python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys from fairseq.data import Dictionary def get_parser(): parser = argparse.ArgumentParser( description="filters a lexicon given a unit dictionary" ) parser.add_argument("-d", "--unit-dict", help="unit dictionary", required=True) return parser def main(): parser = get_parser() args = parser.parse_args() d = Dictionary.load(args.unit_dict) symbols = set(d.symbols) for line in sys.stdin: items = line.rstrip().split() skip = len(items) < 2 for x in items[1:]: if x not in symbols: skip = True break if not skip: print(line, end="") if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/scripts/filter_lexicon.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import os.path as osp import math import numpy as np import tqdm import torch from shutil import copyfile from npy_append_array import NpyAppendArray def get_parser(): parser = argparse.ArgumentParser( description="transforms features via a given pca and stored them in target dir" ) # fmt: off parser.add_argument('source', help='directory with features') parser.add_argument('--split', help='which split to read', required=True) parser.add_argument('--save-dir', help='where to save the output', required=True) parser.add_argument('--pca-path', type=str, help='pca location. will append _A.npy and _b.npy', required=True) parser.add_argument('--batch-size', type=int, default=2048000, help='batch size') parser.add_argument('--unfiltered', action='store_true', help='process the unfiltered version') # fmt: on return parser def main(): parser = get_parser() args = parser.parse_args() source_path = osp.join(args.source, args.split) data_poth = source_path + "_unfiltered" if args.unfiltered else source_path print(f"data path: {data_poth}") features = np.load(data_poth + ".npy", mmap_mode="r") pca_A = torch.from_numpy(np.load(args.pca_path + "_A.npy")).cuda() pca_b = torch.from_numpy(np.load(args.pca_path + "_b.npy")).cuda() os.makedirs(args.save_dir, exist_ok=True) save_path = osp.join(args.save_dir, args.split) copyfile(source_path + ".tsv", save_path + ".tsv") copyfile(data_poth + ".lengths", save_path + ".lengths") if osp.exists(source_path + ".phn"): copyfile(source_path + ".phn", save_path + ".phn") if osp.exists(source_path + ".wrd"): copyfile(source_path + ".wrd", save_path + ".wrd") if osp.exists(save_path + ".npy"): os.remove(save_path + ".npy") npaa = NpyAppendArray(save_path + ".npy") batches = math.ceil(features.shape[0] / args.batch_size) with torch.no_grad(): for b in tqdm.trange(batches): start = b * args.batch_size end = start + args.batch_size x = torch.from_numpy(features[start:end]).cuda() x = torch.matmul(x, pca_A) + pca_b npaa.append(x.cpu().numpy()) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/scripts/apply_pca.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys from g2p_en import G2p def main(): parser = argparse.ArgumentParser() parser.add_argument( "--compact", action="store_true", help="if set, compacts phones", ) args = parser.parse_args() compact = args.compact wrd_to_phn = {} g2p = G2p() for line in sys.stdin: words = line.strip().split() phones = [] for w in words: if w not in wrd_to_phn: wrd_to_phn[w] = g2p(w) if compact: wrd_to_phn[w] = [ p[:-1] if p[-1].isnumeric() else p for p in wrd_to_phn[w] ] phones.extend(wrd_to_phn[w]) try: print(" ".join(phones)) except: print(wrd_to_phn, words, phones, file=sys.stderr) raise if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/scripts/g2p_wrd_to_phn.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ get intervals from .vads file, specify output data, and this script removes silences and saves the audio data in out path folder paths=shards/train.tsv vads=shards/train.vads python remove_silence.py --paths $paths --vads $vads """ import os import argparse import torch import torchaudio import tqdm parser = argparse.ArgumentParser() parser.add_argument("--tsv", default="", type=str) parser.add_argument("--vads", default="", type=str) parser.add_argument("--out", type=str) params = parser.parse_args() # load paths paths = [] with open(params.tsv) as f: root = next(f).rstrip() for line in f: paths.append(os.path.join(root, line.rstrip().split("\t")[0])) # load vads list_intervals = [] with open(params.vads) as f: for line in f: interval = [ [int(w.split(":")[0]), int(w.split(":")[1])] for w in line.rstrip().split() ] list_intervals.append(interval) # load audio and keep only intervals (i.e. remove silences) for i in tqdm.trange(len(paths)): data, _ = torchaudio.load(paths[i]) if len(list_intervals[i]) > 0: data_filtered = torch.cat( [data[0][int(it[0]) : int(it[1])] for it in list_intervals[i]] ).unsqueeze(0) else: data_filtered = data # YOU MAY NEED TO MODIFY THIS TO GET THE RIGHT SUBPATH # outpath = params.out + '/'.join(paths[i].split('/')[-1]) outpath = params.out + "/" + "/".join(paths[i].split("/")[-2:]) if not os.path.isdir("/".join(outpath.split("/")[:-1])): os.makedirs("/".join(outpath.split("/")[:-1])) if not os.path.exists(outpath): torchaudio.save(outpath, data_filtered, sample_rate=16000) else: print(outpath, "exists!")
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/scripts/remove_silence.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import os.path as osp import tqdm import torch import torch.nn.functional as F from shutil import copyfile from npy_append_array import NpyAppendArray import fairseq import soundfile as sf def get_parser(): parser = argparse.ArgumentParser( description="compute kmeans codebook from kaldi-computed feats" ) # fmt: off parser.add_argument('data', help='location of tsv files') parser.add_argument('--split', help='which split to read', required=True) parser.add_argument('--save-dir', help='where to save the output', required=True) parser.add_argument('--checkpoint', type=str, help='checkpoint for wav2vec ctc model', required=True) parser.add_argument('--layer', type=int, default=14, help='which layer to use') # fmt: on return parser class Wav2VecFeatureReader(object): def __init__(self, cp_file, layer): model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task( [cp_file] ) model = model[0] model.eval() model.cuda() self.model = model self.task = task self.layer = layer def read_audio(self, fname): """Load an audio file and return PCM along with the sample rate""" wav, sr = sf.read(fname) assert sr == 16e3 return wav def get_feats(self, loc): x = self.read_audio(loc) with torch.no_grad(): source = torch.from_numpy(x).float().cuda() if self.task.cfg.normalize: assert source.dim() == 1, source.dim() with torch.no_grad(): source = F.layer_norm(source, source.shape) source = source.view(1, -1) m_res = self.model(source=source, mask=False, features_only=True, layer=self.layer) return m_res["x"].squeeze(0).cpu() def get_iterator(args): with open(osp.join(args.data, args.split) + ".tsv", "r") as fp: lines = fp.read().split("\n") root = lines.pop(0).strip() files = [osp.join(root, line.split("\t")[0]) for line in lines if len(line) > 0] num = len(files) reader = Wav2VecFeatureReader(args.checkpoint, args.layer) def iterate(): for fname in files: w2v_feats = reader.get_feats(fname) yield w2v_feats return iterate, num def main(): parser = get_parser() args = parser.parse_args() os.makedirs(args.save_dir, exist_ok=True) def create_files(dest): copyfile(osp.join(args.data, args.split) + ".tsv", dest + ".tsv") if osp.exists(osp.join(args.data, args.split) + ".wrd"): copyfile(osp.join(args.data, args.split) + ".wrd", dest + ".wrd") if osp.exists(osp.join(args.data, args.split) + ".phn"): copyfile(osp.join(args.data, args.split) + ".phn", dest + ".phn") if osp.exists(dest + ".npy"): os.remove(dest + ".npy") npaa = NpyAppendArray(dest + ".npy") return npaa save_path = osp.join(args.save_dir, args.split) npaa = create_files(save_path) generator, num = get_iterator(args) iterator = generator() with open(save_path + ".lengths", "w") as l_f: for w2v_feats in tqdm.tqdm(iterator, total=num): print(len(w2v_feats), file=l_f) if len(w2v_feats) > 0: npaa.append(w2v_feats.numpy()) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/scripts/wav2vec_extract_features.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .extracted_features_dataset import ExtractedFeaturesDataset from .random_input_dataset import RandomInputDataset __all__ = [ "ExtractedFeaturesDataset", "RandomInputDataset", ]
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import contextlib import numpy as np import torch from fairseq.data import FairseqDataset, data_utils logger = logging.getLogger(__name__) class ExtractedFeaturesDataset(FairseqDataset): def __init__( self, path, split, min_length=3, max_length=None, labels=None, label_dict=None, shuffle=True, sort_by_length=True, aux_target_postfix=None, ): super().__init__() self.min_length = min_length self.max_length = max_length self.shuffle = shuffle self.sort_by_length = sort_by_length self.label_dict = label_dict if labels is not None: assert label_dict is not None self.sizes = [] self.offsets = [] self.labels = [] self.aux_tgt = None path = os.path.join(path, split) data_path = path self.data = np.load(data_path + ".npy", mmap_mode="r") offset = 0 skipped = 0 if not os.path.exists(path + f".{labels}"): labels = None with open(data_path + ".lengths", "r") as len_f, open( path + f".{labels}", "r" ) if labels is not None else contextlib.ExitStack() as lbl_f: for line in len_f: length = int(line.rstrip()) lbl = None if labels is None else next(lbl_f).rstrip().split() if length >= min_length and ( max_length is None or length <= max_length ): self.sizes.append(length) self.offsets.append(offset) if lbl is not None: self.labels.append(lbl) offset += length self.sizes = np.asarray(self.sizes) self.offsets = np.asarray(self.offsets) if aux_target_postfix is not None: if not os.path.exists(path+f".{aux_target_postfix}"): logger.info(f"auxaliry target for {split} missing") else: with open(path+f".{aux_target_postfix}", "r") as t_f: self.aux_tgt = [ torch.LongTensor(list(map(int,seg.strip().split())))\ for seg in t_f] logger.info(f"loaded {len(self.offsets)}, skipped {skipped} samples") def __getitem__(self, index): offset = self.offsets[index] end = self.sizes[index] + offset feats = torch.from_numpy(self.data[offset:end].copy()).float() res = {"id": index, "features": feats} if len(self.labels) > 0: res["target"] = self.label_dict.encode_line( self.labels[index], line_tokenizer=lambda x: x, append_eos=False, ) if self.aux_tgt: res["aux_target"] = self.aux_tgt[index] return res def __len__(self): return len(self.sizes) def collater(self, samples): if len(samples) == 0: return {} features = [s["features"] for s in samples] sizes = [len(s) for s in features] target_size = max(sizes) collated_features = features[0].new_zeros( len(features), target_size, features[0].size(-1) ) padding_mask = torch.BoolTensor(collated_features.shape[:-1]).fill_(False) for i, (f, size) in enumerate(zip(features, sizes)): collated_features[i, :size] = f padding_mask[i, size:] = True res = { "id": torch.LongTensor([s["id"] for s in samples]), "net_input": {"features": collated_features, "padding_mask": padding_mask}, } if len(self.labels) > 0: target = data_utils.collate_tokens( [s["target"] for s in samples], pad_idx=self.label_dict.pad(), left_pad=False, ) res["target"] = target if self.aux_tgt: idxs = torch.nn.utils.rnn.pad_sequence( [s["aux_target"] for s in samples], batch_first=True, padding_value=-1, ) res["net_input"]["aux_target"] = idxs return res def num_tokens(self, index): return self.size(index) def size(self, index): return self.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] if self.sort_by_length: order.append(self.sizes) return np.lexsort(order)[::-1] else: return order[0]
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/data/extracted_features_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random from typing import List from fairseq.data import BaseWrapperDataset, data_utils class RandomInputDataset(BaseWrapperDataset): def __init__( self, dataset, random_input_dataset, input_key_path: List[str], add_to_input, pad_idx, ): super().__init__(dataset) self.random_input_dataset = random_input_dataset if isinstance(input_key_path, str): input_key_path = [input_key_path] assert len(input_key_path) > 0 self.input_key_path = input_key_path self.add_to_input = add_to_input self.pad_idx = pad_idx def get_target(self, item): target_loc = item for p in self.input_key_path[:-1]: target_loc = target_loc[p] return self.input_key_path[-1], target_loc def get_target_value(self, item): k, target_loc = self.get_target(item) return target_loc[k] def __getitem__(self, index): item = self.dataset[index] k, target_loc = self.get_target(item) target_loc[k] = random.choice(self.random_input_dataset) return item def collater(self, samples): collated = self.dataset.collater(samples) if len(collated) == 0: return collated indices = set(collated["id"].tolist()) random_inputs = data_utils.collate_tokens( [self.get_target_value(s) for s in samples if s["id"] in indices], pad_idx=self.pad_idx, left_pad=False, ) k, target_loc = self.get_target( collated if not self.add_to_input else collated["net_input"] ) target_loc[k] = random_inputs return collated
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/unsupervised/data/random_input_dataset.py
""" Usage: This script is used to extract the embedding / logit for speech classification task. 1. Set fdir into your model checkpoint directory 2. Run the following command (preferrably on GPU machine to speed up the inference process) CUDA_VISIBLE_DEVICES=0 python3 examples/wav2vec/gen_audio_embedding.py /fsx/data/VoxLingua107/manifest --path ${fdir} \ --task audio_classification --batch-size 90 --gen-subset test \ --infer-manifest /fsx/data/VoxLingua107/manifest/test.tsv \ --infer-xtimes 10 --infer-max-sample-size 160000 --output-path $odir Example: Case: LID logit extraction fdir='/fsx/androstj/exps/voxlingua_lid_train_all/ckpt_100pct_300m_voxling-act_linear-pool_mean_fast-lr_1e-4-phase_0.1_0.4_0.5-maxupd_100000-ufreq_1-mprob_0.5-fz_0-cr_softmax/0/checkpoints/checkpoint_best.pt' python3 examples/wav2vec/gen_audio_embedding.py /fsx/data/VoxLingua107/manifest --path ${fdir} \ --task audio_classification --batch-size 90 --gen-subset test \ --infer-manifest /fsx/data/VoxLingua107/manifest/test.tsv \ --infer-xtimes 10 --infer-max-sample-size 160000 --output-path $odir """ import torch from fairseq import checkpoint_utils, distributed_utils, options, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import metrics, progress_bar from fairseq import checkpoint_utils, data, options, tasks from fairseq.data import FileAudioDataset, AddTargetDataset, Dictionary from fairseq.tasks.audio_classification import LabelEncoder import ipdb import copy import sys from tqdm import tqdm import tempfile import numpy as np import sklearn def subset_manifest(infer_manifest, veri_pair): with open(infer_manifest) as ff, open(veri_pair) as gg, \ tempfile.NamedTemporaryFile('w', delete=False) as ww: fnames = ff.read().strip().split("\n") basedir = fnames[0] needed_fname = [] for gi in gg.read().strip().split('\n'): _, x1, x2 = gi.split() needed_fname.append(x1) needed_fname.append(x2) needed_fname = set(needed_fname) ww.write(basedir+'\n') for ii in range(1, len(fnames)): x1,x2 = fnames[ii].split() if x1 in needed_fname: ww.write(fnames[ii]+'\n') print(f'| subset manifest for verification: {ww.name}') return ww.name def wrap_target_dataset(infer_manifest, dataset, task): label_path = infer_manifest.replace(".tsv", ".label") with open(label_path, "r") as f: labels = f.read().strip().split("\n") assert len(labels) == len(dataset) process_label = LabelEncoder(task.target_dictionary) dataset = AddTargetDataset(dataset, labels, pad=task.target_dictionary.pad(), eos=task.target_dictionary.eos(), batch_targets=True, process_label=process_label, add_to_input=False) return dataset def resample_data(source, padding_mask, n_sample, max_sample_len): # source: BxT # padding_mask: BxT B = source.shape[0] T = source.shape[1] sources = [] padding_masks = [] seq_len = (~padding_mask).sum(1) for jj in range(n_sample): new_source = source.new_zeros(B, max_sample_len) new_padding_mask = padding_mask.new_zeros(B, max_sample_len) for ii in range(B): if seq_len[ii] > max_sample_len: start = np.random.randint(0, seq_len[ii]-max_sample_len+1) end = start + max_sample_len else : start = 0 end = seq_len[ii] new_source[ii, 0:end-start] = source[ii, start:end] new_padding_mask[ii, end-start+1:] = True sources.append(new_source) padding_masks.append(new_padding_mask) return sources, padding_masks def resample_sample(sample, n_sample, max_sample_len): new_sources, new_padding_masks = resample_data(sample['net_input']['source'], sample['net_input']['padding_mask'], n_sample, max_sample_len) new_samples = [] for ii in range(n_sample): new_sample = copy.deepcopy(sample) new_sample['net_input']['source'] = new_sources[ii] new_sample['net_input']['padding_mask'] = new_padding_masks[ii] new_samples.append(new_sample) return new_samples if __name__ == '__main__': np.random.seed(123) # Parse command-line arguments for generation parser = options.get_generation_parser(default_task='audio_classification') # parser.add_argument('--infer-merge', type=str, default='mean') parser.add_argument('--infer-xtimes', type=int, default=1) parser.add_argument('--infer-max-sample-size', type=int, default=5*16000) # 5 secs parser.add_argument('--infer-manifest', type=str) parser.add_argument('--verification-pair', type=str, required=False, help=''' a file that contains pairs of utts to evaluated if they are from same speaker or not format: (following voxceleb) 1/0 <wav_pair_a> <wav_pair_b> ''') parser.add_argument('--output-path', type=str) # parser.add_argument('--infer-xtimes', type=int, default=1) args = options.parse_args_and_arch(parser) # Setup task # task = tasks.setup_task(args) use_cuda = not args.cpu # Load model & task print('| loading model from {}'.format(args.path)) arg_overrides = { 'data': args.data, # 'mask_prob': 0 #'max_sample_size': sys.maxsize, #'min_sample_size': 0, } state = checkpoint_utils.load_checkpoint_to_cpu(args.path) # move to AWS state['cfg']['model']['w2v_path'] = state['cfg']['model']['w2v_path'].replace('/checkpoint/arbabu/XLSR2/model_versions/', '/fsx/data/model_versions/').replace('/checkpoint/kushall/final_model_checkpoints/wav2vec2/', '/fsx/data/wav2vec_ckpt/') state['cfg']['task']['data'] = state['cfg']['task']['data'].replace('/checkpoint/kushall/data/', '/fsx/data/') models, _model_args, task = checkpoint_utils.load_model_ensemble_and_task([args.path], arg_overrides=arg_overrides, task=None, state=state) model = models[0] model.eval() if use_cuda: model.cuda() # Load dataset task.load_dataset(args.gen_subset) dataset = task.dataset(args.gen_subset) infer_manifest = args.infer_manifest # only decode needed utts # infer_manifest = subset_manifest(infer_manifest, # args.verification_pair) infer_dataset = FileAudioDataset(infer_manifest, sample_rate=task.cfg.sample_rate, max_sample_size=10**10, #task.cfg.max_sample_size, min_sample_size=1, #task.cfg.min_sample_size, pad=True, normalize=task.cfg.normalize) # add target (if needed) infer_dataset = wrap_target_dataset(infer_manifest, infer_dataset, task) itr = task.get_batch_iterator( dataset=infer_dataset, max_sentences=args.batch_size, ).next_epoch_itr(shuffle=False) # correct = 0 # total = 0 list_uttname = [] list_latent = [] list_logit = [] list_target = [] list_src_len = [] with torch.no_grad(): for _, sample in tqdm(enumerate(itr)): # resample if needed samples = resample_sample(sample, args.infer_xtimes, args.infer_max_sample_size) list_uttname.extend(sample['name']) list_target.extend(sample['target'][:, 0].cpu().numpy()) list_src_len.extend((~sample['net_input']['padding_mask']).sum(1).cpu().numpy()) latents = [] logits = [] for sample in samples: sample = utils.move_to_cuda(sample) if use_cuda else sample try: latent = model.forward_latent(**sample['net_input']) latents.append(latent.detach().cpu().numpy()) except: latent = None logit = model.forward(**sample['net_input']) logits.append(logit.detach().cpu().numpy()) if len(latents) > 0: latents = np.stack(latents, 1) # B,X,D logits = np.stack(logits, 1) # B,X,Cls list_latent.extend(latents) list_logit.extend(logits) # create big npz list_uttname = np.array(list_uttname) list_latent = np.array(list_latent) list_target = np.array(list_target) list_logit = np.array(list_logit) list_src_len = np.array(list_src_len) # save to npz output_path = args.output_path if (output_path is None): output_path = tempfile.NamedTemporaryFile('wb', delete=False).name with open(output_path, 'wb') as ww: np.savez(ww, name=list_uttname, latent=list_latent, target=list_target, logit=list_logit, src_len=list_src_len) print("="*10 + " REPORT " + "="*10) print(f'| latent saved in {output_path}') print(f'| {list_uttname.shape=}, {list_latent.shape=}, {list_target.shape=}, {list_logit.shape=}, {list_src_len.shape=}')
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/xlsr/scripts/gen_audio_embedding.py
""" Usage: This scripts it to evaluate the classification accuracy/error rate from the embedding extracted by gen_audio_embedding.py Example (LID classification) PYTHONPATH='.' python examples/wav2vec/eval_speaker_clf_task.py \ --data /fsx/androstj/exps/lid_voxlingua/infer/atj_xlsr2_100pct_300M_mean_fast_upd_100k_new.npz \ --task cls --merge mean_logit """ import numpy as np import sklearn from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import StandardScaler from tqdm import tqdm import ipdb import logging import argparse from scipy.special import softmax log=logging.getLogger(__name__) log.setLevel(logging.INFO) def calculate_eer(y_label, y_score): # y denotes groundtruth scores, # y_score denotes the prediction scores. from scipy.optimize import brentq from sklearn.metrics import roc_curve from scipy.interpolate import interp1d fpr, tpr, thresholds = roc_curve(y_label, y_score, pos_label=1) eer = brentq(lambda x : 1. - x - interp1d(fpr, tpr)(x), 0., 1.) optimal_threshold = interp1d(fpr, thresholds)(eer) return eer, optimal_threshold def calculate_minDCF(y_label, y_score, p_target=0.01, c_miss=1, c_fa=1): # https://github.com/kaldi-asr/kaldi/blob/master/egs/sre08/v1/sid/compute_min_dcf.py from sklearn.metrics import det_curve fpr, fnr, thresholds = det_curve(y_label, y_score, pos_label=1) min_c_det = float("inf") min_c_det_threshold = thresholds[0] for i in range(0, len(fpr)): # See Equation (2). it is a weighted sum of false negative # and false positive errors. c_det = c_miss * fnr[i] * p_target + c_fa * fpr[i] * (1 - p_target) if c_det < min_c_det: min_c_det = c_det min_c_det_threshold = thresholds[i] # See Equations (3) and (4). Now we normalize the cost. c_def = min(c_miss * p_target, c_fa * (1 - p_target)) min_dcf = min_c_det / c_def return min_dcf, min_c_det_threshold if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data', help='npz contains name & latent file') parser.add_argument('--task', choices=['cls', 'veri', 'cls_voxlingua']) parser.add_argument('--merge', choices=['mean_logit', 'first_logit', 'mean_latent_sim', 'first_latent_sim', 'mean_logit_sim', 'first_logit_sim']) parser.add_argument('--veri-pair', help='verification file contains 1/0 utt_x utt_y') parser.add_argument('--scaler', type=str, choices=['mean_var']) parser.add_argument('--compress-method', choices=['pca']) parser.add_argument('--compress-dim', type=int) args = parser.parse_args() if args.task in ['cls', 'cls_voxlingua']: print('| run classification evaluation') data = np.load(args.data) data_logit = data['logit'] data_target = data['target'] data_src_len = data['src_len'] assert data_logit.shape[0] == data_target.shape[0] B = data_logit.shape[0] correct = 0 total = 0 data_prob = softmax(data_logit, axis=2) correct_vs_len = np.empty((B, 2)) for ii in range(B): _target = data_target[ii] if args.merge == 'mean_logit': _prob = np.mean(data_prob[ii], axis=0) top_1 = np.argmax(_prob) elif args.merge == 'first_logit': _prob = data_prob[ii][0] top_1 = np.argmax(_prob) else : raise ValueError() is_top_1 = (1 if top_1 == _target else 0) correct += is_top_1 total += 1 _src_len = data_src_len[ii] / 16000 correct_vs_len[ii] = [is_top_1, _src_len] acc = correct / total * 100 t_5 = correct_vs_len[:, 1] <= 5 t_20 = correct_vs_len[:, 1] > 5 c_5 = correct_vs_len[t_5, 0].sum() c_20 = correct_vs_len[t_20, 0].sum() t_5 = t_5.sum() t_20 = t_20.sum() acc_5 = c_5 / t_5 * 100 acc_20 = c_20 / t_20 * 100 print(f'| acc = {acc:.2f}% -- err = {100-acc:.2f}% -- {correct=} {total=}') print(f'| acc 0to5 = {acc_5:.2f}% -- err = {100-acc_5:.2f}% -- {c_5=} {t_5=}') print(f'| acc 5to20 = {acc_20:.2f}% -- err = {100-acc_20:.2f}% -- {c_20=} {t_20=}') if args.task == 'veri': print('| run verification evaluation') veri_pairs = [] with open(args.veri_pair) as ff: for fi in ff: a,b,c = fi.split() a = int(a) veri_pairs.append([a,b,c]) data = np.load(args.data) if 'logit' in args.merge: data_latent = data['logit'] elif 'latent' in args.merge: data_latent = data['latent'] else : raise ValueError() data_name = data['name'] assert len(data_name) == len(data_latent) map_name_latent = {} from sklearn.pipeline import make_pipeline pipe = [] if args.scaler == 'mean_var': print(f'| apply StandardScaler') pipe.append(StandardScaler()) if args.compress_method == 'pca': n_comp = args.compress_dim print(f'| apply PCA with {n_comp=}') from sklearn.decomposition import PCA pipe.append(PCA(n_components=n_comp)) if len(pipe) > 0 : pipe = make_pipeline(*pipe) data_latent_2d = data_latent.reshape(-1, data_latent.shape[-1]) pipe.fit(data_latent_2d) data_latent_2d = pipe.transform(data_latent_2d) data_latent = data_latent_2d.reshape(data_latent.shape[0], data_latent.shape[1], -1) for ii in range(len(data_name)): map_name_latent[data_name[ii]] = data_latent[ii] labels = [] scores = [] for lbl, pair_a, pair_b in tqdm(veri_pairs): labels.append(lbl) pair_a = map_name_latent[pair_a] pair_b = map_name_latent[pair_b] assert pair_a.ndim == pair_b.ndim == 2 score = cosine_similarity(pair_a, pair_b) if args.merge.startswith('mean'): score = np.mean(score) elif args.merge.startswith('first'): score = score[0, 0] else : raise ValueError() scores.append(score) labels = np.array(labels) scores = np.array(scores) eer, eer_threshold = calculate_eer(labels, scores) minDCF, minDCF_threshold = calculate_minDCF(labels, scores) print('='*40) print(f'| EER = {eer*100:.2f}%\tthreshold = {eer_threshold:.2f}') print(f'| minDCF = {minDCF:.2f}\tthreshold = {minDCF_threshold:.2f}')
EXA-1-master
exa/libraries/fairseq/examples/wav2vec/xlsr/scripts/eval_speaker_clf_task.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import contextlib import sys from collections import Counter from multiprocessing import Pool from fairseq.data.encoders.gpt2_bpe import get_encoder def main(): """ Helper script to encode raw text with the GPT-2 BPE using multiple processes. The encoder.json and vocab.bpe files can be obtained here: - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe """ parser = argparse.ArgumentParser() parser.add_argument( "--encoder-json", help="path to encoder.json", ) parser.add_argument( "--vocab-bpe", type=str, help="path to vocab.bpe", ) parser.add_argument( "--inputs", nargs="+", default=["-"], help="input files to filter/encode", ) parser.add_argument( "--outputs", nargs="+", default=["-"], help="path to save encoded outputs", ) parser.add_argument( "--keep-empty", action="store_true", help="keep empty lines", ) parser.add_argument("--workers", type=int, default=20) args = parser.parse_args() assert len(args.inputs) == len( args.outputs ), "number of input and output paths should match" with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8")) if input != "-" else sys.stdin for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8")) if output != "-" else sys.stdout for output in args.outputs ] encoder = MultiprocessingEncoder(args) pool = Pool(args.workers, initializer=encoder.initializer) encoded_lines = pool.imap(encoder.encode_lines, zip(*inputs), 100) stats = Counter() for i, (filt, enc_lines) in enumerate(encoded_lines, start=1): if filt == "PASS": for enc_line, output_h in zip(enc_lines, outputs): print(enc_line, file=output_h) else: stats["num_filtered_" + filt] += 1 if i % 10000 == 0: print("processed {} lines".format(i), file=sys.stderr) for k, v in stats.most_common(): print("[{}] filtered {} lines".format(k, v), file=sys.stderr) class MultiprocessingEncoder(object): def __init__(self, args): self.args = args def initializer(self): global bpe bpe = get_encoder(self.args.encoder_json, self.args.vocab_bpe) def encode(self, line): global bpe ids = bpe.encode(line) return list(map(str, ids)) def decode(self, tokens): global bpe return bpe.decode(tokens) def encode_lines(self, lines): """ Encode a set of lines. All lines will be encoded together. """ enc_lines = [] for line in lines: line = line.strip() if len(line) == 0 and not self.args.keep_empty: return ["EMPTY", None] tokens = self.encode(line) enc_lines.append(" ".join(tokens)) return ["PASS", enc_lines] def decode_lines(self, lines): dec_lines = [] for line in lines: tokens = map(int, line.strip().split()) dec_lines.append(self.decode(tokens)) return ["PASS", dec_lines] if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/roberta/multiprocessing_bpe_encoder.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import re class InputExample: def __init__(self, paragraph, qa_list, label): self.paragraph = paragraph self.qa_list = qa_list self.label = label def get_examples(data_dir, set_type): """ Extract paragraph and question-answer list from each json file """ examples = [] levels = ["middle", "high"] set_type_c = set_type.split("-") if len(set_type_c) == 2: levels = [set_type_c[1]] set_type = set_type_c[0] for level in levels: cur_dir = os.path.join(data_dir, set_type, level) for filename in os.listdir(cur_dir): cur_path = os.path.join(cur_dir, filename) with open(cur_path, "r") as f: cur_data = json.load(f) answers = cur_data["answers"] options = cur_data["options"] questions = cur_data["questions"] context = cur_data["article"].replace("\n", " ") context = re.sub(r"\s+", " ", context) for i in range(len(answers)): label = ord(answers[i]) - ord("A") qa_list = [] question = questions[i] for j in range(4): option = options[i][j] if "_" in question: qa_cat = question.replace("_", option) else: qa_cat = " ".join([question, option]) qa_cat = re.sub(r"\s+", " ", qa_cat) qa_list.append(qa_cat) examples.append(InputExample(context, qa_list, label)) return examples def main(): """ Helper script to extract paragraphs questions and answers from RACE datasets. """ parser = argparse.ArgumentParser() parser.add_argument( "--input-dir", help="input directory for downloaded RACE dataset", ) parser.add_argument( "--output-dir", help="output directory for extracted data", ) args = parser.parse_args() if not os.path.exists(args.output_dir): os.makedirs(args.output_dir, exist_ok=True) for set_type in ["train", "dev", "test-middle", "test-high"]: examples = get_examples(args.input_dir, set_type) qa_file_paths = [ os.path.join(args.output_dir, set_type + ".input" + str(i + 1)) for i in range(4) ] qa_files = [open(qa_file_path, "w") for qa_file_path in qa_file_paths] outf_context_path = os.path.join(args.output_dir, set_type + ".input0") outf_label_path = os.path.join(args.output_dir, set_type + ".label") outf_context = open(outf_context_path, "w") outf_label = open(outf_label_path, "w") for example in examples: outf_context.write(example.paragraph + "\n") for i in range(4): qa_files[i].write(example.qa_list[i] + "\n") outf_label.write(str(example.label) + "\n") for f in qa_files: f.close() outf_label.close() outf_context.close() if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/roberta/preprocess_RACE.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json from functools import lru_cache def convert_sentence_to_json(sentence): if "_" in sentence: prefix, rest = sentence.split("_", 1) query, rest = rest.split("_", 1) query_index = len(prefix.rstrip().split(" ")) else: query, query_index = None, None prefix, rest = sentence.split("[", 1) pronoun, rest = rest.split("]", 1) pronoun_index = len(prefix.rstrip().split(" ")) sentence = sentence.replace("_", "").replace("[", "").replace("]", "") return { "idx": 0, "text": sentence, "target": { "span1_index": query_index, "span1_text": query, "span2_index": pronoun_index, "span2_text": pronoun, }, } def extended_noun_chunks(sentence): noun_chunks = {(np.start, np.end) for np in sentence.noun_chunks} np_start, cur_np = 0, "NONE" for i, token in enumerate(sentence): np_type = token.pos_ if token.pos_ in {"NOUN", "PROPN"} else "NONE" if np_type != cur_np: if cur_np != "NONE": noun_chunks.add((np_start, i)) if np_type != "NONE": np_start = i cur_np = np_type if cur_np != "NONE": noun_chunks.add((np_start, len(sentence))) return [sentence[s:e] for (s, e) in sorted(noun_chunks)] def find_token(sentence, start_pos): found_tok = None for tok in sentence: if tok.idx == start_pos: found_tok = tok break return found_tok def find_span(sentence, search_text, start=0): search_text = search_text.lower() for tok in sentence[start:]: remainder = sentence[tok.i :].text.lower() if remainder.startswith(search_text): len_to_consume = len(search_text) start_idx = tok.idx for next_tok in sentence[tok.i :]: end_idx = next_tok.idx + len(next_tok.text) if end_idx - start_idx == len_to_consume: span = sentence[tok.i : next_tok.i + 1] return span return None @lru_cache(maxsize=1) def get_detokenizer(): from sacremoses import MosesDetokenizer detok = MosesDetokenizer(lang="en") return detok @lru_cache(maxsize=1) def get_spacy_nlp(): import en_core_web_lg nlp = en_core_web_lg.load() return nlp def jsonl_iterator(input_fname, positive_only=False, ngram_order=3, eval=False): detok = get_detokenizer() nlp = get_spacy_nlp() with open(input_fname) as fin: for line in fin: sample = json.loads(line.strip()) if positive_only and "label" in sample and not sample["label"]: # only consider examples where the query is correct continue target = sample["target"] # clean up the query query = target["span1_text"] if query is not None: if "\n" in query: continue if query.endswith(".") or query.endswith(","): query = query[:-1] # split tokens tokens = sample["text"].split(" ") def strip_pronoun(x): return x.rstrip('.,"') # find the pronoun pronoun_idx = target["span2_index"] pronoun = strip_pronoun(target["span2_text"]) if strip_pronoun(tokens[pronoun_idx]) != pronoun: # hack: sometimes the index is misaligned if strip_pronoun(tokens[pronoun_idx + 1]) == pronoun: pronoun_idx += 1 else: raise Exception("Misaligned pronoun!") assert strip_pronoun(tokens[pronoun_idx]) == pronoun # split tokens before and after the pronoun before = tokens[:pronoun_idx] after = tokens[pronoun_idx + 1 :] # the GPT BPE attaches leading spaces to tokens, so we keep track # of whether we need spaces before or after the pronoun leading_space = " " if pronoun_idx > 0 else "" trailing_space = " " if len(after) > 0 else "" # detokenize before = detok.detokenize(before, return_str=True) pronoun = detok.detokenize([pronoun], return_str=True) after = detok.detokenize(after, return_str=True) # hack: when the pronoun ends in a period (or comma), move the # punctuation to the "after" part if pronoun.endswith(".") or pronoun.endswith(","): after = pronoun[-1] + trailing_space + after pronoun = pronoun[:-1] # hack: when the "after" part begins with a comma or period, remove # the trailing space if after.startswith(".") or after.startswith(","): trailing_space = "" # parse sentence with spacy sentence = nlp(before + leading_space + pronoun + trailing_space + after) # find pronoun span start = len(before + leading_space) first_pronoun_tok = find_token(sentence, start_pos=start) pronoun_span = find_span(sentence, pronoun, start=first_pronoun_tok.i) assert pronoun_span.text == pronoun if eval: # convert to format where pronoun is surrounded by "[]" and # query is surrounded by "_" query_span = find_span(sentence, query) query_with_ws = "_{}_{}".format( query_span.text, (" " if query_span.text_with_ws.endswith(" ") else ""), ) pronoun_with_ws = "[{}]{}".format( pronoun_span.text, (" " if pronoun_span.text_with_ws.endswith(" ") else ""), ) if query_span.start < pronoun_span.start: first = (query_span, query_with_ws) second = (pronoun_span, pronoun_with_ws) else: first = (pronoun_span, pronoun_with_ws) second = (query_span, query_with_ws) sentence = ( sentence[: first[0].start].text_with_ws + first[1] + sentence[first[0].end : second[0].start].text_with_ws + second[1] + sentence[second[0].end :].text ) yield sentence, sample.get("label", None) else: yield sentence, pronoun_span, query, sample.get("label", None) def winogrande_jsonl_iterator(input_fname, eval=False): with open(input_fname) as fin: for line in fin: sample = json.loads(line.strip()) sentence, option1, option2 = ( sample["sentence"], sample["option1"], sample["option2"], ) pronoun_span = (sentence.index("_"), sentence.index("_") + 1) if eval: query, cand = option1, option2 else: query = option1 if sample["answer"] == "1" else option2 cand = option2 if sample["answer"] == "1" else option1 yield sentence, pronoun_span, query, cand def filter_noun_chunks( chunks, exclude_pronouns=False, exclude_query=None, exact_match=False ): if exclude_pronouns: chunks = [ np for np in chunks if (np.lemma_ != "-PRON-" and not all(tok.pos_ == "PRON" for tok in np)) ] if exclude_query is not None: excl_txt = [exclude_query.lower()] filtered_chunks = [] for chunk in chunks: lower_chunk = chunk.text.lower() found = False for excl in excl_txt: if ( not exact_match and (lower_chunk in excl or excl in lower_chunk) ) or lower_chunk == excl: found = True break if not found: filtered_chunks.append(chunk) chunks = filtered_chunks return chunks
EXA-1-master
exa/libraries/fairseq/examples/roberta/wsc/wsc_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import LegacyFairseqCriterion, register_criterion from fairseq.data import encoders @register_criterion("wsc") class WSCCriterion(LegacyFairseqCriterion): def __init__(self, args, task): super().__init__(args, task) if self.args.save_predictions is not None: self.prediction_h = open(self.args.save_predictions, "w") else: self.prediction_h = None self.bpe = encoders.build_bpe(args.bpe) self.tokenizer = encoders.build_tokenizer(args.tokenizer) def __del__(self): if self.prediction_h is not None: self.prediction_h.close() @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" parser.add_argument("--wsc-margin-alpha", type=float, metavar="A", default=1.0) parser.add_argument("--wsc-margin-beta", type=float, metavar="B", default=0.0) parser.add_argument( "--wsc-cross-entropy", action="store_true", help="use cross entropy formulation instead of margin loss", ) parser.add_argument( "--save-predictions", metavar="FILE", help="file to save predictions to" ) def get_masked_input(self, tokens, mask): masked_tokens = tokens.clone() masked_tokens[mask] = self.task.mask return masked_tokens def get_lprobs(self, model, tokens, mask): logits, _ = model(src_tokens=self.get_masked_input(tokens, mask)) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float) scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1) mask = mask.type_as(scores) scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1) return scores def get_loss(self, query_lprobs, cand_lprobs): if self.args.wsc_cross_entropy: return F.cross_entropy( torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0), query_lprobs.new([0]).long(), ) else: return ( -query_lprobs + self.args.wsc_margin_alpha * (cand_lprobs - query_lprobs + self.args.wsc_margin_beta).clamp(min=0) ).sum() def forward(self, model, sample, reduce=True): # compute loss and accuracy loss, nloss = 0.0, 0 ncorrect, nqueries = 0, 0 for i, label in enumerate(sample["labels"]): query_lprobs = self.get_lprobs( model, sample["query_tokens"][i].unsqueeze(0), sample["query_masks"][i].unsqueeze(0), ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"][i], sample["candidate_masks"][i], ) pred = (query_lprobs >= cand_lprobs).all().item() if label is not None: label = 1 if label else 0 ncorrect += 1 if pred == label else 0 nqueries += 1 if label: # only compute a loss for positive instances nloss += 1 loss += self.get_loss(query_lprobs, cand_lprobs) id = sample["id"][i].item() if self.prediction_h is not None: print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h) if nloss == 0: loss = torch.tensor(0.0, requires_grad=True) sample_size = nqueries if nqueries > 0 else 1 logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": nqueries, } return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / sample_size / math.log(2), "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) nqueries = sum(log.get("nqueries", 0) for log in logging_outputs) if nqueries > 0: agg_output["accuracy"] = ncorrect / float(nqueries) return agg_output @register_criterion("winogrande") class WinograndeCriterion(WSCCriterion): def forward(self, model, sample, reduce=True): # compute loss and accuracy query_lprobs = self.get_lprobs( model, sample["query_tokens"], sample["query_masks"], ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"], sample["candidate_masks"], ) pred = query_lprobs >= cand_lprobs loss = self.get_loss(query_lprobs, cand_lprobs) sample_size = sample["query_tokens"].size(0) ncorrect = pred.sum().item() logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": sample_size, } return loss, sample_size, logging_output
EXA-1-master
exa/libraries/fairseq/examples/roberta/wsc/wsc_criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import wsc_criterion # noqa from . import wsc_task # noqa
EXA-1-master
exa/libraries/fairseq/examples/roberta/wsc/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import tempfile import numpy as np import torch import torch.nn.functional as F from fairseq import utils from fairseq.data import ( Dictionary, IdDataset, ListDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PadDataset, SortDataset, data_utils, encoders, ) from fairseq.tasks import LegacyFairseqTask, register_task from . import wsc_utils @register_task("wsc") class WSCTask(LegacyFairseqTask): """Task to finetune RoBERTa for Winograd Schemas.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", metavar="DIR", help="path to data directory; we load <split>.jsonl" ) parser.add_argument( "--init-token", type=int, default=None, help="add token at the beginning of each batch item", ) def __init__(self, args, vocab): super().__init__(args) self.vocab = vocab self.mask = vocab.add_symbol("<mask>") self.bpe = encoders.build_bpe(args) self.tokenizer = encoders.build_tokenizer(args) # hack to handle GPT-2 BPE, which includes leading spaces if args.bpe == "gpt2": self.leading_space = True self.trailing_space = False else: self.leading_space = False self.trailing_space = True @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert args.criterion == "wsc", "Must set --criterion=wsc" # load data and label dictionaries vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) print("| dictionary: {} types".format(len(vocab))) return cls(args, vocab) def binarize(self, s: str, append_eos: bool = False): if self.tokenizer is not None: s = self.tokenizer.encode(s) if self.bpe is not None: s = self.bpe.encode(s) tokens = self.vocab.encode_line( s, append_eos=append_eos, add_if_not_exist=False, ).long() if self.args.init_token is not None: tokens = torch.cat([tokens.new([self.args.init_token]), tokens]) return tokens def binarize_with_mask(self, txt, prefix, suffix, leading_space, trailing_space): toks = self.binarize( prefix + leading_space + txt + trailing_space + suffix, append_eos=True, ) mask = torch.zeros_like(toks, dtype=torch.bool) mask_start = len(self.binarize(prefix)) mask_size = len(self.binarize(leading_space + txt)) mask[mask_start : mask_start + mask_size] = 1 return toks, mask def load_dataset( self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if data_path is None: data_path = os.path.join(self.args.data, split + ".jsonl") if not os.path.exists(data_path): raise FileNotFoundError("Cannot find data: {}".format(data_path)) query_tokens = [] query_masks = [] query_lengths = [] candidate_tokens = [] candidate_masks = [] candidate_lengths = [] labels = [] for sentence, pronoun_span, query, label in wsc_utils.jsonl_iterator(data_path): prefix = sentence[: pronoun_span.start].text suffix = sentence[pronoun_span.end :].text_with_ws # spaCy spans include trailing spaces, but we need to know about # leading spaces for the GPT-2 BPE leading_space = ( " " if sentence[: pronoun_span.start].text_with_ws.endswith(" ") else "" ) trailing_space = " " if pronoun_span.text_with_ws.endswith(" ") else "" # get noun phrases, excluding pronouns and anything overlapping with the query cand_spans = wsc_utils.filter_noun_chunks( wsc_utils.extended_noun_chunks(sentence), exclude_pronouns=True, exclude_query=query, exact_match=False, ) if query is not None: query_toks, query_mask = self.binarize_with_mask( query, prefix, suffix, leading_space, trailing_space ) query_len = len(query_toks) else: query_toks, query_mask, query_len = None, None, 0 query_tokens.append(query_toks) query_masks.append(query_mask) query_lengths.append(query_len) cand_toks, cand_masks = [], [] for cand_span in cand_spans: toks, mask = self.binarize_with_mask( cand_span.text, prefix, suffix, leading_space, trailing_space, ) cand_toks.append(toks) cand_masks.append(mask) # collate candidates cand_toks = data_utils.collate_tokens(cand_toks, pad_idx=self.vocab.pad()) cand_masks = data_utils.collate_tokens(cand_masks, pad_idx=0) assert cand_toks.size() == cand_masks.size() candidate_tokens.append(cand_toks) candidate_masks.append(cand_masks) candidate_lengths.append(cand_toks.size(1)) labels.append(label) query_lengths = np.array(query_lengths) query_tokens = ListDataset(query_tokens, query_lengths) query_masks = ListDataset(query_masks, query_lengths) candidate_lengths = np.array(candidate_lengths) candidate_tokens = ListDataset(candidate_tokens, candidate_lengths) candidate_masks = ListDataset(candidate_masks, candidate_lengths) labels = ListDataset(labels, [1] * len(labels)) dataset = { "id": IdDataset(), "query_tokens": query_tokens, "query_masks": query_masks, "candidate_tokens": candidate_tokens, "candidate_masks": candidate_masks, "labels": labels, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(query_tokens, reduce=True), } nested_dataset = NestedDictionaryDataset( dataset, sizes=[query_lengths], ) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(query_tokens)) dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) if return_only: return dataset self.datasets[split] = dataset return self.datasets[split] def build_dataset_for_inference(self, sample_json): with tempfile.NamedTemporaryFile(buffering=0) as h: h.write((json.dumps(sample_json) + "\n").encode("utf-8")) dataset = self.load_dataset( "disambiguate_pronoun", data_path=h.name, return_only=True, ) return dataset def disambiguate_pronoun(self, model, sentence, use_cuda=False): sample_json = wsc_utils.convert_sentence_to_json(sentence) dataset = self.build_dataset_for_inference(sample_json) sample = dataset.collater([dataset[0]]) if use_cuda: sample = utils.move_to_cuda(sample) def get_masked_input(tokens, mask): masked_tokens = tokens.clone() masked_tokens[mask.bool()] = self.mask return masked_tokens def get_lprobs(tokens, mask): logits, _ = model(src_tokens=get_masked_input(tokens, mask)) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float) scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1) mask = mask.type_as(scores) scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1) return scores cand_lprobs = get_lprobs( sample["candidate_tokens"][0], sample["candidate_masks"][0], ) if sample["query_tokens"][0] is not None: query_lprobs = get_lprobs( sample["query_tokens"][0].unsqueeze(0), sample["query_masks"][0].unsqueeze(0), ) return (query_lprobs >= cand_lprobs).all().item() == 1 else: best_idx = cand_lprobs.argmax().item() full_cand = sample["candidate_tokens"][0][best_idx] mask = sample["candidate_masks"][0][best_idx] toks = full_cand[mask.bool()] return self.bpe.decode(self.source_dictionary.string(toks)).strip() @property def source_dictionary(self): return self.vocab @property def target_dictionary(self): return self.vocab @register_task("winogrande") class WinograndeTask(WSCTask): """ Task for WinoGrande dataset. Efficient implementation for Winograd schema tasks with exactly two candidates, one of which is correct. """ @classmethod def setup_task(cls, args, **kwargs): assert args.criterion == "winogrande", "Must set --criterion=winogrande" # load data and label dictionaries vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) print("| dictionary: {} types".format(len(vocab))) return cls(args, vocab) def load_dataset( self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if data_path is None: data_path = os.path.join(self.args.data, split + ".jsonl") if not os.path.exists(data_path): raise FileNotFoundError("Cannot find data: {}".format(data_path)) query_tokens = [] query_masks = [] query_lengths = [] candidate_tokens = [] candidate_masks = [] candidate_lengths = [] itr = wsc_utils.winogrande_jsonl_iterator(data_path, eval=(split == "test")) for sample in itr: sentence, pronoun_span, query, cand_text = sample prefix = sentence[: pronoun_span[0]].rstrip() suffix = sentence[pronoun_span[1] :] leading_space = " " if sentence[: pronoun_span[0]].endswith(" ") else "" trailing_space = "" if query is not None: query_toks, query_mask = self.binarize_with_mask( query, prefix, suffix, leading_space, trailing_space, ) query_len = len(query_toks) else: query_toks, query_mask, query_len = None, None, 0 query_tokens.append(query_toks) query_masks.append(query_mask) query_lengths.append(query_len) cand_toks, cand_mask = self.binarize_with_mask( cand_text, prefix, suffix, leading_space, trailing_space, ) candidate_tokens.append(cand_toks) candidate_masks.append(cand_mask) candidate_lengths.append(cand_toks.size(0)) query_lengths = np.array(query_lengths) def get_pad_dataset_fn(tokens, length, pad_idx): return PadDataset( ListDataset(tokens, length), pad_idx=pad_idx, left_pad=False, ) query_tokens = get_pad_dataset_fn(query_tokens, query_lengths, self.vocab.pad()) query_masks = get_pad_dataset_fn(query_masks, query_lengths, 0) candidate_lengths = np.array(candidate_lengths) candidate_tokens = get_pad_dataset_fn( candidate_tokens, candidate_lengths, self.vocab.pad() ) candidate_masks = get_pad_dataset_fn(candidate_masks, candidate_lengths, 0) dataset = { "id": IdDataset(), "query_tokens": query_tokens, "query_masks": query_masks, "candidate_tokens": candidate_tokens, "candidate_masks": candidate_masks, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(query_tokens, reduce=True), } nested_dataset = NestedDictionaryDataset( dataset, sizes=[query_lengths], ) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(query_tokens)) dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) if return_only: return dataset self.datasets[split] = dataset return self.datasets[split]
EXA-1-master
exa/libraries/fairseq/examples/roberta/wsc/wsc_task.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import commonsense_qa_task # noqa
EXA-1-master
exa/libraries/fairseq/examples/roberta/commonsense_qa/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import numpy as np import torch from fairseq.data import ( Dictionary, IdDataset, ListDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, RawLabelDataset, RightPadDataset, SortDataset, data_utils, encoders, ) from fairseq.tasks import LegacyFairseqTask, register_task @register_task("commonsense_qa") class CommonsenseQATask(LegacyFairseqTask): """Task to finetune RoBERTa for Commonsense QA.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", metavar="DIR", help="path to data directory; we load <split>.jsonl" ) parser.add_argument( "--init-token", type=int, default=None, help="add token at the beginning of each batch item", ) parser.add_argument("--num-classes", type=int, default=5) def __init__(self, args, vocab): super().__init__(args) self.vocab = vocab self.mask = vocab.add_symbol("<mask>") self.bpe = encoders.build_bpe(args) @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert ( args.criterion == "sentence_ranking" ), "Must set --criterion=sentence_ranking" # load data and label dictionaries vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) print("| dictionary: {} types".format(len(vocab))) return cls(args, vocab) def load_dataset( self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ def binarize(s, append_bos=False): if self.bpe is not None: s = self.bpe.encode(s) tokens = self.vocab.encode_line( s, append_eos=True, add_if_not_exist=False, ).long() if append_bos and self.args.init_token is not None: tokens = torch.cat([tokens.new([self.args.init_token]), tokens]) return tokens if data_path is None: data_path = os.path.join(self.args.data, split + ".jsonl") if not os.path.exists(data_path): raise FileNotFoundError("Cannot find data: {}".format(data_path)) src_tokens = [[] for i in range(self.args.num_classes)] src_lengths = [[] for i in range(self.args.num_classes)] labels = [] with open(data_path) as h: for line in h: example = json.loads(line.strip()) if "answerKey" in example: label = ord(example["answerKey"]) - ord("A") labels.append(label) question = example["question"]["stem"] assert len(example["question"]["choices"]) == self.args.num_classes # format: `<s> Q: Where would I not want a fox? </s> A: hen house </s>` question = "Q: " + question question_toks = binarize(question, append_bos=True) for i, choice in enumerate(example["question"]["choices"]): src = "A: " + choice["text"] src_bin = torch.cat([question_toks, binarize(src)]) src_tokens[i].append(src_bin) src_lengths[i].append(len(src_bin)) assert all( len(src_tokens[0]) == len(src_tokens[i]) for i in range(self.args.num_classes) ) assert len(src_tokens[0]) == len(src_lengths[0]) assert len(labels) == 0 or len(labels) == len(src_tokens[0]) for i in range(self.args.num_classes): src_lengths[i] = np.array(src_lengths[i]) src_tokens[i] = ListDataset(src_tokens[i], src_lengths[i]) src_lengths[i] = ListDataset(src_lengths[i]) dataset = { "id": IdDataset(), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens[0], reduce=True), } for i in range(self.args.num_classes): dataset.update( { "net_input{}".format(i + 1): { "src_tokens": RightPadDataset( src_tokens[i], pad_idx=self.source_dictionary.pad(), ), "src_lengths": src_lengths[i], } } ) if len(labels) > 0: dataset.update({"target": RawLabelDataset(labels)}) dataset = NestedDictionaryDataset( dataset, sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])], ) with data_utils.numpy_seed(self.args.seed): dataset = SortDataset( dataset, # shuffle sort_order=[np.random.permutation(len(dataset))], ) print("| Loaded {} with {} samples".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args, from_checkpoint=False): from fairseq import models model = models.build_model(args, self) model.register_classification_head( "sentence_classification_head", num_classes=1, ) return model @property def source_dictionary(self): return self.vocab @property def target_dictionary(self): return self.vocab
EXA-1-master
exa/libraries/fairseq/examples/roberta/commonsense_qa/commonsense_qa_task.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import fileinput import sacremoses def main(): parser = argparse.ArgumentParser(description="") parser.add_argument("files", nargs="*", help="input files") args = parser.parse_args() detok = sacremoses.MosesDetokenizer() for line in fileinput.input(args.files, openhook=fileinput.hook_compressed): print( detok.detokenize(line.strip().split(" ")) .replace(" @", "") .replace("@ ", "") .replace(" =", "=") .replace("= ", "=") .replace(" – ", "–") ) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/megatron_11b/detok.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ast import logging import matplotlib.pyplot as plt import numpy as np from pathlib import Path import soundfile as sf import sys import torch import torchaudio from fairseq import checkpoint_utils, options, tasks, utils from fairseq.logging import progress_bar from fairseq.tasks.text_to_speech import plot_tts_output from fairseq.data.audio.text_to_speech_dataset import TextToSpeechDataset logging.basicConfig() logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def make_parser(): parser = options.get_speech_generation_parser() parser.add_argument("--dump-features", action="store_true") parser.add_argument("--dump-waveforms", action="store_true") parser.add_argument("--dump-attentions", action="store_true") parser.add_argument("--dump-eos-probs", action="store_true") parser.add_argument("--dump-plots", action="store_true") parser.add_argument("--dump-target", action="store_true") parser.add_argument("--output-sample-rate", default=22050, type=int) parser.add_argument("--teacher-forcing", action="store_true") parser.add_argument( "--audio-format", type=str, default="wav", choices=["wav", "flac"] ) return parser def postprocess_results( dataset: TextToSpeechDataset, sample, hypos, resample_fn, dump_target ): def to_np(x): return None if x is None else x.detach().cpu().numpy() sample_ids = [dataset.ids[i] for i in sample["id"].tolist()] texts = sample["src_texts"] if "src_texts" in sample else [""] * len(hypos) attns = [to_np(hypo["attn"]) for hypo in hypos] eos_probs = [to_np(hypo.get("eos_prob", None)) for hypo in hypos] feat_preds = [to_np(hypo["feature"]) for hypo in hypos] wave_preds = [to_np(resample_fn(h["waveform"])) for h in hypos] if dump_target: feat_targs = [to_np(hypo["targ_feature"]) for hypo in hypos] wave_targs = [to_np(resample_fn(h["targ_waveform"])) for h in hypos] else: feat_targs = [None for _ in hypos] wave_targs = [None for _ in hypos] return zip(sample_ids, texts, attns, eos_probs, feat_preds, wave_preds, feat_targs, wave_targs) def dump_result( is_na_model, args, vocoder, sample_id, text, attn, eos_prob, feat_pred, wave_pred, feat_targ, wave_targ, ): sample_rate = args.output_sample_rate out_root = Path(args.results_path) if args.dump_features: feat_dir = out_root / "feat" feat_dir.mkdir(exist_ok=True, parents=True) np.save(feat_dir / f"{sample_id}.npy", feat_pred) if args.dump_target: feat_tgt_dir = out_root / "feat_tgt" feat_tgt_dir.mkdir(exist_ok=True, parents=True) np.save(feat_tgt_dir / f"{sample_id}.npy", feat_targ) if args.dump_attentions: attn_dir = out_root / "attn" attn_dir.mkdir(exist_ok=True, parents=True) np.save(attn_dir / f"{sample_id}.npy", attn.numpy()) if args.dump_eos_probs and not is_na_model: eos_dir = out_root / "eos" eos_dir.mkdir(exist_ok=True, parents=True) np.save(eos_dir / f"{sample_id}.npy", eos_prob) if args.dump_plots: images = [feat_pred.T] if is_na_model else [feat_pred.T, attn] names = ["output"] if is_na_model else ["output", "alignment"] if feat_targ is not None: images = [feat_targ.T] + images names = [f"target (idx={sample_id})"] + names if is_na_model: plot_tts_output(images, names, attn, "alignment", suptitle=text) else: plot_tts_output(images, names, eos_prob, "eos prob", suptitle=text) plot_dir = out_root / "plot" plot_dir.mkdir(exist_ok=True, parents=True) plt.savefig(plot_dir / f"{sample_id}.png") plt.close() if args.dump_waveforms: ext = args.audio_format if wave_pred is not None: wav_dir = out_root / f"{ext}_{sample_rate}hz_{vocoder}" wav_dir.mkdir(exist_ok=True, parents=True) sf.write(wav_dir / f"{sample_id}.{ext}", wave_pred, sample_rate) if args.dump_target and wave_targ is not None: wav_tgt_dir = out_root / f"{ext}_{sample_rate}hz_{vocoder}_tgt" wav_tgt_dir.mkdir(exist_ok=True, parents=True) sf.write(wav_tgt_dir / f"{sample_id}.{ext}", wave_targ, sample_rate) def main(args): assert(args.dump_features or args.dump_waveforms or args.dump_attentions or args.dump_eos_probs or args.dump_plots) if args.max_tokens is None and args.batch_size is None: args.max_tokens = 8000 logger.info(args) use_cuda = torch.cuda.is_available() and not args.cpu task = tasks.setup_task(args) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [args.path], task=task, arg_overrides=ast.literal_eval(args.model_overrides), ) model = models[0].cuda() if use_cuda else models[0] # use the original n_frames_per_step task.args.n_frames_per_step = saved_cfg.task.n_frames_per_step task.load_dataset(args.gen_subset, task_cfg=saved_cfg.task) data_cfg = task.data_cfg sample_rate = data_cfg.config.get("features", {}).get("sample_rate", 22050) resample_fn = { False: lambda x: x, True: lambda x: torchaudio.sox_effects.apply_effects_tensor( x.detach().cpu().unsqueeze(0), sample_rate, [['rate', str(args.output_sample_rate)]] )[0].squeeze(0) }.get(args.output_sample_rate != sample_rate) if args.output_sample_rate != sample_rate: logger.info(f"resampling to {args.output_sample_rate}Hz") generator = task.build_generator([model], args) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.batch_size, max_positions=(sys.maxsize, sys.maxsize), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, data_buffer_size=args.data_buffer_size, ).next_epoch_itr(shuffle=False) Path(args.results_path).mkdir(exist_ok=True, parents=True) is_na_model = getattr(model, "NON_AUTOREGRESSIVE", False) dataset = task.dataset(args.gen_subset) vocoder = task.args.vocoder with progress_bar.build_progress_bar(args, itr) as t: for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample hypos = generator.generate(model, sample, has_targ=args.dump_target) for result in postprocess_results( dataset, sample, hypos, resample_fn, args.dump_target ): dump_result(is_na_model, args, vocoder, *result) def cli_main(): parser = make_parser() args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/generate_waveform.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import io import os from pathlib import Path from typing import Optional, List, Dict import zipfile import tempfile from dataclasses import dataclass from itertools import groupby import torch import torch.nn.functional as F import numpy as np from tqdm import tqdm from examples.speech_to_text.data_utils import load_tsv_to_dicts from fairseq.data.audio.audio_utils import ( TTSSpectrogram, TTSMelScale, parse_path, read_from_stored_zip, is_npy_data ) def trim_or_pad_to_target_length( data_1d_or_2d: np.ndarray, target_length: int ) -> np.ndarray: assert len(data_1d_or_2d.shape) in {1, 2} delta = data_1d_or_2d.shape[0] - target_length if delta >= 0: # trim if being longer data_1d_or_2d = data_1d_or_2d[: target_length] else: # pad if being shorter if len(data_1d_or_2d.shape) == 1: data_1d_or_2d = np.concatenate( [data_1d_or_2d, np.zeros(-delta)], axis=0 ) else: data_1d_or_2d = np.concatenate( [data_1d_or_2d, np.zeros((-delta, data_1d_or_2d.shape[1]))], axis=0 ) return data_1d_or_2d def extract_logmel_spectrogram( waveform: torch.Tensor, sample_rate: int, output_path: Optional[Path] = None, win_length: int = 1024, hop_length: int = 256, n_fft: int = 1024, win_fn: callable = torch.hann_window, n_mels: int = 80, f_min: float = 0., f_max: float = 8000, eps: float = 1e-5, overwrite: bool = False, target_length: Optional[int] = None ): if output_path is not None and output_path.is_file() and not overwrite: return spectrogram_transform = TTSSpectrogram( n_fft=n_fft, win_length=win_length, hop_length=hop_length, window_fn=win_fn ) mel_scale_transform = TTSMelScale( n_mels=n_mels, sample_rate=sample_rate, f_min=f_min, f_max=f_max, n_stft=n_fft // 2 + 1 ) spectrogram = spectrogram_transform(waveform) mel_spec = mel_scale_transform(spectrogram) logmel_spec = torch.clamp(mel_spec, min=eps).log() assert len(logmel_spec.shape) == 3 and logmel_spec.shape[0] == 1 logmel_spec = logmel_spec.squeeze().t() # D x T -> T x D if target_length is not None: logmel_spec = trim_or_pad_to_target_length(logmel_spec, target_length) if output_path is not None: np.save(output_path.as_posix(), logmel_spec) else: return logmel_spec def extract_pitch( waveform: torch.Tensor, sample_rate: int, output_path: Optional[Path] = None, hop_length: int = 256, log_scale: bool = True, phoneme_durations: Optional[List[int]] = None ): if output_path is not None and output_path.is_file(): return try: import pyworld except ImportError: raise ImportError("Please install PyWORLD: pip install pyworld") _waveform = waveform.squeeze(0).double().numpy() pitch, t = pyworld.dio( _waveform, sample_rate, frame_period=hop_length / sample_rate * 1000 ) pitch = pyworld.stonemask(_waveform, pitch, t, sample_rate) if phoneme_durations is not None: pitch = trim_or_pad_to_target_length(pitch, sum(phoneme_durations)) try: from scipy.interpolate import interp1d except ImportError: raise ImportError("Please install SciPy: pip install scipy") nonzero_ids = np.where(pitch != 0)[0] if len(nonzero_ids) == 0: print((f"{output_path} has all empty values in the pitch contour")) return elif len(nonzero_ids) == 1: print((f"{output_path} has only one non-zero values in the pitch contour")) return else: interp_fn = interp1d( nonzero_ids, pitch[nonzero_ids], fill_value=(pitch[nonzero_ids[0]], pitch[nonzero_ids[-1]]), bounds_error=False, ) pitch = interp_fn(np.arange(0, len(pitch))) d_cumsum = np.cumsum(np.concatenate([np.array([0]), phoneme_durations])) pitch = np.array( [ np.mean(pitch[d_cumsum[i-1]: d_cumsum[i]]) for i in range(1, len(d_cumsum)) ] ) assert len(pitch) == len(phoneme_durations) if log_scale: pitch = np.log(pitch + 1) if output_path is not None: np.save(output_path.as_posix(), pitch) else: return pitch def extract_energy( waveform: torch.Tensor, output_path: Optional[Path] = None, hop_length: int = 256, n_fft: int = 1024, log_scale: bool = True, phoneme_durations: Optional[List[int]] = None ): if output_path is not None and output_path.is_file(): return assert len(waveform.shape) == 2 and waveform.shape[0] == 1 waveform = waveform.view(1, 1, waveform.shape[1]) waveform = F.pad( waveform.unsqueeze(1), [n_fft // 2, n_fft // 2, 0, 0], mode="reflect" ) waveform = waveform.squeeze(1) fourier_basis = np.fft.fft(np.eye(n_fft)) cutoff = int((n_fft / 2 + 1)) fourier_basis = np.vstack( [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] ) forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) forward_transform = F.conv1d( waveform, forward_basis, stride=hop_length, padding=0 ) real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2) energy = torch.norm(magnitude, dim=1).squeeze(0).numpy() if phoneme_durations is not None: energy = trim_or_pad_to_target_length(energy, sum(phoneme_durations)) d_cumsum = np.cumsum(np.concatenate([np.array([0]), phoneme_durations])) energy = np.array( [ np.mean(energy[d_cumsum[i - 1]: d_cumsum[i]]) for i in range(1, len(d_cumsum)) ] ) assert len(energy) == len(phoneme_durations) if log_scale: energy = np.log(energy + 1) if output_path is not None: np.save(output_path.as_posix(), energy) else: return energy def get_global_cmvn(feature_root: Path, output_path: Optional[Path] = None): mean_x, mean_x2, n_frames = None, None, 0 feature_paths = feature_root.glob("*.npy") for p in tqdm(feature_paths): with open(p, 'rb') as f: frames = np.load(f).squeeze() n_frames += frames.shape[0] cur_mean_x = frames.sum(axis=0) if mean_x is None: mean_x = cur_mean_x else: mean_x += cur_mean_x cur_mean_x2 = (frames ** 2).sum(axis=0) if mean_x2 is None: mean_x2 = cur_mean_x2 else: mean_x2 += cur_mean_x2 mean_x /= n_frames mean_x2 /= n_frames var_x = mean_x2 - mean_x ** 2 std_x = np.sqrt(np.maximum(var_x, 1e-10)) if output_path is not None: with open(output_path, 'wb') as f: np.savez(f, mean=mean_x, std=std_x) else: return {"mean": mean_x, "std": std_x} def ipa_phonemize(text, lang="en-us", use_g2p=False): if use_g2p: assert lang == "en-us", "g2pE phonemizer only works for en-us" try: from g2p_en import G2p g2p = G2p() return " ".join("|" if p == " " else p for p in g2p(text)) except ImportError: raise ImportError( "Please install phonemizer: pip install g2p_en" ) else: try: from phonemizer import phonemize from phonemizer.separator import Separator return phonemize( text, backend='espeak', language=lang, separator=Separator(word="| ", phone=" ") ) except ImportError: raise ImportError( "Please install phonemizer: pip install phonemizer" ) @dataclass class ForceAlignmentInfo(object): tokens: List[str] frame_durations: List[int] start_sec: Optional[float] end_sec: Optional[float] def get_mfa_alignment_by_sample_id( textgrid_zip_path: str, sample_id: str, sample_rate: int, hop_length: int, silence_phones: List[str] = ("sil", "sp", "spn") ) -> ForceAlignmentInfo: try: import tgt except ImportError: raise ImportError("Please install TextGridTools: pip install tgt") filename = f"{sample_id}.TextGrid" out_root = Path(tempfile.gettempdir()) tgt_path = out_root / filename with zipfile.ZipFile(textgrid_zip_path) as f_zip: f_zip.extract(filename, path=out_root) textgrid = tgt.io.read_textgrid(tgt_path.as_posix()) os.remove(tgt_path) phones, frame_durations = [], [] start_sec, end_sec, end_idx = 0, 0, 0 for t in textgrid.get_tier_by_name("phones")._objects: s, e, p = t.start_time, t.end_time, t.text # Trim leading silences if len(phones) == 0: if p in silence_phones: continue else: start_sec = s phones.append(p) if p not in silence_phones: end_sec = e end_idx = len(phones) r = sample_rate / hop_length frame_durations.append(int(np.round(e * r) - np.round(s * r))) # Trim tailing silences phones = phones[:end_idx] frame_durations = frame_durations[:end_idx] return ForceAlignmentInfo( tokens=phones, frame_durations=frame_durations, start_sec=start_sec, end_sec=end_sec ) def get_mfa_alignment( textgrid_zip_path: str, sample_ids: List[str], sample_rate: int, hop_length: int ) -> Dict[str, ForceAlignmentInfo]: return { i: get_mfa_alignment_by_sample_id( textgrid_zip_path, i, sample_rate, hop_length ) for i in tqdm(sample_ids) } def get_unit_alignment( id_to_unit_tsv_path: str, sample_ids: List[str] ) -> Dict[str, ForceAlignmentInfo]: id_to_units = { e["id"]: e["units"] for e in load_tsv_to_dicts(id_to_unit_tsv_path) } id_to_units = {i: id_to_units[i].split() for i in sample_ids} id_to_units_collapsed = { i: [uu for uu, _ in groupby(u)] for i, u in id_to_units.items() } id_to_durations = { i: [len(list(g)) for _, g in groupby(u)] for i, u in id_to_units.items() } return { i: ForceAlignmentInfo( tokens=id_to_units_collapsed[i], frame_durations=id_to_durations[i], start_sec=None, end_sec=None ) for i in sample_ids } def get_feature_value_min_max(feature_paths: List[str]): v_min, v_max = 1e-8, -1e-8 for p in tqdm(feature_paths): _path, slice_ptr = parse_path(p) assert len(slice_ptr) == 2 byte_data = read_from_stored_zip(_path, slice_ptr[0], slice_ptr[1]) assert is_npy_data(byte_data) path_or_fp = io.BytesIO(byte_data) features = np.load(path_or_fp).squeeze() v_min = min(v_min, features.min().item()) v_max = max(v_max, features.max().item()) return v_min, v_max
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/data_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from scipy.interpolate import interp1d import torchaudio from fairseq.tasks.text_to_speech import ( batch_compute_distortion, compute_rms_dist ) def batch_mel_spectral_distortion( y1, y2, sr, normalize_type="path", mel_fn=None ): """ https://arxiv.org/pdf/2011.03568.pdf Same as Mel Cepstral Distortion, but computed on log-mel spectrograms. """ if mel_fn is None or mel_fn.sample_rate != sr: mel_fn = torchaudio.transforms.MelSpectrogram( sr, n_fft=int(0.05 * sr), win_length=int(0.05 * sr), hop_length=int(0.0125 * sr), f_min=20, n_mels=80, window_fn=torch.hann_window ).to(y1[0].device) offset = 1e-6 return batch_compute_distortion( y1, y2, sr, lambda y: torch.log(mel_fn(y) + offset).transpose(-1, -2), compute_rms_dist, normalize_type ) # This code is based on # "https://github.com/bastibe/MAPS-Scripts/blob/master/helper.py" def _same_t_in_true_and_est(func): def new_func(true_t, true_f, est_t, est_f): assert type(true_t) is np.ndarray assert type(true_f) is np.ndarray assert type(est_t) is np.ndarray assert type(est_f) is np.ndarray interpolated_f = interp1d( est_t, est_f, bounds_error=False, kind='nearest', fill_value=0 )(true_t) return func(true_t, true_f, true_t, interpolated_f) return new_func @_same_t_in_true_and_est def gross_pitch_error(true_t, true_f, est_t, est_f): """The relative frequency in percent of pitch estimates that are outside a threshold around the true pitch. Only frames that are considered pitched by both the ground truth and the estimator (if applicable) are considered. """ correct_frames = _true_voiced_frames(true_t, true_f, est_t, est_f) gross_pitch_error_frames = _gross_pitch_error_frames( true_t, true_f, est_t, est_f ) return np.sum(gross_pitch_error_frames) / np.sum(correct_frames) def _gross_pitch_error_frames(true_t, true_f, est_t, est_f, eps=1e-8): voiced_frames = _true_voiced_frames(true_t, true_f, est_t, est_f) true_f_p_eps = [x + eps for x in true_f] pitch_error_frames = np.abs(est_f / true_f_p_eps - 1) > 0.2 return voiced_frames & pitch_error_frames def _true_voiced_frames(true_t, true_f, est_t, est_f): return (est_f != 0) & (true_f != 0) def _voicing_decision_error_frames(true_t, true_f, est_t, est_f): return (est_f != 0) != (true_f != 0) @_same_t_in_true_and_est def f0_frame_error(true_t, true_f, est_t, est_f): gross_pitch_error_frames = _gross_pitch_error_frames( true_t, true_f, est_t, est_f ) voicing_decision_error_frames = _voicing_decision_error_frames( true_t, true_f, est_t, est_f ) return (np.sum(gross_pitch_error_frames) + np.sum(voicing_decision_error_frames)) / (len(true_t)) @_same_t_in_true_and_est def voicing_decision_error(true_t, true_f, est_t, est_f): voicing_decision_error_frames = _voicing_decision_error_frames( true_t, true_f, est_t, est_f ) return np.sum(voicing_decision_error_frames) / (len(true_t))
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Signal processing-based evaluation using waveforms """ import csv import numpy as np import os.path as op import torch import tqdm from tabulate import tabulate import torchaudio from examples.speech_synthesis.utils import batch_mel_spectral_distortion from fairseq.tasks.text_to_speech import batch_mel_cepstral_distortion def load_eval_spec(path): with open(path) as f: reader = csv.DictReader(f, delimiter='\t') samples = list(reader) return samples def eval_distortion(samples, distortion_fn, device="cuda"): nmiss = 0 results = [] for sample in tqdm.tqdm(samples): if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]): nmiss += 1 results.append(None) continue # assume single channel yref, sr = torchaudio.load(sample["ref"]) ysyn, _sr = torchaudio.load(sample["syn"]) yref, ysyn = yref[0].to(device), ysyn[0].to(device) assert sr == _sr, f"{sr} != {_sr}" distortion, extra = distortion_fn([yref], [ysyn], sr, None)[0] _, _, _, _, _, pathmap = extra nins = torch.sum(pathmap.sum(dim=1) - 1) # extra frames in syn ndel = torch.sum(pathmap.sum(dim=0) - 1) # missing frames from syn results.append( (distortion.item(), # path distortion pathmap.size(0), # yref num frames pathmap.size(1), # ysyn num frames pathmap.sum().item(), # path length nins.item(), # insertion ndel.item(), # deletion ) ) return results def eval_mel_cepstral_distortion(samples, device="cuda"): return eval_distortion(samples, batch_mel_cepstral_distortion, device) def eval_mel_spectral_distortion(samples, device="cuda"): return eval_distortion(samples, batch_mel_spectral_distortion, device) def print_results(results, show_bin): results = np.array(list(filter(lambda x: x is not None, results))) np.set_printoptions(precision=3) def _print_result(results): dist, dur_ref, dur_syn, dur_ali, nins, ndel = results.sum(axis=0) res = { "nutt": len(results), "dist": dist, "dur_ref": int(dur_ref), "dur_syn": int(dur_syn), "dur_ali": int(dur_ali), "dist_per_ref_frm": dist/dur_ref, "dist_per_syn_frm": dist/dur_syn, "dist_per_ali_frm": dist/dur_ali, "ins": nins/dur_ref, "del": ndel/dur_ref, } print(tabulate( [res.values()], res.keys(), floatfmt=".4f" )) print(">>>> ALL") _print_result(results) if show_bin: edges = [0, 200, 400, 600, 800, 1000, 2000, 4000] for i in range(1, len(edges)): mask = np.logical_and(results[:, 1] >= edges[i-1], results[:, 1] < edges[i]) if not mask.any(): continue bin_results = results[mask] print(f">>>> ({edges[i-1]}, {edges[i]})") _print_result(bin_results) def main(eval_spec, mcd, msd, show_bin): samples = load_eval_spec(eval_spec) device = "cpu" if mcd: print("===== Evaluate Mean Cepstral Distortion =====") results = eval_mel_cepstral_distortion(samples, device) print_results(results, show_bin) if msd: print("===== Evaluate Mean Spectral Distortion =====") results = eval_mel_spectral_distortion(samples, device) print_results(results, show_bin) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("eval_spec") parser.add_argument("--mcd", action="store_true") parser.add_argument("--msd", action="store_true") parser.add_argument("--show-bin", action="store_true") args = parser.parse_args() main(args.eval_spec, args.mcd, args.msd, args.show_bin)
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/evaluation/eval_sp.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import editdistance import re import shutil import soundfile as sf import subprocess from pathlib import Path from examples.speech_to_text.data_utils import load_tsv_to_dicts def preprocess_text(text): text = "|".join(re.sub(r"[^A-Z' ]", " ", text.upper()).split()) text = " ".join(text) return text def prepare_w2v_data( dict_dir, sample_rate, label, audio_paths, texts, split, data_dir ): data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile( dict_dir / f"dict.{label}.txt", data_dir / f"dict.{label}.txt" ) with open(data_dir / f"{split}.tsv", "w") as f: f.write("/\n") for audio_path in audio_paths: wav, sr = sf.read(audio_path) assert sr == sample_rate, f"{sr} != sample_rate" nsample = len(wav) f.write(f"{audio_path}\t{nsample}\n") with open(data_dir / f"{split}.{label}", "w") as f: for text in texts: text = preprocess_text(text) f.write(f"{text}\n") def run_asr(asr_dir, split, w2v_ckpt, w2v_label, res_dir): """ results will be saved at {res_dir}/{ref,hypo}.word-{w2v_ckpt.filename}-{split}.txt """ cmd = ["python", "-m", "examples.speech_recognition.infer"] cmd += [str(asr_dir.resolve())] cmd += ["--task", "audio_finetuning", "--nbest", "1", "--quiet"] cmd += ["--w2l-decoder", "viterbi", "--criterion", "ctc"] cmd += ["--post-process", "letter", "--max-tokens", "4000000"] cmd += ["--path", str(w2v_ckpt.resolve()), "--labels", w2v_label] cmd += ["--gen-subset", split, "--results-path", str(res_dir.resolve())] print(f"running cmd:\n{' '.join(cmd)}") subprocess.run(cmd, check=True) def compute_error_rate(hyp_wrd_path, ref_wrd_path, unit="word"): """each line is "<text> (None-<index>)" """ tokenize_line = { "word": lambda x: re.sub(r" \(.*\)$", "", x.rstrip()).split(), "char": lambda x: list(re.sub(r" \(.*\)$", "", x.rstrip())) }.get(unit) if tokenize_line is None: raise ValueError(f"{unit} not supported") inds = [int(re.sub(r"\D*(\d*)\D*", r"\1", line)) for line in open(hyp_wrd_path)] hyps = [tokenize_line(line) for line in open(hyp_wrd_path)] refs = [tokenize_line(line) for line in open(ref_wrd_path)] assert(len(hyps) == len(refs)) err_rates = [ editdistance.eval(hyp, ref) / len(ref) for hyp, ref in zip(hyps, refs) ] ind_to_err_rates = {i: e for i, e in zip(inds, err_rates)} return ind_to_err_rates def main(args): samples = load_tsv_to_dicts(args.raw_manifest) ids = [ sample[args.id_header] if args.id_header else "" for sample in samples ] audio_paths = [sample[args.audio_header] for sample in samples] texts = [sample[args.text_header] for sample in samples] prepare_w2v_data( args.w2v_dict_dir, args.w2v_sample_rate, args.w2v_label, audio_paths, texts, args.split, args.asr_dir ) run_asr(args.asr_dir, args.split, args.w2v_ckpt, args.w2v_label, args.asr_dir) ind_to_err_rates = compute_error_rate( args.asr_dir / f"hypo.word-{args.w2v_ckpt.name}-{args.split}.txt", args.asr_dir / f"ref.word-{args.w2v_ckpt.name}-{args.split}.txt", args.err_unit, ) uer_path = args.asr_dir / f"uer_{args.err_unit}.{args.split}.tsv" with open(uer_path, "w") as f: f.write("id\taudio\tuer\n") for ind, (id_, audio_path) in enumerate(zip(ids, audio_paths)): f.write(f"{id_}\t{audio_path}\t{ind_to_err_rates[ind]:.4f}\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--raw-manifest", required=True, type=Path) parser.add_argument("--asr-dir", required=True, type=Path) parser.add_argument("--id-header", default="id", type=str) parser.add_argument("--audio-header", default="audio", type=str) parser.add_argument("--text-header", default="src_text", type=str) parser.add_argument("--split", default="raw", type=str) parser.add_argument("--w2v-ckpt", required=True, type=Path) parser.add_argument("--w2v-dict-dir", required=True, type=Path) parser.add_argument("--w2v-sample-rate", default=16000, type=int) parser.add_argument("--w2v-label", default="ltr", type=str) parser.add_argument("--err-unit", default="word", type=str) args = parser.parse_args() main(args)
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/evaluation/eval_asr.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Signal processing-based evaluation using waveforms """ import numpy as np import os.path as op import torchaudio import tqdm from tabulate import tabulate from examples.speech_synthesis.utils import ( gross_pitch_error, voicing_decision_error, f0_frame_error ) from examples.speech_synthesis.evaluation.eval_sp import load_eval_spec def difference_function(x, n, tau_max): """ Compute difference function of data x. This solution is implemented directly with Numpy fft. :param x: audio data :param n: length of data :param tau_max: integration window size :return: difference function :rtype: list """ x = np.array(x, np.float64) w = x.size tau_max = min(tau_max, w) x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum())) size = w + tau_max p2 = (size // 32).bit_length() nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32) size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size) fc = np.fft.rfft(x, size_pad) conv = np.fft.irfft(fc * fc.conjugate())[:tau_max] return x_cumsum[w:w - tau_max:-1] + x_cumsum[w] - x_cumsum[:tau_max] - \ 2 * conv def cumulative_mean_normalized_difference_function(df, n): """ Compute cumulative mean normalized difference function (CMND). :param df: Difference function :param n: length of data :return: cumulative mean normalized difference function :rtype: list """ # scipy method cmn_df = df[1:] * range(1, n) / np.cumsum(df[1:]).astype(float) return np.insert(cmn_df, 0, 1) def get_pitch(cmdf, tau_min, tau_max, harmo_th=0.1): """ Return fundamental period of a frame based on CMND function. :param cmdf: Cumulative Mean Normalized Difference function :param tau_min: minimum period for speech :param tau_max: maximum period for speech :param harmo_th: harmonicity threshold to determine if it is necessary to compute pitch frequency :return: fundamental period if there is values under threshold, 0 otherwise :rtype: float """ tau = tau_min while tau < tau_max: if cmdf[tau] < harmo_th: while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]: tau += 1 return tau tau += 1 return 0 # if unvoiced def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500, harmo_thresh=0.1): """ Compute the Yin Algorithm. Return fundamental frequency and harmonic rate. https://github.com/NVIDIA/mellotron adaption of https://github.com/patriceguyot/Yin :param sig: Audio signal (list of float) :param sr: sampling rate (int) :param w_len: size of the analysis window (samples) :param w_step: size of the lag between two consecutives windows (samples) :param f0_min: Minimum fundamental frequency that can be detected (hertz) :param f0_max: Maximum fundamental frequency that can be detected (hertz) :param harmo_thresh: Threshold of detection. The yalgorithmù return the first minimum of the CMND function below this threshold. :returns: * pitches: list of fundamental frequencies, * harmonic_rates: list of harmonic rate values for each fundamental frequency value (= confidence value) * argmins: minimums of the Cumulative Mean Normalized DifferenceFunction * times: list of time of each estimation :rtype: tuple """ tau_min = int(sr / f0_max) tau_max = int(sr / f0_min) # time values for each analysis window time_scale = range(0, len(sig) - w_len, w_step) times = [t/float(sr) for t in time_scale] frames = [sig[t:t + w_len] for t in time_scale] pitches = [0.0] * len(time_scale) harmonic_rates = [0.0] * len(time_scale) argmins = [0.0] * len(time_scale) for i, frame in enumerate(frames): # Compute YIN df = difference_function(frame, w_len, tau_max) cm_df = cumulative_mean_normalized_difference_function(df, tau_max) p = get_pitch(cm_df, tau_min, tau_max, harmo_thresh) # Get results if np.argmin(cm_df) > tau_min: argmins[i] = float(sr / np.argmin(cm_df)) if p != 0: # A pitch was found pitches[i] = float(sr / p) harmonic_rates[i] = cm_df[p] else: # No pitch, but we compute a value of the harmonic rate harmonic_rates[i] = min(cm_df) return pitches, harmonic_rates, argmins, times def extract_f0(samples): f0_samples = [] for sample in tqdm.tqdm(samples): if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]): f0_samples.append(None) continue # assume single channel yref, sr = torchaudio.load(sample["ref"]) ysyn, _sr = torchaudio.load(sample["syn"]) yref, ysyn = yref[0], ysyn[0] assert sr == _sr, f"{sr} != {_sr}" yref_f0 = compute_yin(yref, sr) ysyn_f0 = compute_yin(ysyn, sr) f0_samples += [ { "ref": yref_f0, "syn": ysyn_f0 } ] return f0_samples def eval_f0_error(samples, distortion_fn): results = [] for sample in tqdm.tqdm(samples): if sample is None: results.append(None) continue # assume single channel yref_f, _, _, yref_t = sample["ref"] ysyn_f, _, _, ysyn_t = sample["syn"] yref_f = np.array(yref_f) yref_t = np.array(yref_t) ysyn_f = np.array(ysyn_f) ysyn_t = np.array(ysyn_t) distortion = distortion_fn(yref_t, yref_f, ysyn_t, ysyn_f) results.append((distortion.item(), len(yref_f), len(ysyn_f) )) return results def eval_gross_pitch_error(samples): return eval_f0_error(samples, gross_pitch_error) def eval_voicing_decision_error(samples): return eval_f0_error(samples, voicing_decision_error) def eval_f0_frame_error(samples): return eval_f0_error(samples, f0_frame_error) def print_results(results, show_bin): results = np.array(list(filter(lambda x: x is not None, results))) np.set_printoptions(precision=3) def _print_result(results): res = { "nutt": len(results), "error": results[:, 0].mean(), "std": results[:, 0].std(), "dur_ref": int(results[:, 1].sum()), "dur_syn": int(results[:, 2].sum()), } print(tabulate([res.values()], res.keys(), floatfmt=".4f")) print(">>>> ALL") _print_result(results) if show_bin: edges = [0, 200, 400, 600, 800, 1000, 2000, 4000] for i in range(1, len(edges)): mask = np.logical_and(results[:, 1] >= edges[i-1], results[:, 1] < edges[i]) if not mask.any(): continue bin_results = results[mask] print(f">>>> ({edges[i-1]}, {edges[i]})") _print_result(bin_results) def main(eval_f0, gpe, vde, ffe, show_bin): samples = load_eval_spec(eval_f0) if gpe or vde or ffe: f0_samples = extract_f0(samples) if gpe: print("===== Evaluate Gross Pitch Error =====") results = eval_gross_pitch_error(f0_samples) print_results(results, show_bin) if vde: print("===== Evaluate Voicing Decision Error =====") results = eval_voicing_decision_error(f0_samples) print_results(results, show_bin) if ffe: print("===== Evaluate F0 Frame Error =====") results = eval_f0_frame_error(f0_samples) print_results(results, show_bin) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("eval_f0") parser.add_argument("--gpe", action="store_true") parser.add_argument("--vde", action="store_true") parser.add_argument("--ffe", action="store_true") parser.add_argument("--show-bin", action="store_true") args = parser.parse_args() main(args.eval_f0, args.gpe, args.vde, args.ffe, args.show_bin)
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/evaluation/eval_f0.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import csv from pathlib import Path def main(args): """ `uid syn ref text` """ in_root = Path(args.generation_root).resolve() ext = args.audio_format with open(args.audio_manifest) as f, open(args.output_path, "w") as f_out: reader = csv.DictReader( f, delimiter="\t", quotechar=None, doublequote=False, lineterminator="\n", quoting=csv.QUOTE_NONE ) header = ["id", "syn", "ref", "text", "speaker"] f_out.write("\t".join(header) + "\n") for row in reader: dir_name = f"{ext}_{args.sample_rate}hz_{args.vocoder}" id_ = row["id"] syn = (in_root / dir_name / f"{id_}.{ext}").as_posix() ref = row["audio"] if args.use_resynthesized_target: ref = (in_root / f"{dir_name}_tgt" / f"{id_}.{ext}").as_posix() if args.eval_target: syn = row["audio"] sample = [id_, syn, ref, row["tgt_text"], row["speaker"]] f_out.write("\t".join(sample) + "\n") print(f"wrote evaluation file to {args.output_path}") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--generation-root", help="output directory for generate_waveform.py" ) parser.add_argument( "--audio-manifest", help="used to determine the original utterance ID and text" ) parser.add_argument( "--output-path", help="path to output evaluation spec file" ) parser.add_argument( "--use-resynthesized-target", action="store_true", help="use resynthesized reference instead of the original audio" ) parser.add_argument( "--eval-target", action="store_true", help="evaluate reference instead of model prediction" ) parser.add_argument("--vocoder", type=str, default="griffin_lim") parser.add_argument("--sample-rate", type=int, default=22_050) parser.add_argument("--audio-format", type=str, default="wav") args = parser.parse_args() main(args)
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/evaluation/get_eval_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/evaluation/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import numpy as np import re from pathlib import Path from collections import defaultdict import pandas as pd from torchaudio.datasets import VCTK from tqdm import tqdm from examples.speech_to_text.data_utils import save_df_to_tsv log = logging.getLogger(__name__) SPLITS = ["train", "dev", "test"] def normalize_text(text): return re.sub(r"[^a-zA-Z.?!,'\- ]", '', text) def process(args): out_root = Path(args.output_data_root).absolute() out_root.mkdir(parents=True, exist_ok=True) # Generate TSV manifest print("Generating manifest...") dataset = VCTK(out_root.as_posix(), download=False) ids = list(dataset._walker) np.random.seed(args.seed) np.random.shuffle(ids) n_train = len(ids) - args.n_dev - args.n_test _split = ["train"] * n_train + ["dev"] * args.n_dev + ["test"] * args.n_test id_to_split = dict(zip(ids, _split)) manifest_by_split = {split: defaultdict(list) for split in SPLITS} progress = tqdm(enumerate(dataset), total=len(dataset)) for i, (waveform, _, text, speaker_id, _) in progress: sample_id = dataset._walker[i] _split = id_to_split[sample_id] audio_dir = Path(dataset._path) / dataset._folder_audio / speaker_id audio_path = audio_dir / f"{sample_id}.wav" text = normalize_text(text) manifest_by_split[_split]["id"].append(sample_id) manifest_by_split[_split]["audio"].append(audio_path.as_posix()) manifest_by_split[_split]["n_frames"].append(len(waveform[0])) manifest_by_split[_split]["tgt_text"].append(text) manifest_by_split[_split]["speaker"].append(speaker_id) manifest_by_split[_split]["src_text"].append(text) manifest_root = Path(args.output_manifest_root).absolute() manifest_root.mkdir(parents=True, exist_ok=True) for _split in SPLITS: save_df_to_tsv( pd.DataFrame.from_dict(manifest_by_split[_split]), manifest_root / f"{_split}.audio.tsv" ) def main(): parser = argparse.ArgumentParser() parser.add_argument("--output-data-root", "-d", required=True, type=str) parser.add_argument("--output-manifest-root", "-m", required=True, type=str) parser.add_argument("--n-dev", default=50, type=int) parser.add_argument("--n-test", default=100, type=int) parser.add_argument("--seed", "-s", default=1234, type=int) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/get_vctk_audio_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from collections import defaultdict from itertools import chain from pathlib import Path import numpy as np import torchaudio import torchaudio.sox_effects as ta_sox import yaml from tqdm import tqdm from examples.speech_to_text.data_utils import load_tsv_to_dicts from examples.speech_synthesis.preprocessing.speaker_embedder import SpkrEmbedder def extract_embedding(audio_path, embedder): wav, sr = torchaudio.load(audio_path) # 2D if sr != embedder.RATE: wav, sr = ta_sox.apply_effects_tensor( wav, sr, [["rate", str(embedder.RATE)]] ) try: emb = embedder([wav[0].cuda().float()]).cpu().numpy() except RuntimeError: emb = None return emb def process(args): print("Fetching data...") raw_manifest_root = Path(args.raw_manifest_root).absolute() samples = [load_tsv_to_dicts(raw_manifest_root / (s + ".tsv")) for s in args.splits] samples = list(chain(*samples)) with open(args.config, "r") as f: config = yaml.load(f, Loader=yaml.FullLoader) with open(f"{config['audio_root']}/{config['speaker_set_filename']}") as f: speaker_to_id = {r.strip(): i for i, r in enumerate(f)} embedder = SpkrEmbedder(args.ckpt).cuda() speaker_to_cnt = defaultdict(float) speaker_to_emb = defaultdict(float) for sample in tqdm(samples, desc="extract emb"): emb = extract_embedding(sample["audio"], embedder) if emb is not None: speaker_to_cnt[sample["speaker"]] += 1 speaker_to_emb[sample["speaker"]] += emb if len(speaker_to_emb) != len(speaker_to_id): missed = set(speaker_to_id) - set(speaker_to_emb.keys()) print( f"WARNING: missing embeddings for {len(missed)} speaker:\n{missed}" ) speaker_emb_mat = np.zeros((len(speaker_to_id), len(emb)), float) for speaker in speaker_to_emb: idx = speaker_to_id[speaker] emb = speaker_to_emb[speaker] cnt = speaker_to_cnt[speaker] speaker_emb_mat[idx, :] = emb / cnt speaker_emb_name = "speaker_emb.npy" speaker_emb_path = f"{config['audio_root']}/{speaker_emb_name}" np.save(speaker_emb_path, speaker_emb_mat) config["speaker_emb_filename"] = speaker_emb_name with open(args.new_config, "w") as f: yaml.dump(config, f) def main(): parser = argparse.ArgumentParser() parser.add_argument("--raw-manifest-root", "-m", required=True, type=str) parser.add_argument("--splits", "-s", type=str, nargs="+", default=["train"]) parser.add_argument("--config", "-c", required=True, type=str) parser.add_argument("--new-config", "-n", required=True, type=str) parser.add_argument("--ckpt", required=True, type=str, help="speaker embedder checkpoint") args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/get_speaker_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path from collections import defaultdict import pandas as pd from torchaudio.datasets import LJSPEECH from tqdm import tqdm from examples.speech_to_text.data_utils import save_df_to_tsv log = logging.getLogger(__name__) SPLITS = ["train", "dev", "test"] def process(args): out_root = Path(args.output_data_root).absolute() out_root.mkdir(parents=True, exist_ok=True) # Generate TSV manifest print("Generating manifest...") # following FastSpeech's splits dataset = LJSPEECH(out_root.as_posix(), download=True) id_to_split = {} for x in dataset._flist: id_ = x[0] speaker = id_.split("-")[0] id_to_split[id_] = { "LJ001": "test", "LJ002": "test", "LJ003": "dev" }.get(speaker, "train") manifest_by_split = {split: defaultdict(list) for split in SPLITS} progress = tqdm(enumerate(dataset), total=len(dataset)) for i, (waveform, _, utt, normalized_utt) in progress: sample_id = dataset._flist[i][0] split = id_to_split[sample_id] manifest_by_split[split]["id"].append(sample_id) audio_path = f"{dataset._path}/{sample_id}.wav" manifest_by_split[split]["audio"].append(audio_path) manifest_by_split[split]["n_frames"].append(len(waveform[0])) manifest_by_split[split]["tgt_text"].append(normalized_utt) manifest_by_split[split]["speaker"].append("ljspeech") manifest_by_split[split]["src_text"].append(utt) manifest_root = Path(args.output_manifest_root).absolute() manifest_root.mkdir(parents=True, exist_ok=True) for split in SPLITS: save_df_to_tsv( pd.DataFrame.from_dict(manifest_by_split[split]), manifest_root / f"{split}.audio.tsv" ) def main(): parser = argparse.ArgumentParser() parser.add_argument("--output-data-root", "-d", required=True, type=str) parser.add_argument("--output-manifest-root", "-m", required=True, type=str) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/get_ljspeech_audio_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import shutil from tempfile import NamedTemporaryFile from collections import Counter, defaultdict import pandas as pd import torchaudio from tqdm import tqdm from fairseq.data.audio.audio_utils import convert_waveform from examples.speech_to_text.data_utils import ( create_zip, gen_config_yaml, gen_vocab, get_zip_manifest, load_tsv_to_dicts, save_df_to_tsv ) from examples.speech_synthesis.data_utils import ( extract_logmel_spectrogram, extract_pitch, extract_energy, get_global_cmvn, ipa_phonemize, get_mfa_alignment, get_unit_alignment, get_feature_value_min_max ) log = logging.getLogger(__name__) def process(args): assert "train" in args.splits out_root = Path(args.output_root).absolute() out_root.mkdir(exist_ok=True) print("Fetching data...") audio_manifest_root = Path(args.audio_manifest_root).absolute() samples = [] for s in args.splits: for e in load_tsv_to_dicts(audio_manifest_root / f"{s}.audio.tsv"): e["split"] = s samples.append(e) sample_ids = [s["id"] for s in samples] # Get alignment info id_to_alignment = None if args.textgrid_zip is not None: assert args.id_to_units_tsv is None id_to_alignment = get_mfa_alignment( args.textgrid_zip, sample_ids, args.sample_rate, args.hop_length ) elif args.id_to_units_tsv is not None: # assume identical hop length on the unit sequence id_to_alignment = get_unit_alignment(args.id_to_units_tsv, sample_ids) # Extract features and pack features into ZIP feature_name = "logmelspec80" zip_path = out_root / f"{feature_name}.zip" pitch_zip_path = out_root / "pitch.zip" energy_zip_path = out_root / "energy.zip" gcmvn_npz_path = out_root / "gcmvn_stats.npz" if zip_path.exists() and gcmvn_npz_path.exists(): print(f"{zip_path} and {gcmvn_npz_path} exist.") else: feature_root = out_root / feature_name feature_root.mkdir(exist_ok=True) pitch_root = out_root / "pitch" energy_root = out_root / "energy" if args.add_fastspeech_targets: pitch_root.mkdir(exist_ok=True) energy_root.mkdir(exist_ok=True) print("Extracting Mel spectrogram features...") for sample in tqdm(samples): waveform, sample_rate = torchaudio.load(sample["audio"]) waveform, sample_rate = convert_waveform( waveform, sample_rate, normalize_volume=args.normalize_volume, to_sample_rate=args.sample_rate ) sample_id = sample["id"] target_length = None if id_to_alignment is not None: a = id_to_alignment[sample_id] target_length = sum(a.frame_durations) if a.start_sec is not None and a.end_sec is not None: start_frame = int(a.start_sec * sample_rate) end_frame = int(a.end_sec * sample_rate) waveform = waveform[:, start_frame: end_frame] extract_logmel_spectrogram( waveform, sample_rate, feature_root / f"{sample_id}.npy", win_length=args.win_length, hop_length=args.hop_length, n_fft=args.n_fft, n_mels=args.n_mels, f_min=args.f_min, f_max=args.f_max, target_length=target_length ) if args.add_fastspeech_targets: assert id_to_alignment is not None extract_pitch( waveform, sample_rate, pitch_root / f"{sample_id}.npy", hop_length=args.hop_length, log_scale=True, phoneme_durations=id_to_alignment[sample_id].frame_durations ) extract_energy( waveform, energy_root / f"{sample_id}.npy", hop_length=args.hop_length, n_fft=args.n_fft, log_scale=True, phoneme_durations=id_to_alignment[sample_id].frame_durations ) print("ZIPing features...") create_zip(feature_root, zip_path) get_global_cmvn(feature_root, gcmvn_npz_path) shutil.rmtree(feature_root) if args.add_fastspeech_targets: create_zip(pitch_root, pitch_zip_path) shutil.rmtree(pitch_root) create_zip(energy_root, energy_zip_path) shutil.rmtree(energy_root) print("Fetching ZIP manifest...") audio_paths, audio_lengths = get_zip_manifest(zip_path) pitch_paths, pitch_lengths, energy_paths, energy_lengths = [None] * 4 if args.add_fastspeech_targets: pitch_paths, pitch_lengths = get_zip_manifest(pitch_zip_path) energy_paths, energy_lengths = get_zip_manifest(energy_zip_path) # Generate TSV manifest print("Generating manifest...") id_to_cer = None if args.cer_threshold is not None: assert Path(args.cer_tsv_path).is_file() id_to_cer = { x["id"]: x["uer"] for x in load_tsv_to_dicts(args.cer_tsv_path) } manifest_by_split = {split: defaultdict(list) for split in args.splits} for sample in tqdm(samples): sample_id, split = sample["id"], sample["split"] if args.snr_threshold is not None and "snr" in sample \ and sample["snr"] < args.snr_threshold: continue if args.cer_threshold is not None \ and id_to_cer[sample_id] > args.cer_threhold: continue normalized_utt = sample["tgt_text"] if id_to_alignment is not None: normalized_utt = " ".join(id_to_alignment[sample_id].tokens) elif args.ipa_vocab: normalized_utt = ipa_phonemize( normalized_utt, lang=args.lang, use_g2p=args.use_g2p ) manifest_by_split[split]["id"].append(sample_id) manifest_by_split[split]["audio"].append(audio_paths[sample_id]) manifest_by_split[split]["n_frames"].append(audio_lengths[sample_id]) manifest_by_split[split]["tgt_text"].append(normalized_utt) manifest_by_split[split]["speaker"].append(sample["speaker"]) manifest_by_split[split]["src_text"].append(sample["src_text"]) if args.add_fastspeech_targets: assert id_to_alignment is not None duration = " ".join( str(d) for d in id_to_alignment[sample_id].frame_durations ) manifest_by_split[split]["duration"].append(duration) manifest_by_split[split]["pitch"].append(pitch_paths[sample_id]) manifest_by_split[split]["energy"].append(energy_paths[sample_id]) for split in args.splits: save_df_to_tsv( pd.DataFrame.from_dict(manifest_by_split[split]), out_root / f"{split}.tsv" ) # Generate vocab vocab_name, spm_filename = None, None if id_to_alignment is not None or args.ipa_vocab: vocab = Counter() for t in manifest_by_split["train"]["tgt_text"]: vocab.update(t.split(" ")) vocab_name = "vocab.txt" with open(out_root / vocab_name, "w") as f: for s, c in vocab.most_common(): f.write(f"{s} {c}\n") else: spm_filename_prefix = "spm_char" spm_filename = f"{spm_filename_prefix}.model" with NamedTemporaryFile(mode="w") as f: for t in manifest_by_split["train"]["tgt_text"]: f.write(t + "\n") f.flush() # needed to ensure gen_vocab sees dumped text gen_vocab(Path(f.name), out_root / spm_filename_prefix, "char") # Generate speaker list speakers = sorted({sample["speaker"] for sample in samples}) speakers_path = out_root / "speakers.txt" with open(speakers_path, "w") as f: for speaker in speakers: f.write(f"{speaker}\n") # Generate config YAML win_len_t = args.win_length / args.sample_rate hop_len_t = args.hop_length / args.sample_rate extra = { "sample_rate": args.sample_rate, "features": { "type": "spectrogram+melscale+log", "eps": 1e-5, "n_mels": args.n_mels, "n_fft": args.n_fft, "window_fn": "hann", "win_length": args.win_length, "hop_length": args.hop_length, "sample_rate": args.sample_rate, "win_len_t": win_len_t, "hop_len_t": hop_len_t, "f_min": args.f_min, "f_max": args.f_max, "n_stft": args.n_fft // 2 + 1 } } if len(speakers) > 1: extra["speaker_set_filename"] = "speakers.txt" if args.add_fastspeech_targets: pitch_min, pitch_max = get_feature_value_min_max( [(out_root / n).as_posix() for n in pitch_paths.values()] ) energy_min, energy_max = get_feature_value_min_max( [(out_root / n).as_posix() for n in energy_paths.values()] ) extra["features"]["pitch_min"] = pitch_min extra["features"]["pitch_max"] = pitch_max extra["features"]["energy_min"] = energy_min extra["features"]["energy_max"] = energy_max gen_config_yaml( out_root, spm_filename=spm_filename, vocab_name=vocab_name, audio_root=out_root.as_posix(), input_channels=None, input_feat_per_channel=None, specaugment_policy=None, cmvn_type="global", gcmvn_path=gcmvn_npz_path, extra=extra ) def main(): parser = argparse.ArgumentParser() parser.add_argument("--audio-manifest-root", "-m", required=True, type=str) parser.add_argument("--output-root", "-o", required=True, type=str) parser.add_argument("--splits", "-s", type=str, nargs="+", default=["train", "dev", "test"]) parser.add_argument("--ipa-vocab", action="store_true") parser.add_argument("--use-g2p", action="store_true") parser.add_argument("--lang", type=str, default="en-us") parser.add_argument("--win-length", type=int, default=1024) parser.add_argument("--hop-length", type=int, default=256) parser.add_argument("--n-fft", type=int, default=1024) parser.add_argument("--n-mels", type=int, default=80) parser.add_argument("--f-min", type=int, default=20) parser.add_argument("--f-max", type=int, default=8000) parser.add_argument("--sample-rate", type=int, default=22050) parser.add_argument("--normalize-volume", "-n", action="store_true") parser.add_argument("--textgrid-zip", type=str, default=None) parser.add_argument("--id-to-units-tsv", type=str, default=None) parser.add_argument("--add-fastspeech-targets", action="store_true") parser.add_argument("--snr-threshold", type=float, default=None) parser.add_argument("--cer-threshold", type=float, default=None) parser.add_argument("--cer-tsv-path", type=str, default="") args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/get_feature_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path from collections import defaultdict from typing import List, Dict, Tuple import pandas as pd import numpy as np import torchaudio from tqdm import tqdm from examples.speech_to_text.data_utils import load_df_from_tsv, save_df_to_tsv log = logging.getLogger(__name__) SPLITS = ["train", "dev", "test"] def get_top_n( root: Path, n_speakers: int = 10, min_n_tokens: int = 5 ) -> pd.DataFrame: df = load_df_from_tsv(root / "validated.tsv") df["n_tokens"] = [len(s.split()) for s in df["sentence"]] df = df[df["n_tokens"] >= min_n_tokens] df["n_frames"] = [ torchaudio.info((root / "clips" / p).as_posix()).num_frames for p in tqdm(df["path"]) ] df["id"] = [Path(p).stem for p in df["path"]] total_duration_ms = df.groupby("client_id")["n_frames"].agg(["sum"]) total_duration_ms = total_duration_ms.sort_values("sum", ascending=False) top_n_total_duration_ms = total_duration_ms.head(n_speakers) top_n_client_ids = set(top_n_total_duration_ms.index.tolist()) df_top_n = df[df["client_id"].isin(top_n_client_ids)] return df_top_n def get_splits( df, train_split_ratio=0.99, speaker_in_all_splits=False, rand_seed=0 ) -> Tuple[Dict[str, str], List[str]]: np.random.seed(rand_seed) dev_split_ratio = (1. - train_split_ratio) / 3 grouped = list(df.groupby("client_id")) id_to_split = {} for _, cur_df in tqdm(grouped): cur_n_examples = len(cur_df) if speaker_in_all_splits and cur_n_examples < 3: continue cur_n_train = int(cur_n_examples * train_split_ratio) cur_n_dev = int(cur_n_examples * dev_split_ratio) cur_n_test = cur_n_examples - cur_n_dev - cur_n_train if speaker_in_all_splits and cur_n_dev * cur_n_test == 0: cur_n_dev, cur_n_test = 1, 1 cur_n_train = cur_n_examples - cur_n_dev - cur_n_test cur_indices = cur_df.index.tolist() cur_shuffled_indices = np.random.permutation(cur_n_examples) cur_shuffled_indices = [cur_indices[i] for i in cur_shuffled_indices] cur_indices_by_split = { "train": cur_shuffled_indices[:cur_n_train], "dev": cur_shuffled_indices[cur_n_train: cur_n_train + cur_n_dev], "test": cur_shuffled_indices[cur_n_train + cur_n_dev:] } for split in SPLITS: for i in cur_indices_by_split[split]: id_ = df["id"].loc[i] id_to_split[id_] = split return id_to_split, sorted(df["client_id"].unique()) def convert_to_wav(root: Path, filenames: List[str], target_sr=16_000): out_root = root / "wav" out_root.mkdir(exist_ok=True, parents=True) print("Converting to WAV...") for n in tqdm(filenames): in_path = (root / "clips" / n).as_posix() waveform, sr = torchaudio.load(in_path) converted, converted_sr = torchaudio.sox_effects.apply_effects_tensor( waveform, sr, [["rate", str(target_sr)], ["channels", "1"]] ) out_path = (out_root / Path(n).with_suffix(".wav").name).as_posix() torchaudio.save(out_path, converted, converted_sr, encoding="PCM_S", bits_per_sample=16) def process(args): data_root = Path(args.data_root).absolute() / args.lang # Generate TSV manifest print("Generating manifest...") df_top_n = get_top_n(data_root) id_to_split, speakers = get_splits(df_top_n) if args.convert_to_wav: convert_to_wav(data_root, df_top_n["path"].tolist()) manifest_by_split = {split: defaultdict(list) for split in SPLITS} for sample in tqdm(df_top_n.to_dict(orient="index").values()): sample_id = sample["id"] split = id_to_split[sample_id] manifest_by_split[split]["id"].append(sample_id) if args.convert_to_wav: audio_path = data_root / "wav" / f"{sample_id}.wav" else: audio_path = data_root / "clips" / f"{sample_id}.mp3" manifest_by_split[split]["audio"].append(audio_path.as_posix()) manifest_by_split[split]["n_frames"].append(sample["n_frames"]) manifest_by_split[split]["tgt_text"].append(sample["sentence"]) manifest_by_split[split]["speaker"].append(sample["client_id"]) manifest_by_split[split]["src_text"].append(sample["sentence"]) output_root = Path(args.output_manifest_root).absolute() output_root.mkdir(parents=True, exist_ok=True) for split in SPLITS: save_df_to_tsv( pd.DataFrame.from_dict(manifest_by_split[split]), output_root / f"{split}.audio.tsv" ) def main(): parser = argparse.ArgumentParser() parser.add_argument("--data-root", "-d", required=True, type=str) parser.add_argument("--output-manifest-root", "-m", required=True, type=str) parser.add_argument("--lang", "-l", required=True, type=str) parser.add_argument("--convert-to-wav", action="store_true") args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/get_common_voice_audio_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os import csv import tempfile from collections import defaultdict from pathlib import Path import torchaudio try: import webrtcvad except ImportError: raise ImportError("Please install py-webrtcvad: pip install webrtcvad") import pandas as pd from tqdm import tqdm from examples.speech_synthesis.preprocessing.denoiser.pretrained import master64 import examples.speech_synthesis.preprocessing.denoiser.utils as utils from examples.speech_synthesis.preprocessing.vad import ( frame_generator, vad_collector, read_wave, write_wave, FS_MS, THRESHOLD, SCALE ) from examples.speech_to_text.data_utils import save_df_to_tsv log = logging.getLogger(__name__) PATHS = ["after_denoise", "after_vad"] MIN_T = 0.05 def generate_tmp_filename(extension="txt"): return tempfile._get_default_tempdir() + "/" + \ next(tempfile._get_candidate_names()) + "." + extension def convert_sr(inpath, sr, output_path=None): if not output_path: output_path = generate_tmp_filename("wav") cmd = f"sox {inpath} -r {sr} {output_path}" os.system(cmd) return output_path def apply_vad(vad, inpath): audio, sample_rate = read_wave(inpath) frames = frame_generator(FS_MS, audio, sample_rate) frames = list(frames) segments = vad_collector(sample_rate, FS_MS, 300, vad, frames) merge_segments = list() timestamp_start = 0.0 timestamp_end = 0.0 # removing start, end, and long sequences of sils for i, segment in enumerate(segments): merge_segments.append(segment[0]) if i and timestamp_start: sil_duration = segment[1] - timestamp_end if sil_duration > THRESHOLD: merge_segments.append(int(THRESHOLD / SCALE) * (b'\x00')) else: merge_segments.append(int((sil_duration / SCALE)) * (b'\x00')) timestamp_start = segment[1] timestamp_end = segment[2] segment = b''.join(merge_segments) return segment, sample_rate def write(wav, filename, sr=16_000): # Normalize audio if it prevents clipping wav = wav / max(wav.abs().max().item(), 1) torchaudio.save(filename, wav.cpu(), sr, encoding="PCM_S", bits_per_sample=16) def process(args): # making sure we are requested either denoise or vad if not args.denoise and not args.vad: log.error("No denoise or vad is requested.") return log.info("Creating out directories...") if args.denoise: out_denoise = Path(args.output_dir).absolute().joinpath(PATHS[0]) out_denoise.mkdir(parents=True, exist_ok=True) if args.vad: out_vad = Path(args.output_dir).absolute().joinpath(PATHS[1]) out_vad.mkdir(parents=True, exist_ok=True) log.info("Loading pre-trained speech enhancement model...") model = master64().to(args.device) log.info("Building the VAD model...") vad = webrtcvad.Vad(int(args.vad_agg_level)) # preparing the output dict output_dict = defaultdict(list) log.info(f"Parsing input manifest: {args.audio_manifest}") with open(args.audio_manifest, "r") as f: manifest_dict = csv.DictReader(f, delimiter="\t") for row in tqdm(manifest_dict): filename = str(row["audio"]) final_output = filename keep_sample = True n_frames = row["n_frames"] snr = -1 if args.denoise: output_path_denoise = out_denoise.joinpath(Path(filename).name) # convert to 16khz in case we use a differet sr tmp_path = convert_sr(final_output, 16000) # loading audio file and generating the enhanced version out, sr = torchaudio.load(tmp_path) out = out.to(args.device) estimate = model(out) estimate = (1 - args.dry_wet) * estimate + args.dry_wet * out write(estimate[0], str(output_path_denoise), sr) snr = utils.cal_snr(out, estimate) snr = snr.cpu().detach().numpy()[0][0] final_output = str(output_path_denoise) if args.vad: output_path_vad = out_vad.joinpath(Path(filename).name) sr = torchaudio.info(final_output).sample_rate if sr in [16000, 32000, 48000]: tmp_path = final_output elif sr < 16000: tmp_path = convert_sr(final_output, 16000) elif sr < 32000: tmp_path = convert_sr(final_output, 32000) else: tmp_path = convert_sr(final_output, 48000) # apply VAD segment, sample_rate = apply_vad(vad, tmp_path) if len(segment) < sample_rate * MIN_T: keep_sample = False print(( f"WARNING: skip {filename} because it is too short " f"after VAD ({len(segment) / sample_rate} < {MIN_T})" )) else: if sample_rate != sr: tmp_path = generate_tmp_filename("wav") write_wave(tmp_path, segment, sample_rate) convert_sr(tmp_path, sr, output_path=str(output_path_vad)) else: write_wave(str(output_path_vad), segment, sample_rate) final_output = str(output_path_vad) segment, _ = torchaudio.load(final_output) n_frames = segment.size(1) if keep_sample: output_dict["id"].append(row["id"]) output_dict["audio"].append(final_output) output_dict["n_frames"].append(n_frames) output_dict["tgt_text"].append(row["tgt_text"]) output_dict["speaker"].append(row["speaker"]) output_dict["src_text"].append(row["src_text"]) output_dict["snr"].append(snr) out_tsv_path = Path(args.output_dir) / Path(args.audio_manifest).name log.info(f"Saving manifest to {out_tsv_path.as_posix()}") save_df_to_tsv(pd.DataFrame.from_dict(output_dict), out_tsv_path) def main(): parser = argparse.ArgumentParser() parser.add_argument("--audio-manifest", "-i", required=True, type=str, help="path to the input manifest.") parser.add_argument( "--output-dir", "-o", required=True, type=str, help="path to the output dir. it will contain files after denoising and" " vad" ) parser.add_argument("--vad-agg-level", "-a", type=int, default=2, help="the aggresive level of the vad [0-3].") parser.add_argument( "--dry-wet", "-dw", type=float, default=0.01, help="the level of linear interpolation between noisy and enhanced " "files." ) parser.add_argument( "--device", "-d", type=str, default="cpu", help="the device to be used for the speech enhancement model: " "cpu | cuda." ) parser.add_argument("--denoise", action="store_true", help="apply a denoising") parser.add_argument("--vad", action="store_true", help="apply a VAD") args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/denoise_and_vad_audio.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import librosa import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data import torchaudio EMBEDDER_PARAMS = { 'num_mels': 40, 'n_fft': 512, 'emb_dim': 256, 'lstm_hidden': 768, 'lstm_layers': 3, 'window': 80, 'stride': 40, } def set_requires_grad(nets, requires_grad=False): """Set requies_grad=Fasle for all the networks to avoid unnecessary computations Parameters: nets (network list) -- a list of networks requires_grad (bool) -- whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad class LinearNorm(nn.Module): def __init__(self, hp): super(LinearNorm, self).__init__() self.linear_layer = nn.Linear(hp["lstm_hidden"], hp["emb_dim"]) def forward(self, x): return self.linear_layer(x) class SpeechEmbedder(nn.Module): def __init__(self, hp): super(SpeechEmbedder, self).__init__() self.lstm = nn.LSTM(hp["num_mels"], hp["lstm_hidden"], num_layers=hp["lstm_layers"], batch_first=True) self.proj = LinearNorm(hp) self.hp = hp def forward(self, mel): # (num_mels, T) -> (num_mels, T', window) mels = mel.unfold(1, self.hp["window"], self.hp["stride"]) mels = mels.permute(1, 2, 0) # (T', window, num_mels) x, _ = self.lstm(mels) # (T', window, lstm_hidden) x = x[:, -1, :] # (T', lstm_hidden), use last frame only x = self.proj(x) # (T', emb_dim) x = x / torch.norm(x, p=2, dim=1, keepdim=True) # (T', emb_dim) x = x.mean(dim=0) if x.norm(p=2) != 0: x = x / x.norm(p=2) return x class SpkrEmbedder(nn.Module): RATE = 16000 def __init__( self, embedder_path, embedder_params=EMBEDDER_PARAMS, rate=16000, hop_length=160, win_length=400, pad=False, ): super(SpkrEmbedder, self).__init__() embedder_pt = torch.load(embedder_path, map_location="cpu") self.embedder = SpeechEmbedder(embedder_params) self.embedder.load_state_dict(embedder_pt) self.embedder.eval() set_requires_grad(self.embedder, requires_grad=False) self.embedder_params = embedder_params self.register_buffer('mel_basis', torch.from_numpy( librosa.filters.mel( sr=self.RATE, n_fft=self.embedder_params["n_fft"], n_mels=self.embedder_params["num_mels"]) ) ) self.resample = None if rate != self.RATE: self.resample = torchaudio.transforms.Resample(rate, self.RATE) self.hop_length = hop_length self.win_length = win_length self.pad = pad def get_mel(self, y): if self.pad and y.shape[-1] < 14000: y = F.pad(y, (0, 14000 - y.shape[-1])) window = torch.hann_window(self.win_length).to(y) y = torch.stft(y, n_fft=self.embedder_params["n_fft"], hop_length=self.hop_length, win_length=self.win_length, window=window) magnitudes = torch.norm(y, dim=-1, p=2) ** 2 mel = torch.log10(self.mel_basis @ magnitudes + 1e-6) return mel def forward(self, inputs): dvecs = [] for wav in inputs: mel = self.get_mel(wav) if mel.dim() == 3: mel = mel.squeeze(0) dvecs += [self.embedder(mel)] dvecs = torch.stack(dvecs) dvec = torch.mean(dvecs, dim=0) dvec = dvec / torch.norm(dvec) return dvec
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/speaker_embedder/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # author: adefossez import logging import torch.hub from .demucs import Demucs from .utils import deserialize_model logger = logging.getLogger(__name__) ROOT = "https://dl.fbaipublicfiles.com/adiyoss/denoiser/" DNS_48_URL = ROOT + "dns48-11decc9d8e3f0998.th" DNS_64_URL = ROOT + "dns64-a7761ff99a7d5bb6.th" MASTER_64_URL = ROOT + "master64-8a5dfb4bb92753dd.th" def _demucs(pretrained, url, **kwargs): model = Demucs(**kwargs) if pretrained: state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu') model.load_state_dict(state_dict) return model def dns48(pretrained=True): return _demucs(pretrained, DNS_48_URL, hidden=48) def dns64(pretrained=True): return _demucs(pretrained, DNS_64_URL, hidden=64) def master64(pretrained=True): return _demucs(pretrained, MASTER_64_URL, hidden=64) def add_model_flags(parser): group = parser.add_mutually_exclusive_group(required=False) group.add_argument( "-m", "--model_path", help="Path to local trained model." ) group.add_argument( "--dns48", action="store_true", help="Use pre-trained real time H=48 model trained on DNS." ) group.add_argument( "--dns64", action="store_true", help="Use pre-trained real time H=64 model trained on DNS." ) group.add_argument( "--master64", action="store_true", help="Use pre-trained real time H=64 model trained on DNS and Valentini." ) def get_model(args): """ Load local model package or torchhub pre-trained model. """ if args.model_path: logger.info("Loading model from %s", args.model_path) pkg = torch.load(args.model_path) model = deserialize_model(pkg) elif args.dns64: logger.info("Loading pre-trained real time H=64 model trained on DNS.") model = dns64() elif args.master64: logger.info( "Loading pre-trained real time H=64 model trained on DNS and Valentini." ) model = master64() else: logger.info("Loading pre-trained real time H=48 model trained on DNS.") model = dns48() logger.debug(model) return model
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/denoiser/pretrained.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # author: adefossez import math import torch as th from torch.nn import functional as F def sinc(t): """sinc. :param t: the input tensor """ return th.where(t == 0, th.tensor(1., device=t.device, dtype=t.dtype), th.sin(t) / t) def kernel_upsample2(zeros=56): """kernel_upsample2. """ win = th.hann_window(4 * zeros + 1, periodic=False) winodd = win[1::2] t = th.linspace(-zeros + 0.5, zeros - 0.5, 2 * zeros) t *= math.pi kernel = (sinc(t) * winodd).view(1, 1, -1) return kernel def upsample2(x, zeros=56): """ Upsampling the input by 2 using sinc interpolation. Smith, Julius, and Phil Gossett. "A flexible sampling-rate conversion method." ICASSP'84. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 9. IEEE, 1984. """ *other, time = x.shape kernel = kernel_upsample2(zeros).to(x) out = F.conv1d(x.view(-1, 1, time), kernel, padding=zeros)[..., 1:].view( *other, time ) y = th.stack([x, out], dim=-1) return y.view(*other, -1) def kernel_downsample2(zeros=56): """kernel_downsample2. """ win = th.hann_window(4 * zeros + 1, periodic=False) winodd = win[1::2] t = th.linspace(-zeros + 0.5, zeros - 0.5, 2 * zeros) t.mul_(math.pi) kernel = (sinc(t) * winodd).view(1, 1, -1) return kernel def downsample2(x, zeros=56): """ Downsampling the input by 2 using sinc interpolation. Smith, Julius, and Phil Gossett. "A flexible sampling-rate conversion method." ICASSP'84. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 9. IEEE, 1984. """ if x.shape[-1] % 2 != 0: x = F.pad(x, (0, 1)) xeven = x[..., ::2] xodd = x[..., 1::2] *other, time = xodd.shape kernel = kernel_downsample2(zeros).to(x) out = xeven + F.conv1d( xodd.view(-1, 1, time), kernel, padding=zeros )[..., :-1].view(*other, time) return out.view(*other, -1).mul(0.5)
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/denoiser/resample.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/denoiser/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # author: adefossez import functools import logging from contextlib import contextmanager import inspect import time logger = logging.getLogger(__name__) EPS = 1e-8 def capture_init(init): """capture_init. Decorate `__init__` with this, and you can then recover the *args and **kwargs passed to it in `self._init_args_kwargs` """ @functools.wraps(init) def __init__(self, *args, **kwargs): self._init_args_kwargs = (args, kwargs) init(self, *args, **kwargs) return __init__ def deserialize_model(package, strict=False): """deserialize_model. """ klass = package['class'] if strict: model = klass(*package['args'], **package['kwargs']) else: sig = inspect.signature(klass) kw = package['kwargs'] for key in list(kw): if key not in sig.parameters: logger.warning("Dropping inexistant parameter %s", key) del kw[key] model = klass(*package['args'], **kw) model.load_state_dict(package['state']) return model def copy_state(state): return {k: v.cpu().clone() for k, v in state.items()} def serialize_model(model): args, kwargs = model._init_args_kwargs state = copy_state(model.state_dict()) return {"class": model.__class__, "args": args, "kwargs": kwargs, "state": state} @contextmanager def swap_state(model, state): """ Context manager that swaps the state of a model, e.g: # model is in old state with swap_state(model, new_state): # model in new state # model back to old state """ old_state = copy_state(model.state_dict()) model.load_state_dict(state) try: yield finally: model.load_state_dict(old_state) def pull_metric(history, name): out = [] for metrics in history: if name in metrics: out.append(metrics[name]) return out class LogProgress: """ Sort of like tqdm but using log lines and not as real time. Args: - logger: logger obtained from `logging.getLogger`, - iterable: iterable object to wrap - updates (int): number of lines that will be printed, e.g. if `updates=5`, log every 1/5th of the total length. - total (int): length of the iterable, in case it does not support `len`. - name (str): prefix to use in the log. - level: logging level (like `logging.INFO`). """ def __init__(self, logger, iterable, updates=5, total=None, name="LogProgress", level=logging.INFO): self.iterable = iterable self.total = total or len(iterable) self.updates = updates self.name = name self.logger = logger self.level = level def update(self, **infos): self._infos = infos def __iter__(self): self._iterator = iter(self.iterable) self._index = -1 self._infos = {} self._begin = time.time() return self def __next__(self): self._index += 1 try: value = next(self._iterator) except StopIteration: raise else: return value finally: log_every = max(1, self.total // self.updates) # logging is delayed by 1 it, in order to have the metrics from update if self._index >= 1 and self._index % log_every == 0: self._log() def _log(self): self._speed = (1 + self._index) / (time.time() - self._begin) infos = " | ".join(f"{k.capitalize()} {v}" for k, v in self._infos.items()) if self._speed < 1e-4: speed = "oo sec/it" elif self._speed < 0.1: speed = f"{1/self._speed:.1f} sec/it" else: speed = f"{self._speed:.1f} it/sec" out = f"{self.name} | {self._index}/{self.total} | {speed}" if infos: out += " | " + infos self.logger.log(self.level, out) def colorize(text, color): """ Display text with some ANSI color in the terminal. """ code = f"\033[{color}m" restore = "\033[0m" return "".join([code, text, restore]) def bold(text): """ Display text in bold in the terminal. """ return colorize(text, "1") def cal_snr(lbl, est): import torch y = 10.0 * torch.log10( torch.sum(lbl**2, dim=-1) / (torch.sum((est-lbl)**2, dim=-1) + EPS) + EPS ) return y
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/denoiser/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # author: adefossez import math import time import torch as th from torch import nn from torch.nn import functional as F from .resample import downsample2, upsample2 from .utils import capture_init class BLSTM(nn.Module): def __init__(self, dim, layers=2, bi=True): super().__init__() klass = nn.LSTM self.lstm = klass( bidirectional=bi, num_layers=layers, hidden_size=dim, input_size=dim ) self.linear = None if bi: self.linear = nn.Linear(2 * dim, dim) def forward(self, x, hidden=None): x, hidden = self.lstm(x, hidden) if self.linear: x = self.linear(x) return x, hidden def rescale_conv(conv, reference): std = conv.weight.std().detach() scale = (std / reference)**0.5 conv.weight.data /= scale if conv.bias is not None: conv.bias.data /= scale def rescale_module(module, reference): for sub in module.modules(): if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)): rescale_conv(sub, reference) class Demucs(nn.Module): """ Demucs speech enhancement model. Args: - chin (int): number of input channels. - chout (int): number of output channels. - hidden (int): number of initial hidden channels. - depth (int): number of layers. - kernel_size (int): kernel size for each layer. - stride (int): stride for each layer. - causal (bool): if false, uses BiLSTM instead of LSTM. - resample (int): amount of resampling to apply to the input/output. Can be one of 1, 2 or 4. - growth (float): number of channels is multiplied by this for every layer. - max_hidden (int): maximum number of channels. Can be useful to control the size/speed of the model. - normalize (bool): if true, normalize the input. - glu (bool): if true uses GLU instead of ReLU in 1x1 convolutions. - rescale (float): controls custom weight initialization. See https://arxiv.org/abs/1911.13254. - floor (float): stability flooring when normalizing. """ @capture_init def __init__(self, chin=1, chout=1, hidden=48, depth=5, kernel_size=8, stride=4, causal=True, resample=4, growth=2, max_hidden=10_000, normalize=True, glu=True, rescale=0.1, floor=1e-3): super().__init__() if resample not in [1, 2, 4]: raise ValueError("Resample should be 1, 2 or 4.") self.chin = chin self.chout = chout self.hidden = hidden self.depth = depth self.kernel_size = kernel_size self.stride = stride self.causal = causal self.floor = floor self.resample = resample self.normalize = normalize self.encoder = nn.ModuleList() self.decoder = nn.ModuleList() activation = nn.GLU(1) if glu else nn.ReLU() ch_scale = 2 if glu else 1 for index in range(depth): encode = [] encode += [ nn.Conv1d(chin, hidden, kernel_size, stride), nn.ReLU(), nn.Conv1d(hidden, hidden * ch_scale, 1), activation, ] self.encoder.append(nn.Sequential(*encode)) decode = [] decode += [ nn.Conv1d(hidden, ch_scale * hidden, 1), activation, nn.ConvTranspose1d(hidden, chout, kernel_size, stride), ] if index > 0: decode.append(nn.ReLU()) self.decoder.insert(0, nn.Sequential(*decode)) chout = hidden chin = hidden hidden = min(int(growth * hidden), max_hidden) self.lstm = BLSTM(chin, bi=not causal) if rescale: rescale_module(self, reference=rescale) def valid_length(self, length): """ Return the nearest valid length to use with the model so that there is no time steps left over in a convolutions, e.g. for all layers, size of the input - kernel_size % stride = 0. If the mixture has a valid length, the estimated sources will have exactly the same length. """ length = math.ceil(length * self.resample) for _ in range(self.depth): length = math.ceil((length - self.kernel_size) / self.stride) + 1 length = max(length, 1) for _ in range(self.depth): length = (length - 1) * self.stride + self.kernel_size length = int(math.ceil(length / self.resample)) return int(length) @property def total_stride(self): return self.stride ** self.depth // self.resample def forward(self, mix): if mix.dim() == 2: mix = mix.unsqueeze(1) if self.normalize: mono = mix.mean(dim=1, keepdim=True) std = mono.std(dim=-1, keepdim=True) mix = mix / (self.floor + std) else: std = 1 length = mix.shape[-1] x = mix x = F.pad(x, (0, self.valid_length(length) - length)) if self.resample == 2: x = upsample2(x) elif self.resample == 4: x = upsample2(x) x = upsample2(x) skips = [] for encode in self.encoder: x = encode(x) skips.append(x) x = x.permute(2, 0, 1) x, _ = self.lstm(x) x = x.permute(1, 2, 0) for decode in self.decoder: skip = skips.pop(-1) x = x + skip[..., :x.shape[-1]] x = decode(x) if self.resample == 2: x = downsample2(x) elif self.resample == 4: x = downsample2(x) x = downsample2(x) x = x[..., :length] return std * x def fast_conv(conv, x): """ Faster convolution evaluation if either kernel size is 1 or length of sequence is 1. """ batch, chin, length = x.shape chout, chin, kernel = conv.weight.shape assert batch == 1 if kernel == 1: x = x.view(chin, length) out = th.addmm(conv.bias.view(-1, 1), conv.weight.view(chout, chin), x) elif length == kernel: x = x.view(chin * kernel, 1) out = th.addmm(conv.bias.view(-1, 1), conv.weight.view(chout, chin * kernel), x) else: out = conv(x) return out.view(batch, chout, -1) class DemucsStreamer: """ Streaming implementation for Demucs. It supports being fed with any amount of audio at a time. You will get back as much audio as possible at that point. Args: - demucs (Demucs): Demucs model. - dry (float): amount of dry (e.g. input) signal to keep. 0 is maximum noise removal, 1 just returns the input signal. Small values > 0 allows to limit distortions. - num_frames (int): number of frames to process at once. Higher values will increase overall latency but improve the real time factor. - resample_lookahead (int): extra lookahead used for the resampling. - resample_buffer (int): size of the buffer of previous inputs/outputs kept for resampling. """ def __init__(self, demucs, dry=0, num_frames=1, resample_lookahead=64, resample_buffer=256): device = next(iter(demucs.parameters())).device self.demucs = demucs self.lstm_state = None self.conv_state = None self.dry = dry self.resample_lookahead = resample_lookahead resample_buffer = min(demucs.total_stride, resample_buffer) self.resample_buffer = resample_buffer self.frame_length = demucs.valid_length(1) + \ demucs.total_stride * (num_frames - 1) self.total_length = self.frame_length + self.resample_lookahead self.stride = demucs.total_stride * num_frames self.resample_in = th.zeros(demucs.chin, resample_buffer, device=device) self.resample_out = th.zeros( demucs.chin, resample_buffer, device=device ) self.frames = 0 self.total_time = 0 self.variance = 0 self.pending = th.zeros(demucs.chin, 0, device=device) bias = demucs.decoder[0][2].bias weight = demucs.decoder[0][2].weight chin, chout, kernel = weight.shape self._bias = bias.view(-1, 1).repeat(1, kernel).view(-1, 1) self._weight = weight.permute(1, 2, 0).contiguous() def reset_time_per_frame(self): self.total_time = 0 self.frames = 0 @property def time_per_frame(self): return self.total_time / self.frames def flush(self): """ Flush remaining audio by padding it with zero. Call this when you have no more input and want to get back the last chunk of audio. """ pending_length = self.pending.shape[1] padding = th.zeros( self.demucs.chin, self.total_length, device=self.pending.device ) out = self.feed(padding) return out[:, :pending_length] def feed(self, wav): """ Apply the model to mix using true real time evaluation. Normalization is done online as is the resampling. """ begin = time.time() demucs = self.demucs resample_buffer = self.resample_buffer stride = self.stride resample = demucs.resample if wav.dim() != 2: raise ValueError("input wav should be two dimensional.") chin, _ = wav.shape if chin != demucs.chin: raise ValueError(f"Expected {demucs.chin} channels, got {chin}") self.pending = th.cat([self.pending, wav], dim=1) outs = [] while self.pending.shape[1] >= self.total_length: self.frames += 1 frame = self.pending[:, :self.total_length] dry_signal = frame[:, :stride] if demucs.normalize: mono = frame.mean(0) variance = (mono**2).mean() self.variance = variance / self.frames + \ (1 - 1 / self.frames) * self.variance frame = frame / (demucs.floor + math.sqrt(self.variance)) frame = th.cat([self.resample_in, frame], dim=-1) self.resample_in[:] = frame[:, stride - resample_buffer:stride] if resample == 4: frame = upsample2(upsample2(frame)) elif resample == 2: frame = upsample2(frame) # remove pre sampling buffer frame = frame[:, resample * resample_buffer:] # remove extra samples after window frame = frame[:, :resample * self.frame_length] out, extra = self._separate_frame(frame) padded_out = th.cat([self.resample_out, out, extra], 1) self.resample_out[:] = out[:, -resample_buffer:] if resample == 4: out = downsample2(downsample2(padded_out)) elif resample == 2: out = downsample2(padded_out) else: out = padded_out out = out[:, resample_buffer // resample:] out = out[:, :stride] if demucs.normalize: out *= math.sqrt(self.variance) out = self.dry * dry_signal + (1 - self.dry) * out outs.append(out) self.pending = self.pending[:, stride:] self.total_time += time.time() - begin if outs: out = th.cat(outs, 1) else: out = th.zeros(chin, 0, device=wav.device) return out def _separate_frame(self, frame): demucs = self.demucs skips = [] next_state = [] first = self.conv_state is None stride = self.stride * demucs.resample x = frame[None] for idx, encode in enumerate(demucs.encoder): stride //= demucs.stride length = x.shape[2] if idx == demucs.depth - 1: # This is sligthly faster for the last conv x = fast_conv(encode[0], x) x = encode[1](x) x = fast_conv(encode[2], x) x = encode[3](x) else: if not first: prev = self.conv_state.pop(0) prev = prev[..., stride:] tgt = (length - demucs.kernel_size) // demucs.stride + 1 missing = tgt - prev.shape[-1] offset = length - demucs.kernel_size - \ demucs.stride * (missing - 1) x = x[..., offset:] x = encode[1](encode[0](x)) x = fast_conv(encode[2], x) x = encode[3](x) if not first: x = th.cat([prev, x], -1) next_state.append(x) skips.append(x) x = x.permute(2, 0, 1) x, self.lstm_state = demucs.lstm(x, self.lstm_state) x = x.permute(1, 2, 0) # In the following, x contains only correct samples, i.e. the one # for which each time position is covered by two window of the upper # layer. extra contains extra samples to the right, and is used only as # a better padding for the online resampling. extra = None for idx, decode in enumerate(demucs.decoder): skip = skips.pop(-1) x += skip[..., :x.shape[-1]] x = fast_conv(decode[0], x) x = decode[1](x) if extra is not None: skip = skip[..., x.shape[-1]:] extra += skip[..., :extra.shape[-1]] extra = decode[2](decode[1](decode[0](extra))) x = decode[2](x) next_state.append( x[..., -demucs.stride:] - decode[2].bias.view(-1, 1) ) if extra is None: extra = x[..., -demucs.stride:] else: extra[..., :demucs.stride] += next_state[-1] x = x[..., :-demucs.stride] if not first: prev = self.conv_state.pop(0) x[..., :demucs.stride] += prev if idx != demucs.depth - 1: x = decode[3](x) extra = decode[3](extra) self.conv_state = next_state return x[0], extra[0] def test(): import argparse parser = argparse.ArgumentParser( "denoiser.demucs", description="Benchmark the streaming Demucs implementation, as well as " "checking the delta with the offline implementation.") parser.add_argument("--depth", default=5, type=int) parser.add_argument("--resample", default=4, type=int) parser.add_argument("--hidden", default=48, type=int) parser.add_argument("--sample_rate", default=16000, type=float) parser.add_argument("--device", default="cpu") parser.add_argument("-t", "--num_threads", type=int) parser.add_argument("-f", "--num_frames", type=int, default=1) args = parser.parse_args() if args.num_threads: th.set_num_threads(args.num_threads) sr = args.sample_rate sr_ms = sr / 1000 demucs = Demucs( depth=args.depth, hidden=args.hidden, resample=args.resample ).to(args.device) x = th.randn(1, int(sr * 4)).to(args.device) out = demucs(x[None])[0] streamer = DemucsStreamer(demucs, num_frames=args.num_frames) out_rt = [] frame_size = streamer.total_length with th.no_grad(): while x.shape[1] > 0: out_rt.append(streamer.feed(x[:, :frame_size])) x = x[:, frame_size:] frame_size = streamer.demucs.total_stride out_rt.append(streamer.flush()) out_rt = th.cat(out_rt, 1) model_size = sum(p.numel() for p in demucs.parameters()) * 4 / 2**20 initial_lag = streamer.total_length / sr_ms tpf = 1000 * streamer.time_per_frame print(f"model size: {model_size:.1f}MB, ", end='') print(f"delta batch/streaming: {th.norm(out - out_rt) / th.norm(out):.2%}") print(f"initial lag: {initial_lag:.1f}ms, ", end='') print(f"stride: {streamer.stride * args.num_frames / sr_ms:.1f}ms") print(f"time per frame: {tpf:.1f}ms, ", end='') rtf = (1000 * streamer.time_per_frame) / (streamer.stride / sr_ms) print(f"RTF: {rtf:.2f}") print(f"Total lag with computation: {initial_lag + tpf:.1f}ms") if __name__ == "__main__": test()
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/denoiser/demucs.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections import contextlib import wave try: import webrtcvad except ImportError: raise ImportError("Please install py-webrtcvad: pip install webrtcvad") import argparse import os import logging from tqdm import tqdm AUDIO_SUFFIX = '.wav' FS_MS = 30 SCALE = 6e-5 THRESHOLD = 0.3 def read_wave(path): """Reads a .wav file. Takes the path, and returns (PCM audio data, sample rate). """ with contextlib.closing(wave.open(path, 'rb')) as wf: num_channels = wf.getnchannels() assert num_channels == 1 sample_width = wf.getsampwidth() assert sample_width == 2 sample_rate = wf.getframerate() assert sample_rate in (8000, 16000, 32000, 48000) pcm_data = wf.readframes(wf.getnframes()) return pcm_data, sample_rate def write_wave(path, audio, sample_rate): """Writes a .wav file. Takes path, PCM audio data, and sample rate. """ with contextlib.closing(wave.open(path, 'wb')) as wf: wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(sample_rate) wf.writeframes(audio) class Frame(object): """Represents a "frame" of audio data.""" def __init__(self, bytes, timestamp, duration): self.bytes = bytes self.timestamp = timestamp self.duration = duration def frame_generator(frame_duration_ms, audio, sample_rate): """Generates audio frames from PCM audio data. Takes the desired frame duration in milliseconds, the PCM data, and the sample rate. Yields Frames of the requested duration. """ n = int(sample_rate * (frame_duration_ms / 1000.0) * 2) offset = 0 timestamp = 0.0 duration = (float(n) / sample_rate) / 2.0 while offset + n < len(audio): yield Frame(audio[offset:offset + n], timestamp, duration) timestamp += duration offset += n def vad_collector(sample_rate, frame_duration_ms, padding_duration_ms, vad, frames): """Filters out non-voiced audio frames. Given a webrtcvad.Vad and a source of audio frames, yields only the voiced audio. Uses a padded, sliding window algorithm over the audio frames. When more than 90% of the frames in the window are voiced (as reported by the VAD), the collector triggers and begins yielding audio frames. Then the collector waits until 90% of the frames in the window are unvoiced to detrigger. The window is padded at the front and back to provide a small amount of silence or the beginnings/endings of speech around the voiced frames. Arguments: sample_rate - The audio sample rate, in Hz. frame_duration_ms - The frame duration in milliseconds. padding_duration_ms - The amount to pad the window, in milliseconds. vad - An instance of webrtcvad.Vad. frames - a source of audio frames (sequence or generator). Returns: A generator that yields PCM audio data. """ num_padding_frames = int(padding_duration_ms / frame_duration_ms) # We use a deque for our sliding window/ring buffer. ring_buffer = collections.deque(maxlen=num_padding_frames) # We have two states: TRIGGERED and NOTTRIGGERED. We start in the # NOTTRIGGERED state. triggered = False voiced_frames = [] for frame in frames: is_speech = vad.is_speech(frame.bytes, sample_rate) # sys.stdout.write('1' if is_speech else '0') if not triggered: ring_buffer.append((frame, is_speech)) num_voiced = len([f for f, speech in ring_buffer if speech]) # If we're NOTTRIGGERED and more than 90% of the frames in # the ring buffer are voiced frames, then enter the # TRIGGERED state. if num_voiced > 0.9 * ring_buffer.maxlen: triggered = True # We want to yield all the audio we see from now until # we are NOTTRIGGERED, but we have to start with the # audio that's already in the ring buffer. for f, _ in ring_buffer: voiced_frames.append(f) ring_buffer.clear() else: # We're in the TRIGGERED state, so collect the audio data # and add it to the ring buffer. voiced_frames.append(frame) ring_buffer.append((frame, is_speech)) num_unvoiced = len([f for f, speech in ring_buffer if not speech]) # If more than 90% of the frames in the ring buffer are # unvoiced, then enter NOTTRIGGERED and yield whatever # audio we've collected. if num_unvoiced > 0.9 * ring_buffer.maxlen: triggered = False yield [b''.join([f.bytes for f in voiced_frames]), voiced_frames[0].timestamp, voiced_frames[-1].timestamp] ring_buffer.clear() voiced_frames = [] # If we have any leftover voiced audio when we run out of input, # yield it. if voiced_frames: yield [b''.join([f.bytes for f in voiced_frames]), voiced_frames[0].timestamp, voiced_frames[-1].timestamp] def main(args): # create output folder try: cmd = f"mkdir -p {args.out_path}" os.system(cmd) except Exception: logging.error("Can not create output folder") exit(-1) # build vad object vad = webrtcvad.Vad(int(args.agg)) # iterating over wavs in dir for file in tqdm(os.listdir(args.in_path)): if file.endswith(AUDIO_SUFFIX): audio_inpath = os.path.join(args.in_path, file) audio_outpath = os.path.join(args.out_path, file) audio, sample_rate = read_wave(audio_inpath) frames = frame_generator(FS_MS, audio, sample_rate) frames = list(frames) segments = vad_collector(sample_rate, FS_MS, 300, vad, frames) merge_segments = list() timestamp_start = 0.0 timestamp_end = 0.0 # removing start, end, and long sequences of sils for i, segment in enumerate(segments): merge_segments.append(segment[0]) if i and timestamp_start: sil_duration = segment[1] - timestamp_end if sil_duration > THRESHOLD: merge_segments.append(int(THRESHOLD / SCALE)*(b'\x00')) else: merge_segments.append(int((sil_duration / SCALE))*(b'\x00')) timestamp_start = segment[1] timestamp_end = segment[2] segment = b''.join(merge_segments) write_wave(audio_outpath, segment, sample_rate) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Apply vad to a file of fils.') parser.add_argument('in_path', type=str, help='Path to the input files') parser.add_argument('out_path', type=str, help='Path to save the processed files') parser.add_argument('--agg', type=int, default=3, help='The level of aggressiveness of the VAD: [0-3]') args = parser.parse_args() main(args)
EXA-1-master
exa/libraries/fairseq/examples/speech_synthesis/preprocessing/vad/__init__.py
from . import criterions, models, tasks # noqa
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/__init__.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Score raw text with a trained model. """ from collections import namedtuple import logging from multiprocessing import Pool import sys import os import random import numpy as np import sacrebleu import torch from fairseq import checkpoint_utils, options, utils logger = logging.getLogger("fairseq_cli.drnmt_rerank") logger.setLevel(logging.INFO) Batch = namedtuple("Batch", "ids src_tokens src_lengths") pool_init_variables = {} def init_loaded_scores(mt_scores, model_scores, hyp, ref): global pool_init_variables pool_init_variables["mt_scores"] = mt_scores pool_init_variables["model_scores"] = model_scores pool_init_variables["hyp"] = hyp pool_init_variables["ref"] = ref def parse_fairseq_gen(filename, task): source = {} hypos = {} scores = {} with open(filename, "r", encoding="utf-8") as f: for line in f: line = line.strip() if line.startswith("S-"): # source uid, text = line.split("\t", 1) uid = int(uid[2:]) source[uid] = text elif line.startswith("D-"): # hypo uid, score, text = line.split("\t", 2) uid = int(uid[2:]) if uid not in hypos: hypos[uid] = [] scores[uid] = [] hypos[uid].append(text) scores[uid].append(float(score)) else: continue source_out = [source[i] for i in range(len(hypos))] hypos_out = [h for i in range(len(hypos)) for h in hypos[i]] scores_out = [s for i in range(len(scores)) for s in scores[i]] return source_out, hypos_out, scores_out def read_target(filename): with open(filename, "r", encoding="utf-8") as f: output = [line.strip() for line in f] return output def make_batches(args, src, hyp, task, max_positions, encode_fn): assert len(src) * args.beam == len( hyp ), f"Expect {len(src) * args.beam} hypotheses for {len(src)} source sentences with beam size {args.beam}. Got {len(hyp)} hypotheses intead." hyp_encode = [ task.source_dictionary.encode_line(encode_fn(h), add_if_not_exist=False).long() for h in hyp ] if task.cfg.include_src: src_encode = [ task.source_dictionary.encode_line( encode_fn(s), add_if_not_exist=False ).long() for s in src ] tokens = [(src_encode[i // args.beam], h) for i, h in enumerate(hyp_encode)] lengths = [(t1.numel(), t2.numel()) for t1, t2 in tokens] else: tokens = [(h,) for h in hyp_encode] lengths = [(h.numel(),) for h in hyp_encode] itr = task.get_batch_iterator( dataset=task.build_dataset_for_inference(tokens, lengths), max_tokens=args.max_tokens, max_sentences=args.batch_size, max_positions=max_positions, ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, ).next_epoch_itr(shuffle=False) for batch in itr: yield Batch( ids=batch["id"], src_tokens=batch["net_input"]["src_tokens"], src_lengths=batch["net_input"]["src_lengths"], ) def decode_rerank_scores(args): if args.max_tokens is None and args.batch_size is None: args.batch_size = 1 logger.info(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load ensemble logger.info("loading model(s) from {}".format(args.path)) models, _model_args, task = checkpoint_utils.load_model_ensemble_and_task( [args.path], arg_overrides=eval(args.model_overrides), ) for model in models: if args.fp16: model.half() if use_cuda: model.cuda() # Initialize generator generator = task.build_generator(args) # Handle tokenization and BPE tokenizer = task.build_tokenizer(args) bpe = task.build_bpe(args) def encode_fn(x): if tokenizer is not None: x = tokenizer.encode(x) if bpe is not None: x = bpe.encode(x) return x max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ) src, hyp, mt_scores = parse_fairseq_gen(args.in_text, task) model_scores = {} logger.info("decode reranker score") for batch in make_batches(args, src, hyp, task, max_positions, encode_fn): src_tokens = batch.src_tokens src_lengths = batch.src_lengths if use_cuda: src_tokens = src_tokens.cuda() src_lengths = src_lengths.cuda() sample = { "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths}, } scores = task.inference_step(generator, models, sample) for id, sc in zip(batch.ids.tolist(), scores.tolist()): model_scores[id] = sc[0] model_scores = [model_scores[i] for i in range(len(model_scores))] return src, hyp, mt_scores, model_scores def get_score(mt_s, md_s, w1, lp, tgt_len): return mt_s / (tgt_len ** lp) * w1 + md_s def get_best_hyps(mt_scores, md_scores, hypos, fw_weight, lenpen, beam): assert len(mt_scores) == len(md_scores) and len(mt_scores) == len(hypos) hypo_scores = [] best_hypos = [] best_scores = [] offset = 0 for i in range(len(hypos)): tgt_len = len(hypos[i].split()) hypo_scores.append( get_score(mt_scores[i], md_scores[i], fw_weight, lenpen, tgt_len) ) if (i + 1) % beam == 0: max_i = np.argmax(hypo_scores) best_hypos.append(hypos[offset + max_i]) best_scores.append(hypo_scores[max_i]) hypo_scores = [] offset += beam return best_hypos, best_scores def eval_metric(args, hypos, ref): if args.metric == "bleu": score = sacrebleu.corpus_bleu(hypos, [ref]).score else: score = sacrebleu.corpus_ter(hypos, [ref]).score return score def score_target_hypo(args, fw_weight, lp): mt_scores = pool_init_variables["mt_scores"] model_scores = pool_init_variables["model_scores"] hyp = pool_init_variables["hyp"] ref = pool_init_variables["ref"] best_hypos, _ = get_best_hyps( mt_scores, model_scores, hyp, fw_weight, lp, args.beam ) rerank_eval = None if ref: rerank_eval = eval_metric(args, best_hypos, ref) print(f"fw_weight {fw_weight}, lenpen {lp}, eval {rerank_eval}") return rerank_eval def print_result(best_scores, best_hypos, output_file): for i, (s, h) in enumerate(zip(best_scores, best_hypos)): print(f"{i}\t{s}\t{h}", file=output_file) def main(args): utils.import_user_module(args) src, hyp, mt_scores, model_scores = decode_rerank_scores(args) assert ( not args.tune or args.target_text is not None ), "--target-text has to be set when tuning weights" if args.target_text: ref = read_target(args.target_text) assert len(src) == len( ref ), f"different numbers of source and target sentences ({len(src)} vs. {len(ref)})" orig_best_hypos = [hyp[i] for i in range(0, len(hyp), args.beam)] orig_eval = eval_metric(args, orig_best_hypos, ref) if args.tune: logger.info("tune weights for reranking") random_params = np.array( [ [ random.uniform( args.lower_bound_fw_weight, args.upper_bound_fw_weight ), random.uniform(args.lower_bound_lenpen, args.upper_bound_lenpen), ] for k in range(args.num_trials) ] ) logger.info("launching pool") with Pool( 32, initializer=init_loaded_scores, initargs=(mt_scores, model_scores, hyp, ref), ) as p: rerank_scores = p.starmap( score_target_hypo, [ (args, random_params[i][0], random_params[i][1],) for i in range(args.num_trials) ], ) if args.metric == "bleu": best_index = np.argmax(rerank_scores) else: best_index = np.argmin(rerank_scores) best_fw_weight = random_params[best_index][0] best_lenpen = random_params[best_index][1] else: assert ( args.lenpen is not None and args.fw_weight is not None ), "--lenpen and --fw-weight should be set" best_fw_weight, best_lenpen = args.fw_weight, args.lenpen best_hypos, best_scores = get_best_hyps( mt_scores, model_scores, hyp, best_fw_weight, best_lenpen, args.beam ) if args.results_path is not None: os.makedirs(args.results_path, exist_ok=True) output_path = os.path.join( args.results_path, "generate-{}.txt".format(args.gen_subset), ) with open(output_path, "w", buffering=1, encoding="utf-8") as o: print_result(best_scores, best_hypos, o) else: print_result(best_scores, best_hypos, sys.stdout) if args.target_text: rerank_eval = eval_metric(args, best_hypos, ref) print(f"before reranking, {args.metric.upper()}:", orig_eval) print( f"after reranking with fw_weight={best_fw_weight}, lenpen={best_lenpen}, {args.metric.upper()}:", rerank_eval, ) def cli_main(): parser = options.get_generation_parser(interactive=True) parser.add_argument( "--in-text", default=None, required=True, help="text from fairseq-interactive output, containing source sentences and hypotheses", ) parser.add_argument("--target-text", default=None, help="reference text") parser.add_argument("--metric", type=str, choices=["bleu", "ter"], default="bleu") parser.add_argument( "--tune", action="store_true", help="if set, tune weights on fw scores and lenpen instead of applying fixed weights for reranking", ) parser.add_argument( "--lower-bound-fw-weight", default=0.0, type=float, help="lower bound of search space", ) parser.add_argument( "--upper-bound-fw-weight", default=3, type=float, help="upper bound of search space", ) parser.add_argument( "--lower-bound-lenpen", default=0.0, type=float, help="lower bound of search space", ) parser.add_argument( "--upper-bound-lenpen", default=3, type=float, help="upper bound of search space", ) parser.add_argument( "--fw-weight", type=float, default=None, help="weight on the fw model score" ) parser.add_argument( "--num-trials", default=1000, type=int, help="number of trials to do for random search", ) args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/drnmt_rerank.py
from .discriminative_reranking_task import DiscriminativeRerankingNMTTask __all__ = [ "DiscriminativeRerankingNMTTask", ]
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/tasks/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import itertools import logging import os import numpy as np import torch from fairseq.logging import metrics from fairseq.data import ( ConcatDataset, ConcatSentencesDataset, data_utils, Dictionary, IdDataset, indexed_dataset, NestedDictionaryDataset, NumSamplesDataset, NumelDataset, PrependTokenDataset, RawLabelDataset, RightPadDataset, SortDataset, TruncateDataset, TokenBlockDataset, ) from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II, MISSING EVAL_BLEU_ORDER = 4 TARGET_METRIC_CHOICES = ChoiceEnum(["bleu", "ter"]) logger = logging.getLogger(__name__) @dataclass class DiscriminativeRerankingNMTConfig(FairseqDataclass): data: str = field(default=MISSING, metadata={"help": "path to data directory"}) num_data_splits: int = field( default=1, metadata={"help": "total number of data splits"} ) no_shuffle: bool = field( default=False, metadata={"help": "do not shuffle training data"} ) max_positions: int = field( default=512, metadata={"help": "number of positional embeddings to learn"} ) include_src: bool = field( default=False, metadata={"help": "include source sentence"} ) mt_beam: int = field(default=50, metadata={"help": "beam size of input hypotheses"}) eval_target_metric: bool = field( default=False, metadata={"help": "evaluation with the target metric during validation"}, ) target_metric: TARGET_METRIC_CHOICES = field( default="bleu", metadata={"help": "name of the target metric to optimize for"} ) train_subset: str = field( default=II("dataset.train_subset"), metadata={"help": "data subset to use for training (e.g. train, valid, test)"}, ) seed: int = field( default=II("common.seed"), metadata={"help": "pseudo random number generator seed"}, ) class RerankerScorer(object): """Scores the target for a given (source (optional), target) input.""" def __init__(self, args, mt_beam): self.mt_beam = mt_beam @torch.no_grad() def generate(self, models, sample, **kwargs): """Score a batch of translations.""" net_input = sample["net_input"] assert len(models) == 1, "does not support model ensemble" model = models[0] bs = net_input["src_tokens"].shape[0] assert ( model.joint_classification == "none" or bs % self.mt_beam == 0 ), f"invalid batch size ({bs}) for joint classification with beam size ({self.mt_beam})" model.eval() logits = model(**net_input) batch_out = model.sentence_forward(logits, net_input["src_tokens"]) if model.joint_classification == "sent": batch_out = model.joint_forward( batch_out.view(self.mt_beam, bs // self.mt_beam, -1) ) scores = model.classification_forward( batch_out.view(bs, 1, -1) ) # input: B x T x C return scores @register_task( "discriminative_reranking_nmt", dataclass=DiscriminativeRerankingNMTConfig ) class DiscriminativeRerankingNMTTask(FairseqTask): """ Translation rerank task. The input can be either (src, tgt) sentence pairs or tgt sentence only. """ cfg: DiscriminativeRerankingNMTConfig def __init__(self, cfg: DiscriminativeRerankingNMTConfig, data_dictionary=None): super().__init__(cfg) self.dictionary = data_dictionary self._max_positions = cfg.max_positions # args.tokens_per_sample = self._max_positions # self.num_classes = 1 # for model @classmethod def load_dictionary(cls, cfg, filename): """Load the dictionary from the filename""" dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") # for loading pretrained XLMR model return dictionary @classmethod def setup_task(cls, cfg: DiscriminativeRerankingNMTConfig, **kwargs): # load data dictionary (assume joint dictionary) data_path = cfg.data data_dict = cls.load_dictionary( cfg, os.path.join(data_path, "input_src/dict.txt") ) logger.info("[input] src dictionary: {} types".format(len(data_dict))) return DiscriminativeRerankingNMTTask(cfg, data_dict) def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" if self.cfg.data.endswith("1"): data_shard = (epoch - 1) % self.cfg.num_data_splits + 1 data_path = self.cfg.data[:-1] + str(data_shard) else: data_path = self.cfg.data def get_path(type, data_split): return os.path.join(data_path, str(type), data_split) def make_dataset(type, dictionary, data_split, combine): split_path = get_path(type, data_split) dataset = data_utils.load_indexed_dataset( split_path, dictionary, combine=combine, ) return dataset def load_split(data_split, metric): input_src = None if self.cfg.include_src: input_src = make_dataset( "input_src", self.dictionary, data_split, combine=False ) assert input_src is not None, "could not find dataset: {}".format( get_path("input_src", data_split) ) input_tgt = make_dataset( "input_tgt", self.dictionary, data_split, combine=False ) assert input_tgt is not None, "could not find dataset: {}".format( get_path("input_tgt", data_split) ) label_path = f"{get_path(metric, data_split)}.{metric}" assert os.path.exists(label_path), f"could not find dataset: {label_path}" np_labels = np.loadtxt(label_path) if self.cfg.target_metric == "ter": np_labels = -np_labels label = RawLabelDataset(np_labels) return input_src, input_tgt, label src_datasets = [] tgt_datasets = [] label_datasets = [] if split == self.cfg.train_subset: for k in itertools.count(): split_k = "train" + (str(k) if k > 0 else "") prefix = os.path.join(data_path, "input_tgt", split_k) if not indexed_dataset.dataset_exists(prefix, impl=None): if k > 0: break else: raise FileNotFoundError(f"Dataset not found: {prefix}") input_src, input_tgt, label = load_split( split_k, self.cfg.target_metric ) src_datasets.append(input_src) tgt_datasets.append(input_tgt) label_datasets.append(label) else: input_src, input_tgt, label = load_split(split, self.cfg.target_metric) src_datasets.append(input_src) tgt_datasets.append(input_tgt) label_datasets.append(label) if len(tgt_datasets) == 1: input_tgt, label = tgt_datasets[0], label_datasets[0] if self.cfg.include_src: input_src = src_datasets[0] else: input_tgt = ConcatDataset(tgt_datasets) label = ConcatDataset(label_datasets) if self.cfg.include_src: input_src = ConcatDataset(src_datasets) input_tgt = TruncateDataset(input_tgt, self.cfg.max_positions) if self.cfg.include_src: input_src = PrependTokenDataset(input_src, self.dictionary.bos()) input_src = TruncateDataset(input_src, self.cfg.max_positions) src_lengths = NumelDataset(input_src, reduce=False) src_tokens = ConcatSentencesDataset(input_src, input_tgt) else: src_tokens = PrependTokenDataset(input_tgt, self.dictionary.bos()) src_lengths = NumelDataset(src_tokens, reduce=False) dataset = { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_tokens, pad_idx=self.source_dictionary.pad(), ), "src_lengths": src_lengths, }, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens, reduce=True), "target": label, } dataset = NestedDictionaryDataset( dataset, sizes=[src_tokens.sizes], ) assert ( len(dataset) % self.cfg.mt_beam == 0 ), "dataset size (%d) is not a multiple of beam size (%d)" % ( len(dataset), self.cfg.mt_beam, ) # no need to shuffle valid/test sets if not self.cfg.no_shuffle and split == self.cfg.train_subset: # need to keep all hypothese together start_idx = np.arange(0, len(dataset), self.cfg.mt_beam) with data_utils.numpy_seed(self.cfg.seed + epoch): np.random.shuffle(start_idx) idx = np.arange(0, self.cfg.mt_beam) shuffle = np.tile(idx, (len(start_idx), 1)).reshape(-1) + np.tile( start_idx, (self.cfg.mt_beam, 1) ).transpose().reshape(-1) dataset = SortDataset( dataset, sort_order=[shuffle], ) logger.info(f"Loaded {split} with #samples: {len(dataset)}") self.datasets[split] = dataset return self.datasets[split] def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): assert not self.cfg.include_src or len(src_tokens[0]) == 2 input_src = None if self.cfg.include_src: input_src = TokenBlockDataset( [t[0] for t in src_tokens], [l[0] for l in src_lengths], block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ) input_src = PrependTokenDataset(input_src, self.dictionary.bos()) input_src = TruncateDataset(input_src, self.cfg.max_positions) input_tgt = TokenBlockDataset( [t[-1] for t in src_tokens], [l[-1] for l in src_lengths], block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ) input_tgt = TruncateDataset(input_tgt, self.cfg.max_positions) if self.cfg.include_src: src_tokens = ConcatSentencesDataset(input_src, input_tgt) src_lengths = NumelDataset(input_src, reduce=False) else: input_tgt = PrependTokenDataset(input_tgt, self.dictionary.bos()) src_tokens = input_tgt src_lengths = NumelDataset(src_tokens, reduce=False) dataset = { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_tokens, pad_idx=self.source_dictionary.pad(), ), "src_lengths": src_lengths, }, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens, reduce=True), } return NestedDictionaryDataset( dataset, sizes=[src_tokens.sizes], ) def build_model(self, cfg: FairseqDataclass, from_checkpoint: bool = False): return super().build_model(cfg) def build_generator(self, args): return RerankerScorer(args, mt_beam=self.cfg.mt_beam) def max_positions(self): return self._max_positions @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary def create_dummy_batch(self, device): dummy_target = ( torch.zeros(self.cfg.mt_beam, EVAL_BLEU_ORDER * 2 + 3).long().to(device) if not self.cfg.eval_ter else torch.zeros(self.cfg.mt_beam, 3).long().to(device) ) return { "id": torch.zeros(self.cfg.mt_beam, 1).long().to(device), "net_input": { "src_tokens": torch.zeros(self.cfg.mt_beam, 4).long().to(device), "src_lengths": torch.ones(self.cfg.mt_beam, 1).long().to(device), }, "nsentences": 0, "ntokens": 0, "target": dummy_target, } def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): if ignore_grad and sample is None: sample = self.create_dummy_batch(model.device) return super().train_step( sample, model, criterion, optimizer, update_num, ignore_grad ) def valid_step(self, sample, model, criterion): if sample is None: sample = self.create_dummy_batch(model.device) loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if not self.cfg.eval_target_metric: return loss, sample_size, logging_output scores = logging_output["scores"] if self.cfg.target_metric == "bleu": assert sample["target"].shape[1] == EVAL_BLEU_ORDER * 2 + 3, ( "target does not contain enough information (" + str(sample["target"].shape[1]) + "for evaluating BLEU" ) max_id = torch.argmax(scores, dim=1) select_id = max_id + torch.arange( 0, sample_size * self.cfg.mt_beam, self.cfg.mt_beam ).to(max_id.device) bleu_data = sample["target"][select_id, 1:].sum(0).data logging_output["_bleu_sys_len"] = bleu_data[0] logging_output["_bleu_ref_len"] = bleu_data[1] for i in range(EVAL_BLEU_ORDER): logging_output["_bleu_counts_" + str(i)] = bleu_data[2 + i] logging_output["_bleu_totals_" + str(i)] = bleu_data[ 2 + EVAL_BLEU_ORDER + i ] elif self.cfg.target_metric == "ter": assert sample["target"].shape[1] == 3, ( "target does not contain enough information (" + str(sample["target"].shape[1]) + "for evaluating TER" ) max_id = torch.argmax(scores, dim=1) select_id = max_id + torch.arange( 0, sample_size * self.cfg.mt_beam, self.cfg.mt_beam ).to(max_id.device) ter_data = sample["target"][select_id, 1:].sum(0).data logging_output["_ter_num_edits"] = -ter_data[0] logging_output["_ter_ref_len"] = -ter_data[1] return loss, sample_size, logging_output def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) if not self.cfg.eval_target_metric: return def sum_logs(key): return sum(log.get(key, 0) for log in logging_outputs) if self.cfg.target_metric == "bleu": counts, totals = [], [] for i in range(EVAL_BLEU_ORDER): counts.append(sum_logs("_bleu_counts_" + str(i))) totals.append(sum_logs("_bleu_totals_" + str(i))) if max(totals) > 0: # log counts as numpy arrays -- log_scalar will sum them correctly metrics.log_scalar("_bleu_counts", np.array(counts)) metrics.log_scalar("_bleu_totals", np.array(totals)) metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len")) metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len")) def compute_bleu(meters): import inspect import sacrebleu fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0] if "smooth_method" in fn_sig: smooth = {"smooth_method": "exp"} else: smooth = {"smooth": "exp"} bleu = sacrebleu.compute_bleu( correct=meters["_bleu_counts"].sum, total=meters["_bleu_totals"].sum, sys_len=meters["_bleu_sys_len"].sum, ref_len=meters["_bleu_ref_len"].sum, **smooth, ) return round(bleu.score, 2) metrics.log_derived("bleu", compute_bleu) elif self.cfg.target_metric == "ter": num_edits = sum_logs("_ter_num_edits") ref_len = sum_logs("_ter_ref_len") if ref_len > 0: metrics.log_scalar("_ter_num_edits", num_edits) metrics.log_scalar("_ter_ref_len", ref_len) def compute_ter(meters): score = meters["_ter_num_edits"].sum / meters["_ter_ref_len"].sum return round(score.item(), 2) metrics.log_derived("ter", compute_ter)
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/tasks/discriminative_reranking_task.py
from .discriminative_reranking_model import DiscriminativeNMTReranker __all__ = [ "DiscriminativeNMTReranker", ]
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/models/__init__.py
from dataclasses import dataclass, field import os import torch import torch.nn as nn from fairseq import utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( BaseFairseqModel, register_model, ) from fairseq.models.roberta.model import RobertaClassificationHead from fairseq.modules import ( LayerNorm, TransformerSentenceEncoder, TransformerSentenceEncoderLayer, ) ACTIVATION_FN_CHOICES = ChoiceEnum(utils.get_available_activation_fns()) JOINT_CLASSIFICATION_CHOICES = ChoiceEnum(["none", "sent"]) SENTENCE_REP_CHOICES = ChoiceEnum(["head", "meanpool", "maxpool"]) def update_init_roberta_model_state(state): """ update the state_dict of a Roberta model for initializing weights of the BertRanker """ for k in list(state.keys()): if ".lm_head." in k or "version" in k: del state[k] continue # remove 'encoder/decoder.sentence_encoder.' from the key assert k.startswith("encoder.sentence_encoder.") or k.startswith( "decoder.sentence_encoder." ), f"Cannot recognize parameter name {k}" if "layernorm_embedding" in k: new_k = k.replace(".layernorm_embedding.", ".emb_layer_norm.") state[new_k[25:]] = state[k] else: state[k[25:]] = state[k] del state[k] class BaseRanker(nn.Module): def __init__(self, args, task): super().__init__() self.separator_token = task.dictionary.eos() self.padding_idx = task.dictionary.pad() def forward(self, src_tokens): raise NotImplementedError def get_segment_labels(self, src_tokens): segment_boundary = (src_tokens == self.separator_token).long() segment_labels = ( segment_boundary.cumsum(dim=1) - segment_boundary - (src_tokens == self.padding_idx).long() ) return segment_labels def get_positions(self, src_tokens, segment_labels): segment_positions = ( torch.arange(src_tokens.shape[1]) .to(src_tokens.device) .repeat(src_tokens.shape[0], 1) ) segment_boundary = (src_tokens == self.separator_token).long() _, col_idx = (segment_positions * segment_boundary).nonzero(as_tuple=True) col_idx = torch.cat([torch.zeros(1).type_as(col_idx), col_idx]) offset = torch.cat( [ torch.zeros(1).type_as(segment_boundary), segment_boundary.sum(dim=1).cumsum(dim=0)[:-1], ] ) segment_positions -= col_idx[segment_labels + offset.unsqueeze(1)] * ( segment_labels != 0 ) padding_mask = src_tokens.ne(self.padding_idx) segment_positions = (segment_positions + 1) * padding_mask.type_as( segment_positions ) + self.padding_idx return segment_positions class BertRanker(BaseRanker): def __init__(self, args, task): super(BertRanker, self).__init__(args, task) init_model = getattr(args, "pretrained_model", "") self.joint_layers = nn.ModuleList() if os.path.isfile(init_model): print(f"initialize weight from {init_model}") from fairseq import hub_utils x = hub_utils.from_pretrained( os.path.dirname(init_model), checkpoint_file=os.path.basename(init_model), ) in_state_dict = x["models"][0].state_dict() init_args = x["args"].model num_positional_emb = init_args.max_positions + task.dictionary.pad() + 1 # follow the setup in roberta self.model = TransformerSentenceEncoder( padding_idx=task.dictionary.pad(), vocab_size=len(task.dictionary), num_encoder_layers=getattr( args, "encoder_layers", init_args.encoder_layers ), embedding_dim=init_args.encoder_embed_dim, ffn_embedding_dim=init_args.encoder_ffn_embed_dim, num_attention_heads=init_args.encoder_attention_heads, dropout=init_args.dropout, attention_dropout=init_args.attention_dropout, activation_dropout=init_args.activation_dropout, num_segments=2, # add language embeddings max_seq_len=num_positional_emb, offset_positions_by_padding=False, encoder_normalize_before=True, apply_bert_init=True, activation_fn=init_args.activation_fn, freeze_embeddings=args.freeze_embeddings, n_trans_layers_to_freeze=args.n_trans_layers_to_freeze, ) # still need to learn segment embeddings as we added a second language embedding if args.freeze_embeddings: for p in self.model.segment_embeddings.parameters(): p.requires_grad = False update_init_roberta_model_state(in_state_dict) print("loading weights from the pretrained model") self.model.load_state_dict( in_state_dict, strict=False ) # ignore mismatch in language embeddings ffn_embedding_dim = init_args.encoder_ffn_embed_dim num_attention_heads = init_args.encoder_attention_heads dropout = init_args.dropout attention_dropout = init_args.attention_dropout activation_dropout = init_args.activation_dropout activation_fn = init_args.activation_fn classifier_embed_dim = getattr( args, "embed_dim", init_args.encoder_embed_dim ) if classifier_embed_dim != init_args.encoder_embed_dim: self.transform_layer = nn.Linear( init_args.encoder_embed_dim, classifier_embed_dim ) else: self.model = TransformerSentenceEncoder( padding_idx=task.dictionary.pad(), vocab_size=len(task.dictionary), num_encoder_layers=args.encoder_layers, embedding_dim=args.embed_dim, ffn_embedding_dim=args.ffn_embed_dim, num_attention_heads=args.attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, max_seq_len=task.max_positions() if task.max_positions() else args.tokens_per_sample, num_segments=2, offset_positions_by_padding=False, encoder_normalize_before=args.encoder_normalize_before, apply_bert_init=args.apply_bert_init, activation_fn=args.activation_fn, ) classifier_embed_dim = args.embed_dim ffn_embedding_dim = args.ffn_embed_dim num_attention_heads = args.attention_heads dropout = args.dropout attention_dropout = args.attention_dropout activation_dropout = args.activation_dropout activation_fn = args.activation_fn self.joint_classification = args.joint_classification if args.joint_classification == "sent": if args.joint_normalize_before: self.joint_layer_norm = LayerNorm(classifier_embed_dim) else: self.joint_layer_norm = None self.joint_layers = nn.ModuleList( [ TransformerSentenceEncoderLayer( embedding_dim=classifier_embed_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, ) for _ in range(args.num_joint_layers) ] ) self.classifier = RobertaClassificationHead( classifier_embed_dim, classifier_embed_dim, 1, # num_classes "tanh", args.classifier_dropout, ) def forward(self, src_tokens, src_lengths): segment_labels = self.get_segment_labels(src_tokens) positions = self.get_positions(src_tokens, segment_labels) inner_states, _ = self.model( tokens=src_tokens, segment_labels=segment_labels, last_state_only=True, positions=positions, ) return inner_states[-1].transpose(0, 1) # T x B x C -> B x T x C def sentence_forward(self, encoder_out, src_tokens=None, sentence_rep="head"): # encoder_out: B x T x C if sentence_rep == "head": x = encoder_out[:, :1, :] else: # 'meanpool', 'maxpool' assert src_tokens is not None, "meanpool requires src_tokens input" segment_labels = self.get_segment_labels(src_tokens) padding_mask = src_tokens.ne(self.padding_idx) encoder_mask = segment_labels * padding_mask.type_as(segment_labels) if sentence_rep == "meanpool": ntokens = torch.sum(encoder_mask, dim=1, keepdim=True) x = torch.sum( encoder_out * encoder_mask.unsqueeze(2), dim=1, keepdim=True ) / ntokens.unsqueeze(2).type_as(encoder_out) else: # 'maxpool' encoder_out[ (encoder_mask == 0).unsqueeze(2).repeat(1, 1, encoder_out.shape[-1]) ] = -float("inf") x, _ = torch.max(encoder_out, dim=1, keepdim=True) if hasattr(self, "transform_layer"): x = self.transform_layer(x) return x # B x 1 x C def joint_forward(self, x): # x: T x B x C if self.joint_layer_norm: x = self.joint_layer_norm(x.transpose(0, 1)) x = x.transpose(0, 1) for layer in self.joint_layers: x, _ = layer(x, self_attn_padding_mask=None) return x def classification_forward(self, x): # x: B x T x C return self.classifier(x) @dataclass class DiscriminativeNMTRerankerConfig(FairseqDataclass): pretrained_model: str = field( default="", metadata={"help": "pretrained model to load"} ) sentence_rep: SENTENCE_REP_CHOICES = field( default="head", metadata={ "help": "method to transform the output of the transformer stack to a sentence-level representation" }, ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"} ) classifier_dropout: float = field( default=0.0, metadata={"help": "classifier dropout probability"} ) embed_dim: int = field(default=768, metadata={"help": "embedding dimension"}) ffn_embed_dim: int = field( default=2048, metadata={"help": "embedding dimension for FFN"} ) encoder_layers: int = field(default=12, metadata={"help": "num encoder layers"}) attention_heads: int = field(default=8, metadata={"help": "num attention heads"}) encoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each encoder block"} ) apply_bert_init: bool = field( default=False, metadata={"help": "use custom param initialization for BERT"} ) activation_fn: ACTIVATION_FN_CHOICES = field( default="relu", metadata={"help": "activation function to use"} ) freeze_embeddings: bool = field( default=False, metadata={"help": "freeze embeddings in the pretrained model"} ) n_trans_layers_to_freeze: int = field( default=0, metadata={ "help": "number of layers to freeze in the pretrained transformer model" }, ) # joint classfication joint_classification: JOINT_CLASSIFICATION_CHOICES = field( default="none", metadata={"help": "method to compute joint features for classification"}, ) num_joint_layers: int = field( default=1, metadata={"help": "number of joint layers"} ) joint_normalize_before: bool = field( default=False, metadata={"help": "apply layer norm on the input to the joint layer"}, ) @register_model( "discriminative_nmt_reranker", dataclass=DiscriminativeNMTRerankerConfig ) class DiscriminativeNMTReranker(BaseFairseqModel): @classmethod def build_model(cls, args, task): model = BertRanker(args, task) return DiscriminativeNMTReranker(args, model) def __init__(self, args, model): super().__init__() self.model = model self.sentence_rep = args.sentence_rep self.joint_classification = args.joint_classification def forward(self, src_tokens, src_lengths, **kwargs): return self.model(src_tokens, src_lengths) def sentence_forward(self, encoder_out, src_tokens): return self.model.sentence_forward(encoder_out, src_tokens, self.sentence_rep) def joint_forward(self, x): return self.model.joint_forward(x) def classification_forward(self, x): return self.model.classification_forward(x)
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/models/discriminative_reranking_model.py
#!/usr/bin/env python import argparse from multiprocessing import Pool from pathlib import Path import sacrebleu import sentencepiece as spm def read_text_file(filename): with open(filename, "r") as f: output = [line.strip() for line in f] return output def get_bleu(in_sent, target_sent): bleu = sacrebleu.corpus_bleu([in_sent], [[target_sent]]) out = " ".join( map(str, [bleu.score, bleu.sys_len, bleu.ref_len] + bleu.counts + bleu.totals) ) return out def get_ter(in_sent, target_sent): ter = sacrebleu.corpus_ter([in_sent], [[target_sent]]) out = " ".join(map(str, [ter.score, ter.num_edits, ter.ref_length])) return out def init(sp_model): global sp sp = spm.SentencePieceProcessor() sp.Load(sp_model) def process(source_sent, target_sent, hypo_sent, metric): source_bpe = " ".join(sp.EncodeAsPieces(source_sent)) hypo_bpe = [" ".join(sp.EncodeAsPieces(h)) for h in hypo_sent] if metric == "bleu": score_str = [get_bleu(h, target_sent) for h in hypo_sent] else: # ter score_str = [get_ter(h, target_sent) for h in hypo_sent] return source_bpe, hypo_bpe, score_str def main(args): assert ( args.split.startswith("train") or args.num_shards == 1 ), "--num-shards should be set to 1 for valid and test sets" assert ( args.split.startswith("train") or args.split.startswith("valid") or args.split.startswith("test") ), "--split should be set to train[n]/valid[n]/test[n]" source_sents = read_text_file(args.input_source) target_sents = read_text_file(args.input_target) num_sents = len(source_sents) assert num_sents == len( target_sents ), f"{args.input_source} and {args.input_target} should have the same number of sentences." hypo_sents = read_text_file(args.input_hypo) assert ( len(hypo_sents) % args.beam == 0 ), f"Number of hypotheses ({len(hypo_sents)}) cannot be divided by beam size ({args.beam})." hypo_sents = [ hypo_sents[i : i + args.beam] for i in range(0, len(hypo_sents), args.beam) ] assert num_sents == len( hypo_sents ), f"{args.input_hypo} should contain {num_sents * args.beam} hypotheses but only has {len(hypo_sents) * args.beam}. (--beam={args.beam})" output_dir = args.output_dir / args.metric for ns in range(args.num_shards): print(f"processing shard {ns+1}/{args.num_shards}") shard_output_dir = output_dir / f"split{ns+1}" source_output_dir = shard_output_dir / "input_src" hypo_output_dir = shard_output_dir / "input_tgt" metric_output_dir = shard_output_dir / args.metric source_output_dir.mkdir(parents=True, exist_ok=True) hypo_output_dir.mkdir(parents=True, exist_ok=True) metric_output_dir.mkdir(parents=True, exist_ok=True) if args.n_proc > 1: with Pool( args.n_proc, initializer=init, initargs=(args.sentencepiece_model,) ) as p: output = p.starmap( process, [ (source_sents[i], target_sents[i], hypo_sents[i], args.metric) for i in range(ns, num_sents, args.num_shards) ], ) else: init(args.sentencepiece_model) output = [ process(source_sents[i], target_sents[i], hypo_sents[i], args.metric) for i in range(ns, num_sents, args.num_shards) ] with open(source_output_dir / f"{args.split}.bpe", "w") as s_o, open( hypo_output_dir / f"{args.split}.bpe", "w" ) as h_o, open(metric_output_dir / f"{args.split}.{args.metric}", "w") as m_o: for source_bpe, hypo_bpe, score_str in output: assert len(hypo_bpe) == len(score_str) for h, m in zip(hypo_bpe, score_str): s_o.write(f"{source_bpe}\n") h_o.write(f"{h}\n") m_o.write(f"{m}\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input-source", type=Path, required=True) parser.add_argument("--input-target", type=Path, required=True) parser.add_argument("--input-hypo", type=Path, required=True) parser.add_argument("--output-dir", type=Path, required=True) parser.add_argument("--split", type=str, required=True) parser.add_argument("--beam", type=int, required=True) parser.add_argument("--sentencepiece-model", type=str, required=True) parser.add_argument("--metric", type=str, choices=["bleu", "ter"], default="bleu") parser.add_argument("--num-shards", type=int, default=1) parser.add_argument("--n-proc", type=int, default=8) args = parser.parse_args() main(args)
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/scripts/prep_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field import torch import torch.nn.functional as F from fairseq import utils from fairseq.logging import metrics from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import ChoiceEnum, FairseqDataclass _EPSILON = torch.finfo(torch.float32).eps TARGET_DIST_NORM_CHOICES = ChoiceEnum(["none", "minmax"]) @dataclass class KLDivergenceRerankingCriterionConfig(FairseqDataclass): target_dist_norm: TARGET_DIST_NORM_CHOICES = field( default="none", metadata={"help": "method to normalize the range of target scores"}, ) temperature: float = field( default=1.0, metadata={"help": "temperature in softmax for target distributions"}, ) forward_batch_size: int = field( default=32, metadata={ "help": "number of hypotheses per batch for model forward (set a value smaller than --mt-beam to avoid OOM when training with a large beam size)" }, ) @register_criterion( "kl_divergence_rereanking", dataclass=KLDivergenceRerankingCriterionConfig ) class KLDivergenceRerankingCriterion(FairseqCriterion): def __init__( self, task, target_dist_norm, temperature, forward_batch_size, ): super().__init__(task) self.target_dist_norm = target_dist_norm self.temperature = temperature self.forward_batch_size = forward_batch_size def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ sample_size = sample["id"].numel() assert sample_size % self.task.cfg.mt_beam == 0, ( f"sample_size ({sample_size}) cannot be divided by beam size ({self.task.cfg.mt_beam})." f"Please set --required-batch-size-multiple={self.task.cfg.mt_beam}." ) # split into smaller batches for model forward batch_out = [] for i in range(0, sample_size, self.forward_batch_size): j = min(i + self.forward_batch_size, sample_size) out = model( src_tokens=sample["net_input"]["src_tokens"][i:j, :], src_lengths=sample["net_input"]["src_lengths"][i:j], ) batch_out.append( model.sentence_forward(out, sample["net_input"]["src_tokens"][i:j, :]) ) batch_out = torch.cat(batch_out, dim=0).view( self.task.cfg.mt_beam, sample_size // self.task.cfg.mt_beam, -1 ) # T x B x C if model.joint_classification == "sent": batch_out = model.joint_forward(batch_out) scores = model.classification_forward(batch_out.view(sample_size, 1, -1)).view( -1, self.task.cfg.mt_beam ) # input: B x T x C loss = self.compute_kl_loss( scores, sample["target"][:, 0].view(-1, self.task.cfg.mt_beam) ) sample_size = sample_size // self.task.cfg.mt_beam logging_output = { "loss": loss.detach(), "ntokens": sample["ntokens"], "nsentences": sample_size * self.task.cfg.mt_beam, "sample_size": sample_size, "scores": scores.detach(), } return loss, sample_size, logging_output def compute_kl_loss(self, logits, target): norm_target = target if self.target_dist_norm == "minmax": min_v = torch.min(target, 1, keepdim=True).values max_v = torch.max(target, 1, keepdim=True).values norm_target = (target - min_v) / (max_v - min_v + _EPSILON) target_dist = F.softmax( norm_target / self.temperature, dim=-1, dtype=torch.float32 ) model_dist = F.log_softmax(logits, dim=-1, dtype=torch.float32) loss = -(target_dist * model_dist - target_dist * target_dist.log()).sum() return loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) sample_size = utils.item( sum(log.get("sample_size", 0) for log in logging_outputs) ) loss = loss_sum / sample_size / math.log(2) metrics.log_scalar("loss", loss, sample_size, round=3) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/criterions/discriminative_reranking_criterion.py
from .discriminative_reranking_criterion import KLDivergenceRerankingCriterion __all__ = [ "KLDivergenceRerankingCriterion", ]
EXA-1-master
exa/libraries/fairseq/examples/discriminative_reranking_nmt/criterions/__init__.py
import sys from SPARQLWrapper import SPARQLWrapper, JSON endpoint_url = "https://query.wikidata.org/sparql" with open("/your/urls/here") as f: data = f.readlines() urls = [i.strip() for i in data] def get_results(endpoint_url, URL): query = f"""SELECT ?uriLabel ?occupation ?occupationLabel ?dob ?dobLabel WHERE {{ <{URL}> schema:about ?uri . ?uri wdt:P106 ?occupation . SERVICE wikibase:label {{ bd:serviceParam wikibase:language "en" }} }}""" user_agent = "WDQS-example Python/%s.%s" % (sys.version_info[0], sys.version_info[1]) sparql = SPARQLWrapper(endpoint_url, agent=user_agent) sparql.setQuery(query) sparql.setReturnFormat(JSON) return sparql.query().convert() all_occupations = [] for URL in urls: results = get_results(endpoint_url, URL) occupations = [] for result in results["results"]["bindings"]: occupations.append(result['occupationLabel']['value']) all_occupations.append(result['uriLabel']['value'] + ", " + ", ".join(occupations)) assert(len(all_occupations) == len(urls)) with open("/your/file/output/here", "w") as o: for line in all_occupations: o.write(line.strip() + "\n")
EXA-1-master
exa/libraries/fairseq/examples/womens_bios/query_occupations_from_wikidata.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import json import collections import argparse import shutil import subprocess import sys import tempfile from multiprocessing import Pool import sentencepiece as spm def preprocess(spm_model_path, train_path, valid_path, test_path, dest_dir, remove_empty=False, output_format='piece', workers=20): with tempfile.TemporaryDirectory() as tmp: # Tokenize with SentencePiece for split, path in ('train', train_path), ('valid', valid_path), ('test', test_path): if path is None: continue if path == '-': path = sys.stdin.fileno() with open(path, encoding='utf-8', errors='surrogateescape') as fin: with open(f'{tmp}/{split}', mode='w', encoding='utf-8', errors='surrogateescape') as fout: encoder = MultiprocessingEncoder(model=spm_model_path, remove_empty=remove_empty, output_format=output_format) pool = Pool(workers, initializer=encoder.initializer) encoded_lines = pool.imap(encoder.encode, fin, 10000) for i, line in enumerate(encoded_lines, start=1): if line is not None: print(line, file=fout) if i % 10000 == 0: print("tokenized {} lines".format(i), file=sys.stderr) # Generate dictionary sp = spm.SentencePieceProcessor(model_file=spm_model_path) if output_format == 'piece': vocab = [sp.id_to_piece(i) for i in range(3, sp.vocab_size())] else: vocab = map(str, range(sp.vocab_size())) with open(f'{tmp}/dict.txt', mode='w', encoding='utf-8', errors='surrogateescape') as f: for word in vocab: print(word, 1, file=f) # Binarize command = [ 'python3', '-m', 'fairseq_cli.preprocess', '--only-source', '--thresholdsrc', '0', '--destdir', dest_dir, '--srcdict', f'{tmp}/dict.txt', '--workers', '20', ] for split, path in ('train', train_path), ('valid', valid_path), ('test', test_path): if path is not None: command += [f'--{split}pref', f'{tmp}/{split}'] subprocess.run(command) # Copy SentencePiece model shutil.copyfile(spm_model_path, f'{dest_dir}/sentencepiece.bpe.model') class MultiprocessingEncoder(object): def __init__(self, model, remove_empty, output_format): self.model = model self.remove_empty = remove_empty self.output_format = output_format def initializer(self): global sp sp = spm.SentencePieceProcessor(model_file=self.model) def encode(self, line): global sp line = line.strip() if len(line) == 0 and self.remove_empty: return None if self.output_format == 'piece': return ' '.join(sp.encode_as_pieces(line)) else: return ' '.join(map(str, sp.encode(line))) def write_lines(lines, path): with open(path, mode='x', encoding='utf-8') as f: for line in lines: print(line, file=f) def read_jsonl(path): with open(path, encoding='utf-8') as f: return [json.loads(line) for line in f.read().splitlines()] def read_nli(path, langs=None): data = read_jsonl(path) if langs is not None: data = [sample for sample in data if sample.get('language') in langs] lang2count = collections.defaultdict(int) for sample in data: lang2count[sample.get('language')] += 1 if langs: assert set(lang2count.keys()) == set(langs) nlangs = len(lang2count) assert nlangs > 0 lens = list(lang2count.values()) assert all([lens[0] == length for length in lens]) print(f'Loaded {lens[0]} samples in {nlangs} languages from {path}', file=sys.stderr) return data def main(): parser = argparse.ArgumentParser(description='Tokenize and binarize NLI data') parser.add_argument('--sentencepiece-model', required=True) parser.add_argument('--train', required=True, help='Training data in jsonl format') parser.add_argument('--valid', required=True, help='Validation data in jsonl format') parser.add_argument('--destdir', required=True) args = parser.parse_args() os.makedirs(args.destdir + '/raw',) os.makedirs(args.destdir + '/bin', ) # Extract input/labels for split, path in ('train', args.train), ('valid', args.valid): data = read_nli(path, langs=None) original_size = len(data) data = [sample for sample in data if sample['gold_label'] != '-'] assert all(sample['gold_label'] in ('contradiction', 'entailment', 'neutral') for sample in data) filtered_size = len(data) if filtered_size != original_size: print(f'Filtered {filtered_size}/{original_size} samples from {path}', file=sys.stderr) for name, field in ('input0', 'sentence1'), ('input1', 'sentence2'), ('label', 'gold_label'): write_lines([sample[field] for sample in data], f'{args.destdir}/raw/{split}.{name}.txt') # Tokenize and binarize input for field in 'input0', 'input1': preprocess( spm_model_path=args.sentencepiece_model, train_path=f'{args.destdir}/raw/train.{field}.txt', valid_path=f'{args.destdir}/raw/valid.{field}.txt', test_path=None, dest_dir=f'{args.destdir}/bin/{field}', workers=20, ) # Binarize labels subprocess.run([ 'python3', '-m', 'fairseq_cli.preprocess', '--trainpref', f'{args.destdir}/raw/train.label.txt', '--validpref', f'{args.destdir}/raw/valid.label.txt', '--only-source', '--thresholdsrc', '0', '--destdir', f'{args.destdir}/bin/label', '--workers', '20', ]) if __name__ == '__main__': main()
EXA-1-master
exa/libraries/fairseq/examples/xmod/preprocess_nli.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate pre-processed data with a trained model. """ import numpy as np import torch from fairseq import checkpoint_utils, options, progress_bar, tasks, utils from fairseq.sequence_generator import EnsembleModel from fairseq.utils import safe_hasattr def get_avg_pool( models, sample, prefix_tokens, src_dict, remove_bpe, has_langtok=False ): model = EnsembleModel(models) # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens" } # compute the encoder output for each beam encoder_outs = model.forward_encoder(encoder_input) np_encoder_outs = encoder_outs[0].encoder_out.cpu().numpy().astype(np.float32) encoder_mask = 1 - encoder_outs[0].encoder_padding_mask.cpu().numpy().astype( np.float32 ) encoder_mask = np.expand_dims(encoder_mask.T, axis=2) if has_langtok: encoder_mask = encoder_mask[1:, :, :] np_encoder_outs = np_encoder_outs[1, :, :] masked_encoder_outs = encoder_mask * np_encoder_outs avg_pool = (masked_encoder_outs / encoder_mask.sum(axis=0)).sum(axis=0) return avg_pool def main(args): assert args.path is not None, "--path required for generation!" assert ( not args.sampling or args.nbest == args.beam ), "--sampling requires --nbest to be equal to --beam" assert ( args.replace_unk is None or args.raw_text ), "--replace-unk requires a raw text dataset (--raw-text)" args.beam = 1 utils.import_user_module(args) if args.max_tokens is None: args.max_tokens = 12000 print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) # Set dictionaries try: src_dict = getattr(task, "source_dictionary", None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary # Load ensemble print("| loading model(s) from {}".format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(":"), arg_overrides=eval(args.model_overrides), task=task, ) # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_positions=utils.resolve_max_positions( task.max_positions(), ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) num_sentences = 0 source_sentences = [] shard_id = 0 all_avg_pool = None encoder_has_langtok = ( safe_hasattr(task.args, "encoder_langtok") and task.args.encoder_langtok is not None and safe_hasattr(task.args, "lang_tok_replacing_bos_eos") and not task.args.lang_tok_replacing_bos_eos ) with progress_bar.build_progress_bar(args, itr) as t: for sample in t: if sample is None: print("Skipping None") continue sample = utils.move_to_cuda(sample) if use_cuda else sample if "net_input" not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample["target"][:, : args.prefix_size] with torch.no_grad(): avg_pool = get_avg_pool( models, sample, prefix_tokens, src_dict, args.post_process, has_langtok=encoder_has_langtok, ) if all_avg_pool is not None: all_avg_pool = np.concatenate((all_avg_pool, avg_pool)) else: all_avg_pool = avg_pool if not isinstance(sample["id"], list): sample_ids = sample["id"].tolist() else: sample_ids = sample["id"] for i, sample_id in enumerate(sample_ids): # Remove padding src_tokens = utils.strip_pad( sample["net_input"]["src_tokens"][i, :], tgt_dict.pad() ) # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(args.gen_subset).src.get_original_text( sample_id ) else: if src_dict is not None: src_str = src_dict.string(src_tokens, args.post_process) else: src_str = "" if not args.quiet: if src_dict is not None: print("S-{}\t{}".format(sample_id, src_str)) source_sentences.append(f"{sample_id}\t{src_str}") num_sentences += sample["nsentences"] if all_avg_pool.shape[0] >= 1000000: with open( f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w", ) as avg_pool_file: all_avg_pool.tofile(avg_pool_file) with open( f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w", ) as sentence_file: sentence_file.writelines(f"{line}\n" for line in source_sentences) all_avg_pool = None source_sentences = [] shard_id += 1 if all_avg_pool is not None: with open( f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w" ) as avg_pool_file: all_avg_pool.tofile(avg_pool_file) with open( f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w" ) as sentence_file: sentence_file.writelines(f"{line}\n" for line in source_sentences) return None def cli_main(): parser = options.get_generation_parser() parser.add_argument( "--encoder-save-dir", default="", type=str, metavar="N", help="directory to save encoder outputs", ) args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/libraries/fairseq/examples/criss/save_encoder.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import glob from subprocess import check_call try: import faiss has_faiss = True except ImportError: has_faiss = False import numpy as np GB = 1024 * 1024 * 1024 def call(cmd): print(cmd) check_call(cmd, shell=True) def get_batches(directory, lang, prefix="all_avg_pool"): print(f"Finding in {directory}/{prefix}.{lang}*") files = glob.glob(f"{directory}/{prefix}.{lang}*") emb_files = [] txt_files = [] for emb_fi in files: emb_files.append(emb_fi) txt_fi = emb_fi.replace(prefix, "sentences") txt_files.append(txt_fi) return emb_files, txt_files def load_batch(emb_file, dim): embeddings = np.fromfile(emb_file, dtype=np.float32) num_rows = int(embeddings.shape[0] / dim) embeddings = embeddings.reshape((num_rows, dim)) faiss.normalize_L2(embeddings) return embeddings def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"): if not has_faiss: raise ImportError("Please install Faiss") sims = [] inds = [] xfrom = 0 xto = 0 for x_batch_f in x_batches_f: yfrom = 0 yto = 0 x_batch = load_batch(x_batch_f, dim) xto = xfrom + x_batch.shape[0] bsims, binds = [], [] for y_batch_f in y_batches_f: y_batch = load_batch(y_batch_f, dim) neighbor_size = min(k, y_batch.shape[0]) yto = yfrom + y_batch.shape[0] print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto)) idx = faiss.IndexFlatIP(dim) idx = faiss.index_cpu_to_all_gpus(idx) idx.add(y_batch) bsim, bind = idx.search(x_batch, neighbor_size) bsims.append(bsim) binds.append(bind + yfrom) yfrom += y_batch.shape[0] del idx del y_batch bsims = np.concatenate(bsims, axis=1) binds = np.concatenate(binds, axis=1) aux = np.argsort(-bsims, axis=1) sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32) ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64) for i in range(x_batch.shape[0]): for j in range(k): sim_batch[i, j] = bsims[i, aux[i, j]] ind_batch[i, j] = binds[i, aux[i, j]] sims.append(sim_batch) inds.append(ind_batch) xfrom += x_batch.shape[0] del x_batch sim = np.concatenate(sims, axis=0) ind = np.concatenate(inds, axis=0) return sim, ind def score(sim, fwd_mean, bwd_mean, margin): return margin(sim, (fwd_mean + bwd_mean) / 2) def score_candidates( sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False ): print(" - scoring {:d} candidates".format(sim_mat.shape[0])) scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = int(candidate_inds[i, j]) scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin) return scores def load_text(files): all_sentences = [] for fi in files: with open(fi) as sentence_fi: for line in sentence_fi: all_sentences.append(line.strip()) print(f"Read {len(all_sentences)} sentences") return all_sentences if __name__ == "__main__": parser = argparse.ArgumentParser(description="Mine bitext") parser.add_argument("--src-lang", help="Source language") parser.add_argument("--tgt-lang", help="Target language") parser.add_argument( "--dict-path", help="Path to dictionary file", default="dict.txt" ) parser.add_argument( "--spm-path", help="Path to SPM model file", default="sentence.bpe.model" ) parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension") parser.add_argument("--mem", type=int, default=5, help="Memory in GB") parser.add_argument("--src-dir", help="Source directory") parser.add_argument("--tgt-dir", help="Target directory") parser.add_argument("--output", help="Output path") parser.add_argument( "--neighborhood", type=int, default=4, help="Embedding dimension" ) parser.add_argument( "--threshold", type=float, default=1.06, help="Threshold on mined bitext" ) parser.add_argument( "--valid-size", type=int, default=2000, help="Number of sentences used for validation set", ) parser.add_argument( "--min-count", type=int, default=50000, help="Min num sentences used for each language", ) args = parser.parse_args() x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang) y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang) margin = lambda a, b: a / b y2x_sim, y2x_ind = knnGPU_sharded( y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x" ) x2y_sim, x2y_ind = knnGPU_sharded( x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y" ) x2y_mean = x2y_sim.mean(axis=1) y2x_mean = y2x_sim.mean(axis=1) fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin) bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin) fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)] bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)] indices = np.stack( ( np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)), np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))), ), axis=1, ) scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1))) x_sentences = load_text(x_sents_f) y_sentences = load_text(y_sents_f) threshold = args.threshold min_count = args.min_count seen_src, seen_trg = set(), set() directory = args.output call(f"mkdir -p {directory}") src_out = open( f"{directory}/all.{args.src_lang}", mode="w", encoding="utf-8", errors="surrogateescape", ) tgt_out = open( f"{directory}/all.{args.tgt_lang}", mode="w", encoding="utf-8", errors="surrogateescape", ) scores_out = open( f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape" ) count = 0 for i in np.argsort(-scores): src_ind, trg_ind = indices[i] if src_ind not in seen_src and trg_ind not in seen_trg: seen_src.add(src_ind) seen_trg.add(trg_ind) if scores[i] > threshold or count < min_count: if x_sentences[src_ind]: print(scores[i], file=scores_out) print(x_sentences[src_ind], file=src_out) print(y_sentences[trg_ind], file=tgt_out) count += 1 else: print(f"Ignoring sentence: {x_sentences[src_ind]}") src_out.close() tgt_out.close() scores_out.close() print(f"Found {count} pairs for threshold={threshold}") with open(f"{directory}/all.{args.src_lang}") as all_s, open( f"{directory}/all.{args.tgt_lang}" ) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open( f"{directory}/valid.{args.tgt_lang}", "w" ) as valid_t, open( f"{directory}/train.{args.src_lang}", "w" ) as train_s, open( f"{directory}/train.{args.tgt_lang}", "w" ) as train_t: count = 0 for s_line, t_line in zip(all_s, all_t): s_line = s_line.split("\t")[1] t_line = t_line.split("\t")[1] if count >= args.valid_size: train_s.write(s_line) train_t.write(t_line) else: valid_s.write(s_line) valid_t.write(t_line) count += 1
EXA-1-master
exa/libraries/fairseq/examples/criss/mining/mine.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import glob import numpy as np DIM = 1024 def compute_dist(source_embs, target_embs, k=5, return_sim_mat=False): target_ids = [tid for tid in target_embs] source_mat = np.stack(source_embs.values(), axis=0) normalized_source_mat = source_mat / np.linalg.norm( source_mat, axis=1, keepdims=True ) target_mat = np.stack(target_embs.values(), axis=0) normalized_target_mat = target_mat / np.linalg.norm( target_mat, axis=1, keepdims=True ) sim_mat = normalized_source_mat.dot(normalized_target_mat.T) if return_sim_mat: return sim_mat neighbors_map = {} for i, sentence_id in enumerate(source_embs): idx = np.argsort(sim_mat[i, :])[::-1][:k] neighbors_map[sentence_id] = [target_ids[tid] for tid in idx] return neighbors_map def load_embeddings(directory, LANGS): sentence_embeddings = {} sentence_texts = {} for lang in LANGS: sentence_embeddings[lang] = {} sentence_texts[lang] = {} lang_dir = f"{directory}/{lang}" embedding_files = glob.glob(f"{lang_dir}/all_avg_pool.{lang}.*") for embed_file in embedding_files: shard_id = embed_file.split(".")[-1] embeddings = np.fromfile(embed_file, dtype=np.float32) num_rows = embeddings.shape[0] // DIM embeddings = embeddings.reshape((num_rows, DIM)) with open(f"{lang_dir}/sentences.{lang}.{shard_id}") as sentence_file: for idx, line in enumerate(sentence_file): sentence_id, sentence = line.strip().split("\t") sentence_texts[lang][sentence_id] = sentence sentence_embeddings[lang][sentence_id] = embeddings[idx, :] return sentence_embeddings, sentence_texts def compute_accuracy(directory, LANGS): sentence_embeddings, sentence_texts = load_embeddings(directory, LANGS) top_1_accuracy = {} top1_str = " ".join(LANGS) + "\n" for source_lang in LANGS: top_1_accuracy[source_lang] = {} top1_str += f"{source_lang} " for target_lang in LANGS: top1 = 0 top5 = 0 neighbors_map = compute_dist( sentence_embeddings[source_lang], sentence_embeddings[target_lang] ) for sentence_id, neighbors in neighbors_map.items(): if sentence_id == neighbors[0]: top1 += 1 if sentence_id in neighbors[:5]: top5 += 1 n = len(sentence_embeddings[target_lang]) top1_str += f"{top1/n} " top1_str += "\n" print(top1_str) print(top1_str, file=open(f"{directory}/accuracy", "w")) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Analyze encoder outputs") parser.add_argument("directory", help="Source language corpus") parser.add_argument("--langs", help="List of langs") args = parser.parse_args() langs = args.langs.split(",") compute_accuracy(args.directory, langs)
EXA-1-master
exa/libraries/fairseq/examples/criss/sentence_retrieval/encoder_analysis.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq.search import Search class NoisyChannelBeamSearch(Search): def __init__(self, tgt_dict): super().__init__(tgt_dict) self.fw_scores_buf = None self.lm_scores_buf = None def _init_buffers(self, t): # super()._init_buffers(t) if self.fw_scores_buf is None: self.scores_buf = t.new() self.indices_buf = torch.LongTensor().to(device=t.device) self.beams_buf = torch.LongTensor().to(device=t.device) self.fw_scores_buf = t.new() self.lm_scores_buf = t.new() def combine_fw_bw(self, combine_method, fw_cum, bw, step): if combine_method == "noisy_channel": fw_norm = fw_cum.div(step + 1) lprobs = bw + fw_norm elif combine_method == "lm_only": lprobs = bw + fw_cum return lprobs def step(self, step, fw_lprobs, scores, bw_lprobs, lm_lprobs, combine_method): self._init_buffers(fw_lprobs) bsz, beam_size, vocab_size = fw_lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam fw_lprobs = fw_lprobs[:, ::beam_size, :].contiguous() bw_lprobs = bw_lprobs[:, ::beam_size, :].contiguous() # nothing to add since we are at the first step fw_lprobs_cum = fw_lprobs else: # make probs contain cumulative scores for each hypothesis raw_scores = (scores[:, :, step - 1].unsqueeze(-1)) fw_lprobs_cum = (fw_lprobs.add(raw_scores)) combined_lprobs = self.combine_fw_bw(combine_method, fw_lprobs_cum, bw_lprobs, step) # choose the top k according to the combined noisy channel model score torch.topk( combined_lprobs.view(bsz, -1), k=min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, combined_lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad ), out=(self.scores_buf, self.indices_buf), ) # save corresponding fw and lm scores self.fw_scores_buf = torch.gather(fw_lprobs_cum.view(bsz, -1), 1, self.indices_buf) self.lm_scores_buf = torch.gather(lm_lprobs.view(bsz, -1), 1, self.indices_buf) # Project back into relative indices and beams self.beams_buf = self.indices_buf // vocab_size self.indices_buf.fmod_(vocab_size) return self.scores_buf, self.fw_scores_buf, self.lm_scores_buf, self.indices_buf, self.beams_buf
EXA-1-master
exa/libraries/fairseq/examples/fast_noisy_channel/noisy_channel_beam_search.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import noisy_channel_translation # noqa from . import noisy_channel_sequence_generator # noqa from . import noisy_channel_beam_search # noqa
EXA-1-master
exa/libraries/fairseq/examples/fast_noisy_channel/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional import math import numpy as np import torch import torch.nn.functional as F from torch import Tensor from .noisy_channel_beam_search import NoisyChannelBeamSearch from fairseq.sequence_generator import EnsembleModel class NoisyChannelSequenceGenerator(object): def __init__( self, combine_method, tgt_dict, src_dict=None, beam_size=1, max_len_a=0, max_len_b=200, min_len=1, len_penalty=1.0, unk_penalty=0.0, retain_dropout=False, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, normalize_scores=True, channel_models=None, k2=10, ch_weight=1.0, channel_scoring_type='log_norm', top_k_vocab=0, lm_models=None, lm_dict=None, lm_weight=1.0, normalize_lm_scores_by_tgt_len=False, ): """Generates translations of a given source sentence, using beam search with noisy channel decoding. Args: combine_method (string, optional): Method to combine direct, LM and channel model scores (default: None) tgt_dict (~fairseq.data.Dictionary): target dictionary src_dict (~fairseq.data.Dictionary): source dictionary beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) retain_dropout (bool, optional): use dropout when generating (default: False) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) no_repeat_ngram_size (int, optional): Size of n-grams that we avoid repeating in the generation (default: 0) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) channel_models (List[~fairseq.models.FairseqModel]): ensemble of models translating from the target to the source k2 (int, optional): Top K2 candidates to score per beam at each step (default:10) ch_weight (int, optional): Weight associated with the channel model score assuming that the direct model score has weight 1.0 (default: 1.0) channel_scoring_type (str, optional): String specifying how to score the channel model (default: 'log_norm') top_k_vocab (int, optional): If `channel_scoring_type` is `'src_vocab'` or `'src_vocab_batched'`, then this parameter specifies the number of most frequent tokens to include in the channel model output vocabulary, in addition to the source tokens in the input batch (default: 0) lm_models (List[~fairseq.models.FairseqModel]): ensemble of models generating text in the target language lm_dict (~fairseq.data.Dictionary): LM Model dictionary lm_weight (int, optional): Weight associated with the LM model score assuming that the direct model score has weight 1.0 (default: 1.0) normalize_lm_scores_by_tgt_len (bool, optional): Should we normalize LM scores by the target length? By default, we normalize the combination of LM and channel model scores by the source length """ self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.retain_dropout = retain_dropout self.temperature = temperature self.match_source_len = match_source_len self.no_repeat_ngram_size = no_repeat_ngram_size self.channel_models = channel_models self.src_dict = src_dict self.tgt_dict = tgt_dict self.combine_method = combine_method self.k2 = k2 self.ch_weight = ch_weight self.channel_scoring_type = channel_scoring_type self.top_k_vocab = top_k_vocab self.lm_models = lm_models self.lm_dict = lm_dict self.lm_weight = lm_weight self.log_softmax_fn = torch.nn.LogSoftmax(dim=1) self.normalize_lm_scores_by_tgt_len = normalize_lm_scores_by_tgt_len self.share_tgt_dict = (self.lm_dict == self.tgt_dict) self.tgt_to_lm = make_dict2dict(tgt_dict, lm_dict) self.ch_scoring_bsz = 3072 assert temperature > 0, '--temperature must be greater than 0' self.search = NoisyChannelBeamSearch(tgt_dict) @torch.no_grad() def generate( self, models, sample, prefix_tokens=None, bos_token=None, **kwargs ): """Generate a batch of translations. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens """ model = EnsembleModel(models) incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(model.models_size) ], ) if not self.retain_dropout: model.eval() # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in sample['net_input'].items() if k != 'prev_output_tokens' } src_tokens = encoder_input['src_tokens'] src_lengths_no_eos = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) input_size = src_tokens.size() # batch dimension goes first followed by source lengths bsz = input_size[0] src_len = input_size[1] beam_size = self.beam_size if self.match_source_len: max_len = src_lengths_no_eos.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), # exclude the EOS marker model.max_decoder_positions() - 1, ) # compute the encoder output for each beam encoder_outs = model.forward_encoder(encoder_input) new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = model.reorder_encoder_out(encoder_outs, new_order) src_lengths = encoder_input['src_lengths'] # initialize buffers scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0) lm_prefix_scores = src_tokens.new(bsz * beam_size).float().fill_(0) scores_buf = scores.clone() tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad) tokens_buf = tokens.clone() tokens[:, 0] = self.eos if bos_token is None else bos_token # reorder source tokens so they may be used as a reference in generating P(S|T) src_tokens = reorder_all_tokens(src_tokens, src_lengths, self.src_dict.eos_index) src_tokens = src_tokens.repeat(1, beam_size).view(-1, src_len) src_lengths = src_lengths.view(bsz, -1).repeat(1, beam_size).view(bsz*beam_size, -1) attn, attn_buf = None, None nonpad_idxs = None # The cands_to_ignore indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then the cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = src_tokens.new_zeros(bsz, beam_size).eq(-1) # forward and backward-compatible False mask # list of completed sentences finalized = [[] for i in range(bsz)] finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens) cand_offsets = torch.arange(0, cand_size).type_as(tokens) # helper function for allocating buffers on the fly buffers = {} def buffer(name, type_of=tokens): # noqa if name not in buffers: buffers[name] = type_of.new() return buffers[name] def is_finished(sent, step, unfin_idx): """ Check whether we've finished generation for a given sentence, by comparing the worst score among finalized hypotheses to the best possible score among unfinalized hypotheses. """ assert len(finalized[sent]) <= beam_size if len(finalized[sent]) == beam_size: return True return False def finalize_hypos(step, bbsz_idx, eos_scores, combined_noisy_channel_eos_scores): """ Finalize the given hypotheses at this step, while keeping the total number of finalized hypotheses per sentence <= beam_size. Note: the input must be in the desired finalization order, so that hypotheses that appear earlier in the input are preferred to those that appear later. Args: step: current time step bbsz_idx: A vector of indices in the range [0, bsz*beam_size), indicating which hypotheses to finalize eos_scores: A vector of the same size as bbsz_idx containing fw scores for each hypothesis combined_noisy_channel_eos_scores: A vector of the same size as bbsz_idx containing combined noisy channel scores for each hypothesis """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors tokens_clone = tokens.index_select(0, bbsz_idx) tokens_clone = tokens_clone[:, 1:step + 2] # skip the first index, which is EOS assert not tokens_clone.eq(self.eos).any() tokens_clone[:, step] = self.eos attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: combined_noisy_channel_eos_scores /= (step + 1) ** self.len_penalty cum_unfin = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) sents_seen = set() for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), combined_noisy_channel_eos_scores.tolist())): unfin_idx = idx // beam_size sent = unfin_idx + cum_unfin[unfin_idx] sents_seen.add((sent, unfin_idx)) if self.match_source_len and step > src_lengths_no_eos[unfin_idx]: score = -math.inf def get_hypo(): if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i][nonpad_idxs[sent]] _, alignment = hypo_attn.max(dim=0) else: hypo_attn = None alignment = None return { 'tokens': tokens_clone[i], 'score': score, 'attention': hypo_attn, # src_len x tgt_len 'alignment': alignment, 'positional_scores': pos_scores[i], } if len(finalized[sent]) < beam_size: finalized[sent].append(get_hypo()) newly_finished = [] for sent, unfin_idx in sents_seen: # check termination conditions for this sentence if not finished[sent] and is_finished(sent, step, unfin_idx): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished def noisy_channel_rescoring(lprobs, beam_size, bsz, src_tokens, tokens, k): """Rescore the top k hypothesis from each beam using noisy channel modeling Returns: new_fw_lprobs: the direct model probabilities after pruning the top k new_ch_lm_lprobs: the combined channel and language model probabilities new_lm_lprobs: the language model probabilities after pruning the top k """ with torch.no_grad(): lprobs_size = lprobs.size() if prefix_tokens is not None and step < prefix_tokens.size(1): probs_slice = lprobs.view(bsz, -1, lprobs.size(-1))[:, 0, :] cand_scores = torch.gather( probs_slice, dim=1, index=prefix_tokens[:, step].view(-1, 1).data ).expand(-1, beam_size).contiguous().view(bsz*beam_size, 1) cand_indices = prefix_tokens[:, step].view(-1, 1).expand(bsz, beam_size).data.contiguous().view(bsz*beam_size, 1) # need to calculate and save fw and lm probs for prefix tokens fw_top_k = cand_scores fw_top_k_idx = cand_indices k = 1 else: # take the top k best words for every sentence in batch*beam fw_top_k, fw_top_k_idx = torch.topk(lprobs.view(beam_size*bsz, -1), k=k) eos_idx = torch.nonzero(fw_top_k_idx.view(bsz*beam_size*k, -1) == self.eos)[:, 0] ch_scores = fw_top_k.new_full((beam_size*bsz*k, ), 0) src_size = torch.sum(src_tokens[:, :] != self.src_dict.pad_index, dim=1, keepdim=True, dtype=fw_top_k.dtype) if self.combine_method != "lm_only": temp_src_tokens_full = src_tokens[:, :].repeat(1, k).view(bsz*beam_size*k, -1) not_padding = temp_src_tokens_full[:, 1:] != self.src_dict.pad_index cur_tgt_size = step+2 # add eos to all candidate sentences except those that already end in eos eos_tokens = tokens[:, 0].repeat(1, k).view(-1, 1) eos_tokens[eos_idx] = self.tgt_dict.pad_index if step == 0: channel_input = torch.cat((fw_top_k_idx.view(-1, 1), eos_tokens), 1) else: # move eos from beginning to end of target sentence channel_input = torch.cat((tokens[:, 1:step + 1].repeat(1, k).view(-1, step), fw_top_k_idx.view(-1, 1), eos_tokens), 1) ch_input_lengths = torch.tensor(np.full(channel_input.size(0), cur_tgt_size)) ch_input_lengths[eos_idx] = cur_tgt_size-1 if self.channel_scoring_type == "unnormalized": ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths) ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True) del ch_encoder_output ch_intermed_scores = channel_model.decoder.unnormalized_scores_given_target(ch_decoder_output, target_ids=temp_src_tokens_full[:, 1:]) ch_intermed_scores = ch_intermed_scores.float() ch_intermed_scores *= not_padding.float() ch_scores = torch.sum(ch_intermed_scores, dim=1) elif self.channel_scoring_type == "k2_separate": for k_idx in range(k): k_eos_tokens = eos_tokens[k_idx::k, :] if step == 0: k_ch_input = torch.cat((fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1) else: # move eos from beginning to end of target sentence k_ch_input = torch.cat((tokens[:, 1:step + 1], fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1) k_ch_input_lengths = ch_input_lengths[k_idx::k] k_ch_output = channel_model(k_ch_input, k_ch_input_lengths, src_tokens) k_ch_lprobs = channel_model.get_normalized_probs(k_ch_output, log_probs=True) k_ch_intermed_scores = torch.gather(k_ch_lprobs[:, :-1, :], 2, src_tokens[:, 1:].unsqueeze(2)).squeeze(2) k_ch_intermed_scores *= not_padding.float() ch_scores[k_idx::k] = torch.sum(k_ch_intermed_scores, dim=1) elif self.channel_scoring_type == "src_vocab": ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths) ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True) del ch_encoder_output ch_lprobs = normalized_scores_with_batch_vocab( channel_model.decoder, ch_decoder_output, src_tokens, k, bsz, beam_size, self.src_dict.pad_index, top_k=self.top_k_vocab) ch_scores = torch.sum(ch_lprobs, dim=1) elif self.channel_scoring_type == "src_vocab_batched": ch_bsz_size = temp_src_tokens_full.shape[0] ch_lprobs_list = [None] * len(range(0, ch_bsz_size, self.ch_scoring_bsz)) for i, start_idx in enumerate(range(0, ch_bsz_size, self.ch_scoring_bsz)): end_idx = min(start_idx + self.ch_scoring_bsz, ch_bsz_size) temp_src_tokens_full_batch = temp_src_tokens_full[start_idx:end_idx, :] channel_input_batch = channel_input[start_idx:end_idx, :] ch_input_lengths_batch = ch_input_lengths[start_idx:end_idx] ch_encoder_output_batch = channel_model.encoder(channel_input_batch, src_lengths=ch_input_lengths_batch) ch_decoder_output_batch, _ = channel_model.decoder(temp_src_tokens_full_batch, encoder_out=ch_encoder_output_batch, features_only=True) ch_lprobs_list[i] = normalized_scores_with_batch_vocab( channel_model.decoder, ch_decoder_output_batch, src_tokens, k, bsz, beam_size, self.src_dict.pad_index, top_k=self.top_k_vocab, start_idx=start_idx, end_idx=end_idx) ch_lprobs = torch.cat(ch_lprobs_list, dim=0) ch_scores = torch.sum(ch_lprobs, dim=1) else: ch_output = channel_model(channel_input, ch_input_lengths, temp_src_tokens_full) ch_lprobs = channel_model.get_normalized_probs(ch_output, log_probs=True) ch_intermed_scores = torch.gather(ch_lprobs[:, :-1, :], 2, temp_src_tokens_full[:, 1:].unsqueeze(2)).squeeze().view(bsz*beam_size*k, -1) ch_intermed_scores *= not_padding.float() ch_scores = torch.sum(ch_intermed_scores, dim=1) else: cur_tgt_size = 0 ch_scores = ch_scores.view(bsz*beam_size, k) expanded_lm_prefix_scores = lm_prefix_scores.unsqueeze(1).expand(-1, k).flatten() if self.share_tgt_dict: lm_scores = get_lm_scores(lm, tokens[:, :step + 1].view(-1, step+1), lm_incremental_states, fw_top_k_idx.view(-1, 1), torch.tensor(np.full(tokens.size(0), step+1)), k) else: new_lm_input = dict2dict(tokens[:, :step + 1].view(-1, step+1), self.tgt_to_lm) new_cands = dict2dict(fw_top_k_idx.view(-1, 1), self.tgt_to_lm) lm_scores = get_lm_scores(lm, new_lm_input, lm_incremental_states, new_cands, torch.tensor(np.full(tokens.size(0), step+1)), k) lm_scores.add_(expanded_lm_prefix_scores) ch_lm_scores = combine_ch_lm(self.combine_method, ch_scores, lm_scores, src_size, cur_tgt_size) # initialize all as min value new_fw_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) new_ch_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) new_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) new_fw_lprobs[:, self.pad] = -math.inf new_ch_lm_lprobs[:, self.pad] = -math.inf new_lm_lprobs[:, self.pad] = -math.inf new_fw_lprobs.scatter_(1, fw_top_k_idx, fw_top_k) new_ch_lm_lprobs.scatter_(1, fw_top_k_idx, ch_lm_scores) new_lm_lprobs.scatter_(1, fw_top_k_idx, lm_scores.view(-1, k)) return new_fw_lprobs, new_ch_lm_lprobs, new_lm_lprobs def combine_ch_lm(combine_type, ch_scores, lm_scores1, src_size, tgt_size): if self.channel_scoring_type == "unnormalized": ch_scores = self.log_softmax_fn( ch_scores.view(-1, self.beam_size * self.k2) ).view(ch_scores.shape) ch_scores = ch_scores * self.ch_weight lm_scores1 = lm_scores1 * self.lm_weight if combine_type == "lm_only": # log P(T|S) + log P(T) ch_scores = lm_scores1.view(ch_scores.size()) elif combine_type == "noisy_channel": # 1/t log P(T|S) + 1/s log P(S|T) + 1/t log P(T) if self.normalize_lm_scores_by_tgt_len: ch_scores.div_(src_size) lm_scores_norm = lm_scores1.view(ch_scores.size()).div(tgt_size) ch_scores.add_(lm_scores_norm) # 1/t log P(T|S) + 1/s log P(S|T) + 1/s log P(T) else: ch_scores.add_(lm_scores1.view(ch_scores.size())) ch_scores.div_(src_size) return ch_scores if self.channel_models is not None: channel_model = self.channel_models[0] # assume only one channel_model model else: channel_model = None lm = EnsembleModel(self.lm_models) lm_incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(lm.models_size) ], ) reorder_state = None batch_idxs = None for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs) reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size) model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state) lm.reorder_incremental_state(lm_incremental_states, reorder_state) fw_lprobs, avg_attn_scores = model.forward_decoder( tokens[:, :step + 1], encoder_outs, incremental_states, temperature=self.temperature, ) fw_lprobs[:, self.pad] = -math.inf # never select pad fw_lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty fw_lprobs, ch_lm_lprobs, lm_lprobs = noisy_channel_rescoring(fw_lprobs, beam_size, bsz, src_tokens, tokens, self.k2) # handle min and max length constraints if step >= max_len: fw_lprobs[:, :self.eos] = -math.inf fw_lprobs[:, self.eos + 1:] = -math.inf elif step < self.min_len: fw_lprobs[:, self.eos] = -math.inf # handle prefix tokens (possibly with different lengths) if prefix_tokens is not None and step < prefix_tokens.size(1): prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_mask = prefix_toks.ne(self.pad) prefix_fw_lprobs = fw_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) fw_lprobs[prefix_mask] = -math.inf fw_lprobs[prefix_mask] = fw_lprobs[prefix_mask].scatter_( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_fw_lprobs ) prefix_ch_lm_lprobs = ch_lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) ch_lm_lprobs[prefix_mask] = -math.inf ch_lm_lprobs[prefix_mask] = ch_lm_lprobs[prefix_mask].scatter_( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_ch_lm_lprobs ) prefix_lm_lprobs = lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) lm_lprobs[prefix_mask] = -math.inf lm_lprobs[prefix_mask] = lm_lprobs[prefix_mask].scatter_( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lm_lprobs ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() def replicate_first_beam(tensor, mask): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) # copy tokens, scores and lprobs from the first beam to all beams tokens = replicate_first_beam(tokens, eos_mask_batch_dim) scores = replicate_first_beam(scores, eos_mask_batch_dim) fw_lprobs = replicate_first_beam(fw_lprobs, eos_mask_batch_dim) ch_lm_lprobs = replicate_first_beam(ch_lm_lprobs, eos_mask_batch_dim) lm_lprobs = replicate_first_beam(lm_lprobs, eos_mask_batch_dim) if self.no_repeat_ngram_size > 0: # for each beam and batch sentence, generate a list of previous ngrams gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)] for bbsz_idx in range(bsz * beam_size): gen_tokens = tokens[bbsz_idx].tolist() for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]): gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \ gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]] # Record attention scores if avg_attn_scores is not None: if attn is None: attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2) attn_buf = attn.clone() nonpad_idxs = src_tokens.ne(self.pad) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(fw_lprobs) scores_buf = scores_buf.type_as(fw_lprobs) self.search.set_src_lengths(src_lengths_no_eos) if self.no_repeat_ngram_size > 0: def calculate_banned_tokens(bbsz_idx): # before decoding the next token, prevent decoding of ngrams that have already appeared ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist()) return gen_ngrams[bbsz_idx].get(ngram_index, []) if step + 2 - self.no_repeat_ngram_size >= 0: # no banned tokens if we haven't generated no_repeat_ngram_size tokens yet banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)] else: banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)] for bbsz_idx in range(bsz * beam_size): fw_lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf combined_noisy_channel_scores, fw_lprobs_top_k, lm_lprobs_top_k, cand_indices, cand_beams = self.search.step( step, fw_lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], ch_lm_lprobs.view(bsz, -1, self.vocab_size), lm_lprobs.view(bsz, -1, self.vocab_size), self.combine_method ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos (except for candidates to be ignored) eos_mask = cand_indices.eq(self.eos) eos_mask[:, :beam_size] &= ~cands_to_ignore # only consider eos when it's among the top beam_size indices eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = set() if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( fw_lprobs_top_k[:, :beam_size], mask=eos_mask[:, :beam_size] ) combined_noisy_channel_eos_scores = torch.masked_select( combined_noisy_channel_scores[:, :beam_size], mask=eos_mask[:, :beam_size], ) # finalize hypo using channel model score finalized_sents = finalize_hypos( step, eos_bbsz_idx, eos_scores, combined_noisy_channel_eos_scores) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = cand_indices.new_ones(bsz) batch_mask[cand_indices.new(finalized_sents)] = 0 batch_idxs = torch.nonzero(batch_mask).squeeze(-1) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) lm_lprobs_top_k = lm_lprobs_top_k[batch_idxs] fw_lprobs_top_k = fw_lprobs_top_k[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths_no_eos = src_lengths_no_eos[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) scores_buf.resize_as_(scores) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens_buf.resize_as_(tokens) src_tokens = src_tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) src_lengths = src_lengths.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) lm_prefix_scores = lm_prefix_scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1).squeeze() if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1) attn_buf.resize_as_(attn) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos or # ignored hypos and values < cand_size indicate candidate # active hypos. After this, the min values per row are the top # candidate active hypos. eos_mask[:, :beam_size] |= cands_to_ignore active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just the hypos # with the smallest values in active_mask active_hypos, new_cands_to_ignore = buffer('active_hypos'), buffer('new_cands_to_ignore') torch.topk( active_mask, k=beam_size, dim=1, largest=False, out=(new_cands_to_ignore, active_hypos) ) # update cands_to_ignore to ignore any finalized hypos cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] assert (~cands_to_ignore).any(dim=1).all() active_bbsz_idx = buffer('active_bbsz_idx') torch.gather( cand_bbsz_idx, dim=1, index=active_hypos, out=active_bbsz_idx, ) active_scores = torch.gather( fw_lprobs_top_k, dim=1, index=active_hypos, out=scores[:, step].view(bsz, beam_size), ) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses torch.index_select( tokens[:, :step + 1], dim=0, index=active_bbsz_idx, out=tokens_buf[:, :step + 1], ) torch.gather( cand_indices, dim=1, index=active_hypos, out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1], ) if step > 0: torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx, out=scores_buf[:, :step], ) torch.gather( fw_lprobs_top_k, dim=1, index=active_hypos, out=scores_buf.view(bsz, beam_size, -1)[:, :, step], ) torch.gather( lm_lprobs_top_k, dim=1, index=active_hypos, out=lm_prefix_scores.view(bsz, beam_size) ) # copy attention for active hypotheses if attn is not None: torch.index_select( attn[:, :, :step + 2], dim=0, index=active_bbsz_idx, out=attn_buf[:, :, :step + 2], ) # swap buffers tokens, tokens_buf = tokens_buf, tokens scores, scores_buf = scores_buf, scores if attn is not None: attn, attn_buf = attn_buf, attn # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True) return finalized def get_lm_scores(model, input_tokens, incremental_states, cand_tokens, input_len, k): with torch.no_grad(): lm_lprobs, avg_attn_scores = model.forward_decoder( input_tokens, encoder_outs=None, incremental_states=incremental_states, ) lm_lprobs_size = lm_lprobs.size(0) probs_next_wrd = torch.gather(lm_lprobs.repeat(1, k).view(lm_lprobs_size*k, -1), 1, cand_tokens).squeeze().view(-1) return probs_next_wrd def make_dict2dict(old_dict, new_dict): dict2dict_map = {} for sym in old_dict.symbols: dict2dict_map[old_dict.index(sym)] = new_dict.index(sym) return dict2dict_map def dict2dict(tokens, dict2dict_map): if tokens.device == torch.device('cpu'): tokens_tmp = tokens else: tokens_tmp = tokens.cpu() return tokens_tmp.map_( tokens_tmp, lambda _, val, dict2dict_map=dict2dict_map : dict2dict_map[float(val)] ).to(tokens.device) def reorder_tokens(tokens, lengths, eos): # reorder source tokens so they may be used as reference for P(S|T) return torch.cat((tokens.new([eos]), tokens[-lengths:-1], tokens[:-lengths]), 0) def reorder_all_tokens(tokens, lengths, eos): # used to reorder src tokens from [<pad> <w1> <w2> .. <eos>] to [<eos> <w1> <w2>...<pad>] # so source tokens can be used to predict P(S|T) return torch.stack([reorder_tokens(token, length, eos) for token, length in zip(tokens, lengths)]) def normalized_scores_with_batch_vocab( model_decoder, features, target_ids, k, bsz, beam_size, pad_idx, top_k=0, vocab_size_meter=None, start_idx=None, end_idx=None, **kwargs): """ Get normalized probabilities (or log probs) from a net's output w.r.t. vocab consisting of target IDs in the batch """ if model_decoder.adaptive_softmax is None: weight = model_decoder.output_projection.weight vocab_ids = torch.unique( torch.cat( (torch.unique(target_ids), torch.arange(top_k, device=target_ids.device)) ) ) id_map = dict(zip(vocab_ids.tolist(), range(len(vocab_ids)))) mapped_target_ids = target_ids.cpu().apply_( lambda x, id_map=id_map: id_map[x] ).to(target_ids.device) expanded_target_ids = mapped_target_ids[:, :].repeat(1, k).view(bsz*beam_size*k, -1) if start_idx is not None and end_idx is not None: expanded_target_ids = expanded_target_ids[start_idx:end_idx, :] logits = F.linear(features, weight[vocab_ids, :]) log_softmax = F.log_softmax(logits, dim=-1, dtype=torch.float32) intermed_scores = torch.gather( log_softmax[:, :-1, :], 2, expanded_target_ids[:, 1:].unsqueeze(2), ).squeeze() not_padding = expanded_target_ids[:, 1:] != pad_idx intermed_scores *= not_padding.float() return intermed_scores else: raise ValueError("adaptive softmax doesn't work with " + "`normalized_scores_with_batch_vocab()`")
EXA-1-master
exa/libraries/fairseq/examples/fast_noisy_channel/noisy_channel_sequence_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.tasks.translation import TranslationTask from fairseq.tasks.language_modeling import LanguageModelingTask from fairseq import checkpoint_utils import argparse from fairseq.tasks import register_task import torch @register_task("noisy_channel_translation") class NoisyChannelTranslation(TranslationTask): """ Rescore the top k candidates from each beam using noisy channel modeling """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" TranslationTask.add_args(parser) # fmt: off parser.add_argument('--channel-model', metavar='FILE', help='path to P(S|T) model. P(S|T) and P(T|S) must share source and target dictionaries.') parser.add_argument('--combine-method', default='lm_only', choices=['lm_only', 'noisy_channel'], help="""method for combining direct and channel model scores. lm_only: decode with P(T|S)P(T) noisy_channel: decode with 1/t P(T|S) + 1/s(P(S|T)P(T))""") parser.add_argument('--normalize-lm-scores-by-tgt-len', action='store_true', default=False, help='normalize lm score by target length instead of source length') parser.add_argument('--channel-scoring-type', default='log_norm', choices=['unnormalized', 'log_norm', 'k2_separate', 'src_vocab', 'src_vocab_batched'], help="Normalize bw scores with log softmax or return bw scores without log softmax") parser.add_argument('--top-k-vocab', default=0, type=int, help='top k vocab IDs to use with `src_vocab` in channel model scoring') parser.add_argument('--k2', default=50, type=int, help='the top k2 candidates to rescore with the noisy channel model for each beam') parser.add_argument('--ch-wt', default=1, type=float, help='weight for the channel model') parser.add_argument('--lm-model', metavar='FILE', help='path to lm model file, to model P(T). P(T) must share the same vocab as the direct model on the target side') parser.add_argument('--lm-data', metavar='FILE', help='path to lm model training data for target language, used to properly load LM with correct dictionary') parser.add_argument('--lm-wt', default=1, type=float, help='the weight of the lm in joint decoding') # fmt: on def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None ): if getattr(args, "score_reference", False): raise NotImplementedError() else: from .noisy_channel_sequence_generator import NoisyChannelSequenceGenerator use_cuda = torch.cuda.is_available() and not self.args.cpu assert self.args.lm_model is not None, '--lm-model required for noisy channel generation!' assert self.args.lm_data is not None, '--lm-data required for noisy channel generation to map between LM and bitext vocabs' if self.args.channel_model is not None: import copy ch_args_task = copy.deepcopy(self.args) tmp = ch_args_task.source_lang ch_args_task.source_lang = ch_args_task.target_lang ch_args_task.target_lang = tmp ch_args_task._name = 'translation' channel_task = TranslationTask.setup_task(ch_args_task) arg_dict = {} arg_dict['task'] = 'language_modeling' arg_dict['sample_break_mode'] = 'eos' arg_dict['data'] = self.args.lm_data arg_dict['output_dictionary_size'] = -1 lm_args = argparse.Namespace(**arg_dict) lm_task = LanguageModelingTask.setup_task(lm_args) lm_dict = lm_task.output_dictionary if self.args.channel_model is not None: channel_models, _ = checkpoint_utils.load_model_ensemble(self.args.channel_model.split(':'), task=channel_task) for model in channel_models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if self.args.fp16: model.half() if use_cuda: model.cuda() else: channel_models = None lm_models, _ = checkpoint_utils.load_model_ensemble(self.args.lm_model.split(':'), task=lm_task) for model in lm_models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if self.args.fp16: model.half() if use_cuda: model.cuda() return NoisyChannelSequenceGenerator( combine_method=self.args.combine_method, tgt_dict=self.target_dictionary, src_dict=self.source_dictionary, beam_size=getattr(args, 'beam', 5), max_len_a=getattr(args, 'max_len_a', 0), max_len_b=getattr(args, 'max_len_b', 200), min_len=getattr(args, 'min_len', 1), len_penalty=getattr(args, 'lenpen', 1), unk_penalty=getattr(args, 'unkpen', 0), temperature=getattr(args, 'temperature', 1.), match_source_len=getattr(args, 'match_source_len', False), no_repeat_ngram_size=getattr(args, 'no_repeat_ngram_size', 0), normalize_scores=(not getattr(args, 'unnormalized', False)), channel_models=channel_models, k2=getattr(self.args, 'k2', 50), ch_weight=getattr(self.args, 'ch_wt', 1), channel_scoring_type=self.args.channel_scoring_type, top_k_vocab=self.args.top_k_vocab, lm_models=lm_models, lm_dict=lm_dict, lm_weight=getattr(self.args, 'lm_wt', 1), normalize_lm_scores_by_tgt_len=getattr(self.args, 'normalize_lm_scores_by_tgt_len', False), )
EXA-1-master
exa/libraries/fairseq/examples/fast_noisy_channel/noisy_channel_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import os.path as op from collections import namedtuple from multiprocessing import cpu_count from typing import List, Optional import sentencepiece as sp from fairseq.data.encoders.byte_bpe import ByteBPE from fairseq.data.encoders.byte_utils import byte_encode from fairseq.data.encoders.bytes import Bytes from fairseq.data.encoders.characters import Characters from fairseq.data.encoders.moses_tokenizer import MosesTokenizer from fairseq.data.encoders.sentencepiece_bpe import SentencepieceBPE SPLITS = ["train", "valid", "test"] def _convert_xml(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: ss = s.strip() if not ss.startswith("<seg"): continue ss = ss.replace("</seg>", "").split('">') assert len(ss) == 2 f_o.write(ss[1].strip() + "\n") def _convert_train(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: ss = s.strip() if ss.startswith("<"): continue f_o.write(ss.strip() + "\n") def _get_bytes(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(Bytes.encode(s.strip()) + "\n") def _get_chars(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(Characters.encode(s.strip()) + "\n") def pretokenize(in_path: str, out_path: str, src: str, tgt: str): Args = namedtuple( "Args", [ "moses_source_lang", "moses_target_lang", "moses_no_dash_splits", "moses_no_escape", ], ) args = Args( moses_source_lang=src, moses_target_lang=tgt, moses_no_dash_splits=False, moses_no_escape=False, ) pretokenizer = MosesTokenizer(args) with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(pretokenizer.encode(s.strip()) + "\n") def _convert_to_bchar(in_path_prefix: str, src: str, tgt: str, out_path: str): with open(out_path, "w") as f_o: for lang in [src, tgt]: with open(f"{in_path_prefix}.{lang}") as f: for s in f: f_o.write(byte_encode(s.strip()) + "\n") def _get_bpe(in_path: str, model_prefix: str, vocab_size: int): arguments = [ f"--input={in_path}", f"--model_prefix={model_prefix}", f"--model_type=bpe", f"--vocab_size={vocab_size}", "--character_coverage=1.0", "--normalization_rule_name=identity", f"--num_threads={cpu_count()}", ] sp.SentencePieceTrainer.Train(" ".join(arguments)) def _apply_bbpe(model_path: str, in_path: str, out_path: str): Args = namedtuple("Args", ["sentencepiece_model_path"]) args = Args(sentencepiece_model_path=model_path) tokenizer = ByteBPE(args) with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(tokenizer.encode(s.strip()) + "\n") def _apply_bpe(model_path: str, in_path: str, out_path: str): Args = namedtuple("Args", ["sentencepiece_model"]) args = Args(sentencepiece_model=model_path) tokenizer = SentencepieceBPE(args) with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(tokenizer.encode(s.strip()) + "\n") def _concat_files(in_paths: List[str], out_path: str): with open(out_path, "w") as f_o: for p in in_paths: with open(p) as f: for r in f: f_o.write(r) def preprocess_iwslt17( root: str, src: str, tgt: str, bpe_size: Optional[int], need_chars: bool, bbpe_size: Optional[int], need_bytes: bool, ): # extract bitext in_root = op.join(root, f"{src}-{tgt}") for lang in [src, tgt]: _convert_train( op.join(in_root, f"train.tags.{src}-{tgt}.{lang}"), op.join(root, f"train.{lang}"), ) _convert_xml( op.join(in_root, f"IWSLT17.TED.dev2010.{src}-{tgt}.{lang}.xml"), op.join(root, f"valid.{lang}"), ) _convert_xml( op.join(in_root, f"IWSLT17.TED.tst2015.{src}-{tgt}.{lang}.xml"), op.join(root, f"test.{lang}"), ) # pre-tokenize for lang in [src, tgt]: for split in SPLITS: pretokenize( op.join(root, f"{split}.{lang}"), op.join(root, f"{split}.moses.{lang}"), src, tgt, ) # tokenize with BPE vocabulary if bpe_size is not None: # learn vocabulary concated_train_path = op.join(root, "train.all") _concat_files( [op.join(root, "train.moses.fr"), op.join(root, "train.moses.en")], concated_train_path, ) bpe_model_prefix = op.join(root, f"spm_bpe{bpe_size}") _get_bpe(concated_train_path, bpe_model_prefix, bpe_size) os.remove(concated_train_path) # apply for lang in [src, tgt]: for split in SPLITS: _apply_bpe( bpe_model_prefix + ".model", op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.bpe{bpe_size}.{lang}"), ) # tokenize with bytes vocabulary if need_bytes: for lang in [src, tgt]: for split in SPLITS: _get_bytes( op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.bytes.{lang}"), ) # tokenize with characters vocabulary if need_chars: for lang in [src, tgt]: for split in SPLITS: _get_chars( op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.chars.{lang}"), ) # tokenize with byte-level BPE vocabulary if bbpe_size is not None: # learn vocabulary bchar_path = op.join(root, "train.bchar") _convert_to_bchar(op.join(root, "train.moses"), src, tgt, bchar_path) bbpe_model_prefix = op.join(root, f"spm_bbpe{bbpe_size}") _get_bpe(bchar_path, bbpe_model_prefix, bbpe_size) os.remove(bchar_path) # apply for lang in [src, tgt]: for split in SPLITS: _apply_bbpe( bbpe_model_prefix + ".model", op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.bbpe{bbpe_size}.{lang}"), ) def main(): parser = argparse.ArgumentParser() parser.add_argument("--root", type=str, default="data") parser.add_argument( "--bpe-vocab", default=None, type=int, help="Generate tokenized bitext with BPE of size K." "Default to None (disabled).", ) parser.add_argument( "--bbpe-vocab", default=None, type=int, help="Generate tokenized bitext with BBPE of size K." "Default to None (disabled).", ) parser.add_argument( "--byte-vocab", action="store_true", help="Generate tokenized bitext with bytes vocabulary", ) parser.add_argument( "--char-vocab", action="store_true", help="Generate tokenized bitext with chars vocabulary", ) args = parser.parse_args() preprocess_iwslt17( args.root, "fr", "en", args.bpe_vocab, args.char_vocab, args.bbpe_vocab, args.byte_vocab, ) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/examples/byte_level_bpe/get_bitext.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch.nn.functional as F from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import TransformerEncoder, TransformerModel @register_model("gru_transformer") class GRUTransformerModel(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return GRUTransformerEncoder(args, src_dict, embed_tokens) class GRUTransformerEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) self.emb_ctx = nn.GRU( input_size=embed_tokens.embedding_dim, hidden_size=embed_tokens.embedding_dim // 2, num_layers=1, bidirectional=True, ) def forward_embedding(self, src_tokens): # embed tokens and positions x = embed = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) # contextualize embeddings x = x.transpose(0, 1) x = self.dropout_module(x) x, _ = self.emb_ctx.forward(x) x = x.transpose(0, 1) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed @register_model_architecture("gru_transformer", "gru_transformer") def gru_transformer_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.layer_wise_attention = getattr(args, "layer_wise_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) @register_model_architecture("gru_transformer", "gru_transformer_big") def gru_transformer_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) gru_transformer_base_architecture(args)
EXA-1-master
exa/libraries/fairseq/examples/byte_level_bpe/gru_transformer.py
#!/usr/bin/env python """Helper script to compare two argparse.Namespace objects.""" from argparse import Namespace # noqa def main(): ns1 = eval(input("Namespace 1: ")) ns2 = eval(input("Namespace 2: ")) def keys(ns): ks = set() for k in dir(ns): if not k.startswith("_"): ks.add(k) return ks k1 = keys(ns1) k2 = keys(ns2) def print_keys(ks, ns1, ns2=None): for k in ks: if ns2 is None: print("{}\t{}".format(k, getattr(ns1, k, None))) else: print( "{}\t{}\t{}".format(k, getattr(ns1, k, None), getattr(ns2, k, None)) ) print("Keys unique to namespace 1:") print_keys(k1 - k2, ns1) print() print("Keys unique to namespace 2:") print_keys(k2 - k1, ns2) print() print("Overlapping keys with different values:") ks = [k for k in k1 & k2 if getattr(ns1, k, "None") != getattr(ns2, k, "None")] print_keys(ks, ns1, ns2) print() if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/compare_namespaces.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Split a large file into a train and valid set while respecting document boundaries. Documents should be separated by a single empty line. """ import argparse import random import sys def main(): parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("sample_output", help="train output file") parser.add_argument("remainder_output", help="valid output file") parser.add_argument("-k", type=int, help="remainder size") parser.add_argument( "--lines", action="store_true", help="split lines instead of docs" ) args = parser.parse_args() assert args.k is not None sample = [] remainder = [] num_docs = [0] def update_sample(doc): if len(sample) < args.k: sample.append(doc.copy()) else: i = num_docs[0] j = random.randrange(i + 1) if j < args.k: remainder.append(sample[j]) sample[j] = doc.copy() else: remainder.append(doc.copy()) num_docs[0] += 1 doc.clear() with open(args.input, "r", encoding="utf-8") as h: doc = [] for i, line in enumerate(h): if line.strip() == "": # empty line indicates new document update_sample(doc) else: doc.append(line) if args.lines: update_sample(doc) if i % 1000000 == 0: print(i, file=sys.stderr, end="", flush=True) elif i % 100000 == 0: print(".", file=sys.stderr, end="", flush=True) if len(doc) > 0: update_sample(doc) print(file=sys.stderr, flush=True) assert len(sample) == args.k with open(args.sample_output, "w", encoding="utf-8") as out: first = True for doc in sample: if not first and not args.lines: out.write("\n") first = False for line in doc: out.write(line) with open(args.remainder_output, "w", encoding="utf-8") as out: first = True for doc in remainder: if not first and not args.lines: out.write("\n") first = False for line in doc: out.write(line) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/split_train_valid_docs.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Use this script in order to build symmetric alignments for your translation dataset. This script depends on fast_align and mosesdecoder tools. You will need to build those before running the script. fast_align: github: http://github.com/clab/fast_align instructions: follow the instructions in README.md mosesdecoder: github: http://github.com/moses-smt/mosesdecoder instructions: http://www.statmt.org/moses/?n=Development.GetStarted The script produces the following files under --output_dir: text.joined - concatenation of lines from the source_file and the target_file. align.forward - forward pass of fast_align. align.backward - backward pass of fast_align. aligned.sym_heuristic - symmetrized alignment. """ import argparse import os from itertools import zip_longest def main(): parser = argparse.ArgumentParser(description="symmetric alignment builer") # fmt: off parser.add_argument('--fast_align_dir', help='path to fast_align build directory') parser.add_argument('--mosesdecoder_dir', help='path to mosesdecoder root directory') parser.add_argument('--sym_heuristic', help='heuristic to use for symmetrization', default='grow-diag-final-and') parser.add_argument('--source_file', help='path to a file with sentences ' 'in the source language') parser.add_argument('--target_file', help='path to a file with sentences ' 'in the target language') parser.add_argument('--output_dir', help='output directory') # fmt: on args = parser.parse_args() fast_align_bin = os.path.join(args.fast_align_dir, "fast_align") symal_bin = os.path.join(args.mosesdecoder_dir, "bin", "symal") sym_fast_align_bin = os.path.join( args.mosesdecoder_dir, "scripts", "ems", "support", "symmetrize-fast-align.perl" ) # create joined file joined_file = os.path.join(args.output_dir, "text.joined") with open(args.source_file, "r", encoding="utf-8") as src, open( args.target_file, "r", encoding="utf-8" ) as tgt: with open(joined_file, "w", encoding="utf-8") as joined: for s, t in zip_longest(src, tgt): print("{} ||| {}".format(s.strip(), t.strip()), file=joined) bwd_align_file = os.path.join(args.output_dir, "align.backward") # run forward alignment fwd_align_file = os.path.join(args.output_dir, "align.forward") fwd_fast_align_cmd = "{FASTALIGN} -i {JOINED} -d -o -v > {FWD}".format( FASTALIGN=fast_align_bin, JOINED=joined_file, FWD=fwd_align_file ) assert os.system(fwd_fast_align_cmd) == 0 # run backward alignment bwd_align_file = os.path.join(args.output_dir, "align.backward") bwd_fast_align_cmd = "{FASTALIGN} -i {JOINED} -d -o -v -r > {BWD}".format( FASTALIGN=fast_align_bin, JOINED=joined_file, BWD=bwd_align_file ) assert os.system(bwd_fast_align_cmd) == 0 # run symmetrization sym_out_file = os.path.join(args.output_dir, "aligned") sym_cmd = "{SYMFASTALIGN} {FWD} {BWD} {SRC} {TGT} {OUT} {HEURISTIC} {SYMAL}".format( SYMFASTALIGN=sym_fast_align_bin, FWD=fwd_align_file, BWD=bwd_align_file, SRC=args.source_file, TGT=args.target_file, OUT=sym_out_file, HEURISTIC=args.sym_heuristic, SYMAL=symal_bin, ) assert os.system(sym_cmd) == 0 if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/build_sym_alignment.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import argparse import sentencepiece as spm def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="sentencepiece model to use for decoding" ) parser.add_argument("--input", required=True, help="input file to decode") parser.add_argument("--input_format", choices=["piece", "id"], default="piece") args = parser.parse_args() sp = spm.SentencePieceProcessor() sp.Load(args.model) if args.input_format == "piece": def decode(input): return "".join(sp.DecodePieces(input)) elif args.input_format == "id": def decode(input): return "".join(sp.DecodeIds(input)) else: raise NotImplementedError def tok2int(tok): # remap reference-side <unk> (represented as <<unk>>) to 0 return int(tok) if tok != "<<unk>>" else 0 with open(args.input, "r", encoding="utf-8") as h: for line in h: if args.input_format == "id": print(decode(list(map(tok2int, line.rstrip().split())))) elif args.input_format == "piece": print(decode(line.rstrip().split())) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/spm_decode.py
EXA-1-master
exa/libraries/fairseq/scripts/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import re import shutil import sys pt_regexp = re.compile(r"checkpoint(\d+|_\d+_\d+|_[a-z]+)\.pt") pt_regexp_epoch_based = re.compile(r"checkpoint(\d+)\.pt") pt_regexp_update_based = re.compile(r"checkpoint_\d+_(\d+)\.pt") def parse_checkpoints(files): entries = [] for f in files: m = pt_regexp_epoch_based.fullmatch(f) if m is not None: entries.append((int(m.group(1)), m.group(0))) else: m = pt_regexp_update_based.fullmatch(f) if m is not None: entries.append((int(m.group(1)), m.group(0))) return entries def last_n_checkpoints(files, n): entries = parse_checkpoints(files) return [x[1] for x in sorted(entries, reverse=True)[:n]] def every_n_checkpoints(files, n): entries = parse_checkpoints(files) return [x[1] for x in sorted(sorted(entries)[::-n])] def main(): parser = argparse.ArgumentParser( description=( "Recursively delete checkpoint files from `root_dir`, " "but preserve checkpoint_best.pt and checkpoint_last.pt" ) ) parser.add_argument("root_dirs", nargs="*") parser.add_argument( "--save-last", type=int, default=0, help="number of last checkpoints to save" ) parser.add_argument( "--save-every", type=int, default=0, help="interval of checkpoints to save" ) parser.add_argument( "--preserve-test", action="store_true", help="preserve checkpoints in dirs that start with test_ prefix (default: delete them)", ) parser.add_argument( "--delete-best", action="store_true", help="delete checkpoint_best.pt" ) parser.add_argument( "--delete-last", action="store_true", help="delete checkpoint_last.pt" ) parser.add_argument( "--no-dereference", action="store_true", help="don't dereference symlinks" ) args = parser.parse_args() files_to_desymlink = [] files_to_preserve = [] files_to_delete = [] for root_dir in args.root_dirs: for root, _subdirs, files in os.walk(root_dir): if args.save_last > 0: to_save = last_n_checkpoints(files, args.save_last) else: to_save = [] if args.save_every > 0: to_save += every_n_checkpoints(files, args.save_every) for file in files: if not pt_regexp.fullmatch(file): continue full_path = os.path.join(root, file) if ( not os.path.basename(root).startswith("test_") or args.preserve_test ) and ( (file == "checkpoint_last.pt" and not args.delete_last) or (file == "checkpoint_best.pt" and not args.delete_best) or file in to_save ): if os.path.islink(full_path) and not args.no_dereference: files_to_desymlink.append(full_path) else: files_to_preserve.append(full_path) else: files_to_delete.append(full_path) if len(files_to_desymlink) == 0 and len(files_to_delete) == 0: print("Nothing to do.") sys.exit(0) files_to_desymlink = sorted(files_to_desymlink) files_to_preserve = sorted(files_to_preserve) files_to_delete = sorted(files_to_delete) print("Operations to perform (in order):") if len(files_to_desymlink) > 0: for file in files_to_desymlink: print(" - preserve (and dereference symlink): " + file) if len(files_to_preserve) > 0: for file in files_to_preserve: print(" - preserve: " + file) if len(files_to_delete) > 0: for file in files_to_delete: print(" - delete: " + file) while True: resp = input("Continue? (Y/N): ") if resp.strip().lower() == "y": break elif resp.strip().lower() == "n": sys.exit(0) print("Executing...") if len(files_to_desymlink) > 0: for file in files_to_desymlink: realpath = os.path.realpath(file) print("rm " + file) os.remove(file) print("cp {} {}".format(realpath, file)) shutil.copyfile(realpath, file) if len(files_to_delete) > 0: for file in files_to_delete: print("rm " + file) os.remove(file) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/rm_pt.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Count the number of documents and average number of lines and tokens per document in a large file. Documents should be separated by a single empty line. """ import argparse import gzip import sys import numpy as np def main(): parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("--gzip", action="store_true") args = parser.parse_args() def gopen(): if args.gzip: return gzip.open(args.input, "r") else: return open(args.input, "r", encoding="utf-8") num_lines = [] num_toks = [] with gopen() as h: num_docs = 1 num_lines_in_doc = 0 num_toks_in_doc = 0 for i, line in enumerate(h): if len(line.strip()) == 0: # empty line indicates new document num_docs += 1 num_lines.append(num_lines_in_doc) num_toks.append(num_toks_in_doc) num_lines_in_doc = 0 num_toks_in_doc = 0 else: num_lines_in_doc += 1 num_toks_in_doc += len(line.rstrip().split()) if i % 1000000 == 0: print(i, file=sys.stderr, end="", flush=True) elif i % 100000 == 0: print(".", file=sys.stderr, end="", flush=True) print(file=sys.stderr, flush=True) print("found {} docs".format(num_docs)) print("average num lines per doc: {}".format(np.mean(num_lines))) print("average num toks per doc: {}".format(np.mean(num_toks))) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/count_docs.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import argparse import contextlib import sys import sentencepiece as spm def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="sentencepiece model to use for encoding" ) parser.add_argument( "--inputs", nargs="+", default=["-"], help="input files to filter/encode" ) parser.add_argument( "--outputs", nargs="+", default=["-"], help="path to save encoded outputs" ) parser.add_argument("--output_format", choices=["piece", "id"], default="piece") parser.add_argument( "--min-len", type=int, metavar="N", help="filter sentence pairs with fewer than N tokens", ) parser.add_argument( "--max-len", type=int, metavar="N", help="filter sentence pairs with more than N tokens", ) args = parser.parse_args() assert len(args.inputs) == len( args.outputs ), "number of input and output paths should match" sp = spm.SentencePieceProcessor() sp.Load(args.model) if args.output_format == "piece": def encode(input): return sp.EncodeAsPieces(input) elif args.output_format == "id": def encode(input): return list(map(str, sp.EncodeAsIds(input))) else: raise NotImplementedError if args.min_len is not None or args.max_len is not None: def valid(line): return (args.min_len is None or len(line) >= args.min_len) and ( args.max_len is None or len(line) <= args.max_len ) else: def valid(lines): return True with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8")) if input != "-" else sys.stdin for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8")) if output != "-" else sys.stdout for output in args.outputs ] stats = { "num_empty": 0, "num_filtered": 0, } def encode_line(line): line = line.strip() if len(line) > 0: line = encode(line) if valid(line): return line else: stats["num_filtered"] += 1 else: stats["num_empty"] += 1 return None for i, lines in enumerate(zip(*inputs), start=1): enc_lines = list(map(encode_line, lines)) if not any(enc_line is None for enc_line in enc_lines): for enc_line, output_h in zip(enc_lines, outputs): print(" ".join(enc_line), file=output_h) if i % 10000 == 0: print("processed {} lines".format(i), file=sys.stderr) print("skipped {} empty lines".format(stats["num_empty"]), file=sys.stderr) print("filtered {} lines".format(stats["num_filtered"]), file=sys.stderr) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/spm_encode.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Split a large file into shards while respecting document boundaries. Documents should be separated by a single empty line. """ import argparse import contextlib def main(): parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("--num-shards", type=int) args = parser.parse_args() assert args.num_shards is not None and args.num_shards > 1 with open(args.input, "r", encoding="utf-8") as h: with contextlib.ExitStack() as stack: outputs = [ stack.enter_context( open(args.input + ".shard" + str(i), "w", encoding="utf-8") ) for i in range(args.num_shards) ] doc = [] first_doc = [True] * args.num_shards def output_doc(i): if not first_doc[i]: outputs[i].write("\n") first_doc[i] = False for line in doc: outputs[i].write(line) doc.clear() num_docs = 0 for line in h: if line.strip() == "": # empty line indicates new document output_doc(num_docs % args.num_shards) num_docs += 1 else: doc.append(line) output_doc(num_docs % args.num_shards) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/shard_docs.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import sys import sentencepiece as spm if __name__ == "__main__": spm.SentencePieceTrainer.Train(" ".join(sys.argv[1:]))
EXA-1-master
exa/libraries/fairseq/scripts/spm_train.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import collections import os import re import torch from fairseq.file_io import PathManager def average_checkpoints(inputs): """Loads checkpoints from inputs and returns a model with averaged weights. Args: inputs: An iterable of string paths of checkpoints to load from. Returns: A dict of string keys mapping to various values. The 'model' key from the returned dict should correspond to an OrderedDict mapping string parameter names to torch Tensors. """ params_dict = collections.OrderedDict() params_keys = None new_state = None num_models = len(inputs) for fpath in inputs: with PathManager.open(fpath, "rb") as f: state = torch.load( f, map_location=( lambda s, _: torch.serialization.default_restore_location(s, "cpu") ), ) # Copies over the settings from the first checkpoint if new_state is None: new_state = state model_params = state["model"] model_params_keys = list(model_params.keys()) if params_keys is None: params_keys = model_params_keys elif params_keys != model_params_keys: raise KeyError( "For checkpoint {}, expected list of params: {}, " "but found: {}".format(f, params_keys, model_params_keys) ) for k in params_keys: p = model_params[k] if isinstance(p, torch.HalfTensor): p = p.float() if k not in params_dict: params_dict[k] = p.clone() # NOTE: clone() is needed in case of p is a shared parameter else: params_dict[k] += p averaged_params = collections.OrderedDict() for k, v in params_dict.items(): averaged_params[k] = v if averaged_params[k].is_floating_point(): averaged_params[k].div_(num_models) else: averaged_params[k] //= num_models new_state["model"] = averaged_params return new_state def last_n_checkpoints(paths, n, update_based, upper_bound=None): assert len(paths) == 1 path = paths[0] if update_based: pt_regexp = re.compile(r"checkpoint_\d+_(\d+)\.pt") else: pt_regexp = re.compile(r"checkpoint(\d+)\.pt") files = PathManager.ls(path) entries = [] for f in files: m = pt_regexp.fullmatch(f) if m is not None: sort_key = int(m.group(1)) if upper_bound is None or sort_key <= upper_bound: entries.append((sort_key, m.group(0))) if len(entries) < n: raise Exception( "Found {} checkpoint files but need at least {}", len(entries), n ) return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)[:n]] def main(): parser = argparse.ArgumentParser( description="Tool to average the params of input checkpoints to " "produce a new checkpoint", ) # fmt: off parser.add_argument('--inputs', required=True, nargs='+', help='Input checkpoint file paths.') parser.add_argument('--output', required=True, metavar='FILE', help='Write the new checkpoint containing the averaged weights to this path.') num_group = parser.add_mutually_exclusive_group() num_group.add_argument('--num-epoch-checkpoints', type=int, help='if set, will try to find checkpoints with names checkpoint_xx.pt in the ' 'path specified by input, and average last this many of them.') num_group.add_argument('--num-update-checkpoints', type=int, help='if set, will try to find checkpoints with names checkpoint_ee_xx.pt in the path specified by' ' input, and average last this many of them.') num_group.add_argument('--num-best-checkpoints', type=int, default=0, help='if set, will try to find checkpoints with names checkpoint_best_ee_xx.pt in the path specified by' ' input, and average last this many of them.') parser.add_argument('--checkpoint-upper-bound', type=int, help='when using --num-epoch-checkpoints, this will set an upper bound on which epoch to use, ' 'when using --num-update-checkpoints, this will set an upper bound on which update to use' 'e.g., with --num-epoch-checkpoints=10 --checkpoint-upper-bound=50, checkpoints 41-50 would be' ' averaged.' 'e.g., with --num-update-checkpoints=10 --checkpoint-upper-bound=50000, checkpoints 40500-50000 would' ' be averaged assuming --save-interval-updates 500' ) # fmt: on args = parser.parse_args() print(args) num = None is_update_based = False if args.num_update_checkpoints is not None: num = args.num_update_checkpoints is_update_based = True elif args.num_epoch_checkpoints is not None: num = args.num_epoch_checkpoints assert args.checkpoint_upper_bound is None or ( args.num_epoch_checkpoints is not None or args.num_update_checkpoints is not None ), "--checkpoint-upper-bound requires --num-epoch-checkpoints or --num-update-checkpoints" assert ( args.num_epoch_checkpoints is None or args.num_update_checkpoints is None ), "Cannot combine --num-epoch-checkpoints and --num-update-checkpoints" if num is not None: args.inputs = last_n_checkpoints( args.inputs, num, is_update_based, upper_bound=args.checkpoint_upper_bound, ) print("averaging checkpoints: ", args.inputs) if args.num_best_checkpoints > 0: args.inputs = list( sorted( args.inputs, key=lambda x: float( os.path.basename(x).split("_")[-1].replace(".pt", "") ), ) ) args.inputs = args.inputs[: args.num_best_checkpoints] for path in args.inputs: print(os.path.basename(path)) new_state = average_checkpoints(args.inputs) with PathManager.open(args.output, "wb") as f: torch.save(new_state, f) print("Finished writing averaged checkpoint to {}".format(args.output)) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/average_checkpoints.py
from pathlib import Path import os cwd = Path(".").resolve() print("running 'check_installation.py' from:", cwd) # Old versions of numpy/torch can prevent loading the .so files import torch print("torch:", torch.__version__) import numpy print("numpy:", numpy.__version__) import fairseq print("Fairseq installed at:", fairseq.__file__) import fairseq.criterions import fairseq.dataclass.configs import _imp print("Should load following .so suffixes:", _imp.extension_suffixes()) so_files = list(Path(fairseq.__file__).parent.glob("*.so")) so_files.extend(Path(fairseq.__file__).parent.glob("data/*.so")) print("Found following .so files:") for so_file in so_files: print(f"- {so_file}") from fairseq import libbleu print("Found libbleu at", libbleu.__file__) from fairseq.data import data_utils_fast print("Found data_utils_fast at", data_utils_fast.__file__)
EXA-1-master
exa/libraries/fairseq/scripts/check_installation.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from fairseq.data import Dictionary, data_utils, indexed_dataset def get_parser(): parser = argparse.ArgumentParser( description="writes text from binarized file to stdout" ) # fmt: off parser.add_argument('--dataset-impl', help='dataset implementation', choices=indexed_dataset.get_available_dataset_impl()) parser.add_argument('--dict', metavar='FP', help='dictionary containing known words', default=None) parser.add_argument('--input', metavar='FP', required=True, help='binarized file to read') # fmt: on return parser def main(): parser = get_parser() args = parser.parse_args() dictionary = Dictionary.load(args.dict) if args.dict is not None else None dataset = data_utils.load_indexed_dataset( args.input, dictionary, dataset_impl=args.dataset_impl, default="lazy", ) for tensor_line in dataset: if dictionary is None: line = " ".join([str(int(x)) for x in tensor_line]) else: line = dictionary.string(tensor_line) print(line) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/fairseq/scripts/read_binarized.py
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys """Reads in a fairseq output file, and verifies that the constraints (C- lines) are present in the output (the first H- line). Assumes that constraints are listed prior to the first hypothesis. """ constraints = [] found = 0 total = 0 for line in sys.stdin: if line.startswith("C-"): constraints.append(line.rstrip().split("\t")[1]) elif line.startswith("H-"): text = line.split("\t")[2] for constraint in constraints: total += 1 if constraint in text: found += 1 else: print(f"No {constraint} in {text}", file=sys.stderr) constraints = [] print(f"Found {found} / {total} = {100 * found / total:.1f}%")
EXA-1-master
exa/libraries/fairseq/scripts/constraints/validate.py
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Extracts random constraints from reference files.""" import argparse import random import sys def get_phrase(words, index, length): assert index < len(words) - length + 1 phr = " ".join(words[index : index + length]) for i in range(index, index + length): words.pop(index) return phr def main(args): if args.seed: random.seed(args.seed) for line in sys.stdin: constraints = [] def add_constraint(constraint): constraints.append(constraint) source = line.rstrip() if "\t" in line: source, target = line.split("\t") if args.add_sos: target = f"<s> {target}" if args.add_eos: target = f"{target} </s>" if len(target.split()) >= args.len: words = [target] num = args.number choices = {} for i in range(num): if len(words) == 0: break segmentno = random.choice(range(len(words))) segment = words.pop(segmentno) tokens = segment.split() phrase_index = random.choice(range(len(tokens))) choice = " ".join( tokens[phrase_index : min(len(tokens), phrase_index + args.len)] ) for j in range( phrase_index, min(len(tokens), phrase_index + args.len) ): tokens.pop(phrase_index) if phrase_index > 0: words.append(" ".join(tokens[0:phrase_index])) if phrase_index + 1 < len(tokens): words.append(" ".join(tokens[phrase_index:])) choices[target.find(choice)] = choice # mask out with spaces target = target.replace(choice, " " * len(choice), 1) for key in sorted(choices.keys()): add_constraint(choices[key]) print(source, *constraints, sep="\t") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--number", "-n", type=int, default=1, help="number of phrases") parser.add_argument("--len", "-l", type=int, default=1, help="phrase length") parser.add_argument( "--add-sos", default=False, action="store_true", help="add <s> token" ) parser.add_argument( "--add-eos", default=False, action="store_true", help="add </s> token" ) parser.add_argument("--seed", "-s", default=0, type=int) args = parser.parse_args() main(args)
EXA-1-master
exa/libraries/fairseq/scripts/constraints/extract.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Follows PEP-0440 version scheme guidelines # https://www.python.org/dev/peps/pep-0440/#version-scheme # # Examples: # 0.1.0.devN # Developmental release # 0.1.0aN # Alpha release # 0.1.0bN # Beta release # 0.1.0rcN # Release Candidate # 0.1.0 # Final release __version__ = "0.1.0b0"
EXA-1-master
exa/libraries/multimodal-main/version.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import os import re import sys from datetime import date from setuptools import find_packages, setup def clean_html(raw_html): cleanr = re.compile("<.*?>") cleantext = re.sub(cleanr, "", raw_html).strip() return cleantext def get_version(): # get version string from version.py version_file = os.path.join(os.path.dirname(__file__), "version.py") version_regex = r"__version__ = ['\"]([^'\"]*)['\"]" with open(version_file, "r") as f: version = re.search(version_regex, f.read(), re.M).group(1) return version def fetch_long_description(): with open("README.md", encoding="utf8") as f: readme = f.read() # https://stackoverflow.com/a/12982689 readme = clean_html(readme) return readme def read_requirements(file): with open(file) as f: reqs = f.read() return reqs.strip().split("\n") def get_nightly_version(): today = date.today() return f"{today.year}.{today.month}.{today.day}" def parse_args(argv): # Pass in a list of string from CLI parser = argparse.ArgumentParser(description="torchmultimodal setup") parser.add_argument( "--package_name", type=str, default="torchmultimodal", help="The name of this output wheel", ) return parser.parse_known_args(argv) if __name__ == "__main__": args, unknown = parse_args(sys.argv[1:]) # Set up package name and version name = args.package_name is_nightly = "nightly" in name version = get_nightly_version() if is_nightly else get_version() print(f"-- {name} building version: {version}") sys.argv = [sys.argv[0]] + unknown setup( name=name, include_package_data=True, packages=find_packages( exclude=("examples*", "tests*") ), # Excluded folders don't get packaged python_requires=">=3.7", install_requires=read_requirements("requirements.txt"), version=version, description="PyTorch Multimodal Library", long_description=fetch_long_description(), long_description_content_type="text/markdown", url="https://github.com/facebookresearch/multimodal", author="PyTorch Multimodal Team", author_email="[email protected]", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], extras_require={"dev": read_requirements("dev-requirements.txt")}, )
EXA-1-master
exa/libraries/multimodal-main/setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import random import tempfile from contextlib import contextmanager from pathlib import Path from typing import Any, Dict, NamedTuple, Optional, Tuple, Union import pytest import torch import torch.distributed as dist from torch import nn, Tensor def gpu_test(gpu_count: int = 1): """ Annotation for GPU tests, skipping the test if the required amount of GPU is not available """ message = f"Not enough GPUs to run the test: required {gpu_count}" return pytest.mark.skipif(torch.cuda.device_count() < gpu_count, reason=message) def init_distributed_on_file(world_size: int, gpu_id: int, sync_file: str): """ Init the process group need to do distributed training, by syncing the different workers on a file. """ torch.cuda.set_device(gpu_id) dist.init_process_group( backend="nccl", init_method="file://" + sync_file, world_size=world_size, rank=gpu_id, ) @contextmanager def with_temp_files(count: int): """ Context manager to create temporary files and remove them after at the end of the context """ if count == 1: fd, file_name = tempfile.mkstemp() yield file_name os.close(fd) else: temp_files = [tempfile.mkstemp() for _ in range(count)] yield [t[1] for t in temp_files] for t in temp_files: os.close(t[0]) def set_rng_seed(seed): """Sets the seed for pytorch and numpy random number generators""" torch.manual_seed(seed) random.seed(seed) _ASSET_DIR = (Path(__file__).parent / "assets").resolve() def get_asset_path(file_name: str) -> str: """Get the path to the file under assets directory.""" return str(_ASSET_DIR.joinpath(file_name)) def assert_expected( actual: Any, expected: Any, rtol: Optional[float] = None, atol: Optional[float] = None, check_device=True, ): torch.testing.assert_close( actual, expected, rtol=rtol, atol=atol, check_device=check_device, msg=f"actual: {actual}, expected: {expected}", ) def tuple_to_dict(t: Tuple) -> Dict: if not isinstance(t, tuple): raise TypeError(f"Input must be of type tuple but got {type(t)}") return {k: v for k, v in enumerate(t)} def is_namedtuple(nt: Any) -> bool: # namedtuple is a subclass of tuple with additional attributes # we verify specifically here the attribute `_fields` which should be a tuple of field names # from the namedtuple instance if not isinstance(nt, tuple): return False f = getattr(nt, "_fields", None) if not isinstance(f, tuple): return False return all(type(name) == str for name in f) def namedtuple_to_dict(nt: NamedTuple) -> Dict: # Do this for safety. _asdict is a public method as of python 3.8: # https://docs.python.org/3/library/collections.html#collections.somenamedtuple._asdict if not hasattr(nt, "_asdict"): raise AttributeError(f"{nt} must have the attribute `_asdict`.") return nt._asdict() def assert_expected_namedtuple( actual: Union[Dict, NamedTuple], expected: Union[Dict, NamedTuple], rtol: Optional[float] = None, atol: Optional[float] = None, ): """Helper function that calls assert_expected recursively on nested Dict/NamedTuple Example:: >>>from collections import namedtuple >>>Out = namedtuple("Out", "x y") >>>InnerOut = namedtuple("InnerOut", "z") >>>actual = Out(x=InnerOut(z=tensor([1])), y=tensor([2])) >>>expected = Out(x=InnerOut(z=tensor([1])), y=tensor([2])) >>>assert_expected_namedtuple(actual, expected) """ # convert NamedTuple to dictionary if is_namedtuple(actual): actual = namedtuple_to_dict(actual) if is_namedtuple(expected): expected = namedtuple_to_dict(expected) if not isinstance(actual, Dict): raise TypeError( f"'actual' needs to be either of type 'NamedTuple' or 'Dict' but got {type(actual)}" ) if not isinstance(expected, Dict): raise TypeError( f"'expected' needs to be either of type 'NamedTuple' or 'Dict' but got {type(expected)}" ) for attr, _expected in expected.items(): _actual = actual[attr] if _expected is None: # optional output assert _actual is None elif isinstance(_actual, Dict): # dictionary output, e.g., cache of k/v assert_expected_namedtuple(_actual, _expected, rtol=rtol, atol=atol) elif isinstance(_actual, tuple) and (not is_namedtuple(_actual)): # outputs are from multiple layers: (Tensor, Tensor, ...) assert_expected_namedtuple( tuple_to_dict(_actual), tuple_to_dict(_expected), rtol=rtol, atol=atol ) elif is_namedtuple(_actual): # output is another named tuple instance assert_expected_namedtuple(_actual, _expected, rtol=rtol, atol=atol) elif isinstance(_actual, Tensor): # single tensor output if isinstance(_expected, tuple) and len(_expected) == 2: # test shape and sum _expected_shape, _expected_sum = _expected assert_expected(_actual.shape, _expected_shape) assert_expected( _actual.sum().item(), _expected_sum, rtol=rtol, atol=atol ) elif isinstance(_expected, Tensor): # test value assert_expected(_actual, _expected, rtol=rtol, atol=atol) else: raise TypeError( f"Unsupported type for expected when actual is a tensor: {type(_expected)}" ) else: raise TypeError( f"Unsupported types for test assertion: actual {type(_actual)}, expected {type(_expected)}" ) def init_weights_with_constant(model: nn.Module, constant: float = 1.0) -> None: for p in model.parameters(): nn.init.constant_(p, constant)
EXA-1-master
exa/libraries/multimodal-main/tests/test_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/tests/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected from torch import nn from torch.utils.checkpoint import checkpoint from torchmultimodal.utils.common import ( checkpoint_wrapper, shift_dim, tensor_slice, to_tuple_tuple, ) def test_shift_dim(): test_random_tensor = torch.randn(2, 2, 2, 2, 2) actual = shift_dim(test_random_tensor, 1, -1) expected = test_random_tensor.permute(0, 2, 3, 4, 1).contiguous() assert_expected(actual, expected) actual = shift_dim(test_random_tensor, -3, 3) expected = test_random_tensor.permute(0, 1, 3, 2, 4).contiguous() assert_expected(actual, expected) class TestTensorSlice: @pytest.fixture(scope="class") def test_input(self): return torch.tensor([[[0, 1], [2, 3], [5, 6]]]) def test_default(self, test_input): actual = tensor_slice(test_input, [0, 1, 0], [1, 1, 2]) expected = torch.tensor([[[2, 3]]]) assert_expected(actual, expected) def test_size_minus_one(self, test_input): """Test size -1""" actual = tensor_slice(test_input, [0, 1, 0], [1, -1, 2]) expected = torch.tensor([[[2, 3], [5, 6]]]) assert_expected(actual, expected) def test_uneven_begin_size(self, test_input): """Test uneven begin and size vectors""" actual = tensor_slice(test_input, [0, 1, 0], [1, 1]) expected = torch.tensor([[[2, 3]]]) assert_expected(actual, expected) actual = tensor_slice(test_input, [0, 1], [1, 1, 2]) expected = torch.tensor([[[2, 3]]]) assert_expected(actual, expected) @pytest.mark.xfail(raises=ValueError, reason="Invalid begin") def test_invalid_begin(self, test_input): tensor_slice(test_input, [-1, 1, 0], [1, 1, 2]) @pytest.mark.xfail(raises=ValueError, reason="Invalid size") def test_invalid_size(self, test_input): tensor_slice(test_input, [0, 1, 0], [-2, 1, 2]) class TestToTupleTuple: @pytest.fixture(scope="class") def expected(self): return ((2, 2, 2), (2, 2, 2), (2, 2, 2)) def test_int(self, expected): actual = to_tuple_tuple(2, 3, 3) assert actual == expected, "int -> tuple[tuple] incorrect" def test_tuple(self, expected): actual = to_tuple_tuple((2, 2, 2), 3, 3) assert actual == expected, "tuple -> tuple[tuple] incorrect" class TestCheckpointWrapper: @pytest.fixture def model(self): class DummyAttention(nn.Module): def __init__(self): super().__init__() self.param = nn.Parameter(torch.ones(3)) def forward(self, x, y, attn_mask=None, use_cache=None): grad = x if use_cache else y grad = grad * self.param if attn_mask is not None: grad = grad * attn_mask return grad class DummyIdentity(nn.Module): """Returns a passthrough of the input tensor with requires_grad True""" def __init__(self): super().__init__() self.param = nn.Parameter(torch.ones(1)) def forward(self, x): return self.param * x class DummyModel(nn.Module): def __init__(self): super().__init__() self.attention = DummyAttention() self.identity = DummyIdentity() @checkpoint_wrapper def _layer_to_wrap(self, x, y, attn_mask, use_cache): return self.attention(x, y, attn_mask, use_cache) def forward(self, x, y, attn_mask=None, use_cache=False): x = self.identity(x) y = self.identity(y) out = self._layer_to_wrap( x, y, attn_mask=attn_mask, use_cache=use_cache ) return out return DummyModel() @pytest.fixture def inputs(self): x = torch.ones(3) y = torch.ones(3) * 2 attn_mask = torch.tensor([1, 1, 0]) x = x y = y attn_mask = attn_mask return x, y, attn_mask @pytest.fixture def compute_grad(self, model): model.zero_grad() def _compute_grad(output): output.sum().backward() grad_checkpointed = {} for name, param in model.named_parameters(): grad_checkpointed[name] = param.grad.data.clone() return grad_checkpointed return _compute_grad def test_training_mode(self, model, inputs, compute_grad, mocker): """Test training mode that checkpoint is on""" mock_checkpoint = mocker.patch( "torchmultimodal.utils.common.checkpoint", wraps=checkpoint ) with pytest.warns(UserWarning): model.train() x, y, attn_mask = inputs actual = model(x, y, attn_mask=attn_mask, use_cache=True) # gradient of attention.param is y * attn_mask when use_cache is False (checkpointing on) expected = torch.tensor([2.0, 2.0, 0.0]) assert_expected(actual, expected) actual_grad = compute_grad(actual) assert_expected( actual_grad["attention.param"], torch.tensor([2.0, 2.0, 0.0]) ) mock_checkpoint.assert_called_once() def test_eval_model(self, model, inputs, compute_grad, mocker): """Test eval mode that checkpoint is off""" mock_checkpoint = mocker.patch( "torchmultimodal.utils.common.checkpoint", wraps=checkpoint ) model.eval() x, y, attn_mask = inputs actual = model(x, y, attn_mask=attn_mask, use_cache=True) # gradient of attention.param is x * attn_mask when use_cache is True (checkpointing off) expected = torch.tensor([1.0, 1.0, 0.0]) assert_expected(actual, expected) actual_grad = compute_grad(actual) assert_expected(actual_grad["attention.param"], torch.tensor([1.0, 1.0, 0.0])) mock_checkpoint.assert_not_called()
EXA-1-master
exa/libraries/multimodal-main/tests/utils/test_common.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch from tests.test_utils import assert_expected from torchmultimodal.utils.attention import get_causal_attention_mask def test_get_causal_attention_masks(): actual = get_causal_attention_mask(3, 2) expected = torch.tensor( [ [1.0, 0.0], [1.0, 1.0], [1.0, 1.0], ] ) assert_expected(actual, expected) actual = get_causal_attention_mask(3, 3) expected = torch.tensor( [ [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [1.0, 1.0, 1.0], ] ) assert_expected(actual, expected)
EXA-1-master
exa/libraries/multimodal-main/tests/utils/test_attention_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/tests/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected, set_rng_seed from torchmultimodal.models.video_gpt import video_gpt from torchmultimodal.utils.generate import ( GenerationUtil, get_logits_mask, LogitsFilterTopK, LogitsFilterTopP, SampleOutput, ) @pytest.fixture(autouse=True) def set_seed(): set_rng_seed(4) class TestLogitsMask: def test_normal(self): actual = get_logits_mask( in_seq_len=3, out_seq_len=4, num_in_tokens=4, num_out_tokens=6 ) expected = torch.tensor( [ [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ] ) assert_expected(actual, expected) def test_zero_dims(self): actual = get_logits_mask( in_seq_len=0, out_seq_len=0, num_in_tokens=0, num_out_tokens=0 ) assert actual.nelement() == 0 def test_in_seq_only(self): actual = get_logits_mask( in_seq_len=1, out_seq_len=0, num_in_tokens=4, num_out_tokens=6 ) expected = torch.tensor([[1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]) assert_expected(actual, expected) def test_out_seq_only(self): actual = get_logits_mask( in_seq_len=0, out_seq_len=1, num_in_tokens=4, num_out_tokens=6 ) expected = torch.tensor([[0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]) assert_expected(actual, expected) class TestGenerationUtil: _model_params = { "input_shape": (4, 8, 8), "latent_shape": (2, 4, 4), "d_model": 576, "n_head": 4, "num_decoder_layers": 16, "dropout": 0.2, "attn_dropout": 0.3, } @pytest.fixture def model_fn(self): return video_gpt @pytest.fixture def generation_model(self, model_fn): model = model_fn(**self._model_params) model.eval() return GenerationUtil(model=model) def test_model_eval_warning(self, model_fn): model = model_fn(**self._model_params) with pytest.warns(UserWarning): generator = GenerationUtil(model=model) def test_sample(self, generation_model): input_shape = self._model_params["input_shape"] latent_shape = self._model_params["latent_shape"] latent_seq_len = torch.prod(torch.tensor(latent_shape)).item() x = torch.randn(1, 3, *input_shape) # (b, c, *input_shape) out = generation_model.sample( x, max_seq_len=latent_seq_len, use_cache=True, causal=True ) assert isinstance(out, SampleOutput) actual = out.tokens.shape expected = torch.Size([1, 32]) assert_expected(actual, expected) def test_filter_logits(self, generation_model): kwargs = {"top_k": 5, "top_p": 0.7} logits = torch.arange(10, dtype=torch.float).unsqueeze(0) actual = generation_model._filter_logits(logits, **kwargs) # pick top 5 tokens then take those > 70% percentile expected = torch.tensor( [ [ -float("inf"), -float("inf"), -float("inf"), -float("inf"), -float("inf"), -float("inf"), -float("inf"), -float("inf"), 8.0, 9.0, ] ] ) assert_expected(actual, expected) class TestLogitsFilterTopK: _func_params = { "top_k": 0, "filter_value": 0.0, "min_tokens_to_keep": 1, } @pytest.fixture def filter_fn(self): return LogitsFilterTopK def test_min_tokens_to_keep(self, filter_fn): kwargs = {**self._func_params, **{"top_k": 1, "min_tokens_to_keep": 2}} logits_filter = filter_fn(**kwargs) logits = torch.arange(10, dtype=torch.float).unsqueeze(0) actual = logits_filter(logits) expected = torch.tensor([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0, 9.0]]) assert_expected(actual, expected) def test_top_k_invalid(self, filter_fn): kwargs = {**self._func_params, **{"top_k": -1}} with pytest.raises(ValueError): logits_filter = filter_fn(**kwargs) def test_default(self, filter_fn): kwargs = self._func_params logits_filter = filter_fn(**kwargs) logits = torch.arange(10, dtype=torch.float).unsqueeze(0) actual = logits_filter(logits) expected = logits assert_expected(actual, expected) def test_top_k(self, filter_fn): kwargs = {**self._func_params, **{"top_k": 5}} logits_filter = filter_fn(**kwargs) logits = torch.arange(10, dtype=torch.float).unsqueeze(0) actual = logits_filter(logits) expected = torch.tensor([[0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 6.0, 7.0, 8.0, 9.0]]) assert_expected(actual, expected) class TestLogitsFilterTopP: _func_params = { "top_p": 1.0, "filter_value": 0.0, "min_tokens_to_keep": 1, } @pytest.fixture def filter_fn(self): return LogitsFilterTopP def test_min_tokens_to_keep(self, filter_fn): kwargs = {**self._func_params, **{"top_p": 0.0, "min_tokens_to_keep": 2}} logits_filter = filter_fn(**kwargs) logits = torch.arange(10, dtype=torch.float).unsqueeze(0) actual = logits_filter(logits) expected = torch.tensor([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0, 9.0]]) assert_expected(actual, expected) def test_top_p_invalid(self, filter_fn): kwargs = {**self._func_params, **{"top_p": 2.0}} with pytest.raises(ValueError): logits_filter = filter_fn(**kwargs) kwargs = {**self._func_params, **{"top_p": -1.0}} with pytest.raises(ValueError): logits_filter = filter_fn(**kwargs) def test_default(self, filter_fn): kwargs = self._func_params logits_filter = filter_fn(**kwargs) logits = torch.arange(10, dtype=torch.float).unsqueeze(0) actual = logits_filter(logits) expected = logits assert_expected(actual, expected) def test_top_p(self, filter_fn): kwargs = {**self._func_params, **{"top_p": 0.9}} logits_filter = filter_fn(**kwargs) logits = torch.ones(10, dtype=torch.float).unsqueeze(0) actual = logits_filter(logits) # 9 tokens should be kept as the logits are of uniform distribution expected = torch.tensor([[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0]]) assert_expected(actual, expected)
EXA-1-master
exa/libraries/multimodal-main/tests/utils/test_generate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torch import nn from torchmultimodal.utils.common import load_module_from_url def test_load_module_from_url(): model = nn.Linear(2, 3) load_module_from_url( model, "https://download.pytorch.org/models/multimodal/test/linear_2_3.pt" )
EXA-1-master
exa/libraries/multimodal-main/tests/utils/test_ckpt_load.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest from torchmultimodal.utils.assertion import assert_equal_lengths class TestAssertEqualLengths: def test_different_lengths(self): with pytest.raises(ValueError): assert_equal_lengths([1], (1, 1)) def test_same_lengths(self): assert_equal_lengths([1, 1], (1, 1))
EXA-1-master
exa/libraries/multimodal-main/tests/utils/test_assertion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch import torch.multiprocessing as mp from tests.test_utils import ( assert_expected, gpu_test, init_distributed_on_file, set_rng_seed, with_temp_files, ) from torch import Tensor from torchmultimodal.utils.distributed import gather_tensor BATCH_SIZE = 4 EMBEDDING_DIM = 8 class TestGatherTensor: """ Test gather_tensor method with backprop_in_gather param """ @pytest.fixture(autouse=True) def setup(self): set_rng_seed(1234) @pytest.fixture def input_tensor(self): return torch.randn(BATCH_SIZE, EMBEDDING_DIM) @staticmethod def _worker( gpu_id: int, world_size: int, sync_file: str, input_tensor: Tensor, backprop_in_gather: bool, ): init_distributed_on_file( world_size=world_size, gpu_id=gpu_id, sync_file=sync_file ) gpu_tensor = input_tensor.clone().requires_grad_().to(gpu_id) + gpu_id expected_output = [input_tensor + i for i in range(world_size)] gathered_output = gather_tensor(gpu_tensor, backprop_in_gather) assert_expected(len(expected_output), len(gathered_output)) for i, tensor in enumerate(gathered_output): assert_expected(tensor, expected_output[i], check_device=False) if i == gpu_id or backprop_in_gather: assert tensor.grad_fn is not None else: assert tensor.grad_fn is None @gpu_test(gpu_count=1) @pytest.mark.parametrize("backprop_in_gather", [True, False]) def test_single_gpu_gather(self, input_tensor: Tensor, backprop_in_gather: bool): world_size = 1 with with_temp_files(count=1) as sync_file: mp.spawn( TestGatherTensor._worker, ( world_size, sync_file, input_tensor, backprop_in_gather, ), nprocs=world_size, ) @gpu_test(gpu_count=2) @pytest.mark.parametrize("backprop_in_gather", [True, False]) def test_multi_gpu_gather(self, input_tensor: Tensor, backprop_in_gather: bool): world_size = 2 with with_temp_files(count=1) as sync_file: mp.spawn( TestGatherTensor._worker, ( world_size, sync_file, input_tensor, backprop_in_gather, ), nprocs=world_size, )
EXA-1-master
exa/libraries/multimodal-main/tests/utils/test_distributed.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected from torchmultimodal.models.late_fusion import LateFusion from torchmultimodal.modules.fusions.concat_fusion import ConcatFusionModule class TestLateFusion: @pytest.fixture def encoders(self): return torch.nn.ModuleDict( {"c1": torch.nn.Identity(), "c2": torch.nn.Identity()} ) @pytest.fixture def fusion_module(self): return ConcatFusionModule() @pytest.fixture def head_module(self): return torch.nn.Identity() @pytest.fixture def late_fusion(self, encoders, fusion_module, head_module): return LateFusion( encoders, fusion_module, head_module, ) @pytest.fixture def modalities_1(self): return { "c1": torch.Tensor( [ [1, 0, 0.25, 0.75], [0, 1, 0.6, 0.4], ] ), "c2": torch.Tensor( [ [3, 1, 0.8, 0.9], [0.7, 2, 0.6, 0], ] ), } @pytest.fixture def modalities_2(self): return { "c1": torch.Tensor( [ [7, 0, 0.65], [88, 5, 0.3], ] ), "c2": torch.Tensor( [ [8, 9, 0.8], [0.74, 2, 0], ] ), } @pytest.fixture def modalities_3(self): return { "c3": torch.Tensor( [ [8, 0, 0.5, 0.7], [1, 6, 0.6, 0.4], ] ), } def test_forward(self, late_fusion, modalities_1): actual = late_fusion(modalities_1) expected = torch.Tensor( [[1, 0, 0.25, 0.75, 3, 1, 0.8, 0.9], [0, 1, 0.6, 0.4, 0.7, 2, 0.6, 0]] ) assert_expected(actual, expected) def test_script(self, late_fusion, modalities_2): scripted_late_fusion = torch.jit.script(late_fusion) actual = scripted_late_fusion(modalities_2) expected = torch.Tensor([[7, 0, 0.65, 8, 9, 0.8], [88, 5, 0.3, 0.74, 2, 0]]) assert_expected(actual, expected) def test_missing_key_in_modalities(self, late_fusion, modalities_3): with pytest.raises(AssertionError): late_fusion(modalities_3)
EXA-1-master
exa/libraries/multimodal-main/tests/models/test_late_fusion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected, assert_expected_namedtuple, set_rng_seed from torch import nn from torchmultimodal.models.vqvae import VQVAE @pytest.fixture(autouse=True) def random(): set_rng_seed(4) @pytest.fixture def num_embeddings(): return 4 @pytest.fixture def embedding_dim(): return 2 @pytest.fixture def embedding_weights(): return torch.tensor([[6.0, 12.0], [3.0, 9.0], [14.0, 28.0], [7.0, 21.0]]) @pytest.fixture def encoder(): class Encoder(nn.Module): def __init__(self): super().__init__() self.layer = nn.Linear(2, 2, bias=False) self.layer.weight = nn.Parameter(torch.tensor([[1.0, 2.0], [3.0, 4.0]])) def forward(self, x): return self.layer(x) def get_latent_shape(self, input_shape): return input_shape # dummy method return Encoder() @pytest.fixture def bad_encoder(): class Encoder(nn.Module): def __init__(self): super().__init__() self.layer = nn.Linear(2, 2, bias=False) self.layer.weight = nn.Parameter(torch.tensor([[1.0, 2.0], [3.0, 4.0]])) def forward(self, x): return self.layer(x) return Encoder() @pytest.fixture def decoder(): dec = nn.Linear(2, 2, bias=False) dec.weight = nn.Parameter(torch.tensor([[1.0, 2.0], [3.0, 4.0]])) return dec @pytest.fixture def vqvae_builder(decoder, num_embeddings, embedding_dim, embedding_weights): def _vqvae(encoder): vqvae = VQVAE(encoder, decoder, num_embeddings, embedding_dim) vqvae.codebook.embedding = embedding_weights return vqvae.eval() # switch off embedding weights initialization return _vqvae @pytest.fixture def indices(): return torch.tensor([[[1, 3], [0, 2]]]) # (b, d1, d2) class TestVQVAE: @pytest.fixture def vqvae(self, vqvae_builder, encoder): return vqvae_builder(encoder) @pytest.fixture def vqvae_bad_encoder(self, vqvae_builder, bad_encoder): return vqvae_builder(bad_encoder) @pytest.fixture def vqvae_bad_codebook(self, vqvae_builder, encoder, mocker): class BadCodebook(nn.Module): def __init__(self, num_embeddings, embedding_dim): super().__init__() mock_codebook = mocker.patch( "torchmultimodal.models.vqvae.Codebook", wraps=BadCodebook ) return vqvae_builder(encoder), mock_codebook @pytest.fixture def x(self): return torch.tensor( [[[[1.0, 1.0], [2.0, 2.0]], [[3.0, 3.0], [4.0, 4.0]]]] ) # (b, c, d1, d2) @pytest.fixture def expected_decoded(self): return torch.tensor( [[[[17.0, 37.0], [34.0, 74.0]], [[51.0, 111.0], [68.0, 148.0]]]] ) @pytest.fixture def expected_encoded_flat(self): return torch.tensor( [[3.0, 9.0], [7.0, 21.0], [6.0, 12.0], [14.0, 28.0]] # (b x d1 x d2, c) ) @pytest.fixture def expected_quantized_flat(self): return torch.tensor( [ [3.0, 9.0], [7.0, 21.0], [6.0, 12.0], [14.0, 28.0], ] # (b x d1 x d2, emb_dim) ) @pytest.fixture def expected_quantized(self): return torch.tensor( [ [[[3.0, 7.0], [6.0, 14.0]], [[9.0, 21.0], [12.0, 28.0]]] ] # (b, emb_dim, d1, d2) ) @pytest.fixture def expected_codebook_indices(self, indices): return indices @pytest.fixture def expected_codebook_output( self, expected_encoded_flat, expected_quantized_flat, expected_codebook_indices, expected_quantized, ): return { "encoded_flat": expected_encoded_flat, "quantized_flat": expected_quantized_flat, "codebook_indices": expected_codebook_indices, "quantized": expected_quantized, } def test_encode(self, vqvae, x, expected_codebook_indices): actual_codebook_indices = vqvae.encode(x) assert_expected(actual_codebook_indices, expected_codebook_indices) def test_encode_return_embeddings( self, vqvae, x, expected_quantized, expected_codebook_indices ): actual_codebook_indices, actual_quantized = vqvae.encode( x, return_embeddings=True ) assert_expected(actual_quantized, expected_quantized) assert_expected(actual_codebook_indices, expected_codebook_indices) def test_decode(self, vqvae, indices, expected_decoded): actual_decoded = vqvae.decode(indices) assert_expected(actual_decoded, expected_decoded) def test_forward(self, vqvae, x, expected_decoded, expected_codebook_output): actual = vqvae(x) expected = { "decoded": expected_decoded, "codebook_output": expected_codebook_output, } assert_expected_namedtuple(actual, expected) def test_lookup(self, vqvae, indices): actual = vqvae.lookup(indices) expected = torch.tensor( [[[[3.0, 9.0], [7.0, 21.0]], [[6.0, 12.0], [14.0, 28.0]]]] ) assert_expected(actual, expected) def test_latent_shape(self, vqvae): actual = vqvae.latent_shape(input_shape=(1, 2, 3)) expected = (1, 2, 3) assert_expected(actual, expected) def test_latent_shape_bad_encoder(self, vqvae_bad_encoder): with pytest.raises(AttributeError): vqvae_bad_encoder.latent_shape(input_shape=(1, 2, 3)) def test_lookup_bad_codebook(self, vqvae_bad_codebook, indices): vqvae, mock_codebook = vqvae_bad_codebook with pytest.raises(AttributeError): vqvae.lookup(indices) mock_codebook.assert_called_once() def test_num_embeddings(self, vqvae, num_embeddings): actual = vqvae.num_embeddings expected = num_embeddings assert_expected(actual, expected) def test_embedding_dim(self, vqvae, embedding_dim): actual = vqvae.embedding_dim expected = embedding_dim assert_expected(actual, expected)
EXA-1-master
exa/libraries/multimodal-main/tests/models/test_vqvae.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected, assert_expected_namedtuple, set_rng_seed from torchmultimodal.models.video_vqvae import ( AttentionResidualBlock, preprocess_int_conv_params, video_vqvae, VideoDecoder, VideoEncoder, ) @pytest.fixture(autouse=True) def random(): set_rng_seed(4) @pytest.fixture(scope="module") def params(): in_channel_dims = (2, 2) out_channel_dims = (2, 2) kernel_sizes = ((2, 2, 2), (2, 2, 2)) strides = ((1, 1, 1), (1, 1, 1)) return in_channel_dims, out_channel_dims, kernel_sizes, strides @pytest.fixture(scope="module") def input_tensor(): return torch.ones(1, 2, 2, 2, 2) class TestAttentionResidualBlock: def test_hidden_dim_assertion(self): with pytest.raises(ValueError): _ = AttentionResidualBlock(1) def test_forward(self): block = AttentionResidualBlock(4) x = 2 * torch.ones(1, 4, 2, 2, 2) actual = block(x) expected = torch.tensor( [ [ [ [[2.4492, 2.4492], [2.4492, 2.4492]], [[2.4492, 2.4492], [2.4492, 2.4492]], ], [ [[2.3055, 2.3055], [2.3055, 2.3055]], [[2.3055, 2.3055], [2.3055, 2.3055]], ], [ [[1.9071, 1.9071], [1.9071, 1.9071]], [[1.9071, 1.9071], [1.9071, 1.9071]], ], [ [[1.7587, 1.7587], [1.7587, 1.7587]], [[1.7587, 1.7587], [1.7587, 1.7587]], ], ] ] ) assert_expected(actual, expected, rtol=0, atol=1e-4) class TestVideoEncoder: @pytest.fixture def encoder(self, params): in_channel_dims, _, kernel_sizes, _ = params def get_encoder(strides): enc = VideoEncoder( in_channel_dims=in_channel_dims, kernel_sizes=kernel_sizes, strides=strides, output_dim=2, n_res_layers=1, attn_hidden_dim=2, ) enc.eval() return enc return get_encoder @pytest.fixture def uneven_strides(self): return ((2, 2, 2), (1, 2, 2)) @pytest.fixture def big_input(self): return torch.ones(1, 2, 4, 8, 8) def test_forward(self, input_tensor, encoder, params): strides = params[-1] model = encoder(strides) actual = model(input_tensor) expected = torch.tensor( [ [ [ [[-0.6480, -0.5961], [-0.6117, -0.6640]], [[-0.7177, -0.7569], [-0.5477, -0.5710]], ], [ [[-0.1906, -0.1636], [-0.2265, -0.1501]], [[-0.1730, -0.1398], [-0.2598, -0.1510]], ], ] ] ) assert_expected(actual, expected, rtol=0, atol=1e-4) def test_latent_shape(self, big_input, encoder, uneven_strides): downsampler = encoder(uneven_strides) output = downsampler(big_input) actual = output.shape[2:] expected = downsampler.get_latent_shape(big_input.shape[2:]) assert_expected(actual, expected) class TestVideoDecoder: @pytest.fixture def decoder(self, params): _, out_channel_dims, kernel_sizes, strides = params dec = VideoDecoder( out_channel_dims=out_channel_dims, kernel_sizes=kernel_sizes, strides=strides, input_dim=2, n_res_layers=1, attn_hidden_dim=2, ) dec.eval() return dec def test_forward(self, input_tensor, decoder): actual = decoder(input_tensor) expected = torch.tensor( [ [ [ [[-0.2129, -0.1894], [-0.2358, -0.2302]], [[-0.2012, -0.1757], [-0.2264, -0.2067]], ], [ [[-0.1252, -0.1220], [-0.1235, -0.1280]], [[-0.1502, -0.1264], [-0.1551, -0.1490]], ], ] ] ) assert_expected(actual, expected, rtol=0, atol=1e-4) class TestVideoVQVAE: @pytest.fixture def vv(self): model = video_vqvae( in_channel_dim=2, encoder_hidden_dim=2, encoder_kernel_size=2, encoder_stride=1, encoder_n_layers=2, n_res_layers=1, attn_hidden_dim=2, num_embeddings=8, embedding_dim=2, decoder_hidden_dim=2, decoder_kernel_size=2, decoder_stride=1, decoder_n_layers=2, ) model.eval() return model @pytest.fixture def expected_decoded(self): return torch.tensor( [ [ [ [[0.1547, 0.1720], [0.1354, 0.1029]], [[0.0828, 0.1086], [0.0837, 0.0637]], ], [ [[0.1914, 0.0667], [0.1442, -0.0180]], [[0.0793, -0.0574], [0.0635, -0.0776]], ], ] ] ) @pytest.fixture def expected_codebook_output(self): return { "encoded_flat": torch.tensor( [ [-0.6480, -0.1906], [-0.5961, -0.1636], [-0.6117, -0.2265], [-0.6640, -0.1501], [-0.7177, -0.1730], [-0.7569, -0.1398], [-0.5477, -0.2598], [-0.5710, -0.1510], ] ), "quantized_flat": torch.tensor( [ [-0.1801, 0.2553], [-0.1801, 0.2553], [-0.1801, 0.2553], [-0.1801, 0.2553], [-0.1801, 0.2553], [-0.1801, 0.2553], [-0.1801, 0.2553], [-0.1801, 0.2553], ] ), "codebook_indices": torch.tensor( [ [ [[4, 4], [4, 4]], [[4, 4], [4, 4]], ], ] ), "quantized": torch.tensor( [ [ [ [[-0.1801, -0.1801], [-0.1801, -0.1801]], [[-0.1801, -0.1801], [-0.1801, -0.1801]], ], [ [[0.2553, 0.2553], [0.2553, 0.2553]], [[0.2553, 0.2553], [0.2553, 0.2553]], ], ] ] ), } @pytest.fixture def indices(self): return torch.tensor( [ [ [[4, 4], [4, 4]], [[4, 4], [4, 4]], ], ] ) def test_encode(self, vv, input_tensor, indices): actual_codebook_indices = vv.encode(input_tensor) expected_codebook_indices = indices assert_expected(actual_codebook_indices, expected_codebook_indices) def test_decode(self, vv, indices, expected_decoded): actual = vv.decode(indices) expected = expected_decoded assert_expected(actual, expected, rtol=0, atol=1e-4) def test_forward( self, vv, input_tensor, expected_decoded, expected_codebook_output ): actual = vv(input_tensor) expected = { "decoded": expected_decoded, "codebook_output": expected_codebook_output, } assert_expected_namedtuple(actual, expected, rtol=0, atol=1e-4) def test_preprocess_int_conv_params(): channels = (3, 3, 3) kernel = 2 stride = 1 expected_kernel = torch.tensor(((2, 2, 2), (2, 2, 2), (2, 2, 2))) expected_stride = torch.tensor(((1, 1, 1), (1, 1, 1), (1, 1, 1))) actual_kernel, actual_stride = preprocess_int_conv_params(channels, kernel, stride) actual_kernel = torch.tensor(actual_kernel) actual_stride = torch.tensor(actual_stride) assert_expected(actual_kernel, expected_kernel) assert_expected(actual_stride, expected_stride) actual_kernel = preprocess_int_conv_params(channels, kernel_sizes=kernel) actual_kernel = torch.tensor(actual_kernel) assert_expected(actual_kernel, expected_kernel) actual_stride = preprocess_int_conv_params(channels, strides=stride) actual_stride = torch.tensor(actual_stride) assert_expected(actual_stride, expected_stride)
EXA-1-master
exa/libraries/multimodal-main/tests/models/test_video_vqvae.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/tests/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List import pytest import torch from tests.test_utils import assert_expected from torch import nn, Tensor from torchmultimodal.models.late_fusion import LateFusion from torchmultimodal.models.two_tower import TwoTower from torchmultimodal.modules.fusions.concat_fusion import ConcatFusionModule @pytest.fixture def tower_fusion(): class Concat(nn.Module): def __init__(self): super().__init__() def forward(self, x: List[Tensor]) -> Tensor: return torch.cat(x, dim=-1) return Concat() class TestTwoTower: @pytest.fixture def tower_1(self): return LateFusion( {"c1": nn.Identity(), "c2": nn.Identity()}, ConcatFusionModule(), nn.Identity(), ) @pytest.fixture def tower_2(self): return LateFusion( {"c3": nn.Identity(), "c4": nn.Identity()}, ConcatFusionModule(), nn.Identity(), ) @pytest.fixture def batch_size(self): return 3 @pytest.fixture def data(self, batch_size): return { "c1": torch.rand(batch_size, 8), "c2": torch.rand(batch_size, 16), "c3": torch.rand(batch_size, 4), "c4": torch.rand(batch_size, 12), } @pytest.fixture def two_tower(self, tower_1, tower_2, tower_fusion): return TwoTower( tower_id_to_tower={"tower_1": tower_1, "tower_2": tower_2}, tower_fusion=tower_fusion, ) @pytest.fixture def shared_two_tower(self, tower_1, tower_fusion): return TwoTower( tower_id_to_tower={"tower_1": tower_1, "tower_2": tower_1}, tower_fusion=tower_fusion, shared_tower_id_to_channel_mapping={"tower_2": {"c1": "c3", "c2": "c4"}}, ) @pytest.fixture def shared_two_tower_scripting(self, tower_1, tower_fusion): return TwoTower( tower_id_to_tower={"tower_1": tower_1, "tower_2": tower_1}, tower_fusion=tower_fusion, shared_tower_id_to_channel_mapping={"tower_2": {"c3": "c1", "c4": "c2"}}, ) def test_two_tower(self, two_tower, data, batch_size): out = two_tower(data) assert_expected(out[0].size(), (batch_size, 40)) def test_shared_two_tower(self, shared_two_tower, data, batch_size): out = shared_two_tower(data) assert_expected(out[0].size(), (batch_size, 40)) def test_two_tower_scripting(self, two_tower, shared_two_tower_scripting): torch.jit.script(two_tower) torch.jit.script(shared_two_tower_scripting)
EXA-1-master
exa/libraries/multimodal-main/tests/models/test_two_tower.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected, assert_expected_namedtuple, set_rng_seed from torch import nn from torch.nn import functional as F from torchmultimodal.models.gpt import ( MultimodalGPT, MultimodalGPTOutput, MultimodalTransformerDecoder, RightShift, TransformerDecoder, TransformerDecoderLayer, TransformerDecoderOutput, TransformerLayerOutput, ) from torchmultimodal.utils.common import shift_dim @pytest.fixture(autouse=True) def set_seed(): set_rng_seed(4) @pytest.fixture def d_model(): return 4 @pytest.fixture def emb_dim(): return 5 @pytest.fixture def num_emb(): return 6 @pytest.fixture def latent_shape(): # the product of dims should equal out_seq_len return (1, 1, 4) @pytest.fixture def in_seq_len(): return 3 @pytest.fixture def out_seq_len(): return 4 @pytest.fixture def n_head(): return 2 @pytest.fixture def num_in_tokens(): return 4 @pytest.fixture def num_out_tokens(): return 6 @pytest.fixture def in_tokens(in_seq_len): return torch.arange(in_seq_len).unsqueeze(0) # (b, seq_len) @pytest.fixture def out_tokens(out_seq_len): return torch.arange(out_seq_len).unsqueeze(0) # (b, seq_len) @pytest.fixture def in_modality(in_seq_len, d_model): return torch.rand(1, in_seq_len, d_model) # (b, seq_len, d_model) @pytest.fixture def out_modality(out_seq_len, d_model): return torch.rand(1, out_seq_len, d_model) # (b, seq_len, d_model) @pytest.fixture def decoder_input(d_model): return torch.rand(1, 3, d_model) # (b, seq_len, d_model) @pytest.fixture def attn_mask(): def _attn_mask(q_seq_len, k_seq_len=None): if k_seq_len is None: k_seq_len = q_seq_len return torch.tril(torch.ones(q_seq_len, k_seq_len)) # (q_seq_len, k_seq_len) return _attn_mask @pytest.fixture def head_mask(n_head): def _head_mask(q_seq_len, k_seq_len=None): if k_seq_len is None: k_seq_len = q_seq_len masked = torch.zeros(1, q_seq_len, k_seq_len) unmasked = torch.ones(n_head - 1, q_seq_len, k_seq_len) return torch.cat((masked, unmasked), dim=0) # (h, q_seq_len, k_seq_len) return _head_mask @pytest.fixture def logits_mask(in_seq_len, out_seq_len, num_in_tokens, num_out_tokens): total_seq_len = in_seq_len + out_seq_len num_tokens = num_in_tokens + num_out_tokens logits_mask = torch.ones(total_seq_len, num_tokens) logits_mask[in_seq_len:, :num_in_tokens] = 0 logits_mask[:in_seq_len, num_in_tokens:] = 0 return logits_mask @pytest.fixture def num_layers(): return 1 @pytest.fixture def right_shift(d_model): return RightShift(d_model) @pytest.fixture def in_projection(d_model, emb_dim): return nn.Linear(emb_dim, d_model) @pytest.fixture def out_projection(d_model, emb_dim): return nn.Linear(emb_dim, d_model) @pytest.fixture def in_pos_emb(in_seq_len, d_model): return nn.Embedding(in_seq_len, d_model) @pytest.fixture def out_pos_emb(out_seq_len, d_model): return nn.Embedding(out_seq_len, d_model) @pytest.fixture def decoder_layer(n_head, d_model): return TransformerDecoderLayer(d_model, n_head=n_head).eval() @pytest.fixture def decoder(decoder_layer, num_layers): return TransformerDecoder(decoder_layer, num_layers) @pytest.fixture def mm_decoder(in_pos_emb, out_pos_emb, decoder, right_shift): return MultimodalTransformerDecoder(in_pos_emb, out_pos_emb, decoder, right_shift) @pytest.fixture def tokenizer(num_emb, emb_dim): class DummyTokenizer(nn.Module): def __init__(self, num_emb, emb_dim): super().__init__() # encoder and decoder do not enter either the training or the token # generation paths so we do not test their actual logic but only # the interfaces. self.encoder = nn.Identity() self.decoder = nn.Identity() self.embedding = nn.Parameter( torch.arange(num_emb * emb_dim, dtype=torch.float).reshape( num_emb, emb_dim ) ) def encode(self, x): return self.encoder(x) def decode(self, token_ids): return self.decoder(shift_dim(self.lookup(token_ids), -1, 1)) def lookup(self, token_ids): return F.embedding(token_ids, self.embedding) return DummyTokenizer(num_emb, emb_dim) @pytest.fixture def gpt( d_model, num_in_tokens, num_out_tokens, mm_decoder, latent_shape, tokenizer, in_projection, out_projection, ): def _gpt(in_tokenizer=tokenizer, out_tokenizer=tokenizer, use_gpt_init=False): return MultimodalGPT( d_model=d_model, num_in_tokens=num_in_tokens, num_out_tokens=num_out_tokens, latent_shape=latent_shape, in_tokenizer=in_tokenizer, out_tokenizer=out_tokenizer, mm_decoder=mm_decoder, in_projection=in_projection, out_projection=out_projection, norm_layer=None, use_gpt_init=use_gpt_init, ).eval() return _gpt def get_pos_ids(x): b, seq_len, _ = x.shape pos_ids = torch.arange(seq_len, dtype=torch.long, device=x.device) return pos_ids[None, :] # (1, seq_len) class TestMultimodalGPT: def test_tokenizers_missing_methods(self, gpt): class BadTokenizer(nn.Module): def __init__(self): super().__init__() with pytest.raises(AttributeError): gpt(in_tokenizer=BadTokenizer()) with pytest.raises(AttributeError): gpt(out_tokenizer=BadTokenizer()) def test_initialize_parameters(self, gpt, mocker): # Testing mean and std of the initialized weights data requires a large # amount samples to be statistically stable. Here we just test whether # the method in question has been called to avoid test flakiness. mock_init = mocker.patch("torchmultimodal.models.gpt.Tensor.normal_") gpt = gpt(use_gpt_init=True) mock_init.assert_called() def test_encode_invalid_modality(self, gpt): gpt = gpt() with pytest.raises(ValueError): gpt.encode(torch.randn(1, 2, 3), modality="abc") def test_decode_tokens_wrong_shape(self, gpt): bad_out_tokens = torch.arange(3) # seq_len no batch dim gpt = gpt() with pytest.raises(ValueError): gpt.decode(bad_out_tokens) def test_decode_tokens_reshape(self, gpt, out_tokens): gpt = gpt() actual = gpt.decode(out_tokens) expected_shape = torch.Size([1, 5, 1, 1, 4]) # (b, emb_dim, *latent_shape) assert_expected(actual.shape, expected_shape) def test_lookup_invalid_modality(self, gpt): gpt = gpt() token_ids = torch.arange(3).unsqueeze(0) with pytest.raises(ValueError): gpt.lookup(token_ids, modality="abc") def test_lookup_in_modality(self, gpt, in_tokens): gpt = gpt() actual = gpt.lookup(in_tokens, "in") expected = torch.tensor( [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], ], ] ) assert_expected(actual, expected) def test_lookup_out_modality(self, gpt, out_tokens): gpt = gpt() actual = gpt.lookup(out_tokens, "out") expected = torch.tensor( [ [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], ], ] ) assert_expected(actual, expected) def test_fwd_bad_input(self, gpt): gpt = gpt() with pytest.raises(ValueError): gpt.fwd() def test_fwd_for_generation(self, gpt, in_tokens, d_model, n_head, mocker): """Test autoregressive decoding for one step""" gpt = gpt() mock_right_shift = mocker.patch.object( gpt.mm_decoder.right_shift, "forward", wraps=gpt.mm_decoder.right_shift.forward, ) b, in_seq_len = in_tokens.shape # learn the key/value representation from the full input modality sequence with torch.no_grad(): actual = gpt.fwd( in_tokens=in_tokens, use_cache=True, causal=True, right_shift=True ) assert isinstance(actual, TransformerDecoderOutput) # check that the key/value representation has been learnt for layer_past_kv in actual.past_key_values: assert_expected( layer_past_kv["k"].shape, torch.Size([1, 2, 3, 2]), # (b, n_head, in_seq_len, d_model // n_head) ) assert_expected( layer_past_kv["v"].shape, torch.Size([1, 2, 3, 2]), ) # right shift should be switched on to prepend SOS to input modality sequence mock_right_shift.assert_called_once() mock_right_shift.reset_mock() # generate out_modality for one step # take the last in_modality token as the starting token for out_modality generation decode_step = 0 with torch.no_grad(): actual = gpt.fwd( out_tokens=in_tokens[:, -1:], out_pos_ids=torch.tensor([decode_step]).unsqueeze(0).repeat(b, 1), use_cache=True, causal=True, ) # check that the key/value representation has increased by 1 unit for layer_past_kv in actual.past_key_values: assert_expected( layer_past_kv["k"].shape, torch.Size( [1, 2, 4, 2] ), # (b, n_head, in_seq_len + 1, d_model // n_head) ) assert_expected( layer_past_kv["v"].shape, torch.Size([1, 2, 4, 2]), ) # right shift should be switched off as the "SOS" token for output modality # is the last token of in_modality mock_right_shift.assert_not_called() def test_forward( self, gpt, in_tokens, out_tokens, attn_mask, head_mask, ): gpt = gpt() b, in_seq_len = in_tokens.shape b, out_seq_len = out_tokens.shape attn_mask = attn_mask(in_seq_len + out_seq_len) head_mask = head_mask(in_seq_len + out_seq_len) actual = gpt( in_tokens=in_tokens, out_tokens=out_tokens, attn_mask=attn_mask, head_mask=head_mask, use_cache=True, causal=True, right_shift=True, ) assert isinstance(actual, MultimodalGPTOutput) expected = { "decoder_output": { "last_hidden_states": ( torch.Size([1, 7, 4]), # (b, seq_len, d_model) 64.5348, ), "hidden_states": None, "attention_weights": None, "past_key_values": ( ( { "k": (torch.Size([1, 2, 7, 2]), 8.3626), "v": (torch.Size([1, 2, 7, 2]), 3.4256), } ), ), # (num_layers, key/value, (b, n_head, seq_len, d_model // n_head) }, "logits": (torch.Size([1, 7, 10]), 0.0), # (b, seq_len, tokens) } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_forward_logits_mask( self, gpt, in_tokens, out_tokens, attn_mask, head_mask, logits_mask, ): gpt = gpt() b, in_seq_len = in_tokens.shape b, out_seq_len = out_tokens.shape attn_mask = attn_mask(in_seq_len + out_seq_len) head_mask = head_mask(in_seq_len + out_seq_len) out = gpt( in_tokens=in_tokens, out_tokens=out_tokens, attn_mask=attn_mask, head_mask=head_mask, use_cache=True, causal=True, right_shift=True, logits_mask=logits_mask, ) assert isinstance(out, MultimodalGPTOutput) actual = out.logits # (b, seq_len, num_tokens) max_neg_value = -torch.finfo(torch.float32).max # assert each quandrant of the logits matrix (b, total_seq_len, num_total_tokens) assert_expected( actual[:, :3, :4], torch.zeros(1, 3, 4) ) # (b, in_seq_len, num_in_tokens) assert_expected( actual[:, :3, 4:], torch.ones(1, 3, 6) * max_neg_value ) # (b, in_seq_len, num_out_tokens) assert_expected( actual[:, 3:, :4], torch.ones(1, 4, 4) * max_neg_value ) # (b, out_seq_len, num_in_tokens) assert_expected( actual[:, 3:, 4:], torch.zeros(1, 4, 6) ) # (b, out_seq_len, num_out_tokens) class TestMultimodalTransformerDecoder: def test_bad_input(self, mm_decoder): with pytest.raises(ValueError): mm_decoder() def test_forward_in_modality(self, mm_decoder, in_modality): actual = mm_decoder( in_modality=in_modality, in_pos_ids=get_pos_ids(in_modality) ) expected = { "last_hidden_states": ( torch.Size([1, 3, 4]), 0.2222, ), # (b, in_seq_len, d_model) "hidden_states": None, "attention_weights": None, "past_key_values": None, } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_forward_out_modality(self, mm_decoder, out_modality): actual = mm_decoder( out_modality=out_modality, out_pos_ids=get_pos_ids(out_modality) ) expected = { "last_hidden_states": ( torch.Size([1, 4, 4]), 5.2093, ), # (b, out_seq_len, d_model) "hidden_states": None, "attention_weights": None, "past_key_values": None, } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_forward_two_modality(self, mm_decoder, in_modality, out_modality): actual = mm_decoder( in_modality=in_modality, out_modality=out_modality, in_pos_ids=get_pos_ids(in_modality), out_pos_ids=get_pos_ids(out_modality), ) expected = { "last_hidden_states": ( torch.Size([1, 7, 4]), 7.9519, ), # (b, in_seq_len + out_seq_len, d_model) "hidden_states": None, "attention_weights": None, "past_key_values": None, } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_forward_eval_right_shift_on( self, mm_decoder, in_modality, out_modality, mocker ): """Test right shift is switched on during eval mode""" mock_right_shift = mocker.patch.object( mm_decoder.right_shift, "forward", wraps=mm_decoder.right_shift.forward ) mm_decoder.eval() actual = mm_decoder( in_modality=in_modality, out_modality=out_modality, in_pos_ids=get_pos_ids(in_modality), out_pos_ids=get_pos_ids(out_modality), right_shift=True, ) mock_right_shift.assert_called_once() expected = { "last_hidden_states": ( torch.Size([1, 7, 4]), 7.9519, ), # (b, in_seq_len + out_seq_len, d_model) "hidden_states": None, "attention_weights": None, "past_key_values": None, } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_forward_eval_right_shift_off( self, mm_decoder, in_modality, out_modality, mocker ): """Test right shift is switched off during eval mode""" mock_right_shift = mocker.patch.object( mm_decoder.right_shift, "forward", wraps=mm_decoder.right_shift.forward ) mm_decoder.eval() actual = mm_decoder( in_modality=in_modality, out_modality=out_modality, in_pos_ids=get_pos_ids(in_modality), out_pos_ids=get_pos_ids(out_modality), ) mock_right_shift.assert_not_called() expected = { "last_hidden_states": ( torch.Size([1, 7, 4]), 10.1681, ), # (b, in_seq_len + out_seq_len, d_model) "hidden_states": None, "attention_weights": None, "past_key_values": None, } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_bad_pos_ids(self, mm_decoder, in_modality, in_seq_len): in_pos_ids = torch.arange( in_seq_len + 1, dtype=torch.long, device=in_modality.device )[None, :] with pytest.raises(ValueError): mm_decoder._norm_pos_ids(in_modality, in_pos_ids) def test_optional_pos_ids(self, mm_decoder, in_modality): actual = mm_decoder._norm_pos_ids(in_modality) expected = get_pos_ids(in_modality) assert_expected(actual, expected) class TestTransformerDecoder: def test_forward_mask_extended( self, decoder, decoder_input, attn_mask, head_mask, num_layers ): b, seq_len, _ = decoder_input.shape attn_mask = attn_mask(seq_len).unsqueeze(0) # add batch dim head_mask = head_mask(seq_len).unsqueeze(0) actual = decoder(decoder_input, attn_mask, head_mask) assert isinstance(actual, TransformerDecoderOutput) assert_expected(actual.last_hidden_states.shape, torch.Size([1, 3, 4])) def test_forward(self, decoder, decoder_input, attn_mask, head_mask, num_layers): b, seq_len, _ = decoder_input.shape attn_mask = attn_mask(seq_len) head_mask = head_mask(seq_len) actual = decoder(decoder_input, attn_mask, head_mask) assert isinstance(actual, TransformerDecoderOutput) assert_expected(actual.last_hidden_states.shape, torch.Size([1, 3, 4])) def test_forward_additional_output(self, decoder, decoder_input, num_layers): actual = decoder( decoder_input, use_cache=True, return_attn_weights=True, return_hidden_states=True, ) assert isinstance(actual, TransformerDecoderOutput) assert_expected(actual.last_hidden_states.shape, torch.Size([1, 3, 4])) assert_expected( len(actual.hidden_states), num_layers + 1 ) # +1 to include the input hidden_states assert_expected(len(actual.attention_weights), num_layers) assert_expected(len(actual.past_key_values), num_layers) class TestTransformerDecoderLayer: def test_forward(self, decoder_layer, decoder_input): actual = decoder_layer(decoder_input) assert isinstance(actual, TransformerLayerOutput) expected = { "hidden_states": (torch.Size([1, 3, 4]), 5.1956), # (b, seq_len, d_model) "attention_weights": None, "past_key_values": None, } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_forward_masked(self, decoder_layer, decoder_input, attn_mask, head_mask): b, seq_len, _ = decoder_input.shape attn_mask = attn_mask(seq_len) head_mask = head_mask(seq_len) actual = decoder_layer(decoder_input, attn_mask, head_mask) assert isinstance(actual, TransformerLayerOutput) expected = { "hidden_states": (torch.Size([1, 3, 4]), 7.0397), # (b, seq_len, seq_len) "attention_weights": None, "past_key_values": None, } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_forward_additional_output(self, decoder_layer, decoder_input): actual = decoder_layer(decoder_input, use_cache=True, return_attn_weights=True) assert isinstance(actual, TransformerLayerOutput) expected = { "hidden_states": (torch.Size([1, 3, 4]), 5.1956), # (b, seq_len, seq_len) "attention_weights": ( torch.Size([1, 2, 3, 3]), 6.0, ), # (b, h, seq_len, seq_len) "past_key_values": { "k": ([1, 2, 3, 2], 4.8075), "v": ([1, 2, 3, 2], -5.6613), }, # (b, h, seq_len, d_model//h) } assert_expected_namedtuple(actual, expected, rtol=1e-5, atol=1e-4) def test_right_shift(right_shift, d_model): x = torch.ones(1, 3, d_model) # (b, seq_len, d_model) actual = right_shift(x) expected = torch.tensor( [ [ [-0.0321, 0.0046, 0.0448, 0.0169], [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000], ] ] ) assert_expected(actual, expected, rtol=1e-5, atol=1e-4)
EXA-1-master
exa/libraries/multimodal-main/tests/models/test_gpt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch import torchmultimodal.models.omnivore as omnivore from tests.test_utils import assert_expected, set_rng_seed from torchmultimodal.utils.common import get_current_device @pytest.fixture(autouse=True) def device(): set_rng_seed(42) return get_current_device() @pytest.fixture() def omnivore_swin_t_model(device): return omnivore.omnivore_swin_t().to(device) @pytest.fixture() def omnivore_swin_s_model(device): return omnivore.omnivore_swin_s().to(device) @pytest.fixture() def omnivore_swin_b_model(device): return omnivore.omnivore_swin_b().to(device) def test_omnivore_swin_t_forward(omnivore_swin_t_model, device): model = omnivore_swin_t_model image = torch.randn((1, 3, 1, 112, 112), device=device) # B C D H W image_score = model(image, input_type="image") assert_expected(image_score.size(), torch.Size((1, 1000))) assert_expected( image_score.abs().sum(), torch.tensor(184.01417), rtol=1e-3, atol=1e-3 ) rgbd = torch.randn((1, 4, 1, 112, 112), device=device) rgbd_score = model(rgbd, input_type="rgbd") assert_expected(rgbd_score.size(), torch.Size((1, 19))) assert_expected(rgbd_score.abs().sum(), torch.tensor(3.60813), rtol=1e-3, atol=1e-3) video = torch.randn((1, 3, 4, 112, 112), device=device) video_score = model(video, input_type="video") assert_expected(video_score.size(), torch.Size((1, 400))) assert_expected( video_score.abs().sum(), torch.tensor(110.70048), rtol=1e-3, atol=1e-3 ) def test_omnivore_swin_s_forward(omnivore_swin_s_model, device): model = omnivore_swin_s_model image = torch.randn((1, 3, 1, 112, 112), device=device) # B C D H W image_score = model(image, input_type="image") assert_expected(image_score.size(), torch.Size((1, 1000))) assert_expected( image_score.abs().sum(), torch.tensor(239.73104), rtol=1e-3, atol=1e-3 ) rgbd = torch.randn((1, 4, 1, 112, 112), device=device) rgbd_score = model(rgbd, input_type="rgbd") assert_expected(rgbd_score.size(), torch.Size((1, 19))) assert_expected(rgbd_score.abs().sum(), torch.tensor(5.80919), rtol=1e-3, atol=1e-3) video = torch.randn((1, 3, 4, 112, 112), device=device) video_score = model(video, input_type="video") assert_expected(video_score.size(), torch.Size((1, 400))) assert_expected( video_score.abs().sum(), torch.tensor(136.49894), rtol=1e-3, atol=1e-3 ) def test_omnivore_swin_b_forward(omnivore_swin_b_model, device): model = omnivore_swin_b_model image = torch.randn((1, 3, 1, 112, 112), device=device) # B C D H W image_score = model(image, input_type="image") assert_expected(image_score.size(), torch.Size((1, 1000))) assert_expected( image_score.abs().sum(), torch.tensor(278.06488), rtol=1e-3, atol=1e-3 ) rgbd = torch.randn((1, 4, 1, 112, 112), device=device) rgbd_score = model(rgbd, input_type="rgbd") assert_expected(rgbd_score.size(), torch.Size((1, 19))) assert_expected(rgbd_score.abs().sum(), torch.tensor(4.52186), rtol=1e-3, atol=1e-3) video = torch.randn((1, 3, 4, 112, 112), device=device) video_score = model(video, input_type="video") assert_expected(video_score.size(), torch.Size((1, 400))) assert_expected( video_score.abs().sum(), torch.tensor(138.22859), rtol=1e-3, atol=1e-3 ) def test_omnivore_forward_wrong_input_type(omnivore_swin_t_model, device): model = omnivore_swin_t_model image = torch.randn((1, 3, 1, 112, 112), device=device) # B C D H W with pytest.raises(AssertionError, match="Unsupported input_type: _WRONG_TYPE_.+"): _ = model(image, input_type="_WRONG_TYPE_")
EXA-1-master
exa/libraries/multimodal-main/tests/models/test_omnivore.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected, set_rng_seed from torchmultimodal.models.video_gpt import video_gpt, video_vqvae @pytest.fixture(autouse=True) def set_seed(): return set_rng_seed(4) _model_params = { "video_gpt": { "input_shape": (16, 64, 64), "latent_shape": (8, 32, 32), "d_model": 576, "n_head": 4, "dropout": 0.2, "attn_dropout": 0.3, "num_decoder_layers": 16, "use_gpt_init": True, }, "video_vqvae": { "input_shape": (16, 64, 64), "conv_filter_sizes": ((4, 4, 4),), "conv_filter_strides": ((2, 2, 2),), "encoder_filter_size": (3, 3, 3), "encoder_filter_stride": (1, 1, 1), "in_channel_dim": 3, "encoder_hidden_dim": 240, "n_res_layers": 4, "attn_hidden_dim": 240, "num_embeddings": 1024, "embedding_dim": 256, "decoder_hidden_dim": 240, }, } class TestVideoGPT: _model_name = "video_gpt" @pytest.fixture def model_params(self): return _model_params.get(self._model_name, {}) @pytest.fixture def model_fn(self): return video_gpt def test_encode(self, model_fn, model_params): model = model_fn(**model_params) model.eval() x = torch.randn((1, 3, *model_params["input_shape"])) # (b, c, *input_shape) actual = model.encode(x, "in") assert_expected(actual.shape, (1, 8192)) assert_expected(actual.sum().item(), 6678187) def test_decode(self, model_fn, model_params): model = model_fn(**model_params) model.eval() latent_seq_len = torch.prod(torch.tensor(model_params["latent_shape"])).item() x = torch.randint(0, 10, (1, latent_seq_len)) # tokens actual = model.decode(x) assert_expected(actual.shape, (1, 3, 16, 64, 64)) assert_expected(actual.sum().item(), 14629.2432, rtol=1e-5, atol=1e-4) @pytest.mark.parametrize( "modality, expected_shape, expected_sum", [("in", (1, 2, 256), 38.8214), ("out", (1, 2, 256), -23.4659)], ) def test_lookup( self, model_fn, model_params, modality, expected_shape, expected_sum ): model = model_fn(**model_params) model.eval() x = torch.tensor([[1, 2]]) # tokens actual = model.lookup(x, modality) assert_expected(actual.shape, expected_shape) assert_expected(actual.sum().item(), expected_sum, rtol=1e-5, atol=1e-4) def test_forward(self, model_fn, model_params): model = model_fn(**model_params) model.eval() n_head = model_params["n_head"] x = torch.tensor([[1, 2, 3, 4]]) # (b, in_seq_len) y = torch.tensor([[5, 6, 7]]) # (b, out_seq_len) attn_mask = torch.tril(torch.ones(7, 7)).unsqueeze(0) # (b, seq_len, seq_len) head_mask = torch.ones(1, n_head, 7, 7) # (b, h, seq_len, seq_len) num_tokens = model.num_in_tokens + model.num_out_tokens logits_mask = torch.ones(1, 7, num_tokens) # (b, seq_len, num_tokens) out = model( x, y, attn_mask=attn_mask, head_mask=head_mask, logits_mask=logits_mask, use_cache=True, causal=True, return_attn_weights=True, return_hidden_states=True, ) actual = out.decoder_output.last_hidden_states assert_expected(actual.shape, (1, 7, 576)) # Tolerance is fairly high but between Mac and Linux (AWS) it looks like the resuts # are slightly different when rtol=1e-5 assert_expected(actual.sum().item(), 64.0230, rtol=1, atol=1e-4) def test_video_vqvae(): model_name = "video_vqvae" kwargs = _model_params.get(model_name, {}) input_shape = kwargs.pop("input_shape") model = video_vqvae(**kwargs) model.eval() x = torch.randn((1, 3, *input_shape)) out = model(x) actual = out.decoded assert_expected(actual.shape, (1, 3, 16, 64, 64)) assert_expected(actual.sum().item(), -44372.4180, rtol=1, atol=1e-4)
EXA-1-master
exa/libraries/multimodal-main/tests/models/test_video_gpt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from functools import partial import pytest import torch from tests.test_utils import assert_expected, set_rng_seed from torch import nn from torchmultimodal.models.flava.transformer import init_transformer_weights from torchmultimodal.modules.encoders.bert_text_encoder import BERTTextEncoder from torchmultimodal.modules.layers.text_embedding import BERTTextEmbeddings from torchmultimodal.modules.layers.transformer import TransformerEncoder @pytest.fixture(autouse=True) def random(): set_rng_seed(0) class TestFlavaTextEncoder: @pytest.fixture def emb_weights(self): return torch.Tensor([[0, 1], [1, 0], [1, 1]]) @pytest.fixture def text_encoder_components(self, emb_weights): text_embedding = BERTTextEmbeddings( hidden_size=2, vocab_size=3, max_position_embeddings=2, dropout=0, ) text_embedding.word_embeddings = nn.Embedding.from_pretrained(emb_weights) text_embedding.position_embeddings = nn.Embedding.from_pretrained(emb_weights) text_embedding.token_type_embeddings = nn.Embedding.from_pretrained(emb_weights) text_embedding.eval() encoder = TransformerEncoder( n_layer=1, d_model=2, n_head=1, dim_feedforward=1, activation=nn.GELU, norm_first=True, ) weight_init_fn = partial(init_transformer_weights, initializer_range=0.02) text_encoder = BERTTextEncoder( embeddings=text_embedding, encoder=encoder, layernorm=nn.LayerNorm(2), pooler=nn.Identity(), weight_init_fn=weight_init_fn, ) return text_encoder, text_embedding @pytest.fixture def input_ids(self): return torch.IntTensor([[0, 1]]) @pytest.fixture def attn_mask(self): return torch.IntTensor([[1, 0]]) def test_embedding(self, text_encoder_components, input_ids): _, text_embedding = text_encoder_components out = text_embedding(input_ids) expected = torch.Tensor([[[1.0, -1.0], [-1.0, 1.0]]]) assert_expected(out, expected) def test_text_transformer(self, text_encoder_components, input_ids): text_encoder, _ = text_encoder_components out = text_encoder( input_ids, return_attn_weights=True, return_hidden_states=True, ) assert_expected( out.last_hidden_state, torch.Tensor([[[1.0, -1.0], [-1.0, 1.0]]]) ) assert_expected( out.hidden_states, ( torch.Tensor([[[1.0000, -1.0000], [-1.0000, 1.0000]]]), torch.Tensor([[[1.0008, -0.9994], [-0.9997, 1.0012]]]), ), atol=1e-4, rtol=0.0, ) assert_expected(out.attentions, (torch.Tensor([[[[0, 1.0], [0.0, 1.0]]]]),)) def test_text_transformer_attn_mask( self, text_encoder_components, input_ids, attn_mask ): text_encoder, _ = text_encoder_components out = text_encoder( input_ids, attention_mask=attn_mask, return_attn_weights=True, return_hidden_states=True, ) assert_expected( out.last_hidden_state, torch.Tensor([[[1.0, -1.0], [-1.0, 1.0]]]) ) assert_expected( out.hidden_states, ( torch.Tensor([[[1.0, -1.0], [-1.0, 1.0]]]), torch.Tensor([[[0.9997, -1.0012], [-1.0008, 0.9994]]]), ), atol=1e-4, rtol=0.0, ) assert_expected(out.pooler_output, torch.Tensor([[[1.0, -1.0], [-1.0, 1.0]]])) assert_expected(out.attentions, (torch.Tensor([[[[1.0, 0], [1.0, 0]]]]),))
EXA-1-master
exa/libraries/multimodal-main/tests/models/flava/test_text_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/tests/models/flava/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected, set_rng_seed from torch import nn from torchmultimodal.models.flava.model import ( flava_image_encoder, flava_model_for_classification, flava_model_for_pretraining, flava_text_encoder, FLAVAModel, ) from torchmultimodal.modules.layers.transformer import TransformerOutput NUM_CLASSES = 2 @pytest.fixture(autouse=True) def random(): set_rng_seed(1234) class TestFLAVA: @pytest.fixture def classification_inputs(self): text = torch.randint(0, 30500, (2, 77), dtype=torch.long) image = torch.rand((2, 3, 224, 224)) labels = torch.randint(0, 2, (2,), dtype=torch.long) return text, image, labels @pytest.fixture def pretraining_inputs(self): text = torch.randint(0, 30500, (2, 77), dtype=torch.long) image = torch.rand((2, 3, 224, 224)) image_for_codebook = torch.rand(2, 3, 112, 112) image_patches_mask = torch.randint(0, 2, (2, 196), dtype=torch.long) text_masked = text.detach().clone() text_masked[:, 1:3] = 100 mlm_labels = text.detach().clone() mlm_labels[:, :] = -1 mlm_labels[:, 1:3] = text[:, 1:3] itm_labels = torch.tensor((0, 1), dtype=torch.long) return ( text, image, image_for_codebook, image_patches_mask, text_masked, mlm_labels, itm_labels, ) @torch.no_grad() def test_forward_classification(self, classification_inputs): text, image, labels = classification_inputs flava = flava_model_for_classification(NUM_CLASSES, pretrained=False) flava.eval() # Test multimodal scenario output = flava(image, text, "mm", labels) assert_expected(output.loss.item(), 0.7180, rtol=0, atol=1e-4) # Test unimodal image scenario output = flava(image, text, "image", labels) assert_expected(output.loss.item(), 0.7020, rtol=0, atol=1e-4) # Test unimodal text scenario output = flava(image, text, "text", labels) assert_expected(output.loss.item(), 0.6663, rtol=0, atol=1e-4) @torch.no_grad() def test_forward_pretraining(self, pretraining_inputs): ( text, image, image_for_codebook, image_patches_mask, text_masked, mlm_labels, itm_labels, ) = pretraining_inputs flava = flava_model_for_pretraining() flava.eval() output = flava( image=image, text=text, image_for_codebook=image_for_codebook, image_patches_mask=image_patches_mask, text_masked=text_masked, required_embedding="mm", itm_labels=itm_labels, mlm_labels=mlm_labels, ) assert output.mlm_output is None assert output.mim_output is None assert output.global_contrastive_output is not None assert output.mmm_text_output is not None assert output.mmm_image_output is not None assert output.itm_output is not None assert_expected( sum( value if value is not None else 0 for value in output.losses.values() ).item(), 21.5150, rtol=0, atol=1e-4, ) output = flava( image=image, text=text, image_for_codebook=image_for_codebook, image_patches_mask=image_patches_mask, text_masked=text_masked, required_embedding="image", itm_labels=itm_labels, mlm_labels=mlm_labels, ) assert output.mlm_output is None assert output.mim_output is not None assert output.global_contrastive_output is None assert output.mmm_text_output is None assert output.mmm_image_output is None assert output.itm_output is None assert_expected( sum( value if value is not None else 0 for value in output.losses.values() ).item(), 8.9674, rtol=0, atol=1e-4, ) output = flava( image=image, text=text, image_for_codebook=image_for_codebook, image_patches_mask=image_patches_mask, text_masked=text_masked, required_embedding="text", itm_labels=itm_labels, mlm_labels=mlm_labels, ) assert output.mlm_output is not None assert output.mim_output is None assert output.global_contrastive_output is None assert output.mmm_text_output is None assert output.mmm_image_output is None assert output.itm_output is None assert_expected( sum( value if value is not None else 0 for value in output.losses.values() ).item(), 10.0305, rtol=0, atol=1e-4, ) class TestFLAVAModel: @pytest.fixture def text_encoder(self): return flava_text_encoder( hidden_size=2, num_attention_heads=1, num_hidden_layers=1, intermediate_size=2, ) @pytest.fixture def image_encoder(self): return flava_image_encoder( hidden_size=2, num_attention_heads=1, num_hidden_layers=1, intermediate_size=2, image_size=2, patch_size=1, num_channels=3, use_image_masking=True, ) @pytest.fixture def flava( self, image_encoder, text_encoder, ): flava_model = FLAVAModel( image_encoder=image_encoder, text_encoder=text_encoder, mm_encoder=nn.Identity(), image_to_mm_projection=nn.Identity(), text_to_mm_projection=nn.Identity(), text_projection=nn.Identity(), image_projection=nn.Identity(), ) flava_model.eval() return flava_model @pytest.fixture def inputs(self): image = torch.zeros(2, 3, 2, 2) masked_image = torch.ones(2, 1) text = torch.ones(2, 3, dtype=torch.int32) masked_text = torch.ones(2, 3, dtype=torch.int32) return image, masked_image, text, masked_text def test_forward_image_text(self, image_encoder, text_encoder, flava, inputs): image, _, text, _ = inputs actual = flava(image, text) expected_image = image_encoder(image) expected_text = text_encoder( text, return_attn_weights=True, return_hidden_states=True ) assert actual.text_masked == TransformerOutput() assert actual.multimodal_masked == TransformerOutput() assert actual.multimodal == TransformerOutput() assert_expected(actual.text, expected_text) assert_expected(actual.image, expected_image) assert_expected(actual.image_masked, expected_image) assert_expected( actual.projected_image_embeddings, expected_image.last_hidden_state[:, 0, :] ) assert_expected( actual.projected_text_embeddings, expected_text.last_hidden_state[:, 0, :] ) def test_forward_masked_image_and_text( self, image_encoder, text_encoder, flava, inputs ): image, masked_image, text, masked_text = inputs actual = flava( text=text, image=image, image_patches_mask=masked_image, text_masked=masked_text, ) expected_image = image_encoder(image) expected_image_masked = image_encoder(image, masked_image) expected_text = text_encoder( text, return_attn_weights=True, return_hidden_states=True ) expected_text_masked = text_encoder( masked_text, return_attn_weights=True, return_hidden_states=True ) assert actual.multimodal == TransformerOutput() assert_expected(actual.text_masked, expected_text_masked) assert_expected( actual.multimodal_masked, torch.cat( [ expected_image_masked.hidden_states[-1], expected_text_masked.hidden_states[-1], ], 1, ), ) assert_expected(actual.text, expected_text) assert_expected(actual.image, expected_image) assert_expected(actual.image_masked, expected_image_masked) assert_expected( actual.projected_image_embeddings, expected_image.last_hidden_state[:, 0, :] ) assert_expected( actual.projected_text_embeddings, expected_text.last_hidden_state[:, 0, :] ) def test_forward_masked_text(self, text_encoder, flava, inputs): _, _, text, masked_text = inputs text = torch.ones(2, 3, dtype=torch.int32) masked_text = torch.ones(2, 3, dtype=torch.int32) actual = flava(text=text, text_masked=masked_text) expected_text = text_encoder( text, return_attn_weights=True, return_hidden_states=True ) assert actual.multimodal_masked == TransformerOutput() assert actual.multimodal == TransformerOutput() assert actual.image == TransformerOutput() assert actual.image_masked == TransformerOutput() assert actual.projected_image_embeddings is None assert_expected(actual.text, expected_text) assert_expected( actual.text_masked, text_encoder( masked_text, return_attn_weights=True, return_hidden_states=True ), ) assert_expected( actual.projected_text_embeddings, expected_text.last_hidden_state[:, 0, :] ) def test_forward_text(self, text_encoder, flava, inputs): _, _, text, _ = inputs actual = flava(text=text) expected_text = text_encoder( text, return_attn_weights=True, return_hidden_states=True ) assert actual.multimodal_masked == TransformerOutput() assert actual.multimodal == TransformerOutput() assert actual.image == TransformerOutput() assert actual.image_masked == TransformerOutput() assert actual.text_masked == TransformerOutput() assert actual.projected_image_embeddings is None assert_expected(actual.text, expected_text) assert_expected( actual.projected_text_embeddings, expected_text.last_hidden_state[:, 0, :] ) def test_forward_masked_image(self, image_encoder, flava, inputs): image, masked_image, _, _ = inputs actual = flava(image=image, image_patches_mask=masked_image) expected_image = image_encoder(image) assert actual.multimodal_masked == TransformerOutput() assert actual.multimodal == TransformerOutput() assert actual.text == TransformerOutput() assert actual.text_masked == TransformerOutput() assert actual.projected_text_embeddings is None assert_expected(actual.image, expected_image) assert_expected(actual.image_masked, image_encoder(image, masked_image)) assert_expected( actual.projected_image_embeddings, expected_image.last_hidden_state[:, 0, :] ) def test_forward_image(self, image_encoder, flava, inputs): image, _, _, _ = inputs actual = flava(image=image) expected_image = image_encoder(image) assert actual.multimodal_masked == TransformerOutput() assert actual.multimodal == TransformerOutput() assert actual.text == TransformerOutput() assert actual.text_masked == TransformerOutput() assert actual.projected_text_embeddings is None assert_expected(actual.image, expected_image) assert_expected(actual.image_masked, image_encoder(image)) assert_expected( actual.projected_image_embeddings, expected_image.last_hidden_state[:, 0, :] )
EXA-1-master
exa/libraries/multimodal-main/tests/models/flava/test_flava.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from tests.test_utils import assert_expected, set_rng_seed from torchmultimodal.models.flava.model import ( flava_model, flava_model_for_classification, flava_model_for_pretraining, ) @pytest.fixture(autouse=True) def random(): set_rng_seed(4) class TestFLAVACheckpoint: @pytest.fixture def text_input(self): text = torch.randint(0, 30500, (2, 77), dtype=torch.long) return text @pytest.fixture def image_input(self): image = torch.rand((2, 3, 224, 224)) return image @pytest.fixture def inputs_classification(self, image_input, text_input): def gather_inputs(required_embedding): labels = torch.tensor((0, 1), dtype=torch.long) return image_input, text_input, required_embedding, labels return gather_inputs @pytest.fixture def inputs_pretraining(self, image_input, text_input): def gather_inputs(required_embedding): image_for_codebook = torch.rand(2, 3, 112, 112) image_patches_mask = torch.randint(0, 2, (2, 196), dtype=torch.long) text_masked = text_input.detach().clone() text_masked[:, 1:3] = 100 mlm_labels = text_input.detach().clone() mlm_labels[:, :] = -1 mlm_labels[:, 1:3] = text_input[:, 1:3] itm_labels = torch.tensor((0, 1), dtype=torch.long) skip_unmasked_mm_encoder = True return ( image_input, text_input, image_for_codebook, image_patches_mask, text_masked, required_embedding, skip_unmasked_mm_encoder, itm_labels, mlm_labels, ) return gather_inputs @pytest.fixture def inputs_model(self, image_input, text_input): return image_input, text_input @pytest.fixture def classification_model(self): def get_model(): flava = flava_model_for_classification(num_classes=3, pretrained=True) flava.eval() return flava return get_model @pytest.fixture def pretraining_model(self): def get_model(): flava = flava_model_for_pretraining(pretrained=True) flava.eval() return flava return get_model @pytest.fixture def model(self): def get_model(): flava = flava_model(pretrained=True) flava.eval() return flava return get_model def _assert_tensor_dicts_equal(self, dict_actual, dict_expected): for key in dict_expected: actual = torch.zeros(1) if dict_actual[key] is None else dict_actual[key] expected = ( torch.zeros(1) if dict_expected[key] is None else torch.tensor(dict_expected[key]) ) assert_expected(actual, expected, rtol=0, atol=1e-4) def test_flava_model_for_classification( self, inputs_classification, classification_model ): mm_input = inputs_classification("mm") image_input = inputs_classification("image") text_input = inputs_classification("text") flava = classification_model() output = flava(*mm_input) actual = output.loss expected = torch.tensor(1.0827) assert_expected(actual, expected, rtol=0, atol=1e-4) output = flava(*image_input) actual = output.loss expected = torch.tensor(1.0849) assert_expected(actual, expected, rtol=0, atol=1e-4) output = flava(*text_input) actual = output.loss expected = torch.tensor(1.0822) assert_expected(actual, expected, rtol=0, atol=1e-4) def test_flava_model_for_pretraining(self, inputs_pretraining, pretraining_model): mm_input = inputs_pretraining("mm") image_input = inputs_pretraining("image") text_input = inputs_pretraining("text") flava = pretraining_model() output = flava(*mm_input) actual = output.losses expected = dict( mmm_text_loss=10.9567, mmm_image_loss=11.2143, mim_loss=None, mlm_loss=None, itm_loss=1.1485, global_contrastive_loss=0.7104, ) self._assert_tensor_dicts_equal(actual, expected) output = flava(*image_input) actual = output.losses expected = dict( mmm_text_loss=None, mmm_image_loss=None, mim_loss=10.5749, mlm_loss=None, itm_loss=None, global_contrastive_loss=None, ) self._assert_tensor_dicts_equal(actual, expected) output = flava(*text_input) actual = output.losses expected = dict( mmm_text_loss=None, mmm_image_loss=None, mim_loss=None, mlm_loss=16.1049, itm_loss=None, global_contrastive_loss=None, ) self._assert_tensor_dicts_equal(actual, expected) def test_flava_model(self, inputs_model, model): flava = model() output = flava(*inputs_model, skip_unmasked_mm_encoder=False) actual = torch.sum(output.image.last_hidden_state) expected = torch.tensor(-1321.3137) assert_expected(actual, expected, rtol=0, atol=1e-3) actual = torch.sum(output.text.last_hidden_state) expected = torch.tensor(-220.2462) assert_expected(actual, expected, rtol=0, atol=1e-3) actual = torch.sum(output.multimodal.last_hidden_state) expected = torch.tensor(-4358.3115) assert_expected(actual, expected, rtol=0, atol=1e-3)
EXA-1-master
exa/libraries/multimodal-main/tests/models/flava/test_checkpoint.py