python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from torchmultimodal.modules.losses.mdetr import ( box_losses, BoxLosses, soft_token_prediction_loss, ) def contrastive_alignment_loss( projected_queries: Tensor, projected_tokens: Tensor, target_tokens: List[List[List[int]]], indices: List[Tuple[Tensor, Tensor]], num_boxes: int, tokenized: Any, temperature: float = 0.07, ) -> Tensor: """Contrastive alignment loss. Enforces alignment between the text representations after cross encoder and the object representations after the decoder. projected_queries (Tensor): Tensor containing object representations projected to query dimension. Size: (batch_size, num_queries, contrastive_dim) projected_tokens: Tensor containing text representations projected to token dimension. Size: (batch_size, num_tokens, contrastive_dim) target_tokens (List[List[List[int]]]): A very nested list of tokens that correspond to each target. From outermost to innermost: batch, object, list of disjoint (start, end) tokens indices (List[Tuple[Tensor, Tensor]]): A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) num_boxes (int): Normalization factor. Should equal the average number of boxes per local batch. tokenized (Any): Tokenized output from a transformers fast tokenizer. Used for token lookup based on character positions. temperature (float): Scaling factor used in calculating the logits. Default: 0.07 """ logits = ( torch.matmul(projected_queries, projected_tokens.transpose(-1, -2)) / temperature ) # BS x (num_queries) x (num_tokens) positive_map = construct_positive_map(logits, target_tokens, indices, tokenized) positive_logits = -logits.masked_fill(~positive_map, 0) negative_logits = logits # Calculate the contrastive loss for all objects boxes_with_pos = positive_map.any(2) pos_term = positive_logits.sum(2) neg_term = negative_logits.logsumexp(2) nb_pos = positive_map.sum(2) + 1e-6 box_to_token_loss = ( ((pos_term / nb_pos + neg_term)).masked_fill(~boxes_with_pos, 0).sum() ) # Calculate the contrastive loss for all tokens tokens_with_pos = positive_map.any(1) pos_term = positive_logits.sum(1) neg_term = negative_logits.logsumexp(1) nb_pos = positive_map.sum(1) + 1e-6 tokens_to_boxes_loss = ( ((pos_term / nb_pos + neg_term)).masked_fill(~tokens_with_pos, 0).sum() ) tot_loss = (box_to_token_loss + tokens_to_boxes_loss) / 2 return tot_loss / num_boxes def char_to_token( encodings, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0, ): if char_index is not None: batch_index = batch_or_char_index else: batch_index = 0 char_index = batch_or_char_index return encodings[batch_index].char_to_token(char_index, sequence_index) def construct_positive_map( logits: Tensor, target_tokens: List[List[List[int]]], indices: List[Tuple[Tensor, Tensor]], tokenized: Any, ): # construct a map such that positive_map[k, i,j] = True iff query i is associated to token j in batch item k # For efficency, the construction happens on CPU, then the whole matrix is transferred to GPU in one go. positive_map = torch.zeros(logits.shape, dtype=torch.bool) for i, ((idx_src, idx_tgt), tgt) in enumerate(zip(indices, target_tokens)): cur_tokens = [tgt[j] for j in idx_tgt] for j, tok_list in enumerate(cur_tokens): for (beg, end) in tok_list: beg_pos = char_to_token(tokenized, i, beg) end_pos = char_to_token(tokenized, i, end - 1) if beg_pos is None and end_pos is None: raise ValueError( "At least one of beg_pos and end_pos must not be None" ) positive_map[i, idx_src[j], beg_pos : end_pos + 1].fill_(True) return positive_map.to(logits.device) def masked_dict_accuracy( pred_dict: Optional[Dict[str, Tensor]] = None, label_dict: Optional[Dict[str, Tensor]] = None, mask_dict: Optional[Dict[str, Tensor]] = None, answer_type_key: Optional[str] = "answer_type", ) -> Dict[str, Tensor]: accuracies = OrderedDict() for k in pred_dict.keys(): if mask_dict is None or mask_dict[k] is None: mask = torch.ones_like(pred_dict[k]) else: mask = mask_dict[k] accuracies[f"{k}_accuracy"] = ( (pred_dict[k][mask].argmax(-1) == label_dict[k][mask]).sum() / mask.sum() if mask.any() else torch.as_tensor(1.0, device=mask.device) ) weighted = sum( [ accuracies[f"{k}_accuracy"] * mask_dict[k].sum() for k in pred_dict.keys() if k != answer_type_key ] ) accuracies["answer_total_accuracy"] = ( accuracies[f"{answer_type_key}_accuracy"] * weighted / label_dict[answer_type_key].numel() ) return accuracies def masked_dict_cross_entropy( pred_dict: Optional[Dict[str, Tensor]] = None, label_dict: Optional[Dict[str, Tensor]] = None, mask_dict: Optional[Dict[str, Tensor]] = None, ) -> Dict[str, Tensor]: losses = OrderedDict() if pred_dict.keys() != label_dict.keys(): raise ValueError("Keys of pred_dict and label_dict must match") for k in pred_dict.keys(): if mask_dict is None or mask_dict[k] is None: mask = torch.ones_like(pred_dict[k]) else: mask = mask_dict[k] norm_factor = mask.sum() if mask.any() else 1.0 losses[f"{k}_loss"] = ( F.cross_entropy(pred_dict[k], label_dict[k]).masked_fill(~mask, 0).sum() / norm_factor ) return losses class MDETRLoss(nn.Module): def __init__( self, soft_token_loss: Callable[..., Tensor], box_losses: Callable[..., BoxLosses], contrastive_alignment_loss: Optional[nn.Module] = None, vqa_losses: Optional[Iterable[Callable[..., Dict[str, Tensor]]]] = None, ): super().__init__() self.soft_token_loss = soft_token_loss self.box_losses = box_losses self.contrastive_alignment_loss = contrastive_alignment_loss self.vqa_losses = vqa_losses def get_average_num_boxes_across_workers(self, num_boxes: Tensor): # Compute the average number of target boxes across all workers for normalization purposes if not ( torch.distributed.is_available() and torch.distributed.is_initialized() ): return torch.clamp(num_boxes, min=1).item() torch.distributed.all_reduce(num_boxes) num_boxes_all_workers = torch.clamp( num_boxes / torch.distributed.get_world_size(), min=1 ).item() return num_boxes_all_workers def total_losses_with_weights( self, loss_dict: Dict[str, Tensor], weight_dict: Optional[Dict[str, float]] = None, ) -> torch.Tensor: for k in weight_dict.keys(): if k not in loss_dict.keys(): raise ValueError(f"Weight dict contains invalid key {k}") return sum([weight_dict[k] * loss_dict[k] for k in weight_dict.keys()]) def forward( self, pred_logits: Tensor, pred_boxes: Tensor, targets: List[Dict[str, Any]], positive_map, indices: List[Tuple[Tensor, Tensor]], contrastive_query_embeddings: Optional[Tensor] = None, contrastive_token_embeddings: Optional[Tensor] = None, tokenized: Optional[Any] = None, vqa_preds: Optional[Dict[str, Tensor]] = None, vqa_labels: Optional[Dict[str, Tensor]] = None, vqa_masks: Optional[Dict[str, Tensor]] = None, weight_dict: Optional[Dict[str, float]] = None, ) -> Dict[str, Tensor]: target_boxes = [t["boxes"] for t in targets] target_tokens = [t["tokens_positive"] for t in targets] n_target_boxes = [len(t) for t in target_boxes] num_boxes = sum(n_target_boxes) num_boxes = torch.as_tensor( [num_boxes], dtype=torch.float, device=pred_logits.device ) num_boxes_all_workers = self.get_average_num_boxes_across_workers(num_boxes) self.pred_logits = pred_logits self.n_target_boxes = n_target_boxes self.positive_map = positive_map self.indices = indices self.num_boxes_all_workers = num_boxes_all_workers soft_token_loss = self.soft_token_loss( pred_logits, n_target_boxes, positive_map, indices, num_boxes_all_workers ) box_losses = self.box_losses( pred_boxes, target_boxes, indices, num_boxes_all_workers ) loss_dict = { "soft_token_loss": soft_token_loss, "l1_loss": box_losses.l1_loss, "giou_loss": box_losses.giou_loss, } if self.contrastive_alignment_loss is not None: if ( contrastive_query_embeddings is None or contrastive_token_embeddings is None or tokenized is None ): raise ValueError( "For contrastive alignment loss must pass contrastive query/token embeddings and tokenized text" ) contrastive_alignment_loss = self.contrastive_alignment_loss( contrastive_query_embeddings, contrastive_token_embeddings, target_tokens, indices, num_boxes_all_workers, tokenized, ) loss_dict.update(contrastive_alignment_loss=contrastive_alignment_loss) if self.vqa_losses is not None: if vqa_preds is None or vqa_labels is None: raise ValueError("For QA loss qa_preds and qa_labels must not be None") for vqa_loss in self.vqa_losses: loss_dict.update(vqa_loss(vqa_preds, vqa_labels, vqa_masks)) if weight_dict is not None: total_loss = self.total_losses_with_weights(loss_dict, weight_dict) loss_dict.update(total_loss=total_loss) return loss_dict def build_mdetr_loss( do_qa: bool = False, no_object_weight: float = 0.1, temperature: Optional[float] = None, ) -> MDETRLoss: soft_token_loss = partial( soft_token_prediction_loss, no_object_weight=no_object_weight ) if temperature is not None: contrastive_loss = partial(contrastive_alignment_loss, temperature=temperature) else: contrastive_loss = None if do_qa: vqa_losses = [masked_dict_cross_entropy, masked_dict_accuracy] else: vqa_losses = None loss = MDETRLoss( soft_token_loss=soft_token_loss, box_losses=box_losses, contrastive_alignment_loss=contrastive_loss, vqa_losses=vqa_losses, ) return loss def build_weight_dict( args, vqa_keys: Optional[Iterable[str]] = None, include_contrastive_loss: bool = True, ): weight_dict = { "soft_token_loss": args.ce_loss_coef, "l1_loss": args.bbox_loss_coef, "giou_loss": args.giou_loss_coef, } if vqa_keys is not None: for k in vqa_keys: weight_dict.update({f"{k}_loss": args.qa_loss_coef}) if include_contrastive_loss: weight_dict.update(contrastive_alignment_loss=args.contrastive_align_loss_coef) return weight_dict
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """Collections of utilities related to optimization.""" from bisect import bisect_right import torch def update_ema(model, model_ema, decay): """Apply exponential moving average update. Based on the implementation in the MDETR repo: https://bit.ly/3J5fspI. The weights are updated in-place as follow: w_ema = w_ema * decay + (1 - decay) * w Args: model: active model that is being optimized model_ema: running average model decay: exponential decay parameter """ with torch.no_grad(): if hasattr(model, "module"): # unwrapping DDP model = model.module msd = model.state_dict() for k, ema_v in model_ema.state_dict().items(): model_v = msd[k].detach() ema_v.copy_(ema_v * decay + (1.0 - decay) * model_v) def adjust_learning_rate( optimizer, epoch: int, curr_step: int, num_training_steps: int, args, ): """Adjust the lr according to the schedule. Based on the implementation in the MDETR repo: https://bit.ly/3J5fspI. Args: Optimizer: torch optimizer to update. epoch(int): number of the current epoch. curr_step(int): number of optimization step taken so far. num_training_step(int): total number of optimization steps. args: additional training dependent args: - lr_drop(int): number of epochs before dropping the learning rate. - fraction_warmup_steps(float) fraction of steps over which the lr will be increased to its peak. - lr(float): base learning rate - lr_backbone(float): learning rate of the backbone - text_encoder_backbone(float): learning rate of the text encoder - schedule(str): the requested learning rate schedule: "step": all lrs divided by 10 after lr_drop epochs "multistep": divided by 2 after lr_drop epochs, then by 2 after every 50 epochs "linear_with_warmup": same as "step" for backbone + transformer, but for the text encoder, linearly increase for a fraction of the training, then linearly decrease back to 0. "all_linear_with_warmup": same as "linear_with_warmup" for all learning rates involved. """ num_warmup_steps: int = round(args.fraction_warmup_steps * num_training_steps) if args.schedule == "step": gamma = 0.1 ** (epoch // args.lr_drop) text_encoder_gamma = gamma elif args.schedule == "multistep": milestones = list(range(args.lr_drop, args.epochs, 50)) gamma = 0.5 ** bisect_right(milestones, epoch) text_encoder_gamma = gamma elif args.schedule == "linear_with_warmup": gamma = 0.1 ** (epoch // args.lr_drop) if curr_step < num_warmup_steps: text_encoder_gamma = float(curr_step) / float(max(1, num_warmup_steps)) else: text_encoder_gamma = max( 0.0, float(num_training_steps - curr_step) / float(max(1, num_training_steps - num_warmup_steps)), ) elif args.schedule == "all_linear_with_warmup": if curr_step < num_warmup_steps: text_encoder_gamma = float(curr_step) / float(max(1, num_warmup_steps)) else: text_encoder_gamma = max( 0.0, float(num_training_steps - curr_step) / float(max(1, num_training_steps - num_warmup_steps)), ) gamma = text_encoder_gamma else: raise NotImplementedError base_lrs = [args.lr, args.lr_backbone, args.text_encoder_lr] gammas = [gamma, gamma, text_encoder_gamma] assert len(optimizer.param_groups) == len(base_lrs) for param_group, lr, gamma_group in zip(optimizer.param_groups, base_lrs, gammas): param_group["lr"] = lr * gamma_group def build_optimizer(model, args): param_dicts = [ { "params": [ p for n, p in model.named_parameters() if "backbone" not in n and "text_encoder" not in n and p.requires_grad ] }, { "params": [ p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad ], "lr": args.lr_backbone, }, { "params": [ p for n, p in model.named_parameters() if "text_encoder" in n and p.requires_grad ], "lr": args.text_encoder_lr, }, ] optimizer = torch.optim.AdamW( param_dicts, lr=args.lr, weight_decay=args.weight_decay ) return optimizer
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/optimizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import json import random from copy import deepcopy from pathlib import Path import numpy as np import torch import utils.dist as dist from data.datamodule import GQADataModule from loss import build_mdetr_loss, build_weight_dict from matcher import HungarianMatcher from torchmultimodal.models.mdetr.model import mdetr_for_vqa from utils.args_parse import get_args_parser from utils.metrics import MetricLogger from utils.misc import targets_to @torch.no_grad() def evaluate( model, matcher, loss, data_loader, device, weight_dict, ): model.eval() metric_logger = MetricLogger(delimiter=" ") header = "Test:" for batch_dict in metric_logger.log_every(data_loader, 10, header): samples = [x.to(device) for x in batch_dict["samples"]] targets = batch_dict["targets"] text = [t["tokenized"].to(device) for t in targets] tokenized = batch_dict["batch_encoding"] targets = targets_to(targets, device) target_boxes = [t["boxes"] for t in targets] answers = {k: v.to(device) for k, v in batch_dict["answers"].items()} answer_types = { k: v.to(device) for k, v in batch_dict["answer_type_mask"].items() } positive_map = ( batch_dict["positive_map"].to(device) if "positive_map" in batch_dict else None ) outputs = model( samples, text, ) indices = matcher( outputs.model_output.pred_logits, outputs.model_output.pred_boxes, target_boxes, positive_map, ) loss_dict = loss( outputs.model_output.pred_logits, outputs.model_output.pred_boxes, targets, positive_map, indices, outputs.contrastive_embeddings.query_embeddings, outputs.contrastive_embeddings.token_embeddings, tokenized, outputs.vqa_preds, answers, answer_types, weight_dict, ) loss_dict_reduced = dist.reduce_dict(loss_dict) metric_logger.update(**loss_dict_reduced) loss_dict_reduced_scaled = { k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict } loss_dict_reduced_unscaled = { f"{k}_unscaled": v for k, v in loss_dict_reduced.items() } metric_logger.update( loss=sum(loss_dict_reduced_scaled.values()), **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled, ) # gather the stats from all processes metric_logger.synchronize_between_processes() stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} return stats def main(args): # Init distributed mode dist.init_distributed_mode(args) # Update dataset specific configs if args.dataset_config is not None: # https://stackoverflow.com/a/16878364 d = vars(args) with open(args.dataset_config, "r") as f: cfg = json.load(f) d.update(cfg) device = torch.device(args.device) if torch.distributed.is_available() and torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = 0 # fix the seed for reproducibility seed = args.seed + rank torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.use_deterministic_algorithms(True) # Set up datamodule datamodule = GQADataModule(args) datamodule.setup("val") val_loader = datamodule.val_dataloader() # Build the model, matcher, and losses model = mdetr_for_vqa() matcher = HungarianMatcher( args.matcher_cost_class, args.matcher_cost_bbox, args.matcher_cost_giou ) loss = build_mdetr_loss(True, args.no_object_weight, args.temperature) model.to(device) # Loss weights weight_dict = build_weight_dict( args, model.vqa_heads.keys(), include_contrastive_loss=False ) model_ema = deepcopy(model) if args.ema else None model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], find_unused_parameters=True ) model_without_ddp = model.module if args.resume.startswith("https"): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location="cpu", check_hash=True ) else: checkpoint = torch.load(args.resume, map_location="cpu") model_without_ddp.load_state_dict(checkpoint["model"], strict=False) # Load EMA model if "model_ema" not in checkpoint: print("WARNING: ema model not found in checkpoint, resetting to current model") model_ema = deepcopy(model_without_ddp) else: model_ema.load_state_dict(checkpoint["model_ema"], strict=False) test_model = model_ema if model_ema is not None else model test_stats = evaluate( model=test_model, matcher=matcher, loss=loss, data_loader=val_loader, device=device, weight_dict=weight_dict, ) print(test_stats) if __name__ == "__main__": parser = argparse.ArgumentParser( "DETR training and evaluation script", parents=[get_args_parser()] ) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/vqa_eval.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import random import pytest import torch from examples.mdetr.matcher import HungarianMatcher from tests.test_utils import assert_expected, set_rng_seed from torchvision.ops.boxes import box_convert @pytest.fixture(autouse=True) def rng(): set_rng_seed(0) class TestMatcher: @pytest.fixture() def batch_size(self): return 2 @pytest.fixture() def num_classes(self): return 7 @pytest.fixture() def max_slice_len(self): return 3 @pytest.fixture() def n_boxes_per_sample(self): return [3, 8] @pytest.fixture() def total_boxes(self, n_boxes_per_sample): return sum(n_boxes_per_sample) @pytest.fixture() def positive_map(self, max_slice_len, total_boxes, num_classes): positive_map = torch.zeros(total_boxes, num_classes) for i in range(total_boxes): start_idx = random.randint(0, num_classes - max_slice_len) increment = random.randint(2, max_slice_len) positive_map[i, start_idx : start_idx + increment] = 1 return positive_map @pytest.fixture() def construct_valid_boxes(self): def _construct_valid_boxes(n_boxes): boxes = [] for _ in range(n_boxes): x1, y1 = torch.rand(2).unbind(-1) x2 = random.uniform(x1.item(), 1) y2 = random.uniform(y1.item(), 1) box = box_convert( torch.Tensor([x1, y1, x2, y2]), in_fmt="xyxy", out_fmt="cxcywh" ) boxes.append(box) return torch.stack(boxes) return _construct_valid_boxes @pytest.fixture() def target_boxes(self, construct_valid_boxes, n_boxes_per_sample): return [construct_valid_boxes(n_boxes) for n_boxes in n_boxes_per_sample] @pytest.fixture() def matcher(self): return HungarianMatcher(cost_class=1, cost_bbox=5, cost_giou=2) @pytest.mark.parametrize( "num_queries,expected", [ ( 12, [ (torch.LongTensor([7, 10, 11]), torch.LongTensor([0, 1, 2])), ( torch.LongTensor([0, 1, 3, 4, 5, 6, 9, 10]), torch.LongTensor([0, 7, 3, 6, 5, 4, 2, 1]), ), ], ), ( 5, [ (torch.LongTensor([0, 1, 4]), torch.LongTensor([2, 1, 0])), ( torch.LongTensor([0, 1, 2, 3, 4]), torch.LongTensor([1, 5, 4, 6, 2]), ), ], ), ], ) def test_matcher( self, batch_size, num_classes, construct_valid_boxes, target_boxes, positive_map, matcher, num_queries, expected, ): pred_logits = torch.randn(batch_size, num_queries, num_classes) pred_boxes = construct_valid_boxes(batch_size * num_queries).reshape( batch_size, num_queries, -1 ) actual = matcher(pred_logits, pred_boxes, target_boxes, positive_map) for actual_sample, expected_sample in zip(actual, expected): assert_expected(actual_sample[0], expected_sample[0]) assert_expected(actual_sample[1], expected_sample[1])
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/tests/test_matcher.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from copy import deepcopy import pytest import torch from examples.mdetr.data.postprocessors import PostProcessFlickr from tests.test_utils import assert_expected, set_rng_seed @pytest.fixture(scope="class") def random(): set_rng_seed(0) class TestFlickrPostProcessor: @pytest.fixture(scope="class") def batch_size(self): return 2 @pytest.fixture(scope="class") def n_queries(self): return 5 @pytest.fixture(scope="class") def n_classes(self): return 7 @pytest.fixture(scope="class") def max_seq_len(self): return 8 @pytest.fixture(scope="class") def pred_logits(self, random, batch_size, n_queries, n_classes): return torch.randn((batch_size, n_queries, n_classes + 1)) @pytest.fixture(scope="class") def pred_boxes(self, random, batch_size, n_queries): return torch.rand((batch_size, n_queries, 4)) @pytest.fixture(scope="class") def target_sizes(self): return torch.Tensor([[100, 100], [50, 50]]) @pytest.fixture(scope="class") def n_tokens(self): return [[2, 3, 4], [2, 2, 2, 3]] @pytest.fixture(scope="class") def phrases_per_sample(self, n_tokens): return [len(x) for x in n_tokens] @pytest.fixture(scope="class") def starting_indices(self, random, n_classes, n_tokens): return [ torch.randint(0, n_classes + 1 - max(tok), (len(tok),)) for tok in n_tokens ] @pytest.fixture(scope="class") def pos_map(self, n_tokens, starting_indices, n_classes): def _construct_test_pos_map_for_sample(n_toks, starting_indices, max_length): assert len(n_toks) == len( starting_indices ), "n_toks and starting_indices must have same length" out = torch.zeros((len(n_toks), max_length)) idx_list = [] for i, (n_tok, starting_idx) in enumerate(zip(n_toks, starting_indices)): r = torch.arange(starting_idx, starting_idx + n_tok).unsqueeze(-1) idx_list.append(torch.cat([i * torch.ones_like(r), r], dim=-1)) indices = torch.cat(idx_list) out.index_put_(tuple(indices.t()), torch.Tensor([1])) out = out / out.sum(axis=1).unsqueeze(-1) return out assert len(n_tokens) == len( starting_indices ), "n_toks and starting_indices must have same length" bs = len(n_tokens) pos_map = [ _construct_test_pos_map_for_sample( n_tokens[i], starting_indices[i], n_classes + 1 ) for i in range(bs) ] return pos_map @pytest.fixture(scope="class") def batched_pos_map(self, n_tokens, n_classes, pos_map): n_boxes = sum([len(x) for x in n_tokens]) batched_pos_map = torch.zeros((n_boxes, n_classes + 1), dtype=torch.bool) cur_count = 0 for sample in pos_map: batched_pos_map[ cur_count : cur_count + len(sample), : sample.shape[1] ] = sample cur_count += len(sample) assert cur_count == len(batched_pos_map) return batched_pos_map @pytest.fixture(scope="class") def transform(self): transform = PostProcessFlickr() return transform def test_invalid_inputs( self, transform, pred_logits, pred_boxes, target_sizes, pos_map, batched_pos_map, phrases_per_sample, ): with pytest.raises(TypeError): _ = transform( output_logits=pred_logits, output_bbox=pred_boxes, target_sizes=target_sizes, positive_map=pos_map, phrases_per_sample=phrases_per_sample, ) with pytest.raises(AssertionError): incorrect_phrases_per_sample = deepcopy(phrases_per_sample) incorrect_phrases_per_sample[-1] -= 1 _ = transform( output_logits=pred_logits, output_bbox=pred_boxes, target_sizes=target_sizes, positive_map=batched_pos_map, phrases_per_sample=incorrect_phrases_per_sample, ) def test_valid_inputs( self, transform, pred_logits, pred_boxes, target_sizes, batched_pos_map, phrases_per_sample, batch_size, n_queries, ): actual = transform( output_logits=pred_logits, output_bbox=pred_boxes, target_sizes=target_sizes, positive_map=batched_pos_map, phrases_per_sample=phrases_per_sample, ) assert len(actual) == batch_size assert len(actual[0]) == phrases_per_sample[0] assert len(actual[1]) == phrases_per_sample[1] assert len(actual[0][0]) == n_queries assert len(actual[0][0][0]) == 4 # Corresponds to out[0][1][1] expected_first_sample_val = torch.Tensor([85.535, 59.915, 86.045, 77.485]) # Corresponds to out[1][2][1] expected_second_sample_val = torch.Tensor([41.47, 32.49, 55.57, 51.2]) assert_expected( torch.Tensor(actual[0][1][1]), expected_first_sample_val, rtol=0.0, atol=1e-2, ) assert_expected( torch.Tensor(actual[1][2][1]), expected_second_sample_val, rtol=0.0, atol=1e-2, )
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/tests/test_postprocessors.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from examples.mdetr.loss import construct_positive_map, contrastive_alignment_loss from tests.test_utils import assert_expected, set_rng_seed from transformers import RobertaTokenizerFast @pytest.fixture(autouse=True) def rng(): set_rng_seed(0) class TestContrastiveAlignmentLoss: @pytest.fixture() def batch_size(self): return 2 @pytest.fixture() def num_queries(self): return 20 @pytest.fixture() def num_tokens(self): return 255 @pytest.fixture() def contrastive_dim(self): return 8 @pytest.fixture() def projected_tokens(self, batch_size, num_tokens, contrastive_dim): return torch.randn(batch_size, num_tokens, contrastive_dim) @pytest.fixture() def projected_queries(self, batch_size, num_queries, contrastive_dim): return torch.randn(batch_size, num_queries, contrastive_dim) @pytest.fixture() def target_tokens(self): return [ [ [[39, 44]], [[39, 44]], [[39, 44]], [[39, 44]], [[39, 44]], [[39, 44]], [[39, 44]], [[39, 44]], [[39, 44]], [[39, 44]], [[48, 57]], [[39, 44]], [[15, 22]], [[39, 44]], [[39, 44]], [[0, 3]], [[39, 44]], ], [ [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[33, 48]], [[9, 18]], [[33, 48]], [[33, 48]], [[0, 5]], [[33, 48]], ], ] @pytest.fixture() def indices(self): indices = [ (torch.Tensor([5, 7, 9]), torch.Tensor([2, 1, 0])), ( torch.Tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), torch.Tensor([9, 8, 4, 6, 0, 2, 3, 1, 5, 7]), ), ] return [(x[0].to(dtype=torch.int), x[1].to(dtype=torch.int)) for x in indices] @pytest.fixture() def num_boxes(self): return 25 @pytest.fixture() def tokenized(self): captions = [ "Man talking on a phone , surrounded by books in an office .", "A man on the phone surrounded by stacks of books .", ] tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base") tokenized = tokenizer.batch_encode_plus( captions, padding="longest", return_tensors="pt" ) return tokenized def test_contrastive_alignment_loss( self, projected_queries, projected_tokens, target_tokens, indices, num_boxes, tokenized, ): expected = torch.tensor(30.3021) actual = contrastive_alignment_loss( projected_queries, projected_tokens, target_tokens, indices, num_boxes, tokenized, ) assert_expected(expected, actual, rtol=0, atol=1e-3) def test_construct_positive_map( self, batch_size, num_queries, num_tokens, target_tokens, indices, tokenized ): logits = torch.ones(batch_size, num_queries, num_tokens) actual = construct_positive_map(logits, target_tokens, indices, tokenized) actual_nonzero_entries = torch.nonzero(actual) expected_size = (batch_size, num_queries, num_tokens) expected_nonzero_entries = torch.LongTensor( [ [0, 5, 9], [0, 7, 9], [0, 9, 9], [1, 0, 8], [1, 0, 9], [1, 0, 10], [1, 1, 8], [1, 1, 9], [1, 1, 10], [1, 2, 8], [1, 2, 9], [1, 2, 10], [1, 3, 8], [1, 3, 9], [1, 3, 10], [1, 4, 8], [1, 4, 9], [1, 4, 10], [1, 5, 8], [1, 5, 9], [1, 5, 10], [1, 6, 8], [1, 6, 9], [1, 6, 10], [1, 7, 8], [1, 7, 9], [1, 7, 10], [1, 8, 8], [1, 8, 9], [1, 8, 10], [1, 9, 8], [1, 9, 9], [1, 9, 10], ] ) assert actual.size() == expected_size assert_expected(actual_nonzero_entries, expected_nonzero_entries)
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/tests/test_loss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ Various utilities related to track and report metrics """ import datetime import time from collections import defaultdict, deque from typing import Dict, Sequence import torch import torch.distributed as dist class SmoothedValue: """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, num=1): self.deque.append(value) self.count += num self.total += value * num def synchronize_between_processes(self): """ Distributed synchronization of the metric Warning: does not synchronize the deque! """ if not dist.is_available() or not dist.is_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError( "'{}' object has no attribute '{}'".format(type(self).__name__, attr) ) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] ) mb = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / mb, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) class RecallTracker: """Utility class to track recall@k for various k, split by categories""" def __init__(self, topk: Sequence[int]): """ Parameters: - topk : tuple of ints corresponding to the recalls being tracked (eg, recall@1, recall@10, ...) """ self.total_byk_bycat: Dict[int, Dict[str, int]] = { k: defaultdict(int) for k in topk } self.positives_byk_bycat: Dict[int, Dict[str, int]] = { k: defaultdict(int) for k in topk } def add_positive(self, k: int, category: str): """Log a positive hit @k for given category""" if k not in self.total_byk_bycat: raise RuntimeError(f"{k} is not a valid recall threshold") self.total_byk_bycat[k][category] += 1 self.positives_byk_bycat[k][category] += 1 def add_negative(self, k: int, category: str): """Log a negative hit @k for given category""" if k not in self.total_byk_bycat: raise RuntimeError(f"{k} is not a valid recall threshold") self.total_byk_bycat[k][category] += 1 def report(self) -> Dict[int, Dict[str, float]]: """Return a condensed report of the results as a dict of dict. report[k][cat] is the recall@k for the given category """ report: Dict[int, Dict[str, float]] = {} for k in self.total_byk_bycat: assert k in self.positives_byk_bycat report[k] = { cat: self.positives_byk_bycat[k][cat] / self.total_byk_bycat[k][cat] for cat in self.total_byk_bycat[k] } return report
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/utils/metrics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional import torch from torch import Tensor def interpolate( input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None, ) -> Tensor: """ Equivalent to nn.functional.interpolate, but with support for empty channel sizes. """ if input.numel() > 0: return torch.nn.functional.interpolate( input, size, scale_factor, mode, align_corners ) assert ( input.shape[0] != 0 or input.shape[1] != 0 ), "At least one of the two first dimensions must be non zero" if input.shape[1] == 0: # Pytorch doesn't support null dimension on the channel dimension, so we transpose to fake a null batch dim return torch.nn.functional.interpolate( input.transpose(0, 1), size, scale_factor, mode, align_corners ).transpose(0, 1) # empty batch dimension is now supported in pytorch return torch.nn.functional.interpolate( input, size, scale_factor, mode, align_corners ) def targets_to(targets: List[Dict[str, Any]], device): """Moves the target dicts to the given device.""" excluded_keys = [ "questionId", "tokens_positive", "tokens", "dataset_name", "sentence_id", "original_img_id", "nb_eval", "task_id", "original_id", ] return [ { k: v.to(device) if k not in excluded_keys else v for k, v in t.items() if k != "caption" and k != "answer_type_mask" } for t in targets ]
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/utils/misc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse def get_args_parser(): parser = argparse.ArgumentParser("MDETR", add_help=False) parser.add_argument("--dataset_config", default=None, required=True) # Transformer parser.add_argument( "--enc_layers", default=6, type=int, help="Number of encoding layers in the transformer", ) parser.add_argument( "--dec_layers", default=6, type=int, help="Number of decoding layers in the transformer", ) parser.add_argument( "--dim_feedforward", default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks", ) parser.add_argument( "--hidden_dim", default=256, type=int, help="Size of the embeddings (dimension of the transformer)", ) parser.add_argument( "--dropout", default=0.1, type=float, help="Dropout applied in the transformer" ) parser.add_argument( "--nheads", default=8, type=int, help="Number of attention heads inside the transformer's attentions", ) parser.add_argument( "--num_classes", default=255, type=int, help="Number of classes" ) parser.add_argument( "--num_queries", default=100, type=int, help="Number of query slots" ) parser.add_argument("--pre_norm", action="store_true") parser.add_argument("--output_dir", default="test") parser.add_argument( "--freeze_text_encoder", action="store_true", help="Whether to freeze the weights of the text encoder", ) parser.add_argument("--tokenizer_type", type=str, default="roberta-base") parser.add_argument("--seed", default=42, type=int) parser.add_argument( "--test", action="store_true", help="Whether to run evaluation on val or test set", ) parser.add_argument( "--backbone", default="resnet101", type=str, help="Name of the convolutional backbone to use such as resnet50 resnet101 timm_tf_efficientnet_b3_ns", ) parser.add_argument( "--no_contrastive_align_loss", dest="contrastive_align_loss", action="store_false", help="Whether to add contrastive alignment loss", ) parser.add_argument( "--contrastive_loss_hdim", type=int, default=64, help="Projection head output size before computing the contrastive alignment loss", ) parser.add_argument( "--temperature", type=float, default=0.07, help="Temperature in the contrastive alignment loss", ) # Matcher parser.add_argument( "--matcher_cost_class", default=1, type=float, help="Class coefficient in the matching cost", ) parser.add_argument( "--matcher_cost_bbox", default=5, type=float, help="L1 box coefficient in the matching cost", ) parser.add_argument( "--matcher_cost_giou", default=2, type=float, help="giou box coefficient in the matching cost", ) # Loss coefficients parser.add_argument("--ce_loss_coef", default=1, type=float) parser.add_argument("--bbox_loss_coef", default=5, type=float) parser.add_argument("--giou_loss_coef", default=2, type=float) parser.add_argument("--qa_loss_coef", default=1, type=float) parser.add_argument( "--no_object_weight", default=0.1, type=float, help="Relative classification weight of the no-object class", ) parser.add_argument("--contrastive_align_loss_coef", default=1, type=float) parser.add_argument("--lr", default=1e-4, type=float) parser.add_argument("--lr_backbone", default=1e-5, type=float) parser.add_argument("--text_encoder_lr", default=5e-5, type=float) parser.add_argument("--batch_size", default=2, type=int) parser.add_argument("--weight_decay", default=1e-4, type=float) parser.add_argument("--epochs", default=40, type=int) parser.add_argument("--lr_drop", default=35, type=int) parser.add_argument( "--epoch_chunks", default=-1, type=int, help="If greater than 0, will split the training set into chunks and validate/checkpoint after each chunk", ) parser.add_argument("--optimizer", default="adam", type=str) parser.add_argument( "--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm" ) parser.add_argument( "--eval_skip", default=1, type=int, help='do evaluation every "eval_skip" frames', ) parser.add_argument("--resume", default="", help="resume from checkpoint") parser.add_argument("--load", default="", help="resume from checkpoint") parser.add_argument( "--start-epoch", default=0, type=int, metavar="N", help="start epoch" ) parser.add_argument("--eval", action="store_true", help="Only run evaluation") parser.add_argument( "--schedule", default="linear_with_warmup", type=str, choices=("step", "multistep", "linear_with_warmup", "all_linear_with_warmup"), ) parser.add_argument("--ema", action="store_true") parser.add_argument("--ema_decay", type=float, default=0.9998) parser.add_argument( "--fraction_warmup_steps", default=0.01, type=float, help="Fraction of total number of steps", ) parser.add_argument( "--device", default="cuda", help="device to use for training / testing" ) parser.add_argument( "--world-size", default=1, type=int, help="number of distributed processes" ) parser.add_argument( "--dist-url", default="env://", help="url used to set up distributed training" ) return parser
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/utils/args_parse.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import functools import io import os import torch import torch.distributed as dist _LOCAL_PROCESS_GROUP = None @functools.lru_cache() def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") return dist.group.WORLD def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ if ( not torch.distributed.is_available() or not torch.distributed.is_initialized() or torch.distributed.get_world_size() == 1 ): return [data] world_size = torch.distributed.get_world_size() cpu_group = None if os.getenv("MDETR_CPU_REDUCE") == "1": cpu_group = _get_global_gloo_group() buffer = io.BytesIO() torch.save(data, buffer) data_view = buffer.getbuffer() device = "cuda" if cpu_group is None else "cpu" tensor = torch.ByteTensor(data_view).to(device) # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long) size_list = [ torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size) ] if cpu_group is None: dist.all_gather(size_list, local_size) else: print("gathering on cpu") dist.all_gather(size_list, local_size, group=cpu_group) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) assert isinstance(local_size.item(), int) local_size = int(local_size.item()) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) if local_size != max_size: padding = torch.empty( size=(max_size - local_size,), dtype=torch.uint8, device=device ) tensor = torch.cat((tensor, padding), dim=0) if cpu_group is None: dist.all_gather(tensor_list, tensor) else: dist.all_gather(tensor_list, tensor, group=cpu_group) data_list = [] for size, tensor in zip(size_list, tensor_list): tensor = torch.split(tensor, [size, max_size - size], dim=0)[0] buffer = io.BytesIO(tensor.cpu().numpy()) obj = torch.load(buffer) data_list.append(obj) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ if not torch.distributed.is_available() or not torch.distributed.is_initialized(): return input_dict world_size = torch.distributed.get_world_size() with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def init_distributed_mode(args): """Initialize distributed training, if appropriate""" if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() else: print("Not using distributed mode") args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print( "| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True ) dist.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) dist.barrier() setup_for_distributed(args.rank == 0)
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/utils/dist.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import random from typing import Any, Callable, Dict, Iterable, Union import PIL import torch import torchvision.transforms.functional as F from PIL.Image import Image from torchvision import transforms as T from torchvision.ops.boxes import box_convert from utils.misc import interpolate def crop(image, target, region): cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd", "positive_map", "isfinal"] if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: target["masks"] = target["masks"][:, i : i + h, j : j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target["boxes"].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target["masks"].flatten(1).any(1) for field in fields: if field in target: target[field] = target[field][keep] return cropped_image, target def hflip(image, target): flipped_image = F.hflip(image) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor( [-1, 1, -1, 1] ) + torch.as_tensor([w, 0, w, 0]) target["boxes"] = boxes if "masks" in target: target["masks"] = target["masks"].flip(-1) if "caption" in target: caption = ( target["caption"] .replace("left", "[TMP]") .replace("right", "left") .replace("[TMP]", "right") ) target["caption"] = caption return flipped_image, target def resize(image, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple( float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size) ) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor( [ratio_width, ratio_height, ratio_width, ratio_height] ) target["boxes"] = scaled_boxes if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target["masks"] = ( interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5 ) return rescaled_image, target def pad(image, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() target["size"] = torch.tensor(padded_image[::-1]) if "masks" in target: target["masks"] = torch.nn.functional.pad( target["masks"], (0, padding[0], 0, padding[1]) ) return padded_image, target class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False): self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, target: Dict[str, Any]): init_boxes = len(target["boxes"]) max_patience = 100 for i in range(max_patience): w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) result_img, result_target = crop(img, target, region) if len(result_target["boxes"]) == init_boxes or i == max_patience - 1: return result_img, result_target return result_img, result_target class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, target): if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target): if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): def __call__(self, img, target): return F.to_tensor(img), target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_convert(boxes, "xyxy", "cxcywh") boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string class MDETRTransform: IMAGENET_MEAN = [0.485, 0.456, 0.406] IMAGENET_STD = [0.229, 0.224, 0.225] def __init__(self, tokenizer: Callable, is_train: bool): normalize = Compose( [ToTensor(), Normalize(self.IMAGENET_MEAN, self.IMAGENET_STD)] ) self.tokenizer = tokenizer scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] max_size = 1333 if is_train: self.image_transform = Compose( [ RandomSelect( RandomResize(scales, max_size=max_size), Compose( [ RandomResize([400, 500, 600]), RandomSizeCrop(384, max_size), RandomResize(scales, max_size=max_size), ] ), ), normalize, ] ) else: self.image_transform = Compose( [ RandomResize([800], max_size=max_size), normalize, ] ) def __call__( self, image: Union[Iterable[Image], Image], target: Dict[str, Any] ) -> torch.Tensor: image, target = self.image_transform(image, target) target["tokenized"] = self.tokenizer(target["caption"], return_tensors="pt")[ "input_ids" ][0] return image, target def create_positive_map(tokenized, tokens_positive): """construct a map such that positive_map[i,j] = True iff box i is associated to token j""" positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float) for j, tok_list in enumerate(tokens_positive): for (beg, end) in tok_list: beg_pos = tokenized.char_to_token(beg) end_pos = tokenized.char_to_token(end - 1) if beg_pos is None: try: beg_pos = tokenized.char_to_token(beg + 1) if beg_pos is None: beg_pos = tokenized.char_to_token(beg + 2) except Exception: beg_pos = None if end_pos is None: try: end_pos = tokenized.char_to_token(end - 2) if end_pos is None: end_pos = tokenized.char_to_token(end - 3) except Exception: end_pos = None if beg_pos is None or end_pos is None: continue assert beg_pos is not None and end_pos is not None positive_map[j, beg_pos : end_pos + 1].fill_(1) return positive_map / (positive_map.sum(-1)[:, None] + 1e-6) class ConvertCocoPolysToMask: def __init__(self, return_tokens=False, tokenizer=None): self.return_tokens = return_tokens self.tokenizer = tokenizer def __call__(self, image: Image, target: Dict[str, Any]): w, h = image.size image_id = target["image_id"] image_id = torch.tensor([image_id]) anno = target["annotations"] caption = target["caption"] if "caption" in target else None anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) isfinal = None if anno and "isfinal" in anno[0]: isfinal = torch.as_tensor( [obj["isfinal"] for obj in anno], dtype=torch.float ) tokens_positive = [] if self.return_tokens else None if self.return_tokens and anno and "tokens" in anno[0]: tokens_positive = [obj["tokens"] for obj in anno] elif self.return_tokens and anno and "tokens_positive" in anno[0]: tokens_positive = [obj["tokens_positive"] for obj in anno] keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes if caption is not None: target["caption"] = caption target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints if tokens_positive is not None: target["tokens_positive"] = [] for i, k in enumerate(keep): if k: target["tokens_positive"].append(tokens_positive[i]) if isfinal is not None: target["isfinal"] = isfinal # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor( [obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno] ) target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) if self.return_tokens and self.tokenizer is not None: assert len(target["boxes"]) == len(target["tokens_positive"]) tokenized = self.tokenizer(caption, return_tensors="pt") target["positive_map"] = create_positive_map( tokenized, target["tokens_positive"] ) return image, target
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/data/transforms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/data/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json from pathlib import Path import torch from data.transforms import ConvertCocoPolysToMask, create_positive_map from torchvision.datasets import CocoDetection class ModulatedDetection(CocoDetection): """ The base dataset class for most MDETR datasets. Follows the API for the COCO dataset. In addition to the usual image and captions, this class returns bounding boxes and their relationship to tokens in the caption as part of the target. """ def __init__( self, img_folder, ann_file, transforms, return_tokens, tokenizer, is_train=False, ): super().__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_tokens, tokenizer=tokenizer) self.is_train = is_train def __getitem__(self, idx): img, target = super().__getitem__(idx) image_id = self.ids[idx] coco_img = self.coco.loadImgs(image_id)[0] caption = coco_img["caption"] dataset_name = coco_img["dataset_name"] if "dataset_name" in coco_img else None target = {"image_id": image_id, "annotations": target, "caption": caption} img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) target["dataset_name"] = dataset_name for extra_key in ["sentence_id", "original_img_id", "original_id", "task_id"]: if extra_key in coco_img: target[extra_key] = coco_img[extra_key] if "tokens_positive_eval" in coco_img and not self.is_train: tokenized = self.prepare.tokenizer(caption, return_tensors="pt") target["positive_map_eval"] = create_positive_map( tokenized, coco_img["tokens_positive_eval"] ) target["nb_eval"] = len(target["positive_map_eval"]) return img, target GQA_TYPE_TO_ID = {"obj": 0, "attr": 1, "rel": 2, "global": 3, "cat": 4} class GQADataset(CocoDetection): def __init__( self, img_folder, ann_file, transforms, return_tokens, tokenizer, ann_folder ): super(GQADataset, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_tokens, tokenizer=tokenizer) with open(ann_folder / "gqa_answer2id.json", "r") as f: self.answer2id = json.load(f) with open(ann_folder / "gqa_answer2id_by_type.json", "r") as f: self.answer2id_by_type = json.load(f) self.type_to_id = GQA_TYPE_TO_ID def __getitem__(self, idx): img, target = super(GQADataset, self).__getitem__(idx) image_id = self.ids[idx] coco_img = self.coco.loadImgs(image_id)[0] caption = coco_img["caption"] dataset_name = coco_img["dataset_name"] question_id = coco_img["questionId"] target = {"image_id": image_id, "annotations": target, "caption": caption} img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) target["dataset_name"] = dataset_name target["questionId"] = question_id if coco_img["answer"] not in self.answer2id: answer = "unknown" else: answer = coco_img["answer"] target["answer"] = torch.as_tensor(self.answer2id[answer], dtype=torch.long) target["answer_type"] = torch.as_tensor( self.type_to_id[coco_img["question_type"]], dtype=torch.long ) target["answer_type_mask"] = { f"answer_{k}": torch.BoolTensor([True]) if coco_img["question_type"] == k else torch.BoolTensor([False]) for k in self.type_to_id.keys() } target["answer_type_mask"]["answer_type"] = torch.BoolTensor([True]) if coco_img["answer"] not in self.answer2id_by_type["answer_attr"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_attr"] = torch.as_tensor( self.answer2id_by_type["answer_attr"][answer] if coco_img["question_type"] == "attr" else -100, dtype=torch.long, ) if coco_img["answer"] not in self.answer2id_by_type["answer_global"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_global"] = torch.as_tensor( self.answer2id_by_type["answer_global"][answer] if coco_img["question_type"] == "global" else -100, dtype=torch.long, ) if coco_img["answer"] not in self.answer2id_by_type["answer_rel"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_rel"] = torch.as_tensor( self.answer2id_by_type["answer_rel"][answer] if coco_img["question_type"] == "rel" else -100, dtype=torch.long, ) if coco_img["answer"] not in self.answer2id_by_type["answer_cat"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_cat"] = torch.as_tensor( self.answer2id_by_type["answer_cat"][answer] if coco_img["question_type"] == "cat" else -100, dtype=torch.long, ) if coco_img["answer"] not in self.answer2id_by_type["answer_obj"]: answer = "unknown" else: answer = coco_img["answer"] target["answer_obj"] = torch.as_tensor( self.answer2id_by_type["answer_obj"][answer] if coco_img["question_type"] == "obj" else -100, dtype=torch.long, ) return img, target def collate_fn(tokenizer, batch): batch = list(zip(*batch)) final_batch = {} final_batch["samples"] = batch[0] final_batch["targets"] = batch[1] if "positive_map" in batch[1][0]: # we batch the positive maps here # Since in general each batch element will have a different number of boxes, # we collapse a single batch dimension to avoid padding. This is sufficient for our purposes. max_len = max([v["positive_map"].shape[1] for v in batch[1]]) nb_boxes = sum([v["positive_map"].shape[0] for v in batch[1]]) batched_pos_map = torch.zeros((nb_boxes, max_len), dtype=torch.bool) cur_count = 0 for v in batch[1]: cur_pos = v["positive_map"] batched_pos_map[ cur_count : cur_count + len(cur_pos), : cur_pos.shape[1] ] = cur_pos cur_count += len(cur_pos) assert cur_count == len(batched_pos_map) final_batch["positive_map"] = batched_pos_map.float() if "positive_map_eval" in batch[1][0]: # we batch the positive maps here # Since in general each batch element will have a different number of boxes, # we collapse a single batch dimension to avoid padding. This is sufficient for our purposes. max_len = max([v["positive_map_eval"].shape[1] for v in batch[1]]) nb_boxes = sum([v["positive_map_eval"].shape[0] for v in batch[1]]) batched_pos_map = torch.zeros((nb_boxes, max_len), dtype=torch.bool) cur_count = 0 for v in batch[1]: cur_pos = v["positive_map_eval"] batched_pos_map[ cur_count : cur_count + len(cur_pos), : cur_pos.shape[1] ] = cur_pos cur_count += len(cur_pos) assert cur_count == len(batched_pos_map) final_batch["positive_map_eval"] = batched_pos_map.float() if "answer_type_mask" in batch[1][0]: answer_types = { k: torch.cat([b["answer_type_mask"][k] for b in batch[1]]) for k in batch[1][0]["answer_type_mask"].keys() } final_batch["answer_type_mask"] = answer_types if "answer" in batch[1][0]: answers = {} for f in batch[1][0].keys(): if ( "answer" not in f or f == "answer" or f == "answer_type_mask" ): # We only use split_qa_heads = True continue answers[f] = torch.stack([b[f] for b in batch[1]]) final_batch["answers"] = answers batch_encoding = tokenizer.batch_encode_plus( [v["caption"] for v in batch[1]], padding="longest", return_tensors="pt" ).to(batched_pos_map.device) final_batch["batch_encoding"] = batch_encoding._encodings return final_batch def build_flickr(image_set, tokenizer, transform, args): img_dir = Path(args.flickr_img_path) / f"{image_set}" if args.GT_type == "merged": identifier = "mergedGT" elif args.GT_type == "separate": identifier = "separateGT" else: raise ValueError(f"{args.GT_type} is not a valid type of annotation for flickr") if args.test: ann_file = Path(args.flickr_ann_path) / f"final_flickr_{identifier}_test.json" else: ann_file = ( Path(args.flickr_ann_path) / f"final_flickr_{identifier}_{image_set}.json" ) is_train = image_set == "train" dataset = ModulatedDetection( img_dir, ann_file, transforms=transform, return_tokens=True, tokenizer=tokenizer, is_train=is_train, ) return dataset def build_gqa(image_set, tokenizer, transform, args): img_dir = Path(args.vg_img_path) assert img_dir.exists(), f"provided VG img path {img_dir} does not exist" assert args.gqa_split_type is not None if image_set == "train": datasets = [] for imset in ["train", "val"]: ann_file = ( Path(args.gqa_ann_path) / f"finetune_gqa_{imset}_{args.gqa_split_type}.json" ) datasets.append( GQADataset( img_dir, ann_file, transforms=transform, return_tokens=True, tokenizer=tokenizer, ann_folder=Path(args.gqa_ann_path), ) ) return torch.utils.data.ConcatDataset(datasets) elif image_set == "val": ann_file = Path(args.gqa_ann_path) / "finetune_gqa_testdev_balanced.json" return GQADataset( img_dir, ann_file, transforms=transform, return_tokens=True, tokenizer=tokenizer, ann_folder=Path(args.gqa_ann_path), ) elif image_set in ["test", "challenge", "testdev", "submission"]: ann_file = ( Path(args.gqa_ann_path) / f"finetune_gqa_{image_set}_{args.gqa_split_type}.json" ) return GQADataset( img_dir, ann_file, transforms=transform, return_tokens=True, tokenizer=tokenizer, ann_folder=Path(args.gqa_ann_path), ) else: raise ValueError(f"Unknown image set {image_set}")
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/data/dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from functools import partial from typing import Callable, Optional import torch from data.dataset import build_flickr, build_gqa, collate_fn from data.transforms import MDETRTransform from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader, DistributedSampler from transformers import RobertaTokenizerFast class FlickrDataModule(LightningDataModule): def __init__(self, dataset_config, tokenizer: Optional[Callable] = None): super().__init__() self.dataset_config = dataset_config self.distributed = dataset_config.distributed self.batch_size = dataset_config.batch_size self.tokenizer = tokenizer def setup(self, stage: Optional[str] = None): if self.tokenizer is None: self.tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base") self.transform = MDETRTransform(self.tokenizer, is_train=False) self.val = build_flickr( "val", self.tokenizer, self.transform, self.dataset_config ) def val_dataloader(self): if self.distributed: sampler = DistributedSampler(self.val, shuffle=False) else: sampler = torch.utils.data.SequentialSampler(self.val) data_loader_val = DataLoader( self.val, batch_size=self.batch_size, sampler=sampler, drop_last=False, collate_fn=partial(collate_fn, self.tokenizer), ) return data_loader_val class GQADataModule(LightningDataModule): def __init__(self, dataset_config, tokenizer: Optional[Callable] = None): super().__init__() self.dataset_config = dataset_config self.distributed = dataset_config.distributed self.batch_size = dataset_config.batch_size self.epoch_chunks = dataset_config.epoch_chunks self.tokenizer = tokenizer def setup(self, stage: Optional[str] = None): if self.tokenizer is None: self.tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base") self.train_transform = MDETRTransform(self.tokenizer, is_train=True) self.val_transform = MDETRTransform(self.tokenizer, is_train=False) if stage == "train": self.train = build_gqa( stage, self.tokenizer, self.train_transform, self.dataset_config ) if stage == "val": self.val = build_gqa( stage, self.tokenizer, self.val_transform, self.dataset_config ) def train_dataloader(self): # To handle very big datasets, we chunk it into smaller parts. if self.epoch_chunks > 0: print( f"Splitting the training set into {self.epoch_chunks} chunks of size approximately " f" {len(self.train) // self.epoch_chunks}" ) chunks = torch.chunk(torch.arange(len(self.train)), self.epoch_chunks) datasets = [ torch.utils.data.Subset(self.train, chunk.tolist()) for chunk in chunks ] if self.distributed: self.samplers_train = [ DistributedSampler(ds, shuffle=True) for ds in datasets ] else: self.samplers_train = [ torch.utils.data.RandomSampler(ds) for ds in datasets ] batch_samplers_train = [ torch.utils.data.BatchSampler( sampler_train, self.batch_size, drop_last=True ) for sampler_train in self.samplers_train ] assert len(batch_samplers_train) == len(datasets) train_dataloaders = [ DataLoader( ds, batch_sampler=batch_sampler_train, collate_fn=partial(collate_fn, self.tokenizer), ) for ds, batch_sampler_train in zip(datasets, batch_samplers_train) ] return train_dataloaders else: if self.distributed: self.sampler_train = DistributedSampler(self.train, shuffle=True) else: self.sampler_train = torch.utils.data.RandomSampler(self.train) batch_sampler_train = torch.utils.data.BatchSampler( self.sampler_train, self.batch_size, drop_last=True ) train_dataloader = DataLoader( self.train, batch_sampler=batch_sampler_train, collate_fn=partial(collate_fn, self.tokenizer), ) return train_dataloader def val_dataloader(self): if self.distributed: sampler = DistributedSampler(self.val, shuffle=False) else: sampler = torch.utils.data.SequentialSampler(self.val) data_loader_val = DataLoader( self.val, batch_size=self.batch_size, sampler=sampler, drop_last=False, collate_fn=partial(collate_fn, self.tokenizer), ) return data_loader_val
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/data/datamodule.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List import numpy as np import torch import torch.nn.functional as F from torch import Tensor from torchvision.ops.boxes import box_convert class PostProcessFlickr: """This module converts the model's output for Flickr30k entities evaluation. This processor is intended for recall@k evaluation with respect to each phrase in the sentence. It requires a description of each phrase (as a binary mask), and returns a sorted list of boxes for each phrase. Based on MDETR repo: https://github.com/ashkamath/mdetr/blob/main/models/postprocessors.py#L13. Inputs: outputs (Dict[str, Tensor]): raw outputs of the model. Should contain keys pred_logits and pred_boxes. target_sizes (Tensor) Size of each image in the batch. For evaluation, this must be the original image size (before any data augmentation). Size: (2, batch_size) positive_map (Tensor): For each phrase in the batch, contains a binary mask of the tokens that correspond to that sentence. Note that this is a "collapsed" batch, meaning that all the phrases of all the batch elements are stored sequentially. Size: (total_num_phrases, max_seq_len) phrases_per_sample (List[int]): Number of phrases corresponding to each batch element. Returns: a List[List[List[float]]]: List of bounding box coordinates for each phrase in each sample sorted by probabilities. """ def __call__( self, output_logits: Tensor, output_bbox: Tensor, target_sizes: Tensor, positive_map: Tensor, phrases_per_sample: List[int], ) -> List[List[List[float]]]: assert output_logits.size(0) == target_sizes.size( 0 ), "Logits and target sizes should both have first dim = batch_size" assert target_sizes.size(1) == 2, "Target sizes should have second dim = 2" batch_size = target_sizes.shape[0] prob = F.softmax(output_logits, -1) # convert to [x0, y0, x1, y1] format boxes = box_convert(output_bbox, in_fmt="cxcywh", out_fmt="xyxy") img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) # and from relative [0, 1] to absolute [0, height] coordinates boxes = boxes * scale_fct[:, None, :] cum_sum = np.cumsum(phrases_per_sample) curr_batch_index = 0 # binarize the map if not already binary pos = positive_map > 1e-6 predicted_boxes: List[List[List[float]]] = [[] for _ in range(batch_size)] # The collapsed batch dimension must match the number of items assert ( pos.size(0) == cum_sum[-1] ), "First dimension of positive map must equal sum of phrases per sample" if len(pos) == 0: return predicted_boxes # if the first batch elements don't contain elements, skip them. while cum_sum[curr_batch_index] == 0: curr_batch_index += 1 for i in range(len(pos)): # scores are computed by taking the max over the scores assigned to the positive tokens scores, _ = torch.max( pos[i].unsqueeze(0) * prob[curr_batch_index, :, :], dim=-1 ) _, indices = torch.sort(scores, descending=True) assert ( phrases_per_sample[curr_batch_index] > 0 ), "Each sample must have at least one phrase" predicted_boxes[curr_batch_index].append( boxes[curr_batch_index][indices].to("cpu").tolist() ) if i == len(pos) - 1: break # check if we need to move to the next batch element while i >= cum_sum[curr_batch_index] - 1: curr_batch_index += 1 assert curr_batch_index < len( cum_sum ), "Current batch index is not less than total number of phrases" return predicted_boxes
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/data/postprocessors.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ Evaluator for Flickr30k """ import xml.etree.ElementTree as Et from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union import numpy as np import torch import utils.dist as dist from prettytable import PrettyTable from torch import Tensor from torchvision.ops.boxes import box_iou from utils.metrics import RecallTracker def get_sentence_data(filename) -> List[Dict[str, Any]]: """ Parses a sentence file from the Flickr30K Entities dataset input: filename - full file path to the sentence file to parse output: a list of dictionaries for each sentence with the following fields: sentence - the original sentence phrases - a list of dictionaries for each phrase with the following fields: phrase - the text of the annotated phrase first_word_index - the position of the first word of the phrase in the sentence phrase_id - an identifier for this phrase phrase_type - a list of the coarse categories this phrase belongs to """ with open(filename, "r") as f: sentences = f.read().split("\n") annotations = [] for sentence in sentences: if not sentence: continue first_word = [] phrases = [] phrase_id = [] phrase_type = [] words = [] current_phrase = [] add_to_phrase = False for token in sentence.split(): if add_to_phrase: if token[-1] == "]": add_to_phrase = False token = token[:-1] current_phrase.append(token) phrases.append(" ".join(current_phrase)) current_phrase = [] else: current_phrase.append(token) words.append(token) else: if token[0] == "[": add_to_phrase = True first_word.append(len(words)) parts = token.split("/") phrase_id.append(parts[1][3:]) phrase_type.append(parts[2:]) else: words.append(token) sentence_data = {"sentence": " ".join(words), "phrases": []} for index, phrase, p_id, p_type in zip( first_word, phrases, phrase_id, phrase_type ): sentence_data["phrases"].append( { "first_word_index": index, "phrase": phrase, "phrase_id": p_id, "phrase_type": p_type, } ) annotations.append(sentence_data) return annotations def get_annotations( filename, ) -> Dict[str, Union[int, List[str], Dict[str, List[List[int]]]]]: """ Parses the xml files in the Flickr30K Entities dataset input: filename - full file path to the annotations file to parse output: dictionary with the following fields: scene - list of identifiers which were annotated as pertaining to the whole scene nobox - list of identifiers which were annotated as not being visible in the image boxes - a dictionary where the fields are identifiers and the values are its list of boxes in the [xmin ymin xmax ymax] format height - int representing the height of the image width - int representing the width of the image depth - int representing the depth of the image """ tree = Et.parse(filename) root = tree.getroot() size_container = root.findall("size")[0] anno_info: Dict[str, Union[int, List[str], Dict[str, List[List[int]]]]] = {} all_boxes: Dict[str, List[List[int]]] = {} all_noboxes: List[str] = [] all_scenes: List[str] = [] for size_element in size_container: assert size_element.text anno_info[size_element.tag] = int(size_element.text) for object_container in root.findall("object"): for names in object_container.findall("name"): box_id = names.text assert box_id box_container = object_container.findall("bndbox") if len(box_container) > 0: if box_id not in all_boxes: all_boxes[box_id] = [] xmin = int(box_container[0].findall("xmin")[0].text) ymin = int(box_container[0].findall("ymin")[0].text) xmax = int(box_container[0].findall("xmax")[0].text) ymax = int(box_container[0].findall("ymax")[0].text) all_boxes[box_id].append([xmin, ymin, xmax, ymax]) else: nobndbox = int(object_container.findall("nobndbox")[0].text) if nobndbox > 0: all_noboxes.append(box_id) scene = int(object_container.findall("scene")[0].text) if scene > 0: all_scenes.append(box_id) anno_info["boxes"] = all_boxes anno_info["nobox"] = all_noboxes anno_info["scene"] = all_scenes return anno_info def _merge_boxes(boxes: List[List[int]]) -> List[List[int]]: """ Return the boxes corresponding to the smallest enclosing box containing all the provided boxes The boxes are expected in [x1, y1, x2, y2] format """ if len(boxes) == 1: return boxes np_boxes = np.asarray(boxes) return [ [ np_boxes[:, 0].min(), np_boxes[:, 1].min(), np_boxes[:, 2].max(), np_boxes[:, 3].max(), ] ] class Flickr30kEntitiesRecallEvaluator: def __init__( self, flickr_path: str, subset: str = "test", topk: Sequence[int] = (1, 5, 10, -1), iou_thresh: float = 0.5, merge_boxes: bool = False, ): assert subset in ["train", "test", "val"], f"Wrong flickr subset {subset}" self.topk = topk self.iou_thresh = iou_thresh flickr_path = Path(flickr_path) # Load the image ids corresponding to the current subset with open(flickr_path / f"{subset}.txt") as file_d: self.img_ids = [line.strip() for line in file_d] # Read the box annotations for all the images self.imgid2boxes: Dict[str, Dict[str, List[List[int]]]] = {} for img_id in self.img_ids: anno_info = get_annotations(flickr_path / "Annotations" / f"{img_id}.xml")[ "boxes" ] if merge_boxes: merged = {} for phrase_id, boxes in anno_info.items(): merged[phrase_id] = _merge_boxes(boxes) anno_info = merged self.imgid2boxes[img_id] = anno_info # Read the sentences annotations self.imgid2sentences: Dict[str, List[List[Optional[Dict]]]] = {} self.all_ids: List[str] = [] tot_phrases = 0 for img_id in self.img_ids: sentence_info = get_sentence_data( flickr_path / "Sentences" / f"{img_id}.txt" ) self.imgid2sentences[img_id] = [None for _ in range(len(sentence_info))] # Some phrases don't have boxes, we filter them. for sent_id, sentence in enumerate(sentence_info): phrases = [ phrase for phrase in sentence["phrases"] if phrase["phrase_id"] in self.imgid2boxes[img_id] ] if len(phrases) > 0: self.imgid2sentences[img_id][sent_id] = phrases tot_phrases += len(phrases) self.all_ids += [ f"{img_id}_{k}" for k in range(len(sentence_info)) if self.imgid2sentences[img_id][k] is not None ] def evaluate(self, predictions: List[Dict]): evaluated_ids = set() recall_tracker = RecallTracker(self.topk) for pred in predictions: cur_id = f"{pred['image_id']}_{pred['sentence_id']}" if cur_id in evaluated_ids: print( "Warning, multiple predictions found for sentence" f"{pred['sentence_id']} in image {pred['image_id']}" ) continue # Skip the sentences with no valid phrase if cur_id not in self.all_ids: if len(pred["boxes"]) != 0: print( f"Warning, in image {pred['image_id']} we were not expecting predictions " f"for sentence {pred['sentence_id']}. Ignoring them." ) continue evaluated_ids.add(cur_id) pred_boxes = pred["boxes"] if str(pred["image_id"]) not in self.imgid2sentences: raise RuntimeError(f"Unknown image id {pred['image_id']}") if ( not 0 <= int(pred["sentence_id"]) < len(self.imgid2sentences[str(pred["image_id"])]) ): raise RuntimeError( f"Unknown sentence id {pred['sentence_id']}" f" in image {pred['image_id']}" ) phrases = self.imgid2sentences[str(pred["image_id"])][ int(pred["sentence_id"]) ] if len(pred_boxes) != len(phrases): raise RuntimeError( f"Error, got {len(pred_boxes)} predictions, expected {len(phrases)} " f"for sentence {pred['sentence_id']} in image {pred['image_id']}" ) for cur_boxes, phrase in zip(pred_boxes, phrases): target_boxes = self.imgid2boxes[str(pred["image_id"])][ phrase["phrase_id"] ] ious = box_iou(Tensor(cur_boxes), Tensor(target_boxes)) for k in self.topk: maxi = 0 if k == -1: maxi = ious.max() else: assert k > 0 maxi = ious[:k].max() if maxi >= self.iou_thresh: recall_tracker.add_positive(k, "all") for phrase_type in phrase["phrase_type"]: recall_tracker.add_positive(k, phrase_type) else: recall_tracker.add_negative(k, "all") for phrase_type in phrase["phrase_type"]: recall_tracker.add_negative(k, phrase_type) if len(evaluated_ids) != len(self.all_ids): print( "ERROR, the number of evaluated sentence doesn't match. Missing predictions:" ) un_processed = set(self.all_ids) - evaluated_ids for missing in un_processed: img_id, sent_id = missing.split("_") print(f"\t sentence {sent_id} in image {img_id}") raise RuntimeError("Missing predictions") return recall_tracker.report() class FlickrEvaluator(object): def __init__( self, flickr_path, subset, top_k=(1, 5, 10, -1), iou_thresh=0.5, merge_boxes=False, ): assert isinstance(top_k, (list, tuple)) self.evaluator = Flickr30kEntitiesRecallEvaluator( flickr_path, subset=subset, topk=top_k, iou_thresh=iou_thresh, merge_boxes=merge_boxes, ) self.predictions = [] self.results = None def update(self, predictions): self.predictions += predictions def synchronize_between_processes(self): all_predictions = dist.all_gather(self.predictions) self.predictions = sum(all_predictions, []) def summarize(self): is_dist = ( torch.distributed.is_available() and torch.distributed.is_initialized() ) if (not is_dist) or torch.distributed.get_rank() == 0: self.results = self.evaluator.evaluate(self.predictions) table = PrettyTable() all_cat = sorted(list(self.results.values())[0].keys()) table.field_names = ["Recall@k"] + all_cat score = {} for k, v in self.results.items(): cur_results = [v[cat] for cat in all_cat] header = "Upper_bound" if k == -1 else f"Recall@{k}" for cat in all_cat: score[f"{header}_{cat}"] = v[cat] table.add_row([header] + cur_results) print(table) return score return None, None
EXA-1-master
exa/libraries/multimodal-main/examples/mdetr/data/flickr_eval.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from examples.mugen.retrieval.video_clip import ( Projection, TextEncoder, videoclip, VideoEncoder, ) from tests.test_utils import assert_expected, get_asset_path, set_rng_seed from torchmultimodal import _PATH_MANAGER from torchmultimodal.utils.common import shift_dim def patch_load_module_from_url(mocker): """Mock the ``load_module_from_url`` utility function used in ``videoclip()`` to allow loading truncated state dicts with ``strict=False``. """ def patched_load_module_from_url( model: torch.nn.Module, url: str, strict: bool = True, progress: bool = True ) -> None: local_path = _PATH_MANAGER.get_local_path(url) if not torch.cuda.is_available(): state_dict = torch.load(local_path, map_location=torch.device("cpu")) else: state_dict = torch.load(local_path) model.load_state_dict(state_dict, strict=False) return mocker.patch( "examples.mugen.retrieval.video_clip.load_module_from_url", new=patched_load_module_from_url, ) class TestTextEncoder: @pytest.fixture(autouse=True) def set_seed(self): set_rng_seed(1234) @pytest.fixture def utils(self, set_seed): input_ids = torch.Tensor( [ [101, 6315, 3793, 7099, 2005, 5604, 19204, 17629, 102], [101, 2117, 7820, 3793, 102, 0, 0, 0, 0], ] ).to(dtype=int) return input_ids def test_forward(self, utils): input_ids = utils encoder = TextEncoder() out = encoder(input_ids) expected_sum = 7.1526e-07 assert_expected(actual=out.shape, expected=torch.Size([2, 768]), rtol=0, atol=0) assert_expected( actual=out.sum(), expected=torch.as_tensor(expected_sum), rtol=0, atol=1e-4 ) assert encoder.out_dim == 768 def test_attention_mask(self, utils): input_ids = utils encoder = TextEncoder() attention_mask = encoder.build_attention_mask(input_ids) assert_expected( actual=attention_mask, expected=torch.as_tensor( [[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 0]] ), ) class TestVideoEncoder: @pytest.fixture(autouse=True) def set_seed(self): set_rng_seed(1234) @pytest.fixture def utils(self): def make_input_video(c_dim=1): input_shape = [1, 3, 16, 224, 224] input_video = torch.randint(10, input_shape).float() input_video = ( shift_dim(input_video, 1, c_dim) if c_dim != 1 else input_video ) return input_video return make_input_video def test_forward(self, utils): make_input_video = utils input_video = make_input_video() encoder = VideoEncoder() out = encoder(input_video) expected_sum = 408.3521 assert_expected( actual=out.shape, expected=torch.Size([1, 1024]) ) # batch x embedding assert_expected( actual=out.sum(), expected=torch.as_tensor(expected_sum), rtol=0, atol=1e-3 ) assert encoder.out_dim == 1024 def test_invalid_channels(self, utils): make_input_video = utils input_video = make_input_video(c_dim=3) encoder = VideoEncoder() with pytest.raises(ValueError): encoder(input_video) class TestProjection: @pytest.fixture(autouse=True) def set_seed(self): set_rng_seed(1234) @pytest.fixture def utils(self, set_seed): input = torch.randint(10, (2, 7)).float() proj = Projection(in_dim=7, out_dim=3) return proj, input def test_forward(self, utils): proj, input = utils out = proj(input) expected = torch.Tensor([[-1.2214, -0.0066, 1.2280], [-1.3886, 0.4626, 0.9260]]) assert_expected(actual=out, expected=expected, rtol=0, atol=1e-4) class TestVideoCLIPBuilder: @pytest.fixture(autouse=True) def set_seed(self): set_rng_seed(1234) @pytest.fixture def utils(self, set_seed): input_text = torch.Tensor( [ [101, 6315, 3793, 7099, 2005, 5604, 19204, 17629, 102], [101, 2117, 7820, 3793, 102, 0, 0, 0, 0], ] ).to(dtype=int) input_video = torch.randint(10, [2, 3, 16, 224, 224]).float() return input_text, input_video def test_forward_pretrained_trainable(self, utils, mocker): input_text, input_video = utils patch_load_module_from_url(mocker) model = videoclip( video_pretrain_path=get_asset_path("S3D_sample.pt"), proj_out_dim=3 ) assert next(model.encoder_a.parameters()).requires_grad assert next(model.encoder_b.parameters()).requires_grad output = model(features_a=input_text, features_b=input_video) assert_expected( actual=output.embeddings_a, expected=torch.Tensor( [[-0.4496, -0.3655, 0.8150], [0.2190, -0.7907, 0.5717]] ), rtol=0, atol=1e-3, ) assert_expected( actual=output.embeddings_b, expected=torch.Tensor( [[0.7291, -0.0462, -0.6829], [0.7157, -0.0175, -0.6982]], ), rtol=0, atol=1e-3, ) def test_pretrained_untrainable(self, mocker): patch_load_module_from_url(mocker) model = videoclip( text_trainable=False, video_trainable=False, video_pretrain_path=get_asset_path("S3D_sample.pt"), proj_out_dim=3, ) assert not next(model.encoder_a.parameters()).requires_grad assert not next(model.encoder_b.parameters()).requires_grad def test_forward_untrained_trainable(self, utils): input_text, input_video = utils model = videoclip(text_pretrained=False, video_pretrained=False, proj_out_dim=3) assert next(model.encoder_a.parameters()).requires_grad assert next(model.encoder_b.parameters()).requires_grad output = model(features_a=input_text, features_b=input_video) assert_expected( actual=output.embeddings_a, expected=torch.Tensor( [[0.8164, -0.4178, -0.3987], [0.8147, -0.4537, -0.3611]] ), rtol=0, atol=1e-3, ) assert_expected( actual=output.embeddings_b, expected=torch.Tensor( [[-0.0199, 0.7168, -0.6970], [0.5802, 0.2075, -0.7876]] ), rtol=0, atol=1e-3, ) def test_untrained_untrainable(self): with pytest.warns(UserWarning): model = videoclip( text_pretrained=False, text_trainable=False, video_pretrained=False, video_trainable=False, proj_out_dim=3, ) assert next(model.encoder_a.parameters()).requires_grad assert next(model.encoder_b.parameters()).requires_grad
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/tests/retrieval/test_video_clip.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from examples.mugen.generation.video_vqvae import video_vqvae_mugen from tests.test_utils import assert_expected, set_rng_seed @pytest.fixture(autouse=True) def random(): set_rng_seed(4) @pytest.fixture(scope="module") def params(): in_channel_dims = (2, 2) out_channel_dims = (2, 2) kernel_sizes = ((2, 2, 2), (2, 2, 2)) strides = ((1, 1, 1), (1, 1, 1)) return in_channel_dims, out_channel_dims, kernel_sizes, strides @pytest.fixture(scope="module") def input_tensor(): return torch.ones(1, 2, 2, 2, 2) class TestVideoVQVAEMUGEN: @pytest.fixture def vv(self): def create_model(model_key=None, freeze_model=False): model = video_vqvae_mugen( pretrained_model_key=model_key, freeze_model=freeze_model ) model.eval() return model return create_model @pytest.fixture def input_data(self): def create_data(seq_len): return torch.randn(1, 3, seq_len, 256, 256) return create_data def test_invalid_pretrained_model_key(self, vv): with pytest.raises(KeyError): vv("invalid_key") def test_freeze_model(self, vv): model = vv("mugen_L32", freeze_model=True) for param in model.parameters(): assert param.requires_grad is False @pytest.mark.parametrize( "seq_len,expected", [(8, -16005.1113), (16, 51112.2266), (32, 450732.6875)] ) def test_forward(self, vv, input_data, seq_len, expected): x = input_data(seq_len) model = vv() output = model(x) actual = output.decoded # ensure embed is uninitialized assert model.codebook._is_embedding_init is False assert_expected(actual.shape, (1, 3, seq_len, 256, 256)) assert_expected(actual.sum().item(), expected) @pytest.mark.parametrize( "seq_len,expected", [(8, 132017.28125), (16, -109636.0), (32, 1193122.0)] ) def test_checkpoint(self, vv, input_data, seq_len, expected): x = input_data(seq_len) model_key = f"mugen_L{seq_len}" model = vv(model_key) # ensure embed is initialized assert model.codebook._is_embedding_init output = model(x) actual_tensor = torch.sum(output.decoded) expected_tensor = torch.tensor(expected) assert_expected(actual_tensor, expected_tensor, rtol=1e-5, atol=1e-8)
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/tests/generation/test_video_vqvae.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from examples.mugen.generation.text_video_gpt import text_video_gpt from tests.test_utils import assert_expected, set_rng_seed from torchmultimodal.utils.common import get_current_device @pytest.fixture(autouse=True) def set_seed(): return set_rng_seed(0) @pytest.fixture def device(): return get_current_device() @pytest.fixture def model_fn(): return text_video_gpt _model_params = { "text_seq_len": 128, "video_seq_len": 32, "resolution": 256, "downsample": (4, 32, 32), "d_model": 768, "n_head": 8, "dropout": 0.2, "attn_dropout": 0.3, "num_decoder_layers": 12, "use_gpt_init": True, } def test_encode_text(model_fn, device): test_params = {"text_seq_len": 5} kwargs = {**_model_params, **test_params} model = model_fn(**kwargs) model.eval() x = ["MUGEN walks from right to left."] actual = model.encode(x, "in", device=device) expected = torch.tensor([[80, 118, 110, 85, 70]]) assert_expected(actual, expected) @pytest.mark.parametrize( "video_seq_len, expected", [(8, (1, 128)), (16, (1, 256)), (32, (1, 512))] ) def test_encode_video(model_fn, video_seq_len, expected): test_params = {"video_seq_len": video_seq_len} kwargs = {**_model_params, **test_params} video_input_shape = tuple( [kwargs[_f] for _f in ["video_seq_len", "resolution", "resolution"]] ) input_shape = (1, 3, *video_input_shape) x = torch.rand(input_shape) model = model_fn(**kwargs) model.eval() actual = model.encode(x, "out") assert_expected(actual.shape, expected) @pytest.mark.parametrize( "video_seq_len, expected", [(8, 55462.1719), (16, 112028.1719), (32, 225157.7656)], ) def test_decode_video(model_fn, video_seq_len, expected): test_params = {"video_seq_len": video_seq_len} kwargs = {**_model_params, **test_params} model = model_fn(**kwargs) model.eval() latent_shape = model.latent_shape latent_seq_len = torch.prod(torch.tensor(latent_shape)).item() x = torch.randint(0, 10, (1, latent_seq_len)) # tokens actual = model.decode(x) assert_expected(actual.shape, (1, 3, video_seq_len, 256, 256)) print(actual.sum()) assert_expected(actual.sum().item(), expected, rtol=1, atol=1e-4) @pytest.mark.parametrize( "video_seq_len, expected", [(8, 116013.4766), (16, 237488.6250), (32, 536481.4375)], ) def test_decode_video_checkpoint(model_fn, video_seq_len, expected): vqvae_model_key = f"mugen_L{video_seq_len}" test_params = { "video_seq_len": video_seq_len, "pretrained_video_vqvae_model_key": vqvae_model_key, } kwargs = {**_model_params, **test_params} model = model_fn(**kwargs) model.eval() latent_shape = model.latent_shape latent_seq_len = torch.prod(torch.tensor(latent_shape)).item() x = torch.randint(0, 10, (1, latent_seq_len)) # tokens actual = model.decode(x) assert_expected(actual.shape, (1, 3, video_seq_len, 256, 256)) assert_expected(actual.sum().item(), expected, rtol=1, atol=1e-4) @pytest.mark.parametrize( "modality, expected_shape, expected_sum", [("in", (1, 4, 768), -53.7916), ("out", (1, 4, 256), 42.4742)], ) def test_lookup(model_fn, modality, expected_shape, expected_sum): test_params = {"text_seq_len": 5} kwargs = {**_model_params, **test_params} x = torch.tensor([[1, 2, 3, 4]]) model = model_fn(**kwargs) model.eval() actual = model.lookup(x, modality) assert_expected(actual.shape, expected_shape) # (b, num_tokens, d_model) assert_expected(actual.sum().item(), expected_sum, rtol=1, atol=1e-4) @pytest.mark.parametrize( "video_seq_len, expected", [(8, 782.1641), (16, -442.4437), (32, 585.2963)] ) def test_forward_no_pretrained(model_fn, video_seq_len, expected): test_params = {"video_seq_len": video_seq_len} kwargs = {**_model_params, **test_params} n_head = kwargs["n_head"] x = torch.tensor([[1, 2, 3, 4]]) y = torch.tensor([[5, 6, 7]]) attn_mask = torch.tril(torch.ones(7, 7)).unsqueeze(0) # (b, seq_len, seq_len) head_mask = torch.ones(1, n_head, 7, 7) # (b, h, seq_len, seq_len) model = model_fn(**kwargs) model.eval() num_tokens = model.num_in_tokens + model.num_out_tokens logits_mask = torch.ones(1, 7, num_tokens) # (b, seq_len, num_tokens) out = model(x, y, attn_mask=attn_mask, head_mask=head_mask, logits_mask=logits_mask) actual = out.decoder_output.last_hidden_states assert_expected(actual.shape, (1, 7, 768)) assert_expected(actual.sum().item(), expected, rtol=1e-5, atol=1e-4) @pytest.mark.parametrize( "video_seq_len, expected", [(8, 431.3439), (16, -180.2783), (32, 462.27)], ) def test_forward_vqvae_pretrained(model_fn, video_seq_len, expected): vqvae_model_key = f"mugen_L{video_seq_len}" test_params = { "video_seq_len": video_seq_len, "pretrained_video_vqvae_model_key": vqvae_model_key, } kwargs = {**_model_params, **test_params} n_head = kwargs["n_head"] x = torch.tensor([[1, 2, 3, 4]]) y = torch.tensor([[5, 6, 7]]) attn_mask = torch.tril(torch.ones(7, 7)).unsqueeze(0) # (b, seq_len, seq_len) head_mask = torch.ones(1, n_head, 7, 7) # (b, h, seq_len, seq_len) model = model_fn(**kwargs) model.eval() num_tokens = model.num_in_tokens + model.num_out_tokens logits_mask = torch.ones(1, 7, num_tokens) # (b, seq_len, num_tokens) out = model(x, y, attn_mask=attn_mask, head_mask=head_mask, logits_mask=logits_mask) actual = out.decoder_output.last_hidden_states assert_expected(actual.shape, (1, 7, 768)) assert_expected(actual.sum().item(), expected, rtol=1, atol=1e-4) @pytest.mark.parametrize( "video_seq_len, expected", [(8, 1520.8452), (16, -2085.2417), (32, -5190.5591)], ) def test_forward_gpt_pretrained(model_fn, video_seq_len, expected): gpt_model_key = f"mugen_L{video_seq_len}" test_params = { "video_seq_len": video_seq_len, "pretrained_text_video_gpt_model_key": gpt_model_key, } kwargs = {**_model_params, **test_params} n_head = kwargs["n_head"] x = torch.tensor([[1, 2, 3, 4]]) y = torch.tensor([[5, 6, 7]]) attn_mask = torch.tril(torch.ones(7, 7)).unsqueeze(0) # (b, seq_len, seq_len) head_mask = torch.ones(1, n_head, 7, 7) # (b, h, seq_len, seq_len) model = model_fn(**kwargs) model.eval() num_tokens = model.num_in_tokens + model.num_out_tokens logits_mask = torch.ones(1, 7, num_tokens) # (b, seq_len, num_tokens) out = model(x, y, attn_mask=attn_mask, head_mask=head_mask, logits_mask=logits_mask) actual = out.decoder_output.last_hidden_states assert_expected(actual.shape, (1, 7, 768)) assert_expected(actual.sum().item(), expected, rtol=1, atol=1e-4)
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/tests/generation/test_text_video_gpt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple from examples.mugen.data.mugen_dataset import MUGENDatasetArgs from torchmultimodal.transforms.video_transform import ( DEFAULT_MEAN, DEFAULT_RESIZE_SHAPE, DEFAULT_STD, MUGEN_DEFAULT_TIME_SAMPLES, ) @dataclass class BertTextTransformArgs: vocab_file: str = "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt" do_lower_case: bool = True start_token: int = 101 end_token: int = 102 padding_value: int = 0 @dataclass class VideoTransformArgs: time_samples: int = MUGEN_DEFAULT_TIME_SAMPLES mean: Tuple[float] = DEFAULT_MEAN std: Tuple[float] = DEFAULT_STD resize_shape: Tuple[int, int] = DEFAULT_RESIZE_SHAPE @dataclass class DataModuleArgs: batch_size: int = 16 num_workers: int = 4 shuffle: bool = False bert_text_transform: BertTextTransformArgs = BertTextTransformArgs() video_transform: VideoTransformArgs = VideoTransformArgs() @dataclass class LightningModuleArgs: logit_scale: float = 0.07 logit_scale_max: float = 100.0 learning_rate: float = 1e-3 weight_decay: float = 1e-3 recall_ks: Tuple[int] = (1, 5, 10) @dataclass class VideoCLIPArgs: text_pretrained: bool = False text_trainable: bool = False text_model_name: str = "distilbert-base-uncased" text_model_config: Optional[Dict[str, Any]] = None text_padding_value: int = 0 video_pretrained: bool = False video_trainable: bool = False video_pretrain_path: str = ( "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/S3D_kinetics400.pt" ) proj_out_dim: int = 256 proj_dropout: float = 0.1 @dataclass class EvaluationArgs: dataset_args: MUGENDatasetArgs = MUGENDatasetArgs( get_game_frame=True, get_text_desc=True, resolution=256, fixed_start_idx=False, use_manual_annotation=True, use_auto_annotation=False, ) datamodule_args: DataModuleArgs = DataModuleArgs() lightningmodule_args: LightningModuleArgs = LightningModuleArgs() videoclip_args: VideoCLIPArgs = VideoCLIPArgs() checkpoint_path: str = "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/videoclip_lightning_mugen.pt" accelerator: str = "auto" @dataclass class TrainingArgs: dataset_args: MUGENDatasetArgs = MUGENDatasetArgs( get_game_frame=True, get_text_desc=True, resolution=224, fixed_start_idx=False, use_manual_annotation=True, use_auto_annotation=False, ) datamodule_args: DataModuleArgs = DataModuleArgs() lightningmodule_args: LightningModuleArgs = LightningModuleArgs() videoclip_args: VideoCLIPArgs = VideoCLIPArgs() accelerator: str = "auto" devices: int = 4 max_epochs: int = 1000 log_every_n_steps: int = 100 default_root_dir: Optional[str] = None
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/retrieval/definitions.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Any, Tuple import torch from examples.mugen.retrieval.video_clip import videoclip from pytorch_lightning import LightningModule from torchmetrics import Recall from torchmultimodal.modules.losses.contrastive_loss_with_temperature import ( ContrastiveLossWithTemperature, ) class VideoCLIPLightningModule(LightningModule): """PyTorch Lightning module for evaluating VideoCLIP model. Args: logit_scale (float): Initial log-temperature value for contrastive loss funtion. Defaults to ``0.07``, MUGEN's log-temperature value at initialization. logit_scale_max (float): Maximum log-temperature value for contrastive loss function. Defaults to ``100``, MUGEN's maximum log-temperature value. learning_rate (float): optimizer learning rate. Defaults to ``1e-3``, MUGEN's learning rate. weight_decay (float): optimizer weight decay. Defaults to ``1e-3``, MUGEN's weight decay. recall_ks (Tuple[int]): tuple of top-``k``'s for calculating recall. Defaults to ``(1, 5, 10)``, i.e. top-1 recall, top-5 recall, and top-10 recall. **videoclip_kwargs (Any): Keyword arguments for the videoCLIP model builder. """ def __init__( self, logit_scale: float = 0.07, logit_scale_max: float = 100, learning_rate: float = 1e-3, weight_decay: float = 1e-3, recall_ks: Tuple[int] = (1, 5, 10), **videoclip_kwargs: Any, ): super().__init__() self.model = videoclip(**videoclip_kwargs) self.contrastive_loss = ContrastiveLossWithTemperature( logit_scale=logit_scale, logit_scale_min=None, logit_scale_max=logit_scale_max, ) self.lr = learning_rate self.weight_decay = weight_decay self.recall_ks = set(recall_ks) if len(self.recall_ks) != len(recall_ks): warnings.warn("Duplicate `k` values in `recall_ks` are ignored.") self.metrics = torch.nn.ModuleDict() for k in self.recall_ks: self.metrics.update( {f"v2t_recall_{k}": Recall(top_k=k), f"t2v_recall_{k}": Recall(top_k=k)} ) def _collect_embeddings(self, outputs): text_embeddings = [batch.embeddings_a for batch in outputs] video_embeddings = [batch.embeddings_b for batch in outputs] embeddings = { "text": torch.cat(text_embeddings), "video": torch.cat(video_embeddings), } return embeddings def _compute_recall(self, split, text_embedding, video_embedding): similarity_matrix = text_embedding @ video_embedding.T num_samples = similarity_matrix.shape[0] target_matrix = torch.eye( n=num_samples, dtype=int, device=similarity_matrix.device ) for k in self.recall_ks: v2t_recall = self.metrics[f"v2t_recall_{k}"] v2t_recall(preds=similarity_matrix.T, target=target_matrix) self.log(f"{split}/Recall@{k} (video query, text retrieval)", v2t_recall) t2v_recall = self.metrics[f"t2v_recall_{k}"] t2v_recall(preds=similarity_matrix, target=target_matrix) self.log(f"{split}/Recall@{k} (text query, video retrieval)", t2v_recall) def configure_optimizers(self): params = self.parameters() optimizer = torch.optim.AdamW( params, lr=self.lr, weight_decay=self.weight_decay ) return optimizer def training_step(self, batch, batch_idx): text, video = batch.get("text"), batch.get("video") model_output = self.model(features_a=text, features_b=video) loss = self.contrastive_loss( model_output.embeddings_a, model_output.embeddings_b ) self.log( "train/loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True ) return {"loss": loss, "model_output": model_output} def validation_step(self, batch, batch_idx): text, video = batch.get("text"), batch.get("video") model_output = self.model(features_a=text, features_b=video) loss = self.contrastive_loss( model_output.embeddings_a, model_output.embeddings_b ) self.log( "validation/loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, ) return {"loss": loss, "model_output": model_output} def validation_epoch_end(self, outputs): model_outputs = [batch["model_output"] for batch in outputs] all_embeddings = self._collect_embeddings(model_outputs) text_embedding, video_embedding = ( all_embeddings["text"], all_embeddings["video"], ) self._compute_recall("validation", text_embedding, video_embedding) def test_step(self, batch, batch_idx): text, video = batch.get("text"), batch.get("video") model_output = self.model(features_a=text, features_b=video) return model_output def test_epoch_end(self, outputs): all_embeddings = self._collect_embeddings(outputs) text_embedding, video_embedding = ( all_embeddings["text"], all_embeddings["video"], ) self._compute_recall("test", text_embedding, video_embedding)
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/retrieval/model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from examples.mugen.data.mugen_datamodules import MUGENDataModule from examples.mugen.data.mugen_dataset import MUGENDatasetArgs from examples.mugen.retrieval.model import VideoCLIPLightningModule from hydra.utils import instantiate from omegaconf import OmegaConf from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from torchmultimodal.transforms.bert_text_transform import BertTextTransform from torchmultimodal.transforms.video_transform import VideoTransform def get_yaml_config(): cli_conf = OmegaConf.from_cli() if "config" not in cli_conf: raise ValueError( "Please pass 'config' to specify configuration yaml file for running VideoCLIP training" ) yaml_conf = OmegaConf.load(cli_conf.config) conf = instantiate(yaml_conf) return conf def train(): args = get_yaml_config() dataset_args: MUGENDatasetArgs = args.dataset_args datamodule = MUGENDataModule( dataset_args, text_transform=BertTextTransform( **vars(args.datamodule_args.bert_text_transform) ), video_transform=VideoTransform(**vars(args.datamodule_args.video_transform)), batch_size=args.datamodule_args.batch_size, num_workers=args.datamodule_args.num_workers, shuffle=args.datamodule_args.shuffle, ) model = VideoCLIPLightningModule( **vars(args.lightningmodule_args), **vars(args.videoclip_args), ) checkpoint_callback = ModelCheckpoint(save_top_k=-1) trainer = Trainer( accelerator=args.accelerator, devices=args.devices, strategy="ddp_find_unused_parameters_false", max_epochs=args.max_epochs, log_every_n_steps=args.log_every_n_steps, default_root_dir=args.default_root_dir, callbacks=[checkpoint_callback], ) trainer.fit( model=model, train_dataloaders=datamodule.train_dataloader(), val_dataloaders=datamodule.val_dataloader(), ) if __name__ == "__main__": train()
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/retrieval/train.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Any, Dict, Optional import torch from torch import nn from torchmultimodal.models.clip.model import CLIP from torchmultimodal.utils.common import load_module_from_url from torchvision.models.video import S3D from transformers import DistilBertConfig, DistilBertModel PRETRAINED_VIDEO_ENCODER_URL = "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/video_encoder-weights-b0e27f13.pth" class TextEncoder(nn.Module): """Encode tokenized text to the last hidden state representation of the CLS token using DistilBERT. DistilBERT prepends a CLS (classification) token to every text so the token's hidden state represents the entire text. Adapted from MUGEN's text encoder (https://github.com/mugen-org/MUGEN_baseline/blob/main/lib/models/videoclip/modules.py) Args: model_config (Optional[Dict[str, Any]]): model config for DistilBERT. Defaults to ``None``, indicating the default DistilBERT config. padding_value (int): value that was used to pad the input text. Defaults to ``0``, Hugging Face's BERT pad token. Inputs: input_ids (Tensor): tensor of (batch, text_length) tokenized text Returns: Tensor: encoded text with dimensions (batch, ``model_config.dim``). Default ``model_config.dim`` is ``768``. """ def __init__( self, model_config: Optional[Dict[str, Any]] = None, padding_value: int = 0, ): super().__init__() self.padding_value = padding_value # we are using the CLS token hidden representation as the sentence's embedding self.target_token_idx = 0 distilbert_config = ( DistilBertConfig(**model_config) if model_config else DistilBertConfig() ) self.model = DistilBertModel(config=distilbert_config) self.out_dim = self.model.config.dim def build_attention_mask(self, input_ids: torch.Tensor) -> torch.Tensor: return (input_ids != self.padding_value).to(dtype=int) def forward(self, input_ids: torch.Tensor) -> torch.Tensor: attention_mask = self.build_attention_mask(input_ids) output = self.model(input_ids=input_ids, attention_mask=attention_mask) last_hidden_state = output.last_hidden_state return last_hidden_state[:, self.target_token_idx, :] class VideoEncoder(nn.Module): """Encode videos to the last layer before the fully-connected layer of S3D. Adapted from MUGEN's video encoder (https://github.com/mugen-org/MUGEN_baseline/blob/main/lib/models/videoclip/modules.py) Attributes: model (nn.Module): Module extracted from :class:`~torchvision.models.video.S3D`. Code reference: https://github.com/pytorch/vision/blob/main/torchvision/models/video/s3d.py out_dim (int): Output dimension of VideoEncoder. Inputs: x (Tensor): batch of videos with dimensions (batch, channel, time, height, width) Size of ``channel`` dimension must be ``3``. """ def __init__(self) -> None: super().__init__() self.model = S3D() # Getting input channels from the Conv3d layer self.out_dim = self.model.classifier[1].in_channels # Transform the classifier into identity self.model.classifier = nn.Identity() def forward(self, x): if x.shape[1] != 3: raise ValueError( "Channels must be at first (zero-indexed) dimension of input and of size 3." ) return self.model(x) class Projection(nn.Module): """Project embeddings to a fixed dimension by adding the hidden-layer output and final output of a MLP. Args: in_dim (int): dimension of input. out_dim (int): dimension of output. Defaults to ``256``, the value used by MUGEN. dropout_prob (float): dropout probability. Defaults to ``0.1``, the value used by MUGEN. Inputs: x (Tensor): embeddings (batch, dim_in) Returns: Tensor: projected embeddings (batch, dim_out) """ def __init__(self, in_dim, out_dim=256, dropout_prob=0.1) -> None: super().__init__() self.linear1 = nn.Linear(in_dim, out_dim, bias=False) self.gelu = nn.GELU() self.linear2 = nn.Linear(out_dim, out_dim, bias=False) self.drop = nn.Dropout(dropout_prob) self.layer_norm = nn.LayerNorm(out_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: embed1 = self.linear1(x) embed2 = self.gelu(embed1) embed2 = self.linear2(embed2) embed2 = self.drop(embed2) embeds = self.layer_norm(embed1 + embed2) return embeds def videoclip( text_pretrained: bool = True, text_trainable: bool = True, text_model_name: str = "distilbert-base-uncased", text_model_config: Optional[Dict[str, Any]] = None, text_padding_value: int = 0, video_pretrained: bool = True, video_trainable: bool = True, video_pretrain_path: str = PRETRAINED_VIDEO_ENCODER_URL, proj_out_dim: int = 256, proj_dropout: float = 0.1, ) -> CLIP: """Create MUGEN's video-text CLIP model with a S3D-backed video encoder and DistilBERT-backed text encoder. MUGEN paper: https://arxiv.org/abs/2204.08058 Args: text_pretrained (bool): whether to use a pretrained text encoder or not. Defaults to ``True``. text_trainable (bool): whether the text encoder's weights should be trainable. Defaults to ``True``. Ignored if ``text_pretrained`` is ``False``. text_model_name (str): name of pretrained model, used when ``text_pretrained`` is ``True``. Defaults to ``"distilbert-base-uncased"``, Hugging Face's standard DistilBERT model. text_model_config (Optional[Dict[str, Any]]): model config for DistilBERT. Defaults to ``None``, indicating the default DistilBERT config. text_padding_value (int): value that was used to pad the input text. Defaults to ``0``, Hugging Face's BERT pad token. video_pretrained (bool): whether to use a pretrained model or not. Defaults to ``True``. video_trainable (bool): whether the video encoder's weights should be trainable. Defaults to ``True``. Ignored if ``video_pretrained`` is ``False``. video_pretrain_path (str): local path or remote URL to video encoder pretrained weights. Defaults to ``PRETRAINED_VIDEO_ENCODER_URL``, the weights MUGEN used from pretraining S3D on Kinetics 400. Ignored if ``video_pretrained`` is ``False``. proj_out_dim (int): output dimension to project both encoders' outputs to. Defaults to ``256``, the value used by MUGEN. proj_dropout (float): dropout probability in the projection layers. Defaults to ``0.1``, the value used by MUGEN. Returns: CLIP: CLIP model using MUGEN's video encoder and text encoder. """ text_model = TextEncoder( model_config=text_model_config, padding_value=text_padding_value, ) if text_pretrained: print(f"Loading pretrained DistilBERT from {text_model_name}.") text_model.model = DistilBertModel.from_pretrained(text_model_name) if text_pretrained and not text_trainable: # check `text_pretrained` because if model isn't pretrained, then it should be trainable for p in text_model.model.parameters(): p.requires_grad = False elif not text_trainable: warnings.warn("`text_trainable` acts as True when `text_pretrained` is False.") text_encoder = nn.Sequential( text_model, Projection(text_model.out_dim, out_dim=proj_out_dim, dropout_prob=proj_dropout), ) video_model = VideoEncoder() if video_pretrained: print(f"Loading pretrained video encoder from {video_pretrain_path}.") load_module_from_url(video_model, video_pretrain_path) if video_pretrained and not video_trainable: # check `video_pretrained` because if model isn't pretrained, then it should be trainable for p in video_model.model.parameters(): p.requires_grad = False elif not video_trainable: warnings.warn( "`video_trainable` acts as True when `video_pretrained` is False." ) video_encoder = nn.Sequential( video_model, Projection( video_model.out_dim, out_dim=proj_out_dim, dropout_prob=proj_dropout ), ) return CLIP(encoder_a=text_encoder, encoder_b=video_encoder)
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/retrieval/video_clip.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from examples.mugen.data.mugen_datamodules import MUGENDataModule from examples.mugen.data.mugen_dataset import MUGENDatasetArgs from examples.mugen.retrieval.model import VideoCLIPLightningModule from hydra.utils import instantiate from omegaconf import OmegaConf from pytorch_lightning import Trainer from torchmultimodal.transforms.bert_text_transform import BertTextTransform from torchmultimodal.transforms.video_transform import VideoTransform def get_yaml_config(): cli_conf = OmegaConf.from_cli() if "config" not in cli_conf: raise ValueError( "Please pass 'config' to specify configuration yaml file for running VideoCLIP evaluation" ) yaml_conf = OmegaConf.load(cli_conf.config) conf = instantiate(yaml_conf) return conf def evaluate(): args = get_yaml_config() dataset_args: MUGENDatasetArgs = args.dataset_args datamodule = MUGENDataModule( dataset_args, text_transform=BertTextTransform( **vars(args.datamodule_args.bert_text_transform) ), video_transform=VideoTransform(**vars(args.datamodule_args.video_transform)), batch_size=args.datamodule_args.batch_size, num_workers=args.datamodule_args.num_workers, shuffle=args.datamodule_args.shuffle, ) model = VideoCLIPLightningModule.load_from_checkpoint( args.checkpoint_path, **vars(args.lightningmodule_args), **vars(args.videoclip_args), ) trainer = Trainer(accelerator=args.accelerator, devices=1) trainer.test(model, dataloaders=datamodule.test_dataloader()) if __name__ == "__main__": evaluate()
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/retrieval/eval.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json import os from dataclasses import dataclass import numpy as np import torch from examples.mugen.data.coinrun.construct_from_json import ( define_semantic_color_map, draw_game_frame, generate_asset_paths, load_assets, load_bg_asset, ) from examples.mugen.data.coinrun.game import Game from torch.utils.data import Dataset from .audio_utils import AUDIO_SAMPLE_LENGTH, AUDIO_SAMPLE_RATE, load_audio @dataclass class MUGENDatasetArgs: data_path: str = "datasets/coinrun/coinrun_dataset_jsons/release" asset_path: str = "datasets/coinrun/assets" sample_every_n_frames: int = 3 sequence_length: int = 32 resolution: int = 256 audio_sample_rate: int = AUDIO_SAMPLE_RATE audio_sample_length: int = AUDIO_SAMPLE_LENGTH bbox_smap_for_agent: bool = ( True # render smap for mugen (and shield) as bounding boxes ) bbox_smap_for_monsters: bool = True # render smap for monsters as bounding boxes use_manual_annotation: bool = False # if True will only use videos with manual annotation and skip those without use_auto_annotation: bool = ( True # if True will only use videos with auto annotation and skip those without ) use_downsampled_trainset: bool = ( False # if True will only use downsampled training set ) fixed_start_idx: bool = True # fx starting game frame idx to 0 get_game_frame: bool = False # load video data get_seg_map: bool = False # load semantic map get_text_desc: bool = False # load text data get_audio: bool = ( False # load full mix audio for each video, for audio generation models ) debug: bool = False class MUGENDataset(Dataset): """Dataset class to interface the MUGEN dataset. Args: split (str): dataset split. Defines the json file from which to read metadata. E.g. ``"train"``, ``"valid"``, or ``"test"``. args (MUGENDatasetArgs): other arguments related to loading data from files. """ def __init__( self, split: str, args: MUGENDatasetArgs, ): super().__init__() self.args = args self.train = split == "train" self.max_label = 21 assert ( self.args.get_game_frame or self.args.get_audio or self.args.get_text_desc ), "Need to return at least one of game frame, audio, or text desc" if args.use_downsampled_trainset and split == "train": dataset_json_file = os.path.join( self.args.data_path, f"{split}_downsampled.json" ) else: dataset_json_file = os.path.join(self.args.data_path, f"{split}.json") print(f"LOADING FROM JSON FROM {dataset_json_file}...") with open(dataset_json_file, "r") as f: all_data = json.load(f) if args.debug: all_data["data"] = all_data["data"][:16] self.dataset_metadata = all_data["metadata"] self.data = [] for data_sample in all_data["data"]: if ( data_sample["video"]["num_frames"] > (args.sequence_length - 1) * args.sample_every_n_frames ): self.data.append(data_sample) print(f"NUMBER OF FILES LOADED: {len(self.data)}") self.init_game_assets() # initialize game assets def init_game_assets(self): self.game = Game() self.game.load_json( os.path.join( self.dataset_metadata["data_folder"], self.data[0]["video"]["json_file"] ) ) # NOTE: only supports rendering square-size coinrun frame for now self.game.video_res = self.args.resolution semantic_color_map = define_semantic_color_map(self.max_label) # grid size for Mugen/monsters/ground self.kx: float = self.game.zoom * self.game.video_res / self.game.maze_w self.ky: float = self.kx # grid size for background zx = self.game.video_res * self.game.zoom zy = zx # NOTE: This is a hacky solution to switch between theme assets # Sightly inefficient due to Mugen/monsters being loaded twice # but that only a minor delay during init # This should be revisited in future when we have more background/ground themes self.total_world_themes = len(self.game.background_themes) self.asset_map = {} for world_theme_n in range(self.total_world_themes): # reset the paths for background and ground assets based on theme self.game.world_theme_n = world_theme_n asset_files = generate_asset_paths(self.game) # TODO: is it worth to load assets separately for game frame and label? # this way game frame will has smoother character boundary self.asset_map[world_theme_n] = load_assets( asset_files, self.args.asset_path, semantic_color_map, self.kx, self.ky, gen_original=False, ) # background asset is loaded separately due to not following the grid self.asset_map[world_theme_n]["background"] = load_bg_asset( asset_files, self.args.asset_path, semantic_color_map, zx, zy ) def __len__(self): return len(self.data) def get_start_end_idx(self, valid_frames=None): start_idx = 0 end_idx = len(self.game.frames) if self.args.sequence_length is not None: assert ( self.args.sequence_length - 1 ) * self.args.sample_every_n_frames < end_idx, ( f"not enough frames to sample {self.args.sequence_length} frames " + "at every {self.args.sample_every_n_frames} frame" ) if self.args.fixed_start_idx: start_idx = 0 else: if valid_frames: # we are sampling frames from a full json and we need to ensure that the desired # class is in the frame range we sample. Resample until this is true resample = True while resample: start_idx = torch.randint( low=0, high=end_idx - (self.args.sequence_length - 1) * self.args.sample_every_n_frames, size=(1,), ).item() for valid_frame_range in valid_frames: if isinstance(valid_frame_range, list): # character ranges st_valid, end_valid = valid_frame_range else: # game event has a single timestamp st_valid, end_valid = ( valid_frame_range, valid_frame_range, ) if ( end_valid >= start_idx and start_idx + self.args.sequence_length * self.args.sample_every_n_frames >= st_valid ): # desired class is in the sampled frame range, so stop sampling resample = False else: start_idx = torch.randint( low=0, high=end_idx - (self.args.sequence_length - 1) * self.args.sample_every_n_frames, size=(1,), ).item() end_idx = ( start_idx + self.args.sequence_length * self.args.sample_every_n_frames ) return start_idx, end_idx def get_game_video(self, start_idx, end_idx, alien_name="Mugen"): frames = [] for i in range(start_idx, end_idx, self.args.sample_every_n_frames): img = draw_game_frame( self.game, i, self.asset_map[self.game.world_theme_n], self.kx, self.ky, gen_original=True, alien_name=alien_name, ) frames.append(torch.unsqueeze(torch.as_tensor(np.array(img)), dim=0)) return torch.vstack(frames) def get_game_audio(self, wav_filename): data, _ = load_audio( wav_filename, sr=self.args.audio_sample_rate, offset=0, duration=self.args.audio_sample_length, ) data = torch.as_tensor(data).permute(1, 0) return data def get_smap_video(self, start_idx, end_idx, alien_name="Mugen"): frames = [] for i in range(start_idx, end_idx, self.args.sample_every_n_frames): img = draw_game_frame( self.game, i, self.asset_map[self.game.world_theme_n], self.kx, self.ky, gen_original=False, bbox_smap_for_agent=self.args.bbox_smap_for_agent, bbox_smap_for_monsters=self.args.bbox_smap_for_monsters, alien_name=alien_name, ) frames.append(torch.unsqueeze(torch.as_tensor(np.array(img)), dim=0)) # typical output shape is 16 x 256 x 256 x 1 (sequence_length=16, resolution=256) return torch.unsqueeze(torch.vstack(frames), dim=3) def load_json_file(self, idx): self.game.load_json( os.path.join( self.dataset_metadata["data_folder"], self.data[idx]["video"]["json_file"], ) ) self.game.video_res = self.args.resolution def __getitem__(self, idx): self.load_json_file(idx) start_idx, end_idx = self.get_start_end_idx() alien_name = "Mugen" result_dict = {} if self.args.get_audio: wav_file = os.path.join( self.dataset_metadata["data_folder"], self.data[idx]["video"]["video_file"], ) result_dict["audio"] = self.get_game_audio(wav_file) if self.args.get_game_frame: game_video = self.get_game_video(start_idx, end_idx, alien_name=alien_name) result_dict["video"] = game_video if self.args.get_seg_map: seg_map_video = self.get_smap_video( start_idx, end_idx, alien_name=alien_name ) result_dict["video_smap"] = seg_map_video if self.args.get_text_desc: # text description will be generated in the range of start and end frames # this means we can use full json and auto-text to train transformer too assert self.args.use_auto_annotation or self.args.use_manual_annotation if self.args.use_manual_annotation and not self.args.use_auto_annotation: assert ( len(self.data[idx]["annotations"]) > 1 ), "need at least one manual annotation if using only manual annotations" # exclude the auto-text, which is always index 0 rand_idx = ( torch.randint( low=1, high=len(self.data[idx]["annotations"]), size=(1,) ).item() if self.train else 1 ) elif not self.args.use_manual_annotation and self.args.use_auto_annotation: rand_idx = 0 else: rand_idx = torch.randint( low=0, high=len(self.data[idx]["annotations"]), size=(1,) ).item() if self.args.use_manual_annotation and not self.args.use_auto_annotation: assert ( self.data[idx]["annotations"][rand_idx]["type"] == "manual" ), "Should only be sampling manual annotations" text_desc = self.data[idx]["annotations"][rand_idx]["text"] result_dict["text"] = text_desc return result_dict
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/data/mugen_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch from tqdm import tqdm label_color_map = { 0: torch.FloatTensor((0, 0, 0)), 1: torch.FloatTensor((128, 0, 0)), 2: torch.FloatTensor((255, 0, 0)), 3: torch.FloatTensor((139, 69, 19)), 4: torch.FloatTensor((0, 255, 0)), 5: torch.FloatTensor((0, 128, 0)), 6: torch.FloatTensor((0, 100, 0)), 7: torch.FloatTensor((244, 164, 96)), 8: torch.FloatTensor((205, 133, 63)), 9: torch.FloatTensor((255, 192, 203)), 10: torch.FloatTensor((210, 105, 30)), 11: torch.FloatTensor((255, 0, 255)), 12: torch.FloatTensor((230, 230, 250)), 13: torch.FloatTensor((0, 191, 255)), 14: torch.FloatTensor((154, 205, 50)), 15: torch.FloatTensor((255, 215, 0)), 16: torch.FloatTensor((169, 169, 169)), 17: torch.FloatTensor((148, 0, 211)), 18: torch.FloatTensor((127, 255, 212)), 19: torch.FloatTensor((255, 255, 0)), 20: torch.FloatTensor((255, 69, 0)), 21: torch.FloatTensor((255, 255, 255)), 22: torch.FloatTensor((0, 0, 255)), } def convert_grayscale_to_color_label(input_tensor): b_in, t_in, h_in, w_in = input_tensor.shape input_tensor = input_tensor.reshape(-1) output_tensor = torch.zeros(input_tensor.shape[0], 3) for i, t in tqdm( enumerate(input_tensor.cpu().numpy()), total=input_tensor.shape[0] ): output_tensor[i] = label_color_map[t] output_tensor = output_tensor.reshape(b_in, t_in, h_in, w_in, 3).permute( 0, 4, 1, 2, 3 ) return output_tensor
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/data/video_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import av import numpy as np # Audio constants are from MUGEN's audio VQVAE implementation # (https://github.com/mugen-org/MUGEN_baseline/blob/b60d229/lib/models/audio_vqvae/hparams.py) AUDIO_SAMPLE_RATE = 22050 AUDIO_SAMPLE_LENGTH = AUDIO_SAMPLE_RATE * 3.2 # each video is 3.2 seconds # `load_audio` function is from OpenAI's jukebox library # (https://github.com/openai/jukebox/blob/08efbbc/jukebox/utils/io.py) def load_audio( file, sr, offset, duration, resample=True, approx=False, time_base="samples", check_duration=True, ): if time_base == "sec": offset = offset * sr duration = duration * sr # Loads at target sr, stereo channels, seeks from offset, and stops after duration container = av.open(file) audio = container.streams.get(audio=0)[0] # Only first audio stream audio_duration = audio.duration * float(audio.time_base) if approx: if offset + duration > audio_duration * sr: # Move back one window. Cap at audio_duration offset = np.min(audio_duration * sr - duration, offset - duration) else: if check_duration: assert ( offset + duration <= audio_duration * sr ), f"End {offset + duration} beyond duration {audio_duration*sr}" if resample: resampler = av.AudioResampler(format="fltp", layout="stereo", rate=sr) else: assert sr == audio.sample_rate offset = int( offset / sr / float(audio.time_base) ) # int(offset / float(audio.time_base)) # Use units of time_base for seeking duration = int( duration ) # duration = int(duration * sr) # Use units of time_out ie 1/sr for returning sig = np.zeros((2, duration), dtype=np.float32) container.seek(offset, stream=audio) total_read = 0 for frame in container.decode(audio=0): # Only first audio stream if resample: frame.pts = None frame = resampler.resample(frame) frame = frame.to_ndarray(format="fltp") # Convert to floats and not int16 read = frame.shape[-1] if total_read + read > duration: read = duration - total_read sig[:, total_read : total_read + read] = frame[:, :read] total_read += read if total_read == duration: break assert total_read <= duration, f"Expected {duration} frames, got {total_read}" return sig, sr
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/data/audio_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Optional import pytorch_lightning as pl import torch import torch.distributed as dist import torch.utils.data as data from .mugen_dataset import MUGENDataset, MUGENDatasetArgs class MUGENDataModule(pl.LightningDataModule): """General lightning data module for MUGEN dataset. Args: mugen_dataset_args (MUGENDatasetArgs): arguments for MUGENDataset. text_transform (Optional[Callable]): transform for text batches. Only used when not ``None`` and when ``mugen_dataset_args.get_text_desc = True``. Defaults to ``None``. video_transform (Optional[Callable]): transform for video batches. Only used when not ``None`` and when ``mugen_dataset_args.get_game_frame = True``. Defaults to ``None``. audio_transform (Optional[Callable]): transform for audio batches. Only used when not ``None`` and when ``mugen_dataset_args.get_audio = True``. Defaults to ``None``. batch_size (int): number of samples per batch. Defaults to ``16``. num_workers (int): number of subprocesses for data loading. Defaults to ``0``, meaning data is loaded in the main process. shuffle (bool): whether to reshuffle data after each epoch. Defaults to ``True``. """ def __init__( self, mugen_dataset_args: MUGENDatasetArgs, text_transform: Optional[Callable] = None, video_transform: Optional[Callable] = None, audio_transform: Optional[Callable] = None, batch_size: int = 16, num_workers: int = 0, shuffle: bool = True, ): super().__init__() self.mugen_dataset_args = mugen_dataset_args self.text_transform = text_transform self.video_transform = video_transform self.audio_transform = audio_transform self.batch_size = batch_size self.num_workers = num_workers self.shuffle = shuffle @property def n_classes(self): dataset = self._dataset(True) return dataset.n_classes def _custom_collate_fn(self, batch): collated_batch = {} if self.mugen_dataset_args.get_game_frame: video = [elem["video"] for elem in batch] video = torch.stack(video) video = self.video_transform(video) if self.video_transform else video collated_batch["video"] = video if self.mugen_dataset_args.get_text_desc: text = [elem["text"] for elem in batch] # cannot be torch.stack'ed because still in raw text form, not Tensor text = self.text_transform(text) if self.text_transform else text collated_batch["text"] = text if self.mugen_dataset_args.get_audio: audio = [elem["audio"] for elem in batch] audio = torch.stack(audio) audio = self.audio_transform(audio) if self.audio_transform else audio collated_batch["audio"] = audio return collated_batch def _dataset(self, split): dataset = MUGENDataset(args=self.mugen_dataset_args, split=split) return dataset def _dataloader(self, split): dataset = self._dataset(split) if dist.is_initialized(): sampler = data.distributed.DistributedSampler( dataset, num_replicas=dist.get_world_size(), rank=dist.get_rank() ) else: sampler = None dataloader = data.DataLoader( dataset, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=True, sampler=sampler, shuffle=sampler is None and self.shuffle is True, collate_fn=self._custom_collate_fn, ) return dataloader def train_dataloader(self): return self._dataloader("train") def val_dataloader(self): return self._dataloader("val") def test_dataloader(self): return self._dataloader("test")
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/data/mugen_datamodules.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json class Game: def __init__(self, **kwargs): self.game_id = -1 self.level_seed = 0 self.rl_agent_seed = 0 self.zoom = 5.5 self.bgzoom = 0.4 # NOTE: hard-coded self.world_theme_n = -1 self.agent_theme_n = -1 self.background_themes = [] self.ground_themes = [] self.agent_themes = [] self.monster_names = {} self.flattened_monster_names = [] # TODO: save and load these from the game engine self.video_res = 1024 self.maze_w = 64 self.maze_h = 13 # for zoom 5.5 self.reset_game() self.__dict__.update(**kwargs) self.frames = [Frame(**f) for f in self.frames] def reset_game(self): self.maze = None self.frames = [] def asdict(self, f_start=-1, f_end=-1): if f_end < 0: # show all frames by default frames_as_dict = [f.asdict() for f in self.frames] else: frames_as_dict = [f.asdict() for f in self.frames[f_start:f_end]] return { "game_id": self.game_id, "level_seed": self.level_seed, "rl_agent_seed": self.rl_agent_seed, "zoom": self.zoom, "bgzoom": self.bgzoom, "world_theme_n": self.world_theme_n, "agent_theme_n": self.agent_theme_n, "background_themes": self.background_themes, "ground_themes": self.ground_themes, "agent_themes": self.agent_themes, "monster_names": self.monster_names, "video_res": self.video_res, "maze_w": self.maze_w, "maze_h": self.maze_h, "maze": self.maze if self.maze is not None else None, "frames": frames_as_dict, } def __repr__(self): return json.dumps(self.asdict()) def save_json(self, json_path, f_start=-1, f_end=-1): with open(json_path, "w") as f: json.dump(self.asdict(f_start, f_end), f, indent=2) def load_json(self, json_path): with open(json_path, "r") as f: data = json.load(f) self.reset_game() self.__dict__.update(**data) self.frames = [Frame(**f) for f in self.frames] self.flatten_monster_names() self.reset_eaten_coins() def flatten_monster_names(self): # the order is important! self.flattened_monster_names = self.monster_names["ground"] self.flattened_monster_names.extend(self.monster_names["walking"]) self.flattened_monster_names.extend(self.monster_names["flying"]) # NOTE: some coins might be missing due to how 3s clip json is saved # reset all eaten coins to put them back # this is a temporary fix until we regenerate all jsons def reset_eaten_coins(self): for coin_loc in self.frames[-1].coins_eaten: # note the game rows are saved as strings # NOTE: '1' is the yellow coin, we also has another type '2' that is the red gem # but the json with '2' enabled should not have this issue if self.maze[coin_loc[1]][coin_loc[0]] == ".": self.maze[coin_loc[1]] = ( self.maze[coin_loc[1]][: coin_loc[0]] + "1" + self.maze[coin_loc[1]][(coin_loc[0] + 1) :] ) class Frame: def __init__(self, **kwargs): self.frame_id = -1 self.file_name = "" self.state_time = 0 self.coins_eaten = [] self.agent = None self.monsters = [] self.__dict__.update(**kwargs) if "agent" in self.__dict__ and self.agent is not None: self.agent = Agent(**self.agent) if "monsters" in self.__dict__: self.monsters = [Monster(**m) for m in self.monsters] def asdict(self): return { "frame_id": self.frame_id, "file_name": self.file_name, "state_time": self.state_time, "coins_eaten": self.coins_eaten, "agent": self.agent.asdict() if self.agent is not None else None, "monsters": [m.asdict() for m in self.monsters], } def __repr__(self): return json.dumps(self.asdict()) class Agent: def __init__( self, x, y, vx=0.0, vy=0.0, time_alive=0, ladder=False, spring=0, is_killed=False, killed_animation_frame_cnt=0, finished_level_frame_cnt=0, killed_monster=False, bumped_head=False, collected_coin=False, collected_gem=False, power_up_mode=False, **kwargs, ): self.x = x self.y = y self.vx = vx self.vy = vy self.time_alive = time_alive self.ladder = ladder # for climb pose self.spring = spring # for duck pose # states related to agent dying or finishing animations self.is_killed = is_killed self.killed_animation_frame_cnt = killed_animation_frame_cnt self.finished_level_frame_cnt = finished_level_frame_cnt self.killed_monster = killed_monster self.bumped_head = bumped_head self.collected_coin = collected_coin self.collected_gem = collected_gem self.power_up_mode = power_up_mode self.anim_freq = 5 # hard-coded # decide whether to flip asset horizontally self.is_facing_right = True if self.vx < 0: self.is_facing_right = False # decide which of the two walk/climb asset to use self.walk1_mode = True if (self.time_alive // self.anim_freq) % 2 != 0: self.walk1_mode = False self.pose = self.get_pose() # kwargs are ignored # self.__dict__.update(**kwargs) def get_pose(self): if self.is_killed: return "hit" if self.ladder: if self.walk1_mode: return "climb1" else: return "climb2" if self.vy != 0: return "jump" if self.spring != 0: return "duck" if self.vx == 0: return "stand" if self.walk1_mode: return "walk1" else: return "walk2" def asdict(self): return { "x": self.x, "y": self.y, "vx": self.vx, "vy": self.vy, "time_alive": self.time_alive, "ladder": self.ladder, "spring": self.spring, "is_killed": self.is_killed, "killed_animation_frame_cnt": self.killed_animation_frame_cnt, "finished_level_frame_cnt": self.finished_level_frame_cnt, "killed_monster": self.killed_monster, "bumped_head": self.bumped_head, "collected_coin": self.collected_coin, "collected_gem": self.collected_gem, "power_up_mode": self.power_up_mode, "anim_freq": self.anim_freq, "is_facing_right": self.is_facing_right, "walk1_mode": self.walk1_mode, "pose": self.pose, } def __repr__(self): return json.dumps(self.asdict()) class Monster: def __init__( self, m_id, x, y, vx=0.0, vy=0.0, theme=0, is_flying=False, is_walking=False, is_jumping=False, is_dead=False, time=0, anim_freq=1, monster_dying_frame_cnt=0, **kwargs, ): self.m_id = m_id self.x = x self.y = y self.vx = vx self.vy = vy self.theme = theme # monster type (saw, snail, slime, etc.) self.is_flying = is_flying self.is_walking = is_walking self.is_jumping = is_jumping self.is_dead = is_dead self.time = time self.anim_freq = anim_freq self.monster_dying_frame_cnt = monster_dying_frame_cnt # decide which of the two walk/climb asset to use self.walk1_mode = True if self.is_jumping: # for jumping monster, walk1 asset is decided by vertical speed if self.vy != 0: self.walk1_mode = False elif (self.time // self.anim_freq) % 2 != 0: self.walk1_mode = False def asdict(self): return { "m_id": self.m_id, "x": self.x, "y": self.y, "vx": self.vx, "vy": self.vy, "theme": self.theme, "is_flying": self.is_flying, "is_walking": self.is_walking, "is_jumping": self.is_jumping, "is_dead": self.is_dead, "time": self.time, "anim_freq": self.anim_freq, "monster_dying_frame_cnt": self.monster_dying_frame_cnt, "walk1_mode": self.walk1_mode, } def __repr__(self): return json.dumps(self.asdict())
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/data/coinrun/game.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import os import numpy as np from PIL import Image DEATH_ANIM_LENGTH = 30 FINISHED_LEVEL_ANIM_LENGTH = 20 MONSTER_DEATH_ANIM_LENGTH = 3 SPACE = "." LADDER = "=" LAVA_SURFACE = "^" LAVA_MIDDLE = "|" WALL_SURFACE = "S" WALL_MIDDLE = "A" WALL_CLIFF_LEFT = "a" WALL_CLIFF_RIGHT = "b" COIN_OBJ1 = "1" COIN_OBJ2 = "2" CRATE_NORMAL = "#" CRATE_DOUBLE = "$" CRATE_SINGLE = "&" CRATE_WARNING = "%" def define_semantic_color_map(max_label=18): assert max_label in [18, 21, 22], f"max_label {max_label} is not supported!" semantic_color_map = {} semantic_color_map["background"] = 0 # alien is always set to max_label (assumes it always appear in a video) semantic_color_map["alien"] = max_label if max_label == 18: semantic_color_map["world"] = { WALL_MIDDLE: 3, WALL_SURFACE: 4, WALL_CLIFF_LEFT: 5, WALL_CLIFF_RIGHT: 6, COIN_OBJ1: 17, COIN_OBJ2: 0, CRATE_NORMAL: 8, CRATE_DOUBLE: 8, CRATE_SINGLE: 8, CRATE_WARNING: 8, LAVA_MIDDLE: 1, LAVA_SURFACE: 2, LADDER: 7, } semantic_color_map["shield"] = 0 semantic_color_map["monster"] = { "sawHalf": 16, "bee": 15, "slimeBlock": 14, "slimeBlue": 13, "mouse": 12, "snail": 11, "ladybug": 10, "wormPink": 9, "barnacle": 0, "frog": 0, } else: semantic_color_map["world"] = { WALL_MIDDLE: 3, WALL_SURFACE: 4, WALL_CLIFF_LEFT: 5, WALL_CLIFF_RIGHT: 6, COIN_OBJ1: 19, COIN_OBJ2: 20, CRATE_NORMAL: 8, CRATE_DOUBLE: 8, CRATE_SINGLE: 8, CRATE_WARNING: 8, LAVA_MIDDLE: 1, LAVA_SURFACE: 2, LADDER: 7, } semantic_color_map["shield"] = 21 semantic_color_map["monster"] = { "sawHalf": 16, "bee": 15, "slimeBlock": 14, "slimeBlue": 13, "mouse": 12, "snail": 11, "ladybug": 10, "wormPink": 9, "barnacle": 17, "frog": 18, } return semantic_color_map def generate_asset_paths(game): # use background corresponding with ground theme bgtheme = game.background_themes[game.world_theme_n] gtheme = game.ground_themes[game.world_theme_n] walls = "kenney/Ground/" + gtheme + "/" + gtheme.lower() # default option with fixed agent look atheme = game.agent_themes[game.agent_theme_n] alien = "kenneyLarge/Players/128x256_no_helmet/" + atheme + "/alien" + atheme alien_paths = {"Mugen": alien} tiles = "kenney/Tiles/" items = "kenneyLarge/Items/" enemy = "kenneyLarge/Enemies/" asset_files = {} asset_files["background"] = bgtheme asset_files["world"] = { WALL_MIDDLE: walls + "Center.png", WALL_SURFACE: walls + "Mid.png", WALL_CLIFF_LEFT: walls + "Cliff_left.png", WALL_CLIFF_RIGHT: walls + "Cliff_right.png", COIN_OBJ1: items + "coinGold.png", COIN_OBJ2: items + "gemRed.png", CRATE_NORMAL: tiles + "boxCrate.png", CRATE_DOUBLE: tiles + "boxCrate_double.png", CRATE_SINGLE: tiles + "boxCrate_single.png", CRATE_WARNING: tiles + "boxCrate_warning.png", LAVA_MIDDLE: tiles + "lava.png", LAVA_SURFACE: tiles + "lavaTop_low.png", LADDER: tiles + "ladderMid.png", } asset_files["alien"] = {} for alien_name in alien_paths.keys(): asset_files["alien"][alien_name] = { "walk1": alien_paths[alien_name] + "_walk1.png", "walk2": alien_paths[alien_name] + "_walk2.png", "climb1": alien_paths[alien_name] + "_climb1.png", "climb2": alien_paths[alien_name] + "_climb2.png", "stand": alien_paths[alien_name] + "_stand.png", "jump": alien_paths[alien_name] + "_jump.png", "duck": alien_paths[alien_name] + "_duck.png", "hit": alien_paths[alien_name] + "_hit.png", } asset_files["shield"] = "bubble_shield.png" game.flatten_monster_names() # monster assets are generated based on list of names used at rendering asset_files["monster"] = { name: enemy + name + ".png" for name in game.flattened_monster_names } return asset_files # binarize alpha channel if input img is in RGBA mode, set anything above 0 to 255 def binarize_alpha_channel(img): if img.mode != "RGBA": return img w, h = img.size for i in range(w): for j in range(h): pixel = img.getpixel((i, j)) # set alpha to 255 if alpha > 0 if pixel[3] > 0: img.putpixel((i, j), (pixel[0], pixel[1], pixel[2], 255)) return img class Asset: def __init__( self, name, file, asset_root, kind="world", kx=80, ky=80, semantic_color=(0, 0, 0), flip=False, binarize_alpha=False, ): self.name = name self.file = file self.asset_root = asset_root self.kind = kind self.kx = kx self.ky = ky self.semantic_color = semantic_color self.flip = flip self.binarize_alpha = binarize_alpha self.load_asset() def load_asset(self): asset_path = os.path.join(self.asset_root, self.file) if not os.path.isfile(asset_path): # basically remove the '_walk1' postfix fallback_path = ( "_".join(asset_path.split("_")[:-1]) + "." + asset_path.split(".")[-1] ) assert os.path.isfile(fallback_path), asset_path asset_path = fallback_path self.asset = Image.open(asset_path) # used for (user control) asset swap, because alien h:w == 2:1 while others is 1:1 # the asset resize at loading and render grid size all need to change respectively self.aspect_ratio = self.asset.size[1] / self.asset.size[0] if self.kind == "world": if self.name != LAVA_MIDDLE and self.name != LAVA_SURFACE: # LAVA has a special way of rendering animation so don't resize now self.asset = self.asset.resize( (math.ceil(self.kx + 0.5), math.ceil(self.ky + 0.5)) ) elif self.kind == "alien": self.asset = self.asset.resize( (math.ceil(self.kx), math.ceil(self.aspect_ratio * self.ky)) ) elif self.kind == "shield": self.asset = self.asset.resize( (math.ceil(self.kx * 1.15), math.ceil(self.ky * 2.1)) ) elif self.kind == "monster" or self.kind == "background": self.asset = self.asset.resize((math.ceil(self.kx), math.ceil(self.ky))) else: raise NotImplementedError(f"Unknown asset kind {self.kind}") # flip if needed (for facing left/right) if self.flip: self.asset = self.asset.transpose(Image.FLIP_LEFT_RIGHT) if self.binarize_alpha: self.asset = binarize_alpha_channel(self.asset) def load_assets( asset_files, asset_root, semantic_color_map, kx=80, ky=80, gen_original=False ): asset_map = {} for kind in asset_files.keys(): assert kind in semantic_color_map if kind == "background": # background will be loaded separately continue if kind == "shield": # asset file for the bubble shield in agent power-up mode asset_map[kind] = Asset( name=kind, file=asset_files[kind], asset_root=asset_root, kind=kind, kx=kx, ky=ky, semantic_color=semantic_color_map[kind], binarize_alpha=not gen_original, ) continue for key in asset_files[kind].keys(): if kind == "world": # ground asset, no need to worry about pose or facing asset_map[key] = Asset( name=key, file=asset_files[kind][key], asset_root=asset_root, kind=kind, kx=kx, ky=ky, semantic_color=semantic_color_map[kind][key], binarize_alpha=not gen_original, ) elif kind == "alien": for pose in asset_files[kind][key].keys(): # facing right is default to empty all_facings = ["", "_left"] for facing in all_facings: a_key = key + "_" + pose + facing asset_map[a_key] = Asset( name=a_key, file=asset_files[kind][key][pose], asset_root=asset_root, kind=kind, kx=kx, ky=ky, semantic_color=semantic_color_map[kind], flip=(facing != ""), # flip the asset if facing is not '' binarize_alpha=not gen_original, ) elif kind == "monster": # for monsters, 3 types of assets will be loaded # for each of them, facing can be left or right all_poses = ["", "_move", "_dead"] # walk1 is default to empty all_facings = ["", "_right"] # facing left is default to empty base_fn = os.path.splitext(asset_files[kind][key])[ 0 ] # e.g. Enemies/bee for pose in all_poses: for facing in all_facings: m_key = key + pose + facing file_name = base_fn + pose + ".png" asset_map[m_key] = Asset( name=m_key, file=file_name, asset_root=asset_root, kind="monster", kx=kx, ky=ky, semantic_color=semantic_color_map[kind][key], flip=(facing != ""), # flip the asset if facing is not '' binarize_alpha=not gen_original, ) else: raise NotImplementedError(f"Unknown asset kind {kind}") return asset_map # load background asset, zoom is different so need a separate function def load_bg_asset(asset_files, asset_root, semantic_color_map, zx, zy): kind = "background" bg_asset = Asset( name=kind, file=asset_files[kind], asset_root=asset_root, kind=kind, kx=zx, ky=zy, semantic_color=semantic_color_map[kind], ) return bg_asset # used for alien dying animation in gen_original mode def get_transparent_asset(input_asset, transparency): assert input_asset.mode == "RGBA" np_asset = np.array(input_asset, dtype=np.int16) np_asset[:, :, 3] -= transparency np_asset[:, :, 3] = np.clip(np_asset[:, :, 3], 0, None) return Image.fromarray(np_asset.astype(np.uint8)) # return rect in integer values, floor for x1,y1, ceil for x2,y2 or w,h def integer_rect(rect): return [ math.floor(rect[0]), math.floor(rect[1]), math.ceil(rect[2]), math.ceil(rect[3]), ] def convert_xywh_to_xyxy(rect): return [rect[0], rect[1], rect[0] + rect[2], rect[1] + rect[3]] def convert_xyxy_to_xywh(rect): return [rect[0], rect[1], rect[2] - rect[0], rect[3] - rect[1]] # rect format is xywh, img_size is (w,h) def check_out_of_bounds(rect, img_size): if rect[0] + rect[2] < 0: return True if rect[0] > img_size[0]: return True if rect[1] + rect[3] < 0: return True if rect[1] > img_size[1]: return True return False # return intersect of two rects, input and output are both in xywh format def intersect_rects(rect1, rect2): xyxy_rect1 = convert_xywh_to_xyxy(rect1) xyxy_rect2 = convert_xywh_to_xyxy(rect2) xyxy_res_rect = [ max(xyxy_rect1[0], xyxy_rect2[0]), max(xyxy_rect1[1], xyxy_rect2[1]), min(xyxy_rect1[2], xyxy_rect2[2]), min(xyxy_rect1[3], xyxy_rect2[3]), ] xywh_res_rect = convert_xyxy_to_xywh(xyxy_res_rect) # check if the intersection is empty if xywh_res_rect[2] > 0 and xywh_res_rect[3] > 0: return xywh_res_rect else: return None # rect is in the format of xywh def paint_color_in_rect_with_mask( img, rect, color, mask, gen_original=False, ignore_mask=False, cut_mask_top_ratio=0 ): w, h = mask.size img_w, img_h = img.size # in some cases, mask size doesn't match the rect (e.g. monster dying) if rect[2] != w or rect[3] != h: if not gen_original: mask = mask.resize((rect[2], rect[3]), resample=Image.NEAREST) else: mask = mask.resize((rect[2], rect[3])) w, h = mask.size if not gen_original: # generate semantic map if ignore_mask and cut_mask_top_ratio != 0: # specifically for agent because its asset has a large empty area in the top, # we don't want it to be fully masked if cut_mask_top_ratio < 0: # automatic calculate the first non-empty row from top np_mask = np.array(mask) cut_mask_top_rows = (np_mask.T[0].sum(axis=0) != 0).argmax(axis=0) else: cut_mask_top_rows = int(cut_mask_top_ratio * rect[2]) rect[1] += cut_mask_top_rows rect[3] = mask.size[1] - cut_mask_top_rows img = img.paste(color, convert_xywh_to_xyxy(rect)) else: # paste in single color if generating semantic maps (so not original) # if ignore_mask, this will generate a complete block mask same as rect img = img.paste( color, convert_xywh_to_xyxy(rect), mask if (mask.mode == "RGBA" and not ignore_mask) else None, ) else: # generate rgb data img = img.paste( mask, convert_xywh_to_xyxy(rect), mask if mask.mode == "RGBA" else None ) return def draw_game_frame( game, frame_id, asset_map, kx, ky, gen_original=False, bbox_smap_for_agent=False, bbox_smap_for_monsters=False, alien_name=None, skip_foreground=False, skip_background=False, skip_mugen=False, only_mugen=False, ): # set default alien name/key if alien_name is None: alien_name = "Mugen" # initialize an empty image (all zero, for background) if not gen_original: img = Image.new("L", (game.video_res, game.video_res)) else: img = Image.new("RGB", (game.video_res, game.video_res)) video_center = (game.video_res - 1) // 2 frame = game.frames[frame_id] # for agent-centric # dx = -frame.agent.x * kx + video_center - 0.5 * kx # dy = frame.agent.y * ky - video_center - 0.5 * ky # for video data (no vertical camera move) dx = -frame.agent.x * kx + video_center - 0.5 * kx # different dy/ky ratio based on zoom level, to adjust camera view if game.zoom == 5.5: dy_ratio = 5.0 elif game.zoom == 4.3: dy_ratio = 6.5 elif game.zoom == 5.0: dy_ratio = 5.5 elif game.zoom == 6.0: dy_ratio = 4.5 else: raise NotImplementedError(f"zoom level {game.zoom} is not supported!") dy = -video_center + dy_ratio * ky # update background image with proper zoom for gen_original mode # NOTE: if desired background label is not zero, set it here to asset_map['background'].semantic_color if gen_original and not skip_background and not only_mugen: zx = game.video_res * game.zoom zy = zx for tile_x in range(-1, 3): for tile_y in range(-1, 2): bg_rect = [0, 0, zx, zy] bg_rect[0] = ( zx * tile_x + video_center + game.bgzoom * (dx + kx * game.maze_h / 2) - zx * 0.5 ) bg_rect[1] = ( zy * tile_y + video_center + game.bgzoom * (dy - ky * game.maze_h / 2) - zy * 0.5 ) if check_out_of_bounds(bg_rect, img.size): continue img.paste( asset_map["background"].asset, convert_xywh_to_xyxy(integer_rect(bg_rect)), ) # NOTE: game engine now hard-code 64 for maze_size radius = int(1 + game.maze_w / game.zoom) ix = int(frame.agent.x + 0.5) iy = int(frame.agent.y + 0.5) x_start = max(ix - radius, 0) x_end = min(ix + radius + 1, game.maze_w) y_start = max(iy - radius, 0) y_end = min(iy + radius + 1, game.maze_h) win_h = game.video_res # convert eaten coins to a set for faster checking coordinates coins_eaten_set = {tuple(coin_coord) for coin_coord in frame.coins_eaten} if not skip_background and not only_mugen: for y in range(y_start, y_end): for x in range(x_start, x_end): wkey = game.maze[y][x] if wkey == SPACE: continue # eaten coins is treated the same as SPACE, just continue # but we should not modify the coins in maze to SPACE, or it may cause inconsistency # if we ever need to render backwards or save json after drawing if (x, y) in coins_eaten_set: continue assert wkey in asset_map, f"{wkey} not in assets!" tile_rect = [ kx * x + dx - 0.1, win_h - ky * y + dy - 0.1, kx + 0.5 + 0.2, ky + 0.5 + 0.2, ] # skip tile if the rect is completely out-of-bounds if check_out_of_bounds(tile_rect, img.size): continue if wkey == LAVA_MIDDLE or wkey == LAVA_SURFACE: d1 = tile_rect[:] d2 = tile_rect[:] asset_size = asset_map[wkey].asset.size sr = [0, 0, asset_size[0], asset_size[1]] sr1 = sr[:] sr2 = sr[:] tr = frame.state_time * 0.1 tr -= int(tr) tr *= -1 d1[0] += tr * tile_rect[2] d2[0] += tile_rect[2] + tr * tile_rect[2] sr1[0] += -tr * asset_size[0] sr2[0] += -asset_size[0] - tr * asset_size[0] d1 = intersect_rects(d1, tile_rect) d2 = intersect_rects(d2, tile_rect) if d1 is not None: d1[2] += 0.5 if d2 is not None: d2[0] -= 0.5 d2[2] += 0.5 sr1 = intersect_rects(sr1, sr) sr2 = intersect_rects(sr2, sr) if sr1 is not None and d1 is not None: # crop and render one half of the asset crop_mask = asset_map[wkey].asset.crop( integer_rect(convert_xywh_to_xyxy(sr1)) ) paint_color_in_rect_with_mask( img, integer_rect(d1), asset_map[wkey].semantic_color, crop_mask, gen_original=gen_original, ) if sr2 is not None and d2 is not None: # crop and render the other half of the asset (swapped places horizontally) crop_mask = asset_map[wkey].asset.crop( integer_rect(convert_xywh_to_xyxy(sr2)) ) paint_color_in_rect_with_mask( img, integer_rect(d2), asset_map[wkey].semantic_color, crop_mask, gen_original=gen_original, ) else: paint_color_in_rect_with_mask( img, integer_rect(tile_rect), asset_map[wkey].semantic_color, asset_map[wkey].asset, gen_original=gen_original, ) if not skip_foreground: if not only_mugen: # paint monsters for mi in range(len(frame.monsters)): if frame.monsters[mi].is_dead: dying_frame_cnt = max(0, frame.monsters[mi].monster_dying_frame_cnt) monster_shrinkage = ( (MONSTER_DEATH_ANIM_LENGTH - dying_frame_cnt) * 0.8 / MONSTER_DEATH_ANIM_LENGTH ) monster_rect = [ math.floor(kx * frame.monsters[mi].x + dx), math.floor( win_h - ky * frame.monsters[mi].y + dy + ky * monster_shrinkage ), math.ceil(kx), math.ceil(ky * (1 - monster_shrinkage)), ] else: monster_rect = [ math.floor(kx * frame.monsters[mi].x + dx), math.floor(win_h - ky * frame.monsters[mi].y + dy), math.ceil(kx), math.ceil(ky), ] m_name = game.flattened_monster_names[frame.monsters[mi].theme] # add pose and facing to the key to find correct asset m_pose = "" if frame.monsters[mi].walk1_mode else "_move" if frame.monsters[mi].is_dead: m_pose = "_dead" m_key = ( m_name + m_pose + ("_right" if frame.monsters[mi].vx > 0 else "") ) paint_color_in_rect_with_mask( img, monster_rect, asset_map[m_key].semantic_color, asset_map[m_key].asset, gen_original=gen_original, ignore_mask=bbox_smap_for_monsters, ) if not skip_mugen: # paint agent - do it after monsters so agent is always in front a_key = ( alien_name + "_" + frame.agent.pose + ("" if frame.agent.is_facing_right else "_left") ) # note how aspect_ratio is used for alien rect, this can be applied to # monster rect to support asset that's not 1:1 (e.g. use alien as monster) alien_rect = [ math.floor(kx * frame.agent.x + dx), # math.floor(win_h - ky * (frame.agent.y + 1) + dy), # default for 2:1 alien, no asset swap math.floor( win_h - ky * (frame.agent.y + asset_map[a_key].aspect_ratio - 1) + dy ), math.ceil(kx), # math.ceil(2 * ky), # default for 2:1 alien, no asset swap math.ceil(asset_map[a_key].aspect_ratio * ky), ] if frame.agent.is_killed: transparency = ( DEATH_ANIM_LENGTH + 1 - frame.agent.killed_animation_frame_cnt ) * 12 # only render if not fully transparent if transparency > 255: agent_asset = None else: if gen_original: agent_asset = get_transparent_asset( asset_map[a_key].asset, transparency ) else: # when generating semantic map, alien mask won't change unless fully transparent agent_asset = asset_map[a_key].asset else: agent_asset = asset_map[a_key].asset if agent_asset is not None: paint_color_in_rect_with_mask( img, alien_rect, asset_map[a_key].semantic_color, agent_asset, gen_original=gen_original, ignore_mask=bbox_smap_for_agent, cut_mask_top_ratio=0.8, ) # paint the bubble shield if agent is in power-up mode if frame.agent.power_up_mode: shield_rect = [ # NOTE: game engine hard-codes 7 and 8 for co-ordinates which won't work with video-res that's not 1024 # (for training we usually generate with 256 or 128 video_res), so need to convert them math.floor(kx * frame.agent.x + dx - 7 * game.video_res / 1024), math.floor( win_h - ky * (frame.agent.y + 1) + dy + 8 * game.video_res / 1024 ), math.ceil(kx * 1.15), math.ceil(ky * 2.1), ] # pull bubble down when Mugen crouches if frame.agent.pose == "duck": shield_rect[1] += math.floor(8 * game.video_res / 1024) paint_color_in_rect_with_mask( img, shield_rect, asset_map["shield"].semantic_color, asset_map["shield"].asset, gen_original=gen_original, ignore_mask=bbox_smap_for_agent, cut_mask_top_ratio=0.45, ) return img
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/data/coinrun/construct_from_json.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json class Sequence: def __init__( self, start_frame, end_frame, pose_type, start_x, start_y, end_x, end_y ): self.start_frame = start_frame self.end_frame = end_frame # 'ground' includes 'walk', 'duck', 'stand'; other types are 'climb', 'jump', 'hit' self.pose_type = pose_type self.start_x = start_x self.start_y = start_y self.end_x = end_x self.end_y = end_y self.time_jumps = 1 if pose_type == "jump" else 0 self.end_maze_above = "." self.end_maze_below = "." self.num_coins_eaten = 0 self.num_gems_eaten = 0 self.start_shield = False self.end_shield = False self.changed_shield = False self.killed_monsters = [] self.jump_over_monsters = [] self.killed_by = "" self.text_desc = "" # Decide graduarity of text description (skip sequence shorter than this) self.min_len_for_text_desc = 5 def asdict(self): return { "start_frame": self.start_frame, "end_frame": self.end_frame, "pose_type": self.pose_type, "start_xy": (self.start_x, self.start_y), "end_xy": (self.end_x, self.end_y), "bumped_head": self.is_bumped_head(), "same_level_jump": self.is_same_level_jump(), "num_coins_eaten": self.num_coins_eaten, "num_gems_eaten": self.num_gems_eaten, "start_shield": self.start_shield, "end_shield": self.end_shield, "changed_shield": self.changed_shield, "killed_monsters": self.killed_monsters, "jump_over_monsters": self.jump_over_monsters, "killed_by": self.killed_by, "text_desc": self.text_desc, } def __repr__(self): return json.dumps(self.asdict()) # bumped head will show as 'walk' pose and last for 1-2 frames def is_bumped_head(self): if ( self.pose_type == "ground" and (self.end_frame - self.start_frame <= 1) and self.end_maze_below in ".12" ): # and self.end_maze_above in 'SAab' return True return False def is_same_level_jump(self): if self.pose_type == "jump" and abs(self.end_y - self.start_y) <= 0.5: return True return False def merge_sequences(self, sequences): self.end_frame = sequences[-1].end_frame self.end_x = sequences[-1].end_x self.end_y = sequences[-1].end_y self.end_maze_above = sequences[-1].end_maze_above self.end_maze_below = sequences[-1].end_maze_below for seq in sequences: if seq.is_bumped_head(): self.time_jumps -= 1 self.time_jumps += seq.time_jumps self.num_coins_eaten += seq.num_coins_eaten self.num_gems_eaten += seq.num_gems_eaten self.killed_monsters.extend(seq.killed_monsters) self.jump_over_monsters.extend(seq.jump_over_monsters) def process_metadata(self, game): # generate game.flattened_monster_names if not already # this is used to get monster names if len(game.flattened_monster_names) == 0: game.flatten_monster_names() # count number of coins and gems eaten during the sequence # start from one frame earlier (if not 0) so we can get change in the first frame start_frame_id = max(self.start_frame - 1, 0) if len(game.frames[self.end_frame].coins_eaten) > len( game.frames[start_frame_id].coins_eaten ): start_coin_set = { (coord[0], coord[1]) for coord in game.frames[start_frame_id].coins_eaten } end_coin_set = { (coord[0], coord[1]) for coord in game.frames[self.end_frame].coins_eaten } new_coins_eaten = end_coin_set - start_coin_set for coin_coord in new_coins_eaten: if game.maze[coin_coord[1]][coin_coord[0]] == "2": self.num_gems_eaten += 1 else: self.num_coins_eaten += 1 # check if Mugen changes between shield up and down mode during the sequence self.start_shield = game.frames[self.start_frame].agent.power_up_mode self.end_shield = game.frames[self.end_frame].agent.power_up_mode shield_up_mode = False shield_down_mode = False for frame_id in range(self.start_frame, self.end_frame + 1): if game.frames[frame_id].agent.power_up_mode: shield_up_mode = True else: shield_down_mode = True if shield_up_mode and shield_down_mode: self.changed_shield = True end_frame_id = min(self.end_frame + 2, len(game.frames)) for frame_id in range(self.start_frame, end_frame_id): frame = game.frames[frame_id] dead_monsters = set() for i, m in enumerate(frame.monsters): if m.is_dead: dead_monsters.add(i) # if more monsters are killed, record the monster killed and the frame id if frame_id > self.start_frame and len(dead_monsters) > len( prev_dead_monsters ): killed_monster_theme = frame.monsters[ list(dead_monsters - prev_dead_monsters)[0] ].theme self.killed_monsters.append( game.flattened_monster_names[killed_monster_theme] ) prev_dead_monsters = dead_monsters.copy() # figure out which monster killed Mugen killed_by_m_id = -1 if self.pose_type == "hit": # check the monster distance in the first frame of hit sequence m_min_dist = 1000 # just put some random large dist here for m in game.frames[self.start_frame].monsters: x_dist = self.start_x - m.x y_dist = self.start_y - m.y m_dist = x_dist * x_dist + y_dist * y_dist if m_dist < m_min_dist: killed_by_m_id = m.theme m_min_dist = m_dist if killed_by_m_id != -1: self.killed_by = game.flattened_monster_names[killed_by_m_id] # check for monsters jumped over if self.pose_type == "jump": # for purpose of checking jumped over monsters, # ground y is fixed at the y coordinate of the previous frame # note for jump sequence, start_y already recorded the location before jump starts ground_y = round(self.start_y) jump_over_monsters_set = set() for frame_id in range(self.start_frame, self.end_frame + 1): frame = game.frames[frame_id] # this is the location below the agent at the same y level when jump starts ground_loc = (round(frame.agent.x), ground_y) for i, m in enumerate(frame.monsters): if (round(m.x), round(m.y)) == ground_loc: # use set to avoid adding duplicates jump_over_monsters_set.add(i) # now convert these into names, but only keep those that's still not killed by the next frame for m_i in jump_over_monsters_set: if not game.frames[end_frame_id - 1].monsters[m_i].is_dead: self.jump_over_monsters.append( game.flattened_monster_names[frame.monsters[m_i].theme] ) def generate_text_desc(self): # only generate if sequence is long enough if self.end_frame - self.start_frame < self.min_len_for_text_desc: self.text_desc = "" elif self.pose_type == "hit": if self.killed_by != "": self.text_desc = f"killed by a {self.killed_by}" else: self.text_desc = "killed by a monster" else: y_direct = "" if self.end_y - self.start_y > 0.5: y_direct = " up" elif self.start_y - self.end_y > 0.5: y_direct = " down" else: y_direct = " a bit" if self.pose_type == "ground" else "" x_direct = "" if self.end_x - self.start_x > 0.5: x_direct = " to the right" elif self.start_x - self.end_x > 0.5: x_direct = " to the left" else: x_direct = " a bit" if self.pose_type == "ground" else "" if self.pose_type == "climb": self.text_desc = f"climbs{y_direct} on a ladder" elif self.pose_type == "ground": self.text_desc = f"walks{x_direct}" # TODO: add random verbs elif self.pose_type == "jump": jump_time_desc = "" if self.time_jumps >= 2: jump_time_desc = " a few times" # only add jump destination if it's not a same level jump jump_dest_desc = "" if y_direct != "": if self.end_maze_below in "SAab": if self.end_y < 1.5: jump_dest_desc = " to the ground" else: jump_dest_desc = " to a platform" elif self.end_maze_below in "#$&%": jump_dest_desc = " to a crate" elif self.end_maze_below == "=": jump_dest_desc = " to a ladder" # add desc for monsters jumped over jumped_over_desc = "" if len(self.jump_over_monsters) > 0: jumped_over_desc = " over a " + " and a ".join( self.jump_over_monsters ) self.text_desc = f"jumps{y_direct}{jump_time_desc}{x_direct}{jumped_over_desc}{jump_dest_desc}" if self.num_coins_eaten > 0 or self.num_gems_eaten > 0: self.text_desc += self.generate_collect_coin_desc() if len(self.killed_monsters) > 0: self.text_desc += " and killed a " + " and a ".join( self.killed_monsters ) def generate_collect_coin_desc(self): if self.num_coins_eaten == 0 and self.num_gems_eaten == 0: return "" coin_descs = [] # add coin description if collected at least one coin if self.num_coins_eaten == 1: coin_descs.append(" a coin") elif self.num_coins_eaten > 1: coin_descs.append(" a few coins") # add gem description if collected at least one gem if self.num_gems_eaten == 1: coin_descs.append(" a gem") elif self.num_gems_eaten > 1: coin_descs.append(" a few gems") # connects descriptions for coins and gems with 'and' coin_descs = " and".join(coin_descs) # shield change should only be a result of eating gem or coin if self.changed_shield: coin_descs += self.generate_shield_desc() return f" and collects{coin_descs}" def generate_shield_desc(self): if not self.start_shield and self.end_shield: return " to turn on the shield" elif self.start_shield and not self.end_shield: return " to turn off the shield" else: # start and end in the same shield state but still changed shield during sequence if self.start_shield: return " to turn shield off then on again" else: return " to turn shield on then off again" def process_sequence(game, curr_pose_type, start_i, curr_i, last_seq=False): # different type of pose, construct a sequence # for 'jump', the start and end location is based on frame before the first and after the last frame # for others, it's the first and last frame if curr_pose_type == "jump": pos_start_frame = max(start_i - 1, 0) pos_end_frame = curr_i else: pos_start_frame = start_i # curr_i will be one frame after, unless it's the last sequence of video # however, for jump sequence, we do want one frame after to know where jump lands pos_end_frame = curr_i - 1 if not last_seq else curr_i seq = Sequence( start_frame=start_i, end_frame=curr_i - 1 if not last_seq else curr_i, pose_type=curr_pose_type, start_x=game.frames[pos_start_frame].agent.x, start_y=game.frames[pos_start_frame].agent.y, end_x=game.frames[pos_end_frame].agent.x, end_y=game.frames[pos_end_frame].agent.y, ) seq.end_maze_above = game.maze[round(seq.end_y) + 1][round(seq.end_x)] seq.end_maze_below = game.maze[round(seq.end_y) - 1][round(seq.end_x)] # sometimes jump may end a bit over the edge of cliff, this is to catch and fix that if curr_pose_type == "jump" and seq.end_maze_below in ".12": neighbor_x = ( int(seq.end_x) * 2 + 1 - round(seq.end_x) ) # get the opposite of round() seq.end_maze_below = game.maze[round(seq.end_y) - 1][neighbor_x] return seq def convert_game_to_text_desc(game, start_idx=0, end_idx=-1, alien_name="Mugen"): if alien_name is None: alien_name = "Mugen" # if end_idx is not specified, set it to end of the game level if end_idx == -1: end_idx = len(game.frames) start_idx = max(0, start_idx) end_idx = min(len(game.frames), end_idx) sequences = [] for i, f in enumerate(game.frames[start_idx:end_idx]): pose = f.agent.pose.strip("12") if pose in ["walk", "duck", "stand"]: pose_type = "ground" else: pose_type = pose if i == 0: # first frame, initialize some status start_i = 0 curr_pose_type = pose_type continue if pose_type == curr_pose_type: # same type of pose, same sequence continue else: seq = process_sequence( game, curr_pose_type, start_idx + start_i, start_idx + i, last_seq=False ) sequences.append(seq) start_i = i curr_pose_type = pose_type # add the last leftover sequence seq = process_sequence( game, curr_pose_type, start_idx + start_i, start_idx + i, last_seq=True ) sequences.append(seq) # collapse two jumps into one sequence # first pass, merge jumps before and after bumped head, this is to correctly identify jumps at the same level seq_i = 0 reduced_sequences = [] while seq_i < len(sequences): if seq_i == 0 or seq_i == len(sequences) - 1: reduced_sequences.append(sequences[seq_i]) seq_i += 1 elif ( sequences[seq_i].is_bumped_head() and reduced_sequences[-1].pose_type == "jump" and sequences[seq_i + 1].pose_type == "jump" ): # in case of bumped head, merge the jumps before and after reduced_sequences[-1].merge_sequences(sequences[seq_i : seq_i + 2]) seq_i += 2 else: reduced_sequences.append(sequences[seq_i]) seq_i += 1 sequences = reduced_sequences # second pass, collapse two jumps into one sequence if they're both same level jumps # jump up and down are not merged (unless it's separated by bumped head that will be merged in first pass) result_sequences = [] seq_i = 0 max_ground_seq_len_to_merge = 5 while seq_i < len(sequences): # only merge if it's a 'ground' sequence, and before/after are both jumps if ( sequences[seq_i].pose_type != "ground" or seq_i == 0 or seq_i == len(sequences) - 1 ): result_sequences.append(sequences[seq_i]) seq_i += 1 elif ( result_sequences[-1].pose_type != "jump" or sequences[seq_i + 1].pose_type != "jump" ): result_sequences.append(sequences[seq_i]) seq_i += 1 elif ( result_sequences[-1].is_same_level_jump() and sequences[seq_i + 1].is_same_level_jump() and ( sequences[seq_i].end_frame - sequences[seq_i].start_frame < max_ground_seq_len_to_merge ) ): # not bumped head, then only merge if sequence is short enough, and both jumps are the same level result_sequences[-1].merge_sequences(sequences[seq_i : seq_i + 2]) seq_i += 2 else: result_sequences.append(sequences[seq_i]) seq_i += 1 sequences = result_sequences # generate text description for each sequence text_descriptions = [] for seq in sequences: seq.process_metadata(game) seq.generate_text_desc() if seq.text_desc != "": text_descriptions.append(seq.text_desc) # add Mugen in the beginning, then concat by 'and' final_text_desc = alien_name + " " + ", and ".join(text_descriptions) return final_text_desc
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/data/coinrun/generate_text_desc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional from torchmultimodal.models.video_vqvae import ( preprocess_int_conv_params, VideoDecoder, VideoEncoder, ) from torchmultimodal.models.vqvae import VQVAE from torchmultimodal.utils.common import load_module_from_url, remove_grad MUGEN_PRETRAINED_MAPPING = { "mugen_L32": "https://download.pytorch.org/models/multimodal/mugen/mugen_video_vqvae_L32.pt", "mugen_L16": "https://download.pytorch.org/models/multimodal/mugen/mugen_video_vqvae_L16.pt", "mugen_L8": "https://download.pytorch.org/models/multimodal/mugen/mugen_video_vqvae_L8.pt", } def video_vqvae_mugen( in_channel_dim: int = 3, encoder_hidden_dim: int = 240, encoder_kernel_size: int = 3, n_res_layers: int = 4, attn_hidden_dim: int = 240, num_embeddings: int = 2048, embedding_dim: int = 256, decoder_hidden_dim: int = 240, decoder_kernel_size: int = 3, pretrained_model_key: Optional[str] = None, freeze_model: bool = False, ) -> VQVAE: """Constructor for MUGEN's Video VQVAE. Expects input video data of shape ``{8,16,32}x256x256``. Trained for tokenization of video data and use in video-audio-text retrieval and generation tasks. See Hayes et al. 2022 for more details: https://arxiv.org/pdf/2204.08058.pdf Code ref: https://github.com/mugen-org/MUGEN_baseline/blob/main/lib/models/video_vqvae/vqvae.py https://github.com/mugen-org/MUGEN_baseline/blob/main/generation/experiments/vqvae/VideoVQVAE_L32.sh Args: in_channel_dim (int, optional): Size of channel dim in input. Defaults to ``3``. encoder_hidden_dim (int, optional): Size of channel dims in encoder conv layers. Defaults to ``240``. encoder_kernel_size (int, optional): Kernel size for encoder. Defaults to ``3``. n_res_layers (int, optional): Number of ``AttentionResidualBlocks`` to include in encoder and decoder. Defaults to ``4``. attn_hidden_dim (int, optional): Size of hidden dim of :class:`~torchmultimodal.models.video_vqvae.AttentionResidualBlocks`. Defaults to ``240``. num_embeddings (int, optional): Number of embedding vectors used in :class:`~torchmultimodal.modules.layers.codebook.Codebook`. Defaults to ``2048``. embedding_dim (int, optional): Dimensionality of embedding vectors in :class:`~torchmultimodal.modules.layers.codebook.Codebook`. Defaults to ``256``. decoder_hidden_dim (int, optional): Size of channel dims in decoder conv tranpose layers. Defaults to ``240``. decoder_kernel_size (int, optional): Kernel size for decoder. Defaults to ``3``. pretrained_model_key (str, optional): Load a specified MUGEN VQVAE checkpoint. freeze_model (bool): Whether to freeze the weights of the pretrained model. Defaults to ``False``. Returns: An instance of :class:`~torchmultimodal.models.vqvae.VQVAE` constructed with: * :class:`~torchmultimodal.model.video_vqvae.VideoEncoder` * :class:`~torchmultimodal.model.video_vqvae.VideoDecoder` """ encoder_strides = ((2, 2, 2), (2, 2, 2), (1, 2, 2), (1, 2, 2), (1, 2, 2), (1, 1, 1)) decoder_strides = ((2, 2, 2), (2, 2, 2), (1, 2, 2), (1, 2, 2), (1, 2, 2)) encoder_n_layers = len(encoder_strides) decoder_n_layers = len(decoder_strides) encoder_in_channel_dims = (in_channel_dim,) + (encoder_hidden_dim,) * max( encoder_n_layers - 1, 0 ) decoder_out_channel_dims = (decoder_hidden_dim,) * max(decoder_n_layers - 1, 0) + ( in_channel_dim, ) encoder_kernel_sizes_fixed = preprocess_int_conv_params( encoder_in_channel_dims, encoder_kernel_size ) decoder_kernel_sizes_fixed = preprocess_int_conv_params( decoder_out_channel_dims, decoder_kernel_size ) encoder = VideoEncoder( encoder_in_channel_dims, encoder_kernel_sizes_fixed, encoder_strides, embedding_dim, n_res_layers, attn_hidden_dim, ) decoder = VideoDecoder( decoder_out_channel_dims, decoder_kernel_sizes_fixed, decoder_strides, embedding_dim, n_res_layers, attn_hidden_dim, ) model = VQVAE(encoder, decoder, num_embeddings, embedding_dim) if pretrained_model_key is not None: if pretrained_model_key not in MUGEN_PRETRAINED_MAPPING.keys(): raise KeyError(f"Invalid pretrained model key: {pretrained_model_key}") load_module_from_url(model, MUGEN_PRETRAINED_MAPPING[pretrained_model_key]) if freeze_model: remove_grad(model) return model
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/generation/video_vqvae.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional, Tuple import torch from examples.mugen.generation.video_vqvae import video_vqvae_mugen from torch import nn, Tensor from torchmultimodal.models.gpt import ( MultimodalGPT, MultimodalTransformerDecoder, RightShift, TransformerDecoder, TransformerDecoderLayer, ) from torchmultimodal.modules.layers.attention import SelfAttention from torchmultimodal.modules.layers.position_embedding import ( BroadcastedPositionEmbedding, ) from torchmultimodal.utils.common import load_module_from_url from torchtext.transforms import CharBPETokenizer PRETRAINED_TOKENIZER_ENCODER_URL = "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/tokenizer-coinrun_1024_encoder.json" PRETRAINED_TOKENIZER_MERGES_URL = "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/tokenizer-coinrun_1024_merges.txt" PRETRAINED_TEXT_VIDEO_GPT_URL_MAPPING = { "mugen_L32": "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/text_video_gpt_L32_weights-17db9549.pth", "mugen_L16": "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/text_video_gpt_L16_weights-5dfc5a0a.pth", "mugen_L8": "https://pytorch.s3.amazonaws.com/models/multimodal/mugen/text_video_gpt_L8_weights-72b6d2ab.pth", } def text_video_gpt( text_seq_len: int = 128, video_seq_len: int = 32, resolution: int = 256, downsample: Tuple[int, int, int] = (4, 32, 32), d_model: int = 768, n_head: int = 8, dropout: float = 0.2, attn_dropout: float = 0.3, num_decoder_layers: int = 12, use_gpt_init: bool = True, pretrained_text_tokenizer_encoder_url: str = PRETRAINED_TOKENIZER_ENCODER_URL, pretrained_text_tokenizer_merges_url: str = PRETRAINED_TOKENIZER_MERGES_URL, pretrained_video_vqvae_model_key: Optional[str] = None, pretrained_text_video_gpt_model_key: Optional[str] = None, ) -> MultimodalGPT: """Builds a text-to-video GPT model from user inputs Parameter defaults follow MUGEN project: * Video VQVAE: https://github.com/mugen-org/MUGEN_baseline/tree/main/generation/experiments/vqvae * GPT: https://github.com/mugen-org/MUGEN_baseline/blob/main/lib/models/gpt/gpt.py#L252 Args: text_seq_len (int): Length of text sequences after padding. Defaults to ``128``. video_seq_len (int): Length of video sequences sampled from the dataset. Defaults to ``32``. Other values used by MUGEN are ``8``, ``16``. resolution (int): Resolution of the sampled video sequences defining height and width of each frame. Defaults to ``256``. downsample (Tuple[int, int, int]): Ratio by which to disperse along each dimension the sampled sequences. For example, if the original frame is ``(32, 256, 256)``, after downsampling by ``(4, 32, 32)`` the new frame will be of shape ``(8, 8, 8)`` with each dim divided by the rate of downsample. Defaults to ``(4, 32, 32)``. d_model (int): Dimension of the underlying transformer decoder. See :py:class:`torchmultimodal.models.gpt.TransformerDecoderLayer`. Defaults to ``768``. n_head (int): Number of attention heads used by the transformer decoder. Defaults to ``8``. dropout (float): Dropout probability used by the projection layer of the transformer decoder. Defaults to ``0.2``. attn_dropout (float): Dropout probability used by the attention layer of the transformer decoder. Defaults to ``0.3``. num_decoder_layers (int): Number of transformer decoder layers. Defaults to ``12``. use_gpt_init (bool): Whether uses parameter initialization of GPT model. Defaults to ``True``. pretrained_text_tokenizer_encoder_url (str): Remote location of the pretrained text tokenizer encoder file. Defaults to `"MUGEN pretrained tokenizer encoder file "<https://pytorch.s3.amazonaws.com/models/multimodal/mugen/tokenizer-coinrun_1024_encoder.json>`_. pretrained_text_tokenizer_merges_url (str): Remote location of the pretrained text tokenizer merges file. Defaults to `"MUGEN pretrained tokenizer merges file "<https://pytorch.s3.amazonaws.com/models/multimodal/mugen/tokenizer-coinrun_1024_merges.txt>`_. pretrained_video_vqvae_model_key (str, optional): Key to select the pretrained MUGEN VideoVQVAE weights file. For allowed values, see :py:module:`examples/mugen/generation/video_vqvae.py`. Defaults to ``None``. pretrained_text_video_gpt_model_key (str, optional): Key to select the pretrained MUGEN TextVideoGPT weights file. The provided key should match that of MUGEN VideoVQVAE to ensure the two models were pretrained for the same video sequence length. For example ``L32`` means the video sequence length is ``32``. The loaded weights will override those from the frozen VideoVQVAE model. Defaults to ``None``. Returns: An instance of :py:class:`torchmultimodal.models.gpt.MultimodalGPT`. """ # builds text tokenizer from pre-trained tokenizer = CharBPETokenizer( bpe_encoder_path=pretrained_text_tokenizer_encoder_url, bpe_merges_path=pretrained_text_tokenizer_merges_url, unk_token="[UNK]", special_tokens=["[PAD]", "[CLS]", "[SEP]", "[UNK]", "[MASK]"], ) # builds text tokenizer text_tokenizer = TextTokenizer( context_len=text_seq_len, d_model=d_model, tokenizer=tokenizer, ) num_text_tokens = text_tokenizer.num_text_tokens # builds video tokenizer video_vqvae = video_vqvae_mugen( pretrained_model_key=pretrained_video_vqvae_model_key, freeze_model=True, ) video_vqvae.eval() num_video_tokens = video_vqvae.num_embeddings # size of the codebook # derives the expected latent shape from video input shape video_input_shape = (video_seq_len, resolution, resolution) video_latent_shape = latent_shape(video_input_shape, downsample) video_vqvae_latent_shape = video_vqvae.latent_shape(video_input_shape) # video vqvae will apply convolutions to the input shape which effectively # reduces the size by ``dim//stride`` after each layer # sanity check that the expected and actual latent shapes are consistent if video_latent_shape != video_vqvae_latent_shape: raise ValueError( f"Latent shape derived from video inputs: {video_latent_shape} " f"does not match that of video vqvae: {video_vqvae_latent_shape}" ) # builds text embedding projection: text_emb is already of output shape `d_model` # generally a projection layer is needed to bridge the tokenizer and # `torchmultimodal.models.gpt.MultimodalTransformerDecoder`, see `video_projection` text_projection = nn.Identity() # builds video embedding projection video_projection = nn.Linear(video_vqvae.embedding_dim, d_model, bias=False) # builds multimodal decoder text_pos_emb = nn.Embedding(text_seq_len, d_model) video_pos_emb = BroadcastedPositionEmbedding(video_latent_shape, d_model) attention_layer = SelfAttention(attn_dropout=attn_dropout) decoder_layer = TransformerDecoderLayer( d_model, n_head, dropout, attn_module=attention_layer ) decoder = TransformerDecoder(decoder_layer, num_decoder_layers) right_shift = RightShift(d_model) mm_decoder = MultimodalTransformerDecoder( text_pos_emb, video_pos_emb, decoder, right_shift ) model = MultimodalGPT( d_model=d_model, num_in_tokens=num_text_tokens, num_out_tokens=num_video_tokens, latent_shape=video_latent_shape, in_tokenizer=text_tokenizer, out_tokenizer=video_vqvae, mm_decoder=mm_decoder, in_projection=text_projection, out_projection=video_projection, use_gpt_init=use_gpt_init, ) if pretrained_text_video_gpt_model_key is not None: if ( pretrained_text_video_gpt_model_key not in PRETRAINED_TEXT_VIDEO_GPT_URL_MAPPING ): raise KeyError( f"Invalid pretrained model key: {pretrained_text_video_gpt_model_key}" ) load_module_from_url( model, PRETRAINED_TEXT_VIDEO_GPT_URL_MAPPING[pretrained_text_video_gpt_model_key], ) return model def latent_shape( input_shape: Tuple[int, ...], downsample: Tuple[int, ...] ) -> Tuple[int, ...]: """Derives latent shape of video inputs after VQ-VAE encoding""" return tuple([s // d for s, d in zip(input_shape, downsample)]) class TextTokenizer(nn.Module): """Converts between text and tokens / embedings Wrapper around the tokenizer to be consistent with the API required by :py:class:`torchmultimodal.models.gpt.MultimodalGPT`. It also contains the embedding layer to enable lookup by token ids. """ def __init__( self, context_len: int, d_model: int, tokenizer: nn.Module, ) -> None: super().__init__() self.tokenizer = tokenizer self.pad_id = self.tokenizer.encode("[PAD]")[0] # type: ignore self.vocab_size = self.tokenizer.vocab_size # type: ignore self.context_len = context_len # MUGEN treats padding as unique ids so adding them to the total text tokens # https://github.com/mugen-org/MUGEN_baseline/blob/main/lib/models/gpt/gpt.py#L44 self.num_text_tokens = self.vocab_size + context_len self.embedding = nn.Embedding(self.num_text_tokens, d_model) def text_to_tokens(self, sentences: List[str]) -> Tensor: """Pads the sentences to be of equal lengths""" tokens = [ self.tokenizer.encode(sentence.strip().lower() + " [SEP]") # type: ignore for sentence in sentences ] token_ids = [t[: self.context_len] for t in tokens] # pad each sentence to be of length `context_len` for i, t in enumerate(token_ids): t += [self.pad_id] * (self.context_len - len(t)) token_ids[i] = t return torch.Tensor(token_ids).type(torch.int64) def encode(self, sentences: List[str], device: str) -> Tensor: """Encodes sentences to token ids""" token_ids = self.text_to_tokens(sentences).to(device) # bump padding token ids by vocab_size so that they do not coincide with un-padded token ids # and that the padding token ids themselves are unique unique_pad_ids = torch.arange(self.context_len, device=device) + self.vocab_size token_ids = torch.where(token_ids == self.pad_id, unique_pad_ids, token_ids) return token_ids def _filter_token_ids(self, token_ids: List[int]) -> List[Optional[int]]: """Filters out token ids out side of vocab""" return [ token_id for token_id in token_ids if token_id > 0 and token_id <= self.vocab_size ] def decode(self, token_ids: Tensor) -> List[str]: """Decodes token ids back to sentences""" sentences = [] for _token_ids in token_ids: # iterate over batches _token_ids = self._filter_token_ids(_token_ids.tolist()) sentence = self.tokenizer.decode(_token_ids) # type: ignore sentences.append(sentence) return sentences def lookup(self, token_ids: Tensor) -> Tensor: return self.embedding(token_ids)
EXA-1-master
exa/libraries/multimodal-main/examples/mugen/generation/text_video_gpt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torchmultimodal.utils.file_io import _get_path_manager _PATH_MANAGER = _get_path_manager()
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch from torch import Tensor def get_extended_attention_mask(attention_mask: Tensor) -> Tensor: """Makes attention masks broadcastable along head and sequence dimensions. Accepting two types of attention masks: - Causal: masks that prevent attending to future positions of dimensions ``(batch_size, query_seq_len, key_seq_len)`` - Padding: masks that prevent attending to token paddings of dimensions ``(batch_size, seq_len)`` Args: attention_mask (Tensor): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. Returns: extended_attention_mask (Tensor): The broadcastable attention mask, with the same dtype as ``attention_mask.dtype``. """ if attention_mask.dim() == 4: # Mask has already been broadcasted to the correct shape (either # [batch_size, num_heads, query_seq_length, key_seq_length] for causal case or # [batch_size, num_heads, seq_length, seq_length] for padding case) extended_attention_mask = attention_mask elif attention_mask.dim() == 3: # We can provide a self-attention mask of dimensions [batch_size, query_seq_length, key_seq_length] # ourselves in which case we just need to make it broadcastable to all heads, # [batch_size, num_heads, query_seq_length, key_seq_length]. extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for attention_mask (shape {})".format(attention_mask.shape) ) extended_attention_mask = extended_attention_mask.to( dtype=attention_mask.dtype ) # fp16 compatibility return extended_attention_mask def get_causal_attention_mask( tgt_seq_len: int, src_seq_len: Optional[int] = None ) -> Tensor: """ Generates causal attention masks of dimensions (target_sequence_length, source_sequence_length). """ if src_seq_len is None: src_seq_len = tgt_seq_len return torch.tril(torch.ones(tgt_seq_len, src_seq_len))
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/utils/attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Any, List, NamedTuple, Optional, Tuple import torch from torch import nn, Tensor from torch.nn import functional as F from torchmultimodal.utils.attention import get_causal_attention_mask class SampleOutput(NamedTuple): """Outputs from :meth:`~torchmultimodal.utils.generate.GenerationUtil.sample`. Attributes: decoded (Any): Generated sample data for the ouput modality. tokens (Tensor): Generated tokens ``(b, seq_len)`` for the output modality before being decoded back to data. model_outputs (Tuple[Any, ...]): A tuple of length ``seq_len`` containing output objects from the model's forward pass at each step of generation. """ decoded: Any tokens: Tensor model_outputs: Tuple[Any, ...] class GenerationUtil: """Utility class containing functions for multimodal auto-regressive generation. This class wraps around a ``nn.Module`` to generate data of one modality given inputs from another. While being agnostic to the architecture of the wrapped model, the latter needs to implement APIs to: * encode/decode between data and token representations * look up embeddings given token ids * compute scores for prediction See :class:`~torchmultimodal.models.gpt.MultimodalGPT` for the API details. Args: model (nn.Module): Model that is wrapped for generation. Attributes: num_in_tokens (int): Number of unique token states for the input modality. num_out_tokens (int): Number of unique token states for the output modality. """ def __init__(self, model: nn.Module) -> None: if model.training: model = model.eval() warnings.warn(f"{type(model)} is now switched to 'eval' mode.") self.model = model self.num_in_tokens = model.num_in_tokens self.num_out_tokens = model.num_out_tokens @torch.no_grad() def sample( self, x: Tensor, max_seq_len: int, use_cache: bool = True, causal: bool = False, top_k: Optional[int] = None, top_p: Optional[float] = None, return_attn_weights: bool = False, return_hidden_states: bool = False, **model_kwargs: Any, ) -> SampleOutput: """Generates samples of the output modality based on multinomial distribution. Args: x (Tensor): Tensor of batched input, i.e., prompt for the generation. max_seq_len (int): Maximum length of the sequence to generate. For high dimensional data this should be equivalent to the length of the flattened encoded sequence. use_cache (bool, optional): If ``True``, key/values of the attention layers will be cached to speed up generation. Defaults to ``True``. causal (bool, optional): If ``True``, use causal attention. Defaults to ``False``. top_k (int, optional): Number of tokens with the highest probability to keep. Defaults to ``None``. top_p (float, optional): Threshold that determines the top tokens to keep in terms of cumulative probability. Defaults to ``None``. return_attn_weights (bool, optional): If ``True``, returns attention probabilities of each transformer layer. Defaults to ``False``. return_hidden_states (bool, optional): If ``True``, returns the embeddings of each transformer layer. Defaults to ``False``. model_kwargs (Any): Additional model specific kwargs will be forwarded to the ``forward`` function of the model. Returns: An instance of :class:`~torchmultimodal.utils.generate.SampleOutput`. """ in_tokens = self.model.encode(x, "in", **model_kwargs) # type: ignore batch_size, in_seq_len = in_tokens.shape attn_mask = get_causal_attention_mask(in_seq_len) # (in_seq_len, in_seq_len) # Construct step-wise logits mask logits_mask = get_logits_mask( in_seq_len=0, num_in_tokens=self.num_in_tokens, # type: ignore out_seq_len=1, num_out_tokens=self.num_out_tokens, # type: ignore ) # Feed the input modality tokens `(b, in_seq_len)` through the model's transformer to learn # the intermediate context vectors (i.e., key/value). # The sequence is shifted to the right by one unit so that the predicted token at each location # along the sequence is based off the previous token. # Note that the first token is predicted from the learnt start-of-sentence ("sos") token which # gets prepended to the sequence after the position embedding layer. # Attention mask is required to avoid attending to future positions along the sequence. # See :class:`~torchmultimodal.models.gpt.RightShift` for more implementation details. _ = self.model.fwd( # type: ignore in_tokens=in_tokens, attn_mask=attn_mask, use_cache=use_cache, causal=causal, right_shift=True, return_attn_weights=return_attn_weights, return_hidden_states=return_hidden_states, ) model_outputs: Tuple[Any, ...] = () samples: List[Tensor] = [] idx = 0 while idx < max_seq_len: # Attention mask is not required as the cached key/value sequence is only up to the # current step if idx == 0: # Take the last token of the input modality as the "sos" token for the ouput modality out = self.model( in_tokens=in_tokens[:, -1:], in_pos_ids=torch.tensor([in_seq_len - 1]).unsqueeze(0), logits_mask=logits_mask, use_cache=use_cache, causal=causal, right_shift=False, return_attn_weights=return_attn_weights, return_hidden_states=return_hidden_states, ) else: out = self.model( out_tokens=samples[-1], out_pos_ids=torch.tensor([idx - 1]).unsqueeze(0), logits_mask=logits_mask, use_cache=use_cache, causal=causal, right_shift=False, return_attn_weights=return_attn_weights, return_hidden_states=return_hidden_states, ) assert hasattr(out, "logits"), f"{type(out)} does not have field 'logits'" logits = out.logits logits_view = logits.view(-1, logits.shape[-1]) # (b, num_tokens) logits_view = self._filter_logits(logits_view, top_k=top_k, top_p=top_p) probs = F.softmax(logits_view, dim=-1) samples.append(torch.multinomial(probs, 1) - self.num_in_tokens) # (b, 1) model_outputs = model_outputs + (out,) idx += 1 samples = torch.cat(samples, dim=1) decoded = self.model.decode(samples) # type: ignore return SampleOutput( decoded=decoded, tokens=samples, model_outputs=model_outputs ) def _filter_logits( self, logits: Tensor, top_k: Optional[int] = None, top_p: Optional[float] = None ) -> Tensor: logits_filters: List[Any] = [] if top_k is not None: logits_filters.append(LogitsFilterTopK(top_k)) if top_p is not None: logits_filters.append(LogitsFilterTopP(top_p)) for _filter in logits_filters: logits = _filter(logits) return logits def get_logits_mask( in_seq_len: int = 0, out_seq_len: int = 0, num_in_tokens: int = 0, num_out_tokens: int = 0, ) -> Tensor: """Applies masks to logits to restrict prediction from being made of tokens of the opposite modality. Args: in_seq_len (int, optional): Length of input modality sequence from the logits tensor. Defaults to ``0``. out_seq_len (int, optional): Length of output modality sequence from the logits tensor. Defaults to ``0``. num_in_tokens (int, optional): Number of input modality token states from the model. Defaults to ``0``. num_out_tokens (int, optional): Number of output modality token states from the model. Defaults to ``0``. Returns: Logits mask tensor containing ``1``s for unmasked positions and ``0``s for masked ones. """ mask = torch.zeros(in_seq_len + out_seq_len, num_in_tokens + num_out_tokens) # the quadrant of input modality sequence, input token states should not be masked # Similar for that of output modality sequence, output token states mask[in_seq_len:, num_in_tokens:] = 1 mask[:in_seq_len, :num_in_tokens] = 1 return mask class LogitsFilterTopK: """Filters a distribution of logits using top_k Code reference: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 Args: top_k (int, optional): Keeps the top_k tokens with the highest probability (top_k filtering). Defaults to ``None``. filter_value (float, optional): Constant value to filter unwanted logits. Defaults to ``-inf``. min_tokens_to_keep (int, optional): Minimum number of tokens to keep per batch example in the output. Defaults to ``1``. Raises: ValueError: If 'top_k' is outside of valid numerical ranges. """ def __init__( self, top_k: Optional[int] = None, min_tokens_to_keep: int = 1, filter_value: float = -float("inf"), ) -> None: if top_k is not None and top_k < 0: raise ValueError(f"'top_k' must be non-negative but got {top_k}.") self.min_tokens_to_keep = min_tokens_to_keep self.filter_value = filter_value self.top_k = top_k def __call__(self, logits: Tensor) -> Tensor: """ Args: logits (Tensor): Logits distribution shape ``(b, num_tokens)`` where ``b`` is batch size, ``num_tokens`` is the number of tokens. Returns: Filtered logits tensor. """ if self.top_k == 0: return logits top_k = min( max(self.top_k, self.min_tokens_to_keep), logits.size(-1) ) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1:] # (b, 1) logits[indices_to_remove] = self.filter_value return logits class LogitsFilterTopP: """Filters a distribution of logits using nucleus (top_p) filtering Code reference: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 Args: top_p (float, optional): Keeps the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751). Defaults to ``None``. filter_value (float, optional): Constant value to filter unwanted logits. Defaults to ``-inf``. min_tokens_to_keep (int, optional): Minimum number of tokens to keep per batch example in the output. Defaults to ``1``. Raises: ValueError: If 'top_p' is outside of valid numerical ranges. """ def __init__( self, top_p: Optional[float] = None, min_tokens_to_keep: int = 1, filter_value: float = -float("inf"), ) -> None: if top_p is not None and (top_p > 1.0 or top_p < 0.0): raise ValueError(f"'top_p' must be within `[0.0, 1.0]` but got {top_p}.") self.min_tokens_to_keep = min_tokens_to_keep self.filter_value = filter_value self.top_p = top_p def __call__(self, logits: Tensor) -> Tensor: """ Args: logits (Tensor): Logits distribution shape ``(b, num_tokens)`` where ``b`` is batch size, ``num_tokens`` is the number of tokens. Returns: Filtered logits tensor. """ if self.top_p == 1.0: return logits sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > self.top_p if self.min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add # the first one below) sorted_indices_to_remove[..., : self.min_tokens_to_keep - 1] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) logits[indices_to_remove] = self.filter_value return logits
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/utils/generate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Sized def assert_equal_lengths( *args: Sized, msg: str = "iterable arguments must have same length." ) -> None: lengths = set() for item in args: lengths.add(len(item)) if len(lengths) != 1: raise ValueError(msg)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/utils/assertion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch from torch import Tensor from torch.distributed import all_gather as all_gather_no_backprop from torch.distributed.nn.functional import all_gather as all_gather_with_backprop def gather_tensor(tensor: Tensor, backprop_in_gather: bool = True) -> List[Tensor]: """Gathers a tensor across all GPUs. Args: tensor (Tensor): Tensors that need to be gathered. backprop_in_gather (bool): Whether to backpropagate the gradients from all_gather to all workers (versus just the local worker). Defaults to {\\double back-quote}True{\\double quote}. Returns: List[Tensor]: List of gathered tensors across all GPUs. """ world_size = torch.distributed.get_world_size() # This uses the all_gather from torch.distributed.nn.functional, # which backpropagates gradients to all workers if backprop_in_gather: return all_gather_with_backprop(tensor) # Otherwise just backprop to the current worker # This means that the image gradients on a given worker will only # consider the text samples from the same worker else: tensor_all_gpus = [torch.zeros_like(tensor) for _ in range(world_size)] all_gather_no_backprop(tensor_all_gpus, tensor) tensor_all_gpus[torch.distributed.get_rank()] = tensor return tensor_all_gpus
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/utils/distributed.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from collections import OrderedDict from copy import deepcopy from dataclasses import fields from typing import Any, Callable, List, Tuple, Union import torch from torch import nn, Tensor from torch.utils.checkpoint import checkpoint from torchmultimodal import _PATH_MANAGER def get_current_device() -> Union[str, torch.device]: if torch.cuda.is_available() and torch.cuda.is_initialized(): return f"cuda:{torch.cuda.current_device()}" else: return torch.device("cpu") def shift_dim( x: Tensor, src_dim: int = -1, dest_dim: int = -1, make_contiguous: bool = True ) -> Tensor: """Permutes tensor x by moving src_dim to dest_dim. i.e. shift_dim(x, 1, -1) would be (b, c, t, h, w) -> (b, t, h, w, c) Code taken from VideoGPT https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/utils.py Args: x (Tensor): input Tensor you want to permute src_dim (int, optional): the axis you want to move. Negative indexing supported. Defaults to -1. dest_dim (int, optional): the axis you want to move to. Negative indexing supported. Defaults to -1. make_contiguous (bool, optional): if you want the output tensor to be contiguous in memory. Defaults to True. Returns: Tensor: permuted Tensor """ n_dims = len(x.shape) # Remap negative dim if src_dim < 0: src_dim = n_dims + src_dim if dest_dim < 0: dest_dim = n_dims + dest_dim assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims dims = list(range(n_dims)) del dims[src_dim] permutation = [] ctr = 0 for i in range(n_dims): if i == dest_dim: permutation.append(src_dim) else: permutation.append(dims[ctr]) ctr += 1 x = x.permute(permutation) if make_contiguous: x = x.contiguous() return x def tensor_slice(x: Tensor, begin: List[int], size: List[int]) -> Tensor: """Slices a tensor dimension-wise. The input tensor is sliced along each dimension by specifying the starts and the increments. Args: x (Tensor): tensor to be sliced. begin (List[int]): list of starts corresponding to each dimension. size (List[int]): list of increments with respect to the starts along each dimension. Specifically, ``-1`` means slicing from begin to the last element (inclusive) of that dimension. Returns: The sliced tensor. Raises: ValueError: if any of ``begin`` indices is negative ValueError: if any of ``size`` is less than ``-1`` """ if not all([b >= 0 for b in begin]): raise ValueError("All starting indices must be non-negative.") if not all([s >= -1 for s in size]): raise ValueError("All sizes must be either non-negative or -1.") size = [l - b if s == -1 else s for s, b, l in zip(size, begin, x.shape)] slices = [slice(b, b + s) for b, s in zip(begin, size)] return x[slices] def load_module_from_url( model: nn.Module, url: str, strict: bool = True, progress: bool = True ) -> None: local_path = _PATH_MANAGER.get_local_path(url) if not torch.cuda.is_available(): state_dict = torch.load(local_path, map_location=torch.device("cpu")) else: state_dict = torch.load(local_path) model.load_state_dict(state_dict, strict=strict) @torch.no_grad() def remove_grad(model: nn.Module) -> None: for param in model.parameters(): param.requires_grad = False @torch.no_grad() def momentum_update(model: nn.Module, model_m: nn.Module, momentum: float) -> None: for param, param_m in zip(model.parameters(), model_m.parameters()): param_m.data = param_m.data * momentum + param.data * (1 - momentum) class ModelOutput(OrderedDict): def keys(self) -> Any: for field in fields(self): yield field.name def __getitem__(self, key: Any) -> Any: return getattr(self, key) def __iter__(self) -> Any: yield from self.keys() def values(self) -> Any: for field in fields(self): yield getattr(self, field.name) def items(self) -> Any: for field in fields(self): yield field.name, getattr(self, field.name) def to_tuple_tuple( param: Union[int, Tuple[int, ...]], dim_tuple: int, num_tuple: int ) -> Tuple[Tuple[int, ...], ...]: """ Convert single integer or single tuple to tuple of tuples. Used for kernel_size and strides parameters in convolutional models """ if isinstance(param, int): param = (param,) * dim_tuple if isinstance(param, tuple): param_fixed = (param,) * num_tuple return param_fixed def checkpoint_wrapper(fn: Callable) -> Callable: """Decorator to render an nn.Module instance method in checkpointing mode to save memory for training""" def inner(cls: nn.Module, *inputs: Any, **kwargs: Any) -> Tensor: if cls.training: # By default the checkpoint API stashes and restores the RNG state during each checkpointed # segment such that checkpointed passes making use of RNG (e.g., through dropout, batch norm) # have deterministic outputs as compared to non-checkpointed passes. This can incur a moderate # performance hit which we mitigate by checkpointing either before and after the layer that # requires RNG. if "use_cache" in kwargs and kwargs["use_cache"] is True: warnings.warn( "Using `cache` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) kwargs["use_cache"] = False def create_custom_forward(fn: Callable) -> Callable: # checkpoint API does not accept user defined kwargs so we need to hide them def custom_forward(*inputs: Any) -> Callable: return fn(cls, *inputs, **kwargs) return custom_forward return checkpoint(create_custom_forward(fn), *inputs) else: return fn(cls, *inputs, **kwargs) return inner def get_clones(module: nn.Module, n: int) -> nn.ModuleList: return nn.ModuleList([deepcopy(module) for i in range(n)])
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/utils/common.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from iopath.common.file_io import HTTPURLHandler, PathManager def _get_path_manager() -> PathManager: try: from torchmultimodal.fb.utils.file_io import FBPathManager, register_handlers pm = FBPathManager() register_handlers(pm) return pm except ImportError: pm = PathManager() pm.register_handler(HTTPURLHandler()) return pm
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/utils/file_io.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, cast, List, Optional, Tuple, Union from torch import nn, Size, Tensor from torchmultimodal.models.vqvae import VQVAE from torchmultimodal.modules.layers.attention import AxialAttentionBlock from torchmultimodal.modules.layers.conv import SamePadConv3d, SamePadConvTranspose3d from torchmultimodal.utils.assertion import assert_equal_lengths from torchmultimodal.utils.common import to_tuple_tuple def video_vqvae( in_channel_dim: int, encoder_hidden_dim: int, encoder_kernel_size: int, encoder_stride: int, encoder_n_layers: int, n_res_layers: int, attn_hidden_dim: int, num_embeddings: int, embedding_dim: int, decoder_hidden_dim: int, decoder_kernel_size: int, decoder_stride: int, decoder_n_layers: int, ) -> VQVAE: """Generic Video VQVAE builder Args: in_channel_dim (int, optional): Size of channel dim in input. encoder_hidden_dim (int, optional): Size of channel dims in encoder conv layers. encoder_kernel_size (int, optional): Kernel size for encoder. encoder_stride (int, optional): Stride for encoder. encoder_n_layers (int, optional): Number of layers in encoder. Does not include attention stack and pre-codebook conv layer. n_res_layers (int, optional): Number of ``AttentionResidualBlocks`` to include in encoder and decoder. attn_hidden_dim (int, optional): Size of hidden dim of ``AttentionResidualBlocks``. num_embeddings (int, optional): Number of embedding vectors used in ``Codebook``. embedding_dim (int, optional): Dimensionality of embedding vectors in ``Codebook``. decoder_hidden_dim (int, optional): Size of channel dims in decoder conv transpose layers. decoder_kernel_size (int, optional): Kernel size for decoder. decoder_stride (int, optional): Stride for decoder. decoder_n_layers (int, optional): Number of layers in decoder. Does not include attention stack and post-codebook conv transpose layer. Returns: An instance of :class:`~torchmultimodal.models.vqvae.VQVAE` initialized with ``VideoEncoder``, ``Codebook`` and ``VideoDecoder`` """ encoder_in_channel_dims = (in_channel_dim,) + (encoder_hidden_dim,) * max( encoder_n_layers - 1, 0 ) decoder_out_channel_dims = (decoder_hidden_dim,) * max(decoder_n_layers - 1, 0) + ( in_channel_dim, ) # Reformat kernel and strides to be tuple of tuple for encoder/decoder constructors encoder_kernel_sizes_fixed, encoder_strides_fixed = preprocess_int_conv_params( encoder_in_channel_dims, encoder_kernel_size, encoder_stride ) decoder_kernel_sizes_fixed, decoder_strides_fixed = preprocess_int_conv_params( decoder_out_channel_dims, decoder_kernel_size, decoder_stride ) encoder = VideoEncoder( encoder_in_channel_dims, encoder_kernel_sizes_fixed, encoder_strides_fixed, embedding_dim, n_res_layers, attn_hidden_dim, ) decoder = VideoDecoder( decoder_out_channel_dims, decoder_kernel_sizes_fixed, decoder_strides_fixed, embedding_dim, n_res_layers, attn_hidden_dim, ) return VQVAE(encoder, decoder, num_embeddings, embedding_dim) class VideoEncoder(nn.Module): """Encoder for Video VQVAE. Stacks specified number of ``SamePadConv3d`` layers followed by a stack of ``AttentionResidualBlocks`` and a final ``SamePadConv3d`` layer before the codebook. The residual blocks use Axial Attention to enhance representations of video data without significantly increasing computational cost. Follows VideoGPT's implementation: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py Args: in_channel_dims (Tuple[int, ...]): Input channel dimension for each layer in conv stack. kernel_sizes (Tuple[Tuple[int, int, int], ...]): Kernel sizes for each layer in conv stack. strides (Tuple[Tuple[int, int, int], ...]): Strides for each layer in conv stack. output_dim (int): Size of hidden dimension of final output. n_res_layers (int, optional): Number of ``AttentionResidualBlocks`` to include. Default is ``4``. attn_hidden_dim (int, optional): Size of hidden dimension in attention block. Default is ``240``. kwargs (Any): Keyword arguments to be passed into ``SamePadConv3d`` and used by ``nn.Conv3d``. Raises: ValueError: If the lengths of ``in_channel_dims``, ``kernel_sizes``, and ``strides`` are not all equivalent. """ def __init__( self, in_channel_dims: Tuple[int, ...], kernel_sizes: Tuple[Tuple[int, int, int], ...], strides: Tuple[Tuple[int, int, int], ...], output_dim: int, n_res_layers: int = 4, attn_hidden_dim: int = 240, **kwargs: Any, ): super().__init__() assert_equal_lengths( in_channel_dims, kernel_sizes, strides, msg="in_channel_dims, kernel_sizes, and strides must be same length.", ) convolutions: List[nn.Module] = [] n_conv_layers = len(in_channel_dims) for i in range(n_conv_layers): in_channel = in_channel_dims[i] out_channel = ( in_channel_dims[i + 1] if i < n_conv_layers - 1 else attn_hidden_dim ) kernel = kernel_sizes[i] stride = strides[i] convolutions.append( SamePadConv3d( in_channel, out_channel, kernel, stride, bias=True, **kwargs ) ) # Do not apply relu to last conv layer before res stack if i < n_conv_layers - 1: convolutions.append(nn.ReLU()) self.convs = nn.Sequential(*convolutions) self.res_stack = nn.Sequential( *[AttentionResidualBlock(attn_hidden_dim) for _ in range(n_res_layers)], nn.BatchNorm3d(attn_hidden_dim), nn.ReLU(), ) self.conv_out = SamePadConv3d( attn_hidden_dim, output_dim, kernel_size=1, stride=1 ) def get_latent_shape(self, input_shape: Union[Tuple, Size]) -> Tuple: """Return shape of encoder output based on number of downsampling conv layers""" latent_shape = list(input_shape) for layer in self.convs: # ignore conv_out since it has a stride of 1 if isinstance(layer, SamePadConv3d): # SamePadConv should downsample input shape by factor of stride latent_shape = [ latent_shape[dim] // layer.conv.stride[dim] for dim in range(len(input_shape)) ] return tuple(latent_shape) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input video data with shape ``(b, c, d1, d2, d3)``. """ in_channel = x.shape[1] if in_channel != self.convs[0].conv.in_channels: raise ValueError( f"expected input channel dim to be {self.convs[0].conv.in_channels}, but got {in_channel}" ) h = self.convs(x) h = self.res_stack(h) h = self.conv_out(h) return h class VideoDecoder(nn.Module): """Decoder for Video VQVAE. Takes quantized output from codebook and applies a ``SamePadConv3d`` layer, a stack of ``AttentionResidualBlocks``, followed by a specified number of ``SamePadConvTranspose3d`` layers. The residual blocks use Axial Attention to enhance representations of video data without significantly increasing computational cost. Follows VideoGPT's implementation: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py Args: out_channel_dims (Tuple[int, ...]): Output channel dimension for each layer in conv stack. kernel_sizes (Tuple[Tuple[int, int, int], ...]): Kernel sizes for each layer in conv stack. strides (Tuple[Tuple[int, int, int], ...]): Strides for each layer in conv stack input_dim (int): Input channel dimension for first conv layer before attention stack n_res_layers (int): Number of ``AttentionResidualBlocks`` to include. Default is ``4``. attn_hidden_dim (int): Size of hidden dimension in attention block. Default is ``240``. kwargs (Any): Keyword arguments to be passed into ``SamePadConvTranspose3d`` and used by ``nn.ConvTranspose3d``. Raises: ValueError: If the lengths of ``out_channel_dims``, ``kernel_sizes``, and ``strides`` are not all equivalent. """ def __init__( self, out_channel_dims: Tuple[int, ...], kernel_sizes: Tuple[Tuple[int, int, int], ...], strides: Tuple[Tuple[int, int, int], ...], input_dim: int, n_res_layers: int = 4, attn_hidden_dim: int = 240, **kwargs: Any, ): super().__init__() assert_equal_lengths( out_channel_dims, kernel_sizes, strides, msg="out_channel_dims, kernel_sizes, and strides must be same length.", ) self.conv_in = SamePadConv3d( input_dim, attn_hidden_dim, kernel_size=1, stride=1 ) self.res_stack = nn.Sequential( *[AttentionResidualBlock(attn_hidden_dim) for _ in range(n_res_layers)], nn.BatchNorm3d(attn_hidden_dim), nn.ReLU(), ) transpose_convolutions: List[nn.Module] = [] n_conv_layers = len(out_channel_dims) for i in range(n_conv_layers): in_channel = out_channel_dims[i - 1] if i > 0 else attn_hidden_dim out_channel = out_channel_dims[i] kernel = kernel_sizes[i] stride = strides[i] transpose_convolutions.append( SamePadConvTranspose3d( in_channel, out_channel, kernel, stride, bias=True, **kwargs ) ) # Do not apply relu to output convt layer if i < n_conv_layers - 1: transpose_convolutions.append(nn.ReLU()) self.convts = nn.Sequential(*transpose_convolutions) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input quantized embeddings with shape ``(b, emb_dim, d1, d2, d3)``. """ in_channel = x.shape[1] if in_channel != self.conv_in.conv.in_channels: raise ValueError( f"expected input channel dim to be {self.conv_in.conv.in_channels}, but got {in_channel}" ) h = self.conv_in(x) h = self.res_stack(h) h = self.convts(h) return h class AttentionResidualBlock(nn.Module): """Residual block with axial attention. Implements the component as proposed in `"VideoGPT: Video Generation using VQ-VAE and Transformers (Yan et al. 2022)"<https://arxiv.org/pdf/2104.10157.pdf>`_. Code reference: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py Args: hidden_dim (int, optional): Size of channel dim of input. Default is ``240``. n_head (int, optional): Number of heads in multihead attention. Must divide into hidden_dim evenly. Default is ``2``. Raises: ValueError: If ``hidden_dim`` is less than ``2``. """ def __init__(self, hidden_dim: int = 240, n_head: int = 2) -> None: super().__init__() # To avoid hidden dim becoming 0 in middle layers if hidden_dim < 2: raise ValueError("hidden dim must be at least 2") self.block = nn.Sequential( nn.BatchNorm3d(hidden_dim), nn.ReLU(), SamePadConv3d(hidden_dim, hidden_dim // 2, 3, bias=False), nn.BatchNorm3d(hidden_dim // 2), nn.ReLU(), SamePadConv3d(hidden_dim // 2, hidden_dim, 1, bias=False), nn.BatchNorm3d(hidden_dim), nn.ReLU(), AxialAttentionBlock(3, hidden_dim, n_head), # Video has 3 dims ) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input of shape ``(b, c, d1, d2, d3)``. """ return x + self.block(x) def preprocess_int_conv_params( channel_dims: Tuple[int, ...], kernel_sizes: Optional[int] = None, strides: Optional[int] = None, ) -> Tuple: """Reformats conv params from int to tuple of tuple and assigns correct type""" if kernel_sizes is None and strides is None: raise ValueError("must specify at least one of kernel_sizes or strides") kernel_sizes_fixed = None strides_fixed = None n_conv_layers = len(channel_dims) if kernel_sizes: kernel_sizes_fixed = to_tuple_tuple( kernel_sizes, dim_tuple=3, num_tuple=n_conv_layers ) kernel_sizes_fixed = cast(Tuple[Tuple[int, int, int], ...], kernel_sizes_fixed) if strides: strides_fixed = to_tuple_tuple(strides, dim_tuple=3, num_tuple=n_conv_layers) strides_fixed = cast(Tuple[Tuple[int, int, int], ...], strides_fixed) if kernel_sizes_fixed and strides_fixed: return kernel_sizes_fixed, strides_fixed elif kernel_sizes_fixed: return kernel_sizes_fixed else: return strides_fixed
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/video_vqvae.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from typing import Dict, List, NamedTuple, Optional from torch import nn, Tensor from torchmultimodal.models.late_fusion import LateFusion class TwoTowerOutput(NamedTuple): output: Tensor tower_embeddings: Dict[str, Tensor] class TwoTower(nn.Module): """ A two tower architecture with a pair of late fusion models (for now, can be extended) followed by a fusion for output of each tower. Args: tower_id_to_tower (Dict[str, LateFusion]): mapping of tower id to tower model. Size should be 2, same tower should be passed in for shared towers tower fusion (nn.Module): Module fusing list of tensors (tower outputs) into single output shared_tower_id_to_channel_mapping (Optional[Dict[str, Dict[str, str]]]): Dict of shared tower id to mapping of channel names of the shared tower to the original input channel name Inputs: channel_to_input (Dict[str,Tensor]) : Channel name to input tensor dict """ def __init__( self, tower_id_to_tower: Dict[str, LateFusion], tower_fusion: nn.Module, shared_tower_id_to_channel_mapping: Optional[Dict[str, Dict[str, str]]] = None, ): super().__init__() # lets add this validation for now, # we can possibly make this a n tower architecture later. if len(tower_id_to_tower) != 2: raise ValueError( f"Two tower needs 2 towers but found \ {len(tower_id_to_tower)} towers" ) self.tower_id_to_tower = nn.ModuleDict(tower_id_to_tower) self.tower_fusion = tower_fusion if shared_tower_id_to_channel_mapping is not None: towers = list(tower_id_to_tower.values()) if towers[0] != towers[1]: raise ValueError( "Towers should be shared if channel mapping is passed in" ) self.shared_tower_id_to_channel_mapping: Optional[ Dict[str, Dict[str, str]] ] = shared_tower_id_to_channel_mapping def forward(self, channel_to_input: Dict[str, Tensor]) -> TwoTowerOutput: tower_embeddings = OrderedDict() for tower_id, tower in self.tower_id_to_tower.items(): tower_input = self._get_tower_input( tower_id, list(tower.encoders.keys()), channel_to_input ) tower_embeddings[tower_id] = tower(tower_input) final_out = self.tower_fusion(list(tower_embeddings.values())) return TwoTowerOutput(output=final_out, tower_embeddings=tower_embeddings) def _get_tower_input( self, tower_id: str, tower_channels: List[str], channel_to_input: Dict[str, Tensor], ) -> Dict[str, Tensor]: tower_input = {} channel_name_mapping: Dict[str, str] = {} if self.shared_tower_id_to_channel_mapping is not None: if self.shared_tower_id_to_channel_mapping.get(tower_id) is not None: channel_name_mapping = self.shared_tower_id_to_channel_mapping[tower_id] for channel in tower_channels: if channel_name_mapping.get(channel) is not None: input_channel_name = channel_name_mapping[channel] else: input_channel_name = channel tower_input[channel] = channel_to_input[input_channel_name] return tower_input
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/two_tower.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple from torch import nn from torchmultimodal.models.gpt import ( MultimodalGPT, MultimodalTransformerDecoder, RightShift, TransformerDecoder, TransformerDecoderLayer, ) from torchmultimodal.models.video_vqvae import VideoDecoder, VideoEncoder from torchmultimodal.models.vqvae import VQVAE from torchmultimodal.modules.layers.attention import SelfAttention from torchmultimodal.modules.layers.position_embedding import ( BroadcastedPositionEmbedding, ) def video_gpt( input_shape: Tuple[int, int, int] = (16, 64, 64), latent_shape: Tuple[int, int, int] = (8, 32, 32), d_model: int = 576, n_head: int = 4, dropout: float = 0.2, attn_dropout: float = 0.3, num_decoder_layers: int = 16, use_gpt_init: bool = True, ) -> MultimodalGPT: """VideoGPT model Model architecture follows the paper `"VideoGPT: Video Generation using VQ-VAE and Transformers "<https://arxiv.org/pdf/2104.10157.pdf>`_. Source of parameters (with the exception ``d_model``, see parameter docstring below): * Page 13 Table A.1 Column "BAIR / RoboNet / ViZDoom" * Page 13 Table A.2 Column "BAIR / RoboNet" Args: input_shape (Tuple[int, int, int]): Shape of the input video data ``(time_seq_len, resolution, resolution)``. Defaults to ``(16, 64, 64)``. latent_shape (Tuple[int, int, int]): Shape of the encoded video data. This should be consistent with the actual latent shape inferred by the video encoder. See :class:`~torchmultimodal.models.video_vqvae.VideoEncoder`. Defaults to ``(8, 32, 32)``. d_model (int): Dimension of the underlying transformer decoder. Value taken from: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/gpt.py#L177 Note that this is different from the paper due to :class:`~torchmultimodal.modules.layers.position_embedding.BroadcastedPositionEmbedding` requires that ``d_model`` is a multiple of ``len(latent_shape)``. See :py:class:`torchmultimodal.models.gpt.TransformerDecoderLayer`. Defaults to ``576``. n_head (int): Number of attention heads used by the transformer decoder. Defaults to ``4``. dropout (float): Dropout probability used by the projection layer of the transformer decoder. Defaults to ``0.2``. attn_dropout (float): Dropout probability used by the attention layer of the transformer decoder. Defaults to ``0.3``. num_decoder_layers (int): Number of transformer decoder layers. Defaults to ``16``. use_gpt_init (bool): Whether to use weight initialization of GPT model. See :class:`~torchmultimodal.models.gpt.MultimodalGPT`. Defaults to ``True``. Returns: An instance of :class:`~torchmultimodal.models.gpt.MultimodalGPT`. """ # constructs in and out tokenizers in_tokenizer = video_vqvae() out_tokenizer = video_vqvae() num_in_tokens = in_tokenizer.num_embeddings # codebook size num_out_tokens = out_tokenizer.num_embeddings # derived parameters vqvae_latent_shape = in_tokenizer.latent_shape(input_shape) if latent_shape != vqvae_latent_shape: raise ValueError( f"Latent shape required: {latent_shape} does not match that of VQVAE: {vqvae_latent_shape}" ) # constructs projection layers in_projection = nn.Linear(in_tokenizer.embedding_dim, d_model, bias=False) out_projection = nn.Linear(out_tokenizer.embedding_dim, d_model, bias=False) # constructs multimodal decoder in_pos_emb = BroadcastedPositionEmbedding(latent_shape, d_model) out_pos_emb = BroadcastedPositionEmbedding(latent_shape, d_model) attention_layer = SelfAttention(attn_dropout=attn_dropout) decoder_layer = TransformerDecoderLayer( d_model, n_head, dropout, attn_module=attention_layer ) decoder = TransformerDecoder(decoder_layer, num_decoder_layers) right_shift = RightShift(d_model) mm_decoder = MultimodalTransformerDecoder( in_pos_emb, out_pos_emb, decoder, right_shift ) return MultimodalGPT( d_model=d_model, num_in_tokens=num_in_tokens, num_out_tokens=num_out_tokens, latent_shape=latent_shape, in_tokenizer=in_tokenizer, out_tokenizer=out_tokenizer, mm_decoder=mm_decoder, in_projection=in_projection, out_projection=out_projection, use_gpt_init=use_gpt_init, ) def video_vqvae( conv_filter_sizes: Tuple[Tuple[int, int, int], ...] = ((4, 4, 4),), conv_filter_strides: Tuple[Tuple[int, int, int], ...] = ((2, 2, 2),), encoder_filter_size: Tuple[int, int, int] = (3, 3, 3), encoder_filter_stride: Tuple[int, int, int] = (1, 1, 1), in_channel_dim: int = 3, encoder_hidden_dim: int = 240, n_res_layers: int = 4, attn_hidden_dim: int = 240, num_embeddings: int = 1024, embedding_dim: int = 256, decoder_hidden_dim: int = 240, ) -> VQVAE: """Video VQVAE builder for VideoGPT Args: conv_filter_sizes (Tuple[Tuple[int, int, int], ...], optional): Tuple of dimension-wise kernel sizes of downsampling (upsampling) conv layers of the encoder (decoder). Defaults to ``((4, 4, 4),)`` of one layer. conv_filter_strides (Tuple[Tuple[int, int, int], ...], optional): Tuple of dimension-wise strides of downsampling (upsampling) conv layers of the encoder (decoder). Defaults to ``((2, 2, 2),)`` of one layer. encoder_filter_size (Tuple[int, int, int], optional): Dimension-wise kernel sizes of the last conv layer of the encoder. Defaults to ``(3, 3, 3)``. encoder_filter_stride (Tuple[int, int, int], optional): Dimension-wise strides of the last conv layer of the encoder. Defaults to ``(1, 1, 1)``. in_channel_dim (int, optional): Size of channel dim in input. Defaults to ``3``. encoder_hidden_dim (int, optional): Size of channel dims in encoder conv layers. Defaults to ``240``. n_res_layers (int, optional): Number of :class:`~torchmultimodal.models.video_vqvae.AttentionResidualBlocks` to include in encoder and decoder. Defaults to ``4``. attn_hidden_dim (int, optional): Size of hidden dim of ``AttentionResidualBlocks``. Defaults to ``240``. num_embeddings (int, optional): Number of embedding vectors used in ``Codebook``. Defaults to ``1024``. embedding_dim (int, optional): Dimensionality of embedding vectors in ``Codebook``. Defaults to ``256``. decoder_hidden_dim (int, optional): Size of channel dims in decoder conv tranpose layers. Defaults to ``240``. Note: Strides of each layer must be either ``1`` or ``2`` due to downsampling (upsampling) rates are multipliers of ``2``. For example, input_shape = ``(32, 256, 256)``, latent_shape = ``(8, 8, 8)`` corresponds to downsample rates ``(4, 32, 32)``. The corresponding ``conv_filter_strides`` are ``((2, 2, 2), (2, 2, 2), (1, 2, 2), (1, 2, 2), (1, 2, 2))``. The defaults are chosen to be consistent with those of :func:`video_gpt`. Returns: An instance of :class:`~torchmultimodal.models.vqvae.VQVAE` constructed with: * :class:`~torchmultimodal.model.video_vqvae.VideoEncoder` * :class:`~torchmultimodal.model.video_vqvae.VideoDecoder` """ encoder_kernel_sizes = conv_filter_sizes + (encoder_filter_size,) encoder_strides = conv_filter_strides + (encoder_filter_stride,) encoder_n_layers = len(encoder_strides) decoder_kernel_sizes = conv_filter_sizes decoder_strides = conv_filter_strides decoder_n_layers = len(decoder_strides) encoder_in_channel_dims = (in_channel_dim,) + (encoder_hidden_dim,) * max( encoder_n_layers - 1, 0 ) decoder_out_channel_dims = (decoder_hidden_dim,) * max(decoder_n_layers - 1, 0) + ( in_channel_dim, ) encoder = VideoEncoder( encoder_in_channel_dims, encoder_kernel_sizes, encoder_strides, embedding_dim, n_res_layers, attn_hidden_dim, ) decoder = VideoDecoder( decoder_out_channel_dims, decoder_kernel_sizes, decoder_strides, embedding_dim, n_res_layers, attn_hidden_dim, ) return VQVAE(encoder, decoder, num_embeddings, embedding_dim)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/video_gpt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import torch from torch import nn class LateFusion(nn.Module): """A generic architecture for late fusion multimodal models. A late fusion model contains separate encoders for each modality, followed by a fusion layer and then a head module. For an example of a late fusion model, see the TorchMultimodal implementation of the cnn-lstm multimodal classifier (cnn_lstm.py) Args: encoders (ModuleDict): Dictionary mapping modalities to their respective encoders. Inputs: modalities (Dict[str, Tensor]): A dictionary mapping modalities to their tensor representations. """ def __init__( self, encoders: nn.ModuleDict, fusion_module: nn.Module, head_module: nn.Module, ): super().__init__() # Sort encoders by key on init for consistency self.encoders = nn.ModuleDict({k: encoders[k] for k in sorted(encoders.keys())}) self.fusion_module = fusion_module self.head_module = head_module def forward(self, modalities: Dict[str, torch.Tensor]) -> torch.Tensor: embeddings = {} for key, encoder in self.encoders.items(): assert key in modalities, f"{key} missing in input" embeddings[key] = encoder(modalities[key]) fused = self.fusion_module(embeddings) return self.head_module(fused)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/late_fusion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, List, Optional import torch import torchmultimodal.utils.common as common_utils from torch import nn from torchmultimodal.modules.encoders.swin_transformer_3d_encoder import ( SwinTransformer3d, ) from torchvision.models.video.swin_transformer import PatchEmbed3d _OMNIVORE_PRETRAINED_URLS = { "swin_t_encoder": "https://download.pytorch.org/models/omnivore_swin_t_encoder-b7e39400.pth", "swin_s_encoder": "https://download.pytorch.org/models/omnivore_swin_s_encoder-40b05ba1.pth", "swin_b_encoder": "https://download.pytorch.org/models/omnivore_swin_b_encoder-a9134768.pth", "swin_t_heads": "https://download.pytorch.org/models/omnivore_swin_t_heads-c8bfb7fd.pth", "swin_s_heads": "https://download.pytorch.org/models/omnivore_swin_s_heads-c5e77246.pth", "swin_b_heads": "https://download.pytorch.org/models/omnivore_swin_b_heads-3c38b3ed.pth", } def _imagenet1k_head(input_dim: int) -> nn.Module: return nn.Linear(input_dim, 1000, bias=True) def _kinetics400_head(input_dim: int) -> nn.Module: return nn.Sequential( nn.Dropout(p=0.5), nn.Linear(input_dim, 400, bias=True), ) def _sunrgbd_head(input_dim: int) -> nn.Module: return nn.Linear(input_dim, 19, bias=True) def _multimodal_head(input_dim: int) -> nn.ModuleDict: return nn.ModuleDict( { "image": _imagenet1k_head(input_dim), "rgbd": _sunrgbd_head(input_dim), "video": _kinetics400_head(input_dim), } ) class Omnivore(nn.Module): """Omnivore is a model that accept multiple vision modality. Omnivore (https://arxiv.org/abs/2201.08377) is a single model that able to do classification on images, videos, and single-view 3D data using the same shared parameters of the encoder. Args: encoder (nn.Module): Instantiated encoder. It generally accept a video backbone. The paper use SwinTransformer3d for the encoder. heads (Optional[nn.ModuleDict]): Dictionary of multiple heads for each dataset type Inputs: x (Tensor): 5 Dimensional batched video tensor with format of B C D H W where B is batch, C is channel, D is time, H is height, and W is width. input_type (str): The dataset type of the input, this will used to choose the correct head. """ def __init__(self, encoder: nn.Module, heads: nn.ModuleDict): super().__init__() self.encoder = encoder self.heads = heads def forward(self, x: torch.Tensor, input_type: str) -> torch.Tensor: x = self.encoder(x) assert ( input_type in self.heads ), f"Unsupported input_type: {input_type}, please use one of {list(self.heads.keys())}" x = self.heads[input_type](x) return x class PatchEmbedOmnivore(nn.Module): """Patch Embedding strategy for Omnivore model It will use common PatchEmbed3d for image and video, for single view depth image it will have separate embedding for the depth channel and add the embedding result with the RGB channel reference: https://arxiv.org/abs/2201.08377 Args: patch_size (Tuple[int, int, int]): Patch token size. Default: ``(2, 4, 4)`` embed_dim (int): Number of linear projection output channels. Default: ``96`` norm_layer (nn.Module, optional): Normalization layer. Default: ``None`` """ def __init__( self, patch_size: List[int], embed_dim: int = 96, norm_layer: Optional[Callable[..., nn.Module]] = None, ): super().__init__() self.patch_embed = PatchEmbed3d( patch_size=patch_size, embed_dim=embed_dim, norm_layer=norm_layer, ) self.depth_patch_embed = PatchEmbed3d( patch_size=patch_size, in_channels=1, embed_dim=embed_dim, norm_layer=norm_layer, ) def forward(self, x: torch.Tensor) -> torch.Tensor: # x: B C D H W # Note: D here represent time assert x.ndim == 5 has_depth = x.shape[1] == 4 if has_depth: x_rgb = self.patch_embed(x[:, :3, ...]) x_d = self.depth_patch_embed(x[:, 3:, ...]) x = x_rgb + x_d else: x = self.patch_embed(x) return x def omnivore_swin_t_encoder( pretrained: bool = False, progress: bool = True ) -> SwinTransformer3d: encoder = SwinTransformer3d( patch_size=[2, 4, 4], embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=[8, 7, 7], stochastic_depth_prob=0.2, norm_layer=nn.LayerNorm, patch_embed=PatchEmbedOmnivore, num_classes=None, ) if pretrained: common_utils.load_module_from_url( encoder, _OMNIVORE_PRETRAINED_URLS["swin_t_encoder"], progress=progress, ) return encoder def omnivore_swin_s_encoder( pretrained: bool = False, progress: bool = True ) -> SwinTransformer3d: encoder = SwinTransformer3d( patch_size=[2, 4, 4], embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=[8, 7, 7], stochastic_depth_prob=0.3, norm_layer=nn.LayerNorm, patch_embed=PatchEmbedOmnivore, num_classes=None, ) if pretrained: common_utils.load_module_from_url( encoder, _OMNIVORE_PRETRAINED_URLS["swin_s_encoder"], progress=progress, ) return encoder def omnivore_swin_b_encoder( pretrained: bool = False, progress: bool = True ) -> SwinTransformer3d: encoder = SwinTransformer3d( patch_size=[2, 4, 4], embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=[16, 7, 7], stochastic_depth_prob=0.3, norm_layer=nn.LayerNorm, patch_embed=PatchEmbedOmnivore, num_classes=None, ) if pretrained: common_utils.load_module_from_url( encoder, _OMNIVORE_PRETRAINED_URLS["swin_b_encoder"], progress=progress, ) return encoder def omnivore_swin_t(pretrained: bool = False, progress: bool = True) -> nn.Module: """ Builder function to get omnivore model with swin_t variant encoder Args: pretrained (bool): If true then the it will load pretrained weight, otherwise it will have random weight (default: ``False``) progress (bool): If true then there will be a progress bar for downloading weight (default: ``True``) """ encoder = omnivore_swin_t_encoder(pretrained=pretrained) heads = _multimodal_head(input_dim=encoder.num_features) if pretrained: common_utils.load_module_from_url( heads, _OMNIVORE_PRETRAINED_URLS["swin_t_heads"], progress=progress, ) model = Omnivore(encoder, heads) return model def omnivore_swin_s(pretrained: bool = False, progress: bool = True) -> nn.Module: """ Builder function to get omnivore model with swin_s variant encoder Args: pretrained (bool): If true then the it will load pretrained weight, otherwise it will have random weight (default: ``False``) progress (bool): If true then there will be a progress bar for downloading weight (default: ``True``) """ encoder = omnivore_swin_s_encoder(pretrained=pretrained) heads = _multimodal_head(input_dim=encoder.num_features) if pretrained: common_utils.load_module_from_url( heads, _OMNIVORE_PRETRAINED_URLS["swin_s_heads"], progress=progress, ) model = Omnivore(encoder, heads) return model def omnivore_swin_b(pretrained: bool = False, progress: bool = True) -> nn.Module: """ Builder function to get omnivore model with swin_b variant encoder Args: pretrained (bool): If true then the it will load pretrained weight, otherwise it will have random weight (default: ``False``) progress (bool): If true then there will be a progress bar for downloading weight (default: ``True``) """ encoder = omnivore_swin_b_encoder(pretrained=pretrained) heads = _multimodal_head(input_dim=encoder.num_features) if pretrained: common_utils.load_module_from_url( heads, _OMNIVORE_PRETRAINED_URLS["swin_b_heads"], progress=progress, ) model = Omnivore(encoder, heads) return model
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/omnivore.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple, Tuple, Union from torch import nn, Size, Tensor from torchmultimodal.modules.layers.codebook import Codebook, CodebookOutput from torchmultimodal.utils.common import shift_dim class VQVAEOutput(NamedTuple): """Outputs from :class:`~torchmultimodal.models.vqvae.VQVAE`. Attributes: decoded (Tensor): Output of the decoder. codebook_output (CodebookOutput): Output of codebook layer to be used in loss calculations. """ decoded: Tensor codebook_output: CodebookOutput class VQVAE(nn.Module): """General model for VQVAE that provides codebook layer to link user specified encoder and decoder. Vector Quantized Variational Autoencoder is a type of autoencoder that defines an embedding of discrete vectors as the latent variables in the bottleneck layer instead of normally distributed latent variables as in a standard VAE. This enables high-fidelity reconstruction of input data. It was first introduced in "Neural Discrete Representation Learning" (Oord et al. 2017) and has since seen success in tokenizing and generating high-resolution image, audio, and video data. Args: encoder (nn.Module): Model that accepts single Tensor as input in forward, ``encoder(x)``. Will be used to project input into codebook layer. Expects channel dim of encoder output to match ``embedding_dim`` of codebook. See :class:`~torchmultimodal.modules.layers.codebook.Codebook`. decoder (nn.Module): Model that accepts single Tensor as input in forward, ``decoder(x)``. Should be able to accept output shape of codebook layer, which matches output shape of the encoder. num_embeddings (int): Number of embedding vectors in codebook. embedding_dim (int): Dimensionality of embedding vectors in codebook. """ def __init__( self, encoder: nn.Module, decoder: nn.Module, num_embeddings: int, embedding_dim: int, ) -> None: super().__init__() self.encoder = encoder self.decoder = decoder self.codebook = Codebook(num_embeddings, embedding_dim) self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim def latent_shape(self, input_shape: Union[Size, Tuple]) -> Tuple[int, ...]: """Returns the downsampled shape of the encoder output: (d1, ..., dn)""" if not hasattr(self.encoder, "get_latent_shape"): raise AttributeError( f"Missing attribute 'get_latent_shape' of the encoder {self.encoder}" ) return self.encoder.get_latent_shape(input_shape) # type: ignore def encode( self, x: Tensor, return_embeddings: bool = False ) -> Union[Tuple[Tensor, Tensor], Tensor]: """Converts input data to token ids Args: x (Tensor): Input data of shape ``(b, c, d1, ..., dn)``. return_embeddings (bool): Flag to return also the quantized embeddings. Defaults to ``False``. Returns: * A tensor of token ids: ``(b, d1, ...., dn)`` * A tuple of token ids and quantized embeddings ``(b, emb_dim, d1, ..., dn)``. """ encoded = self.encoder(x) out = self.codebook(encoded) indices = out.codebook_indices quantized = out.quantized if return_embeddings: return indices, quantized return indices def decode(self, indices: Tensor) -> Tensor: """Converts token ids back to data""" quantized = self.lookup(indices) # (b, latent_shape, emb_dim) quantized = shift_dim(quantized, -1, 1) # (b, emb_dim, latent_shape) return self.decoder(quantized) # (b, c, input_shape) def lookup(self, indices: Tensor) -> Tensor: if not hasattr(self.codebook, "lookup"): raise AttributeError( f"Missing attribute 'lookup' of the codebook {self.codebook}" ) return self.codebook.lookup(indices) def forward(self, x: Tensor) -> VQVAEOutput: """ Args: x (Tensor): Input data of shape ``(b, c, d1, ..., dn)``. Returns: An instance of :class:`~torchmultimodal.models.vqvae.VQVAEOutput`. """ encoded = self.encoder(x) codebook_output = self.codebook(encoded) decoded = self.decoder(codebook_output.quantized) return VQVAEOutput(decoded, codebook_output)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/vqvae.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from functools import partial from typing import Any, Callable, Dict, NamedTuple, Optional, Tuple, Union import torch from torch import nn, Tensor from torchmultimodal.modules.layers.activation import SiLU from torchmultimodal.modules.layers.attention import MultiHeadAttention, SelfAttention from torchmultimodal.modules.layers.mlp import MLP from torchmultimodal.utils.common import checkpoint_wrapper, get_clones class TransformerDecoderOutput(NamedTuple): """Outputs from :class:`~torchmultimodal.models.gpt.TransformerDecoder`. Attributes: last_hidden_states (Tensor): Output from the last layer of the transformer. hidden_states (Tuple[Tensor, ...], optional): Outputs from all layers of the transformer. Defaults to ``None``. attention_weights (Tuple[Tensor, ...], optional): Attention probabilities from all layers of the transformer. Defaults to ``None``. past_key_values (Tuple[Dict[str, Tensor], ...]], optional): If ``use_cache`` is on, contains key/value tensors prior to the current step along the sequence. Defaults to ``None``. """ last_hidden_states: Tensor hidden_states: Optional[Tuple[Tensor, ...]] = None attention_weights: Optional[Tuple[Tensor, ...]] = None past_key_values: Optional[Tuple[Dict[str, Tensor], ...]] = None class TransformerLayerOutput(NamedTuple): """Outputs from :class:`~torchmultimodal.models.gpt.TransformerDecoderLayer`. Attributes: hidden_states (Tensor): Output from the current layer. attention_weights (Tensor, optional): Attention probability tensor of the current layer. Defaults to ``None``. past_key_values (Dict[str, Tensor], optional): If ``use_cache`` is on, contains key/value tensors prior to the current step along the sequence. Defaults to ``None``. """ hidden_states: Tensor attention_weights: Optional[Tensor] = None past_key_values: Optional[Dict[str, Tensor]] = None class MultimodalGPTOutput(NamedTuple): """Outputs from :meth:`~torchmultimodal.models.gpt.MultimodalGPT.forward`. Attributes: decoder_output (TransformerDeocoderOutput): Contains output from the multimodal transformer decoder. See :class:`MultimodalTransformerDecoder`. logits (Tensor): Logits computed from the last hidden state of the multimodal transformer decoder. """ decoder_output: TransformerDecoderOutput logits: Tensor class MultimodalGPT(nn.Module): """Extends the GPT (Generative Pre-Training) model for cross-modality generation. This module implements the GPT model for generation of one modality given another following the paper `"Improving Language Understanding by Generative Pre-Training "<https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf>`_. Args: d_model (int): Embedding dimension of the transformer decoder. num_in_tokens (int): Number of unique token states for the input modality. num_out_tokens (int): Number of unique token states for the output modality. latent_shape ([Tuple[int, ...]): Shape of the latent space of the output modality tokenizer. Used to reshape sequence of generated tokens to be decoded back to data. in_tokenizer (nn.Module): Tokenizer for the input modality. Must have methods ``encode``, ``lookup``. out_tokenizer (nn.Module): Tokenizer for the output modality. Must have methods ``encode``, ``decode``. mm_decoder (nn.Module): Multimodal transformer decoder. An instace of :py:class:`MultimodalTransformerDecoder`. in_projection (nn.Module, optional): Projects the input modality token embeddings to match size of the transformer decoder. Defaults to ``None``. out_projection (nn.Module, optional): Projects the output modality token embeddings to match size of the transformer decoder. Defaults to ``None``. norm_layer (Callable[..., nn.Module], optional): Which normalization layer to use. Supports ``nn.Module`` or partial. If ``None``, ``nn.LayerNorm`` will be used as the default. use_gpt_init (bool): Whether to use GPT model specific initialization. Defaults to ``True``. Raises: AttributeError: If input tokenizer does not implement methods ``encode`` and ``lookup`` or if output tokenizer does not implement methods ``encode``, ``lookup`` and ``decode``. """ def __init__( self, d_model: int, num_in_tokens: int, num_out_tokens: int, latent_shape: Tuple[int, ...], in_tokenizer: nn.Module, out_tokenizer: nn.Module, mm_decoder: nn.Module, in_projection: Optional[nn.Module] = None, out_projection: Optional[nn.Module] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, use_gpt_init: bool = True, ) -> None: super().__init__() if not all( [hasattr(in_tokenizer, attr_name) for attr_name in ["encode", "lookup"]] ): raise AttributeError( "Input modality tokenizer must have methods 'encode' and 'lookup'." ) if not all( [ hasattr(out_tokenizer, attr_name) for attr_name in ["encode", "lookup", "decode"] ] ): raise AttributeError( "Output modality tokenizer must have methods 'encode', 'lookup' and 'decode'." ) num_tokens = num_in_tokens + num_out_tokens self.num_in_tokens = num_in_tokens self.num_out_tokens = num_out_tokens self.latent_shape = latent_shape self.in_tokenizer = in_tokenizer self.out_tokenizer = out_tokenizer self.mm_decoder = mm_decoder self.in_projection = in_projection self.out_projection = out_projection if norm_layer is None: norm_layer = partial(nn.LayerNorm, eps=1e-5) self.norm = norm_layer(normalized_shape=d_model) self.to_logit = nn.Linear(d_model, num_tokens, bias=False) # This will give us equal probabilities after the soft max layer initially to avoid biasing # towards any particular prediction category self.to_logit.weight.data.copy_(torch.zeros(num_tokens, d_model)) if use_gpt_init: self.initialize_parameters() def initialize_parameters(self) -> None: # Initialize weights of the layers in question, e.g., after loading checkpoints # Only do this when the layers have weights data, e.g., for text tokenizer the projection # layer is dummy (nn.Identity) if hasattr(self.in_projection, "weight"): self.in_projection.weight.data.normal_(std=0.02) # type: ignore if hasattr(self.out_projection, "weight"): self.out_projection.weight.data.normal_(std=0.02) # type: ignore def forward( self, in_tokens: Optional[Tensor] = None, out_tokens: Optional[Tensor] = None, in_pos_ids: Optional[Tensor] = None, out_pos_ids: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, logits_mask: Optional[Tensor] = None, use_cache: bool = False, causal: bool = False, right_shift: bool = False, return_attn_weights: bool = False, return_hidden_states: bool = False, ) -> MultimodalGPTOutput: """ Args: in_tokens (Tensor, optional): Tensor of dimension ``(b, in_seq_len)`` containing tokens for the input modality. Defaults to ``None``. out_tokens (Tensor, optional): Tensor of dimension ``(b, out_seq_len)`` containing tokens for the output modality. Defaults to ``None``. in_pos_ids (Tensor, optional): Tensor of dimension ``(b, in_seq_len)`` containing indices for the input modality position embeddings. Defaults to ``None``. out_pos_ids (Tensor, optional): Tensor of dimension ``(b, out_seq_len)`` containing indices for the output modality position embeddings. Defaults to ``None``. attn_mask (Tensor, optional): Tensor of dimension ``(q_seq_len, k_seq_len)`` or ``(b, q_seq_len, k_seq_len)`` where prefixes ``q`` and ``k`` stand for query and key. Contains 1s for positions to attend to and 0s for masked positions. Defaults to ``None``. head_mask (Tensor, optional): Tensor of dimension ``(h, q_seq_len, k_seq_len)`` or ``(b, h, q_seq_len, k_seq_len)``. Masks need to be specified for each attention head. Defaults to ``None``. logits_mask (Tensor, optional): Tensor of dimension ``(seq_len, num_tokens)`` or ``(b, seq_len, num_tokens)`` to ensure we only calculate probabilities from tokens of the corresponding modality sequence. use_cache (bool, optional): If ``True``, caches past key/value tensors for faster decoding. If ``False``, recomputes key and value for each decoding step. Defaults to ``False``. causal (bool, optional): If ``True``, use causal attention. Defaults to ``False``. right_shift (bool): If ``True``, shifts the embedding vectors to the right and prepends it with start of sentence token. Defaults to ``False``. This option is disregarded during training mode return_attn_weights (bool, optional): If ``True``, returns attention probabilities of each transformer layer. Defaults to ``False``. return_hidden_states (bool, optional): If ``True``, returns the embeddings of each transformer layer. Defaults to ``False``. Returns: An instance of :class:`~torchmultimodal.models.gpt.MultimodalGPTOutput`. """ decoder_output = self.fwd( in_tokens=in_tokens, out_tokens=out_tokens, in_pos_ids=in_pos_ids, out_pos_ids=out_pos_ids, attn_mask=attn_mask, head_mask=head_mask, use_cache=use_cache, causal=causal, right_shift=right_shift, return_attn_weights=return_attn_weights, return_hidden_states=return_hidden_states, ) hidden_states = decoder_output.last_hidden_states logits = self.logit_projection(hidden_states, logits_mask) return MultimodalGPTOutput(decoder_output, logits) def fwd( self, in_tokens: Optional[Tensor] = None, out_tokens: Optional[Tensor] = None, in_pos_ids: Optional[Tensor] = None, out_pos_ids: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, use_cache: bool = False, causal: bool = False, right_shift: bool = False, return_attn_weights: bool = False, return_hidden_states: bool = False, ) -> TransformerDecoderOutput: # During training this method is used in the forward pass to decode input- and # output- tokens. # During generation this method is used for autoregressive decoding. if (in_tokens is None) and (out_tokens is None): raise ValueError( "input-modality token and output-modality token sequences cannot be both empty" ) # Look up embeddings for the given tokens and project to fit the size of the # transformer decoder in_modality = out_modality = None if in_tokens is not None: # (b, in_seq_len, in_emb_dim) in_modality = self.lookup(in_tokens, "in") if self.in_projection is not None: in_modality = self.in_projection( in_modality ) # (b, in_seq_len, d_model) if out_tokens is not None: # (b, out_seq_len, out_emb_dim) out_modality = self.lookup(out_tokens, "out") if self.out_projection is not None: out_modality = self.out_projection( out_modality ) # (b, out_seq_len, d_model) return self.mm_decoder( in_modality=in_modality, out_modality=out_modality, in_pos_ids=in_pos_ids, out_pos_ids=out_pos_ids, attn_mask=attn_mask, head_mask=head_mask, use_cache=use_cache, causal=causal, right_shift=right_shift, return_attn_weights=return_attn_weights, return_hidden_states=return_hidden_states, ) def logit_projection( self, hidden_states: Tensor, logits_mask: Optional[Tensor] = None ) -> Tensor: if logits_mask is not None and logits_mask.dim() == 2: logits_mask = logits_mask.unsqueeze( 0 ) # (seq_len, num_tokens) -> (1, seq_len, num_tokens) hidden_states = self.norm(hidden_states) logits = self.to_logit(hidden_states) max_neg_value = -torch.finfo(logits.dtype).max if logits_mask is not None: logits.masked_fill_(logits_mask == 0, max_neg_value) return logits # (b, seq_len, num_tokens) def encode(self, x: Any, modality: str, **kwargs: Any) -> Tensor: """Converts data to token ids. Although this is not part of the forward pass, it is used to generate labels for training as well as inputs for autoregressive decoding. Args: x (Any): Data to be encoded, e.g., ``List[str]`` for text, ``Tensor`` of shape ``(b, c, d1, ..., dn)`` for audio/image/video. modality (str): Input or output modality string used to select the encoder. kwargs (Any): Other keyword arguments suitable for the encoder. Returns: A tensor of token ids of shape ``(b, seq_len)``. Raises: ValueError: If ``modality`` is neither ``in`` nor ``out``. """ if modality == "in": encoder = self.in_tokenizer.encode elif modality == "out": encoder = self.out_tokenizer.encode else: raise ValueError(f"Invalid modality parameter: {modality}") token_ids = encoder(x, **kwargs) # type: ignore # For generation we need to flatten the tokens return token_ids.flatten( start_dim=1, end_dim=-1 ) # (b, d1, ..., dn) -> (b, seq_len) def decode(self, token_ids: Tensor, **kwargs: Any) -> Any: """Converts out-modality tokens ids back to data during generation. Args: token_ids (Tensor): Token ID sequence ``(b, seq_len)`` to be decoded. kwargs (Any): Other keywords arguments suitable for the decoder. Returns: The decoded data, e.g., ``List[str]`` for text, a tensor of shape ``(b, c, d1. ,,, dn)`` for audio/image/video. Raises: ValueError: If the shape of ``token_ids`` is not of dimension two. ValueError: If the sequence dim of ``token_ids`` does not match that inferred from ``latent_shape``. """ if len(token_ids.shape) != 2: raise ValueError( f"Shape of token ids should be '(batch_size, sequence_length)' but got {token_ids.shape}" ) # Check if the generated sequence length matches that inferred from the latent embedding space latent_seq_len = torch.prod(torch.tensor(self.latent_shape)).item() if token_ids.shape[1] != latent_seq_len: raise ValueError( f"Sequence to decode does not match that inferred from the tokenizer: {latent_seq_len}" ) # Reshape the sequence of token ids back to dim of latent space token_ids = token_ids.view( token_ids.shape[0], *self.latent_shape ) # (b, seq_len) -> (b, d1, ..., dn) return self.out_tokenizer.decode(token_ids, **kwargs) # type: ignore def lookup(self, token_ids: Tensor, modality: str) -> Tensor: """Looks up the latent embeddings corresponding to the token ids during generation. We ask each tokenizer to implement this method. An example is :class:`torchmultimodal.models.vqvae.VQVAE`. Args: token_ids (Tensor): Token ID sequence ``(b, seq_len)``. modality (str): The modality at which this method is performed. Returns: A tensor of embeddings corresponding to the token ids. Raises: ValueError: If ``modality`` is neither ``in`` nor ``out``. """ if modality == "in": tokenizer = self.in_tokenizer elif modality == "out": tokenizer = self.out_tokenizer else: raise ValueError(f"Invalid modality parameter: {modality}") return tokenizer.lookup(token_ids) # type: ignore class MultimodalTransformerDecoder(nn.Module): """A transformer decoder for two modalities The token- and position- embedding layers are per modality: * During training both modalities are fed into the module and concatenated as a single sequence of tokenized embedding vectors * During generation the future data points are predicted step-wise from the past. The input modality is processed before the output modality (see ``torchmultimodal.utils.common.generate``). Therefore, at any point in time the input data contains only one modality. Args: in_pos_emb (nn.Module): Input modality position embedding layer. out_pos_emb (nn.Module): Output modality position embedding layer. decoder (nn.Module): The transformer decoder. An instance of :py:class:`TransformerDecoder`. right_shift (nn.Module): Layer that shifts the embedding vectors to the right and prepends it with start of sentence token (SOS). An instance of :py:class:`RightShift`. Note: * During training mode, the SOS token is prepended to the left of the concatenated input and output modality sequence; * During generation mode, the SOS token is only required for the input modality sequence as the initial token to be learnt from. Right shift should be turned off (``right_shift = False``, see args) when we start to generate the output modality samples. """ def __init__( self, in_pos_emb: nn.Module, out_pos_emb: nn.Module, decoder: nn.Module, right_shift: nn.Module, ) -> None: super().__init__() self.in_pos_emb = in_pos_emb self.out_pos_emb = out_pos_emb self.decoder = decoder self.right_shift = right_shift def forward( self, in_modality: Optional[Tensor] = None, out_modality: Optional[Tensor] = None, in_pos_ids: Optional[Tensor] = None, out_pos_ids: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, use_cache: bool = False, causal: bool = False, right_shift: bool = False, return_attn_weights: bool = False, return_hidden_states: bool = False, ) -> TransformerDecoderOutput: """ Args: in_modality (Tensor, optional): Tensor of dimension ``(b, in_seq_len, d_model)`` containing tokenized embeddings for the input modality. Defaults to ``None``. out_modality (Tensor, optional): Tensor of dimension ``(b, out_seq_len, d_model')`` containing tokenized embeddings for the output modality. Defaults to ``None``. in_pos_ids (Tensor, optional): Tensor of dimension ``(b, in_seq_len)`` containing indices for the input modality position embeddings. Defaults to ``None``. out_pos_ids (Tensor, optional): Tensor of dimension ``(b, out_seq_len)`` containing indices for the output modality position embeddings. Defaults to ``None``. attn_mask (Tensor, optional): Tensor of dimension ``(q_seq_len, k_seq_len)`` or ``(b, q_seq_len, k_seq_len)`` where prefixes ``q`` and ``k`` stand for query and key. Contains 1s for positions to attend to and 0s for masked positions. Defaults to ``None``. head_mask (Tensor, optional): Tensor of dimension ``(h, q_seq_len, k_seq_len)`` or ``(b, h, q_seq_len, k_seq_len)``. Masks need to be specified for each attention head. Defaults to ``None``. use_cache (bool, optional): If ``True``, caches past key/value tensors for faster decoding. If ``False``, recomputes key and value for each decoding step. Defaults to ``False``. causal (bool, optional): If ``True``, use causal attention. Defaults to ``False``. right_shift (bool): If ``True``, shifts the embedding vectors to the right and prepends it with start of sentence token. Defaults to ``False``. This option is disregarded during training mode return_attn_weights (bool, optional): If ``True``, returns attention probabilities of each transformer layer. Defaults to ``False``. return_hidden_states (bool, optional): If ``True``, returns the embeddings of each transformer layer. Defaults to ``False``. Returns: An instace of :class:`~torchmultimodal.models.gpt.TransformerDecoderOutput`. """ if (in_modality is None) and (out_modality is None): raise ValueError( "in_modality and out_modality sequences cannot be both empty" ) # Since generation is based on the previous data point (autoregressive) where # only one modality is needed at any point along the sequence, either input # or output modality can be None. # Whereas training is done by paralleling all data points so both modalities # should be present. Position ids are optional as they can be derived from # the sequence length of each modality. if in_modality is None: out_pos_ids = self._norm_pos_ids(out_modality, out_pos_ids) x = out_modality + self.out_pos_emb(out_pos_ids) elif out_modality is None: in_pos_ids = self._norm_pos_ids(in_modality, in_pos_ids) x = in_modality + self.in_pos_emb(in_pos_ids) else: in_pos_ids = self._norm_pos_ids(in_modality, in_pos_ids) out_pos_ids = self._norm_pos_ids(out_modality, out_pos_ids) x_in = in_modality + self.in_pos_emb(in_pos_ids) x_out = out_modality + self.out_pos_emb(out_pos_ids) x = torch.cat((x_in, x_out), dim=1) if self.training or right_shift: x = self.right_shift(x) return self.decoder( x, attn_mask, head_mask, use_cache, causal, return_attn_weights, return_hidden_states, ) def _norm_pos_ids(self, x: Tensor, pos_ids: Optional[Tensor] = None) -> Tensor: _, seq_len, _ = x.shape if pos_ids is None: pos_ids = torch.arange(seq_len, dtype=torch.long, device=x.device)[ None, : ] # (1, seq_len) if pos_ids.shape[1] != seq_len: raise ValueError( f"Input sequence and position ids must be equal in length: {pos_ids.shape[1]} != {seq_len}" ) return pos_ids class TransformerDecoder(nn.Module): """A transformer decoder. Args: decoder_layer (nn.Module): The transformer decoder layer. An instance of :class:`TransformerDecoderLayer`. num_layers (int): The number of transformer decoder layers to be stacked up. """ def __init__( self, decoder_layer: nn.Module, num_layers: int = 12, ) -> None: super().__init__() self.layers = get_clones(decoder_layer, num_layers) self.num_layers = num_layers def forward( self, hidden_states: Tensor, attn_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, use_cache: bool = False, causal: bool = False, return_attn_weights: bool = False, return_hidden_states: bool = False, ) -> TransformerDecoderOutput: """ Args: hidden_states (Tensor): Tensor of the embedding vectors of dimension ``(b, seq_len, emb_dim)``. attn_mask (Tensor, optional): Tensor of dimension ``(q_seq_len, k_seq_len)`` or ``(b, q_seq_len, k_seq_len)`` where prefixes ``q`` and ``k`` stand for query and key. Contains 1s for positions to attend to and 0s for masked positions. Defaults to ``None``. head_mask (Tensor, optional): Tensor of dimension ``(h, q_seq_len, k_seq_len)`` or ``(b, h, q_seq_len, k_seq_len)``. Masks need to be specified for each attention head. Defaults to ``None``. use_cache (bool, optional): If ``True``, caches past key/value tensors for faster decoding. If ``False``, recomputes key and value for each decoding step. Defaults to ``False``. causal (bool, optional): If ``True``, use causal attention. Defaults to ``False``. return_attn_weights (bool, optional): If ``True``, returns attention probabilities of each transformer layer. Defaults to ``False``. return_hidden_states (bool, optional): If ``True``, returns the embeddings of each transformer layer. Defaults to ``False``. Returns: An instance of :class:`~torchmultimodal.models.gpt.TransformerDecoderOutput`. """ if attn_mask is not None and attn_mask.dim() == 2: attn_mask = attn_mask[ None, None, :, : ] # (q_seq_len, k_seq_len) -> (1, 1, q_seq_len, k_seq_len) if head_mask is not None and head_mask.dim() == 3: head_mask = head_mask[None, :, :, :] all_hidden_states: Tuple[Tensor, ...] = () if return_hidden_states else None all_attentions: Tuple[Tensor, ...] = () if return_attn_weights else None all_past_key_values: Tuple[Dict[str, Tensor], ...] = () if use_cache else None for layer in self.layers: if return_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer( hidden_states, attn_mask, head_mask, use_cache, causal, return_attn_weights, ) hidden_states = layer_outputs.hidden_states if return_attn_weights: all_attentions = all_attentions + (layer_outputs.attention_weights,) if use_cache: all_past_key_values = all_past_key_values + ( layer_outputs.past_key_values, ) if return_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return TransformerDecoderOutput( last_hidden_states=hidden_states, hidden_states=all_hidden_states, attention_weights=all_attentions, past_key_values=all_past_key_values, ) class TransformerDecoderLayer(nn.Module): """A single layer from a GPT transformer decoder Layer norm is applied before the attention layer and the feedforward layer so that the gradients are well-behaved at initialization for training stability. This is also called "Pre-LN Transformer" studied in `"On Layer Normalization in the Transformer Architecture"<https://arxiv.org/pdf/2002.04745.pdf>`_ Args: d_model (int): Dimension of the embeddings. n_head (int): Number of attention heads. dropout (float, optional): Dropout probability used in the dropout layers. Defaults to ``0.1``. activation (Union[str, Callable], optional): Activation used by the feedforward layer. Defaults to ``SiLU``. attn_module (nn.Module): Self attention module. Defaults to ``SelfAttention`` with dropout rate equal to ``0.1``. """ def __init__( self, d_model: int = 768, n_head: int = 12, dropout: float = 0.1, activation: Callable[..., nn.Module] = SiLU, attn_module: nn.Module = SelfAttention(attn_dropout=0.1), ) -> None: super().__init__() self.norm_attn = nn.LayerNorm(d_model) self.norm_mlp = nn.LayerNorm(d_model) self.dropout_attn = nn.Dropout(dropout) self.dropout_mlp = nn.Dropout(dropout) # No bias when projecting q, k, v in GPT model # https://github.com/openai/gpt-2/blob/master/src/model.py#L54 self.attention = MultiHeadAttention( dim_q=d_model, dim_kv=d_model, n_head=n_head, attn_module=attn_module, add_bias=False, ) self.mlp = MLP( in_dim=d_model, out_dim=d_model, hidden_dims=[d_model * 4], dropout=0.0, activation=activation, ) def forward( self, x: Tensor, attn_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, use_cache: bool = False, causal: bool = False, return_attn_weights: bool = False, ) -> TransformerLayerOutput: """ Args: x (Tensor): input embedding vectors. attn_mask (Tensor, optional): Tensor of dimension ``(b, q_seq_len, k_seq_len)`` where prefixes ``q`` and ``k`` stand for query and key. Contains 1s for positions to attend to and 0s for masked positions. Defaults to ``None``. head_mask (Tensor, optional): Tensor of dimension ``(b, h, q_seq_len, k_seq_len)``. Masks need to be specified for each attention head. Defaults to ``None``. use_cache (bool, optional): If ``True``, caches past key/value tensors for faster decoding. If ``False``, recomputes key and value for each decoding step. Defaults to ``False``. causal (bool, optional): If ``True``, use causal attention. Defaults to ``False``. return_attn_weights (bool, optional): If ``True``, returns attention probabilities of the layer. Defaults to ``False``. Returns: An instance of :class:`~torchmultimodal.models.gpt.TransformerLayerOutput`. """ attn_probs = None past_key_values = None attn_out = self._attn( self.norm_attn(x), attn_mask, head_mask, return_attn_weights, use_cache=use_cache, causal=causal, ) if return_attn_weights: attn_hidden_states, attn_probs = attn_out else: attn_hidden_states = attn_out if use_cache: past_key_values = self.attention.cache x = x + self.dropout_attn(attn_hidden_states) mlp_hidden_states = self._mlp_block(self.norm_mlp(x)) x = x + self.dropout_mlp(mlp_hidden_states) return TransformerLayerOutput( hidden_states=x, attention_weights=attn_probs, past_key_values=past_key_values, ) @checkpoint_wrapper def _attn( self, x: Tensor, attn_mask: Tensor, head_mask: Tensor, return_attn_weights: bool, use_cache: bool, causal: bool, ) -> Union[Tensor, Tuple[Tensor, Tensor]]: return self.attention( x, attention_mask=attn_mask, head_mask=head_mask, return_attn_weights=return_attn_weights, use_cache=use_cache, causal=causal, ) @checkpoint_wrapper def _mlp_block(self, x: Tensor) -> Tensor: return self.mlp(x) class RightShift(nn.Module): """Shifts the embedding vectors along the sequence dimension to the right. Since the decoder progresses by taking the token it generates in the previous step, before it has generated anything it needs a token to start with. Hence, the start-of-sentence (SOS) token. The SOS token is a learnable parameter of the decoder and the choice of its initialization is taken from VideoGPT: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/attention.py#L517 Args: embedding_dim (int): Dimension of the embedding vector for each token along the sequence. Attributes: sos (nn.Parameter): The starting token to be prepended to the sequence. """ def __init__(self, embedding_dim: int) -> None: super().__init__() self.embedding_dim = embedding_dim self.sos = nn.Parameter(torch.FloatTensor(embedding_dim).normal_(std=0.02)) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): An input tensor of shape ``(b, seq_len, emb_dim)``. Returns; A tensor of the same shape as that of the input with the ``sos`` token prepended. """ x_shape = list(x.shape) x = x.flatten(start_dim=1, end_dim=-2) # (batch, seq_len, emb) sos = self.sos.unsqueeze(0).unsqueeze(1).repeat(x_shape[0], 1, 1) # (b, 1, emb) # Shift one unit to the right along dim ``seq_len`` x = torch.cat( (sos.data, x[:, :-1, :]), dim=1 ) # (batch, seq_len, embedding_dim) x = x.view(*x_shape) return x
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/gpt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/flava/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Code for some of the transformers components in this file are initialized # from their counterparts in Hugging Face Transformers library. import math from collections import namedtuple, OrderedDict from dataclasses import dataclass from functools import partial from typing import Any, Callable, List, Optional, Tuple, Union import torch from torch import nn, Tensor from torchmultimodal.models.flava.image_encoder import flava_image_encoder from torchmultimodal.models.flava.text_encoder import flava_text_encoder from torchmultimodal.models.flava.transformer import FLAVATransformerWithoutEmbeddings from torchmultimodal.modules.layers.mlp import MLP from torchmultimodal.modules.layers.normalizations import Fp32LayerNorm from torchmultimodal.modules.layers.transformer import ( TransformerEncoder, TransformerOutput, ) from torchmultimodal.modules.losses.flava import ( FLAVAPretrainingLoss, FLAVAPretrainingLossOutput, Pooler, ) from torchmultimodal.utils.common import load_module_from_url, ModelOutput from typing_extensions import Literal EMBEDDING_OPTIONS = Literal["image", "text", "mm"] FLAVAOutput = namedtuple( "FLAVAOutput", [ "image", "image_masked", "text", "text_masked", "multimodal", "multimodal_masked", "projected_image_embeddings", "projected_text_embeddings", ], defaults=(None, None, None, None, None, None, None, None), ) FLAVAOutput.__annotations__ = { "image": TransformerOutput, "image_masked": TransformerOutput, "text": TransformerOutput, "text_masked": TransformerOutput, "multimodal": TransformerOutput, "multimodal_masked": TransformerOutput, } CKPT_KEY = "flava_full" FLAVA_FOR_PRETRAINED_MAPPING = { # This will no longer load with the updated model, but keeping here just in case # "flava_full": "https://huggingface.co/aps/flava_full_pretrained_encoders_torchmm/resolve/main/pytorch_model.bin", CKPT_KEY: "https://download.pytorch.org/models/multimodal/flava/flava_for_pretraining_unified_text_encoder.pt", } FLAVA_MODEL_MAPPING = { CKPT_KEY: "https://download.pytorch.org/models/multimodal/flava/flava_model_unified_text_encoder.pt", } def flava_multimodal_encoder( hidden_size: int = 768, num_attention_heads: int = 12, num_hidden_layers: int = 12, dropout: float = 0.0, intermediate_size: int = 3072, intermediate_activation: Callable[..., nn.Module] = nn.GELU, layer_norm_eps: float = 1e-12, ) -> FLAVATransformerWithoutEmbeddings: encoder = TransformerEncoder( n_layer=num_hidden_layers, d_model=hidden_size, n_head=num_attention_heads, dim_feedforward=intermediate_size, activation=intermediate_activation, layer_norm_eps=layer_norm_eps, dropout=dropout, norm_first=True, ) layernorm = Fp32LayerNorm(hidden_size, eps=layer_norm_eps) pooler = Pooler(hidden_size=hidden_size) return FLAVATransformerWithoutEmbeddings( encoder=encoder, layernorm=layernorm, pooler=pooler, hidden_size=hidden_size ) @dataclass class FLAVAForClassificationOutput(ModelOutput): logits: Tensor loss: Tensor class FLAVAModel(nn.Module): def __init__( self, image_encoder: nn.Module, text_encoder: nn.Module, mm_encoder: nn.Module, image_to_mm_projection: nn.Module, text_to_mm_projection: nn.Module, text_projection: nn.Module, image_projection: nn.Module, **kwargs: Any, ) -> None: super().__init__() self.image_encoder = image_encoder self.text_encoder = text_encoder self.mm_encoder = mm_encoder self.image_to_mm_projection = image_to_mm_projection self.text_to_mm_projection = text_to_mm_projection self.text_projection = text_projection self.image_projection = image_projection def forward( self, image: Optional[Tensor] = None, text: Optional[Tensor] = None, image_patches_mask: Optional[Tensor] = None, text_masked: Optional[Tensor] = None, required_embedding: Optional[EMBEDDING_OPTIONS] = None, skip_unmasked_mm_encoder: bool = True, ) -> FLAVAOutput: if required_embedding is None: if image is not None and text is not None: required_embedding = "mm" elif image is not None: required_embedding = "image" else: required_embedding = "text" image_encoding_out = self._encode_data_to_embeddings( image, required_embedding, ["image", "mm"], partial(self.encode_image, projection=True), ) if len(image_encoding_out) == 2: image_outputs, projected_image_embeddings = ( image_encoding_out[0], image_encoding_out[1], ) else: image_outputs = image_encoding_out # type: ignore projected_image_embeddings = None text_encoding_out = self._encode_data_to_embeddings( text, required_embedding, ["text", "mm"], partial(self.encode_text, projection=True), ) if len(text_encoding_out) == 2: text_outputs, projected_text_embeddings = ( text_encoding_out[0], text_encoding_out[1], ) else: text_outputs = text_encoding_out # type: ignore projected_text_embeddings = None image_masked_outputs = self._encode_data_to_embeddings( image, required_embedding, ["image", "mm"], partial(self.encode_image, image_patches_mask=image_patches_mask), ) assert type(image_masked_outputs) == TransformerOutput text_masked_outputs = self._encode_data_to_embeddings( text_masked, required_embedding, ["text", "mm"], self.encode_text, ) assert type(text_masked_outputs) == TransformerOutput multimodal_outputs = TransformerOutput() multimodal_masked_outputs = TransformerOutput() if required_embedding == "mm": # Take last hidden state and not the last_hidden_state because # for flava we want the hidden state without final layernorm. if not skip_unmasked_mm_encoder: # Unmasked multimodal embedding is not currently used by any of the FLAVA losses. multimodal_outputs = self.encode_mm( image_outputs.hidden_states[-1] # type: ignore if image_outputs.hidden_states # type: ignore else None, text_outputs.hidden_states[-1] # type: ignore if text_outputs.hidden_states # type: ignore else None, ) multimodal_masked_outputs = self.encode_mm( image_masked_outputs.hidden_states[-1] if image_masked_outputs.hidden_states else None, text_masked_outputs.hidden_states[-1] if text_masked_outputs.hidden_states else None, ) return FLAVAOutput( image=image_outputs, image_masked=image_masked_outputs, text=text_outputs, text_masked=text_masked_outputs, multimodal=multimodal_outputs, multimodal_masked=multimodal_masked_outputs, projected_image_embeddings=projected_image_embeddings, projected_text_embeddings=projected_text_embeddings, ) def encode_image( self, image: Tensor, image_patches_mask: Optional[Tensor] = None, projection: bool = False, ) -> Union[Tuple[TransformerOutput, Tensor], Optional[TransformerOutput]]: if image_patches_mask is not None: encoded_image = self.image_encoder(image, image_patches_mask) else: encoded_image = self.image_encoder(image) if projection: projected_embeddings = self.image_projection( encoded_image.last_hidden_state[:, 0, :] ) return encoded_image, projected_embeddings return encoded_image def encode_text( self, text: Tensor, text_mask: Optional[Tensor] = None, projection: bool = False ) -> Union[Tuple[TransformerOutput, Tensor], Optional[TransformerOutput]]: # TODO(asg): Give proper parameter names when implementing text encoder encoded_text = self.text_encoder( input_ids=text, attention_mask=text_mask, return_attn_weights=True, return_hidden_states=True, ) if projection: projected_embeddings = self.text_projection( encoded_text.last_hidden_state[:, 0, :] ) return encoded_text, projected_embeddings return encoded_text def _encode_data_to_embeddings( self, data: Optional[Tensor], selected_head_encoder: EMBEDDING_OPTIONS, encoder_options: List[EMBEDDING_OPTIONS], encode_callable: Callable[ ..., Union[Tuple[TransformerOutput, Tensor], Optional[TransformerOutput]], ], ) -> Union[Tuple[TransformerOutput, Tensor], Optional[TransformerOutput]]: output: Union[ Tuple[TransformerOutput, Tensor], TransformerOutput ] = TransformerOutput() if data is not None and selected_head_encoder in encoder_options: output = encode_callable(data) return output def encode_mm( self, image_embedding: Tensor, text_embedding: Tensor, ) -> TransformerOutput: if image_embedding is None or text_embedding is None: # Since nothing is passed, it might be case without # masked data let's say. return TransformerOutput() image_embedding = self.image_to_mm_projection(image_embedding) text_embedding = self.text_to_mm_projection(text_embedding) fused_state = torch.cat([image_embedding, text_embedding], dim=1) return self.mm_encoder(fused_state) class FLAVAForPreTraining(nn.Module): # TODOs: # 1. Expose logit scale # 2. For FLAVA model, allow interpolating the embeddings to # for patch embeddings def __init__( self, model: FLAVAModel, image_codebook: nn.Module, loss: FLAVAPretrainingLoss ) -> None: super().__init__() self.model = model self.image_codebook = image_codebook self.loss = loss def encode_image( self, image: Tensor, cls_index: int = 0, ) -> Tensor: encoded_result = self.model.encode_image(image, projection=True) encoded_image = encoded_result[1] return encoded_image def encode_text( self, text: Tensor, text_mask: Optional[Tensor] = None, cls_index: int = 0, ) -> Tensor: encoded_result = self.model.encode_text(text, text_mask, projection=True) encoded_text = encoded_result[1] return encoded_text # TODO: Add options to enable losses selectively def forward( self, image: Optional[Tensor] = None, text: Optional[Tensor] = None, image_for_codebook: Optional[Tensor] = None, image_patches_mask: Optional[Tensor] = None, text_masked: Optional[Tensor] = None, required_embedding: Optional[EMBEDDING_OPTIONS] = None, skip_unmasked_mm_encoder: bool = True, itm_labels: Optional[Tensor] = None, mlm_labels: Optional[Tensor] = None, ) -> FLAVAPretrainingLossOutput: image_labels = None if image_for_codebook is not None: image_labels = self.image_codebook(image_for_codebook).flatten(1) image_patches_mask = image_patches_mask.flatten(1).to(torch.bool) image_labels[~image_patches_mask] = -1 flava_output: FLAVAOutput = self.model( image=image, text=text, image_patches_mask=image_patches_mask, text_masked=text_masked, required_embedding=required_embedding, skip_unmasked_mm_encoder=skip_unmasked_mm_encoder, ) return self.loss( image_sequence=flava_output.image.last_hidden_state, text_sequence=flava_output.text.last_hidden_state, image_masked_sequence=flava_output.image_masked.last_hidden_state, text_masked_sequence=flava_output.text_masked.last_hidden_state, multimodal_sequence=flava_output.multimodal.last_hidden_state if not skip_unmasked_mm_encoder else None, multimodal_masked_sequence=flava_output.multimodal_masked.last_hidden_state, itm_labels=itm_labels, mim_labels=image_labels, mlm_labels=mlm_labels, projected_image_embeddings=flava_output.projected_image_embeddings, projected_text_embeddings=flava_output.projected_text_embeddings, ) class FLAVAForClassification(nn.Module): def __init__( self, model: FLAVAModel, classifier: nn.Module, loss: Union[nn.Module, Callable[[Tensor, Tensor], Tensor]], **kwargs: Any, ) -> None: super().__init__() self.model = model self.classifier = classifier self.loss = loss def forward( self, image: Optional[Tensor] = None, text: Optional[Tensor] = None, required_embedding: Optional[EMBEDDING_OPTIONS] = None, labels: Optional[Tensor] = None, cls_index: int = 0, ) -> FLAVAForClassificationOutput: flava_output: FLAVAOutput = self.model( image=image, text=text, required_embedding=required_embedding, # Don't skip the encoder for classification skip_unmasked_mm_encoder=False, ) hidden_state: Optional[Tensor] = None if required_embedding == "image": hidden_state = flava_output.image.last_hidden_state elif required_embedding == "text": hidden_state = flava_output.text.last_hidden_state else: hidden_state = flava_output.multimodal.last_hidden_state scores = self.classifier(hidden_state[:, cls_index]) loss = self.loss(scores, labels) return FLAVAForClassificationOutput( logits=scores, loss=loss, ) # NOTE: # 1) There is a possibility of using dataclass for similar # style kwargs for encoders. Didn't explore due to readability. def flava_model( # Image encoder specific parameters image_hidden_size: int = 768, image_num_attention_heads: int = 12, image_num_hidden_layers: int = 12, image_dropout: float = 0.0, image_intermediate_size: int = 3072, image_intermediate_activation: Callable[..., nn.Module] = nn.GELU, image_layer_norm_eps: float = 1e-12, use_image_masking: bool = True, image_size: int = 224, patch_size: int = 16, num_channels: int = 3, # Text encoder specific parameters text_hidden_size: int = 768, text_num_attention_heads: int = 12, text_num_hidden_layers: int = 12, text_dropout: float = 0.0, text_intermediate_size: int = 3072, text_intermediate_activation: Callable[..., nn.Module] = nn.GELU, text_layer_norm_eps: float = 1e-12, vocab_size: int = 30522, pad_token_id: int = 0, type_vocab_size: int = 2, max_position_embeddings: int = 512, # Multimodal encoder specific parameters multimodal_hidden_size: int = 768, multimodal_num_attention_heads: int = 12, multimodal_num_hidden_layers: int = 6, multimodal_dropout: float = 0.0, multimodal_intermediate_size: int = 3072, multimodal_intermediate_activation: Callable[..., nn.Module] = nn.GELU, multimodal_layer_norm_eps: float = 1e-12, # projection text_and_image_proj_size: int = 768, pretrained: bool = False, **kwargs: Any, ) -> FLAVAModel: image_encoder = flava_image_encoder( hidden_size=image_hidden_size, num_attention_heads=image_num_attention_heads, num_hidden_layers=image_num_hidden_layers, use_image_masking=use_image_masking, dropout=image_dropout, intermediate_size=image_intermediate_size, intermediate_activation=image_intermediate_activation, layer_norm_eps=image_layer_norm_eps, image_size=image_size, patch_size=patch_size, num_channels=num_channels, ) text_encoder = flava_text_encoder( hidden_size=text_hidden_size, num_attention_heads=text_num_attention_heads, num_hidden_layers=text_num_hidden_layers, dropout=text_dropout, intermediate_size=text_intermediate_size, intermediate_activation=text_intermediate_activation, layer_norm_eps=text_layer_norm_eps, vocab_size=vocab_size, pad_token_id=pad_token_id, type_vocab_size=type_vocab_size, max_position_embeddings=max_position_embeddings, ) mm_encoder = flava_multimodal_encoder( hidden_size=multimodal_hidden_size, num_attention_heads=multimodal_num_attention_heads, num_hidden_layers=multimodal_num_hidden_layers, dropout=multimodal_dropout, intermediate_size=multimodal_intermediate_size, intermediate_activation=multimodal_intermediate_activation, layer_norm_eps=multimodal_layer_norm_eps, ) image_to_mm_projection = nn.Linear(image_hidden_size, multimodal_hidden_size) text_to_mm_projection = nn.Linear(text_hidden_size, multimodal_hidden_size) image_projection = nn.Linear(image_hidden_size, text_and_image_proj_size) text_projection = nn.Linear(text_hidden_size, text_and_image_proj_size) flava = FLAVAModel( image_encoder=image_encoder, text_encoder=text_encoder, mm_encoder=mm_encoder, image_to_mm_projection=image_to_mm_projection, text_to_mm_projection=text_to_mm_projection, text_projection=text_projection, image_projection=image_projection, ) if pretrained: load_module_from_url(flava, FLAVA_MODEL_MAPPING[CKPT_KEY]) return flava def flava_model_for_pretraining( codebook_image_size: int = 112, pretrained: bool = False, **flava_model_kwargs: Any, # TODO: Add parameters for loss here ) -> FLAVAForPreTraining: model = flava_model(**flava_model_kwargs) hidden_size = flava_model_kwargs.get("multimodal_hidden_size", 768) losses = FLAVAPretrainingLoss(hidden_size=hidden_size) codebook = DalleVAEEncoder(image_size=codebook_image_size) flava = FLAVAForPreTraining( model=model, image_codebook=codebook, loss=losses, ) if pretrained: load_module_from_url(flava, FLAVA_FOR_PRETRAINED_MAPPING[CKPT_KEY]) return flava def flava_model_for_classification( num_classes: int, classifier_in_dim: int = 768, classifier_hidden_sizes: Union[int, List[int]] = 768, classifier_dropout: float = 0.5, classifier_activation: Callable[..., nn.Module] = nn.ReLU, classifier_normalization: Optional[Callable[..., nn.Module]] = None, loss_fn: Optional[Callable[..., Tensor]] = None, pretrained: bool = True, **flava_model_kwargs: Any, ) -> FLAVAForClassification: classifier = MLP( in_dim=classifier_in_dim, out_dim=num_classes, hidden_dims=classifier_hidden_sizes, dropout=classifier_dropout, activation=classifier_activation, normalization=classifier_normalization, ) model = flava_model(**flava_model_kwargs) if loss_fn is None: loss_fn = nn.CrossEntropyLoss() classification_model = FLAVAForClassification( model=model, classifier=classifier, loss=loss_fn ) if pretrained: load_module_from_url( classification_model, FLAVA_FOR_PRETRAINED_MAPPING[CKPT_KEY], strict=False, ) return classification_model class DalleConv2d(nn.Module): def __init__(self, n_in: int, n_out: int, kw: int) -> None: super().__init__() w = torch.empty((n_out, n_in, kw, kw), dtype=torch.float32) w.normal_(std=1 / math.sqrt(n_in * kw**2)) b = torch.zeros((n_out,), dtype=torch.float32) self.w, self.b = nn.Parameter(w), nn.Parameter(b) self.kw = kw def forward(self, x: torch.Tensor) -> torch.Tensor: return nn.functional.conv2d(x, self.w, self.b, padding=(self.kw - 1) // 2) class DalleEncoderBlock(nn.Module): def __init__(self, n_in: int, n_out: int, n_layers: int) -> None: super().__init__() n_hid = n_out // 4 self.post_gain = 1 / (n_layers**2) self.id_path = DalleConv2d(n_in, n_out, 1) if n_in != n_out else nn.Identity() self.res_path = nn.Sequential( OrderedDict( [ ("relu_1", nn.ReLU()), ("conv_1", DalleConv2d(n_in, n_hid, 3)), ("relu_2", nn.ReLU()), ("conv_2", DalleConv2d(n_hid, n_hid, 3)), ("relu_3", nn.ReLU()), ("conv_3", DalleConv2d(n_hid, n_hid, 3)), ("relu_4", nn.ReLU()), ("conv_4", DalleConv2d(n_hid, n_out, 1)), ] ) ) def forward(self, x: Tensor) -> Tensor: return self.id_path(x) + self.post_gain * self.res_path(x) class DalleEncoder(nn.Module): def __init__( self, group_count: int = 4, n_hid: int = 256, n_blk_per_group: int = 2, input_channels: int = 3, vocab_size: int = 8192, **kwargs: Any, ) -> None: super().__init__() self.input_channels = input_channels n_layers = group_count * n_blk_per_group output_conv = DalleConv2d(8 * n_hid, vocab_size, 1) self.blocks = nn.Sequential( OrderedDict( [ ("input", DalleConv2d(input_channels, 1 * n_hid, 7)), ( "group_1", self._create_group( n_layers, n_blk_per_group, 1 * n_hid, 1 * n_hid ), ), ( "group_2", self._create_group( n_layers, n_blk_per_group, 1 * n_hid, 2 * n_hid ), ), ( "group_3", self._create_group( n_layers, n_blk_per_group, 2 * n_hid, 4 * n_hid ), ), ( "group_4", self._create_group( n_layers, n_blk_per_group, 4 * n_hid, 8 * n_hid, use_pool=False, ), ), ( "output", nn.Sequential( OrderedDict([("relu", nn.ReLU()), ("conv", output_conv)]) ), ), ] ) ) def _create_group( self, n_layers: int, n_blk_per_group: int, n_in: int, n_hid: int, use_pool: bool = True, ) -> nn.Module: make_blk = partial(DalleEncoderBlock, n_layers=n_layers) blk_range = range(n_blk_per_group) blocks: OrderedDict[str, nn.Module] = OrderedDict() for i in blk_range: if i == 0: blocks[f"block_{i+1}"] = make_blk(n_in, n_hid) else: blocks[f"block_{i+1}"] = make_blk(n_hid, n_hid) if use_pool: blocks["pool"] = nn.MaxPool2d(kernel_size=2) return nn.Sequential(blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: if len(x.shape) != 4: raise ValueError(f"input shape {x.shape} is not 4d") if x.shape[1] != self.input_channels: raise ValueError( f"input has {x.shape[1]} channels but model built for {self.input_channels}" ) # if x.dtype != torch.float32: # raise ValueError('input must have dtype torch.float32') return self.blocks(x) class DalleVAEEncoder(nn.Module): def __init__( self, image_size: Union[int, Tuple[int, int]] = 112, pretrained: bool = True ): super().__init__() self.image_size = image_size self.encoder = DalleEncoder() if pretrained: self.load_model() def load_model(self) -> Any: # type: ignore # TODO (T116682215): Network error due to FLAVA model relying on access to openAI encoder_state_dict = torch.hub.load_state_dict_from_url( "https://cdn.openai.com/dall-e/encoder.pkl" ) self.encoder.load_state_dict(encoder_state_dict.state_dict()) # type: ignore return self.state_dict() def get_codebook_indices(self, images: Tensor) -> Tensor: z_logits = self.encoder(images) return torch.argmax(z_logits, axis=1) # type: ignore def get_codebook_probs(self, images: Tensor) -> Tensor: z_logits = self.encoder(images) return nn.Softmax(dim=1)(z_logits) def forward(self, img_seq_prob: Tensor) -> Tensor: return self.get_codebook_indices(img_seq_prob)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/flava/model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from functools import partial from typing import Callable from torch import nn from torchmultimodal.models.flava.transformer import init_transformer_weights from torchmultimodal.modules.encoders.bert_text_encoder import BERTTextEncoder from torchmultimodal.modules.layers.normalizations import Fp32LayerNorm from torchmultimodal.modules.layers.text_embedding import BERTTextEmbeddings from torchmultimodal.modules.layers.transformer import TransformerEncoder from torchmultimodal.modules.losses.flava import Pooler def flava_text_encoder( # TransformerEncoder params num_hidden_layers: int = 12, hidden_size: int = 768, num_attention_heads: int = 12, intermediate_size: int = 3072, intermediate_activation: Callable[..., nn.Module] = nn.GELU, layer_norm_eps: float = 1e-12, dropout: float = 0.0, # TextEmbeddings params vocab_size: int = 30522, pad_token_id: int = 0, type_vocab_size: int = 2, max_position_embeddings: int = 512, # TextEncoder params initializer_range: float = 0.02, ) -> BERTTextEncoder: embeddings = BERTTextEmbeddings( hidden_size=hidden_size, vocab_size=vocab_size, pad_token_id=pad_token_id, type_vocab_size=type_vocab_size, max_position_embeddings=max_position_embeddings, layer_norm_eps=layer_norm_eps, dropout=dropout, ) encoder = TransformerEncoder( n_layer=num_hidden_layers, d_model=hidden_size, n_head=num_attention_heads, dim_feedforward=intermediate_size, activation=intermediate_activation, layer_norm_eps=layer_norm_eps, dropout=dropout, norm_first=True, ) layernorm = Fp32LayerNorm(hidden_size, eps=layer_norm_eps) pooler = Pooler(hidden_size=hidden_size) weight_init_fn = partial( init_transformer_weights, initializer_range=initializer_range ) return BERTTextEncoder( embeddings=embeddings, encoder=encoder, layernorm=layernorm, pooler=pooler, weight_init_fn=weight_init_fn, )
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/flava/text_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from functools import partial from typing import Any, Callable, Optional import torch from torch import nn, Tensor from torchmultimodal.modules.layers.transformer import TransformerOutput class FLAVATransformerWithoutEmbeddings(nn.Module): # TODO(asg): Add support for pretrained checkpoint loading def __init__( self, encoder: nn.Module, layernorm: nn.Module, pooler: nn.Module, hidden_size: int = 768, weight_init_fn: Optional[Callable] = None, initializer_range: float = 0.02, use_cls_token: bool = True, **kwargs: Any, ): super().__init__() self.encoder = encoder self.layernorm = layernorm self.pooler = pooler if use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) else: self.cls_token = None if weight_init_fn is None: weight_init_fn = partial( init_transformer_weights, initializer_range=initializer_range ) self.apply(weight_init_fn) def forward( self, hidden_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, ) -> TransformerOutput: if hidden_states is None: raise ValueError("You have to specify hidden_states") if self.cls_token is not None: batch_size = hidden_states.shape[0] cls_tokens = self.cls_token.expand(batch_size, -1, -1) hidden_states = torch.cat((cls_tokens, hidden_states), dim=1) encoder_output = self.encoder( hidden_states, attention_mask=attention_mask, return_hidden_states=True, return_attn_weights=True, ) sequence_output = encoder_output.last_hidden_state sequence_output = self.layernorm(sequence_output) pooled_output = ( self.pooler(sequence_output) if self.pooler is not None else None ) return TransformerOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_output.hidden_states, attentions=encoder_output.attentions, ) def init_transformer_weights(module: nn.Module, initializer_range: float) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/flava/transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import warnings from functools import partial from typing import Any, Callable, Dict, Optional, Tuple import torch from torch import nn, Tensor from torchmultimodal.models.flava.transformer import init_transformer_weights from torchmultimodal.modules.layers.normalizations import Fp32LayerNorm from torchmultimodal.modules.layers.transformer import ( TransformerEncoder, TransformerOutput, ) from torchmultimodal.modules.losses.flava import Pooler def to_2tuple(x: int) -> Tuple[int, int]: return (x, x) # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py class PatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__( self, image_size: int = 224, patch_size: int = 16, num_channels: int = 3, embed_dim: int = 768, ) -> None: super().__init__() image_size = to_2tuple(image_size) patch_size = to_2tuple(patch_size) num_patches = (image_size[1] // patch_size[1]) * ( image_size[0] // patch_size[0] ) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.projection = nn.Conv2d( num_channels, embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) def forward( self, pixel_values: Tensor, interpolate_pos_encoding: bool = False ) -> Tensor: _, _, height, width = pixel_values.shape if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class ImageEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__( self, image_size: int = 224, patch_size: int = 16, num_channels: int = 3, hidden_size: int = 768, hidden_dropout_prob: float = 0.0, use_image_masking: bool = True, ) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) self.patch_embeddings = PatchEmbeddings( image_size=image_size, patch_size=patch_size, num_channels=num_channels, embed_dim=hidden_size, ) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter( torch.zeros(1, num_patches + 1, hidden_size) ) self.dropout = nn.Dropout(hidden_dropout_prob) if use_image_masking: self.mask_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) else: self.mask_token = None def interpolate_pos_encoding( self, embeddings: Tensor, height: int, width: int ) -> Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ npatch = embeddings.shape[1] - 1 n = self.position_embeddings.shape[1] - 1 if npatch == n and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, 0] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] h0 = height // self.patch_embeddings.patch_size[0] w0 = width // self.patch_embeddings.patch_size[1] # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 h0, w0 = h0 + 0.1, w0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape( 1, int(math.sqrt(n)), int(math.sqrt(n)), dim ).permute(0, 3, 1, 2), scale_factor=(h0 / math.sqrt(n), w0 / math.sqrt(n)), mode="bicubic", align_corners=False, ) assert ( int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward( self, pixel_values: Tensor, image_patches_mask: Optional[Tensor] = None, interpolate_pos_encoding: bool = False, ) -> Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings( pixel_values, interpolate_pos_encoding=interpolate_pos_encoding ) _, seq_len, _ = embeddings.size() if image_patches_mask is not None: if self.mask_token is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens w = image_patches_mask.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1 - w) + mask_tokens * w else: warnings.warn( "image_patches_mask passed but use_image_masking in init was false. Ignoring." ) # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding( embeddings, height, width ) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class ImageTransformer(nn.Module): # TODO(asg): Add support for pretrained checkpoint loading def __init__( self, embeddings: nn.Module, encoder: nn.Module, layernorm: nn.Module, pooler: nn.Module, weight_init_fn: Optional[Callable] = None, initializer_range: float = 0.02, **kwargs: Any, ) -> None: super().__init__() self.embeddings = embeddings self.encoder = encoder self.layernorm = layernorm self.pooler = pooler if weight_init_fn is None: weight_init_fn = partial( init_transformer_weights, initializer_range=initializer_range ) self.apply(weight_init_fn) def forward( self, pixel_values: Optional[Tensor] = None, image_patches_mask: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, ) -> TransformerOutput: if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings( pixel_values, image_patches_mask=image_patches_mask ) encoder_output = self.encoder( embedding_output, attention_mask=attention_mask, return_attn_weights=True, return_hidden_states=True, ) sequence_output = encoder_output.last_hidden_state sequence_output = self.layernorm(sequence_output) pooled_output = ( self.pooler(sequence_output) if self.pooler is not None else None ) return TransformerOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_output.hidden_states, attentions=encoder_output.attentions, ) def flava_image_encoder( hidden_size: int = 768, num_attention_heads: int = 12, num_hidden_layers: int = 12, use_image_masking: bool = False, dropout: float = 0.0, intermediate_size: int = 3072, intermediate_activation: Callable[..., nn.Module] = nn.GELU, layer_norm_eps: float = 1e-12, image_size: int = 224, patch_size: int = 16, num_channels: int = 3, ) -> ImageTransformer: embeddings = ImageEmbeddings( image_size=image_size, patch_size=patch_size, num_channels=num_channels, hidden_size=hidden_size, hidden_dropout_prob=dropout, use_image_masking=use_image_masking, ) encoder = TransformerEncoder( n_layer=num_hidden_layers, d_model=hidden_size, n_head=num_attention_heads, dim_feedforward=intermediate_size, activation=intermediate_activation, layer_norm_eps=layer_norm_eps, dropout=dropout, norm_first=True, ) layernorm = Fp32LayerNorm(hidden_size, eps=layer_norm_eps) pooler = Pooler(hidden_size=hidden_size) return ImageTransformer( embeddings=embeddings, encoder=encoder, layernorm=layernorm, pooler=pooler, ) class ImageTransformerWithVAE(nn.Module): def __init__( self, image_transformer: nn.Module, vae: nn.Module, **kwargs: Dict[str, Any], ) -> None: super().__init__() self.image_transformer = image_transformer self.vae = vae def forward( self, pixel_values: Optional[Tensor] = None, image_patches_mask: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, ) -> TransformerOutput: image_labels = self.vae(pixel_values).flatten(1) image_patches_mask = image_patches_mask.flatten(1).to(torch.bool) image_labels[image_patches_mask == False] = -1 # noqa output = self.image_transformer( pixel_values=pixel_values, image_patches_mask=image_patches_mask, attention_mask=attention_mask, ) return TransformerOutput( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, hidden_states=output.hidden_states, attentions=output.attentions, )
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/flava/image_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/clip/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple import torch import torch.nn.functional as F from torch import nn from torchmultimodal.models.clip.image_encoder import CLIPViTEncoder, ResNetForCLIP from torchmultimodal.models.clip.text_encoder import CLIPTextEncoder from torchmultimodal.utils.common import load_module_from_url from torchvision.models.resnet import Bottleneck, ResNet class CLIPOutput(NamedTuple): embeddings_a: torch.Tensor embeddings_b: torch.Tensor CLIP_MODEL_MAPPING = { "vit_b16": "https://download.pytorch.org/models/multimodal/clip/clip_vit_b16.pt", "vit_b32": "https://download.pytorch.org/models/multimodal/clip/clip_vit_b32.pt", "vit_l14": "https://download.pytorch.org/models/multimodal/clip/clip_vit_l14.pt", "rn50": "https://download.pytorch.org/models/multimodal/clip/clip_rn50.pt", "rn101": "https://download.pytorch.org/models/multimodal/clip/clip_rn101.pt", "rn50x4": "https://download.pytorch.org/models/multimodal/clip/clip_rn50x4.pt", "rn50x16": "https://download.pytorch.org/models/multimodal/clip/clip_rn50x16.pt", "rn50x64": "https://download.pytorch.org/models/multimodal/clip/clip_rn50x64.pt", } class CLIP(nn.Module): """CLIP is a model for contrastive pretraining between two modalities. CLIP (https://arxiv.org/pdf/2103.00020.pdf) jointly trains an image encoder (either ResNet or ViT) and a text encoder (Transformer) to predict correct (image, text) pairings via a contrastive loss function. This module contains the encoders, while the loss is implemented in ContrastiveLossWithTemperature. Args: encoder_a (nn.Module): Instantiated encoder for modality A. See e.g. ResNetForCLIP class. encoder_b (nn.Module): Instantiated encoder for modality B. See e.g. CLIPTextEncoder class. Inputs: features_a (Tensor): Tensor containing features of modality A. features_b (Tensor): Tensor containing features of modality B. """ def __init__( self, encoder_a: nn.Module, encoder_b: nn.Module, ): super().__init__() torch._C._log_api_usage_once(f"torchmultimodal.{self.__class__.__name__}") self.encoder_a = encoder_a self.encoder_b = encoder_b def forward( self, features_a: torch.Tensor, features_b: torch.Tensor, ) -> CLIPOutput: embeddings_a = self.encoder_a(features_a) embeddings_b = self.encoder_b(features_b) embeddings_a = F.normalize(embeddings_a) embeddings_b = F.normalize(embeddings_b) return CLIPOutput(embeddings_a=embeddings_a, embeddings_b=embeddings_b) def clip_vit_b16(pretrained: bool = False) -> CLIP: vision_encoder = CLIPViTEncoder( image_size=224, patch_size=16, layers=12, heads=12, width=768, embedding_dim=512 ) text_encoder = CLIPTextEncoder(embedding_dim=512) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["vit_b16"]) return clip def clip_vit_b32(pretrained: bool = False) -> CLIP: vision_encoder = CLIPViTEncoder( image_size=224, patch_size=32, layers=12, heads=12, width=768, embedding_dim=512 ) text_encoder = CLIPTextEncoder(embedding_dim=512) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["vit_b32"]) return clip def clip_vit_l14(pretrained: bool = False) -> CLIP: vision_encoder = CLIPViTEncoder( image_size=224, patch_size=14, layers=24, heads=16, width=1024, embedding_dim=768, ) text_encoder = CLIPTextEncoder( embedding_dim=768, width=768, dim_feedforward=3072, heads=12 ) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["vit_l14"]) return clip def clip_rn50(pretrained: bool = False) -> CLIP: vision_encoder = ResNetForCLIP( layers=(3, 4, 6, 3), output_dim=1024, heads=32, width=64, ) text_encoder = CLIPTextEncoder(embedding_dim=1024) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["rn50"]) return clip def clip_rn101(pretrained: bool = False) -> CLIP: vision_encoder = ResNetForCLIP( layers=(3, 4, 23, 3), output_dim=512, heads=32, width=64, ) text_encoder = CLIPTextEncoder(embedding_dim=512) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["rn101"]) return clip # Note: these models require larger image sizes def clip_rn50x4(pretrained: bool = False) -> CLIP: vision_encoder = ResNetForCLIP( layers=(4, 6, 10, 6), output_dim=640, heads=40, input_resolution=288, width=80, ) text_encoder = CLIPTextEncoder( embedding_dim=640, width=640, dim_feedforward=2560, heads=10 ) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["rn50x4"]) return clip def clip_rn50x16(pretrained: bool = False) -> CLIP: vision_encoder = ResNetForCLIP( layers=(6, 8, 18, 8), output_dim=768, heads=48, input_resolution=384, width=96, ) text_encoder = CLIPTextEncoder( embedding_dim=768, width=768, dim_feedforward=3072, heads=12 ) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["rn50x16"]) return clip def clip_rn50x64(pretrained: bool = False) -> CLIP: vision_encoder = ResNetForCLIP( layers=(3, 15, 36, 10), output_dim=1024, heads=64, input_resolution=448, width=128, ) text_encoder = CLIPTextEncoder( embedding_dim=1024, width=1024, dim_feedforward=4096, heads=16 ) clip = CLIP(vision_encoder, text_encoder) if pretrained: load_module_from_url(clip, CLIP_MODEL_MAPPING["rn50x64"]) return clip # Note: these models use torchvision's ResNet def clip_rn50_tv() -> CLIP: vision_encoder = ResNet( block=Bottleneck, layers=(3, 4, 6, 3), num_classes=1024, ) text_encoder = CLIPTextEncoder() return CLIP(vision_encoder, text_encoder) def clip_rn101_tv() -> CLIP: vision_encoder = ResNet( block=Bottleneck, layers=(3, 4, 23, 3), num_classes=512, ) text_encoder = CLIPTextEncoder() return CLIP(vision_encoder, text_encoder)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/clip/model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn, Tensor from torch.nn import TransformerEncoder, TransformerEncoderLayer from torchmultimodal.modules.layers.activation import SiLU from torchmultimodal.modules.layers.normalizations import Fp32LayerNorm class CLIPTextEncoder(nn.Module): """CLIP text encoder class. Should be instantiated and passed to CLIP (models/clip.py) As in CLIP, the text encoder follows a Transformer architecture. Args: embedding_dim (int): Embedding dimension for text and image encoders projections. context_length (int): Maximum sequence length for Transforer. vocab_size (int): Vocab size. width (int): Embedding dimension for Transformer encoder. dim_feedforward (int): Dimension of the feedfoward networks. heads (int): Number of heads in Transformer encoder. layers (int): Number of layers in Transformer encoder. use_clip_init (bool): Whether to use CLIP-specific initialization. Inputs: text (Tensor): Tensor containing text features. """ TOKEN_EMBEDDING_INIT_STD = 0.02 POS_EMBEDDING_INIT_STD = 0.01 def __init__( self, embedding_dim: int = 512, context_length: int = 77, vocab_size: int = 49408, width: int = 512, dim_feedforward: int = 2048, heads: int = 8, layers: int = 12, use_clip_init: bool = True, ): super().__init__() torch._C._log_api_usage_once(f"torchmultimodal.{self.__class__.__name__}") self.token_embedding = torch.nn.Embedding(vocab_size, width) self.positional_embedding = torch.nn.Parameter( torch.empty(context_length, width) ) encoder_layer = TransformerEncoderLayer( d_model=width, dim_feedforward=dim_feedforward, nhead=heads, dropout=0.0, activation=SiLU(), norm_first=True, ) self.encoder = TransformerEncoder(encoder_layer, num_layers=layers) self.width = width self.context_length = context_length self.ln_final = Fp32LayerNorm(width) self.projection = nn.Linear(width, embedding_dim, bias=False) if use_clip_init: self.initialize_parameters() def initialize_parameters(self) -> None: # Initialize token and positional embeddings nn.init.normal_(self.token_embedding.weight, std=self.TOKEN_EMBEDDING_INIT_STD) nn.init.normal_( self.positional_embedding, std=self.POS_EMBEDDING_INIT_STD, ) proj_std = (self.width**-0.5) * ((2 * self.encoder.num_layers) ** -0.5) attn_std = self.width**-0.5 fc_std = (2 * self.width) ** -0.5 for layer in self.encoder.layers: nn.init.normal_(layer.self_attn.in_proj_weight, std=attn_std) nn.init.normal_(layer.self_attn.out_proj.weight, std=proj_std) # c_fc in CLIP corresponds to the first residual MLP layer nn.init.normal_(layer.linear1.weight, std=fc_std) # c_proj in CLIP corresponds to the last residual MLP layer nn.init.normal_(layer.linear2.weight, std=proj_std) # Initialize projection nn.init.normal_(self.projection.weight, std=self.width**-0.5) def build_attention_mask(self) -> Tensor: # To support torchscripting, we have to pass an int as fill_value mask = torch.full( (self.context_length, self.context_length), float("-inf") ).triu(1) return mask def forward(self, text: Tensor) -> Tensor: if text.size(1) != self.context_length: raise ValueError( f"length of input should be {self.context_length} but found {text.size(1)}" ) embeddings = self.token_embedding(text) embeddings = embeddings + self.positional_embedding embeddings = embeddings.permute(1, 0, 2) embeddings = self.encoder( embeddings, mask=self.build_attention_mask().to(device=text.device) ) # [n_ctx, bs, transformer.width] -> [bs, n_ctx, transformer.width] embeddings = torch.permute(embeddings, (1, 0, 2)) embeddings = self.ln_final(embeddings) # take features from the eot embedding (the highest number in each sequence) embeddings = self.projection( embeddings[torch.arange(embeddings.shape[0]), text.argmax(dim=-1)] ) # embeddings now has size [bs, embedding_dim] return embeddings
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/clip/text_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # This code is based on https://github.com/openai/CLIP/blob/main/clip/model.py from collections import OrderedDict from typing import Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from torchmultimodal.modules.layers.activation import SiLU from torchmultimodal.modules.layers.normalizations import Fp32LayerNorm EXPANSION = 4 class CLIPViTEncoder(nn.Module): """ Vision transformer encoder for CLIP. Args: embedding_dim (int): Embedding dimension for text and image encoders projections. patch_size (int): The dimension of each patch image_size(int): The size (width==height) of input image width (int): Dimensionality of the encoder layers and the pooler layer heads (int): Number of attention heads for each attention layer in the Transformer encoder layers (int): Number of hidden layers in the Transformer encoder Inputs: x (Tensor): image tensor with dimensions B x C(3) x image_size x image_size """ def __init__( self, embedding_dim: int, patch_size: int, image_size: int, width: int, heads: int, layers: int, ): super().__init__() torch._C._log_api_usage_once(f"torchmultimodal.{self.__class__.__name__}") self.conv = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False, ) self.image_size = image_size scale = width**-0.5 self.cls_token_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter( scale * torch.randn((image_size // patch_size) ** 2 + 1, width) ) self.ln_pre = Fp32LayerNorm(width) encoder_layer = nn.TransformerEncoderLayer( d_model=width, nhead=heads, dropout=0.0, activation=SiLU(), norm_first=True, dim_feedforward=4 * width, batch_first=True, ) self.encoder = nn.TransformerEncoder( encoder_layer, num_layers=layers, ) self.ln_post = Fp32LayerNorm(width) self.projection = nn.Parameter(scale * torch.randn(width, embedding_dim)) def forward(self, x: Tensor) -> Tensor: if x.size(2) != self.image_size or x.size(3) != self.image_size: raise ValueError( f"Expected input with width and height as {self.image_size}, found {x.size(2)} by {x.size(3)} " ) if x.size(1) != 3: raise ValueError(f"Expected 3 channels found {x.size(1)}") # B x C x image_size x image_size => B x width (out_channel) x patch_size x patch_size x = self.conv(x) # B x width x patch_size x patch_size => B x width x patch_size ** 2 x = torch.flatten(x, start_dim=2) # B x width x patch_size ** 2 => B x patch_size ** 2 x width x = x.permute(0, 2, 1) x = torch.cat( [ self.cls_token_embedding.unsqueeze(0).expand(x.shape[0], -1, -1), x, ], dim=1, ) x = x + self.positional_embedding x = self.ln_pre(x) x = self.encoder(x) # Take embedding of the cls token x = self.ln_post(x[:, 0, :]) x = x @ self.projection return x class ResNetForCLIPBottleneck(nn.Module): def __init__(self, inplanes: int, planes: int, stride: int = 1): super().__init__() torch._C._log_api_usage_once(f"torchmultimodal.{self.__class__.__name__}") # all conv layers have stride 1. # an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.relu2 = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * EXPANSION, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * EXPANSION) self.relu3 = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * EXPANSION: # downsampling layer is prepended with an avgpool, # and the subsequent convolution has stride 1 self.downsample = nn.Sequential( OrderedDict( [ ("-1", nn.AvgPool2d(stride)), ( "0", nn.Conv2d( inplanes, planes * EXPANSION, 1, stride=1, bias=False, ), ), ("1", nn.BatchNorm2d(planes * EXPANSION)), ] ) ) def forward(self, x: Tensor) -> Tensor: identity = x out = self.relu1(self.bn1(self.conv1(x))) out = self.relu2(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu3(out) return out class AttentionPool2d(nn.Module): def __init__( self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None ): super().__init__() torch._C._log_api_usage_once(f"torchmultimodal.{self.__class__.__name__}") self.positional_embedding = nn.Parameter( torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5 ) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x: Tensor) -> Tensor: x = x.reshape(x.shape[0], x.shape[1], -1).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat( [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] ), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False, ) return x[0] class ResNetForCLIP(nn.Module): """Modified ResNet used by CLIP. Based on https://github.com/openai/CLIP/blob/main/clip/model.py#L93, this class differs from Torchvision's ResNet in the following ways: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1. - The final pooling layer is a QKV attention instead of an average pool. Args: layers (Tuple[int]): output_dim (int): dimension of output tensor heads (int): number of heads in the attention pooling layer input_resolution (int): resolution of image input to encoder width (int): ResNet width use_clip_init (bool): Whether to use CLIP-specific initialization. Inputs: x (Tensor): Tensor containing image features """ def __init__( self, layers: Tuple[int, int, int, int] = (3, 4, 6, 3), output_dim: int = 512, heads: int = 1024, input_resolution: int = 224, width: int = 64, use_clip_init: bool = True, ): super().__init__() torch._C._log_api_usage_once(f"torchmultimodal.{self.__class__.__name__}") self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d( 3, width // 2, kernel_size=3, stride=2, padding=1, bias=False ) self.bn1 = nn.BatchNorm2d(width // 2) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d( width // 2, width // 2, kernel_size=3, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(width // 2) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.relu3 = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(2) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d( input_resolution // 32, embed_dim, heads, output_dim ) if use_clip_init: self.initialize_parameters() def _make_layer(self, planes: int, blocks: int, stride: int = 1) -> nn.Module: layers = [ResNetForCLIPBottleneck(self._inplanes, planes, stride)] self._inplanes = planes * EXPANSION for _ in range(1, blocks): layers.append(ResNetForCLIPBottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def initialize_parameters(self) -> None: if self.attnpool is not None: std = self.attnpool.c_proj.in_features**-0.5 nn.init.normal_(self.attnpool.q_proj.weight, std=std) nn.init.normal_(self.attnpool.k_proj.weight, std=std) nn.init.normal_(self.attnpool.v_proj.weight, std=std) nn.init.normal_(self.attnpool.c_proj.weight, std=std) # Zero-initialize each block's third batch normalization weights # Based on CLIP initialization in https://git.io/JDbGX for resnet_block in [ self.layer1, self.layer2, self.layer3, self.layer4, ]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) def forward(self, x: Tensor) -> Tensor: def stem(x: Tensor) -> Tensor: x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/clip/image_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Optional from torch import nn, Tensor from torchmultimodal.modules.layers.transformer import TransformerCrossAttentionLayer from torchmultimodal.utils.attention import get_extended_attention_mask class ALBEFMultimodalEncoder(nn.Module): """ Construct multimodal embeddings from image embeddings, text embeddings, and text attention mask. The ALBEFMultimodalEncoder is similar to ALBEFTextEncoder, with the addition of image-text cross attention in encoder layers. Args: hidden_size (int): Dimensionality of the encoder layers. Default is 768. num_hidden_layers (int): Number of hidden layers in the Transformer encoder. Default is 6. num_attention_heads (int): Number of attention heads for each attention layer in the Transformer encoder. Default is 12. intermediate_size (int): Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. Default is 3072. layer_norm_eps (float): The epsilon used by the layer normalization layers. Default is 1e-12. transform_act_fn (Callable[[Tensor], Tensor]): The activation function for the Transformer encoder layer. Default is GELU. Inputs: hidden_states (Tensor of shape (batch_size, seq_len, hidden_size)): Unimodal input hidden states. attention_mask (Tensor of shape (batch_size, seq_len)): Input attention mask to avoid performing attention on padding token indices. encoder_hidden_states (Tensor of shape (batch_size, encoder_seq_len, hidden_size)): The encoder hidden states. encoder_attention_mask (Optional[Tensor] of shape (batch_size, encoder_seq_len)): The attention mask for encoder hidden states. is_decoder (bool): Whether this module is used as a decoder. Default is False. """ def __init__( self, hidden_size: int = 768, num_hidden_layers: int = 6, num_attention_heads: int = 12, intermediate_size: int = 3072, layer_norm_eps: float = 1e-12, transform_act_fn: Callable[..., nn.Module] = nn.GELU, ) -> None: super().__init__() self.layer = nn.ModuleList( [ TransformerCrossAttentionLayer( d_model=hidden_size, n_head=num_attention_heads, dim_feedforward=intermediate_size, activation=transform_act_fn, layer_norm_eps=layer_norm_eps, ) for _ in range(num_hidden_layers) ] ) def forward( self, hidden_states: Tensor, attention_mask: Tensor, encoder_hidden_states: Tensor, encoder_attention_mask: Optional[Tensor] = None, ) -> Tensor: attention_mask = get_extended_attention_mask(attention_mask) if encoder_attention_mask is not None: encoder_attention_mask = get_extended_attention_mask(encoder_attention_mask) for layer_module in self.layer: hidden_states = layer_module( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_mask=encoder_attention_mask, ) return hidden_states
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/albef/multimodal_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/albef/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy from collections import namedtuple from typing import Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from torchmultimodal.utils.common import momentum_update, remove_grad ALBEFOutput = namedtuple( "ALBEFOutput", [ "image_embeddings", "image_embeddings_m", "text_embeddings", "text_embeddings_m", "multimodal_embeddings", "multimodal_embeddings_m", ], defaults=(None, None, None, None, None, None), ) ALBEFSimilarity = namedtuple( "ALBEFSimilarity", [ "sim_i2t", # image to text similarity "sim_t2i", # text to image similarity "sim_i2t_m", # image to text similarity for momentum embeddings "sim_t2i_m", # text to image similarity for momentum embeddings ], defaults=(None, None, None, None), ) ALBEFWithSimilarityOutput = namedtuple( "ALBEFWithSimilarityOutput", [ "image_embeddings", "text_embeddings", "multimodal_embeddings", "multimodal_embeddings_neg", "similarity", "sim_targets", ], defaults=(None, None, None, None, None, None), ) class ALBEFModel(nn.Module): """ ALBEF is a model to ALign the image and text representations BEfore Fusing (ALBEF) them through cross-modal attention, which enables more grounded vision and language representation learning. (https://arxiv.org/pdf/2107.07651.pdf) Args: vision_encoder (nn.Module): Instantiated vision encoder. text_encoder (nn.Module): Instantiated text encoder. multimodal_encoder (nn.Module): Instantiated multimodal encoder. momentum (float): Momentum parameter. Default is 0.995. Inputs: image (Tensor): Tensor of shape (B, C, H, W) containing image features. text (Tensor): Tensor of shape (B, L) containing text features. text_atts (Tensor): Tensor of shape (B, L) containing text attention mask. """ def __init__( self, vision_encoder: nn.Module, text_encoder: nn.Module, multimodal_encoder: nn.Module, momentum: float = 0.995, ) -> None: super().__init__() self.vision_encoder = vision_encoder self.text_encoder = text_encoder self.multimodal_encoder = multimodal_encoder self.vision_encoder_m = copy.deepcopy(vision_encoder) self.text_encoder_m = copy.deepcopy(text_encoder) self.multimodal_encoder_m = copy.deepcopy(multimodal_encoder) remove_grad(self.vision_encoder_m) remove_grad(self.text_encoder_m) remove_grad(self.multimodal_encoder_m) self.momentum = momentum def forward( self, image: Tensor, text: Tensor, text_atts: Tensor, ) -> ALBEFOutput: image_embeds = self.vision_encoder(image) text_embeds = self.text_encoder(text, text_atts) multimodal_embeddings = self.multimodal_encoder( hidden_states=text_embeds.last_hidden_state, attention_mask=text_atts, encoder_hidden_states=image_embeds, ) with torch.no_grad(): momentum_update(self.vision_encoder, self.vision_encoder_m, self.momentum) momentum_update(self.text_encoder, self.text_encoder_m, self.momentum) momentum_update( self.multimodal_encoder, self.multimodal_encoder_m, self.momentum ) image_embeds_m = self.vision_encoder_m(image) text_embeds_m = self.text_encoder_m(text, text_atts) multimodal_embeddings_m = self.multimodal_encoder_m( hidden_states=text_embeds_m.last_hidden_state, attention_mask=text_atts, encoder_hidden_states=image_embeds_m, ) return ALBEFOutput( image_embeddings=image_embeds, image_embeddings_m=image_embeds_m, text_embeddings=text_embeds.last_hidden_state, text_embeddings_m=text_embeds_m.last_hidden_state, multimodal_embeddings=multimodal_embeddings, multimodal_embeddings_m=multimodal_embeddings_m, ) class ALBEFModelWithSimilarity(nn.Module): """ ALBEFModelWithSimilarity outputs image embeddings, text embeddings, multimodal embeddings, negative image-text pairs multimodal embeddings, and image-text similarity, as used in ITC and ITM losses. Args: albef_model (ALBEFModel): Instantiated ALBEF model. vision_proj (nn.Module): Instantiated vision projection layer. text_proj (nn.Module): Instantiated text projection layer. embed_size (int): Embedding size of the vision and text projection layers. Default is 256. queue_size (int): Size of image and text queues for momentum distillation. Default is 65536. masked_token_id (int): The token id indicating a masked token. Default is -100. temp (float): Temperature parameter. Default is 0.07. Inputs: image (Tensor): Tensor of shape (B, C, H, W) containing image features. text (Tensor): Tensor of shape (B, L) containing text features. text_atts (Tensor): Tensor of shape (B, L) containing text attention mask. idx (Tensor): Tensor of shape (B) containing unique identifiers for each sample. """ def __init__( self, albef_model: ALBEFModel, vision_proj: nn.Module, text_proj: nn.Module, embed_size: int = 256, queue_size: int = 65536, mask_token_id: int = -100, temp: float = 0.07, ) -> None: super().__init__() self.albef_model = albef_model self.vision_proj = vision_proj self.text_proj = text_proj self.vision_proj_m = copy.deepcopy(vision_proj) self.text_proj_m = copy.deepcopy(text_proj) remove_grad(self.vision_proj_m) remove_grad(self.text_proj_m) self.queue_size = queue_size self.temp = nn.Parameter(torch.ones([]) * temp) # queues keep track of the most recent M image and text representations for momentum distillation # queues decouple M from the batch size, allowing it to be big self.register_buffer("image_queue", torch.randn(embed_size, queue_size)) self.register_buffer("text_queue", torch.randn(embed_size, queue_size)) self.register_buffer( "idx_queue", torch.full((1, self.queue_size), mask_token_id) ) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) self.image_queue: Tensor self.text_queue: Tensor self.idx_queue: Tensor self.queue_ptr: Tensor self.image_queue = nn.functional.normalize(self.image_queue, dim=0) self.text_queue = nn.functional.normalize(self.text_queue, dim=0) def forward( self, image: Tensor, text: Tensor, text_atts: Tensor, idx: Tensor, ) -> ALBEFWithSimilarityOutput: outputs = self.albef_model(image, text, text_atts) # reshape idx to (B, 1) idx = idx.view(-1, 1) # get identifiers for the most recent M samples idx_all = torch.cat([idx.t(), self.idx_queue.detach().clone()], dim=1) # check for seen identifiers in the most recent M samples pos_idx = torch.eq(idx, idx_all).float() sim_targets = pos_idx / pos_idx.sum(1, keepdim=True) similarity = self._similarity( outputs.image_embeddings, outputs.image_embeddings_m, outputs.text_embeddings, outputs.text_embeddings_m, idx, ) image_embeds_neg, text_embeds_neg, text_atts_neg = self._neg_embeddings( outputs.image_embeddings, outputs.text_embeddings, text_atts, similarity ) multimodal_embeddings_neg = self.albef_model.multimodal_encoder( torch.cat([outputs.text_embeddings, text_embeds_neg], dim=0), torch.cat([text_atts, text_atts_neg], dim=0), torch.cat([image_embeds_neg, outputs.image_embeddings], dim=0), ) return ALBEFWithSimilarityOutput( image_embeddings=outputs.image_embeddings, text_embeddings=outputs.text_embeddings, multimodal_embeddings=outputs.multimodal_embeddings, multimodal_embeddings_neg=multimodal_embeddings_neg, similarity=similarity, sim_targets=sim_targets, ) @torch.no_grad() def _dequeue_and_enqueue( self, image_feat_m: Tensor, text_feat_m: Tensor, idx: Tensor ) -> None: # gather keys before updating queue image_feats = _gather_embeddings(image_feat_m) text_feats = _gather_embeddings(text_feat_m) idxs = _gather_embeddings(idx) batch_size = image_feats.shape[0] ptr = int(self.queue_ptr) assert ( self.queue_size % batch_size == 0 ), "queue_size should be divisible by batch_size" # replace the keys at ptr (dequeue and enqueue) self.image_queue[:, ptr : ptr + batch_size] = image_feats.T self.text_queue[:, ptr : ptr + batch_size] = text_feats.T self.idx_queue[:, ptr : ptr + batch_size] = idxs.T ptr = (ptr + batch_size) % self.queue_size self.queue_ptr[0] = ptr def _similarity( self, image_embeds: Tensor, image_embeds_m: Tensor, text_embeds: Tensor, text_embeds_m: Tensor, idx: Tensor, ) -> ALBEFSimilarity: # transform the [CLS] embeddings to normalized lower-dimensional representations image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1) with torch.no_grad(): momentum_update( self.vision_proj, self.vision_proj_m, self.albef_model.momentum ) momentum_update(self.text_proj, self.text_proj_m, self.albef_model.momentum) image_feat_m = F.normalize( self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1 ) text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1) image_feat_all = torch.cat( [image_feat_m.t(), self.image_queue.detach().clone()], dim=1 ) text_feat_all = torch.cat( [text_feat_m.t(), self.text_queue.detach().clone()], dim=1 ) sim_i2t_m = image_feat_m @ text_feat_all / self.temp sim_t2i_m = text_feat_m @ image_feat_all / self.temp sim_i2t = image_feat @ text_feat_all / self.temp sim_t2i = text_feat @ image_feat_all / self.temp self._dequeue_and_enqueue(image_feat_m, text_feat_m, idx) return ALBEFSimilarity( sim_i2t=sim_i2t, sim_t2i=sim_t2i, sim_i2t_m=sim_i2t_m, sim_t2i_m=sim_t2i_m, ) def _neg_embeddings( self, image_embeds: Tensor, text_embeds: Tensor, text_atts: Tensor, similarity: ALBEFSimilarity, ) -> Tuple[Tensor, Tensor, Tensor]: with torch.no_grad(): bs = image_embeds.size(0) weights_i2t = F.softmax(similarity.sim_i2t[:, :bs], dim=1) weights_t2i = F.softmax(similarity.sim_t2i[:, :bs], dim=1) weights_i2t.fill_diagonal_(0) weights_t2i.fill_diagonal_(0) image_embeds_neg, text_embeds_neg, text_atts_neg = [], [], [] for b in range(bs): neg_idx = int(torch.multinomial(weights_t2i[b], 1).item()) image_embeds_neg.append(image_embeds[neg_idx]) image_embeds_neg = torch.stack(image_embeds_neg, dim=0) for b in range(bs): neg_idx = int(torch.multinomial(weights_i2t[b], 1).item()) text_embeds_neg.append(text_embeds[neg_idx]) text_atts_neg.append(text_atts[neg_idx]) text_embeds_neg = torch.stack(text_embeds_neg, dim=0) text_atts_neg = torch.stack(text_atts_neg, dim=0) return image_embeds_neg, text_embeds_neg, text_atts_neg def _gather_embeddings(embeddings: torch.Tensor) -> torch.Tensor: if not torch.distributed.is_available() or not torch.distributed.is_initialized(): return embeddings embeddings_all_gpus = [ torch.zeros_like(embeddings) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(embeddings_all_gpus, embeddings) return torch.cat(embeddings_all_gpus)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/albef/model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from functools import partial from torch import nn, Tensor from torchvision.models.feature_extraction import create_feature_extractor from torchvision.models.vision_transformer import VisionTransformer class ALBEFVisionEncoder(nn.Module): """ Modified VisionTransformer used by ALBEF. This class returns the output of the encoder ('encoder.ln'), without passing it to the heads. Args: image_size (int): The size (resolution) of each image. Default is 256. patch_size (int) The size (resolution) of each patch. Default is 16. num_hidden_layers (int): Number of hidden layers in the Transformer encoder. Default is 12. num_attention_heads (int): Number of attention heads for each attention layer in the Transformer encoder. Default is 12. hidden_size (int): Dimensionality of the encoder layers and the pooler layer. Default is 768. mlp_dim (int): Dimensionality of the MLP Block in the encoder layers. Default is 3072. dropout (float): The dropout ratio for the encoder probabilities. Default is 0. attention_dropout (float): The dropout ratio for the attention probabilities. Default is 0. layer_norm_eps (float): The epsilon used by the layer normalization layers. Default is 1e-6. Inputs: x (Tensor): Tensor of size (n, c, image_size, image_size) containing image features """ def __init__( self, image_size: int = 256, patch_size: int = 16, num_hidden_layers: int = 12, num_attention_heads: int = 12, hidden_size: int = 768, mlp_dim: int = 3072, dropout: float = 0.0, attention_dropout: float = 0.0, layer_norm_eps: float = 1e-6, ) -> None: super().__init__() vision_transformer = VisionTransformer( image_size, patch_size, num_hidden_layers, num_attention_heads, hidden_size, mlp_dim, dropout, attention_dropout, norm_layer=partial(nn.LayerNorm, eps=layer_norm_eps), ) self.encoder_layer_name = "encoder.ln" self.encoder = create_feature_extractor( vision_transformer, [self.encoder_layer_name] ) def forward(self, x: Tensor) -> Tensor: return self.encoder(x)[self.encoder_layer_name]
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/albef/image_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/mdetr/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math from collections import OrderedDict from typing import Dict, List, NamedTuple, Optional, Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from torchmultimodal.models.mdetr.image_encoder import ( mdetr_resnet101_backbone, PositionEmbedding2D, ) from torchmultimodal.models.mdetr.text_encoder import ( FeatureResizer, mdetr_roberta_text_encoder, ) from torchmultimodal.models.mdetr.transformer import ( mdetr_transformer, MDETRTransformerOutput, ) from torchmultimodal.modules.layers.mlp import MLP class MDETRModelOutput(NamedTuple): transformer_output: MDETRTransformerOutput pred_logits: torch.Tensor pred_boxes: torch.Tensor extra_embeddings: Optional[torch.Tensor] class MDETR(nn.Module): """ MDETR (https://arxiv.org/abs/2104.12763) is a modulated detection model used to detect objects in an image conditioned on text or captions. This class contains the entire MDETR architecture, including the image backbone, text encoder, and multimodal transformer. (Note that the matcher and losses are provided elsewhere.) Args: image_backbone (nn.Module): Torch module of the backbone to be used. See image_encoder.py. text_encoder (nn.Module): Torch module of the text encoder to be used. See text_encoder.py. transformer (nn.Module): The multimodal transformer module. See the Transformer class in this file. pos_embed (nn.Module): Module for positional embedding of images. text_projection (nn.Module): Module to resize text encoder outputs before feeding them to the multimodal transformer. image_projection (nn.Module): Projection module applied to image embeddings prior to the multimodal transformer. query_embed (nn.Module): Learned object query embeddings (used in transformer decoder). bbox_embed (nn.Module): Embedding mapping transformer outputs to bounding boxes. class_embed (nn.Module): Embedding mapping transformer outputs to classes. extra_query_embeddings (Optional[nn.Embedding]): Additional query embeddings, as used in e.g. VQA. Default: None Inputs: images (List[Tensor]): A list of image Tensors (possibly of different sizes). text (List[Tensor]): A list of Tensors of tokenized texts (possibly of different lengths). Returns: A dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x (num_classes + 1)] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, height, width). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. """ def __init__( self, image_backbone: nn.Module, text_encoder: nn.Module, transformer: nn.Module, pos_embed: nn.Module, text_projection: nn.Module, image_projection: nn.Module, query_embed: nn.Embedding, bbox_embed: nn.Module, class_embed: nn.Module, extra_query_embeddings: Optional[nn.Embedding] = None, ): super().__init__() self.image_backbone = image_backbone self.text_encoder = text_encoder self.text_projection = text_projection self.transformer = transformer self.pos_embed = pos_embed self.image_projection = image_projection self.query_embed = query_embed self.bbox_embed = bbox_embed self.class_embed = class_embed self.extra_query_embeddings = extra_query_embeddings def _pad_images(self, images: List[Tensor]) -> Tuple[Tensor, Tensor]: max_size = tuple(max(s) for s in zip(*[img.shape for img in images])) batch_shape = (len(images),) + max_size b, _, h, w = batch_shape dtype = images[0].dtype device = images[0].device padded_images = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(images, padded_images, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False return padded_images, mask def _pad_text( self, text: List[Tensor], padding_idx: int = 1 ) -> Tuple[Tensor, Tensor]: padded_text = nn.utils.rnn.pad_sequence( text, batch_first=True, padding_value=padding_idx ) mask = padded_text == padding_idx return padded_text, mask def forward(self, images: List[Tensor], text: List[Tensor]) -> MDETRModelOutput: images, image_mask = self._pad_images(images) text, text_attention_mask = self._pad_text(text) encoded_text = self.text_encoder(text, text_attention_mask) # Transpose memory because pytorch's attention expects sequence first text_memory = encoded_text.last_hidden_state.transpose(0, 1) image_embeddings, image_mask = self.image_backbone(images, image_mask) pos = self.pos_embed(image_mask).to(image_embeddings.dtype) query_embed = self.query_embed.weight # If extra embeddings are provided for VQA, we concatenate them with # the other query embeddings prior to the transformer if self.extra_query_embeddings is not None: n_extra_embeddings = self.extra_query_embeddings.num_embeddings query_embed = torch.cat([query_embed, self.extra_query_embeddings.weight]) text_memory_resized = self.text_projection(text_memory) transformer_output = self.transformer( self.image_projection(image_embeddings), image_mask, query_embed, pos, text_memory=text_memory_resized, text_attention_mask=text_attention_mask, ) # Detach the extra embeddings from the hidden states returned by the decoder if self.extra_query_embeddings is not None: extra_embeddings = transformer_output.decoder_hidden_states[ 0, :, -n_extra_embeddings: ] decoder_hidden_states_truncated = transformer_output.decoder_hidden_states[ :, :, :-n_extra_embeddings ] transformer_output = transformer_output._replace( decoder_hidden_states=decoder_hidden_states_truncated ) else: extra_embeddings = None final_hidden_state = transformer_output.decoder_hidden_states[-1] outputs_class = self.class_embed(final_hidden_state) outputs_coord = self.bbox_embed(final_hidden_state).sigmoid() return MDETRModelOutput( transformer_output, outputs_class, outputs_coord, extra_embeddings ) def mdetr_resnet101( num_queries: int = 100, num_classes: int = 255, embedding_dim: int = 768, transformer_d_model: int = 256, transformer_num_heads: int = 8, transformer_encoder_layers: int = 6, transformer_decoder_layers: int = 6, transformer_dim_feedforward: int = 2048, transformer_dropout: float = 0.1, return_intermediate_dec: bool = True, num_extra_query_embeddings: Optional[int] = None, ) -> MDETR: image_backbone = mdetr_resnet101_backbone() pos_embed = PositionEmbedding2D(128, scale=2 * math.pi) # Size of layer4 output in ResNet101. See # https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L204 image_backbone_num_channels = 2048 text_encoder = mdetr_roberta_text_encoder() transformer = mdetr_transformer( transformer_d_model, transformer_num_heads, transformer_encoder_layers, transformer_decoder_layers, transformer_dim_feedforward, transformer_dropout, return_intermediate_dec, ) hidden_dim = transformer_d_model text_projection = FeatureResizer(embedding_dim, hidden_dim) image_projection = nn.Conv2d(image_backbone_num_channels, hidden_dim, kernel_size=1) query_embed = nn.Embedding(num_queries, hidden_dim) # 4 gives the number of coordinates that represent the bounding box bbox_embed = MLP(hidden_dim, 4, [hidden_dim] * 2, dropout=0.0) # The + 1 here corresponds to the "no class" label class_embed = nn.Linear(hidden_dim, num_classes + 1) if num_extra_query_embeddings is not None: extra_query_embeddings = nn.Embedding(num_extra_query_embeddings, hidden_dim) else: extra_query_embeddings = None mdetr = MDETR( image_backbone, text_encoder, transformer, pos_embed, text_projection, image_projection, query_embed, bbox_embed, class_embed, extra_query_embeddings, ) return mdetr def mdetr_gqa_heads(hidden_dim: int = 256) -> nn.ModuleDict: answer_type_head = nn.Linear(hidden_dim, 5) # Number of answer types answer_obj_head = nn.Linear(hidden_dim, 3) answer_attr_head = nn.Linear(hidden_dim, 403) answer_rel_head = nn.Linear(hidden_dim, 1594) answer_global_head = nn.Linear(hidden_dim, 111) answer_cat_head = nn.Linear(hidden_dim, 678) heads = nn.ModuleDict( { "answer_type": answer_type_head, "answer_obj": answer_obj_head, "answer_rel": answer_rel_head, "answer_attr": answer_attr_head, "answer_cat": answer_cat_head, "answer_global": answer_global_head, } ) return heads class ContrastiveEmbeddingsOutput(NamedTuple): query_embeddings: Tensor token_embeddings: Tensor class MDETRVQAOutput(NamedTuple): model_output: MDETRModelOutput vqa_preds: Dict[str, Tensor] contrastive_embeddings: ContrastiveEmbeddingsOutput class MDETRForVQA(nn.Module): def __init__( self, model: MDETR, vqa_heads: nn.ModuleDict, contrastive_alignment_image_projection: nn.Module, contrastive_alignment_text_projection: nn.Module, ): super().__init__() self.model = model self.vqa_heads = vqa_heads if self.model.extra_query_embeddings is None: raise ValueError("MDETRForVQA requires extra query embeddings ") if self.model.extra_query_embeddings.num_embeddings != len( self.vqa_heads.keys() ): raise ValueError("Number of heads must match number of QA embeddings") self.contrastive_alignment_image_projection = ( contrastive_alignment_image_projection ) self.contrastive_alignment_text_projection = ( contrastive_alignment_text_projection ) def forward( self, images: List[Tensor], text: List[Tensor], ) -> MDETRVQAOutput: # Calculate MDETR model outputs model_output = self.model(images, text) final_hidden_state = model_output.transformer_output.decoder_hidden_states[-1] # Perform projections for contrastive alignment loss. contrastive_query_embeddings = F.normalize( self.contrastive_alignment_image_projection(final_hidden_state), p=2, dim=-1, ) contrastive_token_embeddings = F.normalize( self.contrastive_alignment_text_projection( model_output.transformer_output.text_memory ).transpose(0, 1), p=2, dim=-1, ) contrastive_outputs = ContrastiveEmbeddingsOutput( contrastive_query_embeddings, contrastive_token_embeddings ) # Apply VQA heads to get answer predictions answer_preds = OrderedDict() vqa_embeddings = model_output.extra_embeddings.transpose(0, 1) for (head_name, head), embedding in zip(self.vqa_heads.items(), vqa_embeddings): answer_preds[head_name] = head(embedding) return MDETRVQAOutput(model_output, answer_preds, contrastive_outputs) def mdetr_for_vqa( num_queries: int = 100, num_classes: int = 255, embedding_dim: int = 768, transformer_d_model: int = 256, transformer_num_heads: int = 8, transformer_encoder_layers: int = 6, transformer_decoder_layers: int = 6, transformer_dim_feedforward: int = 2048, transformer_dropout: float = 0.1, return_intermediate_dec: bool = True, vqa_heads: Optional[nn.ModuleDict] = None, contrastive_dim: int = 64, ) -> MDETRForVQA: if vqa_heads is None: vqa_heads = mdetr_gqa_heads() hidden_dim = transformer_d_model num_heads = len(vqa_heads.keys()) model = mdetr_resnet101( num_queries, num_classes, embedding_dim, transformer_d_model, transformer_num_heads, transformer_encoder_layers, transformer_decoder_layers, transformer_dim_feedforward, transformer_dropout, return_intermediate_dec, num_extra_query_embeddings=num_heads, ) contrastive_alignment_image_projection = nn.Linear(hidden_dim, contrastive_dim) contrastive_alignment_text_projection = nn.Linear(hidden_dim, contrastive_dim) return MDETRForVQA( model, vqa_heads, contrastive_alignment_image_projection, contrastive_alignment_text_projection, ) class MDETRPhraseGroundingOutput(NamedTuple): model_output: MDETRModelOutput contrastive_embeddings: ContrastiveEmbeddingsOutput class MDETRForPhraseGrounding(nn.Module): def __init__( self, model: MDETR, contrastive_alignment_image_projection: nn.Module, contrastive_alignment_text_projection: nn.Module, ): super().__init__() self.model = model self.contrastive_alignment_image_projection = ( contrastive_alignment_image_projection ) self.contrastive_alignment_text_projection = ( contrastive_alignment_text_projection ) def forward( self, images: List[Tensor], text: List[Tensor], ) -> MDETRPhraseGroundingOutput: model_output = self.model(images, text) final_hidden_state = model_output.transformer_output.decoder_hidden_states[-1] contrastive_query_embeddings = F.normalize( self.contrastive_alignment_image_projection(final_hidden_state), p=2, dim=-1, ) contrastive_token_embeddings = F.normalize( self.contrastive_alignment_text_projection( model_output.transformer_output.text_memory ).transpose(0, 1), p=2, dim=-1, ) contrastive_outputs = ContrastiveEmbeddingsOutput( contrastive_query_embeddings, contrastive_token_embeddings ) return MDETRPhraseGroundingOutput(model_output, contrastive_outputs) def mdetr_for_phrase_grounding( num_queries: int = 100, num_classes: int = 255, embedding_dim: int = 768, transformer_d_model: int = 256, transformer_num_heads: int = 8, transformer_encoder_layers: int = 6, transformer_decoder_layers: int = 6, transformer_dim_feedforward: int = 2048, transformer_dropout: float = 0.1, return_intermediate_dec: bool = True, contrastive_dim: int = 64, ) -> MDETRForPhraseGrounding: model = mdetr_resnet101( num_queries, num_classes, embedding_dim, transformer_d_model, transformer_num_heads, transformer_encoder_layers, transformer_decoder_layers, transformer_dim_feedforward, transformer_dropout, return_intermediate_dec, ) hidden_dim = transformer_d_model contrastive_alignment_image_projection = nn.Linear(hidden_dim, contrastive_dim) contrastive_alignment_text_projection = nn.Linear(hidden_dim, contrastive_dim) return MDETRForPhraseGrounding( model, contrastive_alignment_image_projection, contrastive_alignment_text_projection, )
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/mdetr/model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch from torch import nn, Tensor from torchmultimodal.modules.encoders.bert_text_encoder import BERTTextEncoder from torchmultimodal.modules.layers.text_embedding import BERTTextEmbeddings from torchmultimodal.modules.layers.transformer import TransformerOutput class ModifiedTransformerEncoder(nn.Module): """ Modified version of TorchText's RoBERTa transformer encoder taking in embeddings instead of input IDs. Args: embedding_dim (int): Number of features in the input. num_encoder_layers (int): Number of layers in the encoder. num_attention_heads (int): Number of heads in multi-head attention. ffn_dimension (int): Dimension of feedforward network inside attention layers. dropout (float): dropout value in each layer. Default: 0.1. normalize_before (bool): Whether to do PreNorm in encoder layers. Default: False return_all_layers (bool) Whether to return all layers (or just the last one). Default: False Inputs: embeddings (Tensor): Tensor of embeddings of a batch of input IDs. attention_mask (Optional[Tensor]) Batch attention mask returned from tokenizer (applied as padding mask inside self-attention). Default: None """ def __init__( self, embedding_dim: int, num_encoder_layers: int, num_attention_heads: int, ffn_dimension: int, dropout: float = 0.1, normalize_before: bool = False, ): super().__init__() layer = torch.nn.TransformerEncoderLayer( d_model=embedding_dim, nhead=num_attention_heads, dim_feedforward=ffn_dimension, dropout=dropout, activation="gelu", batch_first=True, norm_first=normalize_before, ) self.layers = torch.nn.TransformerEncoder( encoder_layer=layer, num_layers=num_encoder_layers ) self.embedding_dim = embedding_dim def forward( self, embeddings: Tensor, attention_mask: Optional[Tensor] = None, return_attn_weights: bool = False, return_hidden_states: bool = False, ) -> TransformerOutput: encoded = embeddings batch_size, seq_len = embeddings.size()[:2] mask = attention_mask.reshape(batch_size, seq_len) # Do this in a loop because otherwise it can cause OOM for layer in self.layers.layers: encoded = layer(encoded, src_key_padding_mask=mask) return TransformerOutput(last_hidden_state=encoded) class FeatureResizer(nn.Module): """ This class takes as input a set of embeddings of dimension C1 and outputs a set of embedding of dimension C2, after a linear transformation, dropout and normalization (LN). Args: input_feat_size (int): Dimension of input features. output_feat_size (int): Dimension of output features. dropout (float): Dropout probability for final features. Default: 0.1 do_ln (bool): Whether to perform layer normalization after the linear layer. Inputs: encoder_features (Tensor): Features to be resized. """ def __init__( self, input_feat_size: int, output_feat_size: int, dropout: float = 0.1, do_ln: bool = True, ): super().__init__() self.do_ln = do_ln # Object feature encoding self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) if do_ln else None self.dropout = nn.Dropout(dropout) def forward(self, encoder_features: Tensor) -> Tensor: x = self.fc(encoder_features) if self.do_ln: x = self.layer_norm(x) output = self.dropout(x) return output def mdetr_roberta_text_encoder( embedding_dim: int = 768, vocab_size: int = 50265, pad_token_id: int = 1, type_vocab_size: int = 1, max_position_embeddings: int = 514, layer_norm_eps: float = 1e-05, embedding_dropout_prob: float = 0.1, ffn_dimension: int = 3072, num_attention_heads: int = 12, num_encoder_layers: int = 12, encoder_dropout_prob: float = 0.1, normalize_before: bool = False, ) -> BERTTextEncoder: embeddings = BERTTextEmbeddings( hidden_size=embedding_dim, vocab_size=vocab_size, pad_token_id=pad_token_id, type_vocab_size=type_vocab_size, max_position_embeddings=max_position_embeddings, layer_norm_eps=layer_norm_eps, dropout=embedding_dropout_prob, offset_pos_ids=True, ) modified_transformer_encoder = ModifiedTransformerEncoder( embedding_dim=embedding_dim, ffn_dimension=ffn_dimension, num_attention_heads=num_attention_heads, num_encoder_layers=num_encoder_layers, dropout=encoder_dropout_prob, normalize_before=normalize_before, ) text_encoder = BERTTextEncoder( embeddings=embeddings, encoder=modified_transformer_encoder ) return text_encoder
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/mdetr/text_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, NamedTuple, Optional import torch from torch import nn, Tensor from torchmultimodal.modules.layers.mlp import MLP from torchmultimodal.utils.common import get_clones class MDETRTransformerOutput(NamedTuple): decoder_hidden_states: torch.Tensor text_memory: torch.Tensor class MDETRTransformer(nn.Module): """ Transformer class for MDETR model. Args: d_model (int): Number of features in the input. num_heads (int): Number of heads in multi-head attention. num_encoder_layers (int): Number of layers in the encoder. Default: 6 num_decoder_layers (int): Number of layers in the decoder. Default: 6 dim_feedforward (int): Dimension of feedforward network. Default: 2048 dropout (float): Dropout value. Default: 0.1. activation (Callable[..., nn.Module]): The activation function of the intermediate layer. Default: nn.ReLU normalize_before (bool): Whether to do PreNorm. Default: False return_intermediate_dec (bool): Whether to return intermediate decoder outputs. Default: True Inputs: image_embeddings Tensor: The image input. image_mask (Tensor) The mask for the image sequence. query_embed (Tensor): Positional embeddings applied to Q cross-attention matrix in decoder. pos_embed (Tensor): Positional embeddings applied to Q and K self-attention matrices in decoder. text_memory (Tensor): Text input. text_attention_mask (Tensor): Attention mask for text input. """ def __init__( self, d_model: int = 512, num_heads: int = 8, num_encoder_layers: int = 6, num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Callable[..., nn.Module] = nn.ReLU, normalize_before: bool = False, return_intermediate_dec: bool = True, ): super().__init__() encoder_layer = TransformerEncoderLayer( d_model, num_heads, dim_feedforward, dropout, activation, normalize_before ) encoder_final_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder( encoder_layer, num_encoder_layers, encoder_final_norm ) decoder_layer = TransformerDecoderLayer( d_model, num_heads, dim_feedforward, dropout, activation ) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, ) self.d_model = d_model self._init_parameters() # Initialize all (non-normalization-layer) weights # Biases will be unaffected def _init_parameters(self) -> None: for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward( self, image_embeddings: Tensor, image_mask: Tensor, query_embed: Tensor, pos_embed: Tensor, text_memory: Tensor, text_attention_mask: Tensor, ) -> MDETRTransformerOutput: # flatten NxCxHxW to HWxNxC bs = image_embeddings.size(0) image_embeddings = image_embeddings.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) # Object query embeddings for each sample in the batch # Size: (num_queries, batch_size, hidden_dim) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) image_mask = image_mask.flatten(1) tgt = torch.zeros_like(query_embed) # Concat on the sequence dimension mm_embeddings = torch.cat([image_embeddings, text_memory], dim=0) # For mask, sequence dimension is second image_mask = torch.cat([image_mask, text_attention_mask], dim=1) # Pad the pos_embed with 0 so that the addition will be a no-op for the text tokens pos_embed = torch.cat([pos_embed, torch.zeros_like(text_memory)], dim=0) mm_memory = self.encoder( mm_embeddings, src_key_padding_mask=image_mask, pos=pos_embed ) text_memory = mm_memory[-len(text_memory) :] assert mm_memory.shape[1] == text_memory.shape[1] == tgt.shape[1] assert mm_memory.shape[1] == text_memory.shape[1] == tgt.shape[1] hs = self.decoder( tgt, mm_memory, memory_key_padding_mask=image_mask, pos=pos_embed, query_pos=query_embed, ) return MDETRTransformerOutput( decoder_hidden_states=hs.transpose(1, 2), text_memory=text_memory ) class TransformerEncoder(nn.Module): """ A transformer encoder. Args: encoder_layer (nn.Module): Module for an individual encoder layer. num_layers (int): Number of encoder layers. norm (Optional[nn.Module]): Normalization applied after last encoder layer. Default: None Inputs: src (Tensor): The sequence to the encoder layer. mask (Optional[Tensor]) The mask for the src sequence. Default: None src_key_padding_mask (Optional[Tensor]): The mask for the src keys per batch. Default: None pos (Optional[Tensor]): Positional embeddings applied to Q and K self-attention matrices. Default: None """ def __init__( self, encoder_layer: nn.Module, num_layers: int, norm: Optional[nn.Module] = None, ): super().__init__() self.layers = get_clones(encoder_layer, num_layers) self.norm = norm def forward( self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ) -> Tensor: output = src for layer in self.layers: output = layer( output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos, ) if self.norm is not None: output = self.norm(output) return output class TransformerDecoder(nn.Module): """ A transformer decoder. Args: decoder_layer (nn.Module): Module for an individual decoder layer. num_layers (int): Number of decoder layers. norm (Optional[nn.Module]): Normalization applied after last decoder layer. Default: None return_intermediate (bool): Whether to return intermediate decoder outputs. Default: True Inputs: tgt (Tensor): The sequence to the decoder layer. memory (Tensor): The sequence from the last layer of the decoder. tgt_mask (Optional[Tensor]) The mask for the tgt sequence. Default: None memory_mask (Optional[Tensor]): The mask for the memory sequence. Default: None tgt_key_padding_mask (Optional[Tensor]): The mask for the tgt keys per batch. Default: None memory_key_padding_mask (Optional[Tensor]): pos (Optional[Tensor]): Positional embeddings applied to Q and K self-attention matrices. Default: None query_pos (Optional[Tensor]): Positional embeddings applied to Q cross-attention matrix. Default: None """ def __init__( self, decoder_layer: nn.Module, num_layers: int, norm: Optional[nn.Module] = None, return_intermediate: bool = True, ): super().__init__() self.layers = get_clones(decoder_layer, num_layers) self.norm = norm self.return_intermediate = return_intermediate def forward( self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ) -> Tensor: output = tgt intermediate = [] for layer in self.layers: output = layer( output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos, ) if self.return_intermediate: if self.norm is not None: intermediate.append(self.norm(output)) else: intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) if self.norm is not None: return self.norm(output) return output class TransformerEncoderLayer(nn.Module): """ A single layer from a transformer encoder. Args: d_model (int): Number of features in the input. num_heads (int): Number of heads in multi-head attention. dim_feedforward (int): Dimension of feedforward network. Default: 2048 dropout (float): Dropout value. Default: 0.1. activation (Callable[..., nn.Module]): The activation function of the intermediate layer. Default: nn.ReLU normalize_before (bool): Whether to do PreNorm. Default: False Inputs: src (Tensor): The sequence to the encoder layer. src_mask (Optional[Tensor]) The mask for the src sequence. Default: None src_key_padding_mask (Optional[Tensor]): The mask for the src keys per batch. Default: None pos (Optional[Tensor]): Positional embeddings applied to Q and K self-attention matrices. Default: None """ def __init__( self, d_model: int, num_heads: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Callable[..., nn.Module] = nn.ReLU, normalize_before: bool = False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout) self.mlp = MLP(d_model, d_model, [dim_feedforward], dropout, activation) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = activation self.normalize_before = normalize_before def with_pos_embed(self, tensor: Tensor, pos: Optional[Tensor]) -> Tensor: return tensor if pos is None else tensor + pos def forward_post( self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ) -> Tensor: x = src q = k = self.with_pos_embed(x, pos) self_attention_outputs = self.self_attn( q, k, value=x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] x = x + self.dropout1(self_attention_outputs) x = self.norm1(x) mlp_outputs = self.mlp(x) x = x + self.dropout2(mlp_outputs) x = self.norm2(x) return x def forward_pre( self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ) -> Tensor: x = src x = self.norm1(x) q = k = self.with_pos_embed(x, pos) self_attention_outputs = self.self_attn( q, k, value=x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] x = x + self.dropout1(self_attention_outputs) x = self.norm2(x) mlp_outputs = self.mlp(x) x = x + self.dropout2(mlp_outputs) return x def forward( self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ) -> Tensor: if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) class TransformerDecoderLayer(nn.Module): """ A single layer from a transformer decoder. Args: d_model (int): Number of features in the input. num_heads (int): Number of heads in multi-head attention. dim_feedforward (int): Dimension of feedforward network. Default: 2048 dropout (float): Dropout value. Default: 0.1. activation (Callable[..., nn.Module]): The activation function of the intermediate layer. Default: nn.ReLU Inputs: tgt (Tensor): The sequence to the decoder layer. memory (Tensor): The sequence from the last layer of the decoder. tgt_mask (Optional[Tensor]) The mask for the tgt sequence. Default: None memory_mask (Optional[Tensor]): The mask for the memory sequence. Default: None tgt_key_padding_mask (Optional[Tensor]): The mask for the tgt keys per batch. Default: None memory_key_padding_mask (Optional[Tensor]): pos (Optional[Tensor]): Positional embeddings applied to Q and K self-attention matrices. Default: None query_pos (Optional[Tensor]): Positional embeddings applied to Q cross-attention matrix. Default: None """ def __init__( self, d_model: int, num_heads: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Callable[..., nn.Module] = nn.ReLU, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout) self.cross_attn_image = nn.MultiheadAttention( d_model, num_heads, dropout=dropout ) self.mlp = MLP(d_model, d_model, [dim_feedforward], dropout, activation) self.norm1 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.norm4 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.dropout4 = nn.Dropout(dropout) self.activation = activation def with_pos_embed(self, tensor: Tensor, pos: Optional[Tensor]) -> Tensor: return tensor if pos is None else tensor + pos def forward( self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ) -> Tensor: x = tgt q = k = self.with_pos_embed(x, query_pos) # Self attention self_attention_outputs = self.self_attn( q, k, value=x, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] x = x + self.dropout1(self_attention_outputs) x = self.norm1(x) # Cross attention to image cross_attention_outputs = self.cross_attn_image( query=self.with_pos_embed(x, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] x = x + self.dropout3(cross_attention_outputs) x = self.norm3(x) # FFN mlp_outputs = self.mlp(x) x = x + self.dropout4(mlp_outputs) x = self.norm4(x) return x def mdetr_transformer( d_model: int = 256, num_heads: int = 8, num_encoder_layers: int = 6, num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1, return_intermediate_dec: bool = True, ) -> MDETRTransformer: return MDETRTransformer( d_model=d_model, num_heads=num_heads, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward, dropout=dropout, return_intermediate_dec=return_intermediate_dec, )
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/mdetr/transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Tuple import torch import torch.nn.functional as F from torch import nn, Tensor from torchvision.models._api import Weights from torchvision.models._utils import IntermediateLayerGetter from torchvision.models.resnet import resnet101, ResNet101_Weights class FrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copied from torchvision.ops.misc with added eps before rsqrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. This module is a useful replacement for BatchNorm2d in the case of very small batches, see https://bit.ly/3xQvmiJ. Args: n (int): Number of features ``C`` from expected input size ``(N, C, H, W)`` eps (float): Value added to denominator for numerical stability. Default = 1e-5 Inputs: x (Tensor): Tensor to be normalized """ def __init__(self, n: int, eps: float = 1e-5): super().__init__() self.eps = eps self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def forward(self, x: Tensor) -> Tensor: # move reshapes to the beginning to make it fuser-friendly # ignore mypy errors because fixing them would break checkpoint loading w = self.weight.reshape(1, -1, 1, 1) # type: ignore b = self.bias.reshape(1, -1, 1, 1) # type: ignore rv = self.running_var.reshape(1, -1, 1, 1) # type: ignore rm = self.running_mean.reshape(1, -1, 1, 1) # type: ignore scale = w * (rv + self.eps).rsqrt() bias = b - rm * scale return x * scale + bias class PositionEmbedding2D(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention Is All You Need paper (https://arxiv.org/abs/1706.03762), generalized to work on images. Args: num_pos_feats (int): Number of positional features (should be half the output embedding size). Default = 64 temperature (int): Base for generating frequency mesh. Default = 10000 scale (float): Scaling factor when performing normalization. Setting scale = s will rescale values to fall in [0, s]. Default = None (no normalization) Inputs: mask (Tensor): Padding mask (used to infer size of each image in batch). Input size: (batch_size, height, width) Returns: Tensor of size (batch_size, 2 * num_pos_feats, height, width) """ def __init__( self, num_pos_feats: int = 64, temperature: int = 10000, scale: float = None, ): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.scale = scale def forward(self, mask: Tensor) -> Tensor: not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.scale is not None: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange( self.num_pos_feats, dtype=torch.float32, device=mask.device ) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class MaskedIntermediateLayer(nn.Module): """ This class wraps a backbone returning an intermediate layer (e.g. a ResNet where we do not want to perform pooling) while casting masks to the appropriate sizes. Note: for simplicity we only support returning a single intermediate layer. Args: body (nn.Module): The module to return the intermediate layer from. intermediate_layer (str): Name of the layer to return from body. Inputs: images (Tensor): Batch of images to pass to the backbone. image_masks (Tensor): Masks to cast to backbone output size. """ def __init__(self, body: nn.Module, intermediate_layer: str): super().__init__() # Note that we need this to skip pooler, flatten, and FC layers in # the standard ResNet implementation. self.body = IntermediateLayerGetter(body, return_layers={intermediate_layer: 0}) def forward( self, images: torch.Tensor, image_masks: torch.Tensor ) -> Tuple[Tensor, Tensor]: out = self.body(images) tensor = out[next(iter(out))] mask = F.interpolate(image_masks[None].float(), size=tensor.shape[-2:]).bool()[ 0 ] return tensor, mask def mdetr_resnet101_backbone( weights: Weights = ResNet101_Weights.IMAGENET1K_V1, norm_layer: Callable[..., nn.Module] = FrozenBatchNorm2d, freeze_weights: bool = True, ) -> MaskedIntermediateLayer: body = resnet101( replace_stride_with_dilation=[False, False, False], weights=weights, norm_layer=norm_layer, ) if freeze_weights: for name, parameter in body.named_parameters(): if "layer2" not in name and "layer3" not in name and "layer4" not in name: parameter.requires_grad_(False) backbone = MaskedIntermediateLayer(body, intermediate_layer="layer4") return backbone
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/models/mdetr/image_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch from torchtext.transforms import ( AddToken, BERTTokenizer, Sequential, StrToIntTransform, ToTensor, ) class BertTextTransform: """Transform raw text into a Tensor of token ids for using BERT models. Args: vocab_file (str): local or URL path to pre-trained vocab file. Defaults to HuggingFace BERT base (uncased) model's vocab file. do_lower_case (bool): whether to convert input text to lowercase. Defaults to True. start_token (int): value to represent the start of each text. Defaults to 101, Hugging Face's BERT start token. end_token (int): value to represent the end of each text. Defaults to 102, Hugging Face's BERT end token. padding_value (int): value with which to pad each text so that all texts are the same length. Defaults to 0, Hugging Face's BERT pad token. Inputs: raw_text (List[str]): list of raw texts to transform Returns: Tensor: Token IDs representing the input text, of dimensions (len(raw_text), max length of input text) """ def __init__( self, vocab_file: str = "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", do_lower_case: bool = True, start_token: int = 101, end_token: int = 102, padding_value: int = 0, ): self.tokenizer = Sequential( BERTTokenizer( vocab_path=vocab_file, do_lower_case=do_lower_case, return_tokens=False ), StrToIntTransform(), AddToken(start_token, begin=True), AddToken(end_token, begin=False), ToTensor(padding_value=padding_value), ) def __call__(self, raw_text: List[str]) -> torch.Tensor: input_ids = self.tokenizer(raw_text) return input_ids
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/transforms/bert_text_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import random import warnings from typing import Any, Dict, List, Mapping, Optional, Tuple, Union import numpy as np import torch import torchvision.transforms.functional as F from PIL import Image from torch import Tensor from torchvision import transforms IMAGE_PRETRAINING_MEAN = (0.48145466, 0.4578275, 0.40821073) IMAGE_PRETRAINING_STD = (0.26862954, 0.26130258, 0.27577711) LOGIT_LAPLACE_EPS: float = 0.1 def map_pixels(x: torch.Tensor) -> torch.Tensor: if x.dtype != torch.float: raise ValueError("expected input to have type float") return (1 - 2 * LOGIT_LAPLACE_EPS) * x + LOGIT_LAPLACE_EPS class ImageMaskingGenerator: def __init__( self, input_size: Union[Tuple[int, int], int], num_masking_patches: int, min_num_patches: int = 4, max_num_patches: Optional[int] = None, min_aspect: float = 0.3, max_aspect: Optional[float] = None, ) -> None: if not isinstance(input_size, tuple): input_size = (input_size,) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.num_masking_patches = num_masking_patches self.min_num_patches = min_num_patches self.max_num_patches = ( num_masking_patches if max_num_patches is None else max_num_patches ) max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self) -> str: repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( self.height, self.width, self.min_num_patches, self.max_num_patches, self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1], ) return repr_str def get_shape(self) -> Tuple[int, int]: return self.height, self.width def _mask(self, mask: np.ndarray, max_mask_patches: int) -> int: delta = 0 for _attempt in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top : top + h, left : left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self) -> np.ndarray: mask = np.zeros(shape=self.get_shape(), dtype=np.int64) # type: ignore mask_count = 0 while mask_count < self.num_masking_patches: max_mask_patches = self.num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._mask(mask, max_mask_patches) if delta == 0: break else: mask_count += delta return mask class TwoWayResize(transforms.Resize): def __init__( self, size: Union[int, Tuple[int, int]], second_size: Optional[Union[int, Tuple[int, int]]] = None, second_interpolation: transforms.InterpolationMode = transforms.InterpolationMode.LANCZOS, **kwargs: Any, ) -> None: if not isinstance(size, (list, tuple)): size = (size, size) super().__init__(size, **kwargs) # Backward compatibility with integer value if isinstance(second_interpolation, int): warnings.warn( "Argument second_interpolation should be of type InterpolationMode instead of int. " "Please, use InterpolationMode enum." ) second_interpolation = transforms._interpolation_modes_from_int( second_interpolation ) if not isinstance(second_size, (list, tuple)): second_size = (second_size, second_size) self.second_size = second_size self.second_interpolation = second_interpolation def forward(self, img: Image.Image) -> Tuple[Image.Image, Image.Image]: img = F.resize( img, self.size, self.interpolation, self.max_size, self.antialias ) second_img = F.resize( img, self.second_size, self.second_interpolation, self.max_size, self.antialias, ) return img, second_img class TwoWayRandomResizedCrop(transforms.RandomResizedCrop): """ Similar to RandomResizedCrop but returns two versions of the random crop with different sizings and interpolations. Note that the crop is same but the two returned images have different final sizes and interpolations """ def __init__( self, size: Union[int, Tuple[int, int]], second_size: Optional[Union[int, Tuple[int, int]]] = None, second_interpolation: transforms.InterpolationMode = transforms.InterpolationMode.LANCZOS, **kwargs: Any, ) -> None: super().__init__(size, **kwargs) # Backward compatibility with integer value if isinstance(second_interpolation, int): warnings.warn( "Argument second_interpolation should be of type InterpolationMode instead of int. " "Please, use InterpolationMode enum." ) second_interpolation = transforms._interpolation_modes_from_int( second_interpolation ) if not isinstance(second_size, (list, tuple)): second_size = (second_size, second_size) self.second_size = second_size self.second_interpolation = second_interpolation def __call__( self, img: Image.Image ) -> Union[Image.Image, Tuple[Image.Image, Image.Image]]: i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return ( F.resized_crop(img, i, j, h, w, self.size, interpolation), F.resized_crop( img, i, j, h, w, self.second_size, self.second_interpolation ), ) class FLAVAImageTransform: """FLAVA image transform which does basic transforms like resize etc on images, randomly masks patches in an image based on scheme from Beit https://arxiv.org/pdf/2106.08254.pdf and generates codebook tokens Args: is_train (bool): whether transform is applied during training or not. Random crop and interpolation is enabled for training. Defaults to True. encoder_input_size (int): size of image that is input to the image encoder. Default is 224. codebook_input_size (int): size of image that is input to the visual codebook. Default is 112. scale (Tuple[float, float]): scale passed to RandomResizedCrop transform. Default is 112. encoder_interpolation(str): interpolation for RandomResizedCrop or Resize transform for image passed to encoder.\ Default is BICUBIC codebook_interpolation(str): interpolation for RandomResizedCrop or Resize transform for image passed to visual codebook. \ Default is LANCZOS image_mean (Tuple[float, float, float]): mean for image normalization. Default is (0.48145466, 0.4578275, 0.40821073) image_std (Tuple[float, float, float]): standard deviation for image normalization. \ Default is (0.26862954, 0.26130258, 0.27577711) mask_window_size (int): dimension of mask. Default is 14. mask_num_patches (int): number of patches to mask. Default is 75. mask_max_patches (Optional[int]): max number of patches to mask. Default is None. mask_min_patches (int): min number of patches to mask. Default is 16. Inputs: images (Union[List[Image.Image], Image.Image]): input image / list of images """ def __init__( self, is_train: bool = True, encoder_input_size: int = 224, codebook_input_size: int = 112, scale: Tuple[float, float] = (0.9, 1.0), encoder_interpolation: str = transforms.InterpolationMode.BICUBIC, codebook_interpolation: str = transforms.InterpolationMode.LANCZOS, image_mean: Tuple[float, float, float] = IMAGE_PRETRAINING_MEAN, image_std: Tuple[float, float, float] = IMAGE_PRETRAINING_STD, mask_window_size: int = 14, mask_num_patches: int = 75, mask_max_patches: Optional[int] = None, mask_min_patches: int = 16, ) -> None: if is_train: resize_func = TwoWayRandomResizedCrop( size=encoder_input_size, second_size=codebook_input_size, scale=scale, interpolation=encoder_interpolation, second_interpolation=codebook_interpolation, ) else: resize_func = TwoWayResize( size=encoder_input_size, second_size=codebook_input_size, interpolation=encoder_interpolation, second_interpolation=codebook_interpolation, ) self.common_transform = transforms.Compose( [ transforms.Lambda( lambda img: img.convert("RGB") if img.mode != "RGB" else img ), resize_func, ] ) self.image_transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize( mean=torch.tensor(image_mean), std=torch.tensor(image_std), ), ] ) self.codebook_transform = transforms.Compose( [ transforms.ToTensor(), map_pixels, ] ) self.masked_position_generator = ImageMaskingGenerator( mask_window_size, num_masking_patches=mask_num_patches, max_num_patches=mask_max_patches, min_num_patches=mask_min_patches, ) def transform(self, image: Image.Image) -> Dict[str, Tensor]: image, image_for_codebook = self.common_transform(image) return { "image": self.image_transform(image), "image_for_codebook": self.codebook_transform(image_for_codebook), "image_patches_mask": torch.from_numpy(self.masked_position_generator()), } def __call__( self, images: Union[List[Image.Image], Image.Image] ) -> Mapping[str, Union[Tensor, List[Tensor]]]: if isinstance(images, list): output: Dict[str, List[Tensor]] = {} for image in images: transformed_output = self.transform(image) for key in transformed_output: if key not in output: output[key] = [] output[key].append(transformed_output[key]) return output else: return self.transform(images)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/transforms/flava_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/transforms/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple import torch import torch.nn.functional as F from torchmultimodal.utils.common import shift_dim from torchvision.transforms.functional import normalize, resize MUGEN_DEFAULT_TIME_SAMPLES = 32 DEFAULT_MEAN = (0.43216, 0.394666, 0.37645) DEFAULT_STD = (0.22803, 0.22145, 0.216989) DEFAULT_RESIZE_SHAPE = (224, 224) class VideoTransform: """Transform videos for encoding Args: time_samples (int): number of frames to sample in the time dimension mean (Tuple[float, float, float]): sequence of means of each channel std (Tuple[float, float, float]): sequence of standard deviations of each channel resize_shape (Tuple[int, int]): shape to resize each frame to Inputs: video (Tensor): batch of videos with dimensions (batch, time, height, width, channel) Returns: Tensor: processed batch of videos with dimensions (batch, channel, time_samples, resize_shape[0], resize_shape[1]) """ def __init__( self, time_samples: int = MUGEN_DEFAULT_TIME_SAMPLES, mean: Tuple[float, float, float] = DEFAULT_MEAN, std: Tuple[float, float, float] = DEFAULT_STD, resize_shape: Tuple[int, int] = DEFAULT_RESIZE_SHAPE, ): self.time_samples = time_samples self.mean = mean self.std = std self.resize_shape = resize_shape def __call__(self, video: torch.Tensor) -> torch.Tensor: if video.shape[-1] != 3: raise ValueError("Video must have 3 channels") video = self.sample_frames(video) video = self.resize_hw(video) video = self.normalize(video) video = shift_dim(video, -1, 1) return video def sample_frames(self, video: torch.Tensor) -> torch.Tensor: """Samples frames from video of dims (b, t, h, w, c)""" _, t, h, w, _ = video.shape if t != self.time_samples: video = F.interpolate( shift_dim(video, -1, 1), size=[self.time_samples, h, w] ) # "b t h w c -> b c t h w" video = shift_dim(video, 1, -1) # "b c t h w -> b t h w c" return video def resize_hw(self, video: torch.Tensor) -> torch.Tensor: """Resizes height and width of video of dims (b, t, h, w, c)""" b, t, h, w, _ = video.shape video = video.flatten(start_dim=0, end_dim=1) # "b t h w c -> (b t) h w c" video = shift_dim(video, -1, 1) # "(b t) h w c -> (b t) c h w" video = ( resize(video, self.resize_shape) if (h, w) != self.resize_shape else video ) video = video.unflatten(dim=0, sizes=(b, t)) # "(b t) c h w -> b t c h w" video = shift_dim(video, 2, -1) # "b t c h w -> b t h w c" return video def normalize(self, video: torch.Tensor) -> torch.Tensor: """Normalizes video of dims (b, t, h, w, c) to mean 0, std 1""" b, t, _, _, _ = video.shape video = video.flatten(start_dim=0, end_dim=1) # "b t h w c -> (b t) h w c" video = shift_dim(video, -1, 1) # "(b t) h w c -> (b t) c h w" video = video.float() / 255.0 video = normalize(video, mean=self.mean, std=self.std) video = video.unflatten(dim=0, sizes=(b, t)) # "(b t) c h w -> b t c h w" video = shift_dim(video, 2, -1) # "b t c h w -> b t h w c" return video
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/transforms/video_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, List, Optional, Tuple, Union import torch from PIL.Image import Image from torch import nn, Tensor from torchmultimodal import _PATH_MANAGER from torchtext import transforms as text_transforms from torchtext.transforms import CLIPTokenizer from torchvision import transforms as image_transforms from torchvision.transforms import InterpolationMode CLIP_DEFAULT_MEAN = (0.48145466, 0.4578275, 0.40821073) CLIP_DEFAULT_STD = (0.26862954, 0.26130258, 0.27577711) CLIP_DEFAULT_VOCAB_BPE_PATH = "http://download.pytorch.org/models/text/clip_merges.bpe" def convert_to_rgb(img: Image) -> Image: return img.convert("RGB") class CLIPTextTransform(nn.Module): """CLIP text transform CLIP BPE tokenizer transform, adds start and end tokens, then pads/truncates to text_max_length as necessary. This transform is torch scriptable. Args: text_max_length (int): Maximum length of text token sequences. text_start_token (str): Special start token passed to BPE tokenizer. text_end_token (str): Special end token passed to BPE tokenizer. text_bpe_merges_path (str): Location of BPE merges file for text transform. text_encoder_json_path (str, optional): Location of BPE encoder JSON file. num_merges (int, optional): Number of merges to use from BPE merges file. Default: 48894 = 49152 (vocab size) - 256 (# bytes) - 2 (bos/eos tokens) Inputs: text (Union[List[str],str]): Text or batch of texts upon which to apply the transform. """ def __init__( self, text_max_length: int = 77, text_start_token: str = "<|startoftext|>", text_end_token: str = "<|endoftext|>", text_bpe_merges_path: str = CLIP_DEFAULT_VOCAB_BPE_PATH, text_encoder_json_path: Optional[str] = None, num_merges: Optional[int] = 48894, ) -> None: super().__init__() local_merges_path = _PATH_MANAGER.get_local_path(text_bpe_merges_path) tokenizer = CLIPTokenizer( local_merges_path, text_encoder_json_path, num_merges=num_merges ) text_start_token = tokenizer([text_start_token])[0][0] text_end_token = tokenizer([text_end_token])[0][0] text_max_length = text_max_length self.text_transform = text_transforms.Sequential( *[ tokenizer, text_transforms.Truncate(text_max_length - 2), text_transforms.AddToken(text_start_token, begin=True), text_transforms.AddToken(text_end_token, begin=False), text_transforms.StrToIntTransform(), text_transforms.ToTensor(padding_value=0), text_transforms.PadTransform(max_length=text_max_length, pad_value=0), ] ) def forward(self, text: Union[List[str], str]) -> Tensor: text_result = self.text_transform(text) assert torch.jit.isinstance(text_result, Tensor) return text_result class CLIPImageTransform(nn.Module): """CLIP image transform random resized crop (train mode) or resize and center crop, followed by RGB conversion, tensor conversion, and normalization. Args: image_size (Union[int, Tuple[int]): desired output image size. image_interpolation (torchvision.transforms.InterpolationMode): Torchvision interpolation mode used during resizing. Defaults to bicubic. image_mean (Tuple[float]): mean of images, used for normalization. image_std (Tuple[float]): std of images, used for normalization. is_train (bool): Whether transform is run in train mode. Inputs: image (Union[List[Image], Image]): Image or batch of images upon which to apply the transform. """ def __init__( self, image_size: Union[int, Tuple[int, int]] = 224, image_interpolation: InterpolationMode = InterpolationMode.BICUBIC, image_mean: Tuple[float, float, float] = CLIP_DEFAULT_MEAN, image_std: Tuple[float, float, float] = CLIP_DEFAULT_STD, is_train: bool = True, ) -> None: super().__init__() joint_transforms: List[Callable] = [ convert_to_rgb, image_transforms.ToTensor(), image_transforms.Normalize(image_mean, image_std), ] base_transform: List[Callable] if is_train: base_transform = [ image_transforms.RandomResizedCrop( image_size, interpolation=image_interpolation ) ] else: base_transform = [ image_transforms.Resize(image_size, interpolation=image_interpolation), image_transforms.CenterCrop(image_size), ] self.image_transform = image_transforms.Compose( base_transform + joint_transforms ) def forward(self, image: Union[List[Image], Image]) -> Tensor: if isinstance(image, Image): return self.image_transform(image) image_result = torch.stack([self.image_transform(x) for x in image]) return image_result class CLIPTransform(nn.Module): """Image and text transform for CLIP model. Image transform: either random resized crop (train mode) or resize and center crop, followed by RGB conversion, tensor conversion, and normalization. Text transform: applies CLIP's BPE tokenizer transform, adds start and end tokens, then pads/truncates to text_max_length as necessary. Args: image_size (Union[int, Tuple[int]): desired output image size. image_interpolation (torchvision.transforms.InterpolationMode): Torchvision interpolation mode used during resizing. Defaults to bicubic. image_mean (Tuple[float]): mean of images, used for normalization. image_std (Tuple[float]): std of images, used for normalization. text_max_length (int): Maximum length of text token sequences. is_train (bool): Whether transform is run in train mode. text_start_token (str): Special start token passed to BPE tokenizer. text_end_token (str): Special end token passed to BPE tokenizer. text_bpe_merges_path (str): Location of BPE merges file for text transform. text_encoder_json_path (str, optional): Location of BPE encoder JSON file. num_merges (int, optional): Number of merges to use from BPE merges file. Default: 48894 = 49152 (vocab size) - 256 (# bytes) - 2 (bos/eos tokens) Inputs: image (Union[List[Image], Image]): Image or batch of images upon which to apply the transform. text (Union[List[str],str]): Text or batch of texts upon which to apply the transform. """ def __init__( self, image_size: Union[int, Tuple[int, int]] = 224, image_interpolation: InterpolationMode = InterpolationMode.BICUBIC, image_mean: Tuple[float, float, float] = CLIP_DEFAULT_MEAN, image_std: Tuple[float, float, float] = CLIP_DEFAULT_STD, text_max_length: int = 77, is_train: bool = True, text_start_token: str = "<|startoftext|>", text_end_token: str = "<|endoftext|>", text_bpe_merges_path: str = CLIP_DEFAULT_VOCAB_BPE_PATH, text_encoder_json_path: Optional[str] = None, num_merges: Optional[int] = 48894, ) -> None: super().__init__() self.image_transform = CLIPImageTransform( image_size, image_interpolation, image_mean, image_std, is_train ) self.text_transform = CLIPTextTransform( text_max_length, text_start_token, text_end_token, text_bpe_merges_path, text_encoder_json_path, num_merges, ) def forward( self, image: Union[List[Image], Image], text: Union[List[str], str] ) -> Tuple[torch.Tensor, torch.Tensor]: return self.image_transform(image), self.text_transform(text)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/transforms/clip_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import warnings from dataclasses import dataclass, field from typing import Any, Callable, Optional, OrderedDict, Union import torch from torch import nn, Tensor from torchmultimodal.modules.layers.normalizations import Fp32LayerNorm from torchmultimodal.modules.losses.contrastive_loss_with_temperature import ( contrastive_loss_with_temperature, ) from torchmultimodal.utils.common import ModelOutput def assert_labels_are_present( labels: Optional[Tensor], category: str = "labels" ) -> None: assert ( labels is not None ), f"Model is in training model but {category} are not passed" @dataclass class ITMLossOutput(ModelOutput): logits: Tensor loss: Tensor @dataclass class MaskedPredictionLossOutput(ModelOutput): logits: Tensor loss: Tensor @dataclass class FLAVAGlobalContrastiveLossOutput(OrderedDict): text_embedding: Tensor image_embedding: Tensor logit_scale: Tensor image_logits: Tensor text_logits: Tensor image_loss: Tensor text_loss: Tensor loss: Tensor @dataclass class FLAVAPretrainingLossesCollection(ModelOutput): mmm_text_loss: Optional[Tensor] = None mmm_image_loss: Optional[Tensor] = None mim_loss: Optional[Tensor] = None mlm_loss: Optional[Tensor] = None itm_loss: Optional[Tensor] = None global_contrastive_loss: Optional[Tensor] = None @dataclass class FLAVAPretrainingLossOutput(ModelOutput): losses: FLAVAPretrainingLossesCollection = field( default_factory=FLAVAPretrainingLossesCollection ) mlm_output: Optional[MaskedPredictionLossOutput] = None mim_output: Optional[MaskedPredictionLossOutput] = None mmm_text_output: Optional[MaskedPredictionLossOutput] = None mmm_image_output: Optional[MaskedPredictionLossOutput] = None itm_output: Optional[ITMLossOutput] = None global_contrastive_output: Optional[FLAVAGlobalContrastiveLossOutput] = None image_sequence: Optional[Tensor] = None text_sequence: Optional[Tensor] = None image_masked_sequence: Optional[Tensor] = None text_masked_sequence: Optional[Tensor] = None multimodal_sequence: Optional[Tensor] = None multimodal_masked_sequence: Optional[Tensor] = None # TODO(asg): Replace later with MLP classifier if checkpoint permits class Pooler(nn.Module): def __init__(self, hidden_size: int = 768, **kwargs: Any): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: Tensor) -> Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class TwoWayHead(nn.Module): def __init__(self, hidden_size: int = 768, **kwargs: Any): super().__init__() self.seq_relationship = nn.Linear(hidden_size, 2) def forward(self, pooled_output: Tensor) -> Tensor: return self.seq_relationship(pooled_output) class ITMLoss(nn.Module): def __init__( self, hidden_size: int = 768, ignore_index: int = -1, **kwargs: Any, ): super().__init__() self.pooler = Pooler(hidden_size=hidden_size) self.cls = TwoWayHead(hidden_size=hidden_size) self.ce_loss = nn.CrossEntropyLoss(ignore_index=ignore_index) def forward( self, hidden_states: Tensor, labels: Tensor, ) -> ITMLossOutput: if self.training: assert_labels_are_present(labels, "itm labels") pooled_output = self.pooler(hidden_states) scores = self.cls(pooled_output) if labels is None: loss = pooled_output.sum() * 0 else: loss = self.ce_loss( scores.view(-1, 2), labels.view(-1), ) return ITMLossOutput(logits=scores, loss=loss) class MaskedPredictionHead(nn.Module): def __init__( self, hidden_size: int = 768, vocab_size: int = 30522, transform_act_fn: Callable[[Tensor], Tensor] = nn.functional.gelu, layer_norm_eps: float = 1e-5, use_fp32_layer_norm: bool = True, **kwargs: Any, ): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.transform_act_fn = transform_act_fn self.layer_norm: nn.LayerNorm if use_fp32_layer_norm: self.layer_norm = Fp32LayerNorm(hidden_size, eps=layer_norm_eps) else: self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(hidden_size, vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(vocab_size)) # Need a link between the two variables so that the bias is # correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states: Tensor) -> Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class MaskedPredictionLoss(nn.Module): def __init__( self, hidden_size: int = 768, vocab_size: int = 30522, transform_act_fn: Callable[[Tensor], Tensor] = nn.functional.gelu, layer_norm_eps: float = 1e-5, ignore_index: int = -1, ignore_nan: bool = False, **kwargs: Any, ): super().__init__() self.cls = MaskedPredictionHead( hidden_size=hidden_size, vocab_size=vocab_size, transform_act_fn=transform_act_fn, layer_norm_eps=layer_norm_eps, ) self.ignore_index = ignore_index self.vocab_size = vocab_size self.ce_loss = nn.CrossEntropyLoss(ignore_index=ignore_index) self.ignore_nan = ignore_nan def forward( self, hidden_states: Tensor, masked_labels: Optional[Tensor] = None ) -> MaskedPredictionLossOutput: if self.training: assert_labels_are_present(masked_labels, "masked labels") if masked_labels is not None: masked_tokens = masked_labels.ne(self.ignore_index) masked_labels = masked_labels[masked_tokens] sequence_output = hidden_states[masked_tokens, :] else: sequence_output = hidden_states prediction = self.cls(sequence_output) if masked_labels is None: masked_loss = prediction.sum() * 0 else: masked_loss = self.ce_loss( prediction.view(-1, self.vocab_size), masked_labels.view(-1), ) # When masked_labels are all ignore_index then masked_lm_loss is NaN, # so we replace NaN with 0. if torch.isnan(masked_loss) and self.ignore_nan: warnings.warn("NaN detected in masked_loss. Replacing it with 0.") masked_loss = torch.nan_to_num(masked_loss, nan=0.0) return MaskedPredictionLossOutput( logits=prediction, loss=masked_loss, ) class FLAVAGlobalContrastiveLoss(nn.Module): def __init__( self, logit_scale: Union[float, nn.Parameter] = None, image_embedding_size: int = 768, text_embedding_size: int = 768, projection_size: int = 768, image_embedding_index: int = 0, text_embedding_index: int = 0, ): super().__init__() if logit_scale is None: logit_scale = math.log(1 / 0.07) # If already initialized, set to what was passed if isinstance(logit_scale, nn.Parameter): self.logit_scale = logit_scale else: self.logit_scale = nn.Parameter(logit_scale * torch.ones([])) def forward( self, image_sequence: Tensor, text_sequence: Tensor, mask: Tensor, ) -> FLAVAGlobalContrastiveLossOutput: text_embedding = nn.functional.normalize(text_sequence, dim=-1) image_embedding = nn.functional.normalize( image_sequence, dim=-1, ) self.logit_scale.data.clamp_(0, 4.6052) output = contrastive_loss_with_temperature( embeddings_a=image_embedding, embeddings_b=text_embedding, logit_scale=self.logit_scale, mask=mask, # Always true for FLAVA global contrastive loss backprop_in_gather=True, ) return FLAVAGlobalContrastiveLossOutput( loss=output.loss, image_logits=output.logits_a, text_logits=output.logits_b, image_loss=output.loss_a, text_loss=output.loss_b, text_embedding=text_embedding, image_embedding=image_embedding, logit_scale=self.logit_scale.data, ) class FLAVAPretrainingLoss(nn.Module): def __init__( self, logit_scale: Union[float, nn.Parameter] = None, hidden_size: int = 768, text_vocab_size: int = 30522, image_vocab_size: int = 8192, transform_act_fn: Callable[[Tensor], Tensor] = nn.functional.gelu, layer_norm_eps: float = 1e-5, ignore_index: int = -1, mlm_weight: float = 1.0, mim_weight: float = 1.0, contrastive_loss_weight: float = 1.0, mmm_image_loss_weight: float = 1.0, mmm_text_loss_weight: float = 1.0, itm_loss_weight: float = 1.0, **kwargs: Any, ): super().__init__() self.contrastive_loss = FLAVAGlobalContrastiveLoss( logit_scale=logit_scale, image_embedding_size=hidden_size, text_embedding_size=hidden_size, projection_size=hidden_size, ) self.mlm_loss = MaskedPredictionLoss( hidden_size=hidden_size, vocab_size=text_vocab_size, transform_act_fn=transform_act_fn, layer_norm_eps=layer_norm_eps, ignore_index=ignore_index, ) self.mim_loss = MaskedPredictionLoss( hidden_size=hidden_size, vocab_size=image_vocab_size, transform_act_fn=transform_act_fn, layer_norm_eps=layer_norm_eps, ignore_index=ignore_index, ) # Create separate weights for MMM loss self.mmm_loss = nn.ModuleDict( { "mlm": MaskedPredictionLoss( hidden_size=hidden_size, vocab_size=text_vocab_size, transform_act_fn=transform_act_fn, layer_norm_eps=layer_norm_eps, ignore_index=ignore_index, ), "mim": MaskedPredictionLoss( hidden_size=hidden_size, vocab_size=image_vocab_size, transform_act_fn=transform_act_fn, layer_norm_eps=layer_norm_eps, ignore_index=ignore_index, ), } ) self.itm_loss = ITMLoss( hidden_size=hidden_size, ignore_index=ignore_index, ) self.mim_weight = mim_weight self.mlm_weight = mlm_weight self.contrastive_loss_weight = contrastive_loss_weight self.mmm_image_loss_weight = mmm_image_loss_weight self.mmm_text_loss_weight = mmm_text_loss_weight self.itm_loss_weight = itm_loss_weight # TODO: Some refactoring is needed in this function to make it look better # TODO: Possibly refactor this into functional and class component # for better usability def forward( self, image_sequence: Optional[Tensor] = None, text_sequence: Optional[Tensor] = None, image_masked_sequence: Optional[Tensor] = None, text_masked_sequence: Optional[Tensor] = None, multimodal_sequence: Optional[Tensor] = None, multimodal_masked_sequence: Optional[Tensor] = None, itm_labels: Optional[Tensor] = None, mim_labels: Optional[Tensor] = None, mlm_labels: Optional[Tensor] = None, projected_image_embeddings: Optional[Tensor] = None, projected_text_embeddings: Optional[Tensor] = None, ) -> FLAVAPretrainingLossOutput: outputs = FLAVAPretrainingLossOutput() pos_mask = None # Check multimodal_masked_sequence to make sure this is unimodal case # This specific case can though be backpropagated directly as MIM is independent of # text, but that is a research question :) if ( image_masked_sequence is not None and self.mim_weight > 0 and multimodal_masked_sequence is None ): # Remove CLS token from image_masked_sequence start_index = -mim_labels.size(1) if mim_labels is not None else 1 outputs.mim_output = self.mim_loss( image_masked_sequence[:, start_index:, :], mim_labels ) outputs.mim_output.loss *= self.mim_weight outputs.losses.mim_loss = outputs.mim_output.loss # Check multimodal_masked_sequence to make sure this is unimodal case if ( text_masked_sequence is not None and self.mlm_weight > 0 and multimodal_masked_sequence is None ): start_index = -mlm_labels.size(1) if mlm_labels is not None else 1 outputs.mlm_output = self.mlm_loss( text_masked_sequence[:, start_index:, :], mlm_labels ) outputs.mlm_output.loss *= self.mlm_weight outputs.losses.mlm_loss = outputs.mlm_output.loss if multimodal_masked_sequence is not None and self.itm_loss_weight > 0: if itm_labels is not None: pos_pairs = itm_labels.ne(0) pos_mask = torch.where( pos_pairs.any(), pos_pairs, pos_pairs.new([True]) ) else: pos_mask = torch.ones( multimodal_masked_sequence.size(0), device=multimodal_masked_sequence.device, ).bool() outputs.itm_output = self.itm_loss(multimodal_masked_sequence, itm_labels) outputs.itm_output.loss *= self.itm_loss_weight outputs.losses.itm_loss = outputs.itm_output.loss multimodal_masked_sequence = multimodal_masked_sequence[pos_mask] if mlm_labels is not None: mlm_labels = mlm_labels[pos_mask] if mim_labels is not None: mim_labels = mim_labels[pos_mask] if multimodal_masked_sequence is not None and self.mmm_text_loss_weight > 0: start_index = ( -mlm_labels.size(1) if mlm_labels is not None else -(text_masked_sequence.size(1) - 1) ) sequence_for_text = multimodal_masked_sequence[:, start_index:, :] outputs.mmm_text_output = self.mmm_loss.mlm( sequence_for_text, mlm_labels, ) # type: ignore outputs.mmm_text_output.loss *= self.mmm_text_loss_weight outputs.losses.mmm_text_loss = outputs.mmm_text_output.loss if multimodal_masked_sequence is not None and self.mmm_image_loss_weight > 0: # Starts from 2 because of 2 CLS, one for multimodal encoder and one # that comes from image encoder. total_indices = ( mim_labels.size(1) if mlm_labels is not None else (image_masked_sequence.size(1) - 1) ) sequence_for_image = multimodal_masked_sequence[:, 2 : 2 + total_indices, :] outputs.mmm_image_output = self.mmm_loss.mim( sequence_for_image, mim_labels, ) # type: ignore outputs.mmm_image_output.loss *= self.mmm_image_loss_weight outputs.losses.mmm_image_loss = outputs.mmm_image_output.loss if ( projected_image_embeddings is not None and projected_text_embeddings is not None and self.contrastive_loss_weight > 0 ): outputs.global_contrastive_output = self.contrastive_loss( projected_image_embeddings, projected_text_embeddings, pos_mask, ) outputs.global_contrastive_output.loss *= self.contrastive_loss_weight outputs.losses.global_contrastive_loss = ( outputs.global_contrastive_output.loss ) return outputs
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/losses/flava.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/losses/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any from torch import nn, Tensor from torch.nn import functional as F class CommitmentLoss(nn.Module): """Commitment loss calculates the mean Euclidean distance between pairs of encoder output vectors and their corresponding quantized vectors. It encourages an encoder to generate outputs closer to an embedding. This is the beta in Eq. 3 of Oord et al. 2017 (https://arxiv.org/pdf/1711.00937.pdf) Args: commitment_cost (float): multiplicative weight for the commitment loss value """ def __init__(self, commitment_cost: float = 1.0, **kwargs: Any) -> None: super().__init__() self.commitment_cost = commitment_cost def forward(self, quantized: Tensor, encoded: Tensor) -> Tensor: # Quantized vectors must be detached because commitment loss only lets gradient flow through encoder output loss = F.mse_loss(quantized.detach(), encoded) * self.commitment_cost return loss
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/losses/vqvae.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass from typing import Any, Dict, Optional, OrderedDict, Tuple, Union import torch import torch.nn.functional as F from torch import nn, Tensor from torchmultimodal.utils.distributed import gather_tensor @dataclass class ContrastiveLossOutput(OrderedDict): loss: Tensor logits_a: Tensor logits_b: Tensor loss_a: Tensor loss_b: Tensor def _gather_embeddings_and_labels( embeddings_a: Tensor, embeddings_b: Tensor, backprop_in_gather: bool = True, ) -> Tuple[Tensor, Tensor, Tensor]: if not torch.distributed.is_available() or not torch.distributed.is_initialized(): labels = torch.arange(embeddings_a.size(0), device=embeddings_a.device) return embeddings_a, embeddings_b, labels embeddings_a_all_gpus = gather_tensor(embeddings_a, backprop_in_gather) embeddings_b_all_gpus = gather_tensor(embeddings_b, backprop_in_gather) # embeddings_a has shape [local_batch_size, embedding_dim] local_batch_size = embeddings_a.size(0) labels = local_batch_size * torch.distributed.get_rank() + torch.arange( local_batch_size, device=embeddings_a.device ) return ( torch.cat(embeddings_a_all_gpus), torch.cat(embeddings_b_all_gpus), labels, ) def contrastive_loss_with_temperature( embeddings_a: Tensor, embeddings_b: Tensor, logit_scale: nn.Parameter, mask: Optional[Tensor] = None, backprop_in_gather: bool = True, cross_entropy_kwargs: Optional[Dict[str, Any]] = None, ) -> ContrastiveLossOutput: """Functional component for the ContrastiveLossWithTemperature. Please check the class for more details Args: embeddings_a (Tensor): Tensor containing features from the first input or modality. (In the CLIP model, these are the outputs of the image encoder.) embeddings_b (Tensor): Tensor containing features from the second input or modality. (In the CLIP model, these are the outputs of the text encoder.) logit_scale (nn.Parameter): Parameter with value of log of the learned temperature mask (Optional[Tensor], optional): If certain elements of the inputs shouldn't be considered in the loss calculation use this option to pass a boolean mask. Size is (BatchSize,). Defaults to None. backprop_in_gather (bool): Whether to backpropagate the gradients from all_gather to all workers (versus just the local worker). cross_entropy_kwargs (Optional[Dict[str, Any]]): Any additional inputs to cross entropy loss (ex: label_smoothing) Returns: ContrastiveLossOutput: instance of ContrastiveLossOutput with all of the relevant fields. """ # this temperature implementation follows CLIP Figure 3 temperature = torch.exp(logit_scale) ( embeddings_a_all_gpus, embeddings_b_all_gpus, labels, ) = _gather_embeddings_and_labels(embeddings_a, embeddings_b, backprop_in_gather) # logits_per_image has shape [local_batch_size, global_batch_size] logits_per_input_a = ( torch.matmul(embeddings_a, embeddings_b_all_gpus.transpose(0, 1)) * temperature ) logits_per_input_b = ( torch.matmul(embeddings_b, embeddings_a_all_gpus.transpose(0, 1)) * temperature ) if mask is not None: logits_per_input_a = logits_per_input_a[mask] logits_per_input_b = logits_per_input_b[mask] labels = labels[mask] if cross_entropy_kwargs is None: cross_entropy_kwargs = {} loss_a = F.cross_entropy(logits_per_input_a, labels, **cross_entropy_kwargs) loss_b = F.cross_entropy(logits_per_input_b, labels, **cross_entropy_kwargs) loss = (loss_a + loss_b) / 2 return ContrastiveLossOutput( loss=loss, logits_a=logits_per_input_a, logits_b=logits_per_input_b, loss_a=loss_a, loss_b=loss_b, ) DEFAULT_LOGIT_SCALE = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) class ContrastiveLossWithTemperature(nn.Module): """Contrastive loss with a temperature parameter, as used in CLIP and FLAVA. CLIP: https://arxiv.org/pdf/2103.00020.pdf FLAVA: https://arxiv.org/pdf/2112.04482.pdf A contrastive loss over pairs of input embeddings a and b. For each input_a embedding, we compute a weighted cosine similarity with all input_b embeddings, then calculate the cross entropy loss against the true (input_a, input_b) pairing. Each input_b embedding is evaluated against all input_a embeddings similarly. The batch's loss is the average cross entropy over all input_a and input_b embeddings in the batch. Temperature is a learned parameter clamped to ``[1, 100]`` and initialized to 1 / 0.07 as in the CLIP paper. Args: logit_scale (Union[float, nn.Module]): Log of the learnable temperature parameter value A nn.Parameter instantiation can also be passed directly in case parent class is handling the initialization. Defaults to ``ln(1/0.07)``, as in the CLIP paper. logit_scale_min (Optional[float]): Log of the minimum temperature value. If ``None``, then temperature will not be clamped to a minimum value. Defaults to ``ln(1)``, as in the CLIP paper. logit_scale_max (Optional[float]): Log of the maximum temperature value. If ``None``, then temperature will not be clamped to a maximum value. Defaults to ``ln(100)``, as in the CLIP paper. Inputs: embeddings_a (Tensor): Tensor containing features from the first input or modality. (In the CLIP model, these are the outputs of the image encoder.) embeddings_b (Tensor): Tensor containing features from the second input or modality. (In the CLIP model, these are the outputs of the text encoder.) backprop_in_gather (bool): Whether to backpropagate the gradients from all_gather to all workers (versus just the local worker). cross_entropy_kwargs (Optional[Dict[str, Any]]): Any additional inputs to cross entropy loss (ex: label_smoothing) mask (Optional[Tensor], optional): If certain elements of the inputs shouldn't be considered in the loss calculation use this option to pass a boolean mask. Size is (BatchSize,). Defaults to None. """ def __init__( self, logit_scale: Union[float, nn.Parameter] = DEFAULT_LOGIT_SCALE, logit_scale_min: Optional[float] = math.log(1), logit_scale_max: Optional[float] = math.log(100), ): super().__init__() if not logit_scale_min and not logit_scale_max: raise ValueError( "Only one of `logit_scale_min` and `logit_scale_max` can be None." ) self.logit_scale_min = logit_scale_min self.logit_scale_max = logit_scale_max # If already initialized, set to what was passed if isinstance(logit_scale, nn.Parameter): self.logit_scale = logit_scale else: self.logit_scale = nn.Parameter(logit_scale * torch.ones([])) def forward( self, embeddings_a: Tensor, embeddings_b: Tensor, backprop_in_gather: bool = True, cross_entropy_kwargs: Optional[Dict[str, Any]] = None, mask: Optional[Tensor] = None, ) -> Tensor: self.logit_scale.data.clamp_(self.logit_scale_min, self.logit_scale_max) return contrastive_loss_with_temperature( embeddings_a=embeddings_a, embeddings_b=embeddings_b, logit_scale=self.logit_scale, backprop_in_gather=backprop_in_gather, cross_entropy_kwargs=cross_entropy_kwargs, mask=mask, ).loss
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/losses/contrastive_loss_with_temperature.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch import torch.nn.functional as F from torch import nn, Tensor class ImageTextContrastiveLoss(nn.Module): """ Compute the image-text contrastive loss from image-text similarity, as used in ALBEF. Support loss distillation with pseudo-targets for non-zero alpha. Compute standard contrastive loss for zero alpha. Inputs: image_to_text_sim (Tensor): Image to text similarity. text_to_image_sim (Tensor): Text to image similarity. image_to_text_sim_m (Optional[Tensor]): Image to text similarity from momentum models. Required if alpha is non-zero. text_to_image_sim_m (Optional[Tensor]): Text to image similarity from momentum models. Required if alpha is non-zero. sim_targets (Optional[Tensor]): Similarity pseudo-targets from momentum models. Default is the diagonal matrix. Requires all Tensor inputs to have the same size. alpha (Optional[float]): The interpolation value of momentum similarity and sim_targets. Default is 0. """ def __init__( self, ) -> None: super().__init__() def forward( self, image_to_text_sim: Tensor, text_to_image_sim: Tensor, image_to_text_sim_m: Optional[Tensor] = None, text_to_image_sim_m: Optional[Tensor] = None, sim_targets: Optional[Tensor] = None, alpha: Optional[float] = 0.0, ) -> Tensor: if sim_targets is None: sim_targets = torch.zeros(image_to_text_sim.size()).to( image_to_text_sim.device ) sim_targets.fill_diagonal_(1) if alpha != 0: assert ( image_to_text_sim_m is not None and text_to_image_sim_m is not None ), "sim_i2t_m and sim_t2i_m cannot be none for non-zero alpha" with torch.no_grad(): image_to_text_sim_targets = ( alpha * F.softmax(image_to_text_sim_m, dim=1) + (1 - alpha) * sim_targets ) text_to_image_sim_targets = ( alpha * F.softmax(text_to_image_sim_m, dim=1) + (1 - alpha) * sim_targets ) else: image_to_text_sim_targets = sim_targets text_to_image_sim_targets = sim_targets loss_i2t = -torch.sum( F.log_softmax(image_to_text_sim, dim=1) * image_to_text_sim_targets, dim=1 ).mean() loss_t2i = -torch.sum( F.log_softmax(text_to_image_sim, dim=1) * text_to_image_sim_targets, dim=1 ).mean() loss_itc = (loss_i2t + loss_t2i) / 2 return loss_itc class CausalLanguageModelingLoss(nn.Module): """ Compute the autoregressive masked language modeling loss by predicting the next token, as used in VQA. Support loss distillation for non-zero alpha. Compute standard mlm loss for zero alpha. Args: mask_token_id (int): The token id indicating a masked token. Default is -100. Inputs: labels (Tensor of shape (batch_size, seq_length)): The masked output tokens. prediction_scores (Tensor of shape (batch_size, seq_length, vocab_size)): The prediction scores from a prediction head. prediction_scores_m (Optional[Tensor] of shape (batch_size, seq_length, vocab_size)): The prediction scores from a momentum prediction head. Required if alpha is non-zero. alpha (float): The interpolation value between mlm_loss and loss_distill. Default is 0. """ def __init__( self, mask_token_id: int = -100, ) -> None: super().__init__() self.mask_token_id = mask_token_id def forward( self, labels: Tensor, prediction_scores: Tensor, prediction_scores_m: Optional[Tensor] = None, alpha: Optional[float] = 0.0, ) -> Tensor: batch_size = labels.size(0) # shift prediction scores and labels by one for next-token predict prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() mlm_loss = F.cross_entropy( prediction_scores.view(-1, prediction_scores.shape[-1]), labels.view(-1), reduction="none", ) mlm_loss = mlm_loss.view(batch_size, -1).sum(1) if alpha != 0: assert ( prediction_scores_m is not None ), "prediction_scores_m cannot be None for non-zero alpha" with torch.no_grad(): prediction_scores_m = prediction_scores_m[:, :-1, :].contiguous() loss_distill = -torch.sum( F.log_softmax(prediction_scores, dim=-1) * F.softmax(prediction_scores_m, dim=-1), dim=-1, ) loss_distill = (loss_distill * (labels != self.mask_token_id)).sum(1) mlm_loss = (1 - alpha) * mlm_loss + alpha * loss_distill return mlm_loss
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/losses/albef.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List, NamedTuple, Tuple import torch import torch.nn.functional as F from torch import Tensor from torchvision.ops.boxes import box_convert, generalized_box_iou def _get_src_permutation_idx( indices: List[Tuple[Tensor, Tensor]] ) -> Tuple[Tensor, Tensor]: """ Given a list of matched (src, tgt) indices, concatenate the src indices and return along with a tensor identifying which sample they came from. Args: indices (List[Tuple[Tensor, Tensor]]): A list of size batch_size, containing tuples of ``(index_i, index_j)`` where: - ``index_i`` is the indices of the selected predictions (i.e. srcs) - ``index_j`` is the indices of the corresponding selected targets For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) Returns: A Tuple[Tensor, Tensor] x, where x[0] gives the index of the sample in the batch x[1] gives the src value from indices Both x[0] and x[1] have size = (sum([len(index_i) for index_i in indices])) """ batch_idx = torch.cat( [torch.full_like(src, i) for i, (src, _) in enumerate(indices)] ) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx # TODO: we can calculate num_boxes in dataloader and add it to targets # Note: num_tokens = num_classes + 1. We should make this clear in other docstrings def soft_token_prediction_loss( pred_logits: Tensor, n_target_boxes: List[int], positive_map: Tensor, indices: List[Tuple[Tensor, Tensor]], num_boxes: int, no_object_weight: float = 0.1, ) -> Tensor: """Classification loss (NLL). Calculate the negative log-likelihood loss between the predicted logits and the uniform distribution over matched tokens from the ground truth, as in MDETR. The loss for unmatched boxes is downweighted by the value no_object_weight. Ref: https://github.com/ashkamath/mdetr/blob/main/models/mdetr.py#L464 Args: pred_logits (Tensor): Logits predicted by the model. Shape: (batch_size, num_queries, num_tokens) n_target_boxes (List[int]): Number of boxes in each target positive_map (Tensor): Map from boxes to tokens for the entire batch. positive_map[i,j] = 1 iff box i is associated to token j. Shape: (sum([len(target["boxes"]) for target in batch]), num_tokens) indices (List[Tuple[Tensor, Tensor]]): A list of size batch_size, containing tuples of ``(index_i, index_j)`` where: - ``index_i`` is the indices of the selected predictions (in order) - ``index_j`` is the indices of the corresponding selected targets For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) num_boxes (int): Normalization factor. Should equal the average number of boxes per local batch. no_object_weight (float): Relative classification weight of the no-object class. Returns: Negative log likelihood for the batch normalized by num_boxes """ logits = pred_logits.log_softmax(-1) src_idx = _get_src_permutation_idx(indices) tgt_idx = [] offset = 0 for i, (_, tgt) in enumerate(indices): tgt_idx.append(tgt + offset) offset += n_target_boxes[i] # tgt_idx concatenates the target indices across samples in the batch, # giving each box a unique value which will be used to permute positive_map tgt_idx = torch.cat(tgt_idx) # Permute the rows of positive map based on target box indices tgt_pos = positive_map[tgt_idx] target_sim = torch.zeros_like(logits) # Default is the no match value target_sim[:, :, -1] = 1 # Fill each of the corresponding rows of target_sim with the ground truth target_sim[src_idx] = tgt_pos loss_ce = -(logits * target_sim).sum(-1) # Downweight the loss for unmatched boxes by no_object_weight no_object_tensor = torch.full( loss_ce.shape, no_object_weight, device=target_sim.device ) no_object_tensor[src_idx] = 1 loss_ce = loss_ce * no_object_tensor loss_ce = loss_ce.sum() / num_boxes return loss_ce class BoxLosses(NamedTuple): l1_loss: torch.Tensor giou_loss: torch.Tensor def box_losses( pred_boxes: Tensor, target_boxes: List[Tensor], indices: List[Tuple[Tensor, Tensor]], num_boxes: int, ) -> BoxLosses: """Box losses: L1 loss and GIoU loss Inputs: pred_boxes (Tensor): Bounding boxes predicted by the model. Shape: (batch_size, num_queries, 4) target_boxes (List[Tensor]): List of box coordinates for each sample in batch. Length = batch_size, Tensor size = [len(target["boxes"]), 4] indices (List[Tuple[Tensor, Tensor]]): A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) num_boxes (int): Normalization factor. Should equal the average number of boxes per local batch. Returns: BoxLosses NamedTuple with elements l1_loss and giou_loss """ idx = _get_src_permutation_idx(indices) src_boxes = pred_boxes[idx] target_boxes = torch.cat([t[i] for t, (_, i) in zip(target_boxes, indices)], dim=0) l1_loss = F.l1_loss(src_boxes, target_boxes, reduction="sum") / num_boxes giou_loss = 1 - torch.diag( generalized_box_iou( box_convert(src_boxes, in_fmt="cxcywh", out_fmt="xyxy"), box_convert(target_boxes, in_fmt="cxcywh", out_fmt="xyxy"), ) ) giou_loss = giou_loss.sum() / num_boxes return BoxLosses(l1_loss=l1_loss, giou_loss=giou_loss)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/losses/mdetr.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional import torch from torch import nn, Tensor class AttentionFusionModule(nn.Module): """ Fuse embeddings through weighted sum of the corresponding linear projections. Linear layer for learning the weights. Args: channel_to_encoder_dim: mapping of channel name to the encoding dimension encoding_projection_dim: common dimension to project the encodings to. defaults to min of the encoder dim if not set """ def __init__( self, channel_to_encoder_dim: Dict[str, int], encoding_projection_dim: Optional[int] = None, ): super().__init__() attn_in_dim = sum(channel_to_encoder_dim.values()) self.attention = nn.Sequential( nn.Linear(attn_in_dim, len(channel_to_encoder_dim)), nn.Softmax(-1), ) if encoding_projection_dim is None: encoding_projection_dim = min(channel_to_encoder_dim.values()) encoding_projection = {} for channel in sorted(channel_to_encoder_dim.keys()): encoding_projection[channel] = nn.Linear( channel_to_encoder_dim[channel], encoding_projection_dim ) self.encoding_projection = nn.ModuleDict(encoding_projection) def forward(self, embeddings: Dict[str, Tensor]) -> Tensor: concatenated_in = torch.cat( [embeddings[k] for k in sorted(embeddings.keys())], dim=-1 ) attention_weights = self.attention(concatenated_in) projected_embeddings: List[Tensor] = [] for channel, projection in self.encoding_projection.items(): projected_embedding = projection(embeddings[channel]) projected_embeddings.append(projected_embedding) for i in range(len(projected_embeddings)): projected_embeddings[i] = ( attention_weights[:, i].unsqueeze(-1) * projected_embeddings[i] ) fused = torch.sum(torch.stack(projected_embeddings), dim=0) return fused
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/fusions/attention_fusion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import torch from torch import nn class ConcatFusionModule(nn.Module): """Module to fuse modalities via concatenation. Sorted by keys for consistency. Inputs: embeddings (Dict[str, Tensor]): A dictionary mapping modalities to their tensor representations. """ def __init__(self, projection: nn.Module = None): super().__init__() if projection: self.projection = projection else: self.projection = nn.Identity() def forward(self, embeddings: Dict[str, torch.Tensor]) -> torch.Tensor: concatenated_in = torch.cat( [embeddings[k] for k in sorted(embeddings.keys())], dim=-1 ) return self.projection(concatenated_in)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/fusions/concat_fusion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/fusions/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import nn, Tensor class DeepsetFusionModule(nn.Module): """ Fuse embeddings through stacking followed by pooling strategy and MLP See https://arxiv.org/pdf/2003.01607.pdf Args: channel_to_encoder_dim (Dict[str, int]): mapping of channel name to the\ encoding dimension mlp (nn.Module): MLP with in dim as projection dim (min of embed dim).\ Use MLP for mlp_classifier for default mlp. pooling_function (Callable): Pooling function to combine the tensors,\ like torch.median\ apply_attention (bool): If self attention (2 layer net) is applied before\ stacking embeddings, defaults to False. attention_dim (int): intermediate dim for attention layer.\ defaults to projection dim / 2 modality_normalize (bool): If normalization is applied along the modality axis,\ defaults to False norm_factor(float): norm factor for normalization, defaults to 2.0 use_auto_mapping(bool): If true, projection layer to min embedding dim \ is applied to the embeddings. defaults to False """ def __init__( self, channel_to_encoder_dim: Dict[str, int], mlp: nn.Module, pooling_function: Callable, apply_attention: bool = False, attention_dim: Optional[int] = None, modality_normalize: bool = False, norm_factor: float = 2.0, use_auto_mapping: bool = False, ): super().__init__() self.apply_attention = apply_attention self.modality_normalize = modality_normalize self.norm_factor = norm_factor self.use_auto_mapping = use_auto_mapping projection_dim = DeepsetFusionModule.get_projection_dim( channel_to_encoder_dim, use_auto_mapping ) if self.use_auto_mapping: self.projections = nn.ModuleDict( { channel: nn.Linear(dim, projection_dim) for channel, dim in channel_to_encoder_dim.items() } ) else: self.projections = nn.ModuleDict( {channel: nn.Identity() for channel in channel_to_encoder_dim} ) if self.apply_attention: self.attention: nn.Module if attention_dim is None: # default value as per older implementation attention_dim = projection_dim // 2 self.attention = nn.Sequential( nn.Linear(projection_dim, attention_dim), nn.Tanh(), nn.Linear(attention_dim, 1), # channel axis nn.Softmax(dim=-2), ) else: self.attention = nn.Identity() self.pooling_function = pooling_function self.mlp = mlp def forward(self, embeddings: Dict[str, Tensor]) -> Tensor: projections = {} for channel, projection in self.projections.items(): projections[channel] = projection(embeddings[channel]) embedding_list = [projections[k] for k in sorted(projections.keys())] # bsz x channels x projected_dim stacked_embeddings = torch.stack(embedding_list, dim=1) if self.apply_attention: attn_weights = self.attention(stacked_embeddings) stacked_embeddings = stacked_embeddings * attn_weights if self.modality_normalize: normalized_embeddings = F.normalize( stacked_embeddings, p=self.norm_factor, dim=1 ) else: normalized_embeddings = F.normalize( stacked_embeddings, p=self.norm_factor, dim=2 ) pooled_features = self._pool_features(normalized_embeddings) fused = self.mlp(pooled_features) return fused @classmethod def get_projection_dim( cls, channel_to_encoder_dim: Dict[str, int], use_auto_mapping: bool ) -> int: if use_auto_mapping: projection_dim = min(channel_to_encoder_dim.values()) else: encoder_dim = set(channel_to_encoder_dim.values()) if len(encoder_dim) != 1: raise ValueError( "Encoder dimension should be same for all channels \ if use_auto_mapping is set to false" ) projection_dim = encoder_dim.pop() return projection_dim def _pool_features(self, embeddings: Tensor) -> Tensor: pooled_embeddings = self.pooling_function(embeddings, dim=1) if torch.jit.isinstance(pooled_embeddings, Tuple[Tensor, Tensor]): return pooled_embeddings.values if not isinstance(pooled_embeddings, Tensor): raise ValueError( f"Result from pooling function should be a tensor.\ {self.pooling_function} does not satisfy that" ) return pooled_embeddings class DeepsetFusionWithTransformer(DeepsetFusionModule): def __init__( self, channel_to_encoder_dim: Dict[str, int], mlp: nn.Module, pooling_function: nn.TransformerEncoder, apply_attention: bool = False, attention_dim: Optional[int] = None, modality_normalize: bool = False, norm_factor: float = 2.0, use_auto_mapping: bool = False, ): super().__init__( channel_to_encoder_dim, mlp, pooling_function, apply_attention, attention_dim, modality_normalize, norm_factor, use_auto_mapping, ) def _pool_features(self, embeddings: Tensor) -> Tensor: pooled = self.pooling_function(embeddings) # take representation of the first token as the pooled feature return pooled[:, 0, :] def deepset_transformer( channel_to_encoder_dim: Dict[str, int], mlp: nn.Module, apply_attention: bool = False, attention_dim: Optional[int] = None, modality_normalize: bool = False, norm_factor: float = 2.0, use_auto_mapping: bool = False, num_transformer_att_heads: int = 8, num_transformer_layers: int = 1, ) -> nn.Module: """ Helper wrapper function around DeepsetFusionWithTransformer, \ to instantiate the transformer and pass it to the fusion module Args: channel_to_encoder_dim (Dict[str, int]): mapping of channel name to the\ encoding dimension mlp (nn.Module): MLP with in dim as projection dim (min of embed dim).\ Use MLP for mlp_classifier for default mlp. pooling_function (Callable): Pooling function to combine the tensors,\ like torch.median apply_attention (bool): If self attention is applied before\ stacking embeddings, defaults to False attention_dim (int): intermediate dim for attention layer. \ defaults to projection dim / 2 modality_normalize (bool): If normalization is applied along the modality axis,\ defaults to False norm_factor(float): norm factor for normalization, defaults to 2.0 use_auto_mapping(bool): If true, projection layer to min embedding dim \ is applied to the embeddings. defaults to False num_transformer_att_heads (int): number of attention heads. \ Used only if pooling function set to transformer num_transformer_layers (int): number of transformer layers,\ used only if pooling function set to transformer """ projection_dim = DeepsetFusionWithTransformer.get_projection_dim( channel_to_encoder_dim, use_auto_mapping ) if projection_dim % num_transformer_att_heads != 0: raise ValueError( f"projection dim should be divisible by attention heads\ found {projection_dim} and {num_transformer_att_heads}" ) transformer = nn.TransformerEncoder( encoder_layer=nn.TransformerEncoderLayer( d_model=projection_dim, nhead=num_transformer_att_heads, batch_first=True ), num_layers=num_transformer_layers, norm=nn.LayerNorm(projection_dim), ) fusion = DeepsetFusionWithTransformer( channel_to_encoder_dim, mlp, transformer, apply_attention, attention_dim, modality_normalize, norm_factor, use_auto_mapping, ) return fusion
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/fusions/deepset_fusion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Optional, Tuple, Union import torch from torch import nn, Tensor from torch.nn import functional as F from torchmultimodal.utils.common import shift_dim class SelfAttention(nn.Module): """Computes attention over the entire n-dimensional input. Args: attn_dropout (float, optional): Probability of dropout after softmax. Default is ``0.0``. """ def __init__(self, attn_dropout: float = 0.0) -> None: super().__init__() self.attn_dropout = attn_dropout def forward( self, q: Tensor, k: Tensor, v: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor]: """ Args: q (Tensor): Query input of shape ``(b, h, d1, ..., dn, dim_q)`` where ``h`` is the number of attention heads, ``(d1, ..., dn)`` are the query latent dimensions and ``dim_q`` is the dimension of the query embeddings. k, v (Tensor): Key/value input of shape ``(b, h, d1', ..., dn', dim_kv)`` where ``h`` is the number of attention heads, ``(d1', ..., dn')`` are the key/value latent dimensions and ``dim_kv`` is the dimension of the key/value embeddings. attention_mask (Tensor, optional): Tensor of shape ``(b, h, q_dn, k_dn)`` where ``q_dn`` is the dimension of the flattened query input along its latent dimensions and ``k_dn`` that of the flattened key input. Contains 1s for positions to attend to and 0s for masked positions. head_mask (Tensor, optional): Tensor of shape ``(b, h, q_dn, k_dn)``. Contains 1s for positions to attend to and 0s for masked positions. Returns: A tuple of output tensor and attention probabilities. """ _, _, *shape, _ = q.shape # flatten to b, h, (d1, ..., dn), dim_q/dim_kv q = q.flatten(start_dim=2, end_dim=-2) k = k.flatten(start_dim=2, end_dim=-2) v = v.flatten(start_dim=2, end_dim=-2) out, attn_probs = scaled_dot_product_attention( q, k, v, attention_mask=attention_mask, head_mask=head_mask, attn_dropout=self.attn_dropout if self.training else 0.0, ) return out.unflatten(2, shape), attn_probs class AxialAttention(nn.Module): """Computes attention over a single axis of the input. Other dims are flattened into the batch dimension. Args: axial_dim (int): Dimension to compute attention on, indexed by input dimensions (i.e., ``0`` for first input dimension, ``1`` for second). attn_dropout (float): Probability of dropout after softmax. Default is ``0.0``. """ def __init__(self, axial_dim: int, attn_dropout: float = 0.0) -> None: super().__init__() self.axial_dim = axial_dim + 2 # account for batch, head self.attn_dropout = attn_dropout def forward( self, q: Tensor, k: Tensor, v: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor]: """ Args: q (Tensor): Query input of shape ``(b, h, d1, ..., dn, dim_q)`` where ``h`` is the number of attention heads, ``(d1, ..., dn)`` are the query latent dimensions and ``dim_q`` is the dimension of the query embeddings. k, v (Tensor): Key/value input of shape ``(b, h, d1', ..., dn', dim_kv)`` where ``h`` is the number of attention heads, ``(d1', ..., dn')`` are the key/value latent dimensions and ``dim_kv`` is the dimension of the key/value embeddings. attention_mask (Tensor, optional): Tensor of shape ``(b, h, d1, ..., q_dn, k_dn)`` where ``q_dn`` is the dimension of the axis to compute attention on of the query and ``k_dn`` that of the key. Contains 1s for positions to attend to and 0s for masked positions. head_mask (Tensor, optional): Tensor of shape ``(b, h, d1, ..., q_dn, k_dn)``. Contains 1s for positions to attend to and 0s for masked positions. Returns: A tuple of output tensor and attention probabilities. """ # Ensure axial dim is within right dimensions, should be between head dim and embedding dim if self.axial_dim >= len(q.shape) - 1: raise ValueError("axial dim does not match input shape") # flatten all dims into batch dimension except chosen axial dim and channel dim # b, h, d1, ..., dn, dim_q/dim_kv -> (b, h, d1, ..., dn-1), axial_dim, dim_q/dim_kv q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3) k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3) v = shift_dim(v, self.axial_dim, -2) old_shape = list(v.shape) v = v.flatten(end_dim=-3) out, attn_probs = scaled_dot_product_attention( q, k, v, attention_mask=attention_mask, head_mask=head_mask, attn_dropout=self.attn_dropout if self.training else 0.0, ) out = out.view(*old_shape) out = shift_dim(out, -2, self.axial_dim) return out, attn_probs class MultiHeadAttention(nn.Module): """Computes multihead attention with flexible attention mechanism and caching for fast decoding. Multihead attention linearly projects and divides queries, keys, and values into multiple 'heads'. This enables the computation of attention multiple times in parallel, creating more varied representations and allows the model to jointly attend to information from different representation subspaces at different positions, as described in `"Attention Is All You Need (Vaswani et al. 2017)"<https://arxiv.org/pdf/1706.03762.pdf>`_. Args: dim_q (int): Dimensionality of query input. Also the embedding dimension of the model. dim_kv (int): Dimensionality of key/value input. Projects to the embedding dimension of the model, ``dim_q``. n_head (int): Number of attention heads. attn_module (nn.Module): Module of attention mechanism to use. Default is ``SelfAttention``. See :class:`~torchmultimodal.modules.layers.attention.SelfAttention` for API details. add_bias (bool): Whether to add bias to the q, k, v, linear layers or not. Default is ``True``. Attributes: cache (Dict[str, Tensor]): Dictionary that stores past key/value vectors. Raises: ValueError: When ``dim_q`` or ``dim_kv`` is not divisible by ``n_head``. """ def __init__( self, dim_q: int, dim_kv: int, n_head: int, attn_module: nn.Module = SelfAttention(), add_bias: bool = True, ) -> None: super().__init__() if dim_q % n_head != 0 or dim_kv % n_head != 0: raise ValueError( "The hidden size of q, k, v must be a multiple of the number of attention heads." ) self.dim_q = dim_q self.dim_kv = dim_kv self.n_head = n_head self.query = nn.Linear(dim_q, dim_q, bias=add_bias) # q self.key = nn.Linear(dim_kv, dim_q, bias=add_bias) # k self.value = nn.Linear(dim_kv, dim_q, bias=add_bias) # v self.output = nn.Linear(dim_q, dim_q, bias=True) # c self.attn = attn_module self.cache: Optional[Dict[str, Tensor]] = None def forward( self, q: Tensor, kv: Optional[Tensor] = None, return_attn_weights: bool = False, use_cache: bool = False, causal: bool = False, **attn_kwargs: Any, ) -> Union[Tensor, Tuple[Tensor, Tensor]]: """ Args: q (Tensor): Query of shape ``(b, d1, ..., dn, dim_q)`` or ``(b, seq_len, dim_q)`` (for autoregressive decoding it's typical to pass in flattened tensors). kv (Tensor, optional): Key (and value) of shape ``(b, d1', ..., dn', dim_kv)`` or ``(b, seq_len', dim_kv)``. If this argument is specified, cross-attention will be applied. Default is ``None``. use_cache (bool): If ``True``, caches past ``k`` and ``v`` tensors for faster decoding. If ``False``, recomputes ``k`` and ``v`` for each decoding step. Default is ``False``. causal (bool): Whether to use causal attention or not. Default is ``False``. Returns: * If ``return_attn_weights`` is ``True``: A tuple of output tensor and attention probabilities. * If ``return_attn_weights`` is ``False``: A single output tensor. Raises: TypeError: An error occurred when ``causal`` is ``True`` and ``attn_module`` is ``AxialAttention``. """ if isinstance(self.attn, AxialAttention) and causal: raise TypeError("Causal axial attention is not supported.") # If kv is specified use those inputs for cross-attention, otherwise use q k = v = q if kv is None else kv # compute q q = split_multihead(self.query(q), self.n_head) # For causal k, v are provided step-wise so we should always compute them # For non-causal skip computing k, v if they have been cached if causal or not self.cache: k = split_multihead(self.key(k), self.n_head) v = split_multihead(self.value(v), self.n_head) # fast decoding by caching past key, value tensors if use_cache: if not self.cache: # initialize the cache with the present k, v self.cache = dict(k=k.clone(), v=v.clone()) else: if causal: # append present k, v to past k, v # for autoregressive decoding inputs are flattened as 1D sequences # so are the cached tensors: (b, n_heads, seq_len, c) k_, v_ = self.cache["k"], self.cache["v"] self.cache["k"] = torch.cat([k_, k], dim=2) self.cache["v"] = torch.cat([v_, v], dim=2) # override the present k, v with the cache k, v = self.cache["k"], self.cache["v"] attn_out = self.attn(q, k, v, **attn_kwargs) attn_probs = None # Unpack if attn module also returns attn probs if isinstance(attn_out, tuple): attn_out, attn_probs = attn_out a = merge_multihead(attn_out) a = self.output(a) if return_attn_weights: return a, attn_probs else: return a class AxialAttentionBlock(nn.Module): """Computes multihead axial attention across all dims of the input. Axial attention is an alternative to standard full attention, where instead of computing attention across the entire flattened input, you compute it for each dimension. To capture the global context that full attention does, stacking multiple axial attention layers will allow information to propagate among the multiple dimensions of the input. This enables attention calculations on high dimensional inputs (images, videos) where full attention would be computationally expensive and unfeasible. For more details, see `"Axial Attention in Multidimensional Transformers (Ho et al. 2019)"<https://arxiv.org/pdf/1912.12180.pdf>`_ and `"CCNet: Criss-Cross Attention for Semantic Segmentation (Huang et al. 2019) "<https://arxiv.org/pdf/1811.11721.pdf>`_. Follows implementation by VideoGPT: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py Args: n_dims (int): Dimensionality of input data, not including batch or embedding dims. qkv_dim (int): Dimensionality of query/key/value embedding vectors. n_head (int): Number of heads in multihead attention. Must divide into ``qkv_dim`` evenly. """ def __init__(self, n_dims: int, qkv_dim: int, n_head: int) -> None: super().__init__() self.qkv_dim = qkv_dim self.mha_attns = nn.ModuleList( [ MultiHeadAttention( dim_q=qkv_dim, dim_kv=qkv_dim, n_head=n_head, attn_module=AxialAttention(d), add_bias=False, ) for d in range(n_dims) ] ) def forward(self, x: Tensor) -> Tensor: n_channel = x.shape[1] if n_channel != self.qkv_dim: raise ValueError( f"Input channel dimension is {n_channel}, expected {self.qkv_dim}" ) h = shift_dim(x, 1, -1) # (b, c, d1, ..., dn) -> (b, d1, ..., dn, c) attn_out = torch.zeros_like(h) for mha_attn in self.mha_attns: attn_out += mha_attn(h) h = attn_out h = shift_dim(h, -1, 1) # (b, d1, ..., dn, c) -> (b, c, d1, ..., dn) return h def scaled_dot_product_attention( q: Tensor, k: Tensor, v: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, attn_dropout: float = 0.0, ) -> Tuple[Tensor, Tensor]: """Similar to PyTorch Core's _scaled_dot_product_attention but generalized to handle n-dimensional input tokens (images, video) and support multihead. Computes attention as described in Attention Is All You Need (Vaswani et al. 2017) Args: q (Tensor): Query of shape ``(b, h, d1, ..., dn, dim_qk)`` or ``(b, h, seq_len, dim_qk)`` where ``h`` is number of attention heads, ``d1, ..., dn`` are latent dimensions and ``dim_qk` is the embedding dim of the query tensor. k (Tensor): Key of shape ``(b, h, d1', ...., dn', dim_qk)`` or ``(b, h, seq_len', dim_qk)`` where ``h`` is the number of attention heads, ``d1', ..., dn'` are latent dimensions and ``dim_qk`` is the key embedding dim aligned with query embedding dim, see :class:`~torchmultimodal.modules.layers.attention.MultiHeadAttention`. v (Tensor): Value of shape ``(b, h, d1', ..., dn', dim_v)`` or ``(b, h, seq_len', dim_v)`` where ``h`` is the number of attention heads, ``d1', ..., dn'`` are latent dimensions and ``dim_v`` is the embedding dim of the value tensor. attention_mask (Tensor, optional): Tensor of shape ``(b, h, d1, ..., q_dn, k_dn)``. Contains 1s for positions to attend to and 0s for masked positions. Applied before softmax. head_mask (Tensor, optional): Tensor of shape ``(b, h, d1, ..., q_dn, k_dn)``. Contains 1s for positions to attend to and 0s for masked positions. Applied after dropout, before matrix multiplication with values. attn_dropout (float): Probability of dropout after softmax. Default is ``0.0``. Returns: A tuple of output tensor and attention probabilities. """ # Take the dot product between "query" and "key" and scale to get the raw attention scores. attn = torch.matmul(q, k.transpose(-1, -2)) attn = attn / torch.sqrt(torch.tensor(q.shape[-1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor with the computed attention weights # at the positions we want to attend and -inf for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. if attention_mask is not None: attn = attn.masked_fill(attention_mask == 0, float("-inf")) # Normalize the attention scores to probabilities attn_float = F.softmax(attn, dim=-1) attn = attn_float.type_as(attn) # b, h, d1, ..., q_dn, k_dn # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attn = F.dropout(attn, p=attn_dropout) # Mask heads if we want to if head_mask is not None: attn = attn * head_mask # For each query sum over the key/value dim with attention weights a = torch.matmul(attn, v) # b, h, d1, ..., q_dn, c return a, attn def split_multihead(x: Tensor, n_head: int) -> Tensor: """Splits channel dimension of input tensor of size (b, d1, ..., dn, c) into multiple heads, (b, n_head, d1, ..., dn, c // n_head)""" x = x.unflatten(-1, (n_head, -1)) # Rearrange to put head dim first, (b, n_head, d1, ..., dn, c // n_head) x = shift_dim(x, -2, 1) return x def merge_multihead(x: Tensor) -> Tensor: """Moves head dim back to original location and concatenates heads (b, n_head, d1, ..., dn, c // n_head) -> (b, d1, ..., dn, c)""" return shift_dim(x, 1, -2).flatten(start_dim=-2)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch from torch import nn, Tensor class BERTTextEmbeddings(nn.Module): """Construct word, position, and token type embeddings following BERT, similar to HuggingFace BertEmbeddings Attributes: hidden_size (int): size of embedding space. Default is 768. vocab_size (int): size of vocabulary. Default is 30522. pad_token_id (int): id used for padding token. Default is 0. max_position_embeddings (int): the highest position id number, or max sequence length. Default is 512. type_vocab_size (int): the highest token type id number. Default is 2. layer_norm_eps (float): the eps value in layer norms. Default is 1e-12. dropout (float): dropout probability after all embeddings and layernorm offset_pos_ids (bool): if True, shift position ids by one for the padding token. Used in RoBERTa. Default is False. Args: input_ids (Tensor, optional): Tensor of input vocab token ids of shape [batch, seq_len]. token_type_ids (Tensor, optional): Tensor of input token type ids of shape [batch, seq_len]. In BERT, used to indicate whether a word is in sentence A or B for next sentence prediction position_ids (Tensor, optional): Tensor of input position ids of shape [batch, seq_len] inputs_embeds (Tensor, optional): Tensor of input embeddings of shape [batch, hidden_size], if embeddings are calculated elsewhere """ def __init__( self, hidden_size: int = 768, vocab_size: int = 30522, pad_token_id: int = 0, max_position_embeddings: int = 512, type_vocab_size: int = 2, layer_norm_eps: float = 1e-12, dropout: float = 0.0, offset_pos_ids: bool = False, ) -> None: super().__init__() self.word_embeddings = nn.Embedding(vocab_size, hidden_size, pad_token_id) self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps) self.dropout = nn.Dropout(dropout) self.pad_token_id = pad_token_id self.offset_pos_ids = offset_pos_ids def create_position_ids_from_input_ids(self, input_ids: Tensor) -> Tensor: """ Replace non-padding symbols with their position numbers. Position numbers begin at pad_token_id+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Inputs: input_ids (Tensor): Tensor from which to create position IDs. pad_token_id (int): Padding index (determines starting point of position IDs). """ mask = input_ids.ne(self.pad_token_id).int() incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask return incremental_indices.long() + self.pad_token_id def forward( self, input_ids: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, position_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, ) -> Tensor: if input_ids is not None: input_shape = input_ids.size() device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device else: raise ValueError("input_ids or inputs_embeds must not be None") seq_length = input_shape[1] if position_ids is None: if self.offset_pos_ids: position_ids = self.create_position_ids_from_input_ids(input_ids) else: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/text_embedding.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, List, Mapping, NamedTuple, Tuple, Union import torch from torch import nn, Size, Tensor from torch.nn import functional as F from torchmultimodal.utils.common import shift_dim class CodebookOutput(NamedTuple): """Outputs from :class:`~torchmultimodal.modules.layers.codebook.Codebook`. Attributes: encoded_flat (Tensor): The flattened encoder output of shape ``(b x d1 x ... x dn, c)``. quantized_flat (Tensor): The nearest embeddings for the encoded of shape ``(b x d1 x ... x dn, emb_dim)``. codebook_indices (Tensor): Indices of the nearest embeddings of shape ``(b, d1, d2, ..., dn)``. quantized (Tensor): The nearest embeddings reshaped back to ``(b, emb_dim, d1, ..., dn)``. """ encoded_flat: Tensor quantized_flat: Tensor codebook_indices: Tensor quantized: Tensor class Codebook(nn.Module): """Bottleneck layer of VQVAE model Codebook provides an embedding layer that takes in the output of an encoder and performs a nearest-neighbor lookup in the embedding space. Vector quantization was introduced in Oord et al. 2017 (https://arxiv.org/pdf/1711.00937.pdf) to generate high-fidelity images, videos, and audio data. The embedding weights are trained with exponential moving average updates as described in original paper. Code was largely inspired by a PyTorch implementation of the author's original code, found here: https://colab.research.google.com/github/zalandoresearch/pytorch-vq-vae/blob/master/vq-vae.ipynb and by the implementation in MUGEN (Hayes et al. 2022), found here: https://github.com/mugen-org/MUGEN_baseline/blob/main/lib/models/video_vqvae/vqvae.py Args: num_embeddings (int): Number of vectors in the embedding space. embedding_dim (int): Dimensionality of the embedding vectors. decay (float, optional): Factor used in exponential moving average update of the embeddings. Defaults to ``0.99``. codebook_usage_threshold (float, optional): Threshold for the average number of times an embedding vector is chosen below which it will be re-initialized. Defaults to ``1.0``. epsilon (float, optional): Noise used in Laplace smoothing of codebook usage. Defaults to ``1e-7``. """ def __init__( self, num_embeddings: int, embedding_dim: int, decay: float = 0.99, codebook_usage_threshold: float = 1.0, epsilon: float = 1e-7, ) -> None: super().__init__() # Embedding weights and parameters for EMA update will be registered to buffer, as they # will not be updated by the optimizer but are still model parameters. # code_usage and code_avg correspond with N and m, respectively, from Oord et al. randn_init_embedding = torch.randn(num_embeddings, embedding_dim) self.register_buffer("embedding", randn_init_embedding.clone()) self.register_buffer("code_usage", torch.zeros(num_embeddings)) self.register_buffer("code_avg", randn_init_embedding.clone()) self.embedding_dim = embedding_dim self.num_embeddings = num_embeddings self._decay = decay # Used in Laplace smoothing of code usage self._epsilon = epsilon # Threshold for randomly reseting unused embedding vectors self.codebook_usage_threshold = codebook_usage_threshold # Flag to track if we need to initialize embedding with encoder output self._is_embedding_init = False def _load_from_state_dict( self, state_dict: Mapping[str, Any], prefix: str, local_metadata: Mapping, strict: bool, missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str], ) -> None: # Override nn.Module's _load_from_state_dict to ensure embedding init is turned off # when state dict is loaded. # # This can also be handled with _register_load_state_dict_pre_hook but since this is # an internal function, it may change. Overriding _load_from_state_dict seems more # stable and cleaner. super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) self._is_embedding_init = True def _tile(self, x: Tensor, n: int) -> Tensor: # Repeat vectors in x if x has less than n vectors num_vectors, num_channels = x.shape if num_vectors < n: num_repeats = (n + num_vectors - 1) // num_vectors # Add a small amount of noise to repeated vectors std = 0.01 / torch.sqrt(torch.tensor(num_channels)) x = x.repeat(num_repeats, 1) x = x + torch.randn_like(x) * std return x def _get_random_vectors(self, x: Tensor, n: int) -> Tensor: # Gets n random row vectors from 2D tensor x x_tiled = self._tile(x, n) idx = torch.randperm(x_tiled.shape[0]) x_rand = x_tiled[idx][:n] return x_rand def _preprocess(self, encoded: Tensor) -> Tuple[Tensor, Size]: # Rearrange from batch x channel x n dims to batch x n dims x channel encoded_permuted = shift_dim(encoded, 1, -1) permuted_shape = encoded_permuted.shape # Flatten input encoded_flat = encoded_permuted.view(-1, permuted_shape[-1]) # channel dimension should be embedding dim so that each element in encoder # output volume gets associated with single embedding vector if encoded_flat.shape[-1] != self.embedding_dim: raise ValueError( f"Expected {encoded_flat.shape[-1]} to be embedding size of {self.embedding_dim}" ) return encoded_flat, permuted_shape def _postprocess( self, quantized_flat: Tensor, permuted_shape: Union[Size, Tuple] ) -> Tensor: # Rearrange back to batch x channel x n dims quantized_permuted = quantized_flat.view(permuted_shape) quantized = shift_dim(quantized_permuted, -1, 1) return quantized def _init_embedding(self, encoded_flat: Tensor) -> None: # Embedding should be initialized with random output vectors from the encoder # on the first forward pass for faster convergence, as in VideoGPT (Yan et al. 2021) # # This requires the preprocessed encoder output to flattened self._is_embedding_init = True encoded_flat_rand = self._get_random_vectors(encoded_flat, self.num_embeddings) # Initialize embedding and intermediate values for EMA updates self.embedding = encoded_flat_rand self.code_avg = encoded_flat_rand self.code_usage = torch.ones(self.num_embeddings) def _ema_update_embedding( self, encoded_flat: Tensor, codebook_indices: Tensor ) -> None: # Closed form solution of codebook loss, ||e - E(x)||^2, is simply the average # of the encoder output. However, we can't compute this in minibatches, so we # must use exponential moving average. # Convert indices to one hot encoding codebook_onehot = nn.functional.one_hot( codebook_indices, num_classes=self.num_embeddings ).type(torch.float) # Count how often each embedding vector was looked up codebook_selection_count = torch.sum(codebook_onehot, 0) # Update usage value for each embedding vector self.code_usage.mul_(self._decay).add_( codebook_selection_count, alpha=(1 - self._decay) ) # Laplace smoothing of codebook usage - to prevent zero counts n = torch.sum(self.code_usage) self.code_usage.add_(self._epsilon).divide_( n + self.num_embeddings * self._epsilon ).mul_(n) # Get all encoded vectors attracted to each embedding vector encoded_per_codebook = torch.matmul(codebook_onehot.t(), encoded_flat) # Update each embedding vector with new encoded vectors that are attracted to it, # divided by its usage to yield the mean of encoded vectors that choose it self.code_avg.mul_(self._decay).add_( encoded_per_codebook, alpha=(1 - self._decay) ) self.embedding = self.code_avg / self.code_usage.unsqueeze(1) # Reset any embedding vectors that fall below threshold usage with random encoded vectors encoded_flat_rand = self._get_random_vectors(encoded_flat, self.num_embeddings) self.embedding = torch.where( self.code_usage.unsqueeze(1) >= self.codebook_usage_threshold, self.embedding, encoded_flat_rand, ) def _quantize(self, encoded_flat: Tensor) -> Tuple[Tensor, Tensor]: # Calculate distances from each encoder, E(x), output vector to each embedding vector, e, ||E(x) - e||^2 distances = torch.cdist(encoded_flat, self.embedding, p=2.0) ** 2 # Encoding - select closest embedding vectors codebook_indices_flat = torch.argmin(distances, dim=1) # Quantize quantized_flat = F.embedding(codebook_indices_flat, self.embedding) # Use exponential moving average to update the embedding instead of a codebook loss, # as suggested by Oord et al. 2017 and Razavi et al. 2019. if self.training: self._ema_update_embedding(encoded_flat, codebook_indices_flat) # Straight through estimator quantized_flat = encoded_flat + (quantized_flat - encoded_flat).detach() return quantized_flat, codebook_indices_flat def forward(self, z: Tensor) -> CodebookOutput: """ Args: z (Tensor): Tensor containing a batch of encoder outputs of shape ``(b, c, d1, ..., dn)``. Returns: An instance of :class:`~torchmultimodal.modules.layers.codebook.CodebookOutput`. """ # Flatten encoder outputs, tile to match num embeddings, get random encoder outputs encoded_flat, permuted_shape = self._preprocess(z) # First check if embedding is initialized correctly if not self._is_embedding_init and self.training: self._init_embedding(encoded_flat) # Quantization via nearest neighbor lookup quantized_flat, codebook_indices_flat = self._quantize( encoded_flat ) # (b x d1 x ... x dn, emb_dim) # Reshape back to original dims # Note: This part could also happen before ema_update_embedding by first reshaping the indices # and then looking up the codebook for quantized. But that will require us to pass shape info # into `self._quantized`. We decide to keep the reshape and the quantized ops separate for clarity. quantized = self._postprocess( quantized_flat, permuted_shape ) # (b, emb_dim, d1, ...., dn) codebook_indices = codebook_indices_flat.view( z.shape[0], *z.shape[2:] ) # (b, d1, ..., dn) return CodebookOutput(encoded_flat, quantized_flat, codebook_indices, quantized) def extra_repr(self) -> str: return "num_embeddings={}, embedding_dim={}".format( self.num_embeddings, self.embedding_dim ) def lookup(self, indices: Tensor) -> Tensor: # Returns the embeddings of shape ``[b, indices.shape, emb_dim]`` return F.embedding(indices, self.embedding)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/codebook.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, List, Optional, Union import torch from torch import nn class MLP(nn.Module): """A multi-layer perceptron module. This module is a sequence of linear layers plus activation functions. The user can optionally add normalization and/or dropout to each of the layers. Args: in_dim (int): Input dimension. out_dim (int): Output dimension. hidden_dims (Optional[List[int]]): Output dimension for each hidden layer. dropout (float): Probability for dropout layer. activation (Callable[..., nn.Module]): Which activation function to use. Supports module type or partial. normalization (Optional[Callable[..., nn.Module]]): Which normalization layer to use (None for no normalization). Supports module type or partial. Inputs: x (Tensor): Tensor containing a batch of input sequences. ​ """ def __init__( self, in_dim: int, out_dim: int, hidden_dims: Optional[Union[int, List[int]]] = None, dropout: float = 0.5, activation: Callable[..., nn.Module] = nn.ReLU, normalization: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() layers = nn.ModuleList() if hidden_dims is None: hidden_dims = [] if isinstance(hidden_dims, int): hidden_dims = [hidden_dims] for hidden_dim in hidden_dims: layers.append(nn.Linear(in_dim, hidden_dim)) if normalization: layers.append(normalization(hidden_dim)) layers.append(activation()) if dropout > 0: layers.append(nn.Dropout(dropout)) in_dim = hidden_dim layers.append(nn.Linear(in_dim, out_dim)) self.model = nn.Sequential(*layers) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.model(x)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/mlp.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any from torch import nn, Tensor class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) def forward(self, x: Tensor) -> Tensor: output = nn.functional.layer_norm( x.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(x) class Fp32GroupNorm(nn.GroupNorm): """ GroupNorm that supports mixed-precision / fp16 training by performing normalization in fp32 and converting back. Code ref: https://github.com/facebookresearch/fairseq/blob/0338cdc3094ca7d29ff4d36d64791f7b4e4b5e6e/fairseq/modules/fp32_group_norm.py#L13 """ def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) def forward(self, x: Tensor) -> Tensor: output = nn.functional.group_norm( x.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(x)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/normalizations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn, Tensor class SiLU(nn.Module): r"""Sigmoid Linear Unit .. math:: \text{SiLU}(x) = x * \sigma(1.702 * x) where :math:`\sigma(x)` is the cumulative distribution function for Logistic Distribution. Approximation of the exact GeLU for greater forward speed. Note that this is different from ``torch.nn.SiLU`` by the coefficient ``1.702`` from the paper: `"Gaussian error linear units"<https://arxiv.org/pdf/1606.08415.pdf>`_. """ def forward(self, x: Tensor) -> Tensor: return torch.sigmoid(1.702 * x) * x
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/activation.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Code for some of the transformers components in this file are initialized # from their counterparts in Hugging Face Transformers library. from typing import Callable, List, NamedTuple, Optional, Tuple, Union from torch import nn, Tensor from torchmultimodal.modules.layers.attention import MultiHeadAttention, SelfAttention from torchmultimodal.modules.layers.mlp import MLP from torchmultimodal.modules.layers.normalizations import Fp32LayerNorm class TransformerOutput(NamedTuple): last_hidden_state: Optional[Tensor] = None pooler_output: Optional[Tensor] = None hidden_states: Optional[List[Tensor]] = None attentions: Optional[List[Tensor]] = None image_labels: Optional[Tensor] = None class TransformerCrossAttentionLayer(nn.Module): """Transformer layer with self-attention on inputs and cross-attention on an encoder's outputs. Can be used in a transformer decoder or an encoder with cross-attention. Similar to ``nn.TransformerDecoderLayer``, but generalized for use in an encoder with cross-attention as well. Uses a custom ``MultiHeadAttention`` that supports n-dimensional inputs including sequences, images, video. Attributes: d_model (int): size of hidden dimension of input n_head (int): number of attention heads dim_feedforward (int): size of hidden dimension of feedforward network dropout (float): dropout probability for all dropouts. Defaults to 0. activation (Callable): activation function in feedforward network. Defaults to ``nn.ReLU``. layer_norm_eps (float): the eps value in layer norms. Default is 1e-12. norm_first (bool): if True, layer norm is done prior to each of self-attention, cross-attention, and feedforward. Otherwise, layer norm is done after. Args: hidden_states (Tensor): input tensor of shape [b, d1, ..., dn, c] to calculate self-attention on. encoder_hidden_states (Tensor): input tensor of shape [b, d1, ..., dn, c] to calculate cross-attention on. attention_mask (Tensor, optional): mask to be applied to self-attention inputs, ``hidden_states``. See ``MultiHeadAttention`` for shape requirements. cross_attention_mask (Tensor, optional): mask to be applied to cross-attention inputs, ``encoder_hidden_states``. See ``MultiHeadAttention`` for shape requirements. """ def __init__( self, d_model: int, n_head: int, dim_feedforward: int, dropout: float = 0.0, activation: Callable[..., nn.Module] = nn.ReLU, layer_norm_eps: float = 1e-12, norm_first: bool = False, ) -> None: super().__init__() # attention block self.attention = MultiHeadAttention( dim_q=d_model, dim_kv=d_model, n_head=n_head, attn_module=SelfAttention(dropout), ) self.attention_dropout = nn.Dropout(dropout) # cross attention block self.cross_attention = MultiHeadAttention( dim_q=d_model, dim_kv=d_model, n_head=n_head, attn_module=SelfAttention(dropout), ) self.cross_attention_dropout = nn.Dropout(dropout) # feedforward block self.feedforward = MLP( d_model, d_model, dim_feedforward, dropout=dropout, activation=activation ) self.feedforward_dropout = nn.Dropout(dropout) # layernorms self.attention_layernorm = Fp32LayerNorm(d_model, eps=layer_norm_eps) self.cross_attention_layernorm = Fp32LayerNorm(d_model, eps=layer_norm_eps) self.feedforward_layernorm = Fp32LayerNorm(d_model, eps=layer_norm_eps) self.norm_first = norm_first def _self_attention_block( self, hidden_states: Tensor, attention_mask: Optional[Tensor] = None ) -> Tensor: output = self.attention( hidden_states, attention_mask=attention_mask, return_attn_weights=False ) output = self.attention_dropout(output) return output def _cross_attention_block( self, hidden_states: Tensor, encoder_hidden_states: Tensor, cross_attention_mask: Optional[Tensor] = None, ) -> Tensor: output = self.cross_attention( hidden_states, encoder_hidden_states, attention_mask=cross_attention_mask, return_attn_weights=False, ) output = self.cross_attention_dropout(output) return output def _feedforward_block(self, hidden_states: Tensor) -> Tensor: h = self.feedforward(hidden_states) h = self.feedforward_dropout(h) return h def _forward_prenorm( self, hidden_states: Tensor, encoder_hidden_states: Tensor, attention_mask: Optional[Tensor] = None, cross_attention_mask: Optional[Tensor] = None, ) -> Tensor: x = hidden_states kv = encoder_hidden_states inputs = self.attention_layernorm(x) attn_output = self._self_attention_block(inputs, attention_mask=attention_mask) attn_residual = attn_output + x attn_norm_output = self.cross_attention_layernorm(attn_residual) cross_attention_output = self._cross_attention_block( attn_norm_output, kv, cross_attention_mask ) cross_attention_residual = cross_attention_output + attn_norm_output cross_attention_norm_output = self.feedforward_layernorm( cross_attention_residual ) ff_residual = cross_attention_norm_output + self._feedforward_block( cross_attention_norm_output ) return ff_residual def _forward_postnorm( self, hidden_states: Tensor, encoder_hidden_states: Tensor, attention_mask: Optional[Tensor] = None, cross_attention_mask: Optional[Tensor] = None, ) -> Tensor: x = hidden_states kv = encoder_hidden_states attn_output = self._self_attention_block(x, attention_mask=attention_mask) attn_residual = attn_output + x attn_norm_output = self.attention_layernorm(attn_residual) cross_attention_output = self._cross_attention_block( attn_norm_output, kv, cross_attention_mask ) cross_attention_residual = cross_attention_output + attn_norm_output cross_attention_norm_output = self.cross_attention_layernorm( cross_attention_residual ) ff_residual = cross_attention_norm_output + self._feedforward_block( cross_attention_norm_output ) outputs = self.feedforward_layernorm(ff_residual) return outputs def forward( self, hidden_states: Tensor, encoder_hidden_states: Tensor, attention_mask: Optional[Tensor] = None, cross_attention_mask: Optional[Tensor] = None, ) -> Tensor: if self.norm_first: return self._forward_prenorm( hidden_states, encoder_hidden_states, attention_mask, cross_attention_mask, ) else: return self._forward_postnorm( hidden_states, encoder_hidden_states, attention_mask, cross_attention_mask, ) class TransformerEncoderLayer(nn.Module): """Transformer encoder layer is made up of multihead self-attention and feedforward blocks, based on the architecture in "Attention Is All You Need" (Vaswani et al. 2017). Similar to ``nn.TransformerEncoderLayer``, but uses a custom ``MultiHeadAttention`` that supports n-dimensional inputs (including sequences, images, video) and head-masking. Attributes: d_model (int): size of hidden dimension of input n_head (int): number of attention heads dim_feedforward (int): size of hidden dimension of feedforward network dropout (float): dropout probability for all dropouts. Defaults to 0. activation (Callable): activation function in feedforward network. Defaults to ``nn.ReLU``. layer_norm_eps (float): the eps value in layer norms. Default is 1e-12. norm_first (bool): if True, layer norm is done prior to each of self-attention, cross-attention, and feedforward. Otherwise, layer norm is done after. Args: hidden_states (Tensor): input tensor of shape [b, d1, ..., dn, c] to calculate self-attention on. attention_mask (Tensor, optional): mask to be applied to self-attention inputs, ``hidden_states``. See ``MultiHeadAttention`` for shape requirements. head_mask (Tensor, optional): mask to be applied to self-attention inputs after softmax and dropout, before matrix multiplication with values. See ``MultiHeadAttention`` for shape requirements. return_attn_weights (bool, optional): return attention probabilities in addition to attention output. Defaults to False. """ def __init__( self, d_model: int, n_head: int, dim_feedforward: int, dropout: float = 0.0, activation: Callable[..., nn.Module] = nn.ReLU, layer_norm_eps: float = 1e-12, norm_first: bool = False, ) -> None: super().__init__() # attention block self.attention = MultiHeadAttention( dim_q=d_model, dim_kv=d_model, n_head=n_head, attn_module=SelfAttention(dropout), ) self.attention_dropout = nn.Dropout(dropout) # feedforward block self.feedforward = MLP( d_model, d_model, dim_feedforward, dropout=dropout, activation=activation ) self.feedforward_dropout = nn.Dropout(dropout) # layernorms self.attention_layernorm = Fp32LayerNorm(d_model, eps=layer_norm_eps) self.feedforward_layernorm = Fp32LayerNorm(d_model, eps=layer_norm_eps) self.norm_first = norm_first def _attention_block( self, hidden_states: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Tensor]: output, attn_weights = self.attention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, return_attn_weights=True, ) output = self.attention_dropout(output) return output, attn_weights def _feedforward_block(self, hidden_states: Tensor) -> Tensor: h = self.feedforward(hidden_states) h = self.feedforward_dropout(h) return h def _forward_prenorm( self, hidden_states: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, return_attn_weights: bool = False, ) -> Union[Tensor, Tuple[Tensor, Tensor]]: x = hidden_states inputs = self.attention_layernorm(x) attn_output, attn_weights = self._attention_block( inputs, attention_mask=attention_mask, head_mask=head_mask, ) attn_residual = attn_output + x ff_residual = attn_residual + self._feedforward_block( self.feedforward_layernorm(attn_residual) ) if return_attn_weights: return ff_residual, attn_weights else: return ff_residual def _forward_postnorm( self, hidden_states: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, return_attn_weights: bool = False, ) -> Union[Tensor, Tuple[Tensor, Tensor]]: x = hidden_states attn_output, attn_weights = self._attention_block( x, attention_mask=attention_mask, head_mask=head_mask, ) attn_residual = attn_output + x attn_residual = self.attention_layernorm(attn_residual) ff_residual = attn_residual + self._feedforward_block(attn_residual) outputs = self.feedforward_layernorm(ff_residual) if return_attn_weights: return outputs, attn_weights else: return outputs def forward( self, hidden_states: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, return_attn_weights: bool = False, ) -> Union[Tensor, Tuple[Tensor, Tensor]]: if self.norm_first: return self._forward_prenorm( hidden_states, attention_mask, head_mask, return_attn_weights, ) else: return self._forward_postnorm( hidden_states, attention_mask, head_mask, return_attn_weights, ) class TransformerEncoder(nn.Module): def __init__( self, n_layer: int, d_model: int, n_head: int, dim_feedforward: int, dropout: float = 0.0, activation: Callable[..., nn.Module] = nn.ReLU, layer_norm_eps: float = 1e-12, norm_first: bool = False, final_layer_norm_eps: Optional[float] = None, ): super().__init__() self.layer = nn.ModuleList( [ TransformerEncoderLayer( d_model, n_head, dim_feedforward, dropout, activation, layer_norm_eps, norm_first, ) for _ in range(n_layer) ] ) self.final_layer_norm = None if final_layer_norm_eps: self.final_layer_norm = Fp32LayerNorm(d_model, eps=final_layer_norm_eps) def forward( self, hidden_states: Tensor, attention_mask: Optional[Tensor] = None, head_mask: Optional[Tensor] = None, return_attn_weights: bool = False, return_hidden_states: bool = False, ) -> TransformerOutput: all_hidden_states = [] if return_hidden_states else None all_self_attentions = [] if return_attn_weights else None for layer_module in self.layer: if return_hidden_states: all_hidden_states.append(hidden_states) layer_outputs = layer_module( hidden_states, attention_mask=attention_mask, head_mask=head_mask, return_attn_weights=return_attn_weights, ) if return_attn_weights: hidden_states = layer_outputs[0] all_self_attentions.append(layer_outputs[1]) else: hidden_states = layer_outputs if return_hidden_states: all_hidden_states.append(hidden_states) if self.final_layer_norm is not None: hidden_states = self.final_layer_norm(hidden_states) return TransformerOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import itertools from typing import Tuple import torch from torch import nn, Tensor class BroadcastedPositionEmbedding(nn.Module): r"""Spatiotemporal broadcasted positional embeddings. Based on broadcasted position embedding algorithm in codebase: https://github.com/wilson1yan/VideoGPT/blob/c21cc7e2579f820cb2b90097406d72cf69a46474/videogpt/attention.py#L458 Each embedding vector of the ``i``-th dim is repeated by ``N`` times, where :math:`N = \prod_{j>i}\text{dim}[j]`. Args: latent_shape (Tuple[int, ...]): Shape of encoded data before batching and embedding. embedding_dim (int): The size of each embedding vector. Raises: ValueError: if ``embedding_dim`` is not an integer multiple of ``len(shape)``. """ def __init__( self, latent_shape: Tuple[int, ...], embedding_dim: int, ) -> None: """ Args: latent_shape (Tuple[int, ...]): Shape of encoded data before batching and embedding. embedding_dim (int): The size of each embedding vector. Raises: ValueError: if ``embedding_dim`` is not an integer multiple of ``len(shape)`` """ super().__init__() if embedding_dim % len(latent_shape) != 0: raise ValueError( f"Embedding dim {embedding_dim} modulo len(latent_shape) {len(latent_shape)} is not zero" ) self.latent_shape = latent_shape self.n_dim = n_dim = len(self.latent_shape) self.embedding_dim = embedding_dim self.embedding = nn.ParameterDict( { f"d_{i}": nn.Parameter( torch.randn(self.latent_shape[i], embedding_dim // n_dim) * 0.01 ) for i in range(n_dim) } ) @property def indices(self) -> Tensor: """Returns broadcasted indices of the data For example:: >>> pos_emb = BroadcastedPositionEmbedding(shape=(2, 3), embedding_dim=6) >>> pos_emb.indices tensor([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2]]) """ return torch.cartesian_prod(*[torch.arange(s) for s in self.latent_shape]) def _broadcast(self, i: int) -> Tensor: """Broadcasts the ``i``-th embedding matrix ``(self.latent_shape[i], self.embedding_dim // n_dim)`` along the other dims of ``self.latent_shape``. The embedding dim is not touched. For example:: >>> pos_emb = BroadcastedPositionEmbedding(shape=(2, 4), embedding_dim=6) >>> print(pos_emb.embedding["d_0"].shape) torch.Size([2, 3]) >>> pos_emb.embedding["d_0"] = nn.Parameter(torch.tensor([[0., 0., 0.], [0., 0., 1.]])) >>> out = pos_emb._broadcast(i=0) >>> print(out) tensor([[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]]]) >>> print(out.shape) (2, 4, 3) The input is broadcasted along the second dim ``4`` since it's the ``0``-th embedding constructed w.r.t the first dim ``2``. """ emb = self.embedding[f"d_{i}"] # (1, ..., 1, self.latent_shape[i], 1, ..., embedding_dim) emb = emb.view( *itertools.repeat(1, i), self.latent_shape[i], *itertools.repeat(1, (self.n_dim - i - 1)), -1, ) # (*self.latent_shape, embedding_dim) emb = emb.expand(*self.latent_shape, -1) return emb def forward(self, position_ids: Tensor) -> Tensor: """ Args: position_ids (Tensor): batches of of 1D integer tensors indicating locations of the broadcasted position embeddings to be returned. Returns: A tensor with the position embeddings selected by position ids. Raises: IndexError: If any position id(s) provided is outside of the indices range. """ invalid_ids = position_ids[ torch.logical_or(position_ids >= len(self.indices), position_ids < -1) ] if len(invalid_ids): raise IndexError(f"Invalid position ids: {invalid_ids}") embeddings = [] for i in range(self.n_dim): emb = self._broadcast(i) embeddings.append(emb) # concatenated embeddings: (*(shape), embedding_dim) embeddings = torch.cat(embeddings, dim=-1) # expand the permuted tensor to form a list of size `n_dim` # where each elm is a tensor of shape (pos_ids, batch) indices = [*self.indices[position_ids].permute(2, 1, 0)] embeddings = embeddings[indices].transpose(0, 1) # (batch, pos_ids, emb_dim) return embeddings
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/position_embedding.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from itertools import repeat from typing import Any, Tuple, Union from torch import nn, Size, Tensor from torch.nn import functional as F class SamePadConv3d(nn.Module): """Performs a same padded convolution on a 3D input. This maintains input shape with unit stride, and divides input dims by non-unit stride. Code reference: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py Args: in_channels (int): Number of channels in input, same as ``nn.Conv3d``. out_channels (int): Number of channels for output, same as ``nn.Conv3d``. kernel_size (int or Tuple[int, int, int]): Size of convolutional filter, same as ``nn.Conv3d``. stride (int or Tuple[int, int, int], optional): Stride for convolution, same as ``nn.Conv3d``. bias (bool, optional): If ``True`` use a bias for convolutional layer or not, same as ``nn.Conv3d``. Defaults to ``True``. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]], stride: Union[int, Tuple[int, int, int]] = 1, bias: bool = True, **kwargs: Any, ) -> None: super().__init__() self.pad_input: Tuple = None self.kernel_size = kernel_size self.stride = stride if "padding" in kwargs: warnings.warn( "Padding was specified but will not be used in favor of same padding, \ use Conv3d directly for custom padding" ) self.conv = nn.Conv3d( in_channels, out_channels, self.kernel_size, stride=self.stride, bias=bias, **kwargs, ) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input of shape ``(b, c, d1, d2, d3)``. """ # Calculate padding needed based on input shape only once to reduce run time if self.pad_input is None: self.pad_input = calculate_same_padding( self.kernel_size, self.stride, x.shape[2:] ) return self.conv(F.pad(x, self.pad_input)) class SamePadConvTranspose3d(nn.Module): """Performs a same padded transposed convolution on a 3D input. This ensures output shape in input shape multiplied by stride. Code reference: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py Args: in_channels (int): Number of channels in input, same as Conv3d out_channels (int): Number of channels for output, same as Conv3d kernel_size (int or Tuple[int, int, int]): Size of convolutional filter, same as Conv3d stride (int or Tuple[int, int, int], optional): Stride for convolution, same as Conv3d bias (bool, optional): If ``True`` use a bias for convolutional layer or not, same as ``nn.Conv3d``. Defaults to ``True``. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]], stride: Union[int, Tuple[int, int, int]] = 1, bias: bool = True, **kwargs: Any, ) -> None: super().__init__() self.pad_input: Tuple = None self.kernel_size = kernel_size self.stride = stride if "padding" in kwargs: warnings.warn( "Padding was specified but will not be used in favor of same padding, \ use ConvTranspose3d directly for custom padding" ) self.convt = nn.ConvTranspose3d( in_channels, out_channels, kernel_size, stride=stride, bias=bias, **kwargs ) def forward(self, x: Tensor) -> Tensor: """ Args: x (Tensor): Input of shape ``(b, c, d1, d2, d3)``. """ # Calculate padding needed based on input shape only once to reduce run time if self.pad_input is None: self.pad_input = calculate_same_padding( self.kernel_size, self.stride, x.shape[2:] ) self.convt.padding, self.convt.output_padding = calculate_transpose_padding( self.kernel_size, self.stride, x.shape[2:], self.pad_input[::-1] ) return self.convt(F.pad(x, self.pad_input)) def calculate_same_padding( kernel_size: Union[int, Tuple[int, ...]], stride: Union[int, Tuple[int, ...]], input_shape: Union[Size, Tuple[int, ...]], ) -> Tuple: """Calculates padding amount on each dimension based on given kernel size and stride. Pads to match the 'SAME' padding in Keras, i.e., with a stride of 1 output is guaranteed to have the same shape as input, with stride 2 the dimensions of output are halved. If stride does not divide into input evenly, then output = ceil(input / stride), following the TensorFlow implementation explained here: https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2 Code reference: https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py Args: kernel_size (int or Tuple[int, ...]): Size of convolutional kernel. stride (int or Tuple[int, ...]): Stride amount of kernel. input_shape (Size or Tuple[int, ...]): Shape of input, without batch or channel dimension. Returns: A tuple of the padding amount in a tuple of tuples for each dimension. """ n_dims = len(input_shape) if isinstance(kernel_size, int): kernel_size = tuple(repeat(kernel_size, n_dims)) if isinstance(stride, int): stride = tuple(repeat(stride, n_dims)) if not (len(kernel_size) == len(stride) == len(input_shape)): raise ValueError("dims for kernel, stride, and input must match") total_pad = [] for k, s, d in zip(kernel_size, stride, input_shape): if d % s == 0: pad = max(k - s, 0) else: pad = max(k - (d % s), 0) total_pad.append(pad) pad_input = [] for p in total_pad[::-1]: # reverse since F.pad starts from last dim pad_input.append(p // 2 + p % 2) pad_input.append(p // 2) pad_input = tuple(pad_input) return pad_input def calculate_transpose_padding( kernel_size: Union[int, Tuple[int, ...]], stride: Union[int, Tuple[int, ...]], input_shape: Union[Size, Tuple[int, ...]], input_pad: Union[int, Tuple[int, ...]] = 0, ) -> Tuple[Tuple, Tuple]: """Calculates padding for transposed convolution based on input dims, kernel size, and stride. Pads to match the 'SAME' padding in Keras, i.e., with a stride of 1 output is guaranteed to have the same shape as input, with stride 2 the dimensions of output are doubled. The 'padding' argument in ConvTranspose effectively trims the output, and the 'output_padding' argument effectively expands the output. These two knobs are adjusted to meet desired output dim. Args: kernel_size (int or Tuple[int, ...]): Size of convolutional kernel. stride (int or Tuple[int, ...]): Stride amount of kernel. input_shape (Size or Tuple[int, ...]): Shape of input, without batch or channel dimension. input_pad (int or Tuple[int, ...]): Amount of padding added to input, must be twice length of kernel/stride/input_shape. Returns: A tuple of padding and output_padding to be used in ConvTranspose layers """ n_dims = len(input_shape) if isinstance(kernel_size, int): kernel_size = tuple(repeat(kernel_size, n_dims)) if isinstance(stride, int): stride = tuple(repeat(stride, n_dims)) if isinstance(input_pad, int): input_pad = tuple(repeat(input_pad, n_dims * 2)) if not (len(kernel_size) == len(stride) == len(input_shape)): raise ValueError("dims for kernel, stride, and input must match") if len(input_pad) % 2 != 0 or len(input_pad) // 2 != len(input_shape): raise ValueError("input_pad length must be twice the number of dims") transpose_pad = [] output_pad = [] # Calculate current projected output dim and adjust padding and output_padding to match # input_dim * stride for a ConvTranspose layer for i, (d, k, s) in enumerate(zip(input_shape, kernel_size, stride)): # Calculate the output dim after transpose convolution: # out_dim = kernel + (in_dim + pad - 1) * stride # This needs to be adjusted with padding to meet desired dim, in_dim * stride output_shape_actual = k + (d + input_pad[2 * i] + input_pad[2 * i + 1] - 1) * s output_shape_expected = d * s # This controls padding argument in ConvTranspose, # where output dim is effectively trimmed by 2 * transpose_pad transpose_pad.append( max((output_shape_actual - output_shape_expected + 1) // 2, 0) ) # This controls output_padding argument in ConvTranspose, # where output dim is expanded by 1 * output_pad output_pad.append( output_shape_expected - (output_shape_actual - transpose_pad[-1] * 2) ) transpose_pad = tuple(transpose_pad) output_pad = tuple(output_pad) return transpose_pad, output_pad
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/conv.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch.nn.functional as F from torch import nn, Tensor class MultiHeadSelfAttention(nn.Module): """ Multihead self attention. Similar to the self attention variant of MHA in attention.py but uses the scaled_dot_product_attention from PyTorch (which uses flash or memory efficient version for certain conditions). TODO: merge this into attention.py once other models are ready to use it. Args: embed_dim (int): embedding dimension of the input num_heads (int): number of attn heads dropout (float): dropout rate """ def __init__(self, embed_dim: int, num_heads: int, dropout: float = 0.0): super().__init__() self.input_proj = nn.Linear(embed_dim, 3 * embed_dim) self.output_proj = nn.Linear(embed_dim, embed_dim) self.num_heads = num_heads self.dropout = dropout def forward( self, query: Tensor, attn_mask: Optional[Tensor] = None, is_causal: bool = False, ) -> Tensor: """ Args: query (Tensor): input query of shape bsz x seq_len x embed_dim attn_mask (optional Tensor): attention mask of shape bsz x seq_len x seq_len. Two types of masks are supported. A boolean mask where a value of True indicates that the element should take part in attention. A float mask of the same type as query that is added to the attention score. is_causal (bool): If true, does causal attention masking. attn_mask should be set to None if this is set to True Returns: attention output Tensor of shape bsz x seq_len x embed_dim """ bsz = query.size(0) embed_dim = query.size(-1) projected_query = self.input_proj(query) query, key, value = projected_query.chunk(3, dim=-1) head_dim = embed_dim // self.num_heads # bsz x seq len x embed_dim => bsz x num_heads x seq len x head_dim query = query.view(bsz, -1, self.num_heads, head_dim).transpose(1, 2) key = key.view(bsz, -1, self.num_heads, head_dim).transpose(1, 2) value = value.view(bsz, -1, self.num_heads, head_dim).transpose(1, 2) attn = F.scaled_dot_product_attention( query, key, value, attn_mask, self.dropout, is_causal ) attn = attn.transpose(1, 2).reshape(bsz, -1, embed_dim) attn_out = self.output_proj(attn) return attn_out
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/layers/multi_head_attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn, Tensor POOLING_TYPES = ["sum", "mean", "max"] class EmbeddingEncoder(nn.Module): """Combine embeddings for tensor representing list of indices based on pooling type Args: embedding (nn.Embedding): embedding module pooling_type (str): pooling function to combine the embeddings like sum. Choose from pooling_types pooling_dim (int) : dimension along which the pooling function is applied use_hash (bool): if hashing based on embedding vocab size if applied to input before embedding layer Inputs: x (Tensor): Tensor bsz x max seq length representing (padded) list of indices for embedding """ def __init__( self, embedding: nn.Embedding, pooling_type: str, pooling_dim: int = 1, use_hash: bool = False, ): super().__init__() self.embedding = embedding if pooling_type not in POOLING_TYPES: raise ValueError( f"pooling type should be in {POOLING_TYPES}, found {pooling_type}" ) self.pooling_type = pooling_type self.pooling_dim = pooling_dim self.use_hash = use_hash def forward(self, x: Tensor) -> Tensor: if self.use_hash: x = x % (self.embedding.num_embeddings - 1) + 1 out = self.embedding(x) if self.pooling_type == "sum": out = torch.sum(out, dim=self.pooling_dim) elif self.pooling_type == "mean": out = torch.mean(out, dim=self.pooling_dim) else: out = torch.max(out, dim=self.pooling_dim).values return out
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/encoders/embedding_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Modified from 2d Swin Transformers in torchvision: # https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py from typing import Callable, List, Optional from torch import nn from torchvision.models.video.swin_transformer import ( PatchMerging, SwinTransformer3d as TVSwinTransformer3d, ) class SwinTransformer3d(TVSwinTransformer3d): """ Implements 3D Swin Transformer from the `"Video Swin Transformer" <https://arxiv.org/abs/2106.13230>`_ paper. We upstream the model from torchvision: https://github.com/pytorch/vision/blob/main/torchvision/models/video/swin_transformer.py#L363 Args: patch_size (List[int]): Patch size. embed_dim (int): Patch embedding dimension. depths (List(int)): Depth of each Swin Transformer layer. num_heads (List(int)): Number of attention heads in different layers. window_size (List[int]): Window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. dropout (float): Dropout rate. Default: 0.0. attention_dropout (float): Attention dropout rate. Default: 0.0. stochastic_depth_prob (float): Stochastic depth rate. Default: 0.0. num_classes (int, optional): Number of classes for classification head, if None it will have no head. Default: 400. block (nn.Module, optional): SwinTransformer Block. Default: None. norm_layer (nn.Module, optional): Normalization layer. Default: None. patch_embed (nn.Module, optional): Patch Embedding layer. Default: None. """ def __init__( self, patch_size: List[int], embed_dim: int, depths: List[int], num_heads: List[int], window_size: List[int], mlp_ratio: float = 4.0, dropout: float = 0.0, attention_dropout: float = 0.0, stochastic_depth_prob: float = 0.0, num_classes: Optional[int] = 400, norm_layer: Optional[Callable[..., nn.Module]] = None, block: Optional[Callable[..., nn.Module]] = None, downsample_layer: Callable[..., nn.Module] = PatchMerging, patch_embed: Optional[Callable[..., nn.Module]] = None, ): # Create non-optional _num_classes to construct torchvision SwinTransformer3d _num_classes = 400 if num_classes is not None: _num_classes = num_classes super().__init__( patch_size=patch_size, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, dropout=dropout, attention_dropout=attention_dropout, stochastic_depth_prob=stochastic_depth_prob, num_classes=_num_classes, norm_layer=norm_layer, block=block, downsample_layer=downsample_layer, patch_embed=patch_embed, ) if num_classes is None: # Convert the head into identity self.head = nn.Identity()
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/encoders/swin_transformer_3d_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, List, Optional, Union import torch from torch import nn, Tensor from torchmultimodal.modules.fusions.deepset_fusion import ( DeepsetFusionModule, DeepsetFusionWithTransformer, ) class MILEncoder(nn.Module): """ Multi instance learning encoder that partitions the input into a set of inputs and uses a shared encoder followed by deepset fusion to get a pooled representation of the entire input. Example use is to build a single representation from embeddings of all images in a post. Args: partition_sizes (List[int]): list of size for each partition of the input shared_encoder (nn.Module): Shared encoder for each partition of the input. shared_encoder_dim (int) : Output dimension of the encoders Following fields are same as the params for deepset fusion mlp (nn.Module): MLP with in dim as projection dim (min of embed dim).\ Use MLP from mlp_classifier for default mlp implementation. pooling_function (Callable): Pooling function to combine the tensors,\ like torch.median apply_attention (bool): If self attention is applied before\ stacking embeddings, defaults to False modality_normalize (bool): If normalization is applied along the modality axis,\ defaults to False norm_factor(float): norm factor for normalization, defaults to 2.0 use_auto_mapping(bool): If true, projection layer to min embedding dim \ is applied to the embeddings. defaults to False """ def __init__( self, partition_sizes: List[int], shared_encoder: nn.Module, shared_encoder_dim: int, mlp: nn.Module, pooling_function: Callable, apply_attention: bool = False, attention_dim: Optional[int] = None, modality_normalize: bool = False, norm_factor: float = 2.0, use_auto_mapping: bool = False, ): super().__init__() self.partition_sizes = partition_sizes self.shared_encoder = shared_encoder channel_to_encoder_dim = {} for i in range(len(partition_sizes)): channel_to_encoder_dim[self.get_channel_name(i)] = shared_encoder_dim deepset_fusion_cls = ( DeepsetFusionWithTransformer if isinstance(pooling_function, nn.TransformerEncoder) else DeepsetFusionModule ) self.deepset_fusion: Union[ DeepsetFusionWithTransformer, DeepsetFusionModule ] = deepset_fusion_cls( channel_to_encoder_dim=channel_to_encoder_dim, mlp=mlp, pooling_function=pooling_function, # type: ignore apply_attention=apply_attention, attention_dim=attention_dim, modality_normalize=modality_normalize, norm_factor=norm_factor, use_auto_mapping=use_auto_mapping, ) def get_channel_name(self, id: int) -> str: # create dummy channel name to pass to fusion return f"mil_{id}" def forward(self, x: Tensor) -> Tensor: idx = 0 input_size = x.size(dim=1) if input_size != sum(self.partition_sizes): raise ValueError( f"partition sizes should sum to the input size {input_size}" ) partitioned_input = torch.split(x, self.partition_sizes, dim=1) encoded_input = {} for idx, input in enumerate(partitioned_input): key = self.get_channel_name(idx) encoded_input[key] = self.shared_encoder(input) return self.deepset_fusion(encoded_input)
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/encoders/mil_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/encoders/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Tuple, Union import torch from torch import nn, Tensor class WeightedEmbeddingEncoder(nn.Module): """Combine weighted embeddings for tensor representing list of indices based on pooling type. Args: embedding (nn.Embedding): embedding module pooling_function (Callable[[Tensor, int], Union[Tensor, Tuple]]): pooling function to combine the weighted embeddings,\ example: torch.sum function should return a tensor or namedtuple containing the tensor in the values field like torch.max pooling_dim (int) : dimension along which the pooling function is applied Inputs: weights (Tensor): A float tensor of shape [batch_size x num_categories] containing the weights of a categorical feature.\ The weights represent multiplier factors for the corresponding category embedding vectors. """ def __init__( self, embedding: nn.Embedding, pooling_function: Callable[[Tensor, int], Union[Tensor, Tuple]], pooling_dim: int = 1, ) -> None: super().__init__() self.embedding = embedding self.pooling_function = pooling_function self.pooling_dim = pooling_dim def forward(self, weights: Tensor) -> Tensor: index = torch.arange(0, weights.size(1), dtype=torch.int) index = index.to(weights.device) weighted_embeddings = self.embedding(index) * weights.unsqueeze(-1) pooled_embeddings = self.pooling_function(weighted_embeddings, self.pooling_dim) if isinstance(pooled_embeddings, Tensor): output: Tensor = pooled_embeddings else: assert hasattr( pooled_embeddings, "values" ), "pooled embeddings should be Tensor or tuple with values field as Tensor" output = pooled_embeddings.values # type: ignore return output
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/encoders/weighted_embedding_encoder.py