, nargs='+', type=float,
help='the weight(s) of the second model, or the gen model if using nbest from interactive.py')
group.add_argument('-c', '--weight3', default=1, nargs='+', type=float,
help='the weight(s) of the third model')
# lm arguments
group.add_argument('-lm', '--language-model', default=None, metavar='FILE',
help='language model for target language to rescore translations')
group.add_argument('--lm-dict', default=None, metavar='FILE',
help='the dict of the language model for the target language')
group.add_argument('--lm-name', default=None,
help='the name of the language model for the target language')
group.add_argument('--lm-bpe-code', default=None, metavar='FILE',
help='the bpe code for the language model for the target language')
group.add_argument('--data-dir-name', default=None,
help='name of data directory')
group.add_argument('--lenpen', default=1, nargs='+', type=float,
help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences')
group.add_argument('--score-dict-dir', default=None,
help='the directory with dictionaries for the scoring models')
group.add_argument('--right-to-left1', action='store_true',
help='whether the first model group is a right to left model')
group.add_argument('--right-to-left2', action='store_true',
help='whether the second model group is a right to left model')
group.add_argument('--post-process', '--remove-bpe', default='@@ ',
help='the bpe symbol, used for the bitext and LM')
group.add_argument('--prefix-len', default=None, type=int,
help='the length of the target prefix to use in rescoring (in terms of words wo bpe)')
group.add_argument('--sampling', action='store_true',
help='use sampling instead of beam search for generating n best list')
group.add_argument('--diff-bpe', action='store_true',
help='bpe for rescoring and nbest list not the same')
group.add_argument('--rescore-bpe-code', default=None,
help='bpe code for rescoring models')
group.add_argument('--nbest-list', default=None,
help='use predefined nbest list in interactive.py format')
group.add_argument('--write-hypos', default=None,
help='filename prefix to write hypos to')
group.add_argument('--ref-translation', default=None,
help='reference translation to use with nbest list from interactive.py')
group.add_argument('--backwards-score-dict-dir', default=None,
help='the directory with dictionaries for the backwards model,'
'if None then it is assumed the fw and backwards models share dictionaries')
# extra scaling args
group.add_argument('--gen-model-name', default=None,
help='the name of the models that generated the nbest list')
group.add_argument('--model1-name', default=None,
help='the name of the set for model1 group ')
group.add_argument('--model2-name', default=None,
help='the name of the set for model2 group')
group.add_argument('--shard-id', default=0, type=int,
help='the id of the shard to generate')
group.add_argument('--num-shards', default=1, type=int,
help='the number of shards to generate across')
group.add_argument('--all-shards', action='store_true',
help='use all shards')
group.add_argument('--target-prefix-frac', default=None, type=float,
help='the fraction of the target prefix to use in rescoring (in terms of words wo bpe)')
group.add_argument('--source-prefix-frac', default=None, type=float,
help='the fraction of the source prefix to use in rescoring (in terms of words wo bpe)')
group.add_argument('--normalize', action='store_true',
help='whether to normalize by src and target len')
# fmt: on
return group
def add_tuning_args(parser):
group = parser.add_argument_group("Tuning")
group.add_argument(
"--lower-bound",
default=[-0.7],
nargs="+",
type=float,
help="lower bound of search space",
)
group.add_argument(
"--upper-bound",
default=[3],
nargs="+",
type=float,
help="upper bound of search space",
)
group.add_argument(
"--tune-param",
default=["lenpen"],
nargs="+",
choices=["lenpen", "weight1", "weight2", "weight3"],
help="the parameter(s) to tune",
)
group.add_argument(
"--tune-subset",
default="valid",
choices=["valid", "test", "train"],
help="the subset to tune on ",
)
group.add_argument(
"--num-trials",
default=1000,
type=int,
help="number of trials to do for random search",
)
group.add_argument(
"--share-weights", action="store_true", help="share weight2 and weight 3"
)
return group
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/rerank_options.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import random
import numpy as np
from fairseq import options
from examples.noisychannel import rerank, rerank_options
def random_search(args):
param_values = []
tuneable_parameters = ["lenpen", "weight1", "weight2", "weight3"]
initial_params = [args.lenpen, args.weight1, args.weight2, args.weight3]
for i, elem in enumerate(initial_params):
if type(elem) is not list:
initial_params[i] = [elem]
else:
initial_params[i] = elem
tune_parameters = args.tune_param.copy()
for i in range(len(args.tune_param)):
assert args.upper_bound[i] >= args.lower_bound[i]
index = tuneable_parameters.index(args.tune_param[i])
del tuneable_parameters[index]
del initial_params[index]
tune_parameters += tuneable_parameters
param_values += initial_params
random.seed(args.seed)
random_params = np.array(
[
[
random.uniform(args.lower_bound[i], args.upper_bound[i])
for i in range(len(args.tune_param))
]
for k in range(args.num_trials)
]
)
set_params = np.array(
[
[initial_params[i][0] for i in range(len(tuneable_parameters))]
for k in range(args.num_trials)
]
)
random_params = np.concatenate((random_params, set_params), 1)
rerank_args = vars(args).copy()
if args.nbest_list:
rerank_args["gen_subset"] = "test"
else:
rerank_args["gen_subset"] = args.tune_subset
for k in range(len(tune_parameters)):
rerank_args[tune_parameters[k]] = list(random_params[:, k])
if args.share_weights:
k = tune_parameters.index("weight2")
rerank_args["weight3"] = list(random_params[:, k])
rerank_args = argparse.Namespace(**rerank_args)
best_lenpen, best_weight1, best_weight2, best_weight3, best_score = rerank.rerank(
rerank_args
)
rerank_args = vars(args).copy()
rerank_args["lenpen"] = [best_lenpen]
rerank_args["weight1"] = [best_weight1]
rerank_args["weight2"] = [best_weight2]
rerank_args["weight3"] = [best_weight3]
# write the hypothesis from the valid set from the best trial
if args.gen_subset != "valid":
rerank_args["gen_subset"] = "valid"
rerank_args = argparse.Namespace(**rerank_args)
rerank.rerank(rerank_args)
# test with the best hyperparameters on gen subset
rerank_args = vars(args).copy()
rerank_args["gen_subset"] = args.gen_subset
rerank_args["lenpen"] = [best_lenpen]
rerank_args["weight1"] = [best_weight1]
rerank_args["weight2"] = [best_weight2]
rerank_args["weight3"] = [best_weight3]
rerank_args = argparse.Namespace(**rerank_args)
rerank.rerank(rerank_args)
def cli_main():
parser = rerank_options.get_tuning_parser()
args = options.parse_args_and_arch(parser)
random_search(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/rerank_tune.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .rerank_options import * # noqa
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/__init__.py |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Generate n-best translations using a trained model.
"""
import os
import subprocess
from contextlib import redirect_stdout
from fairseq import options
from fairseq_cli import generate, preprocess
from examples.noisychannel import rerank_options, rerank_utils
def gen_and_reprocess_nbest(args):
if args.score_dict_dir is None:
args.score_dict_dir = args.data
if args.prefix_len is not None:
assert (
args.right_to_left1 is False
), "prefix length not compatible with right to left models"
assert (
args.right_to_left2 is False
), "prefix length not compatible with right to left models"
if args.nbest_list is not None:
assert args.score_model2 is None
if args.backwards1:
scorer1_src = args.target_lang
scorer1_tgt = args.source_lang
else:
scorer1_src = args.source_lang
scorer1_tgt = args.target_lang
store_data = (
os.path.join(os.path.dirname(__file__)) + "/rerank_data/" + args.data_dir_name
)
if not os.path.exists(store_data):
os.makedirs(store_data)
(
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
) = rerank_utils.get_directories(
args.data_dir_name,
args.num_rescore,
args.gen_subset,
args.gen_model_name,
args.shard_id,
args.num_shards,
args.sampling,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
assert not (
args.right_to_left1 and args.backwards1
), "backwards right to left not supported"
assert not (
args.right_to_left2 and args.backwards2
), "backwards right to left not supported"
assert not (
args.prefix_len is not None and args.target_prefix_frac is not None
), "target prefix frac and target prefix len incompatible"
# make directory to store generation results
if not os.path.exists(pre_gen):
os.makedirs(pre_gen)
rerank1_is_gen = (
args.gen_model == args.score_model1 and args.source_prefix_frac is None
)
rerank2_is_gen = (
args.gen_model == args.score_model2 and args.source_prefix_frac is None
)
if args.nbest_list is not None:
rerank2_is_gen = True
# make directories to store preprossed nbest list for reranking
if not os.path.exists(left_to_right_preprocessed_dir):
os.makedirs(left_to_right_preprocessed_dir)
if not os.path.exists(right_to_left_preprocessed_dir):
os.makedirs(right_to_left_preprocessed_dir)
if not os.path.exists(lm_preprocessed_dir):
os.makedirs(lm_preprocessed_dir)
if not os.path.exists(backwards_preprocessed_dir):
os.makedirs(backwards_preprocessed_dir)
score1_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model1_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards1,
)
if args.score_model2 is not None:
score2_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model2_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards2,
)
predictions_bpe_file = pre_gen + "/generate_output_bpe.txt"
using_nbest = args.nbest_list is not None
if using_nbest:
print("Using predefined n-best list from interactive.py")
predictions_bpe_file = args.nbest_list
else:
if not os.path.isfile(predictions_bpe_file):
print("STEP 1: generate predictions using the p(T|S) model with bpe")
print(args.data)
param1 = [
args.data,
"--path",
args.gen_model,
"--shard-id",
str(args.shard_id),
"--num-shards",
str(args.num_shards),
"--nbest",
str(args.num_rescore),
"--batch-size",
str(args.batch_size),
"--beam",
str(args.num_rescore),
"--batch-size",
str(args.num_rescore),
"--gen-subset",
args.gen_subset,
"--source-lang",
args.source_lang,
"--target-lang",
args.target_lang,
]
if args.sampling:
param1 += ["--sampling"]
gen_parser = options.get_generation_parser()
input_args = options.parse_args_and_arch(gen_parser, param1)
print(input_args)
with open(predictions_bpe_file, "w") as f:
with redirect_stdout(f):
generate.main(input_args)
gen_output = rerank_utils.BitextOutputFromGen(
predictions_bpe_file,
bpe_symbol=args.post_process,
nbest=using_nbest,
prefix_len=args.prefix_len,
target_prefix_frac=args.target_prefix_frac,
)
if args.diff_bpe:
rerank_utils.write_reprocessed(
gen_output.no_bpe_source,
gen_output.no_bpe_hypo,
gen_output.no_bpe_target,
pre_gen + "/source_gen_bpe." + args.source_lang,
pre_gen + "/target_gen_bpe." + args.target_lang,
pre_gen + "/reference_gen_bpe." + args.target_lang,
)
bitext_bpe = args.rescore_bpe_code
bpe_src_param = [
"-c",
bitext_bpe,
"--input",
pre_gen + "/source_gen_bpe." + args.source_lang,
"--output",
pre_gen + "/rescore_data." + args.source_lang,
]
bpe_tgt_param = [
"-c",
bitext_bpe,
"--input",
pre_gen + "/target_gen_bpe." + args.target_lang,
"--output",
pre_gen + "/rescore_data." + args.target_lang,
]
subprocess.call(
[
"python",
os.path.join(
os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
),
]
+ bpe_src_param,
shell=False,
)
subprocess.call(
[
"python",
os.path.join(
os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
),
]
+ bpe_tgt_param,
shell=False,
)
if (not os.path.isfile(score1_file) and not rerank1_is_gen) or (
args.score_model2 is not None
and not os.path.isfile(score2_file)
and not rerank2_is_gen
):
print(
"STEP 2: process the output of generate.py so we have clean text files with the translations"
)
rescore_file = "/rescore_data"
if args.prefix_len is not None:
prefix_len_rescore_file = rescore_file + "prefix" + str(args.prefix_len)
if args.target_prefix_frac is not None:
target_prefix_frac_rescore_file = (
rescore_file + "target_prefix_frac" + str(args.target_prefix_frac)
)
if args.source_prefix_frac is not None:
source_prefix_frac_rescore_file = (
rescore_file + "source_prefix_frac" + str(args.source_prefix_frac)
)
if not args.right_to_left1 or not args.right_to_left2:
if not args.diff_bpe:
rerank_utils.write_reprocessed(
gen_output.source,
gen_output.hypo,
gen_output.target,
pre_gen + rescore_file + "." + args.source_lang,
pre_gen + rescore_file + "." + args.target_lang,
pre_gen + "/reference_file",
bpe_symbol=args.post_process,
)
if args.prefix_len is not None:
bw_rescore_file = prefix_len_rescore_file
rerank_utils.write_reprocessed(
gen_output.source,
gen_output.hypo,
gen_output.target,
pre_gen + prefix_len_rescore_file + "." + args.source_lang,
pre_gen + prefix_len_rescore_file + "." + args.target_lang,
pre_gen + "/reference_file",
prefix_len=args.prefix_len,
bpe_symbol=args.post_process,
)
elif args.target_prefix_frac is not None:
bw_rescore_file = target_prefix_frac_rescore_file
rerank_utils.write_reprocessed(
gen_output.source,
gen_output.hypo,
gen_output.target,
pre_gen
+ target_prefix_frac_rescore_file
+ "."
+ args.source_lang,
pre_gen
+ target_prefix_frac_rescore_file
+ "."
+ args.target_lang,
pre_gen + "/reference_file",
bpe_symbol=args.post_process,
target_prefix_frac=args.target_prefix_frac,
)
else:
bw_rescore_file = rescore_file
if args.source_prefix_frac is not None:
fw_rescore_file = source_prefix_frac_rescore_file
rerank_utils.write_reprocessed(
gen_output.source,
gen_output.hypo,
gen_output.target,
pre_gen
+ source_prefix_frac_rescore_file
+ "."
+ args.source_lang,
pre_gen
+ source_prefix_frac_rescore_file
+ "."
+ args.target_lang,
pre_gen + "/reference_file",
bpe_symbol=args.post_process,
source_prefix_frac=args.source_prefix_frac,
)
else:
fw_rescore_file = rescore_file
if args.right_to_left1 or args.right_to_left2:
rerank_utils.write_reprocessed(
gen_output.source,
gen_output.hypo,
gen_output.target,
pre_gen + "/right_to_left_rescore_data." + args.source_lang,
pre_gen + "/right_to_left_rescore_data." + args.target_lang,
pre_gen + "/right_to_left_reference_file",
right_to_left=True,
bpe_symbol=args.post_process,
)
print("STEP 3: binarize the translations")
if (
not args.right_to_left1
or args.score_model2 is not None
and not args.right_to_left2
or not rerank1_is_gen
):
if args.backwards1 or args.backwards2:
if args.backwards_score_dict_dir is not None:
bw_dict = args.backwards_score_dict_dir
else:
bw_dict = args.score_dict_dir
bw_preprocess_param = [
"--source-lang",
scorer1_src,
"--target-lang",
scorer1_tgt,
"--trainpref",
pre_gen + bw_rescore_file,
"--srcdict",
bw_dict + "/dict." + scorer1_src + ".txt",
"--tgtdict",
bw_dict + "/dict." + scorer1_tgt + ".txt",
"--destdir",
backwards_preprocessed_dir,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(bw_preprocess_param)
preprocess.main(input_args)
preprocess_param = [
"--source-lang",
scorer1_src,
"--target-lang",
scorer1_tgt,
"--trainpref",
pre_gen + fw_rescore_file,
"--srcdict",
args.score_dict_dir + "/dict." + scorer1_src + ".txt",
"--tgtdict",
args.score_dict_dir + "/dict." + scorer1_tgt + ".txt",
"--destdir",
left_to_right_preprocessed_dir,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_param)
preprocess.main(input_args)
if args.right_to_left1 or args.right_to_left2:
preprocess_param = [
"--source-lang",
scorer1_src,
"--target-lang",
scorer1_tgt,
"--trainpref",
pre_gen + "/right_to_left_rescore_data",
"--srcdict",
args.score_dict_dir + "/dict." + scorer1_src + ".txt",
"--tgtdict",
args.score_dict_dir + "/dict." + scorer1_tgt + ".txt",
"--destdir",
right_to_left_preprocessed_dir,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_param)
preprocess.main(input_args)
return gen_output
def cli_main():
parser = rerank_options.get_reranking_parser()
args = options.parse_args_and_arch(parser)
gen_and_reprocess_nbest(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/rerank_generate.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import os
import re
import subprocess
from contextlib import redirect_stdout
from fairseq import options
from fairseq_cli import eval_lm, preprocess
def reprocess(fle):
# takes in a file of generate.py translation generate_output
# returns a source dict and hypothesis dict, where keys are the ID num (as a string)
# and values and the corresponding source and translation. There may be several translations
# per source, so the values for hypothesis_dict are lists.
# parses output of generate.py
with open(fle, "r") as f:
txt = f.read()
"""reprocess generate.py output"""
p = re.compile(r"[STHP][-]\d+\s*")
hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)")
source_dict = {}
hypothesis_dict = {}
score_dict = {}
target_dict = {}
pos_score_dict = {}
lines = txt.split("\n")
for line in lines:
line += "\n"
prefix = re.search(p, line)
if prefix is not None:
assert len(prefix.group()) > 2, "prefix id not found"
_, j = prefix.span()
id_num = prefix.group()[2:]
id_num = int(id_num)
line_type = prefix.group()[0]
if line_type == "H":
h_txt = line[j:]
hypo = re.search(hp, h_txt)
assert (
hypo is not None
), "regular expression failed to find the hypothesis scoring"
_, i = hypo.span()
score = hypo.group()
if id_num in hypothesis_dict:
hypothesis_dict[id_num].append(h_txt[i:])
score_dict[id_num].append(float(score))
else:
hypothesis_dict[id_num] = [h_txt[i:]]
score_dict[id_num] = [float(score)]
elif line_type == "S":
source_dict[id_num] = line[j:]
elif line_type == "T":
target_dict[id_num] = line[j:]
elif line_type == "P":
pos_scores = (line[j:]).split()
pos_scores = [float(x) for x in pos_scores]
if id_num in pos_score_dict:
pos_score_dict[id_num].append(pos_scores)
else:
pos_score_dict[id_num] = [pos_scores]
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict
def reprocess_nbest(fle):
"""reprocess interactive.py output"""
with open(fle, "r") as f:
txt = f.read()
source_dict = {}
hypothesis_dict = {}
score_dict = {}
target_dict = {}
pos_score_dict = {}
lines = txt.split("\n")
hp = re.compile(r"[-]?\d+[.]?\d+")
j = -1
for _i, line in enumerate(lines):
line += "\n"
line_type = line[0]
if line_type == "H":
hypo = re.search(hp, line)
_, start_index = hypo.span()
score = hypo.group()
if j in score_dict:
score_dict[j].append(float(score))
hypothesis_dict[j].append(line[start_index:].strip("\t"))
else:
score_dict[j] = [float(score)]
hypothesis_dict[j] = [line[start_index:].strip("\t")]
elif line_type == "O":
j += 1
source_dict[j] = line[2:]
# we don't have the targets for interactive.py
target_dict[j] = "filler"
elif line_type == "P":
pos_scores = [float(pos_score) for pos_score in line.split()[1:]]
if j in pos_score_dict:
pos_score_dict[j].append(pos_scores)
else:
pos_score_dict[j] = [pos_scores]
assert source_dict.keys() == hypothesis_dict.keys()
assert source_dict.keys() == pos_score_dict.keys()
assert source_dict.keys() == score_dict.keys()
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict
def write_reprocessed(
sources,
hypos,
targets,
source_outfile,
hypo_outfile,
target_outfile,
right_to_left=False,
prefix_len=None,
bpe_symbol=None,
target_prefix_frac=None,
source_prefix_frac=None,
):
"""writes nbest hypothesis for rescoring"""
assert not (
prefix_len is not None and target_prefix_frac is not None
), "in writing reprocessed, only one type of prefix may be used"
assert not (
prefix_len is not None and source_prefix_frac is not None
), "in writing reprocessed, only one type of prefix may be used"
assert not (
target_prefix_frac is not None and source_prefix_frac is not None
), "in writing reprocessed, only one type of prefix may be used"
with open(source_outfile, "w") as source_file, open(
hypo_outfile, "w"
) as hypo_file, open(target_outfile, "w") as target_file:
assert len(sources) == len(hypos), "sources and hypos list length mismatch"
if right_to_left:
for i in range(len(sources)):
for j in range(len(hypos[i])):
if prefix_len is None:
hypo_file.write(make_right_to_left(hypos[i][j]) + "\n")
else:
raise NotImplementedError()
source_file.write(make_right_to_left(sources[i]) + "\n")
target_file.write(make_right_to_left(targets[i]) + "\n")
else:
for i in sorted(sources.keys()):
for j in range(len(hypos[i])):
if prefix_len is not None:
shortened = (
get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len)
+ "\n"
)
hypo_file.write(shortened)
source_file.write(sources[i])
target_file.write(targets[i])
elif target_prefix_frac is not None:
num_words, shortened, num_bpe_tokens = calc_length_from_frac(
hypos[i][j], target_prefix_frac, bpe_symbol
)
shortened += "\n"
hypo_file.write(shortened)
source_file.write(sources[i])
target_file.write(targets[i])
elif source_prefix_frac is not None:
num_words, shortened, num_bpe_tokensn = calc_length_from_frac(
sources[i], source_prefix_frac, bpe_symbol
)
shortened += "\n"
hypo_file.write(hypos[i][j])
source_file.write(shortened)
target_file.write(targets[i])
else:
hypo_file.write(hypos[i][j])
source_file.write(sources[i])
target_file.write(targets[i])
def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol):
# return number of words, (not bpe tokens) that we want
no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol)
len_sen = len(no_bpe_sen.split())
num_words = math.ceil(len_sen * prefix_frac)
prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words)
num_bpe_tokens = len(prefix.split())
return num_words, prefix, num_bpe_tokens
def get_prefix(sentence, prefix_len):
"""assuming no bpe, gets the prefix of the sentence with prefix_len words"""
tokens = sentence.strip("\n").split()
if prefix_len >= len(tokens):
return sentence.strip("\n")
else:
return " ".join(tokens[:prefix_len])
def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len):
if bpe_symbol is None:
return get_prefix(sentence, prefix_len)
else:
return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len))
def get_prefix_from_len(sentence, bpe_symbol, prefix_len):
"""get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens"""
bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]])
if bpe_count == 0:
return sentence[:prefix_len]
else:
return sentence[:prefix_len] + get_prefix_from_len(
sentence[prefix_len:], bpe_symbol, bpe_count
)
def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len):
"""given a prefix length in terms of words, return the number of bpe tokens"""
prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len)
assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len
return len(prefix.split(" "))
def make_right_to_left(line):
tokens = line.split()
tokens.reverse()
new_line = " ".join(tokens)
return new_line
def remove_bpe(line, bpe_symbol):
line = line.replace("\n", "")
line = (line + " ").replace(bpe_symbol, "").rstrip()
return line + ("\n")
def remove_bpe_dict(pred_dict, bpe_symbol):
new_dict = {}
for i in pred_dict:
if type(pred_dict[i]) == list:
new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]]
new_dict[i] = new_list
else:
new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol)
return new_dict
def parse_bleu_scoring(line):
p = re.compile(r"(BLEU4 = )\d+[.]\d+")
res = re.search(p, line)
assert res is not None, line
return float(res.group()[8:])
def get_full_from_prefix(hypo_prefix, hypos):
"""given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix"""
for hypo in hypos:
hypo_prefix = hypo_prefix.strip("\n")
len_prefix = len(hypo_prefix)
if hypo[:len_prefix] == hypo_prefix:
return hypo
# no match found
raise Exception()
def get_score(
a,
b,
c,
target_len,
bitext_score1,
bitext_score2=None,
lm_score=None,
lenpen=None,
src_len=None,
tgt_len=None,
bitext1_backwards=False,
bitext2_backwards=False,
normalize=False,
):
if bitext1_backwards:
bitext1_norm = src_len
else:
bitext1_norm = tgt_len
if bitext_score2 is not None:
if bitext2_backwards:
bitext2_norm = src_len
else:
bitext2_norm = tgt_len
else:
bitext2_norm = 1
bitext_score2 = 0
if normalize:
score = (
a * bitext_score1 / bitext1_norm
+ b * bitext_score2 / bitext2_norm
+ c * lm_score / src_len
)
else:
score = a * bitext_score1 + b * bitext_score2 + c * lm_score
if lenpen is not None:
score /= (target_len) ** float(lenpen)
return score
class BitextOutput(object):
def __init__(
self,
output_file,
backwards,
right_to_left,
bpe_symbol,
prefix_len=None,
target_prefix_frac=None,
source_prefix_frac=None,
):
"""process output from rescoring"""
source, hypo, score, target, pos_score = reprocess(output_file)
if backwards:
self.hypo_fracs = source_prefix_frac
else:
self.hypo_fracs = target_prefix_frac
# remove length penalty so we can use raw scores
score, num_bpe_tokens = get_score_from_pos(
pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards
)
source_lengths = {}
target_lengths = {}
assert hypo.keys() == source.keys(), "key mismatch"
if backwards:
tmp = hypo
hypo = source
source = tmp
for i in source:
# since we are reranking, there should only be one hypo per source sentence
if backwards:
len_src = len(source[i][0].split())
# record length without <eos>
if len_src == num_bpe_tokens[i][0] - 1:
source_lengths[i] = num_bpe_tokens[i][0] - 1
else:
source_lengths[i] = num_bpe_tokens[i][0]
target_lengths[i] = len(hypo[i].split())
source[i] = remove_bpe(source[i][0], bpe_symbol)
target[i] = remove_bpe(target[i], bpe_symbol)
hypo[i] = remove_bpe(hypo[i], bpe_symbol)
score[i] = float(score[i][0])
pos_score[i] = pos_score[i][0]
else:
len_tgt = len(hypo[i][0].split())
# record length without <eos>
if len_tgt == num_bpe_tokens[i][0] - 1:
target_lengths[i] = num_bpe_tokens[i][0] - 1
else:
target_lengths[i] = num_bpe_tokens[i][0]
source_lengths[i] = len(source[i].split())
if right_to_left:
source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol)
target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol)
hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol)
score[i] = float(score[i][0])
pos_score[i] = pos_score[i][0]
else:
assert (
len(hypo[i]) == 1
), "expected only one hypothesis per source sentence"
source[i] = remove_bpe(source[i], bpe_symbol)
target[i] = remove_bpe(target[i], bpe_symbol)
hypo[i] = remove_bpe(hypo[i][0], bpe_symbol)
score[i] = float(score[i][0])
pos_score[i] = pos_score[i][0]
self.rescore_source = source
self.rescore_hypo = hypo
self.rescore_score = score
self.rescore_target = target
self.rescore_pos_score = pos_score
self.backwards = backwards
self.right_to_left = right_to_left
self.target_lengths = target_lengths
self.source_lengths = source_lengths
class BitextOutputFromGen(object):
def __init__(
self,
predictions_bpe_file,
bpe_symbol=None,
nbest=False,
prefix_len=None,
target_prefix_frac=None,
):
if nbest:
(
pred_source,
pred_hypo,
pred_score,
pred_target,
pred_pos_score,
) = reprocess_nbest(predictions_bpe_file)
else:
pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess(
predictions_bpe_file
)
assert len(pred_source) == len(pred_hypo)
assert len(pred_source) == len(pred_score)
assert len(pred_source) == len(pred_target)
assert len(pred_source) == len(pred_pos_score)
# remove length penalty so we can use raw scores
pred_score, num_bpe_tokens = get_score_from_pos(
pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False
)
self.source = pred_source
self.target = pred_target
self.score = pred_score
self.pos_score = pred_pos_score
self.hypo = pred_hypo
self.target_lengths = {}
self.source_lengths = {}
self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol)
self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol)
self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol)
# indexes to match those from the rescoring models
self.rescore_source = {}
self.rescore_target = {}
self.rescore_pos_score = {}
self.rescore_hypo = {}
self.rescore_score = {}
self.num_hypos = {}
self.backwards = False
self.right_to_left = False
index = 0
for i in sorted(pred_source.keys()):
for j in range(len(pred_hypo[i])):
self.target_lengths[index] = len(self.hypo[i][j].split())
self.source_lengths[index] = len(self.source[i].split())
self.rescore_source[index] = self.no_bpe_source[i]
self.rescore_target[index] = self.no_bpe_target[i]
self.rescore_hypo[index] = self.no_bpe_hypo[i][j]
self.rescore_score[index] = float(pred_score[i][j])
self.rescore_pos_score[index] = pred_pos_score[i][j]
self.num_hypos[index] = len(pred_hypo[i])
index += 1
def get_score_from_pos(
pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards
):
score_dict = {}
num_bpe_tokens_dict = {}
assert prefix_len is None or hypo_frac is None
for key in pos_score_dict:
score_dict[key] = []
num_bpe_tokens_dict[key] = []
for i in range(len(pos_score_dict[key])):
if prefix_len is not None and not backwards:
num_bpe_tokens = get_num_bpe_tokens_from_len(
hypo_dict[key][i], bpe_symbol, prefix_len
)
score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens]))
num_bpe_tokens_dict[key].append(num_bpe_tokens)
elif hypo_frac is not None:
num_words, shortened, hypo_prefix_len = calc_length_from_frac(
hypo_dict[key][i], hypo_frac, bpe_symbol
)
score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len]))
num_bpe_tokens_dict[key].append(hypo_prefix_len)
else:
score_dict[key].append(sum(pos_score_dict[key][i]))
num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i]))
return score_dict, num_bpe_tokens_dict
class LMOutput(object):
def __init__(
self,
lm_score_file,
lm_dict=None,
prefix_len=None,
bpe_symbol=None,
target_prefix_frac=None,
):
(
lm_sentences,
lm_sen_scores,
lm_sen_pos_scores,
lm_no_bpe_sentences,
lm_bpe_tokens,
) = parse_lm(
lm_score_file,
prefix_len=prefix_len,
bpe_symbol=bpe_symbol,
target_prefix_frac=target_prefix_frac,
)
self.sentences = lm_sentences
self.score = lm_sen_scores
self.pos_score = lm_sen_pos_scores
self.lm_dict = lm_dict
self.no_bpe_sentences = lm_no_bpe_sentences
self.bpe_tokens = lm_bpe_tokens
def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None):
"""parse output of eval_lm"""
with open(input_file, "r") as f:
text = f.readlines()
text = text[7:]
cleaned_text = text[:-2]
sentences = {}
sen_scores = {}
sen_pos_scores = {}
no_bpe_sentences = {}
num_bpe_tokens_dict = {}
for _i, line in enumerate(cleaned_text):
tokens = line.split()
if tokens[0].isdigit():
line_id = int(tokens[0])
scores = [float(x[1:-1]) for x in tokens[2::2]]
sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n"
if bpe_symbol is not None:
# exclude <eos> symbol to match output from generate.py
bpe_sen = " ".join(tokens[1::2][:-1]) + "\n"
no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol)
no_bpe_sentences[line_id] = no_bpe_sen
if prefix_len is not None:
num_bpe_tokens = get_num_bpe_tokens_from_len(
bpe_sen, bpe_symbol, prefix_len
)
sen_scores[line_id] = sum(scores[:num_bpe_tokens])
num_bpe_tokens_dict[line_id] = num_bpe_tokens
elif target_prefix_frac is not None:
num_words, shortened, target_prefix_len = calc_length_from_frac(
bpe_sen, target_prefix_frac, bpe_symbol
)
sen_scores[line_id] = sum(scores[:target_prefix_len])
num_bpe_tokens_dict[line_id] = target_prefix_len
else:
sen_scores[line_id] = sum(scores)
num_bpe_tokens_dict[line_id] = len(scores)
sen_pos_scores[line_id] = scores
return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict
def get_directories(
data_dir_name,
num_rescore,
gen_subset,
fw_name,
shard_id,
num_shards,
sampling=False,
prefix_len=None,
target_prefix_frac=None,
source_prefix_frac=None,
):
nbest_file_id = (
"nbest_"
+ str(num_rescore)
+ "_subset_"
+ gen_subset
+ "_fw_name_"
+ fw_name
+ "_shard_"
+ str(shard_id)
+ "_of_"
+ str(num_shards)
)
if sampling:
nbest_file_id += "_sampling"
# the directory containing all information for this nbest list
pre_gen = (
os.path.join(os.path.dirname(__file__))
+ "/rerank_data/"
+ data_dir_name
+ "/"
+ nbest_file_id
)
# the directory to store the preprocessed nbest list, for left to right rescoring
left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed"
if source_prefix_frac is not None:
left_to_right_preprocessed_dir = (
left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac)
)
# the directory to store the preprocessed nbest list, for right to left rescoring
right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed"
# the directory to store the preprocessed nbest list, for backwards rescoring
backwards_preprocessed_dir = pre_gen + "/backwards"
if target_prefix_frac is not None:
backwards_preprocessed_dir = (
backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac)
)
elif prefix_len is not None:
backwards_preprocessed_dir = (
backwards_preprocessed_dir + "/prefix_" + str(prefix_len)
)
# the directory to store the preprocessed nbest list, for rescoring with P(T)
lm_preprocessed_dir = pre_gen + "/lm_preprocessed"
return (
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
)
def lm_scoring(
preprocess_directory,
bpe_status,
gen_output,
pre_gen,
cur_lm_dict,
cur_lm_name,
cur_language_model,
cur_lm_bpe_code,
batch_size,
lm_score_file,
target_lang,
source_lang,
prefix_len=None,
):
if prefix_len is not None:
assert (
bpe_status == "different"
), "bpe status must be different to use prefix len"
if bpe_status == "no bpe":
# run lm on output without bpe
write_reprocessed(
gen_output.no_bpe_source,
gen_output.no_bpe_hypo,
gen_output.no_bpe_target,
pre_gen + "/rescore_data_no_bpe.de",
pre_gen + "/rescore_data_no_bpe.en",
pre_gen + "/reference_file_no_bpe",
)
preprocess_lm_param = [
"--only-source",
"--trainpref",
pre_gen + "/rescore_data_no_bpe." + target_lang,
"--srcdict",
cur_lm_dict,
"--destdir",
preprocess_directory,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_lm_param)
preprocess.main(input_args)
eval_lm_param = [
preprocess_directory,
"--path",
cur_language_model,
"--output-word-probs",
"--batch-size",
str(batch_size),
"--max-tokens",
"1024",
"--sample-break-mode",
"eos",
"--gen-subset",
"train",
]
eval_lm_parser = options.get_eval_lm_parser()
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
with open(lm_score_file, "w") as f:
with redirect_stdout(f):
eval_lm.main(input_args)
elif bpe_status == "shared":
preprocess_lm_param = [
"--only-source",
"--trainpref",
pre_gen + "/rescore_data." + target_lang,
"--srcdict",
cur_lm_dict,
"--destdir",
preprocess_directory,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_lm_param)
preprocess.main(input_args)
eval_lm_param = [
preprocess_directory,
"--path",
cur_language_model,
"--output-word-probs",
"--batch-size",
str(batch_size),
"--sample-break-mode",
"eos",
"--gen-subset",
"train",
]
eval_lm_parser = options.get_eval_lm_parser()
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
with open(lm_score_file, "w") as f:
with redirect_stdout(f):
eval_lm.main(input_args)
elif bpe_status == "different":
rescore_file = pre_gen + "/rescore_data_no_bpe"
rescore_bpe = pre_gen + "/rescore_data_new_bpe"
rescore_file += "."
rescore_bpe += "."
write_reprocessed(
gen_output.no_bpe_source,
gen_output.no_bpe_hypo,
gen_output.no_bpe_target,
rescore_file + source_lang,
rescore_file + target_lang,
pre_gen + "/reference_file_no_bpe",
bpe_symbol=None,
)
# apply LM bpe to nbest list
bpe_src_param = [
"-c",
cur_lm_bpe_code,
"--input",
rescore_file + target_lang,
"--output",
rescore_bpe + target_lang,
]
subprocess.call(
[
"python",
os.path.join(
os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
),
]
+ bpe_src_param,
shell=False,
)
# uncomment to use fastbpe instead of subword-nmt bpe
# bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code]
# subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False)
preprocess_dir = preprocess_directory
preprocess_lm_param = [
"--only-source",
"--trainpref",
rescore_bpe + target_lang,
"--srcdict",
cur_lm_dict,
"--destdir",
preprocess_dir,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_lm_param)
preprocess.main(input_args)
eval_lm_param = [
preprocess_dir,
"--path",
cur_language_model,
"--output-word-probs",
"--batch-size",
str(batch_size),
"--max-tokens",
"1024",
"--sample-break-mode",
"eos",
"--gen-subset",
"train",
]
eval_lm_parser = options.get_eval_lm_parser()
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
with open(lm_score_file, "w") as f:
with redirect_stdout(f):
eval_lm.main(input_args)
def rescore_file_name(
nbest_dir,
prefix_len,
scorer_name,
lm_file=False,
target_prefix_frac=None,
source_prefix_frac=None,
backwards=None,
):
if lm_file:
score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt"
else:
score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt"
if backwards:
if prefix_len is not None:
score_file += "prefix_len" + str(prefix_len)
elif target_prefix_frac is not None:
score_file += "target_prefix_frac" + str(target_prefix_frac)
else:
if source_prefix_frac is not None:
score_file += "source_prefix_frac" + str(source_prefix_frac)
return score_file
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/rerank_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from fairseq import options
from examples.noisychannel import rerank_options, rerank_utils
def score_lm(args):
using_nbest = args.nbest_list is not None
(
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
) = rerank_utils.get_directories(
args.data_dir_name,
args.num_rescore,
args.gen_subset,
args.gen_model_name,
args.shard_id,
args.num_shards,
args.sampling,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
predictions_bpe_file = pre_gen + "/generate_output_bpe.txt"
if using_nbest:
print("Using predefined n-best list from interactive.py")
predictions_bpe_file = args.nbest_list
gen_output = rerank_utils.BitextOutputFromGen(
predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest
)
if args.language_model is not None:
lm_score_file = rerank_utils.rescore_file_name(
pre_gen, args.prefix_len, args.lm_name, lm_file=True
)
if args.language_model is not None and not os.path.isfile(lm_score_file):
print("STEP 4.5: language modeling for P(T)")
if args.lm_bpe_code is None:
bpe_status = "no bpe"
elif args.lm_bpe_code == "shared":
bpe_status = "shared"
else:
bpe_status = "different"
rerank_utils.lm_scoring(
lm_preprocessed_dir,
bpe_status,
gen_output,
pre_gen,
args.lm_dict,
args.lm_name,
args.language_model,
args.lm_bpe_code,
128,
lm_score_file,
args.target_lang,
args.source_lang,
prefix_len=args.prefix_len,
)
def cli_main():
parser = rerank_options.get_reranking_parser()
args = options.parse_args_and_arch(parser)
score_lm(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/rerank_score_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from contextlib import redirect_stdout
from fairseq import options
from fairseq_cli import generate
from examples.noisychannel import rerank_options, rerank_utils
def score_bw(args):
if args.backwards1:
scorer1_src = args.target_lang
scorer1_tgt = args.source_lang
else:
scorer1_src = args.source_lang
scorer1_tgt = args.target_lang
if args.score_model2 is not None:
if args.backwards2:
scorer2_src = args.target_lang
scorer2_tgt = args.source_lang
else:
scorer2_src = args.source_lang
scorer2_tgt = args.target_lang
rerank1_is_gen = (
args.gen_model == args.score_model1 and args.source_prefix_frac is None
)
rerank2_is_gen = (
args.gen_model == args.score_model2 and args.source_prefix_frac is None
)
(
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
) = rerank_utils.get_directories(
args.data_dir_name,
args.num_rescore,
args.gen_subset,
args.gen_model_name,
args.shard_id,
args.num_shards,
args.sampling,
args.prefix_len,
args.target_prefix_frac,
args.source_prefix_frac,
)
score1_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model1_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards1,
)
if args.score_model2 is not None:
score2_file = rerank_utils.rescore_file_name(
pre_gen,
args.prefix_len,
args.model2_name,
target_prefix_frac=args.target_prefix_frac,
source_prefix_frac=args.source_prefix_frac,
backwards=args.backwards2,
)
if args.right_to_left1:
rerank_data1 = right_to_left_preprocessed_dir
elif args.backwards1:
rerank_data1 = backwards_preprocessed_dir
else:
rerank_data1 = left_to_right_preprocessed_dir
gen_param = ["--batch-size", str(128), "--score-reference", "--gen-subset", "train"]
if not rerank1_is_gen and not os.path.isfile(score1_file):
print("STEP 4: score the translations for model 1")
model_param1 = [
"--path",
args.score_model1,
"--source-lang",
scorer1_src,
"--target-lang",
scorer1_tgt,
]
gen_model1_param = [rerank_data1] + gen_param + model_param1
gen_parser = options.get_generation_parser()
input_args = options.parse_args_and_arch(gen_parser, gen_model1_param)
with open(score1_file, "w") as f:
with redirect_stdout(f):
generate.main(input_args)
if (
args.score_model2 is not None
and not os.path.isfile(score2_file)
and not rerank2_is_gen
):
print("STEP 4: score the translations for model 2")
if args.right_to_left2:
rerank_data2 = right_to_left_preprocessed_dir
elif args.backwards2:
rerank_data2 = backwards_preprocessed_dir
else:
rerank_data2 = left_to_right_preprocessed_dir
model_param2 = [
"--path",
args.score_model2,
"--source-lang",
scorer2_src,
"--target-lang",
scorer2_tgt,
]
gen_model2_param = [rerank_data2] + gen_param + model_param2
gen_parser = options.get_generation_parser()
input_args = options.parse_args_and_arch(gen_parser, gen_model2_param)
with open(score2_file, "w") as f:
with redirect_stdout(f):
generate.main(input_args)
def cli_main():
parser = rerank_options.get_reranking_parser()
args = options.parse_args_and_arch(parser)
score_bw(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/noisychannel/rerank_score_bw.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from itertools import zip_longest
def replace_oovs(source_in, target_in, vocabulary, source_out, target_out):
"""Replaces out-of-vocabulary words in source and target text with <unk-N>,
where N in is the position of the word in the source sequence.
"""
def format_unk(pos):
return "<unk-{}>".format(pos)
if target_in is None:
target_in = []
for seq_num, (source_seq, target_seq) in enumerate(
zip_longest(source_in, target_in)
):
source_seq_out = []
target_seq_out = []
word_to_pos = dict()
for position, token in enumerate(source_seq.strip().split()):
if token in vocabulary:
token_out = token
else:
if token in word_to_pos:
oov_pos = word_to_pos[token]
else:
word_to_pos[token] = position
oov_pos = position
token_out = format_unk(oov_pos)
source_seq_out.append(token_out)
source_out.write(" ".join(source_seq_out) + "\n")
if target_seq is not None:
for token in target_seq.strip().split():
if token in word_to_pos:
token_out = format_unk(word_to_pos[token])
else:
token_out = token
target_seq_out.append(token_out)
if target_out is not None:
target_out.write(" ".join(target_seq_out) + "\n")
def main():
parser = argparse.ArgumentParser(
description="Replaces out-of-vocabulary words in both source and target "
"sequences with tokens that indicate the position of the word "
"in the source sequence."
)
parser.add_argument(
"--source", type=str, help="text file with source sequences", required=True
)
parser.add_argument(
"--target", type=str, help="text file with target sequences", default=None
)
parser.add_argument("--vocab", type=str, help="vocabulary file", required=True)
parser.add_argument(
"--source-out",
type=str,
help="where to write source sequences with <unk-N> entries",
required=True,
)
parser.add_argument(
"--target-out",
type=str,
help="where to write target sequences with <unk-N> entries",
default=None,
)
args = parser.parse_args()
with open(args.vocab, encoding="utf-8") as vocab:
vocabulary = vocab.read().splitlines()
target_in = (
open(args.target, "r", encoding="utf-8") if args.target is not None else None
)
target_out = (
open(args.target_out, "w", encoding="utf-8")
if args.target_out is not None
else None
)
with open(args.source, "r", encoding="utf-8") as source_in, open(
args.source_out, "w", encoding="utf-8"
) as source_out:
replace_oovs(source_in, target_in, vocabulary, source_out, target_out)
if target_in is not None:
target_in.close()
if target_out is not None:
target_out.close()
if __name__ == "__main__":
main()
| KosmosX-API-main | kosmosX/fairseq/examples/pointer_generator/preprocess.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import re
import sys
class OOVIndexError(IndexError):
def __init__(self, pos, source_seq, target_seq):
super(OOVIndexError, self).__init__(
"A <unk-N> tag in the target sequence refers to a position that is "
"outside the source sequence. Most likely there was a mismatch in "
"provided source and target sequences. Otherwise this would mean that "
"the pointing mechanism somehow attended to a position that is past "
"the actual sequence end."
)
self.source_pos = pos
self.source_seq = source_seq
self.target_seq = target_seq
def replace_oovs(source_in, target_in, target_out):
"""Replaces <unk-N> tokens in the target text with the corresponding word in
the source text.
"""
oov_re = re.compile("^<unk-([0-9]+)>$")
for source_seq, target_seq in zip(source_in, target_in):
target_seq_out = []
pos_to_word = source_seq.strip().split()
for token in target_seq.strip().split():
m = oov_re.match(token)
if m:
pos = int(m.group(1))
if pos >= len(pos_to_word):
raise OOVIndexError(pos, source_seq, target_seq)
token_out = pos_to_word[pos]
else:
token_out = token
target_seq_out.append(token_out)
target_out.write(" ".join(target_seq_out) + "\n")
def main():
parser = argparse.ArgumentParser(
description="Replaces <unk-N> tokens in target sequences with words from "
"the corresponding position in the source sequence."
)
parser.add_argument(
"--source", type=str, help="text file with source sequences", required=True
)
parser.add_argument(
"--target", type=str, help="text file with target sequences", required=True
)
parser.add_argument(
"--target-out",
type=str,
help="where to write target sequences without <unk-N> " "entries",
required=True,
)
args = parser.parse_args()
target_in = (
open(args.target, "r", encoding="utf-8") if args.target is not None else None
)
target_out = (
open(args.target_out, "w", encoding="utf-8")
if args.target_out is not None
else None
)
with open(args.source, "r", encoding="utf-8") as source_in, open(
args.target, "r", encoding="utf-8"
) as target_in, open(args.target_out, "w", encoding="utf-8") as target_out:
replace_oovs(source_in, target_in, target_out)
if __name__ == "__main__":
try:
main()
except OOVIndexError as e:
print(e, file=sys.stderr)
print("Source sequence:", e.source_seq.strip(), file=sys.stderr)
print("Target sequence:", e.target_seq.strip(), file=sys.stderr)
print(
"Source sequence length:",
len(e.source_seq.strip().split()),
file=sys.stderr,
)
print("The offending tag points to:", e.source_pos)
sys.exit(2)
| KosmosX-API-main | kosmosX/fairseq/examples/pointer_generator/postprocess.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Any, Dict, Optional, List, Tuple
import torch
import torch.nn as nn
from fairseq import utils
from fairseq.models import register_model, register_model_architecture
from fairseq.models.transformer import (
DEFAULT_MAX_SOURCE_POSITIONS,
DEFAULT_MAX_TARGET_POSITIONS,
TransformerDecoder,
TransformerEncoder,
TransformerModel,
base_architecture,
)
from torch import Tensor
logger = logging.getLogger(__name__)
@register_model("transformer_pointer_generator")
class TransformerPointerGeneratorModel(TransformerModel):
"""
Transformer model from `"Attention Is All You Need" (Vaswani et al, 2017)
<https://arxiv.org/abs/1706.03762>`_, augmented with a pointer-generator
network from `"Get To The Point: Summarization with Pointer-Generator
Networks" (See et al, 2017) <https://arxiv.org/abs/1704.04368>`_.
Args:
encoder (TransformerPointerGeneratorEncoder): the encoder
decoder (TransformerPointerGeneratorDecoder): the decoder
The Transformer pointer-generator model provides the following named
architectures and command-line arguments:
.. argparse::
:ref: fairseq.models.transformer_pointer_generator_parser
:prog:
"""
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
TransformerModel.add_args(parser)
parser.add_argument('--alignment-heads', type=int, metavar='N',
help='number of attention heads to be used for '
'pointing')
parser.add_argument('--alignment-layer', type=int, metavar='I',
help='layer number to be used for pointing (0 '
'corresponding to the bottommost layer)')
parser.add_argument('--source-position-markers', type=int, metavar='N',
help='dictionary includes N additional items that '
'represent an OOV token at a particular input '
'position')
parser.add_argument('--force-generation', type=float, metavar='P',
default=None,
help='set the vocabulary distribution weight to P, '
'instead of predicting it from the input (1.0 '
'corresponding to generation, 0.0 to pointing)')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if args.encoder_layers_to_keep:
args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, "max_source_positions", None) is None:
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
if getattr(args, "source_position_markers", None) is None:
args.source_position_markers = args.max_source_positions
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
if src_dict != tgt_dict:
raise ValueError("Pointer-generator requires a joined dictionary")
def build_embedding(dictionary, embed_dim, path=None):
# The dictionary may include additional items that can be used in
# place of the normal OOV token and that all map to the same
# embedding. Using a different token for each input position allows
# one to restore the word identities from the original source text.
num_embeddings = len(dictionary) - args.source_position_markers
padding_idx = dictionary.pad()
unk_idx = dictionary.unk()
logger.info(
"dictionary indices from {0} to {1} will be mapped to {2}".format(
num_embeddings, len(dictionary) - 1, unk_idx
)
)
emb = Embedding(num_embeddings, embed_dim, padding_idx, unk_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
if args.share_all_embeddings:
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = build_embedding(
tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
return cls(args, encoder, decoder)
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerPointerGeneratorEncoder(args, src_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerPointerGeneratorDecoder(args, tgt_dict, embed_tokens)
class TransformerPointerGeneratorEncoder(TransformerEncoder):
"""
Transformer encoder consisting of *args.encoder_layers* layers. Each layer
is a :class:`TransformerEncoderLayer`. The pointer-generator variant adds
the source tokens to the encoder output as these are otherwise not passed
to the decoder.
"""
def forward(
self,
src_tokens,
src_lengths: Optional[Tensor] = None,
return_all_hiddens: bool = False,
token_embeddings: Optional[Tensor] = None
):
"""
Runs the `forward()` method of the parent Transformer class. Then adds
the source tokens into the encoder output tuple.
While it might be more elegant that the model would pass the source
tokens to the `forward()` method of the decoder too, this would require
changes to `SequenceGenerator`.
Args:
src_tokens (torch.LongTensor): tokens in the source language of
shape `(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
token_embeddings (torch.Tensor, optional): precomputed embeddings
default `None` will recompute embeddings
Returns:
namedtuple:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
- **src_tokens** (Tensor): input token ids of shape
`(batch, src_len)`
"""
encoder_out = self.forward_scriptable(src_tokens,
src_lengths,
return_all_hiddens,
token_embeddings)
# The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
# `forward` so we use a dictionary instead.
# TorchScript does not support mixed values so the values are all lists.
# The empty list is equivalent to None.
return {
"encoder_out": encoder_out["encoder_out"], # T x B x C
"encoder_padding_mask": encoder_out["encoder_padding_mask"], # B x T
"encoder_embedding": encoder_out["encoder_embedding"], # B x T x C
"encoder_states": encoder_out["encoder_states"], # List[T x B x C]
"src_tokens": [src_tokens], # B x T
"src_lengths": [],
}
class TransformerPointerGeneratorDecoder(TransformerDecoder):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`. The pointer-generator variant mixes
the output probabilities with an attention distribution in the output layer.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
"""
def __init__(self, args, dictionary, embed_tokens):
super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False)
# In the pointer-generator model these arguments define the decoder
# layer and the number of attention heads that will be averaged to
# create the alignment for pointing.
self.alignment_heads = args.alignment_heads
self.alignment_layer = args.alignment_layer
input_embed_dim = embed_tokens.embedding_dim
# Generation probabilities / interpolation coefficients are predicted
# from the current decoder input embedding and the decoder output, which
# is the size of output_embed_dim.
p_gen_input_size = input_embed_dim + self.output_embed_dim
self.project_p_gens = nn.Linear(p_gen_input_size, 1)
nn.init.zeros_(self.project_p_gens.bias)
# The dictionary may include a separate entry for an OOV token in each
# input position, so that their identity can be restored from the
# original source text.
self.num_types = len(dictionary)
self.num_oov_types = args.source_position_markers
self.num_embeddings = self.num_types - self.num_oov_types
self.force_p_gen = args.force_generation
def forward(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
features_only: bool = False,
alignment_layer: Optional[int] = 0,
alignment_heads: Optional[int] = 1,
src_lengths: Optional[Any] = None,
return_all_hiddens: bool = False,
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (optional): output from the encoder, used for
encoder-side attention
incremental_state (dict, optional): dictionary used for storing
state during :ref:`Incremental decoding`
features_only (bool, optional): only return features without
applying output layer (default: False)
alignment_layer (int, optional): 0-based index of the layer to be
used for pointing (default: 0)
alignment_heads (int, optional): number of attention heads to be
used for pointing (default: 1)
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
# The normal Transformer model doesn't pass the alignment_layer and
# alignment_heads parameters correctly. We use our local variables.
x, extra = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
alignment_layer=self.alignment_layer,
alignment_heads=self.alignment_heads,
)
if not features_only:
# Embedding the tokens again for generation probability prediction,
# so that we don't have to reimplement the whole extract_features()
# method.
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
prev_output_embed = self.embed_tokens(prev_output_tokens)
prev_output_embed *= self.embed_scale
predictors = torch.cat((prev_output_embed, x), 2)
p_gens = self.project_p_gens(predictors)
p_gens = torch.sigmoid(p_gens.float())
# Torchscript complains if encoder_out or attn are None because
# `output_layer()` signature expects tensors instead
attn: Optional[Tensor] = extra["attn"][0]
assert encoder_out is not None
assert attn is not None
x = self.output_layer(x, attn, encoder_out["src_tokens"][0], p_gens)
return x, extra
def output_layer(
self,
features: Tensor,
attn: Tensor,
src_tokens: Tensor,
p_gens: Tensor
) -> Tensor:
"""
Project features to the vocabulary size and mix with the attention
distributions.
"""
if self.force_p_gen is not None:
p_gens = self.force_p_gen
# project back to size of vocabulary
if self.adaptive_softmax is None:
logits = self.output_projection(features)
else:
logits = features
batch_size = logits.shape[0]
output_length = logits.shape[1]
assert logits.shape[2] == self.num_embeddings
assert src_tokens.shape[0] == batch_size
src_length = src_tokens.shape[1]
# The final output distribution will be a mixture of the normal output
# distribution (softmax of logits) and attention weights.
gen_dists = self.get_normalized_probs_scriptable(
(logits, None), log_probs=False, sample=None
)
gen_dists = torch.mul(gen_dists, p_gens)
padding_size = (batch_size, output_length, self.num_oov_types)
padding = gen_dists.new_zeros(padding_size)
gen_dists = torch.cat((gen_dists, padding), 2)
assert gen_dists.shape[2] == self.num_types
# Scatter attention distributions to distributions over the extended
# vocabulary in a tensor of shape [batch_size, output_length,
# vocab_size]. Each attention weight will be written into a location
# that is for other dimensions the same as in the index tensor, but for
# the third dimension it's the value of the index tensor (the token ID).
attn = torch.mul(attn.float(), 1 - p_gens)
index = src_tokens[:, None, :]
index = index.expand(batch_size, output_length, src_length)
attn_dists_size = (batch_size, output_length, self.num_types)
attn_dists = attn.new_zeros(attn_dists_size)
attn_dists.scatter_add_(2, index, attn.float())
# Final distributions, [batch_size, output_length, num_types].
return gen_dists + attn_dists
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
"""
Get normalized probabilities (or log probs) from a net's output.
Pointer-generator network output is already normalized.
"""
probs = net_output[0]
# Make sure the probabilities are greater than zero when returning log
# probabilities.
return probs.clamp(1e-10, 1.0).log() if log_probs else probs
class Embedding(nn.Embedding):
r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding
word embeddings. This subclass differs from the standard PyTorch Embedding class by
allowing additional vocabulary entries that will be mapped to the unknown token
embedding.
Args:
num_embeddings (int): size of the dictionary of embeddings
embedding_dim (int): the size of each embedding vector
padding_idx (int): Pads the output with the embedding vector at :attr:`padding_idx`
(initialized to zeros) whenever it encounters the index.
unk_idx (int): Maps all token indices that are greater than or equal to
num_embeddings to this index.
Attributes:
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
initialized from :math:`\mathcal{N}(0, 1)`
Shape:
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
.. note::
Keep in mind that only a limited number of optimizers support
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
.. note::
With :attr:`padding_idx` set, the embedding vector at
:attr:`padding_idx` is initialized to all zeros. However, note that this
vector can be modified afterwards, e.g., using a customized
initialization method, and thus changing the vector used to pad the
output. The gradient for this vector from :class:`~torch.nn.Embedding`
is always zero.
"""
__constants__ = ["unk_idx"]
# Torchscript: Inheriting from Embedding class produces an error when exporting to Torchscript
# -> RuntimeError: Unable to cast Python instance to C++ type (compile in debug mode for details
# It's happening because max_norm attribute from nn.Embedding is None by default and it cannot be
# cast to a C++ type
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int],
unk_idx: int,
max_norm: Optional[float] = float("inf"),
):
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx, max_norm=max_norm)
self.unk_idx = unk_idx
nn.init.normal_(self.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(self.weight[padding_idx], 0)
def forward(self, input):
input = torch.where(
input >= self.num_embeddings, torch.ones_like(input) * self.unk_idx, input
)
return nn.functional.embedding(
input, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse
)
@register_model_architecture(
"transformer_pointer_generator", "transformer_pointer_generator"
)
def transformer_pointer_generator(args):
args.alignment_heads = getattr(args, "alignment_heads", 1)
args.alignment_layer = getattr(args, "alignment_layer", -1)
base_architecture(args)
if args.alignment_layer < 0:
args.alignment_layer = args.decoder_layers + args.alignment_layer
@register_model_architecture(
"transformer_pointer_generator", "transformer_pointer_generator_iwslt_de_en"
)
def transformer_pointer_generator_iwslt_de_en(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
args.decoder_layers = getattr(args, "decoder_layers", 6)
transformer_pointer_generator(args)
@register_model_architecture(
"transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de"
)
def transformer_pointer_generator_wmt_en_de(args):
transformer_pointer_generator(args)
# Transformer pointer-generator with the base Transformer parameters as used in
# the "Attention Is All You Need" paper (Vaswani et al., 2017)
@register_model_architecture(
"transformer_pointer_generator",
"transformer_pointer_generator_vaswani_wmt_en_de_big",
)
def transformer_pointer_generator_vaswani_wmt_en_de_big(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.3)
transformer_pointer_generator(args)
@register_model_architecture(
"transformer_pointer_generator",
"transformer_pointer_generator_vaswani_wmt_en_fr_big",
)
def transformer_pointer_generator_vaswani_wmt_en_fr_big(args):
args.dropout = getattr(args, "dropout", 0.1)
transformer_pointer_generator_vaswani_wmt_en_de_big(args)
@register_model_architecture(
"transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big"
)
def transformer_pointer_generator_wmt_en_de_big(args):
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
transformer_pointer_generator_vaswani_wmt_en_de_big(args)
# default parameters used in tensor2tensor implementation
@register_model_architecture(
"transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big_t2t"
)
def transformer_pointer_generator_wmt_en_de_big_t2t(args):
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_dropout = getattr(args, "activation_dropout", 0.1)
transformer_pointer_generator_vaswani_wmt_en_de_big(args)
| KosmosX-API-main | kosmosX/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import transformer_pg # noqa
| KosmosX-API-main | kosmosX/fairseq/examples/pointer_generator/pointer_generator_src/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import logging
from pathlib import Path
import random
import soundfile as sf
import torch
from tqdm import tqdm
from fairseq import utils
from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder
logging.basicConfig()
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def dump_result(args, sample_id, pred_wav, suffix=""):
sf.write(
f"{args.results_path}/{sample_id}{suffix}_pred.wav",
pred_wav.detach().cpu().numpy(),
16000,
)
def load_code(in_file):
with open(in_file) as f:
out = [list(map(int, line.strip().split())) for line in f]
return out
def main(args):
logger.info(args)
use_cuda = torch.cuda.is_available() and not args.cpu
with open(args.vocoder_cfg) as f:
vocoder_cfg = json.load(f)
vocoder = CodeHiFiGANVocoder(args.vocoder, vocoder_cfg)
if use_cuda:
vocoder = vocoder.cuda()
multispkr = vocoder.model.multispkr
if multispkr:
logger.info("multi-speaker vocoder")
num_speakers = vocoder_cfg.get(
"num_speakers", 200
) # following the default in codehifigan to set to 200
assert (
args.speaker_id < num_speakers
), f"invalid --speaker-id ({args.speaker_id}) with total #speakers = {num_speakers}"
data = load_code(args.in_code_file)
Path(args.results_path).mkdir(exist_ok=True, parents=True)
for i, d in tqdm(enumerate(data), total=len(data)):
x = {
"code": torch.LongTensor(d).view(1, -1),
}
suffix = ""
if multispkr:
spk = (
random.randint(0, num_speakers - 1)
if args.speaker_id == -1
else args.speaker_id
)
suffix = f"_spk{spk}"
x["spkr"] = torch.LongTensor([spk]).view(1, 1)
x = utils.move_to_cuda(x) if use_cuda else x
wav = vocoder(x, args.dur_prediction)
dump_result(args, i, wav, suffix=suffix)
def cli_main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--in-code-file", type=str, required=True, help="one unit sequence per line"
)
parser.add_argument(
"--vocoder", type=str, required=True, help="path to the CodeHiFiGAN vocoder"
)
parser.add_argument(
"--vocoder-cfg",
type=str,
required=True,
help="path to the CodeHiFiGAN vocoder config",
)
parser.add_argument("--results-path", type=str, required=True)
parser.add_argument(
"--dur-prediction",
action="store_true",
help="enable duration prediction (for reduced/unique code sequences)",
)
parser.add_argument(
"--speaker-id",
type=int,
default=-1,
help="Speaker id (for vocoder that supports multispeaker). Set to -1 to randomly sample speakers.",
)
parser.add_argument("--cpu", action="store_true", help="run on CPU")
args = parser.parse_args()
main(args)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/generate_waveform_from_code.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/preprocessing/__init__.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
import soundfile as sf
from tqdm import tqdm
import pandas as pd
from examples.speech_to_speech.preprocessing.data_utils import gen_config_yaml
from examples.speech_to_text.data_utils import save_df_to_tsv
logger = logging.getLogger(__name__)
MANIFEST_COLUMNS = ["id", "src_audio", "src_n_frames", "tgt_audio", "tgt_n_frames"]
def load_units(in_file):
out = {}
with open(in_file) as f:
for line in f:
sample_id, units = line.strip().split("|", 1)
out[sample_id] = units.split()
return out
def process_units(units, reduce=False):
if not reduce:
return units
out = [u for i, u in enumerate(units) if i == 0 or u != units[i - 1]]
return out
def process(args):
args.output_root.mkdir(exist_ok=True)
print("Generating manifest...")
for split in args.data_split:
print(f"Processing {split}")
# load target units
target_unit_data = load_units(args.target_dir / f"{split}.txt")
manifest = {c: [] for c in MANIFEST_COLUMNS}
missing_tgt_audios = []
src_audios = list(args.source_dir.glob(f"{split}/*.wav"))
for src_audio in tqdm(src_audios):
sample_id = src_audio.stem
if sample_id not in target_unit_data:
missing_tgt_audios.append(sample_id)
continue
src_n_frames = sf.info(src_audio.as_posix()).frames
manifest["id"].append(sample_id)
manifest["src_audio"].append(src_audio.as_posix())
manifest["src_n_frames"].append(
src_n_frames // 160
) # estimation of 10-ms frame for 16kHz audio
target_units = process_units(target_unit_data[sample_id], args.reduce_unit)
manifest["tgt_audio"].append(" ".join(target_units))
manifest["tgt_n_frames"].append(len(target_units))
print(f"Processed {len(manifest['id'])} samples")
if len(missing_tgt_audios) > 0:
print(
f"{len(missing_tgt_audios)} with missing target data (first 3 examples: {', '.join(missing_tgt_audios[:3])})"
)
out_manifest = args.output_root / f"{split}.tsv"
print(f"Writing manifest to {out_manifest}...")
save_df_to_tsv(pd.DataFrame.from_dict(manifest), out_manifest)
# Generate config YAML
gen_config_yaml(
args.output_root,
specaugment_policy="lb",
feature_transform=["utterance_cmvn"],
vocoder_type="code_hifigan",
vocoder_checkpoint=args.vocoder_checkpoint,
vocoder_cfg=args.vocoder_cfg,
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--source-dir", required=True, type=Path, help="source audio directory"
)
parser.add_argument(
"--target-dir", required=True, type=Path, help="target audio directory"
)
parser.add_argument(
"--data-split",
default=["train", "valid", "test"],
nargs="+",
help="data split names",
)
parser.add_argument(
"--output-root", required=True, type=Path, help="output directory"
)
parser.add_argument(
"--reduce-unit",
action="store_true",
help="reduce a target unit sequence to a unique unit sequence, i.e. '1 1 1 2 2' -> '1 2'",
)
parser.add_argument(
"--vocoder-checkpoint", default=None, type=str, help="vocoder checkpoint"
)
parser.add_argument(
"--vocoder-cfg", default=None, type=str, help="vocoder config file"
)
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/preprocessing/prep_s2ut_data.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
from typing import List, Optional
from examples.speech_to_text.data_utils import S2TDataConfigWriter
def gen_config_yaml(
manifest_root: Path,
yaml_filename: str = "config.yaml",
specaugment_policy: Optional[str] = "lb",
feature_transform: Optional[List[str]] = None,
input_channels: Optional[int] = 1,
input_feat_per_channel: Optional[int] = 80,
audio_root: str = "",
vocoder_type: Optional[str] = None,
vocoder_checkpoint: Optional[str] = None,
vocoder_cfg: Optional[str] = None,
extra=None,
):
manifest_root = manifest_root.absolute()
writer = S2TDataConfigWriter(manifest_root / yaml_filename)
if input_channels is not None:
writer.set_input_channels(input_channels)
if input_feat_per_channel is not None:
writer.set_input_feat_per_channel(input_feat_per_channel)
specaugment_setters = {
"lb": writer.set_specaugment_lb_policy,
"ld": writer.set_specaugment_ld_policy,
"sm": writer.set_specaugment_sm_policy,
"ss": writer.set_specaugment_ss_policy,
}
specaugment_setter = specaugment_setters.get(specaugment_policy, None)
if specaugment_setter is not None:
specaugment_setter()
if feature_transform is None:
feature_transform = []
else:
writer.set_feature_transforms("*", feature_transform)
if specaugment_policy is not None:
writer.set_feature_transforms("_train", feature_transform + ["specaugment"])
if len(audio_root) > 0:
writer.set_audio_root(audio_root)
if (
vocoder_type is not None
and vocoder_checkpoint is not None
and vocoder_cfg is not None
):
writer.set_extra(
{
"vocoder": {
"type": vocoder_type,
"config": vocoder_cfg,
"checkpoint": vocoder_checkpoint,
}
}
)
if extra is not None:
writer.set_extra(extra)
writer.flush()
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/preprocessing/data_utils.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import os
from pathlib import Path
import shutil
import torchaudio
import soundfile as sf
from tqdm import tqdm
import pandas as pd
from examples.speech_synthesis.data_utils import extract_logmel_spectrogram
from examples.speech_to_speech.preprocessing.data_utils import gen_config_yaml
from examples.speech_to_text.data_utils import create_zip, get_zip_manifest, save_df_to_tsv
from fairseq.data.audio.audio_utils import convert_waveform
logger = logging.getLogger(__name__)
MANIFEST_COLUMNS = ["id", "src_audio", "src_n_frames", "tgt_audio", "tgt_n_frames"]
def prepare_target_data(args, tgt_audios):
feature_name = "logmelspec80"
zip_path = args.output_root / f"{feature_name}.zip"
if zip_path.exists():
print(f"{zip_path} exists.")
return zip_path
feature_root = args.output_root / feature_name
feature_root.mkdir(exist_ok=True)
print("Extracting Mel spectrogram features...")
for tgt_audio in tqdm(tgt_audios):
sample_id = tgt_audio.stem
waveform, sample_rate = torchaudio.load(tgt_audio.as_posix())
waveform, sample_rate = convert_waveform(
waveform, sample_rate, normalize_volume=args.normalize_volume,
to_sample_rate=args.sample_rate
)
extract_logmel_spectrogram(
waveform, sample_rate, feature_root / f"{sample_id}.npy",
win_length=args.win_length, hop_length=args.hop_length,
n_fft=args.n_fft, n_mels=args.n_mels, f_min=args.f_min,
f_max=args.f_max
)
print("ZIPing features...")
create_zip(feature_root, zip_path)
shutil.rmtree(feature_root)
return zip_path
def process(args):
os.makedirs(args.output_root, exist_ok=True)
manifest = {}
tgt_audios = []
for split in args.data_split:
print(f"Processing {split}...")
manifest[split] = {c: [] for c in MANIFEST_COLUMNS}
missing_tgt_audios = []
src_audios = list(args.source_dir.glob(f"{split}/*.wav"))
for src_audio in tqdm(src_audios):
sample_id = src_audio.stem
tgt_audio = args.target_dir / split / f"{sample_id}.wav"
if not tgt_audio.is_file():
missing_tgt_audios.append(sample_id)
continue
tgt_audios.append(tgt_audio)
src_n_frames = sf.info(src_audio.as_posix()).frames
manifest[split]["id"].append(sample_id)
manifest[split]["src_audio"].append(src_audio.as_posix())
manifest[split]["src_n_frames"].append(
src_n_frames // 160
) # estimation of 10-ms frame for 16kHz audio
print(f"Processed {len(manifest[split]['id'])} samples")
if len(missing_tgt_audios) > 0:
print(
f"{len(missing_tgt_audios)} with missing target data (first 3 examples: {', '.join(missing_tgt_audios[:3])})"
)
# Extract features and pack features into ZIP
zip_path = prepare_target_data(args, tgt_audios)
print("Fetching ZIP manifest...")
tgt_audio_paths, tgt_audio_lengths = get_zip_manifest(zip_path)
print("Generating manifest...")
for split in args.data_split:
print(f"Processing {split}...")
for sample_id in tqdm(manifest[split]["id"]):
manifest[split]["tgt_audio"].append(tgt_audio_paths[sample_id])
manifest[split]["tgt_n_frames"].append(tgt_audio_lengths[sample_id])
out_manifest = args.output_root / f"{split}.tsv"
print(f"Writing manifest to {out_manifest}...")
save_df_to_tsv(pd.DataFrame.from_dict(manifest[split]), out_manifest)
# Generate config YAML
win_len_t = args.win_length / args.sample_rate
hop_len_t = args.hop_length / args.sample_rate
extra = {
"features": {
"type": "spectrogram+melscale+log",
"sample_rate": args.sample_rate,
"eps": 1e-5, "n_mels": args.n_mels, "n_fft": args.n_fft,
"window_fn": "hann", "win_length": args.win_length,
"hop_length": args.hop_length,
"win_len_t": win_len_t, "hop_len_t": hop_len_t,
"f_min": args.f_min, "f_max": args.f_max,
"n_stft": args.n_fft // 2 + 1
}
}
gen_config_yaml(
args.output_root,
audio_root=args.output_root.as_posix(),
specaugment_policy="lb",
feature_transform=["utterance_cmvn", "delta_deltas"],
extra=extra,
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--source-dir", required=True, type=Path, help="source audio directory"
)
parser.add_argument(
"--target-dir", required=True, type=Path, help="target audio directory"
)
parser.add_argument(
"--data-split",
default=["train", "valid", "test"],
nargs="+",
help="data split names",
)
parser.add_argument(
"--output-root", required=True, type=Path, help="output directory"
)
# target feature related
parser.add_argument("--win-length", type=int, default=1024)
parser.add_argument("--hop-length", type=int, default=256)
parser.add_argument("--n-fft", type=int, default=1024)
parser.add_argument("--n-mels", type=int, default=80)
parser.add_argument("--f-min", type=int, default=20)
parser.add_argument("--f-max", type=int, default=8000)
parser.add_argument("--sample-rate", type=int, default=22050)
parser.add_argument("--normalize-volume", "-n", action="store_true")
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/preprocessing/prep_s2spect_data.py |
import timeit
import logging
import torch
from pypapi import events, papi_high as high
from memory_profiler import memory_usage
from torch import nn
from argparse import Namespace
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.data import data_utils as fairseq_data_utils
from fairseq import checkpoint_utils, tasks, utils
from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder
from examples.hubert.simple_kmeans.dump_hubert_feature import HubertFeatureReader
from examples.hubert.simple_kmeans.dump_km_label import ApplyKmeans
from fairseq_cli.generate import get_symbols_to_strip_from_output
import soundfile as sf
import ast
import json
logging.basicConfig()
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
torch.manual_seed(1)
torch.set_deterministic(True)
class BenchmarkingBase(nn.Module):
def __init__(self):
nn.Module.__init__(self)
self.s2x_task = None
def warm_up(self, sample, repeat):
"""Warm up the model"""
for _i in range(repeat):
self.forward(sample)
logger.info(f"Model warmed up by running inference {repeat} times")
def benchmark_run_time(self, dataset, repeat):
"""Benchmark average runtime for the model by calling benchmark_run_time_single_sample function"""
logger.info("Starting run time benchmarking")
time_elapsed = 0
for i, sample in enumerate(dataset):
time_elapsed += self.benchmark_run_time_single_sample(sample, repeat=repeat)
if i % 100 == 0:
logger.info(f"Benchmarked run time for {i}/{len(dataset)} samples")
total_time_elapsed = time_elapsed / len(dataset)
return total_time_elapsed
def benchmark_run_time_single_sample(self, sample, repeat):
"""Benchmark average runtime for a single sample using timeit library. Units are seconds"""
timer = timeit.Timer(lambda: self.forward(sample))
time_elapsed = timer.timeit(repeat)
return time_elapsed / repeat
def count_flops(
self,
dataset,
repeat,
):
"""Use PYPAPI library to count average flops for model inference.
Note: It only works if the model is being run on cpu"""
logger.info("Starting flop counter")
high.start_counters([events.PAPI_DP_OPS])
for i, sample in enumerate(dataset):
for _r in range(repeat):
self.forward(sample)
if i % 100 == 0:
logger.info(f"Counted flops for {i}/{len(dataset)} samples")
flops = high.stop_counters()
flops = round(flops[0] / (repeat * len(dataset)))
return flops
def max_memory(self, dataset, repeat):
"""Compute average max memory consumed by model inference. Units are MiB"""
logger.info("Starting memory benchmarking")
total_memory = 0
for i, sample in enumerate(dataset):
for _r in range(repeat):
total_memory += max(memory_usage((self.forward, (sample,), {})))
if i % 100 == 0:
logger.info(f"Benchmarked memory for {i}/{len(dataset)} samples")
total_memory = total_memory / (repeat * len(dataset))
return total_memory
def gather_all_metrics(self, dataset, repeat):
run_time = self.benchmark_run_time(dataset, repeat)
max_memory = self.max_memory(dataset, repeat)
flops = self.count_flops(dataset, repeat)
return run_time, max_memory, flops
def dump_final_speech_output(
self, dataset, output_dir, resample_fn, sample_rate, prefix=None
):
for i, sample in enumerate(dataset):
hypo = self.forward(sample)[0]
def to_np(x):
return x.detach().cpu().numpy()
try:
wave_preds = to_np(resample_fn(hypo["waveform"]))
sf.write(
f"{output_dir}/{prefix}_{i}_pred.wav",
wave_preds,
sample_rate,
)
except Exception as e:
raise Exception(
f" Encountered {e} - Invalid waveform. Make sure the model outputs a waveform"
)
class Processing(BenchmarkingBase):
"""Class similar to fairseq_cli/generate.py. Supports ASR, MT and ST model inference"""
def __init__(self, args):
super().__init__()
self.use_cuda = not getattr(args, "cpu", False)
self.setUp(args)
self.training = False
self.s2x_task = self.task
def setUp(self, cfg):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
self.task = tasks.setup_task(cfg.task)
self.tgt_dict = self.task.target_dictionary
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, _ = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides={},
task=self.task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=False,
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
if len(models) > 1:
raise Exception("Currently loading multiple models is not supported")
self.model = models[0]
# Optimize model for generation
if cfg.common.fp16:
self.model.half()
if self.use_cuda:
self.model.cuda()
self.model.prepare_for_inference_(cfg)
self.generator = self.task.build_generator(
[self.model],
cfg.generation,
extra_gen_cls_kwargs={},
)
# Handle tokenization and BPE
self.tokenizer = self.task.build_tokenizer(cfg.tokenizer)
self.bpe = self.task.build_bpe(cfg.bpe)
self.remove_bpe = cfg.common_eval.post_process
def encode_source(self, src):
"""Method to generate source tokens from a string"""
if self.tokenizer is not None:
src = self.tokenizer.encode(src)
if self.bpe is not None:
src = self.bpe.encode(src)
src_tokens = self.task.source_dictionary.encode_line(src).long()
src_lens = src_tokens.size(0)
return {
"net_input": {
"src_tokens": src_tokens.view(1, src_lens),
"src_lengths": torch.tensor([src_lens]),
}
}
def decode_target(self, hypos):
"""Method to decode target string from tokens"""
hypo_str = self.tgt_dict.string(
hypos[0][0]["tokens"].int().cpu(),
self.remove_bpe,
get_symbols_to_strip_from_output(self.generator),
)
if self.bpe is not None:
hypo_str = self.bpe.decode(hypo_str)
if self.tokenizer is not None:
hypo_str = self.tokenizer.decode(hypo_str)
return hypo_str
def forward(self, sample):
hypos = self.task.inference_step(
self.generator,
[self.model],
sample,
prefix_tokens=None,
constraints=None,
)
return hypos
class GenerateWaveformFromCode(BenchmarkingBase):
"""Class to support waveform generation from code. Currently, vocoder only supports single speaker"""
def __init__(self, args):
super().__init__()
with open(args.vocoder_cfg) as f:
vocoder_cfg = json.load(f)
self.dur_prediction = args.dur_prediction
self.vocoder = CodeHiFiGANVocoder(args.vocoder, vocoder_cfg)
def format_units(self, input):
code = torch.LongTensor(list(map(int, input.strip().split()))).view(1, -1)
return {"code": code}
def generate_vocoder_input(self, dataset):
return [self.format_units(sample) for sample in dataset]
def forward(self, sample):
return [{"waveform": self.vocoder(sample, self.dur_prediction)}]
class HubertUnitExtractor(BenchmarkingBase):
def __init__(self, args):
self.feature_reader = HubertFeatureReader(
args.hubert_ckpt_path, args.hubert_layer
)
self.kmeans = ApplyKmeans(args.hubert_km_path)
def forward(self, sample):
with torch.no_grad():
feat = []
for start in range(0, sample.size(1), self.feature_reader.max_chunk):
x_chunk = sample[:, start : start + self.max_chunk]
feat_chunk, _ = self.feature_reader.model.extract_features(
source=x_chunk,
padding_mask=None,
mask=False,
output_layer=self.layer,
)
feat.append(feat_chunk)
torch.cat(feat, 1).squeeze(0)
return self.kmeans(feat).tolist()
class SpeechGeneration(BenchmarkingBase):
"""Class similar to examples/text_to_speech/generate_waveform.py.
Supports models with speech generation as end goal (TTS, Direct S2ST models etc)"""
def __init__(self, args):
super().__init__()
self.use_cuda = not getattr(args, "cpu", False)
self.setUp(args)
self.s2x_task = self.task
def setUp(self, args):
if args.task == "speech_to_speech":
args.normalize_waveform = False
self.task = tasks.setup_task(args)
self.pre_tokenizer = self.task.build_tokenizer(args)
self.bpe_tokenizer = self.task.build_bpe(args)
try:
self.src_dict = self.task.src_dict
except Exception:
self.src_dict = None
ensemble, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[args.path],
arg_overrides=ast.literal_eval(args.model_overrides),
task=self.task,
strict=False,
)
self.model = ensemble[0]
if self.use_cuda:
self.model.cuda()
# criterion.cuda()
self.model.eval()
self.generator = self.task.build_generator(
[self.model],
args,
)
def processTextInput(self, text):
"""Generate source tokens from text input"""
if self.pre_tokenizer is not None:
text = self.pre_tokenizer.encode(text)
if self.bpe_tokenizer is not None:
text = self.bpe_tokenizer.encode(text)
target = self.src_dict.encode_line(
text, add_if_not_exist=False, append_eos=True
).long()
target = fairseq_data_utils.collate_tokens(
[target],
self.src_dict.pad(),
self.src_dict.eos(),
left_pad=False,
move_eos_to_beginning=False,
)
src_lengths = torch.tensor([target.size(1)], dtype=torch.long)
prev_output_tokens = None
sample = {
"net_input": {
"src_tokens": target,
"src_lengths": src_lengths,
"prev_output_tokens": prev_output_tokens,
}
}
sample = utils.move_to_cuda(sample) if self.use_cuda else sample
return sample
def forward(self, sample):
sample["speaker"] = None
output = self.generator.generate(self.model, sample) # , has_targ=False
return output
class S2UT(BenchmarkingBase):
"""Class to support S2UT models. Also supports generating waveforms from the units predicted"""
def __init__(self, s2u_args, vocoder_args=None):
super().__init__()
self.s2u = Processing(s2u_args)
self.vocoder = None
if vocoder_args:
self.vocoder = GenerateWaveformFromCode(vocoder_args)
self.vocoder_input = None
def forward(self, sample):
s2u_hypos = self.s2u(sample)
s2u_output = self.s2u.decode_target(s2u_hypos)
if not self.vocoder:
return s2u_output
units = self.vocoder.format_units(s2u_output)
vocoder_output = self.vocoder(units)
return vocoder_output
def generate_s2u_outputs(self, dataset):
return [self.s2u.decode_target(self.s2u(sample)) for sample in dataset]
def compute_metrics(self, metric_type, dataset, repeat=None):
"""Generic function to compute metrics ignoring the io processing time"""
if self.vocoder and not self.vocoder_input:
self.s2u_output = self.generate_s2u_outputs(dataset)
self.vocoder_input = self.vocoder.generate_vocoder_input(self.s2u_output)
s2u_metrics = getattr(self.s2u, metric_type)(
dataset,
repeat,
)
vocoder_metrics = 0
if self.vocoder:
vocoder_metrics = getattr(self.vocoder, metric_type)(
self.vocoder_input,
repeat,
)
print(
f"metric_type = {metric_type} s2u_metrics = {s2u_metrics} \t vocoder_metrics = {vocoder_metrics}"
)
if metric_type == "max_memory":
return max(s2u_metrics, vocoder_metrics)
else:
return s2u_metrics + vocoder_metrics
def benchmark_run_time(self, dataset, repeat):
return self.compute_metrics("benchmark_run_time", dataset, repeat)
def count_flops(self, dataset, repeat):
return self.compute_metrics("count_flops", dataset, repeat)
def max_memory(self, dataset, repeat):
return self.compute_metrics("max_memory", dataset, repeat)
class Cascaded2StageS2ST(BenchmarkingBase):
"""ST + TTS"""
def __init__(self, s2t_args, tts_args):
super().__init__()
self.s2t = Processing(s2t_args)
self.s2x_task = self.s2t.task
self.tts = SpeechGeneration(tts_args) if tts_args else None
self.training = False
self.tts_inputs = None
def forward(self, sample):
if not self.tts:
raise Exception(
"Forward function is not callable without tts. Reinitialize the class with tts_args"
)
s2t_hypos = self.s2t(sample)
s2t_output = self.s2t.decode_target(s2t_hypos)
tts_input = self.tts.processTextInput(s2t_output)
tts_output = self.tts(tts_input)
return tts_output
def generate_s2t_outputs(self, dataset):
"""Process dataset and generate s2t outputs"""
return [self.s2t.decode_target(self.s2t(sample)) for sample in dataset]
def generate_tts_inputs(self, dataset):
"""Process dataset and generate tts inputs"""
return [self.tts.processTextInput(sample) for sample in dataset]
def compute_metrics(self, metric_type, dataset, repeat=None):
"""Generic function to compute metrics ignoring the io processing time"""
if not self.tts_inputs:
s2t_outputs = self.generate_s2t_outputs(dataset)
self.tts_inputs = self.generate_tts_inputs(s2t_outputs)
s2t_metrics = getattr(self.s2t, metric_type)(
dataset,
repeat,
)
tts_metrics = getattr(self.tts, metric_type)(
self.tts_inputs,
repeat,
)
print(
f"metric_type = {metric_type} s2t_metrics = {s2t_metrics} \t tts_metrics = {tts_metrics}"
)
if metric_type == "max_memory":
return max(s2t_metrics, tts_metrics)
else:
return s2t_metrics + tts_metrics
def benchmark_run_time(self, dataset, repeat):
return self.compute_metrics("benchmark_run_time", dataset, repeat)
def count_flops(self, dataset, repeat):
return self.compute_metrics("count_flops", dataset, repeat)
def max_memory(self, dataset, repeat):
return self.compute_metrics("max_memory", dataset, repeat)
class Cascaded3StageS2ST(Cascaded2StageS2ST):
"""ASR + MT + TTS"""
def __init__(self, s2t_args, tts_args, mt_args):
super().__init__(s2t_args, tts_args)
self.mt = Processing(mt_args)
self.mt_inputs = []
def forward(self, sample):
s2t_hypos = self.s2t(sample)
s2t_output = self.s2t.decode_target(s2t_hypos)
mt_input = self.mt.encode_source(s2t_output)
mt_hypos = self.mt(mt_input)
mt_output = self.mt.decode_target(mt_hypos)
tts_input = self.tts.processTextInput(mt_output)
tts_output = self.tts(tts_input)
return tts_output
def generate_mt_inputs(self, dataset):
"""Process dataset to generate mt model inputs"""
return [self.mt.encode_source(sample) for sample in dataset]
def generate_mt_outputs(self, dataset):
"""Process dataset to generate mt model outputs"""
return [self.mt.decode_target(self.mt(sample)) for sample in dataset]
def compute_metrics(self, metric_type, dataset, repeat=None):
"""Generic function to compute metrics ignoring the io processing time"""
if not self.tts_inputs:
s2t_outputs = self.generate_s2t_outputs(dataset)
self.mt_inputs = self.generate_mt_inputs(s2t_outputs)
mt_outputs = self.generate_mt_outputs(self.mt_inputs)
self.tts_inputs = self.generate_tts_inputs(mt_outputs)
s2t_metrics = getattr(self.s2t, metric_type)(
dataset,
repeat,
)
mt_metrics = getattr(self.mt, metric_type)(self.mt_inputs, repeat)
tts_metrics = getattr(self.tts, metric_type)(
self.tts_inputs,
repeat,
)
print(
f"metric_type = {metric_type} s2t_metrics = {s2t_metrics} \t mt_metrics = {mt_metrics} \t tts_metrics = {tts_metrics}"
)
if metric_type == "max_memory":
return max(s2t_metrics, mt_metrics, tts_metrics)
else:
return s2t_metrics + mt_metrics + tts_metrics
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/benchmarking/core.py |
from fairseq import tasks
import numpy as np
import logging
import random
from fairseq import options
import torch
import os
import soundfile as sf
from fairseq.data.audio.audio_utils import (
get_waveform,
parse_path,
)
logging.basicConfig()
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
random.seed(1)
np.random.seed(1)
random_number_generator = np.random.RandomState(30)
def generate_random_data_sample(T, B=1, D=80):
"""Generate random data sample given the T, B, D values"""
net_input = {
"src_tokens": torch.tensor(random_number_generator.randn(B, T, D)).float(),
"src_lengths": torch.tensor([T]),
}
return {"net_input": net_input}
def generate_random_dataset(T_range_min, T_range_max, B=1, D=80, dataset_size=100):
"""Generate random dataset with T values within a given range, B, D"""
T_values = [random.randint(T_range_min, T_range_max) for i in range(dataset_size)]
dataset = []
for t in T_values:
dataset.append(generate_random_data_sample(t, B, D))
return dataset, sum(T_values) / dataset_size
def load_dataset_npy(file_name, dataset_size=None):
"""Load dataset from a .npy file."""
data = np.load(file_name, allow_pickle=True)
if dataset_size:
data = data[:dataset_size]
return data
def load_dataset_raw_to_waveforms(
file_name,
dataset_size=None,
need_waveform=True,
sample_rate=16000,
read_using_soundfile=False,
):
"""Load raw dataset from w2v tsv file. Optionally get waveforms"""
data = []
with open(file_name, "r") as fp:
lines = fp.readlines()
data = [
os.path.join(lines[0].strip(), line.strip().split("\t")[0])
for line in lines[1:]
]
if dataset_size:
data = data[:dataset_size]
if not need_waveform:
return data
features = []
if read_using_soundfile:
for _i, d in enumerate(data):
wav = sf.read(d)[0]
if wav.ndim == 2:
wav = wav.mean(-1)
features.append(torch.from_numpy(wav).float().view(1, -1))
else:
for i, d in enumerate(data):
_path, slice_ptr = parse_path(d)
if len(slice_ptr) == 0:
feat = get_waveform(
_path, always_2d=True, output_sample_rate=sample_rate
)[0]
features.append(
{
"id": i,
"net_input": {
"src_tokens": torch.tensor(feat),
"src_lengths": torch.tensor([feat.shape[1]]),
},
}
)
else:
raise Exception("Currently unsupported data format")
return features
def load_dataset_task(
args,
batch_size=1,
limit_size=None,
ref_dataset=None,
):
"""Loads dataset based on args by creating a task"""
if not args.data or not args.subset or not args.task:
raise Exception(
"Please provide necessary arguments to load the dataset - data, subset and task"
)
task = tasks.setup_task(args)
task.load_dataset(args.subset)
if not limit_size:
limit_size = len(task.dataset(args.subset))
iter = task.get_batch_iterator(
dataset=task.dataset(args.subset), max_sentences=batch_size
).next_epoch_itr(shuffle=False)
dataset = []
for i, sample in enumerate(iter):
sample = {
"id": task.datasets[args.subset].ids[sample["id"].item()],
"net_input": {
"src_tokens": sample["net_input"]["src_tokens"],
"src_lengths": sample["net_input"]["src_lengths"],
},
}
dataset.append(sample)
if i == limit_size - 1:
break
if ref_dataset:
try:
ids = get_ids_from_dataset(ref_dataset)
except Exception as e:
raise Exception(f"{e} - Cannot extract ids from reference dataset")
filtered_dataset = []
for sample in dataset:
if (
sample["id"] in ids
or sample["id"][5:] in ids
or f"dev_{sample['id']}" in ids
):
filtered_dataset.append(sample)
dataset = filtered_dataset
max_len, min_len, avg_len = get_dataset_stats(dataset)
print(
f"{args.subset} dataset stats : num_samples={len(dataset)} max_len = {max_len} min_len = {min_len} avg_len = {avg_len}"
)
return dataset
def randomly_sample_subset(dataset, size=500):
"""Randomly sample subset from a dataset"""
random_indices = [random.randint(0, len(dataset) - 1) for i in range(size)]
return [dataset[i] for i in random_indices]
def get_short_data_subset(dataset, size=500):
"""Get a subset of desired size by sorting based on src_lengths"""
return sort_dataset(dataset)[:size]
def get_long_data_subset(dataset, size=500):
"""Get a subset of desired size by sorting based on src_lengths descending"""
return sort_dataset(dataset, reverse=True)[:size]
def sort_dataset(dataset, reverse=False):
return sorted(
dataset, key=lambda x: x["net_input"]["src_lengths"].item(), reverse=reverse
)
def save_dataset_npy(dataset, file_name):
"""Save a dataset as .npy file"""
np.save(file_name, dataset)
def get_dataset_stats(dataset):
"""Get stats about dataset based on src_lengths of samples"""
max_len = 0
min_len = 100000
avg_len = 0
for d in dataset:
max_len = max(max_len, d["net_input"]["src_lengths"].item())
min_len = min(min_len, d["net_input"]["src_lengths"].item())
avg_len += d["net_input"]["src_lengths"].item()
return max_len, min_len, avg_len / len(dataset)
def make_parser():
"""
Additional args:
1. Provide the dataset dir path using --data.
2. Loading the dataset doesn't require config, provide --config-yaml to apply additional feature transforms
"""
parser = options.get_speech_generation_parser()
parser.add_argument(
"--subset",
default=None,
type=str,
required=True,
help="Subset to use for dataset generation",
)
parser.add_argument(
"--dataset-save-dir",
default=None,
type=str,
required=False,
help="Dir path in which the datasets are to be saved",
)
parser.add_argument(
"--ref-dataset",
default=None,
type=str,
required=False,
help="If provided, the ids in the reference dataset will be used to filter the new dataset generated.",
)
parser.add_argument("--dataset-save-token", default="", type=str, required=False)
options.add_generation_args(parser)
return parser
def get_ids_from_dataset(dataset):
return {sample["id"]: 1 for sample in dataset}
def cli_main():
parser = make_parser()
args = options.parse_args_and_arch(parser)
dataset = load_dataset_task(args)
random_dataset = randomly_sample_subset(dataset)
short_dataset = get_short_data_subset(dataset)
long_dataset = get_long_data_subset(dataset)
if args.dataset_save_token:
args.dataset_save_token = f"_{args.dataset_save_token}_"
if args.dataset_save_dir:
save_dataset_npy(
random_dataset,
f"{args.dataset_save_dir}/random_dataset{args.dataset_save_token}w_ids.npy",
)
save_dataset_npy(
short_dataset,
f"{args.dataset_save_dir}/short_dataset{args.dataset_save_token}w_ids.npy",
)
save_dataset_npy(
long_dataset,
f"{args.dataset_save_dir}/long_dataset{args.dataset_save_token}w_ids.npy",
)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/benchmarking/data_utils.py |
import copy
import torch
import logging
from argparse import Namespace
import yaml
from fairseq import options
from examples.speech_to_speech.benchmarking.core import (
Processing,
SpeechGeneration,
Cascaded2StageS2ST,
Cascaded3StageS2ST,
S2UT,
)
from examples.speech_to_speech.benchmarking.data_utils import (
load_dataset_npy,
load_dataset_raw_to_waveforms,
)
logging.basicConfig()
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
torch.manual_seed(1)
torch.set_deterministic(True)
def make_parser():
"""Note: As the names indicate use s2x_args(ex:ST, ASR etc) for models with speech input,
x2s_args for models with speech output(ex:TTS) and mt_args for translation models (ex: mt, T2U etc).
For direct S2ST models, use x2s_args to provide model details.
"""
parser = options.get_speech_generation_parser()
parser.add_argument("--target-is-code", action="store_true", default=False)
parser.add_argument("--config", type=str)
parser.add_argument(
"--model-type",
default="S2U",
choices=["S2S", "TTS", "S2UT", "MT", "S2T", "2StageS2ST", "3StageS2ST"],
help="Choose one of the models. For model inference implementation, refer to core.py",
)
parser.add_argument(
"--dataset-path",
type=str,
help="""File to load dataset from. Assumes dataset is a list of samples.
Each sample is a dict of format {'net_input':{'src_tokens':torch.tenor(),'src_lengths':torch.tensor()}}""",
)
parser.add_argument(
"--dataset-type",
type=str,
default="npy",
choices=["npy", "raw"],
help="""Type of input dataset file""",
)
parser.add_argument(
"--read-using-sf",
type=str,
default=False,
help="""If sound file should be used to read the raw dataset""",
)
parser.add_argument(
"--dataset-size",
default=None,
type=int,
help="Dataset size to use for benchmarking",
)
parser.add_argument(
"--dump-speech-waveforms-dir",
default=None,
type=str,
help="Directory to dump the speech waveforms computed on the dataset.",
)
parser.add_argument(
"--dump-waveform-file-prefix",
default="",
type=str,
help="File name prefix for the saved speech waveforms",
)
parser.add_argument(
"--feat-dim", default=80, type=int, help="Input feature dimension"
)
parser.add_argument(
"--target-sr",
default=16000,
type=int,
help="Target sample rate for dumping waveforms",
)
options.add_generation_args(parser)
options.get_interactive_generation_parser(parser)
return parser
def cli_main():
parser = make_parser()
args = options.parse_args_and_arch(parser)
with open(
args.config,
"r",
) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
dict_args = vars(args)
dict_args.update(config["general"])
args = Namespace(**dict_args)
i = 1
stage_args = []
while i <= 3:
var = f"stage{i}"
tmp_args = copy.deepcopy(dict_args)
if var in config:
tmp_args.update(config[var])
stage_args.append(Namespace(**tmp_args))
i += 1
else:
break
if args.model_type == "S2S" or args.model_type == "TTS":
model = SpeechGeneration(stage_args[0])
elif args.model_type == "S2UT":
model = S2UT(stage_args[0], stage_args[1] if len(stage_args) > 1 else None)
elif args.model_type == "MT" or args.model_type == "S2T":
model = Processing(stage_args[0])
elif args.model_type == "2StageS2ST":
model = Cascaded2StageS2ST(stage_args[0], stage_args[1])
elif args.model_type == "3StageS2ST":
model = Cascaded3StageS2ST(stage_args[0], stage_args[2], stage_args[1])
else:
raise Exception(f"Currently unsupported model type {args.model_type}")
print(f"Evaluating on dataset - {args.dataset_path}\n")
if args.dataset_type == "npy":
dataset = load_dataset_npy(args.dataset_path, dataset_size=args.dataset_size)
elif args.dataset_type == "raw":
dataset = load_dataset_raw_to_waveforms(
args.dataset_path,
dataset_size=args.dataset_size,
read_using_soundfile=args.read_using_sf,
)
else:
raise Exception(f"Invalid dataset type {args.dataset_type}")
model.warm_up(sample=dataset[0], repeat=2)
run_time, memory, flops = model.gather_all_metrics(dataset, repeat=1)
print(f"run_time = {run_time}sec \tmemory = {memory}MiB \tflops = {flops}")
if args.dump_speech_waveforms_dir:
model.dump_final_speech_output(
dataset,
args.dump_speech_waveforms_dir,
lambda x: x,
args.target_sr,
prefix=args.dump_waveform_file_prefix,
)
if __name__ == "__main__":
cli_main()
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_speech/benchmarking/get_metrics.py |
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import fileinput
from tqdm import tqdm
def main():
parser = argparse.ArgumentParser(
description=(
"Extract back-translations from the stdout of fairseq-generate. "
"If there are multiply hypotheses for a source, we only keep the first one. "
)
)
parser.add_argument("--output", required=True, help="output prefix")
parser.add_argument(
"--srclang", required=True, help="source language (extracted from H-* lines)"
)
parser.add_argument(
"--tgtlang", required=True, help="target language (extracted from S-* lines)"
)
parser.add_argument("--minlen", type=int, help="min length filter")
parser.add_argument("--maxlen", type=int, help="max length filter")
parser.add_argument("--ratio", type=float, help="ratio filter")
parser.add_argument("files", nargs="*", help="input files")
args = parser.parse_args()
def validate(src, tgt):
srclen = len(src.split(" ")) if src != "" else 0
tgtlen = len(tgt.split(" ")) if tgt != "" else 0
if (
(args.minlen is not None and (srclen < args.minlen or tgtlen < args.minlen))
or (
args.maxlen is not None
and (srclen > args.maxlen or tgtlen > args.maxlen)
)
or (
args.ratio is not None
and (max(srclen, tgtlen) / float(min(srclen, tgtlen)) > args.ratio)
)
):
return False
return True
def safe_index(toks, index, default):
try:
return toks[index]
except IndexError:
return default
with open(args.output + "." + args.srclang, "w") as src_h, open(
args.output + "." + args.tgtlang, "w"
) as tgt_h:
for line in tqdm(fileinput.input(args.files)):
if line.startswith("S-"):
tgt = safe_index(line.rstrip().split("\t"), 1, "")
elif line.startswith("H-"):
if tgt is not None:
src = safe_index(line.rstrip().split("\t"), 2, "")
if validate(src, tgt):
print(src, file=src_h)
print(tgt, file=tgt_h)
tgt = None
if __name__ == "__main__":
main()
| KosmosX-API-main | kosmosX/fairseq/examples/backtranslation/extract_bt_data.py |
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import fileinput
import hashlib
import sys
from multiprocessing import Pool
def get_hashes_and_lines(raw_line):
hash = hashlib.md5(raw_line).hexdigest()
return hash, raw_line
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--workers", type=int, default=10)
parser.add_argument("files", nargs="*", help="input files")
args = parser.parse_args()
seen = set()
with fileinput.input(args.files, mode="rb") as h:
pool = Pool(args.workers)
results = pool.imap_unordered(get_hashes_and_lines, h, 1000)
for i, (hash, raw_line) in enumerate(results):
if hash not in seen:
seen.add(hash)
sys.stdout.buffer.write(raw_line)
if i % 1000000 == 0:
print(i, file=sys.stderr, end="", flush=True)
elif i % 100000 == 0:
print(".", file=sys.stderr, end="", flush=True)
print(file=sys.stderr, flush=True)
if __name__ == "__main__":
main()
| KosmosX-API-main | kosmosX/fairseq/examples/backtranslation/deduplicate_lines.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
import shutil
from tempfile import NamedTemporaryFile
from typing import Optional, Tuple
import pandas as pd
import torchaudio
from examples.speech_to_text.data_utils import (
create_zip,
extract_fbank_features,
filter_manifest_df,
gen_config_yaml,
gen_vocab,
get_zip_manifest,
load_df_from_tsv,
save_df_to_tsv,
)
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio.datasets.utils import download_url, extract_archive
from tqdm import tqdm
log = logging.getLogger(__name__)
MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
class CoVoST(Dataset):
"""Create a Dataset for CoVoST (https://github.com/facebookresearch/covost).
Args:
root (str): root path to the dataset and generated manifests/features
source_language (str): source (audio) language
target_language (str, optional): target (text) language,
None for no translation (default: None)
version (int, optional): CoVoST version. (default: 2)
download (bool, optional): Whether to download the dataset if it is not
found at root path. (default: ``False``).
"""
COVOST_URL_TEMPLATE = (
"https://dl.fbaipublicfiles.com/covost/"
"covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz"
)
VERSIONS = {2}
SPLITS = ["train", "dev", "test"]
XX_EN_LANGUAGES = {
1: ["fr", "de", "nl", "ru", "es", "it", "tr", "fa", "sv-SE", "mn", "zh-CN"],
2: [
"fr",
"de",
"es",
"ca",
"it",
"ru",
"zh-CN",
"pt",
"fa",
"et",
"mn",
"nl",
"tr",
"ar",
"sv-SE",
"lv",
"sl",
"ta",
"ja",
"id",
"cy",
],
}
EN_XX_LANGUAGES = {
1: [],
2: [
"de",
"tr",
"fa",
"sv-SE",
"mn",
"zh-CN",
"cy",
"ca",
"sl",
"et",
"id",
"ar",
"ta",
"lv",
"ja",
],
}
def __init__(
self,
root: str,
split: str,
source_language: str,
target_language: Optional[str] = None,
version: int = 2,
) -> None:
assert version in self.VERSIONS and split in self.SPLITS
assert source_language is not None
self.no_translation = target_language is None
if not self.no_translation:
assert "en" in {source_language, target_language}
if source_language == "en":
assert target_language in self.EN_XX_LANGUAGES[version]
else:
assert source_language in self.XX_EN_LANGUAGES[version]
else:
# Hack here so that we can get "split" column from CoVoST TSV.
# Note that we use CoVoST train split for ASR which is an extension
# to Common Voice train split.
target_language = "de" if source_language == "en" else "en"
self.root: Path = Path(root)
cv_tsv_path = self.root / "validated.tsv"
assert cv_tsv_path.is_file()
covost_url = self.COVOST_URL_TEMPLATE.format(
src_lang=source_language, tgt_lang=target_language
)
covost_archive = self.root / Path(covost_url).name
if not covost_archive.is_file():
download_url(covost_url, self.root.as_posix(), hash_value=None)
extract_archive(covost_archive.as_posix())
cv_tsv = load_df_from_tsv(cv_tsv_path)
covost_tsv = load_df_from_tsv(
self.root / Path(covost_url).name.replace(".tar.gz", "")
)
df = pd.merge(
left=cv_tsv[["path", "sentence", "client_id"]],
right=covost_tsv[["path", "translation", "split"]],
how="inner",
on="path",
)
if split == "train":
df = df[(df["split"] == split) | (df["split"] == f"{split}_covost")]
else:
df = df[df["split"] == split]
data = df.to_dict(orient="index").items()
data = [v for k, v in sorted(data, key=lambda x: x[0])]
self.data = []
for e in data:
try:
path = self.root / "clips" / e["path"]
_ = torchaudio.info(path.as_posix())
self.data.append(e)
except RuntimeError:
pass
def __getitem__(
self, n: int
) -> Tuple[Tensor, int, str, str, Optional[str], str, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
tuple: ``(waveform, sample_rate, sentence, translation, speaker_id,
sample_id)``
"""
data = self.data[n]
path = self.root / "clips" / data["path"]
waveform, sample_rate = torchaudio.load(path)
sentence = data["sentence"]
translation = None if self.no_translation else data["translation"]
speaker_id = data["client_id"]
_id = data["path"].replace(".mp3", "")
return waveform, sample_rate, sentence, translation, speaker_id, _id
def __len__(self) -> int:
return len(self.data)
def process(args):
root = Path(args.data_root).absolute() / args.src_lang
if not root.is_dir():
raise NotADirectoryError(f"{root} does not exist")
# Extract features
feature_root = root / "fbank80"
feature_root.mkdir(exist_ok=True)
for split in CoVoST.SPLITS:
print(f"Fetching split {split}...")
dataset = CoVoST(root, split, args.src_lang, args.tgt_lang)
print("Extracting log mel filter bank features...")
for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
extract_fbank_features(
waveform, sample_rate, feature_root / f"{utt_id}.npy"
)
# Pack features into ZIP
zip_path = root / "fbank80.zip"
print("ZIPing features...")
create_zip(feature_root, zip_path)
print("Fetching ZIP manifest...")
audio_paths, audio_lengths = get_zip_manifest(zip_path)
# Generate TSV manifest
print("Generating manifest...")
train_text = []
task = f"asr_{args.src_lang}"
if args.tgt_lang is not None:
task = f"st_{args.src_lang}_{args.tgt_lang}"
for split in CoVoST.SPLITS:
manifest = {c: [] for c in MANIFEST_COLUMNS}
dataset = CoVoST(root, split, args.src_lang, args.tgt_lang)
for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
manifest["id"].append(utt_id)
manifest["audio"].append(audio_paths[utt_id])
manifest["n_frames"].append(audio_lengths[utt_id])
manifest["tgt_text"].append(src_utt if args.tgt_lang is None else tgt_utt)
manifest["speaker"].append(speaker_id)
is_train_split = split.startswith("train")
if is_train_split:
train_text.extend(manifest["tgt_text"])
df = pd.DataFrame.from_dict(manifest)
df = filter_manifest_df(df, is_train_split=is_train_split)
save_df_to_tsv(df, root / f"{split}_{task}.tsv")
# Generate vocab
vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{task}"
with NamedTemporaryFile(mode="w") as f:
for t in train_text:
f.write(t + "\n")
gen_vocab(
Path(f.name),
root / spm_filename_prefix,
args.vocab_type,
args.vocab_size
)
# Generate config YAML
gen_config_yaml(
root,
spm_filename=spm_filename_prefix + ".model",
yaml_filename=f"config_{task}.yaml",
specaugment_policy="lb",
)
# Clean up
shutil.rmtree(feature_root)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-root", "-d", required=True, type=str,
help="data root with sub-folders for each language <root>/<src_lang>"
)
parser.add_argument(
"--vocab-type",
default="unigram",
required=True,
type=str,
choices=["bpe", "unigram", "char"],
),
parser.add_argument("--vocab-size", default=1000, type=int)
parser.add_argument("--src-lang", "-s", required=True, type=str)
parser.add_argument("--tgt-lang", "-t", type=str)
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_text/prep_covost_data.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
import soundfile as sf
from examples.speech_to_text.prep_mustc_data import (
MUSTC
)
from tqdm import tqdm
log = logging.getLogger(__name__)
def main(args):
root = Path(args.data_root).absolute()
lang = args.lang
split = args.split
cur_root = root / f"en-{lang}"
assert cur_root.is_dir(), (
f"{cur_root.as_posix()} does not exist. Skipped."
)
dataset = MUSTC(root.as_posix(), lang, split)
output = Path(args.output).absolute()
output.mkdir(exist_ok=True)
f_text = open(output / f"{split}.{lang}", "w")
f_wav_list = open(output / f"{split}.wav_list", "w")
for waveform, sample_rate, _, text, _, utt_id in tqdm(dataset):
sf.write(
output / f"{utt_id}.wav",
waveform.squeeze(0).numpy(),
samplerate=int(sample_rate)
)
f_text.write(text + "\n")
f_wav_list.write(str(output / f"{utt_id}.wav") + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-root", "-d", required=True, type=str)
parser.add_argument("--task", required=True, type=str, choices=["asr", "st"])
parser.add_argument("--lang", required=True, type=str)
parser.add_argument("--output", required=True, type=str)
parser.add_argument("--split", required=True, choices=MUSTC.SPLITS)
args = parser.parse_args()
main(args)
| KosmosX-API-main | kosmosX/fairseq/examples/speech_to_text/seg_mustc_data.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.