python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Optional import torch from torch import nn, Tensor from torchmultimodal.modules.layers.text_embedding import BERTTextEmbeddings from torchmultimodal.modules.layers.transformer import ( TransformerEncoder, TransformerOutput, ) from torchmultimodal.utils.attention import get_extended_attention_mask class BERTTextEncoder(nn.Module): """ General text transformer encoder with embeddings, following BERT. Can be constructed with any user-provided embeddings and encoder. Based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py#L870 Attributes: embeddings (nn.Module): Module that projects text token ids into embeddings. See :py:class: `torchmultimodal.modules.layers.text_embedding.BERTTextEmbeddings` for interface. encoder (nn.Module): Module for transformer encoder. See :py:class: `torchmultimodal.modules.layers.transformer.TransformerEncoder` for interface. layernorm (nn.Module, optional): Module for layernorm to be applied after encoder. Defaults to ``None``. pooler (nn.Module, optional): Module for pooler to be applied after layernorm. Defaults to ``None``. weight_init_fn (Callable, optional): function for custom weight initialization of both the transformer encoder and embeddings. See :py:func: `torchmultimodal.models.flava.transformer.init_transformer_weights` as an example. Defaults to ``None``. Args: input_ids (Tensor, optional): Tensor of input vocab token ids of shape [batch, seq_len]. attention_mask (Tensor, optional): Tensor indicating which tokens to attend to, shape [batch, seq_len] token_type_ids (Tensor, optional): Tensor of input token type ids of shape [batch, seq_len]. In BERT, used to indicate whether a word is in sentence A or B for next sentence prediction position_ids (Tensor, optional): Tensor of input position ids of shape [batch, seq_len] inputs_embeds (Tensor, optional): Tensor of input embeddings of shape [batch, hidden_size], if embeddings are calculated elsewhere Raises: ValueError: if input_ids and inputs_embeds are both ``None``. """ def __init__( self, embeddings: nn.Module, encoder: nn.Module, layernorm: Optional[nn.Module] = None, pooler: Optional[nn.Module] = None, weight_init_fn: Optional[Callable] = None, ) -> None: super().__init__() self.embeddings = embeddings self.encoder = encoder # TODO: could be upstreamed to TransformerEncoder? self.layernorm = layernorm self.pooler = pooler if weight_init_fn: self.apply(weight_init_fn) def forward( self, input_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, position_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, return_attn_weights: bool = False, return_hidden_states: bool = False, ) -> TransformerOutput: if input_ids is not None: input_shape = input_ids.size() device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device else: raise ValueError("input_ids or inputs_embeds must not be None") # only mask out padding token if no mask specified if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if hasattr(self.embeddings, "pad_token_id"): attention_mask[input_ids == self.embeddings.pad_token_id] = 0 # massage attention mask to correct shape for transformer attention_mask = get_extended_attention_mask(attention_mask) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_output = self.encoder( embedding_output, attention_mask=attention_mask, return_attn_weights=return_attn_weights, return_hidden_states=return_hidden_states, ) last_hidden_state = encoder_output.last_hidden_state pooled_output = encoder_output.pooler_output if self.layernorm: last_hidden_state = self.layernorm(last_hidden_state) if self.pooler: pooled_output = self.pooler(last_hidden_state) return TransformerOutput( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_output.hidden_states, attentions=encoder_output.attentions, ) def bert_text_encoder( # transformer encoder params hidden_size: int = 768, num_hidden_layers: int = 6, num_attention_heads: int = 12, intermediate_size: int = 3072, dropout: float = 0.1, transform_act_fn: Callable[..., nn.Module] = nn.GELU, layer_norm_eps: float = 1e-12, norm_first: bool = False, # text embedding params vocab_size: int = 30522, max_position_embeddings: int = 512, type_vocab_size: int = 2, pad_token_id: int = 0, offset_pos_ids: bool = False, # layernorm and pooler layernorm: Optional[nn.Module] = None, pooler: Optional[nn.Module] = None, weight_init_fn: Optional[Callable] = None, ) -> BERTTextEncoder: """ Returns a BERTTextEncoder with default params identical to HuggingFace's ``bert-base-uncased``. Ref: https://huggingface.co/bert-base-uncased/resolve/main/config.json. See :py:class: `torchmultimodal.modules.layers.text_embedding.BERTTextEmbeddings` and :py:class: `torchmultimodal.modules.layers.transformer.TransformerEncoder` for details on parameters. """ embeddings = BERTTextEmbeddings( hidden_size=hidden_size, vocab_size=vocab_size, pad_token_id=pad_token_id, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, layer_norm_eps=layer_norm_eps, dropout=dropout, offset_pos_ids=offset_pos_ids, ) encoder = TransformerEncoder( n_layer=num_hidden_layers, d_model=hidden_size, n_head=num_attention_heads, dim_feedforward=intermediate_size, dropout=dropout, activation=transform_act_fn, layer_norm_eps=layer_norm_eps, norm_first=norm_first, ) return BERTTextEncoder( embeddings=embeddings, encoder=encoder, layernorm=layernorm, pooler=pooler, weight_init_fn=weight_init_fn, )
EXA-1-master
exa/libraries/multimodal-main/torchmultimodal/modules/encoders/bert_text_encoder.py
import os import pandas as pd from tqdm import tqdm BASE_URL="https://archive.org/download/stackexchange/" table = pd.read_html(BASE_URL)[0] sources = [x.replace(" (View Contents)", "") for x in table['Name'].tolist()] sources = [x for x in sources if x.endswith(".7z")] for source in tqdm(sources): # if ".meta." not in source: print(f"source: {source}") os.system("wget "+BASE_URL+source+" -O "+"./data/"+source) os.system("7z x ./data/"+source+" -o./data/"+source[:-3]) os.system(f"mv ./data/{source[:-3]}/Posts.xml ./data/{source[:-3]}.xml") os.system(f"rm -rf ./data/{source[:-3]}") os.system(f"rm ./data/{source}")
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/stack_exchange/download.py
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/stack_exchange/__init__.py
import os import json LEMMA_DATA_DIR_SE_OUT = os.environ.get("LEMMA_DATA_DIR_SE_OUT", "./data/") if __name__ == "__main__": with open(os.path.join(LEMMA_DATA_DIR_SE_OUT,"token_counts", "tokens.json"), "r") as f: counts = json.load(f) ''' print a table of the counts ''' print("|Idx|Site|Token Count|") print("|---|---|---|") for idx, (site, count) in enumerate(counts.items()): print(f"|{idx}|{site}|{count}|") print(f"|{len(counts.values())}|Total|{sum(counts.values())}|")
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/stack_exchange/print_stats.py
import os import json import tiktoken from multiprocessing import Pool from transformers import AutoTokenizer # enc = tiktoken.get_encoding("r50k_base") enc = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", # "gpt2" ) def get_token_count(qa_pair): # return len(enc.encode(qa_pair['text'])) return len(enc.tokenize(qa_pair['text'])) LEMMA_DATA_DIR_SE_OUT = os.environ.get("LEMMA_DATA_DIR_SE_OUT", "./stackexchange/") # if x is a file, not a dir sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts"), exist_ok=True) token_counts = {} for site in sites: print(f"[INFO] Processing {site}...") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] print(f"[INFO] Got {len(qa_pairs)} QA pairs for {site}.") # token count token_count = 0 with Pool(24) as p: token_count = sum(p.map(get_token_count, qa_pairs)) token_counts[site] = token_count print(f"[INFO] Got {token_count} tokens for {site}.") # write to file with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts", "tokens.json"), "w") as f: json.dump(token_counts, f)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/stack_exchange/token_count.py
import os import json import sys import xml.etree.ElementTree as ET from tqdm import tqdm sys.path.append("./") from src.stack_exchange.count import get_sites_count LEMMA_DATA_DIR_SE = os.environ.get("LEMMA_DATA_DIR_SE", "./data/") if os.path.exists(os.path.join(LEMMA_DATA_DIR_SE, "counts.json")): with open(os.path.join(LEMMA_DATA_DIR_SE, "counts.json"), "r") as fp: counts = json.load(fp) else: print("[INFO] Getting counts for sites...") counts = get_sites_count(LEMMA_DATA_DIR_SE) # write this to a file with open(os.path.join(LEMMA_DATA_DIR_SE, "counts.json"), "w") as f: json.dump(counts, f) # take first 28 sites = list(counts.keys())[:28] os.makedirs(os.path.join(LEMMA_DATA_DIR_SE, "parents"), exist_ok=True) def process_site(site): parents = {} qa_pairs = [] print(f"[INFO] Processing {site}...") # first get the parents dump if os.path.exists(os.path.join(LEMMA_DATA_DIR_SE, "parents", site)): with open(os.path.join(LEMMA_DATA_DIR_SE, "parents", site), "r") as f: parents = json.load(f) else: with open(os.path.join(LEMMA_DATA_DIR_SE, site), "r") as f: for i, line in enumerate(tqdm(f, total=counts[site])): # first 2 lines are header # e.g., counts = 2: total=5 lines, 2,3 are data # last line is footer if i>1 and i<=counts[site]+1: root = ET.fromstring(line) if "ParentId" in root.attrib: # this is an answer if root.attrib["ParentId"] not in parents: parents[root.attrib["ParentId"]] = [] parents[root.attrib["ParentId"]].append({ "id": root.attrib["Id"], "text": root.attrib["Body"], "score": root.attrib["Score"] }) # write parents to file with open(os.path.join(LEMMA_DATA_DIR_SE, "parents", site), "w") as f: json.dump(parents, f) print(f"[INFO] Got {len(parents)} questions for {site}.") # now we have the Q-A pairs # now we need to get the texts with open(os.path.join(LEMMA_DATA_DIR_SE, site), "r") as f: for i, line in enumerate(tqdm(f, total=counts[site])): if i>1 and i<=counts[site]+1: root = ET.fromstring(line) if "ParentId" not in root.attrib: post_id = root.attrib["Id"] if post_id in parents: # this is a question qa_pairs.append({ "question": { "id": post_id, "text": f"{root.attrib['Title']} {root.attrib['Body']}", "score": root.attrib["Score"] }, "answers": parents[post_id] }) else: if "Title" in root.attrib: # if there's a title => then a valid question body = root.attrib["Body"] if "Body" in root.attrib else "" score = root.attrib["Score"] if "Score" in root.attrib else 0 qa_pairs.append({ "question": { "id": post_id, "text": f"{root.attrib['Title']} {body}", "score": score }, }) # write qa_pairs to file print(f"[INFO] Writing {site} to file...") os.makedirs(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs"), exist_ok=True) with open(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs", site.removesuffix(".xml")+".jsonl"), "w") as f: for qa_pair in qa_pairs: f.write(json.dumps(qa_pair)+"\n") for each in sites: process_site(each)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/stack_exchange/filter.py
import re import os import sys import json import fasttext from bs4 import BeautifulSoup from multiprocessing import Pool sys.path.append("./") site_name = "" CLEANR = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});') def cleanhtml(raw_html): raw_html = raw_html.replace("<li>", "\n*") raw_html = raw_html.replace("</li>", "") raw_html = raw_html.replace("<ol>", "\n*") raw_html = raw_html.replace("</ol>", "") soup = BeautifulSoup(raw_html, "lxml") return soup.get_text() class LanguageIdentification: def __init__(self): pretrained_lang_model = "data/lid.176.bin" self.model = fasttext.load_model(pretrained_lang_model) def predict_lang(self, text): text = text.replace("\n", " ") predictions = self.model.predict(text, k=1) # returns top 2 matching languages return predictions[0][0].replace("__label__", "") lang_id = LanguageIdentification() LEMMA_DATA_DIR_SE = os.environ.get("LEMMA_DATA_DIR_SE", "./data/") LEMMA_DATA_DIR_SE_OUT = os.environ.get("LEMMA_DATA_DIR_SE_OUT", "./data/") os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT), exist_ok=True) def process_qa_pair(pair): # sort answers by score if "answers" in pair: pair["answers"] = sorted(pair["answers"], key=lambda x: x["score"], reverse=True) answers = "\nA: ".join([ cleanhtml(x["text"]) for x in pair["answers"]]) text = f"Q: { cleanhtml(pair['question']['text'])}\nA: {answers}" else: text = f"Q: { cleanhtml(pair['question']['text'])}" return { "text": text, "meta": { "language": lang_id.predict_lang(text), "url": f"https://{site_name}/questions/{pair['question']['id']}", "timestamp": "2023-03-29", "source": "stackexchange", "question_score": pair["question"]["score"], } } # load qa_pairs sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs"))] # if needed: # sort sites such that stackoverflow is processed first - to understand the memory pressure # if OOM -> split stackoverflow into multiple files # this won't hurt the completeness of the data, as each line is self-contained for site in sites: print(f"Processing {site}") results = [] site_name = site.removesuffix(".jsonl") if "stackoverflow_part" in site_name: site_name = "stackoverflow.com" # load qa_pairs with open(os.path.join(LEMMA_DATA_DIR_SE, "qa_pairs", site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] # process html to text with Pool(24) as p: results = p.map(process_qa_pair, qa_pairs) print(f"Writing {len(results)} results to {os.path.join(LEMMA_DATA_DIR_SE_OUT, site)}") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "w") as f: for result in results: f.write(json.dumps(result) + "\n")
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/stack_exchange/post_processing.py
import os import json from tqdm import tqdm import xml.etree.ElementTree as ET LEMMA_DATA_DIR_SE = os.environ.get("LEMMA_DATA_DIR_SE", "./data/stack_exchange/") def get_sites_count(path=LEMMA_DATA_DIR_SE): sites = os.listdir(path) sites = [x for x in sites if x.endswith(".xml")] counts = {} for site in tqdm(sites): if site == ".DS_Store": continue # read the file with open(os.path.join(path, site), "r") as f: # read # lines count = sum(1 for line in f) counts[site] = count-3 # subtract the header # sort the counts counts = {k: v for k, v in sorted(counts.items(), key=lambda item: item[1], reverse=True)} return counts if __name__ == "__main__": counts = get_sites_count() ''' print a table of the counts ''' print("|Idx|Site|Count|") print("|---|---|---|") # take the first 28 sites for idx, (site, count) in enumerate(counts.items()): if idx < 28: print(f"|{idx}|{site}|{count}|") # write to file with open(os.path.join(LEMMA_DATA_DIR_SE, "counts.json"), "w") as f: json.dump(counts, f)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/stack_exchange/count.py
import argparse from datasets import load_dataset import pathlib parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default=None, help="Path to the wikipedia data directory.") args = parser.parse_args() LANGUAGES = [ "bg", "ca", "cs", "da", "de", "en", "es", "fr", "hr", "hu", "it", "nl", "pl", "pt", "ro", "ru", "sl", "sr", "sv", "uk" ] DUMP_DATE = "20230320" def get_data(lan, date, data_dir: pathlib.Path): wiki_dataset = load_dataset( "wikipedia", language=lan, date=date, beam_runner="DirectRunner" ) for split, dataset in wiki_dataset.items(): tgt_fp = data_dir / f"wiki_{lan}_{date}_{split}.jsonl" dataset.to_json(tgt_fp) print("Finished Downloading %s %s. There are total %d pages." % ( lan, date, len(dataset["id"]))) if __name__ == "__main__": if args.data_dir is None: raise ValueError("missing arg --data_dir.") for lang in LANGUAGES: get_data(lang, DUMP_DATE, data_dir=pathlib.Path(args.data_dir))
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/wiki/download.py
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/wiki/__init__.py
import os import json from multiprocessing import Pool from transformers import AutoTokenizer print("start loading!") enc = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", ) print("end loading!") def get_token_count(qa_pair): return len(enc.tokenize(qa_pair['text'])) LEMMA_DATA_DIR_SE_OUT = "./data/wikipedia/" sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts"), exist_ok=True) token_counts = {} for site in sites: print(f"[INFO] Processing {site}...") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] print(f"[INFO] Got {len(qa_pairs)} wikipedia pages for {site}.") token_count = 0 with Pool(100) as p: token_count = sum(p.map(get_token_count, qa_pairs)) token_counts[site] = token_count print(f"[INFO] Got {token_count} tokens for {site}.") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts", site), "w") as f: json.dump(token_counts, f)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/wiki/token_count.py
import os import json LEMMA_DATA_DIR_SE_OUT = "./data/wikipedia/" LEMMA_DATA_SAVE_DIR = "./data/wikipedia/wiki-full.jsonl" files = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] files.sort() with open(LEMMA_DATA_SAVE_DIR, "w") as fw: for file in files: lan = file.split("_")[1] date = file.split("_")[2] print("Now proceeding %s"%file, lan, date) with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, file), "r") as f: lines = f.readlines() for line in lines: now = json.loads(line) new = {"text": now["text"], "meta": {"title": now["title"], "url": now["url"], "language": lan, "timestamp": date}} fw.write(json.dumps(new) + "\n")
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/wiki/convert_format.py
import argparse import hashlib import gzip import json import re import uuid from datetime import datetime from typing import Dict, Union import pathlib parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, default=None) parser.add_argument('--target_dir', type=str, default="./data/github/processed") args = parser.parse_args() # Regex to strip repated copyright comment blocks CPAT = re.compile("copyright", re.IGNORECASE) PAT = re.compile("/\\*[^*]*\\*+(?:[^/*][^*]*\\*+)*/") def get_timestamp() -> str: return datetime.now().isoformat() def clean_copyright_comments(content: str): r = PAT.search(content) if r: # found one, now see if it contains "copyright", if so strip it span = r.span() sub = content[span[0]:span[1]] if CPAT.search(sub): # cut it content = content[: span[0]] + content[span[1]:] return content lines = content.split('\n') skip = 0 # Greedy replace any file that begins with comment block, most # are copyright headers for k in range(len(lines)): if ( lines[k].startswith("//") or lines[k].startswith("#") or lines[k].startswith("--") or not lines[k] ): skip = skip + 1 else: break if skip: # we skipped, consume it content = "\n".join(lines[skip:]) return content def get_filecontent_stats(content: str) -> Dict[str, Union[int, str]]: # split content into lines and get line lengths line_lengths = list(map(len, content.splitlines())) if len(line_lengths) == 0: return { "line_count": 0, "max_line_length": 0, "avg_line_length": 0, "alnum_prop": 0, } # get max line length max_length = max(line_lengths) # get average line length avg_length = len(content) / len(line_lengths) # get proportion of alphanumeric characters alnum_count = sum(map(lambda char: 1 if char.isalnum() else 0, content)) alnum_prop = alnum_count / len(content) return { "line_count": len(line_lengths), "max_line_length": max_length, "avg_line_length": avg_length, "alnum_prop": alnum_prop, } def preprocess_source(source_fp: pathlib.Path, hash_table: dict): chunk_stats = [] cleaned_records = [] with gzip.open(source_fp, mode="rt", encoding="utf-8") as in_file: while True: jstr = in_file.readline() if not jstr: break result = json.loads(jstr) # skip pub/key certfiicates if result['path'].endswith(".crt"): continue if result['path'] == "LICENSE": continue # comptue hash of content digest = hashlib.md5(result['content'].encode('utf8')).hexdigest() # skip if we've seen this before if digest in hash_table: continue # add to hash table hash_table[digest] = 1 # look for C style multi line comment blocks try: content = clean_copyright_comments(result['content']) except Exception as e: print(f"[{get_timestamp()}][ERROR] " f"fp={source_fp}; " f"Error cleaning copyright comments: {e}") continue # get file content stats (line count, max line length, avg line # length) try: file_stats = get_filecontent_stats(content) except Exception as e: print(f"[{get_timestamp()}][ERROR] " f"fp={source_fp}; " f"Error getting file stats: {e}") continue # add hash to file stats for later deduplication file_stats["content_hash"] = digest file_stats["path"] = result.get('path', "") chunk_stats.append(file_stats) # bring result into the right format record = { "text": content, "meta": { "content_hash": digest, "timestamp": "", "source": "github", "line_count": file_stats["line_count"], "max_line_length": file_stats["max_line_length"], "avg_line_length": file_stats["avg_line_length"], "alnum_prop": file_stats["alnum_prop"], **{ k: v for k, v in result.items() if k != "content" } } } cleaned_records.append(record) return chunk_stats, cleaned_records def main(): flush_every = 20 run_id = uuid.uuid4().hex run_fp = pathlib.Path(args.target_dir) / f"run_{run_id}.jsonl" stats_fp = pathlib.Path(args.target_dir) / f"stats_{run_id}.jsonl" print(f"[{get_timestamp()}][INFO] Writing records to {run_fp}") print(f"[{get_timestamp()}][INFO] Writing stats to {stats_fp}") stats_file = open(stats_fp, "w") records_file = open(run_fp, "w") # process list of *.gz files in input_file with open(args.input, "r") as input_file: files_to_process = input_file.readlines() total_files_to_process = len(files_to_process) hash_table = {} for file_num, fp in enumerate(files_to_process, start=1): fp = fp.strip() if not fp: print(f"[{get_timestamp()}][WARNING]" f"[{file_num}/{total_files_to_process}] " f"Skipping empty line {fp}") continue if not fp.endswith(".gz"): print(f"[{get_timestamp()}][WARNING]" f"[{file_num}/{total_files_to_process}] " f"Skipping {fp}") continue source_fp = pathlib.Path(fp) print(f"[{get_timestamp()}][INFO]" f"[{file_num}/{total_files_to_process}] " f"Processing {fp}") # get file stats and clean records chunk_stats, cleaned_records = preprocess_source( source_fp, hash_table ) # write out stats for stats in chunk_stats: stats_file.write(json.dumps(stats) + "\n") # write out cleaned records for record in cleaned_records: records_file.write(json.dumps(record) + "\n") if file_num % flush_every == 0: # make sure data is written to disk print(f"[{get_timestamp()}][INFO] Flushing ...") stats_file.flush() records_file.flush() stats_file.close() records_file.close() if __name__ == '__main__': main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/github/github_clean_dedup_local.py
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/github/__init__.py
import argparse from datetime import datetime import json import multiprocessing as mp import os import gzip from transformers import AutoTokenizer import pathlib parser = argparse.ArgumentParser() parser.add_argument('--data_file', type=str, default=None) parser.add_argument('--target_dir', type=str, default=None) args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-6.9b-deduped") extensions_whitelist = (".asm", ".bat", ".cmd", ".c", ".h", ".cs", ".cpp", ".hpp", ".c++", ".h++", ".cc", ".hh", ".C", ".H", ".cmake", ".css", ".dockerfile", ".f90", ".f", ".f03", ".f08", ".f77", ".f95", ".for", ".fpp", ".go", ".hs", ".html", ".java", ".js", ".jl", ".lua", ".md", ".markdown", ".php", ".php3", ".php4", ".php5", ".phps", ".phpt", ".pl", ".pm", ".pod", ".perl", ".ps1", ".psd1", ".psm1", ".py", ".rb", ".rs", ".sql", ".scala", ".sh", ".bash", ".command", ".zsh", ".ts", ".tsx", ".tex", ".vb", "Dockerfile", "Makefile", ".xml", ".rst", ".m", ".smali") def get_token_count(text): token_count = len(tokenizer.tokenize(text)) return token_count def get_timestamp() -> str: return datetime.now().isoformat() def discard_record(record): """ return True if we discard the record """ text = record["text"] metadata = record["meta"] # discard empty records if len(text) == 0: return True # discard all records that are not whitelisted if not metadata["path"].endswith(extensions_whitelist): return True # discard files whose maximum line length is greater than 1000 if metadata["max_line_length"] > 1000: return True # discard files whose average line length is greater than 100 if metadata["avg_line_length"] > 100: return True # discard files whose proportion of alphanumeric characters is less than # 0.25 if metadata["alnum_prop"] < 0.25: return True num_tokens = get_token_count(text) num_alpha = len([c for c in text if c.isalpha()]) if num_alpha / num_tokens < 1.5: return True return False def filter_line(line): try: record = json.loads(line) except json.decoder.JSONDecodeError: return None if discard_record(record): return None return line def process_lines_batch(lines_batch, out_file, num_cpus): if len(lines_batch) == 0: return with mp.Pool(processes=num_cpus - 1) as pool: filtered_lines = pool.map(filter_line, lines_batch) for line in filtered_lines: if line is not None: out_file.write(line) out_file.flush() def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", mp.cpu_count())) batch_size = num_cpus * 5_000 input_fp = pathlib.Path(args.data_file) target_dir = pathlib.Path(args.target_dir) output_fp = target_dir / input_fp.name.replace("deduped_", "filtered_") output_fp = output_fp.with_suffix(".jsonl.gz") print(f"[{get_timestamp()}][INFO] Processing {input_fp}") print(f"[{get_timestamp()}][INFO] Writing to {output_fp}") out_file = gzip.open(output_fp, "wt", encoding="utf-8") try: with open(input_fp, "r") as in_file: while True: lines_batch = [] # accumulate batch while True: line = in_file.readline() if not line: raise StopIteration lines_batch.append(line) if len(lines_batch) == batch_size: break process_lines_batch(lines_batch, out_file, num_cpus) except StopIteration: process_lines_batch(lines_batch, out_file, num_cpus) out_file.close() if __name__ == "__main__": main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/github/github_run_filter.py
import argparse import os from transformers import AutoTokenizer import json import multiprocessing as mp import pathlib from datetime import datetime parser = argparse.ArgumentParser() parser.add_argument('--data_file', type=str, default=None) args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-6.9b-deduped") FRACTION = 0.1 def get_timestamp() -> str: return datetime.now().isoformat() def get_token_count(text): return len(tokenizer.tokenize(text)) def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", mp.cpu_count())) data_fp = pathlib.Path(args.data_file) # get total number of records in file print(f"[{get_timestamp()}][INFO] Counting records in {data_fp} ...") with open(data_fp, "r") as f: num_records = sum(1 for _ in f) print(f"[{get_timestamp()}][INFO] Found {num_records} records.") print(f"[{get_timestamp()}][INFO] Loading data...") with open(data_fp, "r") as f: # get a batch of records records = [] for _ in range(int(num_records * FRACTION)): line = f.readline() if not line: break try: record = json.loads(line) except json.decoder.JSONDecodeError: continue records.append(record["text"]) print(f"[{get_timestamp()}][INFO] Start token count...") # count tokens in records with mp.Pool(num_cpus) as pool: token_counts = pool.map(get_token_count, records) total_token_count = sum(token_counts) result = { "total_token_count": total_token_count, "sampling_fraction": FRACTION, "total_count_estimate": total_token_count / FRACTION } out_fp = data_fp.parent / \ f"{data_fp.stem.replace('deduped', 'token_count')}.json" with open(out_fp, mode="w") as out: out.write(json.dumps(result)) print(json.dumps(result, indent=4)) print(f"[{get_timestamp()}][INFO] Result written to {out_fp}.") print(f"[{get_timestamp()}][INFO] Done.") if __name__ == '__main__': main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/github/github_token_count.py
import argparse import json from datetime import datetime from typing import Dict import pathlib parser = argparse.ArgumentParser() parser.add_argument('--first_step_dir', type=str, default=None) parser.add_argument('--target_dir', type=str, default=None) args = parser.parse_args() def get_timestamp() -> str: return datetime.now().isoformat() def process_stats_file(source_fp: pathlib.Path, hash_table: Dict[str, str]): deduped_stats = [] deduped_hashes = [] with open(source_fp, mode="r") as in_file: while True: jstr = in_file.readline() if not jstr: break record_stats = json.loads(jstr) content_hash = record_stats["content_hash"] if content_hash in hash_table: # skip this record since it's a duplicate continue hash_table[content_hash] = content_hash deduped_stats.append(record_stats) deduped_hashes.append(content_hash) return hash_table, deduped_stats, deduped_hashes def main(): first_step_dir = pathlib.Path(args.first_step_dir) deduped_stats_fp = pathlib.Path(args.target_dir) / "stats_deduped.jsonl" print(f"[{get_timestamp()}][INFO] Deduplicating " f"records from {first_step_dir}") # get list of stats files stats_filepaths = list(first_step_dir.glob("stats_*.jsonl")) total_files_to_process = len(stats_filepaths) deduped_stats_file = open(deduped_stats_fp, "w") hash_set = {} for file_num, fp in enumerate(stats_filepaths, start=1): print(f"[{get_timestamp()}][INFO]" f"[{file_num}/{total_files_to_process}] " f"Processing {fp}") hash_set, deduped_stats, deduped_hashes = process_stats_file( fp, hash_set ) # write out stats for stats in deduped_stats: deduped_stats_file.write(json.dumps(stats) + "\n") # write out jsonl to hashes out_fn = fp.name.replace("stats_", "hashes_") with open(pathlib.Path(args.target_dir) / out_fn, "w") as f: f.write(json.dumps({"hashes": deduped_hashes}) + "\n") print(f"[{get_timestamp()}][INFO] Flushing ...") deduped_stats_file.flush() deduped_stats_file.close() print(f"[{get_timestamp()}][INFO] " f"Total number of unique records: {len(hash_set)}") if __name__ == '__main__': main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/github/github_global_dedup.py
import argparse import json from datetime import datetime import pathlib parser = argparse.ArgumentParser() parser.add_argument( '--first_step_dir', type=str, default="./data/github/processed_v3" ) parser.add_argument( '--input', type=str, default="data/github/processed_v3/run_ce60fbbc14684ed8b659054801e419c8.jsonl" ) parser.add_argument( '--target_dir', type=str, default="./data/github/processed_v3_deduped" ) args = parser.parse_args() def get_timestamp() -> str: return datetime.now().isoformat() def main(): input_fp = pathlib.Path(args.input) target_dir = pathlib.Path(args.target_dir) output_fp = target_dir / input_fp.name.replace("run_", "deduped_") # load hashes into memory hashes_fp = target_dir / input_fp.name.replace("run_", "hashes_") with open(hashes_fp) as hf: globally_unique_hashes = hf.readlines()[0] globally_unique_hashes = set(json.loads(globally_unique_hashes)["hashes"]) output_file = open(output_fp, "w") print(f"[{get_timestamp()}][INFO]" f" Processing {input_fp}") print(f"[{get_timestamp()}][INFO]" f" Writing to {output_fp}") print(f"[{get_timestamp()}][INFO]" f" Using hashes from {hashes_fp}") nrecs = 0 with open(input_fp, "r") as in_file: while True: jstr = in_file.readline() if not jstr: break record = json.loads(jstr) content_hash = record["meta"]["content_hash"] if content_hash not in globally_unique_hashes: continue # write to output file output_file.write(json.dumps(record) + "\n") nrecs += 1 output_file.close() print(f"[{get_timestamp()}][INFO]" f" Processed {nrecs} records") if __name__ == "__main__": main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/github/github_merge_dedup.py
from datasets import load_dataset book_dataset = load_dataset("the_pile_books3") for split, dataset in book_dataset.items(): dataset.to_json(f"./data/book/books3-{split}.jsonl") pg19_dataset = load_dataset("pg19") for split, dataset in pg19_dataset.items(): dataset.to_json(f"./data/book/pg19-{split}.jsonl")
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/book/download.py
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/book/__init__.py
# Copyright 2023 Ontocord.ai, Together Computer, ETH Zürich, Stanford University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from multiprocessing import Process, Queue import pickle import tarfile import os import re from multiprocessing import Pool from simhash import Simhash import json from datetime import datetime width = 6 hash_k = 5 max_hash_len = 0 def get_features(s): s = s.lower() s = re.sub(r'[^\w]+', '', s) return [s[i:i + width] for i in range(max(len(s) - width + 1, 1))] def pg19_index(num): hashes = [] members = [] print("Starting pg19_%0.3d"%(num), len(hashes)) with open("./data/book/split/pg19_%0.3d"%(num), "r") as f: lines = f.readlines() for idx, i in enumerate(lines): if idx % 200 == 0: print("This is pg19_%0.3d"%(num), idx) member = json.loads(i) try: if max_hash_len == 0: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'])))) else: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'][:max_hash_len])))) members.append(member) except: continue print("Finishing pg19_%0.3d"%(num), len(hashes), len(members)) return (hashes, members) def book_index(num): hashes = [] members = [] print("Starting book_%0.3d"%(num), len(hashes)) with open("./data/book/split/books3_%0.3d"%(num), "r") as f: lines = f.readlines() for idx, i in enumerate(lines): if idx % 200 == 0: print("This is book_%0.3d"%(num), idx) member = json.loads(i) try: if max_hash_len == 0: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'])))) else: hashes.append((str(idx + num * 2000), Simhash(get_features(member['text'][:max_hash_len])))) members.append(member) except: continue print("Finishing book_%0.3d"%(num), len(hashes), len(members)) return (hashes, members) def get_pg19(njobs): with Pool(n_jobs) as p: hashes_members = p.map(pg19_index, [i for i in range(15)]) return hashes_members def get_book(njobs): with Pool(n_jobs) as p: hashes_members = p.map(book_index, [i for i in range(99)]) return hashes_members def split_list(list, n): length = len(list) return [list[i*length // n: (i+1)*length // n] for i in range(n)] def find_match(args): i, index = args value_dict = {} for item in i: flag = 1 try: now_list = index.get_near_dups(item[1]) for x in now_list: if int(x) >= int(item[0]): continue flag = 0 break value_dict[item[0]] = flag except: value_dict[item[0]] = flag return value_dict if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('-w', type=int, default=6, help='the window size') parser.add_argument('-k', type=int, default=5, help='find K nearest region') parser.add_argument('-l', type=int, default=0, help='the max length of the text for hashing, 0 means no limit') parser.add_argument('-n', type=int, default=100, help='the number of processes to run') args = parser.parse_args() width = args.w hash_k = args.k max_hash_len = args.l n_jobs = args.n outfile = "./data/book/book.jsonl" hashes_members = get_pg19(n_jobs) hashes_members.extend(get_book(n_jobs)) print("Finish getting hashes and members!") import itertools hashes = list(itertools.chain(*[item[0] for item in hashes_members])) import itertools members = list(itertools.chain(*[item[1] for item in hashes_members])) import re from simhash import Simhash, SimhashIndex index = SimhashIndex(hashes, k=hash_k) print("Finish building index!") from multiprocessing import Pool n_hashes = split_list(hashes, n_jobs) with Pool(n_jobs) as p: temp_dict = p.map(find_match, [(i, index) for i in n_hashes]) value_dict = {} for dict in temp_dict: for i in dict: value_dict[i] = dict[i] print("Finish finding matches!") mem_hashes = list(zip(members, hashes)) with open(outfile, 'w') as f: for mem, a_hash in mem_hashes: if value_dict[a_hash[0]] == 1: meta = {} for feature in mem: if feature != "text": meta[feature] = mem[feature] new = {"meta": meta, "text": mem["text"]} f.write(json.dumps(new) + '\n')
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/book/dedup.py
import os import json from multiprocessing import Pool from transformers import AutoTokenizer enc = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", ) def get_token_count(qa_pair): return len(enc.tokenize(qa_pair['text'])) LEMMA_DATA_DIR_SE_OUT = "./data/book/" sites = [x for x in os.listdir(os.path.join(LEMMA_DATA_DIR_SE_OUT)) if os.path.isfile(os.path.join(LEMMA_DATA_DIR_SE_OUT, x))] sites.sort() os.makedirs(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts"), exist_ok=True) token_counts = {} for site in sites: print(f"[INFO] Processing {site}...") with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, site), "r") as f: qa_pairs = [json.loads(x) for x in f.readlines()] print(f"[INFO] Got {len(qa_pairs)} books for {site}.") token_count = 0 with Pool(100) as p: token_count = sum(p.map(get_token_count, qa_pairs)) token_counts[site] = token_count print(f"[INFO] Got {token_count} tokens for {site}.") summ = 0 for i in token_counts: print(f"{i}: {token_counts[i]}") summ += token_counts[i] print("Total: ", summ) with open(os.path.join(LEMMA_DATA_DIR_SE_OUT, "token_counts", site), "w") as f: json.dump(token_counts, f)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/book/token_count.py
import argparse from datetime import datetime import json import gzip import os import pathlib import joblib from joblib import Parallel, delayed parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default="./data/c4/en") parser.add_argument('--output_dir', type=str, default="./data/c4/processed_en") parser.add_argument('--max_files', type=int, default=-1) args = parser.parse_args() def get_timestamp() -> str: return datetime.now().isoformat() def process_record(record): return { "text": record["text"], "meta": { "timestamp": record["timestamp"], "url": record["url"], "language": "en", "source": "c4" } } def process_file(fp): print(f"[{get_timestamp()}][INFO] start processing {fp}...") out_dir = pathlib.Path(args.output_dir) out_fp = out_dir / fp.with_suffix("").name.replace("json", "jsonl") with gzip.open(fp, "r") as in_f: records = [json.loads(line) for line in in_f.readlines()] with open(out_fp, "w") as out_f: for record in records: record = process_record(record) if record is not None: out_f.write(json.dumps(record) + "\n") print(f"[{get_timestamp()}][INFO] done processing {fp}...") def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", joblib.cpu_count())) print(f"Using {num_cpus} processes") out_dir = pathlib.Path(args.output_dir) if not out_dir.exists(): out_dir.mkdir(parents=True) records_files = list(pathlib.Path(args.data_dir).glob("*.json.gz")) if args.max_files > 0: records_files = records_files[:args.max_files] Parallel(n_jobs=num_cpus)( delayed(process_file)(fp) for fp in records_files ) if __name__ == '__main__': main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/c4/c4_reformat.py
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/c4/__init__.py
import argparse import boto3 from botocore.exceptions import ClientError import configparser import itertools import numpy as np import pathlib parser = argparse.ArgumentParser() parser.add_argument('--aws_config', type=str, help='aws config file') parser.add_argument('--target_dir', type=str, default="./data/arxiv") parser.add_argument('--workers', type=int, default=1) parser.add_argument('--input', type=str, help='input file from which to read keys. ' 'This is only used when running on slurm.') parser.add_argument('--local', action='store_true') parser.add_argument('--setup', action='store_true', help='if set, we partition the keys into chunks.') parser.add_argument('--max_files', type=int, default=-1, help='max files to download, useful for testing') args = parser.parse_args() class ArxivDownloader: def __init__(self, config_file: str): # import configs from config file configs = configparser.SafeConfigParser() configs.read(config_file) # Create S3 resource & set configs self.s3resource = boto3.resource( 's3', # the AWS resource we want to use aws_access_key_id=configs['DEFAULT']['ACCESS_KEY'], aws_secret_access_key=configs['DEFAULT']['SECRET_KEY'], region_name='us-east-1' # same region arxiv bucket is in ) def run(self, input_file: str, tgt_dir: pathlib.Path, max_files=-1): (tgt_dir / 'src').mkdir(exist_ok=True, parents=True) with open(input_file, 'r') as f: file_keys = f.readlines() files_downloaded = 0 for key in file_keys: self.__download_file(tgt_dir=tgt_dir, key=key.strip()) files_downloaded += 1 if files_downloaded >= max_files > 0: break def __download_file(self, key, tgt_dir: pathlib.Path): print('\nDownloading s3://arxiv/{} t' 'o {}...'.format(key, pathlib.Path(tgt_dir, key))) try: self.s3resource.meta.client.download_file( Bucket='arxiv', Key=key, Filename=pathlib.Path(tgt_dir, key), ExtraArgs={'RequestPayer': 'requester'}) except ClientError as e: if e.response['Error']['Code'] == "404": print('ERROR: ' + key + " does not exist in arxiv bucket") else: try: code = e.response['Error']['Code'] msg = e.response['Error']['Message'] print(f"UNKNOWN ERROR: code={code}; msg={msg}") except Exception as e: print("UNKNOWN ERROR for key ", key, e) def partition_keys( partitions_dir: pathlib.Path, config_file: str, workers: int ): r"""Partitions the keys of the arxiv bucket into chunks for parallel download. @param partitions_dir: the directory to save the partition files to (will be created if it doesn't exist) @param config_file: the path to the config file containing the aws credentials @param workers: the number of workers to partition the keys into """ partitions_dir = pathlib.Path(partitions_dir).absolute() partitions_dir.mkdir(parents=True, exist_ok=True) # Securely import configs from private config file configs = configparser.SafeConfigParser() configs.read(config_file) # Create S3 resource & set configs print('Connecting to Amazon S3...') s3resource = boto3.resource( 's3', # the AWS resource we want to use aws_access_key_id=configs['DEFAULT']['ACCESS_KEY'], aws_secret_access_key=configs['DEFAULT']['SECRET_KEY'], region_name='us-east-1' # same region arxiv bucket is in ) # Create a reusable Paginator paginator = s3resource.meta.client.get_paginator('list_objects_v2') # Create a PageIterator from the Paginator page_iterator = paginator.paginate( Bucket='arxiv', RequestPayer='requester', Prefix='src/' ) # partition keys into chunks file_parts = np.array_split(list( itertools.chain( *[ [ file['Key'] for file in page['Contents'] if file['Key'].endswith(".tar") ] for page in page_iterator ] )), indices_or_sections=workers ) # save chunks to disk as text files for i, part in enumerate(file_parts): part_fp = partitions_dir / f"part_{i}.txt" with open(part_fp, "w") as f: f.write("\n".join(part)) print(f"Created partition {part_fp}.") def run_download( input_file: str, target_dir: pathlib.Path, max_files: int, aws_config: str ): # create downloader arxiv_downloader = ArxivDownloader(config_file=aws_config) # run download arxiv_downloader.run( input_file=input_file, tgt_dir=target_dir, max_files=max_files ) def main(): if not args.local and not args.setup: # here we only download the files; this requires that setup has already # been run run_download(input_file=args.input, target_dir=pathlib.Path(args.target_dir), max_files=args.max_files, aws_config=args.aws_config) return # create directories target_dir = pathlib.Path(args.target_dir) partitions_dir = target_dir / 'partitions' if args.setup: # here we only partition the keys into chunks; no download yet partition_keys(partitions_dir=partitions_dir, config_file=args.aws_config, workers=args.workers) return if args.local: partition_keys(partitions_dir=partitions_dir, config_file=args.aws_config, workers=args.workers) run_download(input_file=str(partitions_dir / 'part_0.txt'), target_dir=pathlib.Path(args.target_dir), max_files=args.max_files, aws_config=args.aws_config) if __name__ == '__main__': main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/arxiv/run_download.py
import concurrent.futures from datetime import datetime import fasttext import json import pathlib import tarfile from typing import List, Tuple, Dict, Union import gzip import tempfile import uuid import re from utils import predict_lang, get_timestamp, format_arxiv_id # suppress fasttext warning fasttext.FastText.eprint = lambda x: None # constants ARXIV_URL = "https://arxiv.org/abs/" FT_MODEL_PATH = "models/lid.176.bin" class ArxivCleaner: r""" Class for cleaning raw arxiv data. """ def __init__( self, data_dir: pathlib.Path, work_dir: pathlib.Path, target_dir: pathlib.Path, worker_id: str = None ): self._data_dir = data_dir self._work_dir = work_dir self._target_dir = target_dir self._worker_id = worker_id if worker_id else str(uuid.uuid4()) # make sure dirs exist for d in [self._work_dir, self._target_dir]: if not d.exists(): d.mkdir(parents=True) def run_parallel( self, max_files: int = None, workers: int = None, tar_fp_list: List[str] = None ): r""" function to run the cleaning process in parallel. This function will iterate over all arxiv projects and clean the tex files. The cleaned tex files are then written to a jsonl file. @param max_files: maximum number of files to process, defaults to -1 which means all files are processed. This is useful for testing. @param workers: number of workers to use, defaults to None which means that all cores are used. @param tar_fp_list: list of tars to process. Defaults to None which means that all files in data_dir are processed. """ out_file = self._target_dir / f"arxiv_{self._worker_id}.jsonl" with open(out_file, "w") as f: with concurrent.futures.ProcessPoolExecutor(workers) as executor: for record, arxiv_id in executor.map( create_record_single_arg, self.arxiv_iterator( max_files=max_files, tar_fp_list=tar_fp_list ) ): if record is None: print(f"[{get_timestamp()}][ERROR] " f"failed to process {arxiv_id}") continue if len(record["text"]) == 0: print(f"[{get_timestamp()}][WARNING] " f"empty text for {arxiv_id}") continue f.write(json.dumps(record) + "\n") print(f"[{get_timestamp()}][INFO] " f"processed {arxiv_id}") executor.shutdown(wait=True) def run(self, max_files: int = -1, out_fname: str = "arxiv.jsonl"): r""" function to run the cleaning process. This function will iterate over all arxiv projects and clean the tex files. The cleaned tex files are then written to a jsonl file. @param max_files: maximum number of files to process, defaults to -1 which means all files are processed. This is useful for testing. @param out_fname: name of the output file, defaults to "arxiv.jsonl" """ with open(self._target_dir / out_fname, "w") as f: for tex_files, yymm, arxiv_id, timestamp in self.arxiv_iterator( max_files=max_files ): record, arxiv_id = create_record( tex_files=tex_files, yymm=yymm, arxiv_id=arxiv_id, timestamp=timestamp ) if record is None: print(f"[{get_timestamp()}][ERROR] " f"failed to process {arxiv_id}") continue if len(record["text"]) == 0: print(f"[{get_timestamp()}][WARNING] " f"empty text for {arxiv_id}") continue f.write(json.dumps(record) + "\n") print(f"[{get_timestamp()}][INFO] " f"processed {arxiv_id}") def arxiv_iterator( self, max_files: int = -1, tar_fp_list: List[str] = None ): r""" iterator over arxiv shards. Each shard contains tex projects or files that are compressed using gzip. This function will extract the tex files and yield them together with yymm, the raw arxiv id and the timestamp of the project. @param max_files: maximum number of files to process, defaults to -1 which means all files are processed. @param tar_fp_list: optional list of tar files to process, defaults to None. In this case all tar files in data_dir are processed. @return: iterator over tex files, yymm, arxiv id and timestamp. """ if tar_fp_list is None: def _tar_fp_iterator(): for _tar_fp in self._data_dir.glob("*.tar"): yield _tar_fp else: def _tar_fp_iterator(): for _tar_fp in tar_fp_list: yield _tar_fp failed = 0 processed = 0 for tar_fp in _tar_fp_iterator(): print(f"[{get_timestamp()}][INFO] start processing {tar_fp}") with tempfile.TemporaryDirectory(dir=self._work_dir) as tmpdir: with tarfile.open(tar_fp) as tf: tf.extractall(members=tf.getmembers(), path=tmpdir) for proj_dir_or_file in pathlib.Path(tmpdir).rglob("*.gz"): # get arxiv id and month from the filename yymm = proj_dir_or_file.parent.stem arxiv_id = proj_dir_or_file.stem # load the tex source files (we also get the timestamp # here) data = _tex_proj_loader(proj_dir_or_file) if data is None: failed += 1 continue tex_files, timestamp = data processed += 1 if processed > max_files > 0: break yield tex_files, yymm, arxiv_id, timestamp else: continue break print(f"[{get_timestamp()}][INFO] # Failed loading : {failed}") print(f"[{get_timestamp()}][INFO] done.") def create_record_single_arg(args): r""" convenience function to create a record from a single argument. """ return create_record(*args) def create_record( tex_files: List[str], yymm: str, arxiv_id: str, timestamp: float ) -> Tuple[Union[Dict[str, Union[str, Dict[str, str]]], str, None], str]: r""" function to create a record from the tex files, yymm, arxiv id and timestamp. The function also detects the language of the tex files using a fasttext model. @param tex_files: list of tex file contents as strings @param yymm: yymm of the arxiv project @param arxiv_id: raw arxiv id @param timestamp: timestamp of the arxiv project @return: dictionary containing the cleaned tex text and metadata """ # clean tex files try: cleaned_str = clean_tex_files(tex_files) except Exception as e: return None, arxiv_id if len(cleaned_str) == 0: return {"text": "", "meta": {}}, arxiv_id # get the arxiv id in the correct format try: clean_arxiv_id = format_arxiv_id(arxiv_id) except Exception as e: print(f"[WARNING] failed to format arxiv id {arxiv_id}; excpetion={e}") clean_arxiv_id = arxiv_id # detect language ft_model = fasttext.load_model(path=str(FT_MODEL_PATH)) lang, _ = predict_lang(text=cleaned_str, lang_model=ft_model, k=1) try: lang = lang[0] except IndexError: lang = "unknown" if timestamp is not None: timestamp = datetime.fromtimestamp(timestamp).isoformat() return ( { "text": cleaned_str, "meta": { "timestamp": timestamp, "yymm": yymm, "arxiv_id": clean_arxiv_id, "language": lang, "url": f"{ARXIV_URL}{clean_arxiv_id}", "source": "arxiv" } }, clean_arxiv_id ) def _tex_proj_loader( file_or_dir_path: pathlib.Path ) -> Union[Tuple[List[str], float], None]: r""" function to load the tex files from a tar file or a gzip file. The function will return a tuple containing a list of tex files and the timestamp of the project. @param file_or_dir_path: path to the tar file or the gzip file @return: tuple containing a list of tex files and the timestamp of the project """ files_and_content = [] timestamp = file_or_dir_path.lstat().st_mtime try: # if it is a directory, open it as a tarfile with tarfile.open(file_or_dir_path) as sub_tf: for member in sub_tf.getmembers(): if member.name.endswith(".tex"): file_content = sub_tf.extractfile(member).read() try: file_content = file_content.decode("utf-8") except UnicodeDecodeError: print(f"[{get_timestamp()}][ERROR] " f"UnicodeDecodeError: {file_or_dir_path}") return None files_and_content.append(file_content) except tarfile.ReadError: # otherwise we try opening it as a gzip file try: with gzip.open(file_or_dir_path, "rb") as gz: file_content = gz.read() except Exception as e: # all fails, we skip this file print(f"[ERROR] {e}: {file_or_dir_path}") return None try: file_content = file_content.decode("utf-8") except UnicodeDecodeError: print(f"[{get_timestamp()}][ERROR] " f"UnicodeDecodeError: {file_or_dir_path}") return None files_and_content.append(file_content) except Exception as e: print(f"[ERROR] {e}: {file_or_dir_path}") return None return files_and_content, timestamp def clean_tex_files(tex_files: List[str]) -> str: r""" function takes a list of tex files and returns a cleaned version of the tex project. The cleaned version is a concatenation of the tex files with the following modifications: - if multiple latex files, then concatenate them - remove all comments (i.e. all lines starting with %) - remove everything before the first \section header - remove everything after the first occurrence of either \appendix or \bibliography - inline-expand definitions and macros @param tex_files: list of file_content strings @return: cleaned tex project as a string, empty string if no tex files are provided """ if len(tex_files) == 0: return "" # build dictionaries that contain the definitions of all macros in all tex # files. This is later used to expand all macros used in the text with # their definitions, so that consistency among different authors is # ensured. non_arg_macros = {} for file_content in tex_files: non_arg_macros.update(_build_non_arg_macros_dict(file_content)) # TODO: macros that take arguments are not supported yet arg_macros = {} # join multiple latex files with a newline character cleaned_latex_file_str = "\n".join( _clean_tex_file( file_content=file_content, arg_macros=arg_macros, non_arg_macros=non_arg_macros ) for file_content in tex_files ) return cleaned_latex_file_str def _clean_tex_file( file_content: str, arg_macros: Dict, non_arg_macros: Dict ) -> str: r""" function takes a tex file as input and returns a cleaned version. The cleaned version is a concatenation of the tex files with the following modifications: - remove all comments (i.e. all lines starting with %) - remove everything before the first section-like header - remove everything after the first occurrence of either \appendix or \bibliography - inline-expand definitions and macros @param file_content: the content of the tex file as a string. @return: cleaned tex file as a string """ # find the first occurence of a \section-like header and replace everything # before it with an empty string. This matches the following pattern: # \<section-type>[optional-args]{name} pattern = r"^(.*?)(" pattern += r"\\\bchapter\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bpart\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bsection\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bsubsection\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bsubsubsection\b\*?(?:\[(.*?)\])?\{(.*?)\}|" pattern += r"\\\bparagraph\b\*?(?:\[(.*?)\])?\{(.*?)\}" pattern += r"\\\bsubparagraph\b\*?(?:\[(.*?)\])?\{(.*?)\}" pattern += r")" # if no section like header is found, then we return an empty string if not re.search(pattern, file_content, flags=re.DOTALL): return "" # replace everything with the second group of the match (i.e. everything # after and including the section header) file_content = re.sub( pattern=pattern, repl=r"\2", string=file_content, flags=re.DOTALL # make sure that the dot matches also newlines ) # remove all line comments file_content = re.sub( pattern=r"(?m)^%.*\n?", repl=r"", string=file_content, flags=re.MULTILINE ) # remove all in comments within a line file_content = re.sub( # pattern matches a "%" that is not preceded by a backslash (=comment) pattern=r"[^\\]%.+$", repl=r"", string=file_content, flags=re.MULTILINE ) # find the first occurence of either \appendix or \bibliography and # replace everything after it with an empty string pattern = r"(" pattern += r"\\appendix|" pattern += r"\\begin\{references\}|" pattern += r"\\begin\{REFERENCES\}|" pattern += r"\\begin\{thebibliography\}|" pattern += r"\\bibliography\{.*\}" pattern += r").*$" file_content = re.sub( pattern=pattern, repl=r'', string=file_content, flags=re.DOTALL # make sure that the dot matches also newlines ) # inline-expand all non-arg macros for macro_name, macro_value in non_arg_macros.items(): file_content = re.sub( # make pattern grouped to make sure that the macro is not part # of a longer alphanumeric word pattern=r"(" + macro_name + r")" + r"([^a-zA-Z0-9])", # replace the macro with its value and add back the character that # was matched after the macro repl=macro_value + r"\2", string=file_content ) # inline-expand all macros that use args # TODO: inline-expand macros with args for macro_name, macro_value in arg_macros.items(): pass return file_content def _build_non_arg_macros_dict(file_content: str) -> Dict[str, str]: r""" function takes the content of a tex file and returns a dictionary that contains the definitions of all macros that do not use arguments. The dictionary is of the form {macro_name: macro_value}. @param file_content: the content of the tex file as a string. @return: dict """ # regex for extracting \newcommand macros without arguments non_arg_nc_reg = re.compile( # this regex matches the following: # \newcommand{\macro_name}{macro_value} # \newcommand*{\macro_name}{macro_value} # where macro_name is only allowed to contain letters and numbers; # macro_value can contain any character. pattern=r'\\\bnewcommand\b\*?\{(\\[a-zA-Z0-9]+?)\}\{(.*?)\}$', flags=re.MULTILINE ) # regex for extracting \def macros without arguments non_arg_def_reg = re.compile( # this regex matches the following: # \def\macro_name{macro_value} # where macro_name is only allowed to contain letters and numbers; # macro_value can contain any character. pattern=r'\\def\s*(\\[a-zA-Z0-9]+?)\s*\{(.*?)\}$', flags=re.MULTILINE ) # Extract all user-defined LaTeX macros from the preamble macros = {} for reg in [non_arg_nc_reg, non_arg_def_reg]: for match in reg.finditer(file_content): # convert the macro name and value to a raw string that can be # used in re.sub macro_name = match \ .group(1).encode("unicode-escape").decode("utf-8") macro_val = match \ .group(2).encode("unicode-escape").decode("utf-8") macros[macro_name] = macro_val return macros
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/arxiv/arxiv_cleaner.py
from datetime import datetime import fasttext import re from typing import List, Tuple def get_timestamp() -> str: return datetime.now().isoformat() def predict_lang( text: str, lang_model: fasttext.FastText._FastText, k=5 ) -> Tuple[List[str], List[float]]: r""" Predict top-k languages of text. @param text: text to predict language of @param lang_model: language model @param k: number of predictions to return, defaults to 5 @return: list of predicted languages and list of corresponding confidence scores """ # preprocess text text = text.lower().replace("\n", " ").replace("\t", " ") tags, confs = lang_model.predict(text, k=k) # convert confs to float confs = [float(conf) for conf in confs] # convert lang codes to names tags = [tag.replace("__label__", "") for tag in tags] return tags, confs def format_arxiv_id(arxiv_id: str) -> str: r""" this function brings the raw arxiv-id into a format compliant with the specification from arxiv. This is used to create the url to the arxiv abstract page. - Format prior to March 2007: <archive>/YYMMNNN where N is a 3-digit number - Format after March 2007: <archive>/YYMM.NNNNN where N is a 5 (or 6)-digit number References: https://info.arxiv.org/help/arxiv_identifier.html @param arxiv_id: raw arxiv id which can be in one of the following formats: - <archive><YY><MM><NNN> - <YY><MM><NNNNN|NNNNNN> @return: formatted arxiv id """ match = re.search(r'^([a-zA-Z-]*)([\d\.]+)$', arxiv_id) if match is None: raise ValueError(f"Invalid arxiv id: {arxiv_id}") if match.group(1) == "": return match.group(2) return f"{match.group(1)}/{match.group(2)}"
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/arxiv/utils.py
import argparse import os from collections import defaultdict from datetime import datetime from transformers import AutoTokenizer import json import multiprocessing as mp import pathlib import pandas as pd from tabulate import tabulate parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default="./data/arxiv/processed") parser.add_argument('--max_files', type=int, default=-1, help="max lines to process; this is useful for testing") args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-6.9b-deduped", ) def get_token_count(text): return len(tokenizer.tokenize(text)) def process_record(record): token_count = get_token_count(text=record["text"]) year = record["meta"]["yymm"][:2] return token_count, year def get_timestamp() -> str: return datetime.now().isoformat() def print_stats(token_count_data): df = pd.DataFrame.from_dict( token_count_data, orient="index" ) df = df.reset_index() df.columns = ["year", "count"] df = df.set_index("year") df["count"] = df["count"].astype(int) df["count"] = df["count"] / 1e12 df = df.sort_values(by="count", ascending=False) df.loc['Total'] = df.sum(numeric_only=True) print(tabulate( df, headers=["year", "count (T)"], tablefmt="github", floatfmt=".4f" )) def main(): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", mp.cpu_count())) print(f"Using {num_cpus} workers") files_processed = 0 token_count_data = defaultdict(int) for filenum, fp in enumerate(pathlib.Path(args.data_dir).glob("*.jsonl")): with open(fp, "r") as f: records = [json.loads(rec) for rec in f.readlines()] with mp.Pool(processes=num_cpus - 2) as pool: results = pool.map(process_record, records) for counts, year in results: token_count_data[year] += int(counts) total_tokens = sum(token_count_data.values()) print(f"[{get_timestamp()}][INFO] " f"processed {filenum} files; " f"total tokens: {total_tokens}") if files_processed > args.max_files > 0: print(f"[{get_timestamp()}][INFO] " f"reached max lines") break print(json.dumps(token_count_data, indent=4)) print(f"Total tokens: {sum(token_count_data.values())}") print("\n" + "=" * 80 + "\n") print_stats(token_count_data) if __name__ == '__main__': main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/arxiv/token_count.py
import argparse import os import uuid import numpy as np import pathlib import tempfile from typing import List import joblib from arxiv_cleaner import ArxivCleaner parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default="./data/arxiv/src") parser.add_argument('--target_dir', type=str, default="./data/arxiv/processed") parser.add_argument('--workers', type=int, default=1) parser.add_argument('--input', type=str, default=None, help='input file from which to read keys. ' 'This is only used when running on slurm.') parser.add_argument('--local', action='store_true') parser.add_argument('--setup', action='store_true', help='if set, we partition the keys and into chunks.') parser.add_argument('--max_files', type=int, default=-1, help='max files to download, useful for testing') args = parser.parse_args() WORK_DIR = os.getenv('WORK_DIR', pathlib.Path(__file__).parent / "work") WORK_DIR = pathlib.Path(WORK_DIR) if not WORK_DIR.exists(): WORK_DIR.mkdir() print(f"Created work directory {WORK_DIR}") def run_clean( data_dir: pathlib.Path, target_dir: pathlib.Path, input_file: pathlib.Path = None, max_files: int = -1, ): num_cpus = int(os.getenv("SLURM_CPUS_PER_TASK", joblib.cpu_count())) print(f"Using {num_cpus} processes") worker_id = os.getenv('SLURM_ARRAY_TASK_ID', None) if worker_id is None: worker_id = str(uuid.uuid4()) # create temporary work directory work_dir = pathlib.Path( tempfile.mkdtemp(dir=WORK_DIR, prefix=worker_id + "_") ) if input_file is not None: # we are running on slurm assert input_file.exists() with open(input_file, 'r') as f: tar_fp_list = f.read().splitlines() else: tar_fp_list = None # create cleaner arxiv_cleaner = ArxivCleaner( data_dir=data_dir, work_dir=work_dir, target_dir=target_dir, worker_id=worker_id ) arxiv_cleaner.run_parallel( max_files=max_files, tar_fp_list=tar_fp_list ) def partition_tar_files( data_dir: pathlib.Path, workers: int ) -> List[List[str]]: return np.array_split( list(str(fp) for fp in data_dir.glob('*.tar')), indices_or_sections=workers ) def main(): # create target directory where we store the processed data target_dir = pathlib.Path(args.target_dir) if not target_dir.exists(): target_dir.mkdir() data_dir = pathlib.Path(args.data_dir) assert data_dir.exists() if not args.local and not args.setup: # here we only download the files; this requires that setup has already # been run run_clean( data_dir=data_dir, target_dir=target_dir, input_file=pathlib.Path(args.input), max_files=args.max_files ) return if args.setup: parts = partition_tar_files(data_dir=data_dir, workers=args.workers) if not (target_dir / "partitions").exists(): (target_dir / "partitions").mkdir() for i, part in enumerate(parts): with open( target_dir / "partitions" / f'tars_part_{i}.txt', 'w' ) as f: f.write('\n'.join(part)) return # run locally; here we don't partition the tar files as slurm is not used if args.local: run_clean( data_dir=pathlib.Path(args.data_dir), target_dir=pathlib.Path(args.target_dir), input_file=None, max_files=args.max_files ) if __name__ == '__main__': main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/arxiv/run_clean.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from setuptools import setup # type: ignore setup( name="cc_net", version="1.0.0", packages=["cc_net"], # metadata to display on PyPI author="Guillaume Wenzek", author_email="[email protected]", description="Tools to download and clean Common Crawl", keywords="common crawl dataset", url="https://github.com/facebookresearch/cc_net", license="CC-BY-NC-4.0", long_description=Path("README.md").read_text(), long_description_content_type="text/markdown", project_urls={ "Bug Tracker": "https://github.com/facebookresearch/cc_net/issues", "Source Code": "https://github.com/facebookresearch/cc_net", }, classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3.7", ], python_requires=">=3.7", install_requires=[ "beautifulsoup4>=4.7.1", "pandas>=0.23.4", "requests>=2.22.0", "fasttext>=0.9.1", "sentencepiece>=0.1.82", "kenlm @ git+https://github.com/kpu/kenlm.git@master", "func_argparse>=1.1.1", "psutil>=5.6.3", "sacremoses", "submitit>=1.0.0", "typing_extensions", ], extras_require={ "dev": ["mypy==0.790", "pytest", "black==19.3b0", "isort==5.6.4"], # To use scripts inside cc_net/tools "tools": ["lxml", "sentence_splitter"], # Memory-efficient hashset. # This fork only compiles the kind of dict used by cc_net. # Full version is at https://github.com/atom-moyer/getpy "getpy": ["getpy @ git+https://github.com/gwenzek/[email protected]"], }, package_data={"cc_net": ["data/*"]}, )
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Main script to download a CC dump, remove duplicates, split by language and filter the documents. The pipeline parameters are described in the `Config` class. """ import hashlib import json import time import warnings from argparse import ArgumentParser from collections import defaultdict from itertools import repeat from pathlib import Path from typing import Any, Dict, Iterable, List, NamedTuple, Optional, Sequence, Tuple import func_argparse # Local scripts from cc_net import dedup, execution, jsonql, minify, perplexity, process_wet_file from cc_net import regroup as regroup_module from cc_net import split_by_lang from cc_net.execution import Executor # Constant FILE_DIR = Path(__file__).parent CUTOFF_CSV = FILE_DIR / "data" / "cutoff.csv" DEFAULT_PIPELINE = [ "dedup", "lid", "keep_lang", "sp", "lm", "pp_bucket", "drop", "split_by_lang", ] class Config(NamedTuple): """ Mine Common Crawl with the given settings. config_name dump: CC dump id output_dir: working directory mined_dir: name of the destination folder, full path will be {ouput_dir}/{mined_dir}/{dump_id} execution: chose how to parallelize the execution num_shards: number of shards to split the dump min_shard: start at shard `min_shard` if specified num_segments_per_shard: allow to download a small portion of CC (eg for tests) min_len: remove documents shorter than this (in chars) hashes_in_mem: number of shards hashes to use for dedup lang_whitelist: only treat those languages lang_blacklist: ignore those languages lang_threshold: remove docs whose top language score is lower than this keep_bucket: keep only those perplexity bucket chose from (head, middle, tail, all) lm_dir: folder containing LMs lm_languages: only use LMs for the following languages cutoff: cutoff file to use for split in head/middle/tail mine_num_processes: number of processes to use for mining target_size: size of finals files produce during `regroup` stage cleanup_after_regroup: delete intermediary files after regroup task_parallelism: max number of task to run in parallel pipeline: restricts the mining pipeline to the given steps. Order is important ! experiments: (HACK) enable specific experiments in the code """ config_name: str = "base" dump: str = "2017-51" output_dir: Path = Path("data") mined_dir: str = "mined" execution: str = "auto" num_shards: int = 1600 min_shard: int = -1 num_segments_per_shard: int = -1 metadata: Optional[str] = None min_len: int = 300 hash_in_mem: int = 50 lang_whitelist: Sequence[str] = [] lang_blacklist: Sequence[str] = [] lang_threshold: float = 0.5 keep_bucket: Sequence[str] = [] lm_dir: Path = Path("data/lm_sp") cutoff: Path = CUTOFF_CSV lm_languages: Optional[Sequence[str]] = None mine_num_processes: int = 16 target_size: str = "4G" cleanup_after_regroup: bool = False task_parallelism: int = -1 pipeline: Sequence[str] = DEFAULT_PIPELINE experiments: Sequence[str] = [] cache_dir: Optional[Path] = None def get_executor( self, name: str, timeout_hour: int = 1, mem_gb: int = 1, cpus: int = 1 ) -> Executor: name = "_".join((name, self.config_name, *self.experiments)) return execution.get_executor( name, self.output_dir / "logs", self.execution, timeout_hour=timeout_hour, mem_gb=mem_gb, cpus=cpus, task_parallelism=self.task_parallelism, ) def get_cc_shard(self, shard: int) -> process_wet_file.CCShardReader: dump_cache: Optional[Path] = None if self.cache_dir: self.cache_dir.mkdir(exist_ok=True) dump_cache = self.cache_dir / self.dump dump_cache.mkdir(exist_ok=True) return process_wet_file.CCShardReader( self.dump, shard=shard, num_shards=self.num_shards, num_segments_per_shard=self.num_segments_per_shard, min_len=self.min_len, cache_dir=dump_cache, ) @classmethod def from_json(cls, json_file: Path) -> "Config": raw_lines = json_file.read_text().splitlines() raw_lines = [l for l in raw_lines if not l.strip().startswith("//")] json_config = json.loads("".join(raw_lines)) path_keys = ["cache_dir", "lm_dir", "output_dir"] for key in path_keys: if key in json_config: json_config[key] = Path(json_config[key]) return Config(**json_config) @property def will_split(self) -> bool: return "split_by_lang" in self.pipeline or "split_by_segment" in self.pipeline def get_lm_languages(self) -> Sequence[str]: if self.lm_languages is not None: return self.lm_languages if self.lang_whitelist: return self.lang_whitelist languages = [m.name.split(".")[0] for m in self.lm_dir.glob("*.arpa.bin")] if self.lang_blacklist: languages = [l for l in languages if l not in self.lang_blacklist] return languages def get_mined_dir(self, regroup: bool = False) -> Path: if self.will_split and not regroup: return self.output_dir / f"{self.mined_dir}_split" / self.dump return self.output_dir / self.mined_dir / self.dump BASE_CONFIG = Config() BYLANG_CONFIG = Config( config_name="by_lang", mined_dir="mined_by_lang", pipeline=list(BASE_CONFIG.pipeline[:-1]) + ["split_by_lang"], ) REPRODUCE_CONFIG = Config( config_name="reproduce", dump="2019-09", mined_dir="reproduce", pipeline=["fetch_metadata", "keep_lang", "keep_bucket", "split_by_lang"], metadata="https://dl.fbaipublicfiles.com/cc_net/1.0.0", # Optional filtering: # It won't change much the execution speed, but decreases the disk requirement. # Restrict languages lang_whitelist=["fr"], # Restrict perplexity buckets # Top languages have been split in perplexity buckets according # to a Wikipedia trained LM. # The buckets from low perplexity (good) to high (bad) are: # ["head", "middle", "tail"] # Languages without a LM have only one bucket "all". # It won't change much the execution speed, but decreases the disk requirement. keep_bucket=["head", "all"], mine_num_processes=1, ) TEST_CONFIG = BASE_CONFIG._replace( config_name="test", dump="2019-09", output_dir=Path("test_data"), execution="local", num_shards=4, num_segments_per_shard=1, hash_in_mem=2, mine_num_processes=2, lang_whitelist=["de", "it", "fr"], target_size="32M", cleanup_after_regroup=False, cache_dir=Path("test_data/wet_cache"), ) PREDEF_CONFIGS = { "base": BASE_CONFIG, "by_lang": BYLANG_CONFIG, "test": TEST_CONFIG, "test_slurm": TEST_CONFIG._replace(execution="slurm,partition=dev"), "debug": TEST_CONFIG._replace(config_name="debug", mine_num_processes=0), "reproduce": REPRODUCE_CONFIG, "augment": BASE_CONFIG._replace( config_name="augment", dump="2019-13", lang_blacklist=["en"] ), } def tmp(output: Path) -> Path: return output.parent / (output.stem + ".tmp" + output.suffix) def finalize(tmp_output: Path, output: Path) -> None: if not tmp_output.exists(): warnings.warn(f"Targeted tmp output {tmp_output} doesn't exists.") return tmp_index = tmp_output.parent / (tmp_output.name + ".index") tmp_output.rename(output) if tmp_index.exists(): tmp_index.rename(output.parent / (output.name + ".index")) def _transpose(iterable: Sequence[Tuple[Any, ...]], n=-1) -> Tuple[List, ...]: if n < 0: n = len(iterable[0]) columns: tuple = tuple([] for _ in range(n)) for row in iterable: assert len(row) == n, f"Found tuple of len({len(row)}, expected {n}: {row}" for i in range(n): columns[i].append(row[i]) return columns def hashes(conf: Config) -> List[Path]: """Computes hashes for each shard.""" hashes_dir = conf.output_dir / "hashes" / conf.dump outputs = [hashes_dir / f"{shard:04d}.bin" for shard in range(conf.num_shards)] missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()] if not missing_outputs: return outputs hashes_dir.mkdir(parents=True, exist_ok=True) # With FlatHashSet we need ~2Gb of RAM / shard, but we need to account for # overhead due to how the dynamic allocation works. ex = conf.get_executor(f"hashes_{conf.dump}", mem_gb=4, timeout_hour=6, cpus=2) ex(_hashes_shard, repeat(conf), *_transpose(missing_outputs)) # Wait a bit so that files appears on the disk. time.sleep(20) assert all(o.exists() for o in outputs) return outputs def _hashes_shard(conf: Config, shard: int, output: Path): tmp_output = tmp(output) jsonql.run_pipes( dedup.HashesCollector(field="raw_content", output=tmp_output), inputs=conf.get_cc_shard(shard), ) finalize(tmp_output, output) return f"Hashed {output}" HASHES_IN_MEM = [0, 1, 2, 5, 10, 20, 50, 100, 200, 400] def mine(conf: Config) -> List[Path]: """Remove dups, run LID and LMs, and split by lang and quality.""" mined_dir = conf.get_mined_dir() if conf.min_shard == -1: shard_range = list(range(conf.num_shards)) else: shard_range = list(range(conf.min_shard, conf.num_shards)) if conf.will_split: # Give a directories when splitting outputs = [mined_dir / f"{shard:04d}" for shard in shard_range] else: # Files otherwise outputs = [ mined_dir / f"{shard:04d}.json.gz" for shard in shard_range ] if "mini_again" in conf.experiments: mined_dir = conf.output_dir / "mini_again" / conf.dump outputs = [mined_dir / f"{shard:04d}" for shard in shard_range] # TODO: try to reduce this / make it a function of "hash_in_mem" / num_langs mem_gb = 60 + 1 * conf.hash_in_mem timeout_hour = 5 if "hashes" in conf.experiments: # HACK: used for generating paper figures outputs = [ conf.output_dir / f"hashes_exp/{conf.dump}_0000_dedup{h:03d}.json.gz" for h in HASHES_IN_MEM ] mem_gb = int(max(HASHES_IN_MEM) * 1.2) timeout_hour = 8 missing_outputs = [(shard, o) for shard, o in enumerate(outputs) if not o.exists()] if "mini_again" in conf.experiments: missing_outputs = [ (shard, o) for shard, o in enumerate(outputs) if shard in [5, 139] and not o.exists() ] if not missing_outputs: return outputs mined_dir.mkdir(parents=True, exist_ok=True) ex = conf.get_executor( f"mine_{conf.dump}", mem_gb=mem_gb, timeout_hour=timeout_hour, cpus=conf.mine_num_processes + 1, ) # Compute hashes firsts. if "dedup" in conf.pipeline: hashes_groups = list(jsonql.grouper(hashes(conf), conf.hash_in_mem)) hashes_files: Iterable[List[Path]] = [ hashes_groups[shard // conf.hash_in_mem] for shard, o in missing_outputs ] else: hashes_files = repeat([]) ex(_mine_shard, repeat(conf), hashes_files, *_transpose(missing_outputs)) assert all(o.exists() for o in outputs) return outputs def _get_segment(tmp_output: Path, doc: dict) -> str: segment: str = doc["cc_segment"].split("/")[-1] return str(tmp_output / segment.replace(".warc.wet.gz", ".json.gz")) def _mine_shard(conf: Config, hashes: List[Path], shard: int, output: Path) -> str: print(conf.pipeline) assert conf.pipeline tmp_output = tmp(output) if "hashes" in conf.experiments: # HACK: used for generating paper figures hashes_in_mem = shard hashes = hashes[: HASHES_IN_MEM[hashes_in_mem]] shard = 0 cc_shard = conf.get_cc_shard(shard) steps: Dict[str, Optional[jsonql.Transformer]] = {} lang_id = Path("bin") / "lid.bin" steps["lid_before_dedup"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="lid_before_dedup", top=5 ) steps["dedup"] = dedup.DuplicatesRemover(field="raw_content", hashes_files=hashes) steps["lid"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="language", top=1, threshold=conf.lang_threshold, ) steps["lid_after_dedup"] = split_by_lang.Classifier( model=lang_id, field="raw_content", out_field="lid_after_dedup", top=5 ) if conf.lang_blacklist: steps["keep_lang"] = jsonql.where( [lambda doc: doc.get("language") not in set(conf.lang_blacklist)] ) elif conf.lang_whitelist: steps["keep_lang"] = jsonql.where( [lambda doc: doc.get("language") in set(conf.lang_whitelist)] ) else: steps["keep_lang"] = None tok_field = "tokenized" steps["sp"] = perplexity.MultiSentencePiece( {l: conf.lm_dir / f"{l}.sp.model" for l in conf.get_lm_languages()}, field="raw_content", output_field=tok_field, normalize=True, ) steps["lm"] = perplexity.DocLM( {l: conf.lm_dir / f"{l}.arpa.bin" for l in conf.get_lm_languages()}, field=tok_field, output_field="perplexity", normalize=False, # Normalization is done before SentencePiece # load_method=kenlm.LoadMethod.PARALLEL_READ, ) steps["pp_bucket"] = perplexity.PerplexityBucket(CUTOFF_CSV) steps["drop"] = perplexity.DropKeys(tok_field) steps["keep_bucket"] = None if conf.keep_bucket: steps["keep_bucket"] = jsonql.where( [lambda doc: doc.get("bucket", "all") in conf.keep_bucket] ) if "fetch_metadata" in conf.pipeline: # TODO: better default assert conf.metadata is not None steps["fetch_metadata"] = minify.MetadataFetcher( f"{conf.metadata}/{conf.dump}/" ) steps["minify"] = minify.Minifier() pattern = str(tmp_output / "{language}_{bucket}.json.gz") steps["split_by_lang"] = jsonql.split(pattern=str(pattern), mkdir=True) steps["split_by_segment"] = jsonql.split( split_fn=lambda doc: _get_segment(tmp_output, doc), mkdir=True ) pipeline = filter(None, (steps[s] for s in conf.pipeline)) jsonql.run_pipes( *pipeline, inputs=cc_shard, processes=conf.mine_num_processes, chunksize=100, # The splitter takes care of writing to files. output=tmp_output if not conf.will_split else None, ) finalize(tmp_output, output) return f"Mined {output}" def regroup(conf: Config, all_dirs: List[Path]) -> Path: """Reshards each language/quality after 'mine'.""" regroup_dir = conf.get_mined_dir(regroup=True) assert all_dirs all_files = [f for d in all_dirs for f in d.glob("*.json.gz")] if not all_files: print(f"No .json.gz file found in {all_dirs[0]}") splits: Dict[str, List[Path]] = defaultdict(list) for f in all_files: split = f.name.split(".")[0] splits[split].append(f) print(f"Identified {len(all_files)} files to regroup from {len(splits)} splits.") inputs: List[List[Path]] = [] outputs: List[Path] = [] target_size = jsonql.parse_size(conf.target_size) for split, files in splits.items(): cuts = list(regroup_module.determine_groups(files, target_size=target_size)) if not cuts: continue pattern = f"{split}_????.json.gz" existing_outputs = sorted(regroup_dir.glob(pattern)) if not conf.cleanup_after_regroup: # We still have all the inputs so it is safe to overwrite existing outputs. assert len(existing_outputs) <= len(cuts) existing_outputs = [] if len(existing_outputs) > 0 and len(cuts) == 1: # append to existing file if size allows it. new_size = ( sum(f.stat().st_size for f in cuts[0]) + existing_outputs[-1].stat().st_size ) if new_size < target_size: print(f"Will append {cuts[0]} to {existing_outputs[-1]}") cuts[0].insert(0, existing_outputs.pop(-1)) n_existing = len(existing_outputs) for i, cut in enumerate(cuts): # avoid overwriting existing files. j = i + n_existing output = regroup_dir / f"{split}_{j:04}.json.gz" inputs.append(cut) outputs.append(output) print( str(regroup_dir / pattern), "->", len(cuts), f"shards ({n_existing} already there).", ) ex = conf.get_executor(f"regroup_{conf.dump}", mem_gb=1, timeout_hour=12, cpus=2) ex(_regroup, repeat(conf), inputs, outputs) return regroup_dir def _regroup(conf: Config, inputs: List[Path], output: Path) -> str: output.parent.mkdir(parents=True, exist_ok=True) regroup_module.fast_reshard( inputs, output, tmp=tmp(output), rm_original=conf.cleanup_after_regroup ) return f"Regrouped {output}" def move_segments(conf: Config, all_dirs: Sequence[Path]) -> Path: """Reshards each language/quality after 'mine'.""" # check that mining is over. regroup_dir = conf.get_mined_dir(regroup=True) assert all_dirs, "Received no dirs to move" assert all( d.is_dir() for d in all_dirs ), f"move_segments was expecting dirs received files: {all_dirs[:10]}..." regroup_dir.parent.mkdir(exist_ok=True) regroup_dir.mkdir(exist_ok=True) ex = conf.get_executor(f"moveseg_{conf.dump}", mem_gb=1, timeout_hour=1, cpus=2) def _move_segments(subdir: Path, regroup_dir: Path) -> str: n = 0 for f in subdir.iterdir(): if not f.is_file() or f.is_symlink(): continue n += f.name.endswith(".json.gz") new_name = regroup_dir / f.name target = new_name.resolve() assert f.resolve() != target # this make the job idempotent. f.rename(new_name) f.symlink_to(target) if n == 0: return "" return f"Moved {n} .json.gz files from {subdir} to {regroup_dir}" ex(_move_segments, all_dirs, repeat(regroup_dir)) print(f"Results are in {regroup_dir}") return regroup_dir def _validate_test(conf: Config, output_dir: Path, generate: bool = False): stats: Dict[str, dict] = {} for file in sorted(output_dir.glob("*.json.gz")): fname = "/".join((file.parent.name, file.name)) # The order of documents is not guaranteed inside a shard, lines = sorted(jsonql.open_read(file)) content = "\n".join(lines) size = len(content) checksum = hashlib.sha1(bytes(content, encoding="utf-8")).hexdigest() # first_document = json.loads(lines[0]) stats[fname] = {"size": size, "checksum": checksum} def dump(x): return json.dumps(x, indent=2, ensure_ascii=False) print("*** Stats ***") stats_raw = dump(stats) stats_file = FILE_DIR / "data" / "test_stats.json" if generate: print("Saving stats to", stats_file) stats_file.write_text(stats_raw) return expected_stats: Dict[str, dict] = {} if stats_file.exists(): expected_stats = json.loads(stats_file.read_text()) if expected_stats == stats: print("Everything looks good !") return stats_file.with_suffix(".actual.json").write_text(stats_raw) print("*** Expected Stats ***") print(dump(expected_stats)) print("*** Diff ***") for fname in sorted(expected_stats.keys()): print(fname) assert fname in expected_stats, "missing file " + fname if expected_stats[fname]["size"] != stats[fname]["size"]: print( " - Expected size", expected_stats[fname]["size"], ", size", stats[fname]["size"], ) if expected_stats[fname]["checksum"] != stats[fname]["checksum"]: print( " - Expected checksum", expected_stats[fname]["checksum"], ", checksum", stats[fname]["checksum"], ) def get_main_parser() -> ArgumentParser: # Generates the 'main' parser by patching a 'Config' parser p = func_argparse.func_argparser(Config) # Override defaults value to None, so we know what was set by the user. # Note that it will keep the original default values in the help message. p.set_defaults(**{f: None for f in Config._fields}) p.add_argument("--config", type=str, default="base") p.set_defaults(__command=main) return p def main(config: str = "base", **config_as_dict: Any) -> None: # Use the given 'config' as default value. config_base = config if config_base in PREDEF_CONFIGS: conf = PREDEF_CONFIGS[config_base] elif Path(config_base).exists(): conf = Config.from_json(Path(config_base)) else: raise ValueError( f"Invalid value {config_base} for --config. " f"Choose from ({', '.join(PREDEF_CONFIGS)}) or give an existing .json file." ) conf = conf._replace(**{k: v for (k, v) in config_as_dict.items() if v is not None}) print(f"Will run cc_net.mine.main with the following config:", conf) all_files = mine(conf) if conf.will_split: assert all_files assert all(d.is_dir() for d in all_files) all_dirs = all_files if "split_by_lang" in conf.pipeline: # Only try regrouping if we split the shards. regroup(conf, all_dirs) elif "split_by_segment" in conf.pipeline: # If we split by segment then regrouping is trivial, since segments appear in only one shard. move_segments(conf, all_dirs) if conf.config_name == "test": _validate_test(conf, conf.get_mined_dir(regroup=True)) if __name__ == "__main__": func_argparse.parse_and_call(get_main_parser())
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/mine.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Creates mono-lingual corpus from Wikipedia. """ import functools import re import subprocess import urllib.request from pathlib import Path from typing import Dict import func_argparse from bs4 import BeautifulSoup # type: ignore from cc_net import jsonql, text_normalizer CIRRUS_URL = "https://dumps.wikimedia.org/other/cirrussearch" CIRRUS_DUMP_RE = re.compile(r"^(.*)wiki-\d+-cirrussearch-content\.json\.gz") def tmp(file: Path) -> Path: return file.parent / ("tmp." + file.name) def opening(file: Path, output: Path = None, n_docs: int = 1_000_000): """Will dump the tokenized opening text of the given Wikipedia. Args: - file: File containing the Wikipedia dump. - output: Output file. - n_docs: How many docs to parse - tokenize: whether to tokenize the text - lang: Language code used to chose the tokenizer """ assert file.exists() return jsonql.run_pipes( functools.partial(extract_opening_text, n_docs=n_docs), file=file, output=tmp(output) if output else None, ) if output: tmp(output).replace(output) def extract_opening_text(source, n_docs: int = 10_000): i = 0 for doc in jsonql.read_jsons(source): if not doc: continue text = doc.get("opening_text") if not text: continue yield text_normalizer.normalize(text) i += 1 if i >= n_docs: break def dl(lang: str, output_dir: Path, date: str = None): """Download the cirrus extract for the given lang. See https://dumps.wikimedia.org/other/cirrussearch for the full list of files. Args: - lang: The Wikipedia code for the language. - output_dir: Output directory. File will be `{lang}.json.gz` - date: Date of a specific Cirrus dump. """ urls = get_cirrus_urls(date) assert ( lang in urls ), f"--lang {lang} not found. Available languages are: {urls.keys()}" assert output_dir, "--output_dir folder needed." output_dir.mkdir(exist_ok=True) output = output_dir / (lang + ".json.gz") print(f"Downloading {lang} wiki from {urls[lang]} to {output}") wget(urls[lang], output) def get_cirrus_urls(date: str = None) -> Dict[str, str]: if date is None: cirrus_page = BeautifulSoup( urllib.request.urlopen(CIRRUS_URL), features="html.parser" ) dumps = [a.get("href").strip("/") for a in cirrus_page.findAll("a")] dumps.remove("..") dumps.remove("current") # We take the oldest dump since the most recent might be incomplete. # The page only link to the N latest dumps so the dump won't be too old. date = min(dumps) cirrus_url = "/".join((CIRRUS_URL, date)) print("Will use the Wikipedia dump from:", date, cirrus_url) cirrus_page = BeautifulSoup( urllib.request.urlopen(cirrus_url), features="html.parser" ) urls = {} for link in cirrus_page.findAll("a"): match = CIRRUS_DUMP_RE.match(link.get("href")) if not match: continue urls[match.group(1)] = "/".join([cirrus_url, link.get("href")]) assert urls, f"No valid download urls found at {cirrus_url}" return urls def wget(url: str, output: Path): subprocess.run(["wget", url, "-O", tmp(output), "-q"], check=True) tmp(output).replace(output) assert ( output.stat().st_size > 10_000 ), f"File {output} downloaded from {url} looks too small" if __name__ == "__main__": func_argparse.main(dl, opening)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/get_wiki_cirrus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Manipulate files containing one json per line. """ import argparse import collections import contextlib import functools import glob import gzip import importlib import inspect import io import itertools import json import logging import multiprocessing import os import re import sys import tempfile import time import typing as tp import warnings import zlib from pathlib import Path from typing import ( Callable, Dict, Iterable, Iterator, List, Optional, Sequence, TextIO, Tuple, Union, ) import numpy as np import psutil # type: ignore import requests from typing_extensions import Protocol logging.basicConfig( level=logging.INFO, format="%(asctime)s %(levelname)s %(process)d:%(name)s - %(message)s", datefmt="%Y-%m-%d %H:%M", ) NEWLINE = " N3WL1N3 " FilterFn = Callable[[dict], bool] FileDescriptor = Union[Path, List[Path], str] WritableFileLike = Union[FileDescriptor, TextIO, "SimpleIO", None] ReadableFileLike = Union[Iterable[str], FileDescriptor, None] def io_parser(): """Parser shared by all commands to get input/output files.""" parser = argparse.ArgumentParser(add_help=False) file_help = """File to read from. Can be specified several times for several files. Be careful that bash will expand glob patterns **before** sending the args to python. To use globs put it inside single quotes: jsonql where --file 'data/perplexity/*.json' '{length} > 100' | head -1 jsonql --file 'data/perplexity/*.json' where '{length} > 100' | head -1 [Invalid] jsonql where '{length} > 100' --file data/perplexity/*.json | head -1 [Invalid] jsonql where --file data/perplexity/*.json '{length} > 100' | head -1 """ parser.add_argument("-f", "--file", type=Path, action="append", help=file_help) parser.add_argument("-o", "--output", type=Path, default="-") parser.add_argument("--processes", type=int, default=1) return parser def get_parser(): parser = argparse.ArgumentParser( description="Read a set of json files and allow to query them" ) subparsers = parser.add_subparsers() def add_subparser(function, arguments): doc = function.__doc__.split("\n")[0] p = subparsers.add_parser(function.__name__, help=doc, parents=[io_parser()]) p.set_defaults(command=function) for k, v in arguments.items(): p.add_argument(k, **v) add_subparser( select, { "columns": dict(nargs="+", help="Extract the value of the given fields"), "--skip_empty": dict( action="store_true", help="Skip lines without the requested fields" ), "--separator": dict( default="\t", help="Separator to use between the different columns" ), "--newline": dict( default=NEWLINE, help="Replace newlines found in the text by the given string", ), }, ) add_subparser( where, { "clauses": dict(nargs="+", help=""), "--requires": dict( action="append", help="Python module required by the clauses code." ), }, ) add_subparser( merge, { "columns": dict(nargs="+", help=""), "--separator": dict( default="\t", help="Separator to use between the different columns" ), "--newline": dict( default=NEWLINE, help="Replace the given string by actual newlines" ), }, ) add_subparser( describe, { "columns": dict(nargs="*", help=""), "--bins": dict( default="auto", help="Number of bins for computing the histograms" ), "--cumulative": dict( action="store_true", help="Compute cumulative histograms" ), "--weights": dict(type=str, help="Column used to weight histograms"), }, ) add_subparser(split, {"--pattern": dict(type=str)}) add_subparser(shard, {}) return parser def _split_array(array, sep): last = 0 for i, x in enumerate(array): if x != sep: continue yield array[last:i] last = i + 1 if last != len(array): yield array[last:] def main(raw_args): parser = get_parser() pipeline = [] file = "-" output = "-" processes = 1 for args_group in _split_array(raw_args, "--"): args = vars(parser.parse_args(args_group)) command = args.pop("command") file = args.pop("file") or file output = args.pop("output") or output processes = args.pop("processes") or processes pipeline.append(as_pipe(command, args)) if not pipeline: parser.print_help() return run_pipes(*pipeline, file=Path(file), output=Path(output), processes=processes) class Transformer: """ Wrapper around functions transforming documents. This allows `run_pipes` to automatically parallelize the pipeline. Provides: * Automatic logging. Logging can be changed with the `summary` method. Loggin frequency with _log_freq (in second) or $JSONQL_LOG_FREQ env variable. * Automatic parallelization without pickling. The transformers are shared across processes, and the object is usually not pickled. * Basic pickling / unpickling in case it's still needed. By default will only pickle the arguments passed to the constructor. * Delayed initialization. Internal state which is not pickable should be set inside the `_prepare` function. """ parallelisable: bool = True expect_json: bool = False warn_when_pickling: bool = False ready: bool = False def __init_subclass__(cls, expect_json: bool = None): """Detects if the subclass expects json as input.""" spec = inspect.getfullargspec(cls.do) if expect_json is None: expect_json = spec.annotations.get(spec.args[1], None) == dict cls.expect_json = expect_json def __new__(cls, *args, **kwargs): """Creates the transformer and save the arguments passed to the constructor.""" t = super().__new__(cls) Transformer.__init__(t, args, kwargs) return t def __init__(self, state_args: tuple = None, state_kwargs: dict = None): """ Init the transformer counters. If state_args/state_kwargs are set they will override whatever was originally passed to the subclass constructor. """ if state_args is not None: self.__args = state_args if state_kwargs is not None: self.__kwargs = state_kwargs self.start_time = time.time() self.__last_log = self.start_time self.processed = 0 # Log every 5 min unless specified other wise. self._log_freq = int(os.environ.get("JSONQL_LOG_FREQ", 5 * 60)) self.__cls = type(self) self._logger = logging.getLogger(self.__cls.__name__) def __call__(self, x): assert self.ready, f"{self} is not ready." if x is None: return y = self.do(x) self.processed += 1 if time.time() - self.__last_log > self._log_freq: self.log_summary() return y def do(self, x): raise NotImplementedError(f"'do' not implemented in {type(self)}") def summary(self) -> List[str]: return [self.speed_summary()] def speed_summary(self) -> str: delay = time.time() - self.start_time h = delay / 3600 s = self.processed / delay return f"Processed {self.processed:_} documents in {h:.2}h ({s:5.1f} doc/s)." def log(self, message): self._logger.info(message) def log_summary(self) -> None: if not self.ready: self.log("Not ready.") return summ = self.summary() or [] for line in summ: self.log(line) self.__last_log = time.time() def map(self, source: Iterable) -> Iterator: if self.ready: for x in source: yield self(x) # since we have been prepared by caller, # caller is also responsible for calling `close`. return else: with self: for x in source: yield self(x) def __getstate__(self) -> Tuple[tuple, dict, bool]: return (self.__args, self.__kwargs, self.expect_json) def __setstate__(self, state: Tuple[tuple, dict, bool]): if self.warn_when_pickling: warnings.warn(f"Unpickling transformer: {type(self)}. This can be slow.") (args, kwargs, expect_json) = state # When unpickling `__new__` isn't called so we have to doit ourselves. Transformer.__init__(self, state_args=args, state_kwargs=kwargs) type(self).__init__(self, *args, **kwargs) assert self.expect_json == expect_json # __setstate__ is called by multiprocessing right before calling # the object so we need to initialize everything. self.__enter__() def _prepare(self) -> None: pass def __enter__(self) -> "Transformer": # In multiprocessing __enter__ is always called twice, so we are idempotent. # Because we call __enter__ when deserializing this transformer and # also when the parent transformer is deserialized. self.start_time = time.time() if self.ready: return self self._prepare() self.ready = True return self def __exit__(self, *args) -> None: self.close() self.log_summary() def close(self) -> None: pass def as_pipe(transformer, kwargs): if isinstance(transformer, type): return transformer(**kwargs) return lambda source: transformer(source, **kwargs) def compose(fns: List[Transformer]) -> Transformer: if len(fns) == 1: return fns[0] return MultiTransformer(fns) class MultiTransformer(Transformer): def __init__(self, transformers: List[Transformer]): super().__init__() self.transformers = transformers def __repr__(self) -> str: pipeline = " | ".join(type(t).__name__ for t in self.transformers) return f"<{pipeline}>" def do(self, x): for t in self.transformers: x = t(x) return x def _prepare(self): for t in self.transformers: t.__enter__() return self def __exit__(self, *args): for t in self.transformers: t.__exit__(*args) def summary(self): return itertools.chain(*(t.summary() for t in self.transformers)) class Mapper(Transformer): def __init__(self, fn): super().__init__() self.fn = fn def do(self, x): return self.fn(x) def run_pipe( command, kwargs: dict = None, file: ReadableFileLike = None, output: WritableFileLike = None, ): kwargs = kwargs or {} if isinstance(kwargs, argparse.ArgumentParser): kwargs = vars(kwargs.parse_args()) file = file or Path(kwargs.pop("file", "-")) output = output or Path(kwargs.pop("output", "-")) return run_pipes(as_pipe(command, kwargs), file=file, output=output) def run_pipes( *fns: Union[Transformer, Callable[[Iterable], Iterable]], inputs: Iterable[dict] = None, file: ReadableFileLike = None, output: WritableFileLike = None, processes: int = 1, chunksize: int = 10_000, ): """ Run full document processing pipeline. - fns: list of functions to run over the documents. Can be: * `Iterable -> Iterable` function * jsonql.Transformer instance Using transformers allow the pipeline to process documents in parallel. - inputs: iterable to read the documents from - file: if inputs is not given, will read documents from this file. - output: writable file like. - processes: number of processes to use. -1 means all CPU available. - chunksize: chunksize for multiprocessing.Pool.imap_unordered """ expect_json = len(fns) and isinstance(fns[0], Transformer) and fns[0].expect_json if expect_json and inputs is None: fns = (JsonReader(),) + fns transformers = [] for t in fns: if not isinstance(t, Transformer): break if not t.parallelisable: break transformers.append(t) pipes = fns[len(transformers) :] log = logging.getLogger(__name__).info if inputs is None: data: Iterable = open_read(file) else: data = inputs if processes == -1: processes = os.cpu_count() or 0 with contextlib.suppress(BrokenPipeError), contextlib.ExitStack() as stack: if transformers: log(f"preparing {transformers}") transform = stack.enter_context(compose(transformers)) if processes <= 1: data = transform.map(data) else: p = multiprocessing.current_process() log(f"Will start {processes} processes from {p.name}, Pid: {p.pid}") pool = stack.enter_context( multiprocessing.Pool( processes=processes, initializer=_set_global_transformer, initargs=(transform,), ) ) data = pool.imap_unordered( _global_transformer, data, chunksize=chunksize ) for fn in pipes: if isinstance(fn, Transformer): data = fn.map(data) else: data = fn(data) write_jsons(data, output) # Allows to share transformer acroos subprocess. # Used by `run_pipes` _GLOBAL_TRANSFORMER: Optional[Transformer] = None def _set_global_transformer(transformer: Transformer): global _GLOBAL_TRANSFORMER p = multiprocessing.current_process() logging.info( f"Started subprocess {p.name}:{p.pid} from {os.getppid()} for {transformer}" ) assert transformer.ready, f"{transformer} isn't ready" _GLOBAL_TRANSFORMER = transformer def _global_transformer(document: str) -> Optional[dict]: assert _GLOBAL_TRANSFORMER is not None return _GLOBAL_TRANSFORMER(document) def lines(file: ReadableFileLike) -> Iterator[str]: return (line.strip("\n") for line in open_read(file)) def read_jsons(file: ReadableFileLike, strict=False) -> Iterator[dict]: reader = JsonReader(strict=strict) lines = open_read(file) for line in lines: if line is None: continue yield reader(line) reader.log_summary() def write_jsons(source: Iterable[dict], file: WritableFileLike) -> None: eol = os.linesep with open_write(file) as o: for res in source: if res is None: continue if isinstance(res, dict): json.dump(res, o, ensure_ascii=False) o.write(eol) continue if isinstance(res, str): res = res.rstrip("\n") print(res, file=o) class JsonReader(Transformer): def __init__(self, strict: bool = False): super().__init__() self.ready = True self.strict = strict self.num_errors = 0 def do(self, line: str) -> Optional[dict]: if line is None: return None if isinstance(line, dict): return line line = line.rstrip("\n") if not line: return None try: return json.loads(line) except json.decoder.JSONDecodeError as e: self.log_error(e) if self.strict: raise return None def log_error(self, e: json.decoder.JSONDecodeError): self.num_errors += 1 if self.num_errors > 10: return MAX_LEN = 80 snippet, snippet_len = e.doc, len(e.doc) col = e.pos if snippet_len > MAX_LEN: if col < MAX_LEN: start = 0 elif snippet_len - col < MAX_LEN: start = snippet_len - MAX_LEN else: start = col - MAX_LEN // 2 snippet = e.doc[start : start + MAX_LEN] col = col - start logging.warning( "\n".join( [ f"Invalid json (length={len(e.doc)}) {e}", snippet, " " * (col - 1) + "^", ] ) ) def summary(self): summ = super().summary() if self.num_errors > 0: summ.append(f"Skipped {self.num_errors} invalid json.") return summ def compile_column(column, newline): if callable(column): return column if column == "*": return json.dumps if re.match(r"[_a-z][_a-z0-9]*", column): def extract_col(doc): v = doc.get(column, "") if isinstance(v, str) and newline != "\n": v = v.rstrip("\n").replace("\n", newline) return v return extract_col return compile_expr(column) def select(lines, columns, skip_empty=False, separator="\t", newline="\n"): """Yields the content of the requested columns.""" column_parsers = [compile_column(c, newline) for c in columns] for doc in read_jsons(lines): values = [] empty = True for parse_col in column_parsers: v = parse_col(doc) values.append(str(v) or "") empty = empty and v is None if skip_empty and empty: continue yield separator.join(values) def compile_expr(clause: Union[str, FilterFn], requires: List[str] = None): if not isinstance(clause, str): return clause args_re = r"(?i:\{([_a-z][_a-z0-9]*)\})" args_list = list(re.findall(args_re, clause)) if not args_list: # This is only a warning because you may want to have eg random sampling # that doesn't depend on the document. logging.warn( f"Warning: No variable found in expression: <{clause}>\n" "Variables should be written inside braces, eg: {language}=='en'" ) python_like = re.sub(args_re, r"doc.get('\1', None)", clause) requires = requires or [] modules = {r: importlib.import_module(r) for r in requires} return eval(f"lambda doc: {python_like}", modules) class where(Transformer): """Filters the data using python code. Ex: `jsonql where 'len({text}) > 100'` """ def __init__( self, clauses: Sequence[Union[str, FilterFn]], requires: List[str] = [] ): super().__init__() self.raw_clauses = clauses self.requires = requires self.n_selected = 0 self.clauses: List[FilterFn] = [] def _prepare(self): self.clauses = [compile_expr(c, self.requires) for c in self.raw_clauses] def do(self, doc: dict) -> Optional[dict]: assert self.clauses if not doc or not all((c(doc) for c in self.clauses)): return None self.n_selected += 1 return doc def summary(self): n_selected, n_docs = self.n_selected, self.processed selectivity = n_selected / n_docs if n_docs else 0 return [f"Selected {n_selected} documents out of {n_docs} ({selectivity:5.1%})"] def merge(lines, columns, separator="\t", newline=NEWLINE): """Reads tab separated columns and output a json using the given headers. Headers are of form {key}[%{type}] {type} can be one of {"f": float, "i": int, "b": bool, "s": string}. Default type is string. A special header "_" means interpret this column as json, and append all other columns to it. Must appear only once and on last position. Ex: `echo '1\thello' | jsonql merge n t` --> `{"n": "1", "t": "hello"}` `echo '1\thello" | jsonql merge n%i t` --> `{"n": 1, "t": "hello"}` `echo '1\thello\t{"f": "bar"}' | jsonql merge n%i t _` --> `{"n": 1, "t": "hello", "f": "bar"}` """ handle_newlines = lambda s: s.replace(newline, "\n") type_mapping: Dict[str, Callable] = { "f": float, "i": int, "b": bool, "s": handle_newlines, } type_parsing = [ type_mapping.get(f.split("%")[-1], handle_newlines) for f in columns ] columns = [f.split("%")[0] for f in columns] doc_index = columns.index("_") if "_" in columns else -1 read_json = JsonReader() def parse(line): parts = line.split(separator, len(columns) - 1) doc: Dict[str, tp.Any] = {} for i, value in enumerate(parts): if columns[i] == "_": doc.update(read_json(parts[doc_index])) else: try: doc[columns[i]] = type_parsing[i](value) except ValueError: logging.error( f"Error when parsing column {i} of line: {line[:100]}..." ) return doc for line in lines: yield json.dumps(parse(line)) class split(Transformer): """Split a files in several smaller files based on the value of a field.""" # Not parallelisable since we are writing to files. parallelisable = False def __init__( self, pattern: Union[Path, str] = None, split_fn: Callable[[dict], str] = None, mkdir: bool = False, ): super().__init__() assert not ( pattern and split_fn ), "split can't have both a pattern and a split_fn" if split_fn is not None: self.split_fn = split_fn else: assert pattern, "split need either a pattern or a split_fn" self.split_fn = self.make_split_fn(str(pattern)) self.mkdir = mkdir self.o: dict = {} def make_split_fn(self, pattern: str) -> Callable[[dict], str]: candidates = list(re.findall(r"(?i:\{([_a-z][_a-z0-9]*)\})", pattern)) return lambda doc: pattern.format(**{c: doc[c] for c in candidates}) def do(self, doc): filename = self.split_fn(doc) if not filename: return o = self.o.get(filename, None) if o is None: if self.mkdir: Path(filename).parent.mkdir(parents=True, exist_ok=True) self.o[filename] = open_write(filename) print(json.dumps(doc, ensure_ascii=False), file=self.o[filename], flush=True) def summary(self): summ = super().summary() summ.append(f"Found {len(self.o)} splits.") return summ def close(self): for file in self.o.values(): file.close() def histogram(values, bins, weights): hist, bins = np.histogram(values, bins=bins) # n_bins = len(hist) if weights is not None: # Bins can't be auto-determined if weights is supplied. # So we first compute the bins without the weights then recompute # the histogram with the weights. hist, bins = np.histogram(values, bins=bins, weights=weights) # cumsum = np.cumsum(hist) # total = cumsum[-1] # for i in range(n_bins - 1): # if cumsum[i] / total > 0.9: # useful_range = np.linspace(bins[0], bins[i + 1], n_bins) # new_bins = np.append(useful_range, [bins[-1]]) # return np.histogram(values, bins=new_bins, weights=weights) return hist, bins def _parse_bins(bins): try: if isinstance(bins, str): if "," in bins: bins = [int(b) for b in bins.split(",")] else: bins = int(bins) except ValueError: pass return bins ALL_DOCUMENTS = "<ALL_DOCUMENTS>" MAX_LABEL_LEN = 100 def bar_chart(hist, bins): n = sum(hist) max_h = max(hist) out = [] for i, h in enumerate(hist): h_size = 80 * h // max_h dh_size = 80 * (h - hist[i - 1]) // max_h if h_size == 0 or dh_size == 0: continue bar = "█" * h_size out.append(f"{bins[i]:8.3f} {bar:80} ({h:5d}, {h / n:5.1%}) {bins[i+1]:8.3f}") out.append(f"{bins[-1]:8.3f}") return out def display_stats(stats, key, weights=None, bins="auto", cumulative=False): out = [] documents = stats[ALL_DOCUMENTS] count = stats.get(key, 0) r = count / documents if documents else 0 out.append(f"Field {key} saw {count} times ({r:5.1%})") length = stats.get(key + ".length", None) avg_length = length // count if length else 0 if length is not None: out[-1] += f", average length is {length // count}" values = stats.get(key + ".val", None) if values: out[-1] += f", histogram is: (bins={bins})" if weights: if weights not in stats: logging.warn(f"Warning: weights column {weights} not found.") if weights + ".val" not in stats: logging.warn( f"Warning: weights column {weights} is not a numeric column." ) weights = stats.get(weights + ".val") hist, bins = histogram(values, _parse_bins(bins), weights) if cumulative: hist = np.cumsum(hist) out += bar_chart(hist, bins) cnt = stats.get(key + ".cnt", None) if avg_length < MAX_LABEL_LEN and cnt and max(cnt.values()) > 1: cnt = sorted(cnt.items(), key=lambda kv: kv[1], reverse=True) out[-1] += ", top 100 labels:" for label, n in cnt[:100]: if n < 5: continue out.append(f"{label:25}: {n:6} ({n / count:5.1%})") return out def describe(source, columns=None, weights=None, **kwargs): """Compute some statistics about a dataset. Stats can be restricted to a subset of columns.""" MAX_HIST_SIZE = 100_000_000 MAX_CNT_SIZE = 1000 stats = {ALL_DOCUMENTS: 0} needed = columns + [weights] if columns else None for doc in read_jsons(source): stats[ALL_DOCUMENTS] += 1 for k, v in doc.items(): if needed and k not in needed: continue stats[k] = get_or_set(stats, k, 0) + 1 if isinstance(v, str): stats[k + ".length"] = get_or_set(stats, k + ".length", 0) + len(v) if len(v) > MAX_LABEL_LEN: # Don't treat too long string as labels continue cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int)) if v in cnt or len(cnt) < MAX_CNT_SIZE: cnt[v] += 1 elif type(v) in (int, float): values = get_or_set(stats, k + ".val", []) if len(values) < MAX_HIST_SIZE: values.append(v) elif type(v) is list and len(v) and type(v[0]) in (int, float): values = get_or_set(stats, k + ".val", []) if len(values) < MAX_HIST_SIZE: values += v elif type(v) is dict: cnt = get_or_set(stats, k + ".cnt", collections.defaultdict(int)) for label in v: if label in cnt or len(cnt) < MAX_CNT_SIZE: cnt[label] += 1 documents = stats[ALL_DOCUMENTS] yield f"Stats computed on {documents} documents:" for k in stats: if columns and k not in columns: continue if "." in k or k == ALL_DOCUMENTS: continue for line in display_stats(stats, k, weights=weights, **kwargs): yield line def shard(lines): """Shard a file in several smaller ones.""" # The creation of the shard is handle in a generic way. Do we need this ? return lines # *** Utils *** def get_or_set(dictionary, key, default): if key not in dictionary: dictionary[key] = default return dictionary[key] class SimpleIO(Protocol): """A subset of methods from TextIO.""" def close(self) -> None: ... def write(self, line: str) -> int: ... def __enter__(self) -> "SimpleIO": ... def __exit__(self, exc_type, exc_value, traceback): ... def open_read(filename: ReadableFileLike) -> Iterable[str]: """Open the given file, list of files or files matching the given glob and read lines. `filename` is None or "-" -> reads from stdin `filename` is a Path / str -> interprets filename as a glob and open files matching it `filename` is a list -> opens sequentially all files from the list using `open_read` `filename` is something else -> returns the object wrapped in a `nullcontext` This allows to pass already openened files or iterables. `open_read` will decompress gzip files, given they have ".gz" suffix. """ if filename is None: return sys.stdin if isinstance(filename, list): assert isinstance(filename[0], Path) if len(filename) == 0: return [] if len(filename) > 1: return _yield_from(filename) filename = tp.cast(Path, filename[0]) if isinstance(filename, str): if filename.startswith("http://") or filename.startswith("https://"): return open_remote_file(filename) filename = Path(filename) if not isinstance(filename, Path): # we might have received an iterable, return it unmodified. return filename # type: ignore # Expand glob patterns only when reading files = [Path(f) for f in sorted(glob.glob(str(filename)))] if len(files) > 1: return _yield_from(files) if len(files) == 1: filename = files[0] assert isinstance(filename, Path) if filename.name.endswith("]"): return block_reader(filename) logging.getLogger(__name__).info(f"Opening {filename} with mode 'rt'") if filename.suffix == ".gz": file: TextIO = gzip.open(filename, "rt") # type: ignore else: file = open(filename, "rt") return _close_when_exhausted(file) def _close_when_exhausted(file: TextIO) -> Iterable[str]: with file: yield from file def _yield_from(files: list) -> Iterable[str]: for file in files: yield from open_read(file) def open_write( filename: WritableFileLike, max_size: str = "4G" ) -> tp.ContextManager[TextIO]: """Open the given file, list of files or files matching the given glob. The return value is a ContextManager meant to be used inside a `with` block: ``` with open_write("foo.txt") as o: ... Write mode: replaces "?" from filename by numbers ranging from 0 to 9, generatings files of size `max_size`. If filename ends with ".gz", creates a blocked gzip file with random access. """ if filename is None: return contextlib.nullcontext(sys.stdout) if isinstance(filename, list): if len(filename) > 1: return MultiFile(filename, "w", max_size) else: filename = tp.cast(Path, filename[0]) if isinstance(filename, str): filename = Path(filename) if not isinstance(filename, Path): assert hasattr(filename, "write"), f"{filename} doesn't have a .write method." # We return a 'TextIO' even though we only check for `.write` method, # this works better with eg `print`. return contextlib.nullcontext(tp.cast(TextIO, filename)) mode = "wt" if "?" in filename.name: return sharded_file(filename, mode, max_size) logging.getLogger(__name__).info(f"Opening {filename} with mode {mode}") # TODO: should we use another format ? if filename.suffix == ".gz": return BlockedGzipWriter(Path(filename), mode, block_size="64M") return open(filename, "wt") def parse_size(size): unit_map = {"B": 1, "K": 1024, "M": 1024 ** 2, "G": 1024 ** 3} unit = size[-1].upper() assert ( unit in unit_map ), f"Unsupported size unit for {size}. Use one of: {unit_map.keys()}." return int(size[:-1]) * unit_map[unit] class MultiFile(SimpleIO): def __init__(self, files: Iterable[Path], mode="w", max_size="4G"): self.name = str(files) self.mode = mode self.files = iter(files) self.max_size = parse_size(max_size) self.current_handle: Optional[TextIO] = None self.current_block_size = 0 self._open_next_handle() # Opening 1st handle allows to write directly. def write(self, content) -> int: # Avoid splitting newlines to a new file. # use current_block_size since it's faster than `tell()` if content != "\n" and self.current_block_size >= self.max_size: self._open_next_handle() if self.current_handle is None: raise Exception("No more files to write to...") written = self.current_handle.write(content) self.current_block_size += written return written def _open_next_handle(self) -> bool: self.close() file = next(self.files, None) if file is None: return False self.current_handle = open_write(file).__enter__() self.current_block_size = 0 return True def __enter__(self): return self def __exit__(self, *exc_info): self.close() @property def closed(self): return self.current_handle is None def close(self): if self.current_handle is None: return # log("Closing", self.current_handle.name, "with mode", self.current_handle.mode) self.current_handle.__exit__(None, None, None) self.current_handle = None # not sure it helps since connections are reseted anyway. _session = functools.lru_cache()(requests.Session) def request_get_content(url: str, n_retry: int = 3) -> bytes: """Retrieve the binary content at url. Retry on connection errors. """ t0 = time.time() logging.info(f"Starting download of {url}") for i in range(1, n_retry + 1): try: r = _session().get(url) r.raise_for_status() break except requests.exceptions.RequestException as e: # Sleep and try again on error, unless it's a 404. message = e.args[0] if isinstance(e.args[0], str) else "" if i == n_retry or "Client Error" in message: raise e warnings.warn( f"Swallowed error {e} while downloading {url} ({i} out of {n_retry})" ) time.sleep(10 * 2 ** i) dl_time = time.time() - t0 dl_speed = len(r.content) / dl_time / 1024 logging.info( f"Downloaded {url} [{r.status_code}] took {dl_time:.0f}s ({dl_speed:.1f}kB/s)" ) return r.content def open_remote_file(url: str, cache: Path = None) -> Iterable[str]: """Download the files at the given url to memory and opens it as a file. Assumes that the file is small, and fetch it when this function is called. """ if cache and cache.exists(): return open_read(cache) # TODO: open the remote file in streaming mode. # The hard part is that we need to write the content on disk at the same time, # to implement disk caching. raw_bytes = request_get_content(url) content = io.BytesIO(raw_bytes) if url.endswith(".gz"): f: TextIO = gzip.open(content, mode="rt") # type: ignore else: f = io.TextIOWrapper(content) if cache and not cache.exists(): # The file might have been created while downloading/writing. tmp_cache = _tmp(cache) tmp_cache.write_bytes(raw_bytes) if not cache.exists(): tmp_cache.replace(cache) else: tmp_cache.unlink() return _close_when_exhausted(f) def sharded_file(file_pattern: Path, mode: str, max_size: str = "4G") -> MultiFile: folder, name = file_pattern.parent, file_pattern.name assert "?" in name, f"Can't expand give file_pattern: {file_pattern}" n = name.count("?") assert 0 < n < 8 assert "?" * n in name, f"The '?' need to be adjacents in {file_pattern}" assert "r" not in mode files = (folder / name.replace("?" * n, f"%0{n}d" % i) for i in range(10 ** n)) return MultiFile(files, mode, max_size) class SplitFile: def __init__(self, filename: Path, chunk: int, n_chunks: int, mode: str = "r"): assert mode == "r" size = os.path.getsize(filename) self.handle = open(filename, mode) start = chunk * size // n_chunks self.end: int = (chunk + 1) * size // n_chunks if start > 0: self.handle.seek(start - 1) # Skip incomplete line. This avoid crashing when reading eg the middle # of a unicode char. `self.handle.buffer` is a binary file reader. self.handle.buffer.readline() # type: ignore def __enter__(self): return self def __iter__(self): while True: line = self.handle.readline() if not line: return yield line if self.handle.tell() >= self.end: return def readlines(self): return list(self.__iter__()) def close(self): self.handle.close() def __exit__(self, *args): self.close() def get_block_readers(filename: Path, n_readers, mode="t"): index_filename = filename.parent / (filename.name + ".index") if not index_filename.exists(): return [gzip.open(filename, "r" + mode)] index: List[int] = np.load(index_filename) n_chunks = len(index) chunk_per_reader = int(np.ceil(n_chunks / n_readers)) n_readers = int(np.ceil(n_chunks / chunk_per_reader)) start = 0 readers = [] for i in range(n_readers): end = index[min((i + 1) * chunk_per_reader - 1, n_chunks - 1)] r = _blocked_gzip_reader(filename, start, end, mode) readers.append(r) start = end return readers def block_reader(filename: Path) -> Iterable[str]: root, pattern = str(filename)[:-1].split("[", 1) assert root.endswith(".gz"), "Can only read block of a .gz file for now." ii, nn = pattern.strip().split("/") i, n_readers = int(ii), int(nn) index_filename = root + ".index" assert os.path.exists( index_filename ), f"Index {index_filename} not found for {filename}" index: List[int] = np.load(index_filename) n_chunks = len(index) chunk_per_reader = int(np.ceil(n_chunks / n_readers)) n_readers = int(np.ceil(n_chunks / chunk_per_reader)) # I'm not sure how to handle the case where there is less reader than expected. # Currently we return empty readers. start = 0 if i > 0: start = index[min((i - 1) * chunk_per_reader, n_chunks - 1)] end = index[min(i * chunk_per_reader, n_chunks - 1)] return _blocked_gzip_reader(root, start, end, mode="t") def _blocked_gzip_reader(filename, start, end, mode="t") -> Iterable[str]: handle = gzip.open(filename, "r" + mode) handle.seek(start) try: while handle.tell() < end: line = handle.readline() if not line: break yield line finally: handle.close() class BlockedGzipWriter(MultiFile): """Writes a Gzip files which can be read by block. Decreasing the block size may hurt compression, but provides more split points. """ def __init__(self, filename: Path, mode: str, block_size: str = "256M"): assert "w" in mode self.filename = Path(filename) self.index: List[int] = [] self.zipfile: Optional[gzip.GzipFile] = None super().__init__([], mode, block_size) def _open_next_handle(self) -> bool: """Here we never actually close/open handles, we just write the end of block sequence.""" if not self.current_handle: mode = self.mode + "t" self.current_handle = tp.cast(TextIO, gzip.open(self.filename, mode)) assert isinstance(self.current_handle.buffer, gzip.GzipFile) self.zipfile = self.current_handle.buffer return True # Use Z_FULL_FLUSH to allow random access: # https://github.com/madler/zlib/blob/cacf7f1d4e3d44d871b605da3b647f07d718623f/zlib.h#L313 self.current_handle.buffer.flush(zlib_mode=zlib.Z_FULL_FLUSH) # type: ignore self.index.append(self.current_handle.tell()) self.current_block_size = 0 return True def flush(self): assert self.current_handle is not None self.current_handle.flush() def close(self): if self.current_handle is None: return self.current_handle.flush() self.index.append(self.current_handle.tell()) self.current_handle.close() self.current_handle = None index = np.array(self.index, dtype=np.uint64) with open(str(self.filename) + ".index", "wb") as o: np.save(o, index) def grouper(iterable, n): group = [] for x in iterable: group.append(x) if len(group) == n: yield group group = [] if group: yield group PROCESS = psutil.Process() def mem_footprint_gb(pid=None): rss = PROCESS.memory_info().rss return rss / 1_000_000_000 def _tmp(output: Path) -> Path: suffix = "".join(output.suffixes) suffix = ".tmp" + suffix prefix = output.name[: -len(suffix)] _, tmp_path = tempfile.mkstemp(dir=output.parent, prefix=prefix, suffix=suffix) return Path(tmp_path) @functools.lru_cache() def _tmp_dir() -> Path: job_id = os.environ.get("SLURM_JOB_ID") if job_id: return Path("/scratch/slurm_tmpdir") / job_id checkpoint = Path("/checkpoint") / os.environ.get("USER", "") if checkpoint.exists(): tmp = checkpoint / "tmp" tmp.mkdir(exist_ok=True) return tmp return Path("/tmp") if __name__ == "__main__": multiprocessing.set_start_method("fork") main(sys.argv[1:])
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/jsonql.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import functools import itertools import logging import os import sys import time import warnings from pathlib import Path from typing import Callable, Dict, Iterable, List, Optional, Sequence, Sized import submitit from typing_extensions import Protocol class Executor(Protocol): def __call__(self, function: Callable[..., str], *args: Iterable) -> None: ... class SubmititRetryOnTimeout(submitit.helpers.Checkpointable): def __init__(self, fn: Callable): self.fn = fn self.__name__ = fn.__name__ def __call__(self, *args, **kwargs): return self.fn(*args, **kwargs) def get_executor( name: str, log_dir: Path, execution: str, timeout_hour: float = 1.0, mem_gb: int = 1, cpus: int = 1, task_parallelism: int = -1, options: dict = {}, ) -> Executor: execution_mode = execution.split(",")[0] options.update( {kv.split("=", 1)[0]: kv.split("=", 1)[1] for kv in execution.split(",")[1:]} ) if execution_mode == "mp": warnings.warn("Execution mode 'mp' is deprecated, use 'local'.") execution_mode = "local" cluster = None if execution_mode == "auto" else execution_mode # use submitit to detect which executor is available ex = submitit.AutoExecutor(log_dir, cluster=cluster) if task_parallelism == -1: # we are on slurm ex.parameters['slurm_time'] = int(timeout_hour * 60) else: ex.parameters['timeout_min'] = int(timeout_hour * 60) if ex.cluster == "local": ex.parameters['timeout_min'] = int(timeout_hour * 60) # LocalExecutor doesn't respect task_parallelism return functools.partial(custom_map_array, ex, task_parallelism) if ex.cluster == "debug": ex.parameters['timeout_min'] = int(timeout_hour * 60) return debug_executor # We are on slurm if task_parallelism == -1: task_parallelism = 500 ex.update_parameters( name=name, slurm_time=int(timeout_hour * 60), slurm_mem_per_cpu=mem_gb, cpus_per_task=cpus, slurm_array_parallelism=task_parallelism, **options, ) else: ex.update_parameters( name=name, timeout_min=int(timeout_hour * 60), mem_gb=mem_gb, cpus_per_task=cpus, slurm_array_parallelism=task_parallelism, **options, ) return functools.partial(map_array_and_wait, ex) def map_array_and_wait( ex: submitit.AutoExecutor, function: Callable[..., str], *args: Iterable ): f_name = function.__name__ assert len(args) > 0, f"No arguments passed to {f_name}" approx_length = _approx_length(*args) print(f"Submitting {f_name} in a job array ({approx_length} jobs)") jobs = ex.map_array(function, *args) if not jobs: return failed_jobs = [] done = 0 total = len(jobs) job_array_id = jobs[0].job_id.split("_")[0] print(f"Started {f_name} in job array {job_array_id} ({len(jobs)} jobs).") for job in submitit.helpers.as_completed(jobs): done += 1 e = job.exception() if not e: print(f"Finished job {job.job_id} ({done} / {total}).", job.result()) continue print(f"Failed job {job.job_id} ({done} / {total}):", e) failed_jobs.append(job) if failed_jobs: n_failures = 10 message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}" print(message) for job in failed_jobs[:n_failures]: print(f"Failed {job.job_id} -> {job.paths.stderr}") if len(failed_jobs) > n_failures: print(f"... ({len(failed_jobs) - n_failures} failed job skipped)") raise Exception(message) def debug_executor(function: Callable[..., Optional[str]], *args: Iterable) -> None: logging.getLogger().setLevel(logging.DEBUG) approx_length = _approx_length(*args) for i, x in enumerate(zip(*args)): try: message = function(*x) except Exception: try: import ipdb as pdb # type: ignore except ImportError: import pdb # type: ignore import traceback traceback.print_exc() print("") pdb.post_mortem() sys.exit(1) if message is not None: print(message, f"({i + 1} / {approx_length})") def _approx_length(*args: Iterable): for a in args: if isinstance(a, Sized): return len(a) return -1 def custom_map_array( ex: submitit.AutoExecutor, parallelism: int, function: Callable[..., Optional[str]], *args: Iterable, ) -> None: f_name = function.__name__ assert len(args) > 0, f"No arguments passed to {f_name}" jobs_args = list(zip(*args)) total = len(jobs_args) if parallelism < 0: parallelism = os.cpu_count() or 0 assert parallelism >= 0, f"Can't run any jobs with task_parallelism={parallelism}" print( f"Submitting {total} jobs for {f_name}, with task_parallelism={parallelism}") enqueued = 0 done = 0 running_jobs: List[submitit.Job] = [] failed_jobs: List[submitit.Job] = [] while done < len(jobs_args): # Try to queue more job if we have some bandwidth. if enqueued < total and len(running_jobs) < parallelism: running_jobs.append(ex.submit(function, *jobs_args[enqueued])) enqueued += 1 continue # Else wait for some job to finish if not running_jobs: warnings.warn( f"No more running jobs, yet we submitted only {enqueued} / {total} and finished {done} / {total}" ) break job = get_next_job(running_jobs) running_jobs.remove(job) done += 1 e = job.exception() if not e: print(f"Finished job {job.job_id} ({done} / {total}).", job.result()) continue print(f"Failed job {job.job_id} ({done} / {total}):", e) failed_jobs.append(job) if failed_jobs: n_failures = 10 message = f"{len(failed_jobs)} / {done} jobs failed while running {f_name}" print(message) for job in failed_jobs[:n_failures]: print(f"Failed {job.job_id} -> {job.paths.stderr}") if len(failed_jobs) > n_failures: print(f"... ({len(failed_jobs) - n_failures} failed job skipped)") raise Exception(message) def get_next_job( jobs: Sequence[submitit.Job], poll_frequency: float = 10 ) -> submitit.Job: """ Waits for any of the job to finish and returns it. jobs: list of jobs poll_frequency: frequency in second at which we check job status """ start = time.time() waiting = False while True: for job in jobs: if job.done(): return job if not waiting: job_ids = [j.job_id for j in jobs[:4]] suffix = "..." if len(jobs) > 4 else "" print( f"Waiting on {len(jobs)} running jobs. Job ids: {','.join(job_ids)}{suffix}" ) waiting = True time.sleep(poll_frequency)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/execution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import sys import time import warnings from typing import Iterable, Iterator, Sequence, Sized, Tuple, Type import numpy as np HASH_TYPE: Type[np.uint64] = np.uint64 GETPY_WARNING = False class AbstractDedupHashSet(Sized, Iterable[np.uint64]): """A dict-like that returns `True` for keys that have been added more than once. The API is batched and expect np.array as input. This batching grants better perf when using the C++ implementation. """ dtype: Type[np.uint64] = HASH_TYPE def __repr__(self): implementation = type(self).__name__ return f"[{implementation}, len: {len(self)}" def __len__(self) -> int: ... def __contains__(self, values: Sequence[np.uint64]) -> np.ndarray: ... def __getitem__(self, values) -> np.ndarray: ... def __setitem__(self, keys, values) -> None: ... def items(self) -> Iterable[Tuple[np.uint64, np.uint8]]: ... def keys(self) -> Iterable[np.uint64]: ... def __iter__(self) -> Iterator[np.uint64]: return iter(self.keys()) def add(self, h, contains=None): """Add the given keys. First time a key is added the value is set to 0, then it's set to one.""" if not isinstance(h, np.ndarray): h = np.array(h, dtype=HASH_TYPE) if contains is None: contains = self.__contains__(h) self.__setitem__(h, contains) return contains def merge(self, keys, values): contains = self.__contains__(keys) self.__setitem__(keys, contains | values) def dump(self, filename): return self.dump_np(filename) def load(self, filename): return self.load_np(filename) def dump_np(self, filename): kv_type = np.dtype([("k", HASH_TYPE), ("v", np.uint8)]) items = np.fromiter(self.items(), dtype=kv_type, count=len(self)) with open(filename, "wb") as f: np.save(f, items) def load_np(self, filename): items = np.load(str(filename)) keys = items["k"].copy() values = items["v"].copy() self.merge(keys, values) def dump_np2(self, filename): keys = np.fromiter( (k for (k, v) in self.items()), dtype=HASH_TYPE, count=len(self) ) with open(filename, "wb") as f: np.save(f, keys) values = np.fromiter( (v for (k, v) in self.items()), dtype=np.uint8, count=len(self) ) with open(str(filename) + ".val", "wb") as f: np.save(f, values) def load_np2(self, filename): keys = np.load(filename) values = np.load(str(filename) + ".val") self.merge(keys, values) class NaiveHashSet(dict, AbstractDedupHashSet): """Pure python implementation of AbstractDedupHashSet. This implementation is quite fast, since Python dict are heavily optimized. """ def __init__(self, iterable=None): super().__init__() global GETPY_WARNING if GETPY_WARNING: warnings.warn( "Module 'getpy' not found. Deduplication will take more RAM." " Try `pip install cc_net[getpy]" ) GETPY_WARNING = False def __contains__(self, values): """Returns `True` if the object has been added at list once.""" contains_point = super().__contains__ return np.fromiter( map(contains_point, values), count=len(values), dtype=np.uint8 ) def __getitem__(self, values): """Returns `True` if the object has been added at list twice.""" get_point = super().get return np.fromiter( map(lambda x: get_point(x, False), values), count=len(values), dtype=np.uint8, ) def __setitem__(self, keys, values): assert len(keys) == len(values) for k, v in zip(keys, values): dict.__setitem__(self, k, v) try: import getpy as gp # type: ignore class _FlatHashSet(gp.Dict, AbstractDedupHashSet): """C++ backed implementation of AbstractDedupHashSet. This implementation is slightly slower than the Python one but uses 3x less RAM. See https://github.com/atom-moyer/getpy. """ def __init__(self): super().__init__(HASH_TYPE, np.uint8, default_value=False) def __contains__(self, h): """Returns `True` if the object has been added at list once.""" if not isinstance(h, np.ndarray): h = np.array(h, dtype=HASH_TYPE) c = gp.Dict.__contains__(self, h) c.dtype = np.uint8 return c def dump(self, filename): return self.dump_gp(filename) def load(self, filename): return self.load_gp(filename) def dump_gp(self, filename): return gp.Dict.dump(self, str(filename)) def load_gp(self, filename): """Override gp.Dict.load, to correctly merge values instead of overwriting.""" other = gp.Dict(HASH_TYPE, np.uint8, default_value=False) other.load(str(filename)) n = len(other) keys = np.fromiter( (k for (k, v) in other.items()), dtype=HASH_TYPE, count=n ) values = np.fromiter( (v for (k, v) in other.items()), dtype=np.uint8, count=n ) self.merge(keys, values) FlatHashSet: Type[AbstractDedupHashSet] = _FlatHashSet except ImportError: GETPY_WARNING = True FlatHashSet = NaiveHashSet def timeit(message, function, *args): start = time.time() function(*args) end = time.time() print(message, f"took {end - start:.0f}s") def compare_load(*filenames): assert filenames, "No file given" def load_list(): hashes = [] for f in filenames: h = FlatHashSet() h.load(f) print(f"Loaded {h} from {f}.") hashes.append(h) return hashes def load_all(load, ext): hashes = FlatHashSet() for f in filenames: load(hashes, f + ext) def dump_all(hashes, dump, ext): for h, f in zip(hashes, filenames): dump(h, f + ext) hashes = load_list() dump_gp = getattr(FlatHashSet, "dump_gp") if dump_gp is not None: timeit("Dumping using gp.dump", dump_all, hashes, dump_gp, ".gp.test") timeit("Dumping using dump_np", dump_all, hashes, FlatHashSet.dump_np, ".npy.test") timeit( "Dumping using dump_np2", dump_all, hashes, FlatHashSet.dump_np2, ".npy2.test" ) load_gp = getattr(FlatHashSet, "load_gp") if load_gp is not None: timeit("Loading using gp.load", load_all, load_gp, ".gp.test") timeit("Loading using load_np", load_all, FlatHashSet.load_np, ".npy.test") timeit("Loading using load_np2", load_all, FlatHashSet.load_np2, ".npy2.test") # Loading 10 shards: # [dedup] Dumping using gp.dump took 52s # [dedup] Dumping using dump_np took 270s # [dedup] Dumping using dump_np2 took 483s # # [dedup] Loading using gp.load took 654s # [dedup] Loading using load_np took 82s # [dedup] Loading using load_np2 took 76s if __name__ == "__main__": compare_load(*sys.argv[1:])
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/flat_hash_set.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import base64 import hashlib import itertools import urllib.parse from pathlib import Path from typing import Dict, Iterable, List, Optional, Sequence, Set, Union import numpy as np from cc_net import jsonql from cc_net.execution import get_executor from cc_net.jsonql import mem_footprint_gb HASH_SIZE = 4 HASH_TYPE = np.uint32 PUBLIC_FIELDS = ["url", "digest"] COMPUTED_FIELDS = ["cc_segment", "language", "language_score", "bucket", "perplexity"] DATA = Path(__file__).parent.parent / "data" # This is similar to dedup methods but with use 32 bits hashes. def _b2i(b: bytes) -> int: return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0) def _str_hash(s: str) -> int: h = hashlib.sha1(bytes(s, encoding="utf-8")) return _b2i(h.digest()) def get_hashes(lines: Iterable[str]) -> List[bytes]: h = HASH_SIZE return [hashlib.sha1(bytes(l, encoding="utf-8")).digest()[:h] for l in lines] def encode_hashes(hashes: Iterable[bytes]) -> str: return base64.b64encode(b"".join(hashes)).decode("ascii") def encode_as_hashes(lines: Iterable[str]) -> str: return encode_hashes(get_hashes(lines)) def decode_hashes(compact: str) -> List[bytes]: all_hashes = base64.b64decode(compact) res = [] assert len(all_hashes) % HASH_SIZE == 0 for i in range(len(all_hashes) // HASH_SIZE): chunk = all_hashes[i * HASH_SIZE : (i + 1) * HASH_SIZE] res.append(chunk) return res def encode_line_ids(line_ids: Sequence[int]) -> str: arr = np.array(line_ids, dtype="<u2") return base64.b64encode(arr.tobytes()).decode("ascii") def decode_line_ids(compact: str) -> List[int]: ids_bytes = bytearray(base64.b64decode(compact)) return np.ndarray(len(ids_bytes) // 2, dtype="<i2", buffer=ids_bytes) def get_doc_key(digest: str) -> int: assert digest.startswith("sha1:") h = base64.b32decode(digest[5:]) return _b2i(h[:HASH_SIZE]) class Minifier(jsonql.Transformer): ready = True def __init__(self): self.fields = frozenset(COMPUTED_FIELDS + PUBLIC_FIELDS) def do(self, doc: dict) -> Optional[dict]: line_ids: List[int] = doc.pop("line_ids") fields = self.fields keys = list(doc.keys()) for k in keys: if k not in fields: doc.pop(k, None) p = doc.get("perplexity", 0) doc["line_ids"] = encode_line_ids(line_ids) if p: doc["perplexity"] = round(p, 1) s = doc.get("language_score", 0) if s: doc["language_score"] = round(s, 2) return doc class MetadataFetcher(jsonql.Transformer): """Reads documents from CC snapshot and join precomputed metadata. CC snapshots are split in segments. Each segment is 64Mb long. The metadata must also be stored in segments of the same size and names. """ def __init__(self, folder: Union[Path, str]): self.ready = True self.metadata: Dict[int, dict] = {} self._segments: Set[str] = set() self.read_doc = 0 self.missed_doc = 0 self.missed_par = 0 self.processed_par = 0 if isinstance(folder, str): # detect path passed as string if urllib.parse.urlparse(folder).scheme == "": folder = Path(folder) assert folder.exists(), f"Metadata folder not found: {folder}" self.folder = folder self.segment: str = "" self.segments_read_twice = 0 def meta_file(self, segment: str) -> str: file_name = segment.split("/")[-1] assert file_name.endswith(".warc.wet.gz") or file_name.endswith(".warc.wet") if isinstance(self.folder, str): return urllib.parse.urljoin( self.folder, file_name.replace(".warc.wet", ".json") ) meta_file = self.folder / file_name.replace(".warc.wet", ".json") assert ( meta_file.exists() ), f"Couldn't find metadata file for segment {segment} at {meta_file}" return str(meta_file) def fetch_metadata(self, segment: str) -> None: meta_file = self.meta_file(segment) k = get_doc_key self.metadata = {} collision = 0 for m in jsonql.read_jsons(meta_file): key = k(m["digest"]) if key in self.metadata: collision += 1 self.metadata[key] = m self.log(f"Loaded {len(self.metadata)} metadatas from {meta_file}") if collision > 0: self._logger.warning(f"Found {collision} collisions !") self.segment = segment if segment in self._segments: self.log("Cache miss") self.segments_read_twice += 1 self._segments.add(segment) def do(self, doc: dict) -> Optional[dict]: if self.segment != doc["cc_segment"]: self.fetch_metadata(doc["cc_segment"]) digest = doc["digest"] key = get_doc_key(digest) if key not in self.metadata: return None metadata = self.metadata.pop(key) return self.clean(metadata, doc) def clean(self, metadata: dict, full_doc: dict) -> Optional[dict]: line_ids = decode_line_ids(metadata.pop("line_ids")) lines = full_doc["raw_content"].split("\n") cleaned = [] for l in line_ids: if l >= len(lines) or l < 0: self.missed_par += 1 continue cleaned.append(lines[l]) self.processed_par += len(line_ids) if not cleaned: self.missed_doc += 1 return None full_doc["raw_content"] = "\n".join(cleaned) full_doc["original_nlines"] = full_doc["nlines"] full_doc["original_length"] = full_doc["length"] full_doc["nlines"] = len(cleaned) full_doc["length"] = len(full_doc["raw_content"]) for key, value in metadata.items(): full_doc[key] = value return full_doc def summary(self) -> List[str]: summ = super().summary() mem = mem_footprint_gb() len_cache = len(self.metadata) summ.append( f"Read {self.read_doc:_}, stocking {len_cache:_} doc in {mem:.1f}g." ) if self.missed_doc: r = self.missed_doc / self.processed summ.append(f"! Missed {self.missed_doc} documents ({r:.1%}) !") if self.missed_par: r = self.missed_par / self.processed summ.append(f"! Missed {self.missed_par} paragraphs ({r:.1%}) !") return summ def _expand_files(files: List[Path]) -> List[Path]: if len(files) == 1 and files[0].is_dir(): folder = files[0] files = sorted(folder.glob("*.json.gz")) print(f"Found {len(files)} files under {folder}/*.json.gz") assert files, "No files found" return files def minify_file(file: Path, output: Path) -> str: """Minify the given file.""" jsonql.run_pipes(Minifier(), file=file, output=output) return f"Minified {output}" def minify( files: List[Path], output_dir: Path, execution: str = "mp", parallelism: int = -1 ): """Minify all the files in the given folder.""" files = _expand_files(files) output_dir.mkdir(exist_ok=True) with open(output_dir / "files.txt", "w") as o: for f in files: print(f.name, file=o) outputs = [output_dir / f.name for f in files] ex = get_executor( "minify", output_dir / "logs", execution, timeout_hour=2, cpus=1, task_parallelism=parallelism, ) ex(minify_file, files, outputs) def fetch_metadata_file( file: Union[Path, str], metadata_dir: Union[Path, str], output: Path, cache_dir: Path = None, ): unminifier = MetadataFetcher(metadata_dir) tmp = output.with_name("tmp." + output.name) jsonql.run_pipes(unminifier, file=file, output=tmp) tmp.rename(output) return f"Fetched metadata for {file}. Results at {output}." def fetch_metadata( files: List[str], metadata_dir: Union[Path, str], output_dir: Path, execution: str = "mp", parallelism: int = -1, cache_dir: Path = None, ): if len(files) == 1 and Path(files[0]).is_dir(): folder = Path(files[0]) files = [str(f) for f in sorted(folder.glob("*.json.gz"))] print(f"Found {len(files)} files under {folder}/*.json.gz") assert len(files) > 0, "No files given." output_dir.mkdir(exist_ok=True) outputs = [output_dir / str(f).split("/")[-1] for f in files] if cache_dir is None: cache_dir = output_dir / "wet_cache" cache_dir.mkdir(exist_ok=True) if str(cache_dir) == "none": cache_dir = None files = [f for f, o in zip(files, outputs) if not o.exists()] outputs = [o for o in outputs if not o.exists()] if not files: return ex = get_executor( "unminify", output_dir / "logs", execution, timeout_hour=8, cpus=1, task_parallelism=parallelism, mem_gb=32, ) ex(fetch_metadata_file, files, outputs, itertools.repeat(cache_dir)) if __name__ == "__main__": import func_argparse func_argparse.main(minify_file, minify, fetch_metadata, fetch_metadata_file)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/minify.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import re import unicodedata UNICODE_PUNCT = { ",": ",", "。": ".", "、": ",", "„": '"', "”": '"', "“": '"', "«": '"', "»": '"', "1": '"', "」": '"', "「": '"', "《": '"', "》": '"', "´": "'", "∶": ":", ":": ":", "?": "?", "!": "!", "(": "(", ")": ")", ";": ";", "–": "-", "—": " - ", ".": ". ", "~": "~", "’": "'", "…": "...", "━": "-", "〈": "<", "〉": ">", "【": "[", "】": "]", "%": "%", "►": "-", } UNICODE_PUNCT_RE = re.compile(f"[{''.join(UNICODE_PUNCT.keys())}]") def replace_unicode_punct(text: str) -> str: return "".join((UNICODE_PUNCT.get(c, c) for c in text)) def remove_unicode_punct(text: str) -> str: """More aggressive version of replace_unicode_punct but also faster.""" return UNICODE_PUNCT_RE.sub("", text) def strip_accents(line: str) -> str: """Strips accents from a piece of text.""" nfd = unicodedata.normalize("NFD", line) output = [c for c in nfd if unicodedata.category(c) != "Mn"] if len(output) == line: return line return "".join(output) # Build a regex matching all control characters. NON_PRINTING_CHARS_RE = re.compile( f"[{''.join(map(chr, list(range(0,32)) + list(range(127,160))))}]" ) DIGIT_RE = re.compile(r"\d") PUNCT_OR_NON_PRINTING_CHARS_RE = re.compile( (UNICODE_PUNCT_RE.pattern + NON_PRINTING_CHARS_RE.pattern).replace("][", "") ) def remove_non_printing_char(text: str) -> str: return NON_PRINTING_CHARS_RE.sub("", text) def normalize_spacing_for_tok(text: str, language: str = "en") -> str: res = ( text.replace("\r", "") # remove extra spaces .replace("(", " (") .replace(")", ") ") .replace(" +", " ") ) res = re.sub(r"\) ([\.\!\:\?\;\,])", r"\)\1", res) res = res.replace("( ", "(").replace(" )", ")") res = re.sub(r"(\d) \%", r"\1\%", res) res = res.replace(" :", ":").replace(" ;", ";") res = res.replace("`", "'").replace("''", ' " ') res = ( res.replace("„", '"') .replace("“", '"') .replace("”", '"') .replace("–", "-") .replace("—", " - ") .replace(" +", " ") .replace("´", "'") .replace("([a-z])‘([a-z])", r"\1'\2/") .replace("([a-z])’([a-z])", r"\1'\2/") .replace("‘", '"') .replace("‚", '"') .replace("’", '"') .replace("''", '"') .replace("´´", '"') .replace("…", "...") # French quotes .replace(" « ", ' "') .replace("« ", '"') .replace("«", '"') .replace(" » ", '" ') .replace(" »", '"') .replace("»", '"') # handle pseudo-spaces .replace(" %", "%") .replace("nº ", "nº ") .replace(" :", ":") .replace(" ºC", " ºC") .replace(" cm", " cm") .replace(" ?", "?") .replace(" !", "!") .replace(" ;", ";") .replace(", ", ", ") .replace(" +", " ") .replace(".", ". ") ) # English "quotation," followed by comma, style if language == "en": res = re.sub(r"\"([,\.]+)", r"\1\"", res) # Czech is confused elif language == "cs" or language == "cz": pass # German/Spanish/French "quotation", followed by comma, style else: res = res.replace(',"', '",') res = re.sub( r"(\.+)\"(\s*[^<])", r"\"\1\2", res ) # don't fix period at end of sentence if ( language == "de" or language == "es" or language == "cz" or language == "cs" or language == "fr" ): res = re.sub(r"(\d) (\d)", r"\1,\2", res) else: res = re.sub(r"(\d) (\d)", r"\1.\2", res) return res def normalize(line: str, accent=True, case=True, numbers=True, punct=1) -> str: line = line.strip() if not line: return line if case: line = line.lower() if accent: line = strip_accents(line) if numbers: line = DIGIT_RE.sub("0", line) if punct == 1: line = replace_unicode_punct(line) elif punct == 2: line = remove_unicode_punct(line) line = remove_non_printing_char(line) return line def slow_normalize_for_dedup(line: str) -> str: return normalize(line, accent=False, case=True, numbers=True, punct=2) def normalize_for_dedup(line: str) -> str: line = line.strip() if not line: return line # case line = line.lower() # numbers line = DIGIT_RE.sub("0", line) line = PUNCT_OR_NON_PRINTING_CHARS_RE.sub("", line) return line
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/text_normalizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging import subprocess from pathlib import Path from typing import List import func_argparse import numpy as np from cc_net import jsonql def get_index(file: Path) -> Path: return file.parent / (file.name + ".index") def _get_tmp(output: Path) -> Path: return output.parent / (output.stem + ".tmp" + output.suffix) def reshard( inputs: List[Path], output: Path, tmp: Path = None, free_original: bool = False, rm_original: bool = False, ) -> Path: """Read the given files and concatenate them to the output file. Can remove original files on completion, or just write dummy content into them to free disk. """ if tmp is None: tmp = _get_tmp(output) logging.info(f"Resharding {inputs} to {tmp}, will move later to {output}") jsonql.run_pipes(file=inputs, output=tmp) tmp.replace(output) tmp_index = get_index(tmp) if tmp_index.exists(): tmp_index.replace(get_index(output)) if not (free_original or rm_original): return output for _input in inputs: if rm_original: _input.unlink() elif free_original: # Overwrite the previous file. # This frees up disk space and allows doit to properly track the success. _input.write_text(f"Resharded into {output}") if get_index(_input).is_file(): get_index(_input).unlink() return output def fast_reshard( inputs: List[Path], output: Path, tmp: Path = None, free_original: bool = False, rm_original: bool = False, ) -> Path: """Same as reshard but don't re-compress the output. This will lead to a bigger output file, especially if the shards are very small. """ if tmp is None: tmp = _get_tmp(output) with open(tmp, "wb") as o: subprocess.run(["cat"] + [str(f) for f in inputs], stdout=o) tmp.replace(output) indexes_files = [get_index(i) for i in inputs] existing_indexes = sum(i.exists() for i in indexes_files) assert ( existing_indexes == len(indexes_files) or existing_indexes == 0 ), "some indexes don't exist." if existing_indexes > 0: indexes = [np.load(idx) for idx in indexes_files] for i in range(len(indexes) - 1): indexes[i + 1] += indexes[i][-1] with open(str(output) + ".index", "wb") as o: np.save(o, np.concatenate(indexes)) if not (free_original or rm_original): return output for _input in inputs: if rm_original: _input.unlink() elif free_original: # Overwrite the previous file. # This frees up disk space and allows doit to properly track the success. _input.write_text(f"Resharded into {output}") if get_index(_input).is_file(): get_index(_input).unlink() return output def determine_groups( inputs: List[Path], target_size: int = 4 * 1024 ** 3 ) -> List[List[Path]]: if len(inputs) == 0: return [] sample = inputs[:10] typical_size = sum(s.stat().st_size for s in sample) / len(sample) group_size = min(target_size // typical_size, len(inputs)) group_size = max(group_size, 1) return jsonql.grouper(inputs, group_size) if __name__ == "__main__": func_argparse.single_main(reshard)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/regroup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import argparse import time from pathlib import Path from typing import Dict, List, Optional, Sequence, Tuple, Union import kenlm # type: ignore import numpy as np # type: ignore import pandas as pd # type: ignore import sentencepiece # type: ignore from cc_net import jsonql, text_normalizer LMDescriptor = Union[Dict[str, Path], Union[Path, str]] def get_args(): parser = argparse.ArgumentParser( description="Compute the score of each sentences of a document", parents=[jsonql.io_parser()], ) parser.add_argument("--models", type=str) parser.add_argument("--sentences", action="store_true", default=False) parser.add_argument( "--languages", type=str, help="Ignore doc with another language" ) parser.add_argument("--field", type=str, default=None) parser.add_argument("--newline", type=str, default="\n") return vars(parser.parse_args()) def pp(log_score, length): return 10.0 ** (-log_score / length) class SentencePiece(jsonql.Transformer): # Sentence Pieces model have to be read back from disk. warning_when_pickling = True def __init__( self, model: Path, field: str, output_field: str = "tokenized", normalize: bool = False, ): super().__init__() self.model = model self.field = field self.output_field = output_field self.normalize = normalize self.sp: sentencepiece.SentencePieceProcessor = None def _prepare(self): if self.sp is not None: return self.sp = sentencepiece.SentencePieceProcessor() self.sp.load(str(self.model)) return self def do(self, document: dict) -> dict: text = document[self.field] if self.normalize: text = text_normalizer.normalize(text) tokenized = self.sp.encode_as_pieces(text) document[self.output_field] = " ".join(tokenized) return document class MultiSentencePiece(jsonql.Transformer): warning_when_pickling = True def __init__( self, models: Union[Path, Dict[str, Path]], field: str, output_field: str = "tokenized", normalize: bool = False, ): super().__init__() self.field = field self.output_field = output_field self.normalize = normalize self._prefetch: Sequence[str] = [] if isinstance(models, Path): self.models = { m.name.split(".")[0]: m for m in models.parent.glob(models.name) } else: self.models = models self._prefetch = list(models.keys()) self.sp: Dict[str, sentencepiece.SentencePieceProcessor] = {} def _prepare(self) -> None: for lang in self._prefetch: assert ( self.get_sp(lang) is not None ), f"No model found for {lang} at {self.models.get(lang)}." def get_sp(self, lang) -> Optional[sentencepiece.SentencePieceProcessor]: sp = self.sp.get(lang) if sp is not None: return sp if lang not in self.models: return None start_load = time.time() self.log(f"Loading {self.models[lang]}...") sp = sentencepiece.SentencePieceProcessor() sp.load(str(self.models[lang])) self.sp[lang] = sp load_time = time.time() - start_load self.log(f"Loaded {self.models[lang]} (took {load_time / 60:.1f}min)") return sp def do(self, document: dict) -> Optional[dict]: text = document[self.field] if self.normalize: text = text_normalizer.normalize(text) sp = self.get_sp(document.get("language")) if sp is None: return document tokenized = sp.encode_as_pieces(text) document[self.output_field] = " ".join(tokenized) return document class DocLM(jsonql.Transformer): def __init__( self, models: Union[Path, Dict[str, Path]], field: str, output_field: str = "perplexity", newline: str = "\n", normalize: bool = True, load_method: int = 2, ): super().__init__() self.field = field self.output_field = output_field self.newline = newline self.normalize = normalize self._prefetch: Sequence[str] = [] self.lm_config = kenlm.Config() # This is the default settings # POPULATE will mmap the models and populate the pages. # Maybe that's not the best way when the models are on a network disk. # TODO: try copying models file, try READ or PARALLEL_READ self.lm_config.load_method = load_method if isinstance(models, Path): self.models = { m.name.split(".")[0]: m for m in models.parent.glob(models.name) } else: self.models = models self._prefetch = list(models.keys()) self.lm: Dict[str, kenlm.Model] = {} self.n_lines = 0 def _prepare(self) -> None: for lang in self._prefetch: assert ( self.get_lm(lang) is not None ), f"No model found for {lang} at {self.models.get(lang)}." def get_lines(self, document: dict) -> List[str]: lang = document.get("language") if not lang: return [] if lang not in self.models: return [] content = document.get(self.field) if not content: return [] lines = content.split(self.newline) self.n_lines += len(lines) return lines def get_lm(self, lang: Optional[str]) -> Optional[kenlm.Model]: if lang is None: return None lm = self.lm.get(lang) if lm is not None: return lm model = self.models.get(lang) if model is None: return None start_load = time.time() self.log(f"Loading {self.models[lang]}...") lm = kenlm.Model(str(model), self.lm_config) self.lm[lang] = lm load_time = time.time() - start_load self.log(f"Loaded {self.models[lang]} (took {load_time / 60:.1f}min)") return lm def do(self, document: dict) -> dict: lines = self.get_lines(document) model = self.get_lm(document.get("language")) if not lines or not model: return document doc_log_score, doc_length = 0, 0 for line in lines: if self.normalize: line = text_normalizer.normalize(line) log_score = model.score(line) length = len(line.split()) + 1 doc_log_score += log_score doc_length += length document[self.output_field] = round(pp(doc_log_score, doc_length), 1) return document def summary(self): delay = time.time() - self.start_time h = delay / 3600 s = self.n_lines / delay summ = super().summary() summ.append(f"Processed {self.n_lines:_} lines in {h:.2}h ({s:.1} lines/s).") return summ class SentencesLM(DocLM): """Returns the score of each individual paragraph.""" def do(self, document: dict) -> Optional[str]: # type: ignore lines = self.get_lines(document) model = self.get_lm(document.get("language")) if not lines or not model: return None sentences = [] for line in lines: if self.normalize: line = text_normalizer.normalize(line) log_score = model.score(line) length = len(line.split()) + 1 sentences.append(f"{pp(log_score, length)}\t{line}") return "\n".join(sentences) class PerplexityBucket(jsonql.Transformer): def __init__( self, cutoff_csv: Path, percentile_head: int = 30, percentile_tail: int = 60 ): super().__init__() self.cutoff_csv = cutoff_csv self.percentile_head = percentile_head self.percentile_tail = percentile_tail self.cutoffs: Dict[str, Tuple[float, float]] = {} def _prepare(self) -> None: cutoffs = pd.read_csv(self.cutoff_csv, index_col=0) self.cutoffs = { l: (cutoffs[l][self.percentile_head], cutoffs[l][self.percentile_tail]) for l in cutoffs.columns } def get_bucket(self, doc: dict) -> str: perplexity = doc.get("perplexity", -1) lang = doc.get("language") if lang not in self.cutoffs or perplexity < 0: return "all" pp_head, pp_tail = self.cutoffs[lang] if perplexity < pp_head: return "head" if perplexity < pp_tail: return "middle" return "tail" def do(self, doc: dict) -> dict: doc["bucket"] = self.get_bucket(doc) return doc class DropKeys(jsonql.Transformer): def __init__(self, *keys): super().__init__() self.keys = keys def do(self, document: dict) -> Optional[dict]: if not document: return None for key in self.keys: document.pop(key, None) return document class RemoveSmall(jsonql.Transformer): def __init__(self, field, min_len): super().__init__() self.field = field self.min_len = min_len self.removed = 0 def do(self, document: dict) -> Optional[dict]: if not document: return None content = document.get(self.field) if not content or len(content) < self.min_len: self.removed += 1 return None return document def summary(self): r, n = self.removed, self.processed ratio = r / n if n else 0 return [f"Removed {r} small documents out of {n} ({ratio:.1%})"] def perplexity_to_bin(file: Path, output: Path, models, tok_field: str): pp_field = "perplexity" lm = DocLM(models, tok_field, output_field=pp_field) stats: List[float] = [] max_stats = 1_000_000 batch_size = 100_000 i = 0 batch = [] with open(output, "wb") as o: for doc in jsonql.read_jsons(file): i += 1 pp = lm(doc)[pp_field] if len(stats) < max_stats: stats.append(pp) batch.append(pp) if len(batch) >= batch_size: np.array(batch, dtype=np.float32).tofile(o) batch = [] if len(batch) > 0: np.array(batch, dtype=np.float32).tofile(o) if __name__ == "__main__": args = get_args() output = Path(args["output"]) if output.suffix == ".bin": perplexity_to_bin(args["file"], output, args["models"], args["field"]) else: jsonql.run_pipe(DocLM, args)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/perplexity.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import time from typing import Dict, Optional import sacremoses # type: ignore from cc_net import jsonql, text_normalizer class RobustTokenizer(jsonql.Transformer): """Moses tokenizer with the expected preprocessing.""" LANG_WITHOUT_ACCENT = {"en", "my"} def __init__(self, lang: str): super().__init__() self.lang = lang self.moses = sacremoses.MosesTokenizer(lang) self.rm_accent = lang in self.LANG_WITHOUT_ACCENT self.ready = True def do(self, text: str): text = text_normalizer.normalize( text, accent=self.rm_accent, case=False, numbers=False, punct=True ) text = text_normalizer.normalize_spacing_for_tok(text, language=self.lang) return self.moses.tokenize(text, return_str=True, escape=False) class DocTokenizer(jsonql.Transformer): """Tokenize the text found in `output_field and store the result in `output_field`.""" def __init__( self, field: str, output_field: str = "tokenized", language_field: str = "language", ): super().__init__() self.field = field self.output_field = output_field self.language_field = language_field self.n_docs = 0 self.tokenizers: Dict[str, RobustTokenizer] = {} def get_tokenizer(self, lang: str) -> Optional[RobustTokenizer]: cache = self.tokenizers if lang in cache: return cache[lang] if lang in ("th", "zh", "ja"): # TODO find a tokenizer for those languages return None cache[lang] = RobustTokenizer(lang) return cache[lang] def do(self, document): lang = document[self.language_field] tok = self.get_tokenizer(lang) if not tok: return document self.n_docs += 1 lines = document[self.field].split("\n") tokenized = "\n".join(tok(l) for l in lines) document[self.output_field] = tokenized return document def summary(self): delay = (time.time() - self.start_time) / 3600 speed = self.n_docs / delay return [ f"Tokenized {self.n_docs:_} documents in {delay:.2}h ({speed:.1} doc/s)." ]
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/tokenizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Tools to remove duplicate paragraphs across one or several shards. """ import argparse import gc import hashlib import logging import multiprocessing import os import tempfile import time from pathlib import Path from typing import Iterable, List, Optional, Set, Union import numpy as np from cc_net import jsonql from cc_net.flat_hash_set import HASH_TYPE, AbstractDedupHashSet, FlatHashSet from cc_net.jsonql import mem_footprint_gb from cc_net.text_normalizer import normalize_for_dedup BYTE_ORDER = "little" HASH_SIZE = HASH_TYPE(0).nbytes DISABLE_MULTI_PROCESSING = False FilesOrDir = Union[List[Path], Path] def get_args(): parser = argparse.ArgumentParser( description="Read a set of json files and allow to query them", parents=[jsonql.io_parser()], ) parser.add_argument("--field", type=str, default="raw_content") parser.add_argument("--output_hashes", type=str) parser.add_argument("--no_finalize", action="store_false", dest="finalize") # parser.add_argument("--mem_gb", type=int) parser.add_argument("--hashes", type=str) return vars(parser.parse_args()) def _b2i(b: bytes) -> int: return np.frombuffer(b[:HASH_SIZE], dtype=HASH_TYPE, count=1, offset=0).item(0) def str_hash(s: str) -> int: h = hashlib.sha1(bytes(s, encoding="utf-8")) return _b2i(h.digest()) log = logging.getLogger(__name__).info def run_par(processes): # This is different from multiprocessing.map since it allows for kwargs. processes = list(processes) if len(processes) == 1 or DISABLE_MULTI_PROCESSING: for f, args, kwargs in processes: f(*args, **kwargs) return log(f"Starting {len(processes)} subprocess") processes = [ multiprocessing.Process(target=f, args=a, kwargs=kw) for (f, a, kw) in processes ] for p in processes: p.start() for p in processes: p.join() failed = 0 for p in processes: if p.exitcode != 0: log(f"Process failed with code {p.exitcode}: {p}") failed += 1 assert failed == 0, f"{failed} processes failed..." def split_file(file, n_splits): for i in range(n_splits): yield jsonql.SplitFile(file, i, n_splits) def merge(hashes_1, hashes_2, output): if isinstance(hashes_1, str): h1 = FlatHashSet() h1.load(hashes_1) else: h1 = hashes_1 if isinstance(hashes_2, str): h2 = FlatHashSet() h2.load(hashes_2) else: h2 = hashes_2 h2_np = np.fromiter(h2.keys(), dtype=FlatHashSet.dtype, count=len(h2)) dup = h1.__contains__(h2_np) # Dups between h1 and h2 will be set to 1, keys unique to h2 are copied to # h1 with their value. h1[h2_np] = dup if output: h1.dump(output) return h1 def merge_shard(hash_files, output): h = FlatHashSet() h.load(hash_files[0]) for hash_file in hash_files[1:]: h = merge(h, hash_file, output=None) print(f"Merged {hash_file}. We now have {len(h)} hashes.") h.dump(output) print(f"Saved {len(h)} hashes to {output}.") def _dump_sentence_hashes(source: Path, output: Path, field: str): treated = 0 started = time.time() with open(output, "wb") as o: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content: continue h = compute_hashes(content) if h is None: continue h.tofile(o) treated += 1 if treated % 100_000 == 0: delay = time.time() - started log( f"Computed {treated} documents hashes in {delay / 3600:.2f}h ({treated / delay} doc / s)" ) def _remove_duplicate_hashes(duplicates, source, output): batch_size = 100_000 n_lines, n_lines_kept = 0, 0 with open(source, "rb") as f, open(output, "wb") as o: log(f"Opening {source} with mode rb") log(f"Opening {output} with mode wb") while True: hashes = np.fromfile(f, dtype=HASH_TYPE, count=batch_size) if hashes.size == 0: break keep = duplicates[hashes] < 1 kept = keep.sum() hashes *= keep hashes.tofile(o) n_lines += hashes.size n_lines_kept += kept removed = n_lines - n_lines_kept selectivity = n_lines_kept / n_lines if n_lines else 0 log(f"Removed {removed} duplicate hashes with selectivity: {selectivity:3.1%}") def remove_duplicates_sharded( files: List[Path], outputs: List[Path], hashes_dir: FilesOrDir, field: str, group_hashes: int = 1, tmp_dir: Path = None, min_len: int = 0, ): """Remove duplicates in several passes, when all hashes don't fit in RAM. Note: The current implementation is not doing a 'perfect' deduplication. If a hash appear exactly once in each shard of hashes it won't be detected as a duplicate. This can be fixed if hashes are fully dedup beforehand. """ assert len(files) == len(outputs) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) assert len(hashes_files) > 0, f"no hashes files found in: {hashes_dir}" if len(hashes_files) <= group_hashes: log(f"All hashes can be done in one pass, using DuplicatesRemover on {files}") rm_dups = DuplicatesRemover(field, hashes_files) rm_dups._prepare() run_par( (jsonql.run_pipes, (rm_dups,), dict(file=f, output=o)) for f, o in zip(files, outputs) ) return log(f"Starting deduplicate_sharded on {files}.") tmp_directory = tempfile.TemporaryDirectory(dir=str(tmp_dir) if tmp_dir else None) def tmp_files(i): return [ Path(tmp_directory.name) / (f.name.split(".")[0] + f".{i}.bin") for f in files ] last = tmp_files(0) run_par((_dump_sentence_hashes, (f, tmp, field), {}) for f, tmp in zip(files, last)) if isinstance(hashes_dir, list): hashes_files = hashes_dir else: hashes_files = sorted( h for h in Path(hashes_dir).iterdir() if h.suffix == ".bin" ) for i, group in enumerate(jsonql.grouper(hashes_files, group_hashes)): hashes = FlatHashSet() for h in group: hashes.load(h) log(f"Loaded {h}, up to {len(hashes)} hashes ({mem_footprint_gb()}GB)") intermediates = tmp_files(i + 1) # Remove hashes in parallel. Since modern OS have "copy-on-write" and # `hashes` is read-only, we will only have one version of it in RAM. run_par( (_remove_duplicate_hashes, (hashes, f, tmp), {}) for f, tmp in zip(last, intermediates) ) # Force hashes to be freed, before we start allocating a new one. del hashes gc.collect() for tmp in last: os.remove(tmp) last = intermediates def finalize(source, dedup_hashes, min_len): n_chars, n_chars_kept = 0, 0 with open(dedup_hashes, "rb") as hashes: for doc in jsonql.read_jsons(source): content = doc.get(field) if not content or len(content) < min_len: continue sentences = content.split("\n") doc_hashes = np.fromfile(hashes, dtype=HASH_TYPE, count=len(sentences)) chars, kept_chars = finalize_doc(doc, field, doc_hashes) n_chars += chars n_chars_kept += kept_chars yield doc selectivity = n_chars_kept / n_chars if n_chars else 0 log(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") dedup_hashes = last run_par( [ ( jsonql.run_pipe, (finalize,), dict(kwargs=dict(dedup_hashes=h, min_len=min_len), file=f, output=o), ) for h, f, o in zip(dedup_hashes, files, outputs) ] ) tmp_directory.cleanup() def compute_hashes(content) -> Optional[np.ndarray]: if not content: return None lines = content.split("\n") # save hashes as bytes but reinterpret them as uint64. hashes = np.fromiter( ( hashlib.sha1(bytes(normalize_for_dedup(l), encoding="utf-8")).digest()[ :HASH_SIZE ] for l in lines ), dtype=np.dtype((bytes, HASH_SIZE)), count=len(lines), ) return np.ndarray(dtype=HASH_TYPE, buffer=hashes.data, shape=hashes.shape) def finalize_doc(doc, field, hashes=None): content = doc.get(field) lines = content.split("\n") n_chars = len(content) if "original_nlines" not in doc: doc["original_nlines"] = doc.get("nlines", len(lines)) if "original_length" not in doc: doc["original_length"] = doc.get("length", n_chars) if hashes is None: hashes = doc.pop(field + "_hash") # Remove duplicates inside doc seen: Set[int] = set() original_line_ids = doc.get("line_ids", range(len(hashes))) line_ids = [] new_lines = [] for l, line, h in zip(original_line_ids, lines, hashes): if h not in seen and h != 0: line_ids.append(l) new_lines.append(line) seen.add(h) doc[field] = "\n".join(new_lines) doc["nlines"] = len(line_ids) n_chars_kept = len(doc[field]) doc["length"] = n_chars_kept doc["line_ids"] = line_ids return n_chars, n_chars_kept class HashesCollector(jsonql.Transformer): """ Collect all hashes found of lines found in the `field` of the source documents. """ parallelisable = False def __init__( self, field: str, output: Path = None, hashes: AbstractDedupHashSet = None ): super().__init__() self.n_lines = 0 self.field = field self.output = output self.hashes = FlatHashSet() if hashes is None else hashes self.num_hashes_end = 0 self.num_hashes_start = len(self.hashes) def summary(self) -> List[str]: summ = super().summary() h = self.num_hashes_end if self.hashes is None else len(self.hashes) h = (h - self.num_hashes_start) // 1000 max_mem = mem_footprint_gb() n = self.n_lines // 1000 summ.append( f"Found {h:_}k unique hashes over {n:_}k lines. Using {max_mem:.1f}GB of RAM." ) return summ def do(self, doc: dict) -> None: doc_hashes = compute_hashes(doc.get(self.field)) if doc_hashes is None: return self.hashes.add(doc_hashes) self.n_lines += doc_hashes.size def close(self): if self.output and self.hashes: self.hashes.dump(self.output) self.log(f"Saved {len(self.hashes)} hashes to {self.output}") # Save the number of hashes. self.num_hashes_end = len(self.hashes) # Free up mem even if the transformer is kept somewhere else. self.hashes = None # type: ignore class DuplicatesRemover(jsonql.Transformer): """DuplicatesRemover""" # The hashes can't be pickled so they will have to be read back from disk. warn_when_pickling = True def __init__(self, field: str, hashes_files: List[Path], collect: bool = False): """ Remove duplicates """ super().__init__() self.field = field self.collect = collect self.hashes_files = hashes_files self.duplicates: Optional[AbstractDedupHashSet] = None self.n_lines, self.n_lines_kept = 0, 0 self.n_chars, self.n_chars_kept = 0, 0 def _prepare(self): if self.duplicates is not None: return self.duplicates = FlatHashSet() start = time.time() for h in self.hashes_files: shard_start = time.time() self.duplicates.load(str(h)) delay = time.time() - shard_start self.log( f"Loaded hashes from {h} ({mem_footprint_gb():.3f}GB total, took {delay / 60:.1}m)" ) delay = time.time() - start self.log( f"Loaded {len(self.duplicates):_d} hashes from {len(self.hashes_files)} files. ({mem_footprint_gb():.1f}GB total, took {delay / 60:.1}m)" ) def do(self, doc: dict) -> Optional[dict]: content = doc.get(self.field) if not content: return None doc_hashes = compute_hashes(content) assert self.duplicates is not None seen = ( self.duplicates.add(doc_hashes) if self.collect else self.duplicates[doc_hashes] ) keep = seen < True kept = keep.sum() if kept == 0: return None doc_hashes = doc_hashes * keep self.n_lines += keep.size self.n_lines_kept += kept chars, kept_chars = finalize_doc(doc, self.field, hashes=doc_hashes) self.n_chars += chars self.n_chars_kept += kept_chars return doc def summary(self) -> List[str]: summ = super().summary() end_time = time.time() n_lines_kept, n_lines, n_docs = self.n_lines_kept, self.n_lines, self.processed speed = n_docs / (end_time - self.start_time) summ.append( f"Processed {self.n_lines} lines in {n_docs} docs. [{speed:.1f} doc/s]" ) selectivity = self.n_lines_kept / self.n_lines if n_lines else 0 summ.append(f"Kept {n_lines_kept} lines out of {n_lines} ({selectivity:.1%}).") n_chars_kept, n_chars = self.n_chars_kept, self.n_chars selectivity = n_chars_kept / n_chars if n_chars else 0 summ.append(f"Kept {n_chars_kept} chars out of {n_chars} ({selectivity:.1%}).") return summ def deduplicate( file: jsonql.ReadableFileLike, field: str = "raw_content" ) -> Iterable[dict]: """Remove duplicates of the given file (but keep the first occurence).""" dup_remover = DuplicatesRemover(field, [], collect=True) return dup_remover.map(jsonql.read_jsons(file)) def deduplicate_two_pass( file: jsonql.FileDescriptor, field: str = "raw_content" ) -> Iterable[dict]: """Remove duplicates of the given file (even removing the first occurence). This is what is done in the paper, and in mine.py """ try: if isinstance(file, Path): hash_file: Path = file.with_suffix(".bin") else: hash_file = jsonql._tmp(Path("hashes.bin")) jsonql.run_pipes( jsonql.JsonReader(), HashesCollector(field, output=hash_file), file=file ) dup_remover = DuplicatesRemover(field, [hash_file]) return dup_remover.map(jsonql.read_jsons(file)) finally: if hash_file.exists(): hash_file.unlink()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/dedup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import contextlib import functools import logging import re import tempfile import time import urllib.request from pathlib import Path from typing import ContextManager, Iterable, Iterator, List, Optional, Sequence from urllib.parse import urlparse import func_argparse from bs4 import BeautifulSoup # type: ignore from cc_net import jsonql WET_URL_ROOT = "https://data.commoncrawl.org" logger = logging.getLogger(__name__) def cc_wet_paths_url(dump_id: str) -> str: return "/".join([WET_URL_ROOT, "crawl-data", "CC-MAIN-" + dump_id, "wet.paths.gz"]) @functools.lru_cache() def cc_segments(dump_id: str, cache_dir: Path = None) -> List[str]: wet_paths = cc_wet_paths_url(dump_id) cache_dir = cache_dir or jsonql._tmp_dir() wet_paths_cache = cache_dir / f"wet_{dump_id}.paths.gz" f = jsonql.open_remote_file(wet_paths, cache=wet_paths_cache) return [segment.strip() for segment in f] def list_dumps() -> List[str]: home_page = BeautifulSoup( urllib.request.urlopen("http://index.commoncrawl.org/"), features="html.parser" ) dumps = [a.get("href").strip("/") for a in home_page.findAll("a")] dumps = [a[8:] for a in dumps if re.match(r"^CC-MAIN-\d\d\d\d-\d\d$", a)] return sorted(dumps) def ls(): for dump in list_dumps(): print(dump, "->", cc_wet_paths_url(dump)) def parse_doc(headers: List[str], doc: List[str]) -> Optional[dict]: """BEFORE 2020, Headers format is: WARC/1.0 WARC-Type: conversion WARC-Target-URI: [url] WARC-Date: [crawldate: 2019-02-15T19:15:59Z] WARC-Record-ID: <urn:uuid:8865156e-d5f1-4734-9c68-4b46eaf2bb7e> WARC-Refers-To: <urn:uuid:340152e2-65cf-4143-b522-8ce4e2d069d7> WARC-Block-Digest: sha1:S3DTWCONT2L6ORTGCY2KXEZ37LNBB7V2 Content-Type: text/plain Content-Length: 7743 AFTER 2020, Headers format is: WARC/1.0 WARC-Type: conversion WARC-Target-URI: http://100greatpiano.com/video/wilhelm-kempff-plays-beethovens-moonlight-sonata/ WARC-Date: 2023-01-26T22:21:08Z WARC-Record-ID: <urn:uuid:ccafeba8-a08b-47d0-86be-cf0855f4f6d0> WARC-Refers-To: <urn:uuid:935a6ef4-8708-41f5-a152-412cdf1b48c1> WARC-Block-Digest: sha1:2WURD74BLDCLPV6INBQEQ6OOJRQDPJBA WARC-Identified-Content-Language: eng,jpn Content-Type: text/plain Content-Length: 886 """ if not headers or not doc: return None try: warc_type = headers[1].split()[1] if warc_type != "conversion": return None url = headers[2].split()[1] date = headers[3].split()[1] digest = headers[6].split()[1] # process length, may be in the 8th or 9th position try: length = int(headers[9].split()[1]) except IndexError as e: length = int(headers[8].split()[1]) except Exception as e: logger.warning("Can't parse header:", e, headers, doc) return None # Docs are separated by two empty lines. last = None if not doc[-1] and not doc[-2]: last = -2 title, doc = doc[0], doc[1:last] return { "url": url, "date_download": date, "digest": digest, "length": length, "nlines": len(doc), "source_domain": urlparse(url).netloc, "title": title, "raw_content": "\n".join(doc), } def group_by_docs(warc_lines: Iterable[str]) -> Iterable[dict]: doc: List[str] = [] headers, read_headers = [], True for warc in warc_lines: warc = warc.strip() if read_headers: headers.append(warc) read_headers = warc != "" continue if warc == "WARC/1.0": # We reached the beginning of the new doc. parsed = parse_doc(headers, doc) if parsed is not None: yield parsed headers, doc, read_headers = [warc], [], True continue doc.append(warc) # Return the last document if doc: parsed = parse_doc(headers, doc) if parsed is not None: yield parsed def parse_warc_file(lines: Iterable[str], min_len: int = 1) -> Iterator[dict]: n_doc = 0 n_ok = 0 for doc in group_by_docs(lines): n_doc += 1 if not doc or len(doc["raw_content"]) < min_len: continue n_ok += 1 yield doc if n_doc > 0: logger.info(f"Kept {n_ok:_d} documents over {n_doc:_d} ({n_ok / n_doc:.1%}).") else: logger.info(f"Found no documents") def dl( dump: str, shard: int, num_shards: int, output: Path = None, num_segments_per_shard: int = 0, ): """Download a shard of the common crawl, and export it to json. Arguments: output: filename of the output file dump: CC dump id shard: id of the shard num_shards: total number of shards num_segments_per_shard: manual control of the number of segment per shard. """ reader = CCShardReader(dump, shard, num_shards, num_segments_per_shard) jsonql.run_pipes(inputs=reader, output=output) logger.info(f"Done. {output} is ready.") class CCSegmentsReader(Iterable[dict]): def __init__( self, segments: Sequence[str], min_len: int = 0, cache_dir: Path = None ): self._segments = segments self.min_len = min_len if cache_dir is not None: cache_dir = Path(cache_dir) cache_dir.mkdir(exist_ok=True) self.cache_dir = cache_dir self.retrieved_segments = 0 def segment_url(self, segment: str): return "/".join((WET_URL_ROOT, segment)) @property def segments(self) -> Sequence[str]: return self._segments def open_segment(self, segment: str) -> Iterable[str]: url = self.segment_url(segment) file: Optional[Path] = None if self.cache_dir: file = self.cache_dir / segment.split("/")[-1] if not file or not file.exists(): self.retrieved_segments += 1 return jsonql.open_remote_file(url, cache=file) def __iter__(self) -> Iterator[dict]: n = len(self.segments) for i, segment in enumerate(self.segments): start = time.time() # TODO: start downloading the next segment in the background for doc in parse_warc_file(self.open_segment(segment), self.min_len): doc["cc_segment"] = segment yield doc if i + 1 >= n: continue end = time.time() delay = (end - start) / 3600 * (n - 1 - i) logger.info( f"Parsed {i + 1} / {n} files. Estimated remaining time: {delay:.1f}h" ) class CCShardReader(CCSegmentsReader): def __init__( self, dump: str, shard: int, num_shards: int = -1, num_segments_per_shard: int = 40, min_len: int = 300, cache_dir: Path = None, ): """Downloads a shard of Common Crawl, and yields dict. Arguments: dump: CC dump id shard: id of the shard num_shards: total number of shards num_segments_per_shard: if set will limit the number of files by shard. Useful for testing. """ super().__init__([], min_len=min_len, cache_dir=cache_dir) self.dump = dump self.shard = shard assert num_shards > 0 or num_segments_per_shard > 0 self.num_shards = num_shards self.num_segments_per_shard = num_segments_per_shard @property def segments(self) -> Sequence[str]: # Delaying the initialization allows to delay the looking up of the WET files if self._segments: return self._segments segments = cc_segments(self.dump, self.cache_dir) n = len(segments) if self.num_shards < 0: self.num_shards = n // self.num_segments_per_shard i_min = (self.shard * n) // self.num_shards i_max = ((self.shard + 1) * n) // self.num_shards if self.num_segments_per_shard > 0: i_max = min(i_max, i_min + self.num_segments_per_shard) self._segments = segments[i_min:i_max] return self._segments def _tmp(prefix: str = None, suffix: str = None, dir: Path = None) -> Path: _, tmp_path = tempfile.mkstemp(prefix=prefix, suffix=suffix, dir=dir) return Path(tmp_path) @contextlib.contextmanager def timer(name: str = "-"): start = time.time() yield None delay = time.time() - start print(f"{name} took {delay:.1f}s") def benchmark(tmp_path: Path): segments = [ "crawl-data/CC-MAIN-2019-09/segments/1550249406966.99/wet/CC-MAIN-20190222220601-20190223002601-00441.warc.wet.gz" ] seg_file = tmp_path / "CC-MAIN-20190222220601-20190223002601-00441.warc.wet.gz" with timer("from network"): list(CCSegmentsReader(segments)) with timer("from network, with caching"): list(CCSegmentsReader(segments, cache_dir=tmp_path)) assert seg_file.exists() with timer("from disk"): CCSegmentsReader(segments, cache_dir=tmp_path) seg_file.unlink() if __name__ == "__main__": func_argparse.main(ls, dl)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/process_wet_file.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import func_argparse import cc_net.mine def main(): func_argparse.parse_and_call(cc_net.mine.get_main_parser()) if __name__ == "__main__": main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/__main__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import collections from pathlib import Path from typing import Dict, Optional import fasttext # type: ignore from cc_net import jsonql def get_args(): parser = argparse.ArgumentParser( description="Read a list of json files and split them ", parents=[jsonql.io_parser()], ) parser.add_argument("--pattern", type=str) parser.add_argument("--field", type=str, default="raw_content") parser.add_argument("--threshold", type=float, default=0) parser.add_argument("--model", type=str, required=True) parser.add_argument("--out_field", type=str, default="language") parser.add_argument("--top", type=int, default=1) return vars(parser.parse_args()) def predict(model, text: str, k: int = 1): labels, scores = model.predict(text, k=k) labels = [l.replace("__label__", "") for l in labels] return labels, scores def avg_predict(model, text): # Overall gives the same results than predict(model, text.replace("\n", "")) text = text.split("\n") text_len = sum(len(line) for line in text) if text_len == 0: return None, 0 scores = [predict(model, line) for line in text] scores_by_label: Dict[str, float] = collections.defaultdict(float) for (label, score), line in zip(scores, text): scores_by_label[label] += score * len(line) label, score = max(scores_by_label.items(), key=lambda kv: kv[1]) return label, score / text_len class Classifier(jsonql.Transformer): def __init__( self, model: Path, field: str, out_field: str, threshold: float = 0, top: int = 1, language: str = None, rounding: int = 2, ): super().__init__() self.model = model assert model.exists(), f"Model {model} doesn't exist." self.field = field self.out_field = out_field self.threshold = threshold self.top = top self.language = language self.rounding = rounding # Fasttext model is a C object and can't be pickled self.fasttext_model: fasttext._FastText = None self.n_doc, self.n_accepted, self.n_ignored, self.n_disagreement = 0, 0, 0, 0 self.cnt: Dict[str, int] = {} def _prepare(self): self.log(f"Loading {self.model}") self.fasttext_model = fasttext.load_model(str(self.model)) def predict(self, text): return predict(self.fasttext_model, text.replace("\n", ""), k=self.top) def do(self, doc: dict) -> Optional[dict]: text = doc.get(self.field, None) if not text: return None if self.language and doc.get("language") != self.language: self.n_ignored += 1 return doc self.n_doc += 1 labels, scores = self.predict(text) scores.round(self.rounding, out=scores) for l in labels: self.cnt[l] = self.cnt.get(l, 0) + 1 if self.top == 1: existing_label = doc.get(self.out_field, None) if existing_label and labels[0] != existing_label: self.n_disagreement += 1 if all(s < self.threshold for s in scores): return None self.n_accepted += 1 if self.top == 1: doc[self.out_field] = labels[0] doc[self.out_field + "_score"] = scores[0] else: doc[self.out_field] = {l: s for l, s in zip(labels, scores)} return doc def summary(self): n_doc, n_accepted, n_disagreement, cnt, out_field = ( self.n_doc, self.n_accepted, self.n_disagreement, self.cnt, self.out_field, ) summ = super().summary() if self.threshold > 0: ratio = n_accepted / n_doc if n_doc else 0 summ.append(f"Kept {n_accepted} docs over {n_doc} ({ratio :.1%})") summ.append(f"Found {len(cnt)} {out_field} labels: {cnt}") disagreement = n_disagreement / n_doc if n_doc else 0 if disagreement: summ.append(f"{out_field} disagreement is at {disagreement:.1%}.") return summ def __repr__(self): return f"Classifier({self.model})" def classify_and_split(file, output, pattern, **kwargs): classifier = Classifier(**kwargs) splitter = jsonql.split(pattern) jsonql.run_pipes(classifier, splitter, file=file, output=output) if __name__ == "__main__": args = get_args() pattern = args.get("pattern") if pattern: classify_and_split(**args) else: args.pop("pattern") jsonql.run_pipe(Classifier, args)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/split_by_lang.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import contextlib import functools import gzip import logging import multiprocessing from collections import defaultdict from pathlib import Path from typing import Callable, Dict, Iterator, List, NamedTuple, Optional, Tuple import cc_net from cc_net import jsonql from cc_net.process_wet_file import CCSegmentsReader # Set this to a directory to use as cache for intermediary files. # This helps for debugging. WET_CACHE = None # WET_CACHE = Path("wet_cache") S3_BUCKET = "https://dl.fbaipublicfiles.com/cc100" VERSION = "1.0.0" CC_100_SNAPSHOTS = [ "2018-05", "2018-09", "2018-13", "2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", ] BIG_LANGUAGES = { "es_XX", "fr_XX", "de_DE", "ja_XX", "ru_RU", "zh_CN", "en_XX", "it_IT", "ar_AR", "nl_XX", "pl_PL", "pt_XX", "tr_TR", "zh_TW", } class Paragraph(NamedTuple): lang: str text: str lm_score: float def _dl_shard(snapshot: str, shard: int) -> Iterator[Paragraph]: """ Download metadata from a shards. Sample metadata: { "cc_segment": "crawl-data/CC-MAIN-2018-51/segments/1544376823009.19/wet/CC-MAIN-20181209185547-20181209211547-00000.warc.wet.gz", "digest": "sha1:222LWNHN5FM26XGS7WJSMI6IISTVWBKJ", "url": "http://personals.gearplay.com/ads/DRJONES.htm", "line_ids": [10], "languages": ["en_XX"], "lm_scores": [-2.658], } """ snapshot = snapshot.replace("-", "_") name = f"snap_{snapshot}_batch_{shard}.json.gz" url = "/".join([S3_BUCKET, VERSION, name]) shard_metadata: Dict[str, Dict[str, dict]] = defaultdict(dict) try: cache_file: Optional[Path] = None if WET_CACHE is not None: cache_file = WET_CACHE / name metadata_file = jsonql.open_remote_file(url, cache_file) except: logging.warning(f"Couldn't open {url}") return for meta in jsonql.read_jsons(metadata_file): shard_metadata[meta["cc_segment"]][meta["digest"]] = meta found_pars, missed_pars = 0, 0 for seg, segment_metadata in shard_metadata.items(): for doc in CCSegmentsReader([seg], cache_dir=WET_CACHE): if doc["digest"] not in segment_metadata: continue meta = segment_metadata[doc["digest"]] full_pars = [doc["title"]] + doc["raw_content"].split("\n") assert len(meta["line_ids"]) == len(meta["languages"]) assert len(meta["line_ids"]) == len(meta["lm_scores"]) for i, lang, score in zip( meta["line_ids"], meta["languages"], meta["lm_scores"] ): if snapshot != "2018-51" and lang in BIG_LANGUAGES: # Big languages only come from "2018-51" snapshot continue if i >= len(full_pars): # This is because CC100 was created by saving only urls. # Some urls appears in different snapshot with slightly different # versions, but we don't know which one is correct. # Here we read both versions, but some index may end up # being incorrect. # This impact ~3% documents. missed_pars += 1 continue yield Paragraph(lang, full_pars[i], score) found_pars += 1 if missed_pars > 0: logging.warning( f"Missed {missed_pars} ({missed_pars / found_pars:%}) paragraphes." ) def _split_by_par( paragraphes: Iterator[Paragraph], snapshot: str, shard: int, outdir: Path ) -> int: outdir.mkdir(exist_ok=True) outfiles = {} num_pars = 0 try: for par in paragraphes: # MODIFY ME: filter paragraph if needed (languages, score, ...) if par.lang not in outfiles: (outdir / par.lang).mkdir(exist_ok=True) outfile = outdir / par.lang / f"snap_{snapshot}_batch_{shard}.gz" outfiles[par.lang] = gzip.open(outfile, "wt") print(par.text, file=outfiles[par.lang]) num_pars += 1 finally: for o in outfiles.values(): o.close() logging.info(f"Extracted {num_pars:_d} paragraphs from shard {snapshot}_{shard}") return num_pars def dl_shard(snapshot: str, shard: int, outdir: Path) -> int: return _split_by_par(_dl_shard(snapshot, shard), snapshot, shard, outdir) @contextlib.contextmanager def unordered_map(processes: int): if processes == 0: yield map return with multiprocessing.Pool(processes) as pool: yield pool.imap_unordered def dl_snapshot(snapshot: str, outdir: Path, processes: int = 1) -> None: _dl_shard = functools.partial(dl_shard, snapshot, outdir=outdir) with unordered_map(processes) as umap: num_pars = sum(umap(_dl_shard, range(500))) logging.info(f"Extracted {num_pars:_d} paragraphs from snapshot {snapshot}.") def dl( snapshot: str = None, outdir: Path = Path("data_cc100"), processes: int = 1 ) -> None: """ Download CC100 corpus. Will create one text file per language and CC snapshot. - snapshot: restrict to one snapshot. Useful for parallelization. - outdir: output directory - processes: number of processes to use """ if snapshot is None: snapshots = CC_100_SNAPSHOTS else: snapshots = snapshot.split(",") invalids = [s for s in snapshots if s not in CC_100_SNAPSHOTS] assert not invalids, f"Invalid snapshots {invalids}, chose from {CC_100_SNAPSHOTS}" for snapshot in snapshots: dl_snapshot(snapshot, outdir, processes) if __name__ == "__main__": import func_argparse func_argparse.single_main(dl)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/tools/dl_cc_100.py
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/tools/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ This code is used to train a fastText classifier to label document with DMOZ categories. The data, distributed under the cc-by 3.0 license (https://web.archive.org/web/20140605215533/http://www.dmoz.org/license.html), can be downloaded from https://web.archive.org/web/20140617145301/http://rdf.dmoz.org/rdf/content.rdf.u8.gz. """ import urllib.request from io import StringIO from pathlib import Path from typing import Dict, Set from urllib.parse import urlparse import func_argparse from lxml import etree # type: ignore from cc_net import jsonql TaggedUrls = Dict[str, Set[str]] DMOZ_TAGS_URL = "https://web.archive.org/web/20140617145301/http://rdf.dmoz.org/rdf/content.rdf.u8.gz" def add_tags(url: str, tags: Set[str], url2tags: TaggedUrls): if url in url2tags: url2tags[url] &= tags else: url2tags[url] = tags def load_tags(filename: Path = None) -> TaggedUrls: if filename is None: with StringIO("".join(jsonql.open_remote_file(DMOZ_TAGS_URL))) as dmoz: tree = etree.parse(dmoz) else: tree = etree.parse(str(filename)) root = tree.getroot() url2tags: Dict[str, Set[str]] = {} for external_page in root.iterfind("{http://dmoz.org/rdf/}ExternalPage"): url = external_page.get("about") domain = urlparse(url).netloc for topic in external_page.iterfind("{http://dmoz.org/rdf/}topic"): # print(url, topic.text) # Tags looks like Top/Arts/Animation/Anime/Collectibles tags = set(topic.text.split("/")[1:]) add_tags(url, tags, url2tags) add_tags(domain, tags, url2tags) return url2tags def dl(output: Path) -> None: urllib.request.urlretrieve(DMOZ_TAGS_URL, output) def make_corpus(file: Path, tags_file: Path = None, output: Path = None) -> None: """ Loads a tags file and create a training dataset using the given webpages. Arguments: - file: CC shard file - tags_file: dmoz tagging file, (like the one produced by `dl`) - output: "" """ url2tags = load_tags(tags_file) with jsonql.open_write(output) as o: for document in jsonql.read_jsons(file): if not document: continue url = document["url"] domain = document["source_domain"] if url in url2tags: tags = url2tags[url] elif domain in url2tags: tags = url2tags[domain] else: continue if len(tags) == 0: continue fasttext_tags = ["__label__" + tag for tag in tags] content = document["tokenized"].replace("\n", " ").lower() if len(content) > 200: print(" ".join(fasttext_tags), content, file=o) # type: ignore if __name__ == "__main__": func_argparse.single_main(make_corpus)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/tools/make_dmoz_corpus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # """ Tools to search sentences in CC similar to sentences in another corpus. """ import functools import logging import math import subprocess from collections import Counter from pathlib import Path from typing import Iterable, List, Optional, Set, Tuple import func_argparse import submitit from kenlm import Model as KenlmModel # type: ignore from sentence_splitter import SentenceSplitter # type: ignore from sentencepiece import SentencePieceProcessor # type: ignore from cc_net import dedup, jsonql, perplexity, text_normalizer KENLM = Path("./bin/lmplz") KENLM_BUILD = Path("./bin/build_binary") VOCAB_SIZE = 2 ** 16 - 10 PROCESSES = 16 def normalize(corpus: Path, output_dir: Path) -> Path: normalized = output_dir / (corpus.stem + ".normalized") if normalized.exists(): return normalized print("Will normalize", corpus, "to", normalized) jsonql.run_pipes( jsonql.Mapper(text_normalizer.normalize), file=corpus, output=normalized, processes=PROCESSES, ) return normalized # TODO use classic files directory. def sp_model(lang: str) -> Path: return Path(f"/checkpoint/guw/cc_clean/lm_sp/{lang}.sp.model") def _dataset(dataset: Optional[Path], lang: str) -> Path: return ( dataset or Path("/datasets01_101/common_crawl/020919") / f"{lang}_head_*.json.gz" ) class SentencePiece(jsonql.Transformer): def __init__(self, model: Path): super().__init__() self.model = model self.sp: SentencePieceProcessor = None # type: ignore def _prepare(self): self.sp = SentencePieceProcessor() self.sp.load(str(self.model)) def do(self, line: str) -> str: return " ".join(self.sp.encode_as_pieces(line)) class ExtractSentences(jsonql.Transformer): def __init__( self, sp_model: Path, lm_model: Path, field: str = "raw_content", threshold: float = float("+inf"), ): super().__init__() self.sp_model = sp_model self.lm_model = lm_model self.field = field self.threshold = threshold self.sp: SentencePieceProcessor = None self.lm: KenlmModel = None self.splitter: SentenceSplitter = None self.hashes: Set[int] = set() def _prepare(self): self.sp = SentencePieceProcessor() self.sp.load(str(self.sp_model)) self.splitter = SentenceSplitter("en") self.lm = KenlmModel(str(self.lm_model)) def do(self, document: dict) -> Optional[str]: content: Optional[str] = document.get(self.field) if not content: return None all_sentences = [ s for l in content.split("\n") if l for s in self.splitter.split(text=l) ] unique_sentences = [] for s in all_sentences: if not s: continue h = dedup.str_hash(s) if h in self.hashes: continue self.hashes.add(h) unique_sentences.append(s) scores = [] for sentence in unique_sentences: normalized = text_normalizer.normalize(sentence) pieces = self.sp.encode_as_pieces(normalized) log_score = self.lm.score(" ".join(pieces)) pp = -1 if len(pieces): pp = perplexity.pp(log_score, len(pieces)) scores.append(pp) res = filter( lambda pp_s: self.threshold > pp_s[0] > 0, zip(scores, unique_sentences) ) return "\n".join(f"{pp}\t{s}" for (pp, s) in res) or None def tokenize(corpus: Path, output_dir: Path, lang: str) -> Path: tokenized = output_dir / (corpus.stem + ".tokenized") if tokenized.exists(): return tokenized print("Will SentencePiece", corpus, "to", tokenized) jsonql.run_pipes( SentencePiece(sp_model(lang)), file=normalize(corpus, output_dir), output=tokenized, processes=PROCESSES, ) return tokenized def train_lm( corpus: Path, output_dir: Path, lang: str = "en", vocab_size: int = VOCAB_SIZE, ngrams: int = 5, ): lm_text_file = output_dir / (corpus.stem + ".arpa") lm_bin_file = output_dir / (corpus.stem + ".arpa.bin") if lm_bin_file.exists(): return lm_bin_file assert KENLM.exists(), f"{KENLM} binary to train kenlm model not found." normalized = normalize(corpus, output_dir) tokenized = tokenize(normalized, output_dir, lang) print("Will train LM", lm_text_file, "on", tokenized) kenlm_cmd = [ str(KENLM), f"--order={ngrams}", "--memory=8G", f"--temp_prefix={jsonql._tmp_dir()}", f"--text={tokenized}", f"--arpa={lm_text_file}", f"--vocab_estimate={vocab_size}", "--discount_fallback", ] subprocess.run(kenlm_cmd, check=True) print("Will create binary model", lm_bin_file, "from", lm_text_file) subprocess.run([str(KENLM_BUILD), str(lm_text_file), str(lm_bin_file)], check=True) return lm_bin_file def uniform_sampling_wrt_perplexity( paragraphes: Iterable[str], rounding: float = 100.0, cut: float = 1000.0, samples: int = 20, ) -> Iterable[str]: max_samples = math.floor(cut / rounding * samples) n = 0 buckets = Counter([0.0]) logging.info(f"Will sample {max_samples} sentences.") for lines in paragraphes: for line in lines.split("\n"): if not line: continue pp = float(line[: line.find("\t")]) pp = math.floor(pp / rounding) * rounding if pp > cut: continue if buckets[pp] > samples: continue yield line buckets[pp] += 1 if buckets[pp] > samples: logging.info(f"Bucket {pp} is full ({samples} samples, {n} total)") n += 1 if n > max_samples: return def sample( corpus: Path, output_dir: Path, dataset: Path = None, n: int = 10_000, lang: str = "en", ) -> Path: sample_file = output_dir / (corpus.stem + ".pp_sample.tsv") if sample_file.exists(): return sample_file dataset = _dataset(dataset, lang) extractor = ExtractSentences( sp_model(lang), train_lm(corpus, output_dir), field="raw_content" ) sampling = functools.partial( uniform_sampling_wrt_perplexity, rounding=100.0, cut=1000.0, samples=n // 10 ) print(f"Will sample data from {dataset} to {sample_file}") try: jsonql.run_pipes( extractor, sampling, file=dataset, output=sample_file, processes=PROCESSES ) except Exception: sample_file.unlink() raise subprocess.run(["sort", "-n", "-o", sample_file, sample_file], check=True) subprocess.run(["head", sample_file], check=True) return sample_file def mine( corpus: Path, output_dir: Path, threshold: float, dataset: Path = None, lang: str = "en", ) -> List[Path]: """Search sentences in CC similar to the one in the given corpus. Args: - corpus: corpus to train the LM one. Assumes one sentence per line. - output_dir: where to store the results - threshold: maximum perplexity to have - dataset: glob pattern matching CC shards. - lang: search in the files of this language """ dataset = _dataset(dataset, lang) files = list(dataset.parent.glob(dataset.name)) outputs = [output_dir / (f.stem + ".tsv") for f in files] if all(o.exists() for o in outputs): return outputs n = len(outputs) sp = [sp_model(lang)] * n lm = [train_lm(corpus, output_dir)] * n thresholds = [threshold] * n ex = submitit.AutoExecutor(output_dir / "mining_logs") ex.update_parameters( name="mine", cpus_per_task=PROCESSES, timeout_min=60 * 24 // PROCESSES, mem_gb=10, ) jobs = ex.map_array(_mine, files, outputs, sp, lm, thresholds) print("Submited job array:", jobs[0]) for j in submitit.helpers.as_completed(jobs): (i, o) = j.result() print("Mined sentences from", i, "to", o) return outputs def _mine( file: Path, output: Path, sp: Path, lm: Path, threshold: float ) -> Tuple[Path, Path]: extractor = ExtractSentences(sp, lm, field="raw_content", threshold=threshold) jsonql.run_pipes(extractor, file=file, output=output, processes=PROCESSES) return (file, output) if __name__ == "__main__": func_argparse.main(sample, mine)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/cc_net/tools/expand_corpus.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import json from pathlib import Path from typing import Iterable, Sequence from cc_net import dedup, jsonql from cc_net.dedup import str_hash from cc_net.flat_hash_set import FlatHashSet def text(*args: str) -> str: return "\n".join(args) def write_docs(file: Path, docs: Iterable[Sequence[str]]): file.parent.mkdir(exist_ok=True) with open(file, "w") as f: for sentences in docs: doc = dict(text=text(*sentences)) print(json.dumps(doc), file=f) def as_dict(hash_set): if not isinstance(hash_set, dict): hash_set = {k: v for (k, v) in hash_set.items()} return hash_set def load_hashes(file): results = dedup.FlatHashSet() results.load(file) return as_dict(results) LENGTHS = ["original_length", "length"] def assert_documents_equal(expected, actual, ignoring={}): expected = [{k: doc[k] for k in doc if k not in ignoring} for doc in expected] actual = [{k: doc[k] for k in doc if k not in ignoring} for doc in expected] assert expected == actual def test_simple_dedup(tmp_path: Path) -> None: write_docs( tmp_path / "docs.json", [ ["_Hello", "_World", "I'm so original"], ["_world", "I'm originaler", "_Hello"], ], ) results = list(dedup.deduplicate(tmp_path / "docs.json", field="text")) expected = [ # First document is untouched dict( text=text("_Hello", "_World", "I'm so original"), original_nlines=3, nlines=3, line_ids=[0, 1, 2], ), # Second documents loses several lines dict(text="I'm originaler", original_nlines=3, nlines=1, line_ids=[1]), ] assert_documents_equal(expected, results, ignoring=LENGTHS) def test_dedup_with_dump(tmp_path: Path): hashes = tmp_path / "hashes.bin" documents = [ dict(text=text("_Hello", "_World", "I'm so original")), dict(text=text("_world", "I'm originaler", "_Hello")), ] collector = dedup.HashesCollector(field="text", output=hashes) list(collector.map(documents)) results = load_hashes(hashes) expected = { str_hash(l): l.startswith("_") for l in ["_hello", "_world", "i'm so original", "i'm originaler"] } assert expected == results def test_dedup_with_np_dump(tmp_path: Path): hashes = tmp_path / "hashes.bin" documents = [ dict(text=text("_Hello", "_World", "I'm so original")), dict(text=text("_world", "I'm originaler", "_Hello")), ] with dedup.HashesCollector(field="text", output=hashes) as d: list(d.map(documents)) results = FlatHashSet() results.load_np(hashes) expected = set( str_hash(l) for l in ["_hello", "_world", "i'm so original", "i'm originaler"] ) assert expected == set(results.keys()) def test_dedup_from_hashes(tmp_path: Path): documents = [ dict(text=text("_Hello", "World", "I'm so original")), dict(text=text("Good morning", "World", "I'm originaler")), ] seen = ["_hello", "i'm originaler", "world"] hashes = [str_hash(h) for h in seen] h = dedup.FlatHashSet() h.add(hashes) # Note: 'world' appears only once and won't be treated as a duplicate. h.add(hashes[:-1]) h.dump(tmp_path / "hashes.bin") results = list( dedup.DuplicatesRemover("text", [tmp_path / "hashes.bin"]).map(documents) ) expected = [ dict( text=text("World", "I'm so original"), original_nlines=3, nlines=2, line_ids=[1, 2], ), dict( text=text("Good morning", "World"), original_nlines=3, nlines=2, line_ids=[0, 1], ), ] assert_documents_equal(expected, results, ignoring=LENGTHS) def test_dedup_fast(tmp_path: Path): data = tmp_path / "data" part_0 = [["Hello", "_World", "I'm so original"]] write_docs(data / "part_0.json", part_0) part_1 = [["Good morning", "_World", "I'm originaler"]] write_docs(data / "part_1.json", part_1) parts = [data / "part_0.json", data / "part_1.json"] res = tmp_path / "res" res.mkdir() h = tmp_path / "hashes.bin" field = "text" jsonql.run_pipes(dedup.HashesCollector(field, output=h), file=parts) for part in parts: jsonql.run_pipes( dedup.DuplicatesRemover(field, [h]), file=part, output=res / part.name ) jsonql.run_pipes( dedup.DuplicatesRemover(field, [h]), file=part, output=res / part.name ) results_0 = list(jsonql.read_jsons(res / "part_0.json")) expected_0 = [ dict( text=text("Hello", "I'm so original"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_0, results_0, ignoring=LENGTHS) results_1 = list(jsonql.read_jsons(res / "part_1.json")) expected_1 = [ dict( text=text("Good morning", "I'm originaler"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_1, results_1, ignoring=LENGTHS) words = [w for part in [part_0, part_1] for doc in part for w in doc] expected = {str_hash(s.lower()): s.startswith("_") for s in words} assert expected == load_hashes(h) def test_remove_duplicates_sharded(tmp_path: Path): data = tmp_path / "data" part_0 = [["Hello", "_World", "I'm so original"]] write_docs(data / "part_0.json", part_0) part_1 = [["_Good morning", "_World", "I'm originaler"]] write_docs(data / "part_1.json", part_1) h = tmp_path / "hashes" h.mkdir() h0 = FlatHashSet() h0.add([str_hash(s.lower()) for doc in part_0 for s in doc]) h0.add([str_hash("_world")]) h0.dump(h / "part_0.bin") assert { str_hash("hello"): False, str_hash("_world"): True, str_hash("i'm so original"): False, } == as_dict(h0) h1 = FlatHashSet() h1.add([str_hash(s.lower()) for doc in part_1 for s in doc]) h1.add([str_hash("_good morning")]) h1.dump(h / "part_1.bin") assert { str_hash("_good morning"): True, str_hash("_world"): False, str_hash("i'm originaler"): False, } == as_dict(h1) res = tmp_path / "res" res.mkdir() # dedup.DISABLE_MULTI_PROCESSING = True # Simplifies debugging dedup.remove_duplicates_sharded( files=[data / "part_0.json", data / "part_1.json"], outputs=[res / "part_0.json", res / "part_1.json"], field="text", hashes_dir=h, ) results_0 = list(jsonql.read_jsons(res / "part_0.json")) expected_0 = [ dict( text=text("Hello", "I'm so original"), original_nlines=3, nlines=2, line_ids=[0, 2], ) ] assert_documents_equal(expected_0, results_0, ignoring=LENGTHS) # First pass removes "_world", second "_good morning". results_1 = list(jsonql.read_jsons(res / "part_1.json")) expected_1 = [ dict(text=text("I'm originaler"), original_nlines=3, nlines=1, line_ids=[2]) ] assert_documents_equal(expected_1, results_1, ignoring=LENGTHS)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_dedup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import cc_net.text_normalizer as txt def test_unicode_punct(): weird = ",。、„”“«»1」「《》´∶:?!();–—.~’…━〈〉【】%" replaced = ',.,""""""""""\'::?!();- - . ~\'...-<>[]%' assert txt.replace_unicode_punct(weird) == replaced assert txt.remove_unicode_punct(weird) == "" def test_numbers(): weird = "023456789 | 0123456789" normalized = "000000000 | 0000000000" assert txt.normalize(weird, numbers=True) == normalized assert txt.normalize(weird, numbers=False) == weird def test_normalize_for_dedup(): weird = "023´∶:\x10 | ;012 hèllo" normalized = "000 | ;000 hèllo" assert normalized == txt.slow_normalize_for_dedup(weird) assert normalized == txt.normalize_for_dedup(weird)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_normalizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # from pathlib import Path from cc_net import process_wet_file def test_parsing(): sample = Path(__file__).parent / "data" / "sample.warc.txt" with open(sample) as f: documents = list(process_wet_file.parse_warc_file(f)) expected_urls = [ "http://sample_english.com", "http://sample_chinese.zh", "http://sample_russian.ru", ] assert expected_urls == [d["url"] for d in documents] expected_domains = ["sample_english.com", "sample_chinese.zh", "sample_russian.ru"] assert expected_domains == [d["source_domain"] for d in documents] expected_date = [ "2019-03-18T00:00:00Z", "2019-03-18T00:00:01Z", "2019-03-18T00:00:02Z", ] assert expected_date == [d["date_download"] for d in documents] expected_title = [ "Famous Mark Twain Quotes", "馬克·吐溫名言", "Цитаты знаменитого Марка Твена", ] assert expected_title == [d["title"] for d in documents] expected_quotes = """Don't part with your illusions. When they are gone you may still exist, but you have ceased to live. Education: that which reveals to the wise, and conceals from the stupid, the vast limits of their knowledge. Facts are stubborn things, but statistics are more pliable. Fiction is obliged to stick to possibilities. Truth isn't. """ assert expected_quotes == documents[0]["raw_content"]
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_parse_wet_file.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import pytest from cc_net.flat_hash_set import HASH_TYPE, FlatHashSet, NaiveHashSet def as_dict(flat_hash_set) -> dict: return {k: v for (k, v) in flat_hash_set.items()} need_getpy = pytest.mark.skipif( FlatHashSet == NaiveHashSet, reason="getpy isn't installed" ) def same_behavior(test_case): def run_case(): naive = as_dict(test_case(FlatHashSet)) flat = as_dict(test_case(NaiveHashSet)) assert naive == flat return need_getpy(run_case) @same_behavior def test_setitem(hash_set_cls): h = hash_set_cls() h[np.arange(10, dtype=h.dtype)] = np.zeros(10, dtype=np.uint8) h[np.arange(5, dtype=h.dtype)] = np.ones(5, dtype=np.uint8) return h @same_behavior def test_add_dup(hash_set_cls): h = hash_set_cls() h.add(np.arange(10, dtype=h.dtype)) h.add(np.arange(5, dtype=h.dtype)) expected = {i: i < 5 for i in range(10)} assert expected == as_dict(h), f"add_dup with {hash_set_cls.__name__}" return h @need_getpy def test_gp_dict(): import getpy as gp # type: ignore h = gp.Dict(HASH_TYPE, np.uint8) h[np.arange(10, dtype=HASH_TYPE)] = np.zeros(10, dtype=np.uint8) h[np.arange(5, dtype=HASH_TYPE)] = np.ones(5, dtype=np.uint8) expected = {i: i < 5 for i in range(10)} assert expected == as_dict(h) def check_reload(h, dump, load, tmp_path): dump_path = tmp_path / dump.__name__ dump(h, dump_path) h2 = type(h)() load(h2, dump_path) assert as_dict(h) == as_dict(h2) @pytest.mark.parametrize("hash_set_cls", [FlatHashSet, NaiveHashSet]) def test_loading(tmp_path, hash_set_cls): h = hash_set_cls() x = np.random.randint(0, 2 ** 32, (100,), dtype=h.dtype) h.add(x) check_reload(h, hash_set_cls.dump, hash_set_cls.load, tmp_path) check_reload(h, hash_set_cls.dump_np, hash_set_cls.load_np, tmp_path) if hasattr(hash_set_cls, "dump_gp"): check_reload(h, hash_set_cls.dump_gp, hash_set_cls.load_gp, tmp_path)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_flat_hash_set.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import pytest def _request_is_disabled(self, *args, **kwargs): raise Exception( f"Your code tried to call 'request' with: {args}, {kwargs}. Unit test aren't allowed to reach internet." ) @pytest.fixture(autouse=True) def no_requests(monkeypatch): """Remove requests.sessions.Session.request for all tests.""" monkeypatch.setattr("requests.sessions.Session.request", _request_is_disabled)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/conftest.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # #
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import time from cc_net import jsonql, regroup def check_regroup(tmp_path, regroup_fn, check_blocks_boundaries=False): n_shards = 4 n_docs = 20 shards = [ [dict(id=i, shard=s, raw_content="hello world") for i in range(n_docs)] for s in range(n_shards) ] shards_files = [tmp_path / f"{s:04d}.json.gz" for s in range(n_shards)] for shard, shard_file in zip(shards, shards_files): jsonql.run_pipes(inputs=shard, output=shard_file) regroup_file = tmp_path / "regroup.json.gz" start = time.time() regroup_fn(shards_files, regroup_file) duration = time.time() - start print(f"{regroup_fn.__module__}.{regroup_fn.__name__} took {duration}s") regrouped = list(jsonql.read_jsons(regroup_file)) assert [doc for shard in shards for doc in shard] == regrouped readers = jsonql.get_block_readers(regroup_file, n_shards) if not check_blocks_boundaries: assert [doc for shard in shards for doc in shard] == [ doc for reader in readers for doc in jsonql.read_jsons(reader) ] return for shard, reader in zip(shards, readers): block = [doc for doc in jsonql.read_jsons(reader)] assert shard == block def test_regroup(tmp_path): # With regroup boundaries will be every 256Mb. check_regroup(tmp_path, regroup.reshard, check_blocks_boundaries=False) def test_fast_regroup(tmp_path): # With fast regroup boundaries should match the shards. check_regroup(tmp_path, regroup.fast_reshard, check_blocks_boundaries=True)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_regroup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import io from pathlib import Path from typing import Sequence import numpy as np import pytest from cc_net import jsonql def bar(small_bar: str) -> str: return small_bar.replace(" ", " " * 10).replace("█", "█" * 10) def get_output(transformer, data, **kwargs): with io.StringIO() as output: # Convert data to a generator so that it's not interpreted as a file list. jsonql.run_pipe(transformer, kwargs, file=(x for x in data), output=output) return output.getvalue() def test_split(tmp_path: Path): data = [ dict(text="Hello world", lang="en"), dict(text="Boujour les amis", lang="fr"), dict(text="Rock your boat", lang="en"), ] with jsonql.split(tmp_path / "{lang}.json") as split: list(split.map(data)) summary = split.summary() assert "Found 2 splits." in summary en_docs = list(jsonql.read_jsons(tmp_path / "en.json")) assert [data[0], data[2]] == en_docs fr_docs = list(jsonql.read_jsons(tmp_path / "fr.json")) assert [data[1]] == fr_docs def test_split_bad_pattern(tmp_path: Path): data = [dict(text="Hello world", lang="en")] with pytest.raises(KeyError): with jsonql.split(tmp_path / "{language}.json") as split: list(split.map(data)) def test_histogram(): data = [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9] hist, bins = jsonql.histogram(data, bins=8, weights=None) np.testing.assert_almost_equal(bins, [0.1 * x for x in range(1, 10)]) np.testing.assert_almost_equal(hist, [4, 0, 0, 2, 0, 0, 0, 2]) data = [0, 0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.8, 0.8, 1] hist, bins = jsonql.histogram(data, bins=10, weights=None) np.testing.assert_almost_equal(bins, [0.1 * x for x in range(11)]) np.testing.assert_almost_equal(hist, [1, 4, 0, 0, 2, 0, 0, 0, 2, 1]) def test_display_stats(): stats = { jsonql.ALL_DOCUMENTS: 100, "title": 80, "title.length": 80 * 50, "text": 100, "text.length": 100 * 1000, "popularity": 8, "popularity.val": [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9], } (title,) = jsonql.display_stats(stats, "title") assert "title" in title assert "saw 80 times" in title assert "average length is" in title assert "\n" not in title (text,) = jsonql.display_stats(stats, "text") assert "text" in text assert "saw 100 times" in text assert "average length is" in text assert "\n" not in text histogram = jsonql.display_stats( stats, "popularity", bins=[x / 10 for x in range(1, 10)] ) assert "popularity" in histogram[0] assert "saw 8 times" in histogram[0] assert "histogram is" in histogram[0] assert "0.100 " + bar("████████") in histogram[1] assert "0.400 " + bar("████ ") in histogram[2] assert "0.800 " + bar("████ ") in histogram[3] cum_histogram = jsonql.display_stats(stats, "popularity", bins=8, cumulative=True) assert "popularity" in cum_histogram[0] assert "saw 8 times" in cum_histogram[0] assert "histogram is" in cum_histogram[0] assert "0.100 " + bar("████ ") in cum_histogram[1] assert "0.400 " + bar("██████ ") in cum_histogram[2] assert "0.800 " + bar("████████") in cum_histogram[3] def test_describe(): def sample(pop): return dict(title="Lorem", text="Lorem ipsum dolor sit amet.", popularity=pop) data = [sample(pop) for pop in [0.1, 0.1, 0.1, 0.1, 0.4, 0.4, 0.9, 0.9]] desc = get_output( jsonql.describe, data, columns=None, bins=[x / 10 for x in range(1, 10)] ) assert "Field title saw 8 times (100.0%), average length is 5" in desc assert "Field text saw 8 times (100.0%), average length is 27" in desc assert "Field popularity saw 8 times (100.0%), histogram is" in desc assert "0.100 " + bar("████████") in desc assert "0.400 " + bar("████ ") in desc assert "0.800 " + bar("████ ") in desc desc = get_output(jsonql.describe, data, columns=["text"]) assert "Field title saw 8 times (100.0%), average length is 5" not in desc assert "Field text saw 8 times (100.0%), average length is 27" in desc assert "Field popularity, histogram is:" not in desc def test_custom_pipe(): def transformer(source, sep=" "): for i, line in enumerate(source): res = f"{i}{sep}{line}" yield res data = ["hello", "world"] assert get_output(transformer, data) == "0 hello\n1 world\n" assert get_output(transformer, data, sep="_") == "0_hello\n1_world\n" def test_open_read_write(tmp_path: Path): def _lines(filename: Path) -> Sequence[str]: # jsonql.lines calls open_read return list(jsonql.lines(filename)) tmp = tmp_path with jsonql.open_write(tmp / "a.txt") as o: print("a", file=o) assert _lines(tmp / "a.txt") == ["a"] jsonql.write_jsons([{"a": 1}], tmp / "a.txt") assert _lines(tmp / "a.txt") == ['{"a": 1}'] with jsonql.open_write(tmp / "a.gz") as o: print("a", file=o) assert _lines(tmp / "a.gz") == ["a"] with jsonql.open_write([tmp / "a0.txt", tmp / "a1.txt"]) as o: print("a", file=o) assert _lines(tmp / "a0.txt") == ["a"] assert not (tmp / "a1.txt").is_file() with jsonql.open_write([tmp / "b0.txt", tmp / "b1.txt"], max_size="1k") as o: print("0" * 2000, file=o) print("1" * 2000, file=o) assert _lines(tmp / "b0.txt") == ["0" * 2000] assert _lines(tmp / "b1.txt") == ["1" * 2000] with jsonql.open_write(tmp / "a_????.json") as o: print("a", file=o) assert _lines(tmp / "a_0000.json") == ["a"] assert not (tmp / "a_0001.json").is_file() assert _lines(tmp / "a_*.json") == ["a"] with jsonql.open_write(tmp / "b_??.json", max_size="1k") as o: print("0" * 2000, file=o) print("1" * 2000, file=o) assert _lines(tmp / "b_00.json") == ["0" * 2000] assert _lines(tmp / "b_01.json") == ["1" * 2000] assert _lines(tmp / "b_*.json") == ["0" * 2000, "1" * 2000] def test_split_file(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello\nWorld\n" with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_split_file_middle_of_line(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello _|_\nWorld\n" # split is here ^ with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello _|_\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_split_file_middle_of_char(tmp_path: Path): file = tmp_path / "test.txt" content = "Hello\U0001F40D\nWorld\n" # split is here ^^ with open(file, "w") as o: o.write(content) with jsonql.SplitFile(file, chunk=0, n_chunks=2) as f: assert f.readlines() == ["Hello🐍\n"] with jsonql.SplitFile(file, chunk=1, n_chunks=2) as f: assert f.readlines() == ["World\n"] def test_blocked_gzip(tmp_path: Path): file = tmp_path / "test.gz" f = str(file) # Each object is 10/11 bytes long. We have 2 of them by block. content = ['{"xx": %d}' % i for i in range(80)] with jsonql.BlockedGzipWriter(file, "wt", block_size="20B") as o: for line in content: print(line, file=o) jr = jsonql.JsonReader(strict=True) expected = list(jr.map(content)) # read as one file assert expected == list(jsonql.read_jsons(file)) # read first block assert expected[:2] == list(jsonql.read_jsons(f + "[0/40]")) # read last block assert expected[-2:] == list(jsonql.read_jsons(f + "[39/40]")) readers = jsonql.get_block_readers(file, 9) read_as_several_files = [list(jsonql.read_jsons(r)) for r in readers] # 40 splits of 2 docs, 9 readers -> 5 splits, 10 docs per reader assert list(jsonql.grouper(expected, 10)) == read_as_several_files def test_enter_exit(capsys): class MyTransformer(jsonql.Transformer): def __enter__(self): print("trans: started") self.ready = True return self def __exit__(self, *args): print("trans: done") def do(self, x): return (x, x) def acc(values): print("acc: started") res = 0 for (x, _) in values: res += int(x) print("acc: done") yield f"acc: result={res}" t = MyTransformer() data = (str(x) for x in range(10)) print("pipeline: started") # Print to stdout. jsonql.run_pipes(t, acc, file=data) print("pipeline: done") out = capsys.readouterr().out assert ( "\n".join( [ "pipeline: started", "trans: started", "acc: started", "acc: done", f"acc: result=45", # Transformers are closed at the very end. "trans: done", "pipeline: done\n", ] ) == out ) def test_write_to_stdout(capsys): lines = [str(x) for x in range(10)] jsonql.run_pipes(file=iter(lines)) out = capsys.readouterr().out assert out == "\n".join(lines) + "\n" def test_write_to_stdout_handle_newlines(capsys): lines = [str(x) + "\n" for x in range(10)] jsonql.run_pipes(file=iter(lines)) out = capsys.readouterr().out assert out == "".join(lines) def test_multiprocess(capsys): mult = jsonql.Mapper(lambda x: f"2x = {2 * int(x)}") jsonql.run_pipes(mult, processes=2, file=(str(x) for x in range(10))) out = set(capsys.readouterr().out.strip("\n").split("\n")) assert set(f"2x = {2 * x}" for x in range(10)) == out
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_jsonql.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import json from pathlib import Path import pytest import cc_net import cc_net.minify as minify from cc_net import jsonql, process_wet_file from cc_net.minify import ( HASH_SIZE, decode_hashes, encode_hashes, encode_line_ids, get_hashes, ) def test_encode_decode(): sentences = ["Hello world !", "Is everyone happy in here ?"] hashes = get_hashes(sentences) assert all([len(h) == HASH_SIZE for h in hashes]) hashes_int = [minify._b2i(h) for h in hashes] encoded = encode_hashes(hashes) decoded = decode_hashes(encoded) assert all([len(d) == HASH_SIZE for d in decoded]) decoded_int = [minify._b2i(d) for d in decoded] assert hashes_int == decoded_int assert hashes == decoded def test_minify(): doc = { "raw_content": "Hello world !\nIs everyone happy in here ?", "language": "en", "perplexity": 120.0, "line_ids": [0, 4], } expected = {"line_ids": "AAAEAA==", "language": "en", "perplexity": 120.0} minifier = minify.Minifier() assert expected == minifier(doc) @pytest.fixture def http_from_disk(monkeypatch): def read_sample_file(url: str, n_retry: int = 3) -> bytes: expected_url = process_wet_file.WET_URL_ROOT + "/crawl-data/sample.warc.wet" assert expected_url == url file = Path(__file__).parent / "data" / "sample.warc.txt" return file.read_bytes() monkeypatch.setattr(cc_net.jsonql, "request_get_content", read_sample_file) def test_minify_and_fetch(http_from_disk, tmp_path: Path): full_quotes = """Don't part with your illusions. When they are gone you may still exist, but you have ceased to live. Education: that which reveals to the wise, and conceals from the stupid, the vast limits of their knowledge. Facts are stubborn things, but statistics are more pliable. Fiction is obliged to stick to possibilities. Truth isn't.""" # We don't need no education. chosen_quotes = "\n".join( l for l in full_quotes.splitlines() if "Education" not in l ) cc_doc = { "url": "http://sample_english.com", "date_download": "2019-03-18T00:00:00Z", "digest": "sha1:XQZHW7QWIG54HVAV3KPRW6MK5ILDNCER", "source_domain": "sample_english.com", "title": "Famous Mark Twain Quotes", "raw_content": full_quotes, "cc_segment": "crawl-data/sample.warc.wet", "nlines": 4, "length": 353, } ccnet_metadata = { "language": "en", "language_score": 0.99, "perplexity": 151.5, "bucket": "head", "raw_content": chosen_quotes, "nlines": 3, "length": len(chosen_quotes), "original_nlines": 4, "original_length": 353, "line_ids": [0, 2, 3], } ccnet_doc = dict(cc_doc, **ccnet_metadata) mini = minify.Minifier()(ccnet_doc.copy()) assert mini is not ccnet_doc important_fields = [ "url", "digest", "cc_segment", "language", "language_score", "perplexity", "bucket", "line_ids", ] expected = {k: ccnet_doc[k] for k in important_fields} expected["line_ids"] = encode_line_ids(expected["line_ids"]) # type: ignore assert expected == mini with jsonql.open_write(tmp_path / "sample.json") as o: print(json.dumps(mini), file=o) fetcher = minify.MetadataFetcher(tmp_path) # line_ids is removed when unminifying ccnet_doc.pop("line_ids") assert ccnet_doc == fetcher(cc_doc) def test_fetch(http_from_disk, tmp_path: Path): mini_docs = [ { "url": "http://sample_chinese.com", "digest": "sha1:Y4E6URVYGIAFNVRTPZ5S3J64RTZTP6HJ", "cc_segment": "crawl-data/sample.warc.wet", "line_ids": encode_line_ids([2]), "bucket": "not_that_great", }, { "url": "http://sample_english.com", "digest": "sha1:XQZHW7QWIG54HVAV3KPRW6MK5ILDNCER", "cc_segment": "crawl-data/sample.warc.wet", "line_ids": encode_line_ids([3]), "bucket": "top_notch", }, ] with jsonql.open_write(tmp_path / "sample.json") as o: for mini in mini_docs: print(json.dumps(mini), file=o) fetcher = minify.MetadataFetcher(tmp_path) cc = process_wet_file.CCSegmentsReader(["crawl-data/sample.warc.wet"]) docs = [d for d in fetcher.map(cc) if d is not None] assert cc.retrieved_segments == 1 # Note: documents are retrieved as they are ordered in the .warc.wet file assert [ "Facts are stubborn things, but statistics are more pliable.", "事實是固執的東西,但統計數字卻比較柔和。", ] == [d["raw_content"] for d in docs] assert ["top_notch", "not_that_great"] == [d["bucket"] for d in docs]
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_minify.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import inspect import pickle from pathlib import Path import pytest from cc_net import dedup, jsonql, perplexity, split_by_lang, tokenizer def get_transformers(module): return [ v for v in vars(module).values() if type(v) is type and issubclass(v, jsonql.Transformer) and v != jsonql.Transformer ] ALL_TRANSFORMERS = ( get_transformers(jsonql) + get_transformers(dedup) + get_transformers(perplexity) + get_transformers(tokenizer) + get_transformers(split_by_lang) ) def check_transformer_is_calling_super_init(cls: type): assert issubclass(cls, jsonql.Transformer) # accessing __init__ is generally an error, but here we do want to inspect # the __init__method. code = inspect.getsource(cls.__init__) # type: ignore code = code.replace(" ", "") # Check that super().__init__ is called. assert "super().__init__()" in code def test_bad_transformers_are_caught(): class BadTransformer(jsonql.Transformer): def __init__(self, arg): # We aren't calling super /!\ self.arg = arg with pytest.raises(AssertionError): check_transformer_is_calling_super_init(BadTransformer) @pytest.mark.parametrize("transformer", ALL_TRANSFORMERS) def test_transformer_is_correctly_implemented(transformer): check_transformer_is_calling_super_init(transformer) @pytest.mark.skipif( not Path("bin/lid.bin").exists(), reason="bin/lid.bin not found, run `make install`" ) def test_can_pickle_transformer(tmp_path): model = Path("bin/lid.bin") if not model.exists(): return classifier = split_by_lang.Classifier(model, "text", "lang") classifier.__enter__() doc = dict(text="Hello world ! This is English btw.") original_results = classifier(doc) with open(tmp_path / "transformer.pkl", "wb") as o: pickle.dump(classifier, o) with open(tmp_path / "transformer.pkl", "rb") as f: classifier = pickle.load(f) assert original_results == classifier(doc) # Do it again with the unpickled object. with open(tmp_path / "transformer.pkl", "wb") as o: pickle.dump(classifier, o) with open(tmp_path / "transformer.pkl", "rb") as f: classifier = pickle.load(f) assert original_results == classifier(doc)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/cc_net/tests/test_transformer.py
import glob, os import json import sys import re import hashlib import gzip import os ## Load data from the Wikipedia corpus ## And output them as label "__label__wiki" # files = ["cc_net/data/mined/wikipedia/en_head_0000.json.gz", "cc_net/data/mined/wikipedia/en_middle_0000.json.gz"] unique = {} i = 0 for f in files: for jstr in gzip.open(f, "rt"): i = i + 1 result = json.loads(jstr) result["class"] = "wiki" if result["digest"] in unique: continue unique["digest"] = 1 if(len(result["raw_content"]) < 1000): continue print("__label__wiki " + " ".join(result["raw_content"].splitlines())) jobs = [] for file in glob.glob("common_crawl/*/*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) ## Fetch `perfile` number of webpages for each CommonCrawl partition # perfile = i / len(jobs) ## Output Commoncrawl data as label "__label__wiki" # n = 0 for job in jobs: j = 0 for jstr in gzip.open(job, "rt"): j = j + 1 if j > perfile: break result = json.loads(jstr) result["class"] = "cc" print("__label__cc " + " ".join(result["raw_content"].splitlines())) n = n + 1
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/classifier/create_corpus.py
import glob, os import json import sys import re import hashlib import gzip import os from multiprocessing import Pool # Get all jobs. # Each job corresponds to a file ends with .gz, with middle or head in it # jobs = [] os.chdir(sys.argv[1]) for file in glob.glob("*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) print("TOTAL # JOBS:", len(jobs)) # For each row, run classifier and output # (text: [...], source, pred_label, pred_label_prob, wiki_prob) # def run(job): import fasttext model = fasttext.load_model("../fastText/model.bin") print(job) ofile = gzip.open(job + ".dedup.classifier.gz", "wt") ostat = open(job + ".dedup.classifier.gz.stat", "wt") line = 0 for jstr in gzip.open(job + ".result", "rt"): result = json.loads(jstr) content = result["raw_content"] output = {} # run classifier text = " ".join(content.strip().splitlines()) pred = model.predict(text) (pred_label, pred_prob) = pred pred_label = pred_label[0] wiki_prob = pred_prob[0] if pred_label == "__label__cc": wiki_prob = 1 - wiki_prob output["pred_label"] = pred_label output["pred_label_prob"] = pred_prob[0] output["wiki_prob"] = wiki_prob output["text"] = content output["source"] = "cc/" + job + f"/line{line}" line = line + 1 nchars = len(content) ostat.write(f"{nchars}\t{wiki_prob}\n") ofile.write(json.dumps(output) + "\n") ofile.close() ostat.close() with Pool(224) as p: p.map(run, jobs)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/classifier/classify.py
import re import argparse parser = argparse.ArgumentParser() parser.add_argument( "--data", "-d", help="path to articles xml", default="enwiki-20230401-pages-articles-multistream.xml", ) parser.add_argument( "--output", "-o", help="path to extracted urls file", default="./extracted_urls.txt", ) parser.add_argument( "--verbose", "-v", action="store_true", help="show progress", ) args = parser.parse_args() def get_urls(): with open(args.data, "r", errors="ignore") as f, open(args.output, "w") as out: for i, line in enumerate(f, start=1): refs = re.search("&lt;ref&gt(.*)&lt;/ref&gt;", line) if refs is not None: results = re.findall( r"\b(?:https?|telnet|gopher|file|wais|ftp):[\w/#~:.?+=&%@!\-.:?\\-]+?(?=[.:?\-]*(?:[^\w/#~:.?+=&%@!\-.:?\-]|$))", refs.group(0), ) if len(results) > 0: for result in results: out.write(result + "\n") if args.verbose and i % 1000000 == 0: print("Lines searched: {}".format(i), end="\r") def main(): get_urls() if __name__ == "__main__": main()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/classifier/extract_urls.py
import glob, os import json import sys import re import hashlib import gzip import os from multiprocessing import Pool # Get all jobs. # Each job corresponds to a file ends with .gz, with middle or head in it # jobs = [] os.chdir(sys.argv[1]) for file in glob.glob("*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) print("TOTAL # JOBS:", len(jobs)) # Output (URL, digest) pairs for each job # def run(job): print(job) ofile = gzip.open( job + ".dedup", "wt") for jstr in gzip.open(job, "rt"): result = json.loads(jstr) ofile.write(result['url'] + " " + result['digest'] + "\n") ofile.close() with Pool(64) as p: p.map(run, jobs)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/dedup/dedup_phase1.py
import glob, os import json import sys import re import hashlib import gzip import os from multiprocessing import Pool, Value import multiprocessing import gc # Get all jobs # jobs = [] os.chdir(sys.argv[1]) for file in glob.glob("*/*.gz"): if ("middle" in file or "head" in file) and "dedup" not in file: jobs.append(file) print("TOTAL # JOBS:", len(jobs)) # Load all pairs of (fileid, digest) # counter = Value('i', 0) lock = multiprocessing.Lock() def load(job): load_job = {} global counter with counter.get_lock(): counter.value += 1 print(counter.value, job) # test: early stop #if counter.value > 10: # return {} for line in gzip.open(job + ".dedup", mode='rt'): (fileid, digest) = line.split(" ") load_job[fileid] = digest return load_job with Pool(64) as p: loaded_ = p.map(load, jobs) loaded = {} for j in range(0, len(jobs)): loaded[jobs[j]] = loaded_[j] # Dedup # unique fileIDs are in unique_fileid # also write unique fileID for each job in its own file # table = {} unique_fileid = {} #ufile = gzip.open("uniqie_fileids", "wt") for job in loaded: print("loaded", job, len(loaded[job])) ufile = gzip.open(job + ".uniqie_fileids", "wt") for fileid in loaded[job]: digest = loaded[job][fileid] if digest not in table: table[digest] = 1 unique_fileid[fileid] = 1 ufile.write(fileid + "\n") ufile.close() print("total unique", len(unique_fileid)) # GC # del loaded_ del loaded gc.collect() # Write out the result # def write(job): global counter with counter.get_lock(): counter.value += 1 print("write", counter.value, job) ofile = gzip.open( job + ".result", "wt") wrote = 0 total = 0 for jstr in gzip.open(job, "rt"): result = json.loads(jstr) if result['url'] in unique_fileid: wrote = wrote + 1 ofile.write(jstr) total = total + 1 print(" wrote", wrote, "/", total) ofile.close() with Pool(64) as p: p.map(write, jobs)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/data_prep/cc/dedup/dedup_phase2.py
from megatron.data.indexed_dataset import MMapIndexedDataset from transformers import AutoTokenizer import argparse # get the first argument as a file name, and an output file parser = argparse.ArgumentParser() parser.add_argument("file_name", help="the file name to read") parser.add_argument("output_file", help="the file name to write") args = parser.parse_args() ds = MMapIndexedDataset(args.file_name) tok = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") num_tokens = [ len(ds[i]) for i in range(len(ds)) ] # write it out to an output_file with open(args.output_file, "w") as f: for i in num_tokens: f.write(f"{i}\n") print(f'Total tokens: {sum(num_tokens)}')
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/tokenization/count_tokens.py
""" Embed each row of a `.jsonl` file using a HuggingFace model and save the embeddings. Authors: The Meerkat Team (Karan Goel, Sabri Eyuboglu, Arjun Desai) License: Apache License 2.0 """ import os from argparse import ArgumentParser import numpy as np import pyarrow as pa import pyarrow.compute as pc import pyarrow.json import torch import torch.nn.functional as F from rich import print from tqdm.auto import tqdm from transformers import AutoModel, AutoTokenizer import meerkat as mk class TruncatedDataset: def __init__( self, df: mk.DataFrame, tokenizer: AutoTokenizer, chunk_size: int, ): self.df = df self.tokenizer = tokenizer self.chunk_size = chunk_size def __len__(self): return len(self.df) def __getitem__(self, idx): data = self.df[idx] tokenized = self.tokenizer( data["text"], pad_to_multiple_of=self.chunk_size, padding=True, ) return { "input_ids": torch.tensor(tokenized["input_ids"][: self.chunk_size]), "attention_mask": torch.tensor( tokenized["attention_mask"][: self.chunk_size] ), "doc_id": data["id"], "chunk_id": 0, } def create_model_and_tokenizer( model_name: str, cache_dir: str, ): print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir) tokenizer.add_special_tokens({"pad_token": "[PAD]"}) print("Loading model...") model = AutoModel.from_pretrained(model_name, cache_dir=cache_dir).cuda() return model, tokenizer def prepare(feature_dir: str, savepath: str): if not os.path.exists(feature_dir): os.makedirs(feature_dir) if os.path.exists(savepath): exit() def load_dataframe(path): print("Loading dataframe...") # Load in the JSON. df = mk.from_json( path, lines=True, backend="arrow", read_options=pa.json.ReadOptions(**{"block_size": 10 << 20}), ) if "meta" in df.columns: struct_array = df["meta"].data result = {} for field_index in range(struct_array.type.num_fields): field = struct_array.type.field(field_index) result[field.name] = mk.ArrowScalarColumn( pc.struct_field(struct_array, field.name) ) meta_df = mk.DataFrame(result) else: meta_df = mk.DataFrame() if "id" in meta_df.columns: df["id"] = meta_df["id"] elif "arxiv_id" in meta_df.columns: df["id"] = meta_df["arxiv_id"] else: try: df["id"] = meta_df["pkey"] except: df.create_primary_key("id") df = df.set_primary_key("id") try: df = df.drop("pkey") except ValueError: pass assert set(df.columns) >= set( ["id", "text"] ), f"Unexpected columns: {set(df.columns)}" return df def create_dataloader( filepath: str, tokenizer: AutoTokenizer, chunk_size: int, batch_size: int, num_workers: int, ): dataset = TruncatedDataset( load_dataframe(filepath), tokenizer, chunk_size=chunk_size, ) return torch.utils.data.DataLoader( dataset, shuffle=False, batch_size=batch_size, num_workers=num_workers, ) @torch.no_grad() def extract_features( model: torch.nn.Module, input_ids: torch.Tensor, attention_mask: torch.Tensor, ): """Extract features from the model.""" # Extract features from the model attention_mask = attention_mask.cuda() outputs = model.forward(input_ids.cuda(), attention_mask=attention_mask)[0] # Use the attention mask to average the output vectors. outputs = outputs.cpu() attention_mask = attention_mask.cpu() features = (outputs * attention_mask.unsqueeze(2)).sum(1) / attention_mask.sum( 1 ).unsqueeze(1).cpu() # Normalize embeddings features = F.normalize(features, p=2, dim=1).numpy() return features def run_feature_extraction( model: torch.nn.Module, dataloader: torch.utils.data.DataLoader, ): print("Feature extraction...") storage = [] for batch in tqdm(dataloader): features = extract_features(model, batch["input_ids"], batch["attention_mask"]) storage.append(features) # Save the features to disk. return np.concatenate(storage, axis=0).reshape(-1, 384) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--gpu", type=int, default=0) parser.add_argument("--filepath", type=str) parser.add_argument("--num_workers", type=int, default=16) parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--chunk_size", type=int, default=256) parser.add_argument( "--model_name", type=str, default="sentence-transformers/all-MiniLM-L6-v2", ) parser.add_argument("--cache_dir", type=str, default="/home/karan/models/") parser.add_argument( "--feature_dir", type=str, default=f"/home/karan/data/pyjama/features/", ) args = parser.parse_args() feature_dir = os.path.join(args.feature_dir, args.model_name) CUDA_VISIBLE_DEVICES = args.gpu os.environ["CUDA_VISIBLE_DEVICES"] = str(CUDA_VISIBLE_DEVICES) # Get num_gpus on this machine. num_gpus = torch.cuda.device_count() filepath = args.filepath filename = os.path.basename(filepath) savepath = os.path.join(feature_dir, filename.replace(".jsonl", ".npy")) prepare(feature_dir, savepath) model, tokenizer = create_model_and_tokenizer(args.model_name, args.cache_dir) dataloader = create_dataloader( filepath, tokenizer, chunk_size=args.chunk_size, batch_size=args.batch_size, num_workers=args.num_workers, ) features = run_feature_extraction(model, dataloader) np.save(savepath, features) print("Done.")
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/viz/embed_jsonl.py
import os from argparse import ArgumentParser from glob import glob import faiss import numpy as np from tqdm.auto import tqdm def build_pca( xb: np.ndarray, d_in: int = 384, d_out: int = 32, ): pca = faiss.PCAMatrix(d_in, d_out) pca.train(xb) return pca if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--feature_dir", type=str, default="~/data/pyjama/features/sentence-transformers/all-MiniLM-L6-v2/", ) args = parser.parse_args() dir = os.path.expanduser(args.feature_dir) # Load in all the files. files = sorted(list(glob(f"{dir}/*.sampled.npy"))) print(f"Loading {len(files)} files into memory...") arrs = [np.load(file) for file in tqdm(files)] # Concatenate all the arrays arr = np.concatenate(arrs, axis=0) print("Combined arr:", arr.shape) # Create the PCA pca = build_pca(arr) faiss.write_VectorTransform(pca, f"{dir}/pca32.faiss") # Apply to all vectors. arr_reduced = pca.apply(arr) # Save the reduced array. np.save(f"{dir}/pca32.npy", arr_reduced)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/viz/reduce_pca32.py
import faiss import numpy as np import torch import torch.nn.functional as F from rich import print from tqdm.auto import tqdm from transformers import AutoModel, AutoTokenizer def build_flat_index( xb: np.ndarray, d: int = 32, ): index = faiss.IndexFlatL2(d) index.add(xb) return index def load_index( path: str, ): """Load the index from a path.""" index = faiss.read_index(path) return index def load_pca(path: str): """Load the PCA from a path.""" pca = faiss.read_VectorTransform(path) return pca def create_model_and_tokenizer( model_name: str, cache_dir: str = None, ): print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir) tokenizer.add_special_tokens({"pad_token": "[PAD]"}) print("Loading model...") model = AutoModel.from_pretrained(model_name, cache_dir=cache_dir) return model, tokenizer @torch.no_grad() def extract_features( model: torch.nn.Module, input_ids: torch.Tensor, attention_mask: torch.Tensor, ): """Extract features from the model.""" # Extract features from the model attention_mask = attention_mask outputs = model.forward(input_ids, attention_mask=attention_mask)[0] # Use the attention mask to average the output vectors. outputs = outputs.cpu() attention_mask = attention_mask.cpu() features = (outputs * attention_mask.unsqueeze(2)).sum(1) / attention_mask.sum( 1 ).unsqueeze(1).cpu() # Normalize embeddings features = F.normalize(features, p=2, dim=1).numpy() return features def extract_features_single( text: str, model: torch.nn.Module, tokenizer: AutoTokenizer, chunk_size: int = 512, ): """Extract features from the model.""" tokenized = tokenizer( [text], pad_to_multiple_of=chunk_size, padding=True, ) return extract_features( model, torch.tensor(tokenized["input_ids"][:chunk_size]), torch.tensor(tokenized["attention_mask"][:chunk_size]), ) def run_feature_extraction( model: torch.nn.Module, dataloader: torch.utils.data.DataLoader, ): print("Feature extraction...") storage = [] carry = (None, None) for batch in tqdm(dataloader): features = extract_features(model, batch["input_ids"], batch["attention_mask"]) chunk_id = np.array(batch["chunk_id"]) doc_id = np.array(batch["doc_id"]) if (chunk_id == 0).all(): storage.append(features) elif (chunk_id == 0).any(): # Close out the previous document. # Aggregate based on the document ID. agg = np.array( [features[doc_id == i].mean(axis=0) for i in np.unique(doc_id)] ) # Number of chunks in the first document. num_chunks_first = (doc_id == doc_id[0]).sum() # Number of chunks in the last document. num_chunks_last = (doc_id == doc_id[-1]).sum() # Batch falls on a document boundary. if chunk_id[0] == 0: # Close out the previous document and update the carry. storage.append(carry[0]) carry = (None, None) # Batch does not fall on a document boundary. if carry[0] is not None: # Reweight the first chunk. agg[0] = (agg[0] * num_chunks_first + carry[0] * carry[1]) / ( num_chunks_first + carry[1] ) # Update the carry. carry = (agg[-1], num_chunks_last) # Put the features in storage. storage.append(agg[:-1]) else: # All chunks should have the same document ID. assert (doc_id == doc_id[0]).all() # Aggregate. agg = np.mean(features, axis=0) # Reweight. agg = (agg * len(features) + carry[0] * carry[1]) / ( len(features) + carry[1] ) # Update the carry: make sure to keep track of the number of chunks. carry = (agg, len(features) + carry[1]) # Save the features to disk. return np.concatenate(storage, axis=0).reshape(-1, 384)
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/viz/utils.py
import os from argparse import ArgumentParser import faiss import numpy as np def build_index( xb: np.ndarray, d: int = 32, ): index = faiss.index_factory(d, "IVF100,PQ8") # Sample 1_000_000 vectors to train the index. xt = xb[np.random.choice(xb.shape[0], 1_000_000, replace=False)] index.train(xt) index.add(xb) return index if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--dir", type=str, default="~/data/pyjama/features/sentence-transformers/all-MiniLM-L6-v2", ) args = parser.parse_args() dir = os.path.expanduser(args.dir) # Load in the embeddings. arr = np.load(f"{dir}/pca32.npy") print(arr.shape) # Create the index. index = build_index(arr) faiss.write_index(index, f"{dir}/index_ivf100_pq8.faiss")
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/viz/index_faiss.py
""" A Meerkat app for visualizing the Github subset of the RedPajama dataset. Authors: The Meerkat Team (Karan Goel, Sabri Eyuboglu, Arjun Desai) License: Apache License 2.0 """ import numpy as np import tempfile from utils import extract_features_single, load_pca, create_model_and_tokenizer import meerkat as mk from meerkat.datasets.utils import download_url with tempfile.TemporaryDirectory() as temp_dir: path = download_url( "https://huggingface.co/datasets/meerkat-ml/lemma/resolve/main/pca.faiss", temp_dir, ) pca = load_pca(path) model_name = "sentence-transformers/all-MiniLM-L6-v2" model, tokenizer = create_model_and_tokenizer(model_name) df = mk.read( "https://huggingface.co/datasets/meerkat-ml/lemma/resolve/main/filtered_08cdfa755e6d4d89b673d5bd1acee5f6.mk.tar.gz" ) def get_full_text(text_sample: str, repo_name: str, ref: str, path: str): """ Get the full text of a code sample from Github. """ ref = ref.split("/")[-1] import requests return requests.get( f"https://raw.githubusercontent.com/{repo_name}/{ref}/{path}" ).text df["text_sample"] = df["text_sample"].format(mk.format.CodeFormatterGroup()) df["full_text"] = df.defer(get_full_text).format(mk.format.CodeFormatterGroup().defer()) df["search"] = mk.ArrowScalarColumn(np.zeros(len(df))) df["embeddings"] = df["embeddings"].format(mk.format.TextFormatterGroup()) @mk.endpoint def search(df: mk.DataFrame, new_code: str = ""): """The endpoint for executing a search query.""" if new_code != "": features = extract_features_single(new_code, model, tokenizer) pca_features = pca.apply(features) df["search"] = np.matmul(df["embeddings"].data, pca_features.T).squeeze() df.set(df) editor = mk.gui.Editor(on_run=search.partial(df), title="Search") # build controls for the scatter plot NUM_PCA_COMPONENTS = 5 for i in range(NUM_PCA_COMPONENTS): df[f"pca_{i+1}"] = df["embeddings"][:, i] options = [f"pca_{i+1}" for i in range(NUM_PCA_COMPONENTS)] + ["search"] x_select = mk.gui.Select( options, value="pca_1", ) x_control = mk.gui.html.div( [mk.gui.Text("X Axis"), x_select], classes="grid grid-cols-[auto_1fr] gap-2" ) y_select = mk.gui.Select( options, value="pca_2", ) y_control = mk.gui.html.div( [mk.gui.Text("Y Axis"), y_select], classes="grid grid-cols-[auto_1fr] gap-2" ) color_select = mk.gui.Select( options, value="search", ) color_control = mk.gui.html.div( [mk.gui.Text("Color"), color_select], classes="grid grid-cols-[auto_1fr] gap-2" ) select = mk.gui.html.div( [x_control, y_control, color_control], classes="grid grid-cols-3 gap-8 px-10" ) scatter = mk.gui.plotly.DynamicScatter( df=df, x=x_select.value, y=y_select.value, color=color_select.value, max_points=10_000, ) gallery = mk.gui.Gallery( scatter.filtered_df, main_column="text_sample", tag_columns=["language"] ) page = mk.gui.Page( component=mk.gui.html.div( [ mk.gui.html.div( [editor, select, scatter], classes="h-screen grid grid-rows-[1fr_auto_3fr] gap-4", ), gallery, ], classes="grid grid-cols-2 gap-4 h-screen py-6", ), id="lemma", ) page.launch()
EXA-1-master
exa/libraries/data_prep/RedPajama-Data/viz/main.py
import os import sys import argparse from os.path import join from tools import * import logging from api import set_api_logger from chat import ChatBot, Turn, set_chat_logger import gradio as gr args: argparse.Namespace = None bot: ChatBot = None def summarize_embed_one_turn(bot: ChatBot, dialogue_text, dialogue_text_with_index): lang2template = { LANG_EN: 'Below is a conversation between a user and an AI assistant. Please write a summary for each of them in one sentence and list them in separate paragraphs, while trying to preserve the key information of the user’s question and the assistant’s answer as much as possible. \n\nconversation content: \n\n{}\n\nSummary:', LANG_ZH: '以下是用户和人工智能助手的一段对话,请分别用一句话写出用户摘要、助手摘要,分段列出,要求尽可能保留用户问题和助手回答的关键信息。\n\n对话内容:\n\n{}\n\n摘要:' } tmp = choose_language_template(lang2template, dialogue_text) input_text = tmp.format(dialogue_text) logger.info(f'turn summarization input_text: \n\n{input_text}') # 如果原文很短,保留原文即可 summarization = input_text if get_token_count_davinci(input_text) > 300: logger.info(f'current turn text token count > 300, summarize !\n\n') summarization = bot.ask(input_text) logger.info(f'Summarization is:\n\n{summarization}\n\n') embedding = bot.vectorize(dialogue_text_with_index) return summarization, embedding # todo: 这部分长度可能会超长,需要动态设置一下。 def get_concat_input(user_str, pre_sre, hist_str=None): templates_no_hist_zh = '以下是用户和人工智能助手的对话,请根据历史对话内容,回答用户当前问题:\n\n上一轮对话:\n\n{}\n\n###\n\n用户:{}\n\n助手:' templates_no_hist_en = 'The following is a conversation between a user and an AI assistant. Please answer the current question based on the history of the conversation:\n\nPrevious conversation:\n\n{}\n\n###\n\nUser: {}\n\nAssistant:' lang2template = { LANG_EN: templates_no_hist_en, LANG_ZH: templates_no_hist_zh } templates_no_hist = choose_language_template(lang2template, user_str) templates_hist_zh = '以下是用户和人工智能助手的对话,请根据历史对话内容,回答用户当前问题:\n\n相关历史对话:\n\n{}\n\n上一轮对话:\n\n{}\n\n###\n\n用户:{}\n\n助手:' templates_hist_en = 'The following is a conversation between a user and an AI assistant. Please answer the current question based on the history of the conversation:\n\nRelated conversation history:\n\n{}\n\nPrevious conversation:\n\n{}\n\n###\n\nUser: {}\n\nAssistant:' lang2template = { LANG_EN: templates_hist_en, LANG_ZH: templates_hist_zh } templates_hist = choose_language_template(lang2template, user_str) if hist_str: input_text = templates_hist.format(hist_str, pre_sre, user_str) else: input_text = templates_no_hist.format(pre_sre, user_str) return input_text def check_key_file(key_file): if not os.path.exists(key_file): print(f'[{key_file}] not found! Please put your apikey in the txt file.') sys.exit(-1) def judge_need_history(user_instruction): templates_zh = '给定一个用户指令,判断执行该指令是否需要历史信息或者上文的信息,或者需要回忆对话内容,只需要回答是(A)或者否(B),不需要解释信息:\n\n指令:{}' templates_en = 'Given a user command, determine whether executing the command requires historical or previous information, or whether it requires recalling the conversation content. Simply answer yes (A) or no (B) without explaining the information:\n\nCommand:{}' lang2template = { LANG_EN: templates_en, LANG_ZH: templates_zh } tmp = choose_language_template(lang2template, user_instruction) input_text = tmp.format(user_instruction) is_need = bot.is_history_need(input_text) logger.info(f'\n--------------\nis_need: {is_need}\n--------------\n') return is_need def get_first_prompt(user_text, model_name): if model_name in ['gpt-3.5-turbo']: return user_text else: templates_zh = '假设你是人工智能助手, 请回答用户的问题和请求:\n\n用户:{}\n\n助手:' templates_en = 'Assuming you are an AI assistant, please answer the user\'s questions and requests:\n\nUser: {}\n\nAssistant:' lang2template = { LANG_EN: templates_en, LANG_ZH: templates_zh } tmp = choose_language_template(lang2template, user_text) concat_input = tmp.format(user_text) return concat_input def my_chatbot(user_input, history): history = history or [] user_input = user_input.strip() my_history = list(sum(history, ())) COMMAND_RETURN = '命令已成功执行!' if user_input in ['清空', 'reset']: # history.append((user_input, COMMAND_RETURN)) history = [] bot.clear_history() logger.info(f'[User Command]: {user_input} {COMMAND_RETURN}') return history, history elif user_input in ['导出', 'export']: # history.append((user_input, COMMAND_RETURN)) bot.export_history() logger.info(f'[User Command]: {user_input} {COMMAND_RETURN}') return history, history elif user_input in ['回退', '回滚', 'roll back']: history.pop() bot.roll_back() logger.info(f'[User Command]: {user_input} {COMMAND_RETURN}') return history, history # 历史: my_history # 当前输入: user_input len_hist = len(bot.history) cur_turn_index = len_hist + 1 if len_hist == 0: concat_input = get_first_prompt(user_input, args.model_name) else: retrieve = None is_need = judge_need_history(user_input) # 并且 需要历史信息才给 if cur_turn_index > 2 and is_need: retrieve = bot.get_related_turn(user_input, args.similar_top_k) concat_input = get_concat_input(user_input, bot.get_turn_for_previous(), hist_str=retrieve) logger.info(f'\n--------------\n[第{cur_turn_index}轮] concat_input:\n\n{concat_input}\n--------------\n') try: rsp: str = bot.ask(concat_input) except Exception as e: logger.error(f'ERROR: \n\n{e}') rsp = '喵呜,您的请求好像掉进了喵喵的世界里了~' history.append((user_input, rsp)) return history, history system_text = rsp.strip() cur_text_without_index = '用户:{}\n\n助手:{}'.format(user_input, system_text) cur_text_with_index = '[第{}轮]\n\n用户:{}\n\n助手:{}'.format(cur_turn_index, user_input, system_text) if detect_language(user_input) == LANG_EN: cur_text_without_index = 'User: {}\n\nAssistant: {}'.format(user_input, system_text) cur_text_with_index = '[Turn {}]\n\nUser: {}\n\nAssistant: {}'.format(cur_turn_index, user_input, system_text) try: summ, embedding = summarize_embed_one_turn(bot, cur_text_without_index, cur_text_with_index) except Exception as e: logger.error(f'summarize_embed_one_turn ERROR: \n\n{e}') rsp = '摘要出错,喵呜,您的请求好像掉进了喵喵的世界里了~' history.append((user_input, rsp)) return history, history cur_turn = Turn(user_input=user_input, system_response=system_text, user_sys_text=cur_text_with_index, summ=summ, embedding=embedding) bot.add_turn_history(cur_turn) my_history.append(user_input) output = system_text history.append((user_input, output)) return history, history if __name__ == '__main__': parser = argparse.ArgumentParser() model_choices = ['text-davinci-003', 'gpt-3.5-turbo', 'bloom', 'alpaca', 'llama'] parser.add_argument("--apikey_file", type=str, default="./config/apikey.txt") parser.add_argument("--model_name", type=str, default="text-davinci-003", choices=model_choices) parser.add_argument("--target_file", type=str) parser.add_argument("--logfile", type=str, default="./logs/log.txt") parser.add_argument("--history_file", type=str) parser.add_argument("--similar_top_k", type=int, default=4) args = parser.parse_args() check_key_file(args.apikey_file) log_path = args.logfile makedirs(log_path) # 配置日志记录 logger = logging.getLogger('dialogue_logger') logger.setLevel(logging.INFO) formatter = logging.Formatter('【%(asctime)s - %(levelname)s】 - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') file_handler = logging.FileHandler(log_path, encoding='utf-8') file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) set_chat_logger(logger) set_api_logger(logger) logger.info('\n\n\n') logger.info('#################################') logger.info('#################################') logger.info('#################################') logger.info('\n\n\n') logger.info(f"args: \n\n{args}\n") stamp = datetime2str() # print(stamp) if args.target_file: history_file = f'{args.target_file}' else: history_file = f'./history/{stamp}.json' embedding_file = history_file + '.emb.json' bot = ChatBot(model_name=args.model_name) if args.history_file: history_file = args.history_file embedding_file = history_file + '.emb.json' bot.load_history(args.history_file) makedirs(history_file) makedirs(embedding_file) # if args.target_file: # with open(history_file, 'w') as file: pass # with open(embedding_file, 'w') as file: pass with gr.Blocks() as demo: gr.Markdown(f"<h1><center>Long Dialogue Chatbot ({args.model_name})</center></h1>") chatbot = gr.Chatbot() state = gr.State() txt = gr.Textbox(show_label=False, placeholder="Ask me a question and press enter.").style(container=False) txt.submit(my_chatbot, inputs=[txt, state], outputs=[chatbot, state]) demo.launch(share = True)
EXA-1-master
exa/libraries/SCM4LLMs/dialogue-ui-demo.py
# coding=utf-8 import os import sys import time import json import pickle import string import tiktoken from langdetect import detect_langs LANG_EN = 'English' LANG_ZH = 'Chinese' LANG_UN = 'Unknown' def detect_language(text): # 获取主要语言列表 langs = detect_langs(text) # 整理语言列表,将每个语言和其概率整理为一个字典 lang_dict = {} for lang in langs: lang_dict[lang.lang] = lang.prob print(langs) # 判断主要语言 if 'zh-cn' in lang_dict: return LANG_ZH elif 'en' in lang_dict: return LANG_EN else: return LANG_UN def get_token_count_davinci(text): tokenizer = tiktoken.encoding_for_model('text-davinci-003') tokens = tokenizer.encode(text) return len(tokens) # 递归新建文件夹 def makedirs(filename): dir_path = os.path.dirname(os.path.abspath(filename)) if not os.path.exists(dir_path): os.makedirs(dir_path) print('makedirs %s' % dir_path) # 将数据保存为pickle文件 def save_pickle_file(data, filename): with open(filename, 'wb') as f: pickle.dump(data, f) print('saved pkl file ', filename) # 加载pickle文件 def load_pickle_file(filename): with open(filename, 'rb') as f: data = pickle.load(f) return data # 把content列表保存成文本文件 def save_file(filename, content): """ :param filename: 输出文件名 :param content: 句子列表 默认每个元素自带换行啊 :return: """ with open(filename, 'w', encoding='utf-8') as f: f.writelines(content) print('save file %s successful!' % filename) def save_jsonl_file(filename, data, indent=None): """ :param filename: 输出文件名 :param data: 数据对象,List[json] :param indent: 缩进 :return: json line format file """ with open(filename, 'w', encoding='utf-8') as fp: for js in data: if indent: js_str = json.dumps(js, indent=indent, ensure_ascii=False) else: js_str = json.dumps(js, ensure_ascii=False) fp.write(js_str + '\n') print('save file %s successful!' % filename) def save_json_file(filename, data): """ :param filename: 输出文件名 :param data: 数据对象,json/list :return: """ with open(filename, 'w', encoding='utf-8') as fp: json.dump(data, fp, indent=2, ensure_ascii=False) print('save file %s successful!' % filename) def load_json_file(filename): """ :param filename: 文件名 :return: 数据对象,json/list """ with open(filename, encoding='utf-8') as fp: data = json.load(fp) return data def load_jsonl_file(path): lines = get_lines(path) data = [json.loads(x) for x in lines] return data # 给定文件名,和待pickle的对象,用新文件将其覆盖 def overwrite_pkl_file(filename, data): tmp_filename = filename + '.swp' save_pickle_file(data, tmp_filename) if os.path.exists(filename): os.rename(filename, filename + '.old.' + datetime2str()) os.rename(tmp_filename, filename) print('overwrite %s successful!' % filename) # 给定文件名,和待保存的字符串列表,用新文件将其覆盖 def overwrite_txt_file(filename, data): tmp_filename = filename + '.swp' save_file(tmp_filename, data) if os.path.exists(filename): os.rename(filename, filename + '.old.' + datetime2str()) os.rename(tmp_filename, filename) print('overwrite %s successful!' % filename) # 读取文件的每一行, 返回列表 def get_lines(filename): with open(filename, encoding='utf-8') as f: data = [i.strip() for i in f.readlines() if i.strip() != ''] return data def get_files(root, suffix): """ 获取指定目录下的所有指定后缀的文件 :param root: 指定目录 str 类型 如:'.' :param suffix: 指定后缀 str 类型 如:'.txt' :return: 文件列表 """ import os import glob if not os.path.exists(root): raise FileNotFoundError(f'path {root} not found.') res = glob.glob(f'{root}/**/*{suffix}', recursive=True) res = [os.path.abspath(p) for p in res] return res # 判断一个词语是不是纯中文词语,即不包含汉字以外的其他符号 def is_chinese_word(word): for c in word: if not ('\u4e00' <= c <= '\u9fa5'): # print(word) return False return True # 判断一个字符是不是中文字符 def is_chinese_char(c): if len(c.strip()) == 1 and '\u4e00' <= c <= '\u9fa5': return True return False # 判断一个单词是否只含有大小写字母 def is_letters(word): for c in word: if (c >= '\u0041' and c <= '\u005a') or (c >= '\u0061' and c <= '\u007a'): continue return False return True # 判断一个单词是否只含有大写字母 def is_upper_letters(word): for c in word: if c >= '\u0041' and c <= '\u005a': continue return False return True def is_upper_letters(word): for c in word: if c not in string.ascii_uppercase: return False return True # 判断一个短语/单词,是不是纯英文短语/单词,即只含有26个大小写字母和空格 def is_pure_english_phrase(word): for c in word: if (c >= '\u0041' and c <= '\u005a') or (c >= '\u0061' and c <= '\u007a') or c == ' ': continue return False return True def datetime2str(): from datetime import datetime return datetime.now().strftime('%Y%m%d-%H%M%S') # 计算从start到现在花费的时间 def time_cost(start): cost = int(time.time() - start) h = cost // 3600 m = (cost % 3600) // 60 print('') print('【%s】到目前总耗时: cost %s hours %s mins' % (datetime2str(), h, m)) # 将 content_list 追加到filename中 def append_file(filename, content_list, new_line=False): if not content_list: return if new_line: content_list = [text if text.endswith('\n') else text+'\n' for text in content_list] with open(filename, 'a+', encoding='utf-8') as f: f.writelines(content_list) timestamp = datetime2str() print('[%s]: append_file %s successful!' % (timestamp, filename)) def get_multi_line_input(): while True: try: print(f"\nuser(press q to exit): \n") text=sys.stdin.read() text = text.strip() if text == '': print('Empty input. Try again.\n\n') continue else: return text except KeyboardInterrupt: print(f'\nTry again: \n\n') except Exception as e: print(f'Exception: {e}.\n\nTry again: \n\n') def choose_language_template(lang2template: dict, text: str): lang = detect_language(text) if lang not in lang2template: lang = LANG_EN return lang2template[lang] if __name__ == '__main__': print(is_upper_letters('ADFFF') is True) print(is_upper_letters('Agfdg') is False) pass
EXA-1-master
exa/libraries/SCM4LLMs/tools.py
import os import openai import torch import time from tools import get_lines, time_cost, append_file from transformers import AutoTokenizer, AutoModelForCausalLM BLOOM_MODEL = None BLOOM_TOKENIZER = None LOCAL_API_LOGGER = None def set_api_logger(one): global LOCAL_API_LOGGER LOCAL_API_LOGGER = one class KeyManager(object): index_save_file = '.key.index' def __init__(self, filename) -> None: self.keys = get_lines(filename) self.key_index = 0 if os.path.exists(self.index_save_file): index = int(get_lines(self.index_save_file)[-1]) index += 1 index %= len(self.keys) self.key_index = index def get_api_key(self): self.key_index += 1 self.key_index %= len(self.keys) append_file(self.index_save_file, [str(self.key_index)+'\n']) cur_key = self.keys[self.key_index] print(f'\n-----------------\nkey: {cur_key}\nindex:{self.key_index}\n-----------------\n') return cur_key def get_initialized_hf_model(path): model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(path) return model, tokenizer KEY_MANAGER = KeyManager('config/apikey.txt') def call_embedding_openai(text): openai.api_key = KEY_MANAGER.get_api_key() response = openai.Embedding.create( model="text-embedding-ada-002", input=text ) embedding = response['data'][0]['embedding'] return embedding def call_embedding_bloom(text): global BLOOM_MODEL global BLOOM_TOKENIZER checkpoint_path = '/your/checkpoint/path' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if not BLOOM_MODEL: t0 = time.time() LOCAL_API_LOGGER.info('Loading bloom model ... Please wait a few minutes ...') BLOOM_MODEL, BLOOM_TOKENIZER = get_initialized_hf_model(checkpoint_path) BLOOM_MODEL.to(device) LOCAL_API_LOGGER.info('Model Loaded Success !!!') time_cost(t0) model, tokenizer = BLOOM_MODEL, BLOOM_TOKENIZER input_ids = tokenizer.encode(text, return_tensors='pt') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") input_ids = input_ids.to(device) with torch.no_grad(): model_output = model(input_ids, output_hidden_states=True, return_dict=True) # 获取嵌入向量 last_hidden_state = model_output.hidden_states LOCAL_API_LOGGER.info(f'len last_hidden_state: {len(last_hidden_state)}') # 获取最后一个 token 的嵌入 last_indx = input_ids.size()[1] - 1 if last_indx == 0: last_token_embedding = last_hidden_state[-1].squeeze() else: last_token_embedding = last_hidden_state[-1].squeeze()[last_indx].squeeze() LOCAL_API_LOGGER.info(f'last_token_embedding len: {len(last_token_embedding)}') # print(f'last_token_embedding[:4] : {last_token_embedding[:3]}') last_token_embedding = last_token_embedding.tolist() return last_token_embedding def call_text_davinci_003(prompt): api_model_index = 'text-davinci-003' openai.api_key = KEY_MANAGER.get_api_key() response = openai.Completion.create( engine="text-davinci-003", prompt=prompt, temperature=0.5, max_tokens=1024, stop=["\n\n\n", "###"], ) LOCAL_API_LOGGER.info(f"[{api_model_index} request cost token]: {response['usage']['total_tokens']}") LOCAL_API_LOGGER.info(f"[{api_model_index} available tokens]: {4000 - response['usage']['total_tokens']}") text = response['choices'][0]['text'].strip() return text def call_gpt3_5_turbo(prompt): api_model_index = 'gpt-3.5-turbo' openai.api_key = KEY_MANAGER.get_api_key() response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], temperature=0.1, stop=["###"] ) LOCAL_API_LOGGER.info(f"[{api_model_index} request cost token]: {response['usage']['total_tokens']}") LOCAL_API_LOGGER.info(f"[{api_model_index} available tokens]: {4000 - response['usage']['total_tokens']}") text = response['choices'][0]['message']['content'].strip() return text def call_bloom(prompt): print(f'call_bloom : \n\nprompt \n\n{prompt}') global BLOOM_MODEL global BLOOM_TOKENIZER checkpoint_path = '/mnt/bn/slp-llm/sft_lxn/bloom-alpaca/bloomz-alpaca-chat+data0407-allin-bz1k_epoch2_lr3e-6_global_step11364_hf' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if not BLOOM_MODEL: t0 = time.time() LOCAL_API_LOGGER.info('Loading bloom model ... Please wait a few minutes ...') BLOOM_MODEL, BLOOM_TOKENIZER = get_initialized_hf_model(checkpoint_path) BLOOM_MODEL.to(device) LOCAL_API_LOGGER.info('Model Loaded Success !!!') time_cost(t0) model, tokenizer = BLOOM_MODEL, BLOOM_TOKENIZER model.eval() input_ids = tokenizer(prompt, return_tensors="pt").input_ids input_ids = input_ids.to(device) LOCAL_API_LOGGER.info('generating ...') max_new_tokens = min(512, 2000 - len(input_ids)) LOCAL_API_LOGGER.info(f'len input_ids = {len(input_ids[0])}') LOCAL_API_LOGGER.info(f'max_new_tokens: {max_new_tokens}') outputs = model.generate(input_ids, max_new_tokens=max_new_tokens, do_sample = True, top_k = 30, top_p = 0.85, temperature = 0.5, repetition_penalty=1., eos_token_id=2, bos_token_id=1, pad_token_id=0) rets = tokenizer.batch_decode(outputs, skip_special_tokens=True) LOCAL_API_LOGGER.info('generating done!') text = rets[0].strip().replace(prompt, "") return text def call_alpaca(): pass def call_llama(): pass MODEL_MAP = { 'text-davinci-003': call_text_davinci_003, 'gpt-3.5-turbo': call_gpt3_5_turbo, 'bloom': call_bloom, 'alpaca': call_alpaca, 'llama': call_llama } MODEL_EMBEDDING_MAP = { 'text-embedding-ada-002': call_embedding_openai, 'text-davinci-003': call_embedding_openai, 'gpt-3.5-turbo': call_embedding_openai, 'bloom': call_embedding_bloom, 'alpaca': call_alpaca, 'llama': call_llama } MODEL_LIST = [k for k in MODEL_MAP.keys()]
EXA-1-master
exa/libraries/SCM4LLMs/api.py
import torch import torch.nn.functional as F import numpy as np from api import * import tiktoken from tools import * import json from transformers import GPT2Tokenizer from tools import load_jsonl_file, datetime2str, save_json_file, save_file LOCAL_CHAT_LOGGER = None def set_chat_logger(one): global LOCAL_CHAT_LOGGER LOCAL_CHAT_LOGGER = one def get_tokenizer_func(model_name): # todo: add bloom, alpaca, llama tokenizer if model_name in ['gpt-3.5-turbo', 'text-davinci-003']: tokenizer = tiktoken.encoding_for_model(model_name) return tokenizer.encode else: # default: gpt2 tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") return tokenizer.tokenize class SummaryTurn(object): def __init__(self, paragraph, summary, embedding): self.paragraph = paragraph self.summary = summary self.embedding = embedding self.content_tokens_length = 0 self.summary_tokens_length = 0 def to_json(self): js = { 'paragraph': self.paragraph, 'summary': self.summary } return js def to_json_str(self): js = self.to_json() js_str = json.dumps(js, ensure_ascii=False) + '\n' return js_str def to_plain_text(self): text = f'[paragraph]:\n{self.paragraph}\n\n' text += f'[summary]:\n{self.summary}\n' text += ('-' * 30 + '\n\n') return text class SummaryBot(object): def __init__(self, model_name) -> None: assert model_name in MODEL_LIST, f'model name "{model_name}" is not in {MODEL_LIST}' self.model_name = model_name self.api_func = MODEL_MAP[model_name] self.turbo_func = MODEL_MAP['gpt-3.5-turbo'] self.embedding_func = MODEL_EMBEDDING_MAP[model_name] self.tokenize_func = get_tokenizer_func(self.model_name) self.history: list[SummaryTurn] = [] self.final_summary = '' def clear_history(self): self.history = [] def roll_back(self): self.history.pop() def export_history(self): hist_lst = [one.to_json() for one in self.history] hist_lst.append({'final summary': self.final_summary}) hist_txt_lst = [one.to_plain_text() for one in self.history] hist_txt_lst.append(f"final summary: \n\n{self.final_summary}\n\n") stamp = datetime2str() json_filename = f'history/summary-{hist_lst[0]["summary"][:10]}-{self.model_name}-{stamp}.json' txt_filename = f'history/summary-{hist_lst[0]["summary"][:10]}-{self.model_name}-{stamp}.txt' save_json_file(json_filename, hist_lst) save_file(txt_filename, hist_txt_lst) def ask(self, prompt) -> str: output = self.api_func(prompt) return output def is_history_need(self, prompt) -> str: output = self.turbo_func(prompt) LOCAL_CHAT_LOGGER.info(f'\n--------------\nprompt: \n{prompt}\n\n') LOCAL_CHAT_LOGGER.info(f'output: {output}\n--------------\n') if ('B' in output) or ('否' in output): return False return True def vectorize(self, text) -> list: output = self.embedding_func(text) return output def _summarize_paragraphs(self, paragraphs): output = '' templates_zh = '给定一个文档的各个段落摘要,请写出该文档的最终摘要,要求:(1) 用一段文字提取各段摘要里的关键信息,去除重复信息,组织成逻辑通顺的文本; (2) 字数不超过1500字; (3) 摘要内容使用中文。\n\n各段落摘要:\n\n{}\n\n文档摘要:' templates_en = 'Given the summaries of each paragraph of a document, please write the final summary of the document, with the following requirements: (1) extract the key information from each paragraph summary into a single paragraph, removing duplicate information and organizing it into a logically coherent text; (2) the word count does not exceed 1500 words; (3) the summary content is in English.\n\nSummaries of each paragraph:\n\n{}\n\nDocument Summarization:' paragraphs_text = '\n\n'.join(paragraphs).strip() lang2template = { LANG_EN: templates_en, LANG_ZH: templates_zh } tmp = choose_language_template(lang2template, paragraphs[0]) input_text = tmp.format(paragraphs_text) LOCAL_CHAT_LOGGER.info(f"input_text:\n\n{input_text}") output = self.ask(input_text) LOCAL_CHAT_LOGGER.info(f"output:\n\n{output}") return output def _divide_conquer_summary(self, content_lst): tgt_summary = '' summary_token_length_lst = [len(self.tokenize_func(txt)) for txt in content_lst] LOCAL_CHAT_LOGGER.info(f"summary_token_length_lst:\n\n{summary_token_length_lst}") total_tokens = sum(summary_token_length_lst) def split_array(arr): mid = len(arr) // 2 return arr[:mid], arr[mid:] if total_tokens < 2500: tgt_summary = self._summarize_paragraphs(content_lst) else: left, right = split_array(content_lst) left_summary = self._divide_conquer_summary(left) right_summary = self._divide_conquer_summary(right) tgt_summary = self._divide_conquer_summary([left_summary, right_summary]) LOCAL_CHAT_LOGGER.info(f"tgt_summary:\n\n{tgt_summary}") return tgt_summary def get_final_summary(self): sub_summary_lst = [item.summary for item in self.history] final_summary = self._divide_conquer_summary(sub_summary_lst) self.final_summary = final_summary return final_summary def add_turn_history(self, turn: SummaryTurn): turn.content_tokens_length = len(self.tokenize_func(turn.paragraph)) turn.summary_tokens_length = len(self.tokenize_func(turn.summary)) self.history.append(turn) def get_turn_for_previous(self): turn = self.history[-1] if turn.content_tokens_length < 500: return turn.paragraph else: return turn.summary # todo: 检索这块需要优化,不一定非得topk,最多topk,没有也可以不加 def get_related_turn(self, query, k=3): q_embedding = self.vectorize(query) # 只检索 [0, 上一轮) 上一轮的文本直接拼接进入对话,无需检索 sim_lst = [ self._similarity(q_embedding, v.embedding) for v in self.history[:-1] ] # convert to numpy array arr = np.array(sim_lst) # get indices and values of the top k maximum values topk_indices = arr.argsort()[-k:] topk_values = arr[topk_indices] index_value_lst = [(idx, v) for idx, v in zip(topk_indices, topk_values)] # print(index_value_lst) sorted_index_value_lst = sorted(index_value_lst, key=lambda x: x[0]) LOCAL_CHAT_LOGGER.info(f'\n--------------\n') LOCAL_CHAT_LOGGER.info(f"\nTop{k}相似历史索引及其相似度: \n\n{sorted_index_value_lst}\n") LOCAL_CHAT_LOGGER.info(f'\n--------------\n') retrieve_history_text = '' for idx, sim_score in sorted_index_value_lst: turn: SummaryTurn = self.history[idx] # 判断一下长度 cur = turn.paragraph.strip() use_summary = False if turn.content_tokens_length > 300: use_summary = True cur = turn.summary.strip() LOCAL_CHAT_LOGGER.info(f'\n@@@@@@@@@@@@@@@@@@') LOCAL_CHAT_LOGGER.info(f'检索到的历史轮[使用摘要?{use_summary}]:{cur.strip()}') LOCAL_CHAT_LOGGER.info(f'相似度:{sim_score}') retrieve_history_text += f'{cur}\n\n' return retrieve_history_text.strip() def _similarity(self, v1, v2): vec1 = torch.FloatTensor(v1) vec2 = torch.FloatTensor(v2) cos_sim = F.cosine_similarity(vec1, vec2, dim=0) return cos_sim
EXA-1-master
exa/libraries/SCM4LLMs/summary.py
import torch import torch.nn.functional as F import numpy as np from api import * import tiktoken import json from transformers import GPT2Tokenizer from tools import load_jsonl_file, datetime2str, save_json_file, save_file LOCAL_CHAT_LOGGER = None def set_chat_logger(one): global LOCAL_CHAT_LOGGER LOCAL_CHAT_LOGGER = one def get_tokenizer_func(model_name): # todo: add bloom, alpaca, llama tokenizer if model_name in ['gpt-3.5-turbo', 'text-davinci-003']: tokenizer = tiktoken.encoding_for_model(model_name) return tokenizer.encode else: # default: gpt2 tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") return tokenizer.tokenize class Turn(object): def __init__(self, user_input, system_response, user_sys_text, summ, embedding): self.user_input = user_input self.system_response = system_response self.user_sys_text = user_sys_text self.summ = summ self.embedding = embedding self.content_tokens_length = 0 self.summary_tokens_length = 0 def to_json(self): js = { 'user': self.user_input, 'system': self.system_response # 'summary': self.summ } return js def to_json_str(self): js = self.to_json() js_str = json.dumps(js, ensure_ascii=False) + '\n' return js_str def to_plain_text(self): text = f'[User]:\n{self.user_input}\n\n' text += f'[System]:\n{self.system_response}\n' text += ('-' * 30 + '\n\n') return text class ChatBot(object): def __init__(self, model_name) -> None: assert model_name in MODEL_LIST, f'model name "{model_name}" is not in {MODEL_LIST}' self.model_name = model_name self.api_func = MODEL_MAP[model_name] self.turbo_func = MODEL_MAP['gpt-3.5-turbo'] self.embedding_func = MODEL_EMBEDDING_MAP[model_name] self.tokenize_func = get_tokenizer_func(self.model_name) self.history: list[Turn] = [] def clear_history(self): self.history = [] def roll_back(self): self.history.pop() def export_history(self): hist_lst = [one.to_json() for one in self.history] hist_txt_lst = [one.to_plain_text() for one in self.history] stamp = datetime2str() json_filename = f'history/{hist_lst[0]["user"][:10]}-{self.model_name}-{stamp}.json' txt_filename = f'history/{hist_lst[0]["user"][:10]}-{self.model_name}-{stamp}.txt' save_json_file(json_filename, hist_lst) save_file(txt_filename, hist_txt_lst) # def load_history(self, hist_file): # diag_hist = load_jsonl_file(hist_file) # emb_hist = load_jsonl_file(hist_file + '.emb.json') # for dig, e in zip(diag_hist, emb_hist): # js = {} # js['text'] = dig['text'] # js['summ'] = dig['summ'] # js['embedding'] = e # one = Turn(**js) # self.history.append(one) # self.show_history() # def show_history(self): # print('\n\n-------------【history】-------------\n\n') # for i, turn in enumerate(self.history): # print(f'{turn.text.strip()}\n\n') # # print(f'对话摘要: \n{turn.summ}\n') def ask(self, prompt) -> str: output = self.api_func(prompt) return output def is_history_need(self, prompt) -> str: output = self.turbo_func(prompt) LOCAL_CHAT_LOGGER.info(f'\n--------------\nprompt: \n{prompt}\n\n') LOCAL_CHAT_LOGGER.info(f'output: {output}\n--------------\n') if ('B' in output) or ('否' in output): return False return True def vectorize(self, text) -> list: output = self.embedding_func(text) return output def add_turn_history(self, turn: Turn): turn.content_tokens_length = len(self.tokenize_func(turn.user_sys_text)) turn.summary_tokens_length = len(self.tokenize_func(turn.summ)) self.history.append(turn) def get_turn_for_previous(self): turn = self.history[-1] if turn.content_tokens_length < 500: return turn.user_sys_text else: return turn.summ def _is_concat_history_too_long(self, index_list): turn_length_lst = [self.history[idx].content_tokens_length for idx in index_list] total_tokens = sum(turn_length_lst) if total_tokens > 1500: return True else: return False # todo: 检索这块需要优化,不一定非得topk,最多topk,没有也可以不加 def get_related_turn(self, query, k=3): q_embedding = self.vectorize(query) # 只检索 [0, 上一轮) 上一轮的文本直接拼接进入对话,无需检索 sim_lst = [ self._similarity(q_embedding, v.embedding) for v in self.history[:-1] ] # convert to numpy array arr = np.array(sim_lst) # get indices and values of the top k maximum values topk_indices = arr.argsort()[-k:] topk_values = arr[topk_indices] # print the results # print(f"Top {k} indices: ", topk_indices) # print(f"Top {k} values: ", topk_values) index_value_lst = [(idx, v) for idx, v in zip(topk_indices, topk_values)] # print(index_value_lst) sorted_index_value_lst = sorted(index_value_lst, key=lambda x: x[0]) LOCAL_CHAT_LOGGER.info(f'\n--------------\n') LOCAL_CHAT_LOGGER.info(f"\nTop{k}相似历史索引及其相似度: \n\n{sorted_index_value_lst}\n") LOCAL_CHAT_LOGGER.info(f'\n--------------\n') shorten_history = self._is_concat_history_too_long(topk_indices) retrieve_history_text = '' for idx, sim_score in sorted_index_value_lst: turn: Turn = self.history[idx] # 判断一下长度 cur = turn.user_sys_text.strip() use_summary = False if turn.content_tokens_length > 200 and shorten_history: use_summary = True cur = turn.summ.strip() LOCAL_CHAT_LOGGER.info(f'\n@@@@@@@@@@@@@@@@@@') LOCAL_CHAT_LOGGER.info(f'检索到的历史轮[使用摘要?{use_summary}]:{cur.strip()}') LOCAL_CHAT_LOGGER.info(f'相似度:{sim_score}') retrieve_history_text += f'{cur}\n\n' return retrieve_history_text def _similarity(self, v1, v2): vec1 = torch.FloatTensor(v1) vec2 = torch.FloatTensor(v2) cos_sim = F.cosine_similarity(vec1, vec2, dim=0) return cos_sim
EXA-1-master
exa/libraries/SCM4LLMs/chat.py
import os import sys import argparse from os.path import join from tools import * import logging from api import set_api_logger from summary import SummaryBot, SummaryTurn, set_chat_logger import gradio as gr args: argparse.Namespace = None bot: SummaryBot = None # todo: 这部分长度可能会超长,需要动态设置一下。 def get_concat_input(user_str, pre_sre, hist_str=None): templates_no_hist_zh = '给定当前文本和上文内容,请写出当前文本的摘要,要求:1)将上文内容作为当前文本的背景信息; 2)对当前文本进行压缩; 3) 输出内容使用中文:\n\n上文内容:{}\n\n当前文本:{}\n\n摘要:' templates_no_hist_en = 'Given the current text and the previous text, please provide a summary of the current text. The requirements are: 1) use the previous text as background information for the current text; 2) compress the current text; 3) output the summary in English.\n\nPrevious text: {}\n\nCurrent text: {}\n\nSummary:' lang2template = { LANG_EN: templates_no_hist_en, LANG_ZH: templates_no_hist_zh } templates_no_hist = choose_language_template(lang2template, user_str) templates_hist_zh = '给定当前文本和上文内容,请写出当前文本的摘要,要求:1)将上文内容作为当前文本的背景信息; 2)对当前文本进行压缩; 3) 输出内容使用中文:\n\n上文内容:{}\n\n{}\n\n当前文本:{}\n\n摘要:' templates_hist_en = 'Given the current text and the previous text, please provide a summary of the current text. The requirements are: 1) use the previous text as background information for the current text; 2) compress the current text; 3) output the summary in English.\n\nPrevious text: {}\n\n{}\n\nCurrent text: {}\n\nSummary:' lang2template = { LANG_EN: templates_hist_en, LANG_ZH: templates_hist_zh } templates_hist = choose_language_template(lang2template, user_str) if hist_str: input_text = templates_hist.format(hist_str, pre_sre, user_str) else: input_text = templates_no_hist.format(pre_sre, user_str) return input_text def check_key_file(key_file): if not os.path.exists(key_file): print(f'[{key_file}] not found! Please put your apikey in the txt file.') sys.exit(-1) def judge_need_history(user_instruction): templates_zh = '给定一段文本内容,判断对该文本进行摘要是否需要历史信息或者上文的信息,要求:(1) 回答是(A)或者否(B),(2) 如果回答是(A),请说明需要补充哪些信息:\n\n文本内容:{}\n\n答案:' templates_en = 'Given a piece of text, determine whether historical or previous information is needed for summarization. Requirements: (1) Answer with Yes(A) or No(B), (2) If the answer is Yes(A), please explain what information needs to be supplemented:\n\nText Content: {}\n\nAnswer:' lang2template = { LANG_EN: templates_en, LANG_ZH: templates_zh } tmp = choose_language_template(lang2template, user_instruction) input_text = tmp.format(user_instruction) is_need = bot.is_history_need(input_text) logger.info(f"\n--------------\n[is_need]: {'需要历史' if is_need else '不需要'}\n--------------\n") return is_need def get_first_prompt(user_text, model_name): # todo: model specific prompt design, use [model_name] templates_zh = '以下文本内容是长文档的一部分,请写出文本摘要:\n\n文本内容:{}\n\n摘要:' templates_en = 'This is a part of a lengthy document, please write a summary:\n\nDocument content: {}\n\nSummary:' lang2template = { LANG_EN: templates_en, LANG_ZH: templates_zh } tmp = choose_language_template(lang2template, user_text) concat_input = tmp.format(user_text) return concat_input def my_chatbot(user_input, history): history = history or [] user_input = user_input.strip() COMMAND_RETURN = '命令已成功执行!' if user_input in ['清空', 'reset']: # history.append((user_input, COMMAND_RETURN)) history = [] bot.clear_history() logger.info(f'[User Command]: {user_input} {COMMAND_RETURN}') return history, history elif user_input in ['导出', 'export']: # history.append((user_input, COMMAND_RETURN)) bot.export_history() logger.info(f'[User Command]: {user_input} {COMMAND_RETURN}') return history, history elif user_input in ['回退', '回滚', 'roll back']: history.pop() bot.roll_back() logger.info(f'[User Command]: {user_input} {COMMAND_RETURN}') return history, history elif user_input in ['final summary', '最终摘要']: final_summary = bot.get_final_summary() history.append((user_input, final_summary)) return history, history len_hist = len(bot.history) cur_turn_index = len_hist + 1 if len_hist == 0: concat_input = get_first_prompt(user_input, args.model_name) else: retrieve = None is_need = judge_need_history(user_input) # 并且 需要历史信息才给 if cur_turn_index > 2 and is_need: retrieve = bot.get_related_turn(user_input, args.similar_top_k) concat_input = get_concat_input(user_input, bot.get_turn_for_previous(), hist_str=retrieve) logger.info(f'\n--------------\n[第{cur_turn_index}轮] concat_input:\n\n{concat_input}\n--------------\n') try: rsp: str = bot.ask(concat_input) except Exception as e: logger.error(f'ERROR: \n\n{e}') rsp = '喵呜,您的请求好像掉进了喵喵的世界里了~' history.append((user_input, rsp)) return history, history summary = rsp.strip() try: embedding = bot.vectorize(summary) except Exception as e: logger.error(f'bot.vectorize ERROR: \n\n{e}') rsp = '摘要出错,喵呜,您的请求好像掉进了喵喵的世界里了~' history.append((user_input, rsp)) return history, history cur_turn = SummaryTurn(paragraph=user_input, summary=summary, embedding=embedding) bot.add_turn_history(cur_turn) history.append((user_input, f"[summary]: {summary}")) return history, history if __name__ == '__main__': parser = argparse.ArgumentParser() model_choices = ['text-davinci-003', 'gpt-3.5-turbo', 'bloom', 'alpaca', 'llama'] parser.add_argument("--apikey_file", type=str, default="./config/apikey.txt") parser.add_argument("--model_name", type=str, default="text-davinci-003", choices=model_choices) parser.add_argument("--target_file", type=str) parser.add_argument("--logfile", type=str, default="./logs/summary.log.txt") parser.add_argument("--history_file", type=str) parser.add_argument("--similar_top_k", type=int, default=4) args = parser.parse_args() check_key_file(args.apikey_file) log_path = args.logfile makedirs(log_path) # 配置日志记录 logger = logging.getLogger('summary_logger') logger.setLevel(logging.INFO) formatter = logging.Formatter('【%(asctime)s - %(levelname)s】 - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') file_handler = logging.FileHandler(log_path, encoding='utf-8') file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) set_chat_logger(logger) set_api_logger(logger) logger.info('\n\n\n') logger.info('#################################') logger.info('#################################') logger.info('#################################') logger.info('\n\n\n') logger.info(f"args: \n\n{args}\n") stamp = datetime2str() # print(stamp) if args.target_file: history_file = f'{args.target_file}' else: history_file = f'./history/{stamp}.json' embedding_file = history_file + '.emb.json' bot = SummaryBot(model_name=args.model_name) # if args.history_file: # history_file = args.history_file # embedding_file = history_file + '.emb.json' # bot.load_history(args.history_file) # makedirs(history_file) # makedirs(embedding_file) # if args.target_file: # with open(history_file, 'w') as file: pass # with open(embedding_file, 'w') as file: pass with gr.Blocks() as demo: gr.Markdown(f"<h1><center>Long Summary Chatbot ({args.model_name})</center></h1>") chatbot = gr.Chatbot() state = gr.State() txt = gr.Textbox(show_label=False, placeholder="Paste me with a paragraph and press enter.").style(container=False) txt.submit(my_chatbot, inputs=[txt, state], outputs=[chatbot, state]) demo.launch(share = True)
EXA-1-master
exa/libraries/SCM4LLMs/summary-ui-demo.py
"""MosaicML LLM Foundry package setup.""" import os import re from setuptools import setup _PACKAGE_NAME = 'llm-foundry' _PACKAGE_DIR = 'llmfoundry' _REPO_REAL_PATH = os.path.dirname(os.path.realpath(__file__)) _PACKAGE_REAL_PATH = os.path.join(_REPO_REAL_PATH, _PACKAGE_DIR) # Read the repo version # We can't use `.__version__` from the library since it's not installed yet with open(os.path.join(_PACKAGE_REAL_PATH, '__init__.py')) as f: content = f.read() # regex: '__version__', whitespace?, '=', whitespace, quote, version, quote # we put parens around the version so that it becomes elem 1 of the match expr = re.compile(r"""^__version__\W+=\W+['"]([0-9\.]*)['"]""", re.MULTILINE) repo_version = expr.findall(content)[0] # Use repo README for PyPi description with open('README.md', 'r', encoding='utf-8') as fh: long_description = fh.read() # Hide the content between <!-- SETUPTOOLS_LONG_DESCRIPTION_HIDE_BEGIN --> and # <!-- SETUPTOOLS_LONG_DESCRIPTION_HIDE_END --> tags in the README while True: start_tag = '<!-- SETUPTOOLS_LONG_DESCRIPTION_HIDE_BEGIN -->' end_tag = '<!-- SETUPTOOLS_LONG_DESCRIPTION_HIDE_END -->' start = long_description.find(start_tag) end = long_description.find(end_tag) if start == -1: assert end == -1, 'there should be a balanced number of start and ends' break else: assert end != -1, 'there should be a balanced number of start and ends' long_description = long_description[:start] + long_description[ end + len(end_tag):] classifiers = [ 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', ] install_requires = [ 'mosaicml[nlp,streaming,wandb]>=0.14.0,<0.15', 'torch==1.13.1', 'datasets==2.10.1', 'sentencepiece==0.1.97', 'einops==0.5.0', 'omegaconf>=2.2.3,<3', 'pynvml<12', 'slack-sdk<4', 'mosaicml-cli>=0.3,<1', 'onnx==1.13.1', 'onnxruntime==1.14.1', ] extra_deps = {} extra_deps['dev'] = [ 'pre-commit>=2.18.1,<3', 'pytest>=7.2.1,<8', 'pytest_codeblocks>=0.16.1,<0.17', 'pytest-cov>=4,<5', 'pyright==1.1.296', 'toml>=0.10.2,<0.11', 'packaging>=21,<23', ] extra_deps['gpu'] = [ 'flash-attn==v1.0.3.post0', 'triton==2.0.0.dev20221202', 'xentropy-cuda-lib@git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/xentropy', ] extra_deps['all'] = set(dep for deps in extra_deps.values() for dep in deps) setup( name=_PACKAGE_NAME, version=repo_version, author='MosaicML', author_email='[email protected]', description='LLM Foundry', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/mosaicml/llm-foundry/', package_dir={_PACKAGE_DIR: _PACKAGE_REAL_PATH}, classifiers=classifiers, install_requires=install_requires, extras_require=extra_deps, python_requires='>=3.7', )
EXA-1-master
exa/libraries/llm-foundry/setup.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 try: import torch from llmfoundry import optim, utils from llmfoundry.data import (ConcatTokensDataset, MixtureOfDenoisersCollator, NoConcatDataset, Seq2SeqFinetuningCollator, build_finetuning_dataloader, build_text_denoising_dataloader) from llmfoundry.models.hf import (ComposerHFCausalLM, ComposerHFPrefixLM, ComposerHFT5) from llmfoundry.models.layers.attention import ( MultiheadAttention, attn_bias_shape, build_alibi_bias, build_attn_bias, flash_attn_fn, scaled_multihead_dot_product_attention, triton_flash_attn_fn) from llmfoundry.models.layers.blocks import MPTMLP, MPTBlock from llmfoundry.models.model_registry import COMPOSER_MODEL_REGISTRY from llmfoundry.models.mpt import (ComposerMPTCausalLM, MPTConfig, MPTForCausalLM, MPTModel, MPTPreTrainedModel) except ImportError as e: try: is_cuda_available = torch.cuda.is_available() # type: ignore except: is_cuda_available = False extras = '.[gpu]' if is_cuda_available else '.' raise ImportError( f'Please make sure to pip install {extras} to get the requirements for the LLM example.' ) from e __all__ = [ 'build_text_denoising_dataloader', 'build_finetuning_dataloader', 'MixtureOfDenoisersCollator', 'Seq2SeqFinetuningCollator', 'MPTMLP', 'MPTBlock', 'MPTConfig', 'MPTPreTrainedModel', 'MPTModel', 'MPTForCausalLM', 'ComposerMPTCausalLM', 'ComposerHFCausalLM', 'ComposerHFPrefixLM', 'ComposerHFT5', 'COMPOSER_MODEL_REGISTRY', 'scaled_multihead_dot_product_attention', 'flash_attn_fn', 'triton_flash_attn_fn', 'MultiheadAttention', 'NoConcatDataset', 'ConcatTokensDataset', 'attn_bias_shape', 'build_attn_bias', 'build_alibi_bias', 'optim', 'utils', ] __version__ = '0.0.4'
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/__init__.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from typing import List from composer.core import Callback, State from composer.loggers import Logger __all__ = [ 'GlobalLRScaling', 'LayerFreezing', ] class GlobalLRScaling(Callback): """GlobalLRScaling. This callback can be applied upon resuming a model checkpoint. Upon fit_start it will multiply the base LR by `lr_scale` and set the WD to be. `wd_pct` * `lr`. Args: lr_scale (float): Multiplicative factor to scale LR by wd_pct (float): Percentage of LR to set weight decay to. """ def __init__(self, lr_scale: float, wd_pct: float = 0.0): self.lr_scale = lr_scale self.wd_pct = wd_pct def fit_start(self, state: State, logger: Logger): if hasattr(state, 'optimizer') and state.optimizers is None: raise Exception('No optimizers defined') for optimizer in state.optimizers: for group in optimizer.param_groups: group['lr'] *= self.lr_scale group['weight_decay'] = group['lr'] * self.wd_pct if 'initial_lr' in group: group['initial_lr'] *= self.lr_scale print( f"Set LR and WD to {group['lr']}, {group['weight_decay']}") for scheduler in state.schedulers: scheduler.base_lrs = [ self.lr_scale * lr for lr in scheduler.base_lrs ] class LayerFreezing(Callback): """LayerFreezing. This callback can be applied upon resuming a model checkpoint. Upon fit_start it freeze the layers specified in `layer_names`. If using activation checkpointing, please set the `activation_checkpointing_reentrant` flag in `fsdp_config` to false. Args: layer_names (float): Names of layers to freeze. """ def __init__(self, layer_names: List[str]): self.layer_names = set(layer_names) def fit_start(self, state: State, logger: Logger): model_layers = set(name for name, _ in state.model.named_parameters()) for layer in self.layer_names: if layer not in model_layers: raise Exception( f'Attempted to freeze layer not found in model: {layer}\nAvailable layers: {model_layers}' ) successful_freeze = False for name, p in state.model.named_parameters(): if p.requires_grad and name in self.layer_names: p.requires_grad = False print(f'Froze layer: {name}\nParam: {p}') successful_freeze = True if not successful_freeze: raise Exception( f"Tried to run LayerFreezing but didn't freeze any layers")
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/callbacks/resumption_callbacks.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import contextlib import os import tempfile from pathlib import Path import torch from composer.core import Callback, State from composer.core.state import fsdp_state_dict_type_context from composer.loggers import Logger from composer.loggers.remote_uploader_downloader import RemoteUploaderDownloader from composer.utils import (dist, format_name_with_dist_and_time, parse_uri, reproducibility) class MonolithicCheckpointSaver(Callback): """Save a monolithic checkpoint every N batches. Args: save_folder (str): Folder to save checkpoints to (can be a URI) filename (str): Filename to save checkpoints to. batch_interval (int): Number of batches between checkpoints. overwrite (bool): Whether to overwrite previous checkpoints. keep_optimizer(bool): Whether to save the optimizer state in the monolithic checkpoint. """ def __init__(self, save_folder: str, batch_interval: int, filename: str = 'ep{epoch}-ba{batch}.pt', overwrite: bool = False, keep_optimizers: bool = False): self.backend, self.bucket_name, self.save_dir_format_str = parse_uri( save_folder) self.filename_format_str = filename self.batch_interval = batch_interval self.upload_to_object_store = (self.backend != '') self.overwrite = overwrite self.keep_optimizers = keep_optimizers if self.upload_to_object_store: self.remote_ud = RemoteUploaderDownloader( bucket_uri=f'{self.backend}://{self.bucket_name}') else: self.remote_ud = None def init(self, state: State, logger: Logger): if self.upload_to_object_store and self.remote_ud is not None: self.remote_ud.init(state, logger) # updated_logger_destinations = [*logger.destinations, new_remote_ud] # logger.destinations = tuple(updated_logger_destinations) state.callbacks.append(self.remote_ud) def batch_checkpoint(self, state: State, logger: Logger): if state.timestamp.batch.value % self.batch_interval == 0: self._save_checkpoint(state, logger) def fit_end(self, state: State, logger: Logger): if state.timestamp.batch.value % self.batch_interval != 0: self._save_checkpoint(state, logger) def _save_checkpoint(self, state: State, logger: Logger): filename = format_name_with_dist_and_time(self.filename_format_str, state.run_name, state.timestamp) save_dir = format_name_with_dist_and_time(self.save_dir_format_str, state.run_name, state.timestamp) dir_context_mgr = tempfile.TemporaryDirectory( ) if self.upload_to_object_store else contextlib.nullcontext( enter_result=save_dir) with dir_context_mgr as temp_save_dir: save_path = str(Path(temp_save_dir) / Path(filename)) dirname = os.path.dirname(save_path) if dirname: os.makedirs(dirname, exist_ok=True) state_dict = { 'state': state.state_dict(), 'rng': reproducibility.get_rng_state() } if not self.keep_optimizers: state_dict['state'].pop('optimizers') with fsdp_state_dict_type_context(state.model, state_dict_type='full'): state_dict['state']['model'] = state.model.state_dict() if dist.get_global_rank() == 0: torch.save(state_dict, save_path) if self.upload_to_object_store and self.remote_ud is not None and dist.get_global_rank( ) == 0: remote_file_name = str(Path(save_dir) / Path(filename)) self.remote_ud.upload_file(state=state, remote_file_name=remote_file_name, file_path=Path(save_path), overwrite=self.overwrite)
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/callbacks/monolithic_ckpt_callback.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """Periodically log generations to wandb from a set of prompts.""" from typing import List, Union, cast import torch import wandb from composer.core import Callback, State from composer.loggers import Logger, WandBLogger from composer.utils import dist, ensure_tuple from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] class Generate(Callback): def __init__(self, prompts: List[str], batch_log_interval: int, **kwargs): """Periodically log generations to wandb from a set of prompts. In the main view for a run, there will be a table that will show the _last_ logged generations. To compare previous iterations of the generations, you need to 1. Click on the run 2. Click on "artifacts" in the menu on the left side of the screen 3. Click on one of the artifacts called "predictions" 4. Click on the "files" tab 5. Click on "predictions.table.json" 6. On the left hand side, there are different versions of the table produced throughout training. Select one of these. 7. Now, when you hover over other versions, there will be a "compare" button, which will allow you to compare the currently selected version to the version you add via compare. Args: prompts (List[str]): The list of prompts you would like to produce generations for batch_log_interval (int): The interval (in batches) at which this callback runs kwargs: All kwargs well be passed along to the call to generate. This is for things like `do_sample`, `top_p`, etc """ self.prompts = prompts self.batch_log_interval = batch_log_interval self.generate_kwargs = kwargs self.wandb_logger = None def init(self, state: State, logger: Logger): if dist.get_global_rank() == 0: for destination in ensure_tuple(logger.destinations): if isinstance(destination, WandBLogger): self.wandb_logger = destination def batch_checkpoint(self, state: State, logger: Logger): if (state.timestamp.batch.value % self.batch_log_interval) == 0: self.generate(state, logger) def generate(self, state: State, logger: Logger): model = state.model original_mode = model.training model.eval() tokenizer = cast(Tokenizer, state.model.tokenizer) device = state.device # stash the original original value of padding_side because generation requires left padding original_padding_side = tokenizer.padding_side tokenizer.padding_side = 'left' if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id tokenized_input = tokenizer(self.prompts, return_tensors='pt', padding=True) for k, v in tokenized_input.items(): tokenized_input[k] = device.tensor_to_device(v) # dummy forward call needed for FSDP to work consistently dummy_input = torch.tensor([[0]], dtype=torch.long) dummy_input = device.tensor_to_device(dummy_input) with torch.no_grad(): _ = model.model(input_ids=dummy_input) # type: ignore output_token_ids = model.model.generate( # type: ignore input_ids=tokenized_input['input_ids'], attention_mask=tokenized_input['attention_mask'], synced_gpus=True, **self.generate_kwargs, ) if dist.get_global_rank() == 0: if self.wandb_logger is not None: artifact = wandb.Artifact( 'generate_samples_' + str(wandb.run.id), # type: ignore type='predictions') rows = [] for i in range(len(self.prompts)): prompt = self.prompts[i] output_tokens = output_token_ids[i][ tokenized_input['input_ids'].shape[1]:] output_text = tokenizer.decode(output_tokens, skip_special_tokens=True) rows.append([prompt, output_text]) text_table = wandb.Table(data=rows, columns=['prompt', 'generation']) artifact.add(text_table, 'predictions') wandb.log_artifact(artifact) wandb.log({'generations': text_table}, step=state.timestamp.batch.value) tokenizer.padding_side = original_padding_side model.train(mode=original_mode)
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/callbacks/generate_callback.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 try: from llmfoundry.callbacks.fdiff_callback import FDiffMetrics from llmfoundry.callbacks.generate_callback import Generate from llmfoundry.callbacks.monolithic_ckpt_callback import \ MonolithicCheckpointSaver from llmfoundry.callbacks.resumption_callbacks import (GlobalLRScaling, LayerFreezing) from llmfoundry.callbacks.scheduled_gc_callback import \ ScheduledGarbageCollector except ImportError as e: raise ImportError( 'Please make sure to pip install . to get requirements for llm-foundry.' ) from e __all__ = [ 'FDiffMetrics', 'Generate', 'MonolithicCheckpointSaver', 'GlobalLRScaling', 'LayerFreezing', 'ScheduledGarbageCollector', ]
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/callbacks/__init__.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import gc import torch from composer.core import Callback, State from composer.loggers import Logger def gc_cuda(): """Gargage collect Torch (CUDA) memory.""" gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() class ScheduledGarbageCollector(Callback): """Disable automatic garbage collection and collect garbage at interval. Args: batch_interval (int): Number of batches between checkpoints call to gc.collect() eval_keep_disabled (bool): keep gc disabled during eval (default: False) """ def __init__( self, batch_interval: int, eval_keep_disabled: bool = False, ): self.batch_interval = batch_interval self.eval_keep_disabled = eval_keep_disabled self.gc_init_state = None def fit_start(self, state: State, logger: Logger): # cache if automatic garbage collection is enabled; reset at fit_end self.gc_init_state = gc.isenabled() # disable automatic garbage collection gc.disable() gc_cuda() def fit_end(self, state: State, logger: Logger): gc_cuda() # reset automatic garbage collection at fit_end if self.gc_init_state: gc.enable() else: gc.disable() def before_dataloader(self, state: State, logger: Logger): if state.timestamp.batch.value % self.batch_interval == 0: gc_cuda() def eval_start(self, state: State, logger: Logger): gc_cuda() if not self.eval_keep_disabled: gc.enable() def eval_end(self, state: State, logger: Logger): if not self.eval_keep_disabled: gc.disable() gc_cuda()
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/callbacks/scheduled_gc_callback.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """Monitor rate of change of loss.""" from __future__ import annotations import torch from composer.core import Callback, State from composer.loggers import Logger class FDiffMetrics(Callback): """Rate of chage of metrics. tracks and plots the rate of change of metrics effectively taking the numerical derivative of the metrics """ def __init__(self, diff_train_metrics=False, diff_eval_metrics=True): self.diff_train_metrics = diff_train_metrics self.diff_eval_metrics = diff_eval_metrics self.train_prev_loss = None self.train_prev_metric = {} self.eval_prev_metric = {} def batch_end(self, state: State, logger: Logger): if self.diff_train_metrics: if not isinstance(state.loss, torch.Tensor): raise NotImplementedError('Multiple losses not supported yet') loss = state.loss.item() if self.train_prev_loss: logger.log_metrics( {'loss/train/total_fdiff': loss - self.train_prev_loss}) self.train_prev_loss = loss for k in self.train_prev_metric.keys(): logger.log_metrics({ f'metrics/train/{k}_fdiff': state.train_metric_values[k] - self.train_prev_metric[k] }) for k in state.train_metric_values.keys(): value = state.train_metric_values[k] self.train_prev_metric[k] = value def eval_end(self, state: State, logger: Logger): if self.diff_eval_metrics: evaluator = state.dataloader_label metrics = list(state.eval_metrics[evaluator].keys()) # type: ignore for k in metrics: mkey = '/'.join(['metrics', evaluator, k]) # type: ignore if mkey in self.eval_prev_metric.keys(): logger.log_metrics({ f'{mkey}_fdiff': state.eval_metric_values[k] - self.eval_prev_metric[mkey] }) for k in metrics: mkey = '/'.join(['metrics', evaluator, k]) # type: ignore self.eval_prev_metric[mkey] = state.eval_metric_values[k]
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/callbacks/fdiff_callback.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import logging import math from typing import Callable, Optional, Tuple import torch from composer.utils import dist from torch.optim.optimizer import Optimizer log = logging.getLogger(__name__) class DecoupledLionW(Optimizer): metric_functions = { 'l2_norm/moment': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( optim_state['exp_avg']), 'l2_norm/param': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( param.data), 'l2_norm/update': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( step_tensor), 'l2_norm/grad': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( param.grad), 'cosine/update_grad': lambda param, optim_state, step_tensor: torch.nn.functional. cosine_similarity( param.grad.flatten(), step_tensor.flatten(), dim=0), 'cosine/moment_grad': lambda param, optim_state, step_tensor: torch.nn.functional. cosine_similarity( param.grad.flatten(), optim_state['exp_avg'].flatten(), dim=0), } def __init__( self, params, lr: float = 1e-4, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, ): if lr <= 0.: raise Exception(f'Invalid LR: {lr}. LR must be > 0') if not all([0. <= beta <= 1. for beta in betas]): raise Exception( f'Invalid beta values: {betas} All betas must be between 0 and 1.' ) if weight_decay >= 1e-3: log.warning( f'You are using a high value of `weight_decay={weight_decay}` for the `DecoupledLionW` optimizer. Are you sure you want to do this? ' f'Your model\'s weights will be multiplied by {1.0 - weight_decay} on every step!' ) defaults = {'lr': lr, 'betas': betas, 'weight_decay': weight_decay} super().__init__(params, defaults) for group in self.param_groups: group['initial_lr'] = group['lr'] @staticmethod def lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) -> None: # stepweight decay if wd != 0: decay_factor = (lr / initial_lr) if initial_lr else 1.0 p.data.mul_(1 - decay_factor * wd) # update is interpolation between gradient and momentum update = exp_avg.lerp(grad, 1 - beta1).sign_() p.add_(update, alpha=-lr) # momentum is interp b/w gradient and itself exp_avg.lerp_(grad, 1 - beta2) @torch.no_grad() def step(self, closure: Optional[Callable] = None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in filter(lambda p: p.grad is not None and p.requires_grad, group['params']): grad, lr, initial_lr, wd, beta1, beta2, state = p.grad, group[ 'lr'], group['initial_lr'], group[ 'weight_decay'], *group['betas'], self.state[p] # init state - exponential moving average of gradient values if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) exp_avg = state['exp_avg'] self.lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) return loss def dist_reduce_metrics(self, optimizer_metrics): for metric in optimizer_metrics: if metric.startswith('l2_norm'): reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') optimizer_metrics[metric] = math.sqrt(reduced) elif metric.startswith('cosine'): reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') _, vectors, layer = tuple(metric.split('/')) A, B = tuple(vectors.split('_')) A_reduced_norm = optimizer_metrics[f'l2_norm/{A}/{layer}'] B_reduced_norm = optimizer_metrics[f'l2_norm/{B}/{layer}'] optimizer_metrics[metric] = reduced / (A_reduced_norm * B_reduced_norm) else: reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') optimizer_metrics[metric] = reduced / dist.get_world_size() return optimizer_metrics def pre_reduce_metrics(self, optimizer_metrics): """Preprocess metrics to reduce across ranks correctly.""" # Sort L2 norms first so they are squared before other metrics, which depend on squared values metrics = optimizer_metrics.keys() metrics = sorted(metrics, key=lambda metric: 0 if 'l2_norm' in metric else 1) for metric in metrics: if metric.startswith('l2_norm'): # L2 norms need to be squared, before they are reduced via summation optimizer_metrics[metric] = optimizer_metrics[metric]**2 elif metric.startswith('cosine'): _, vectors, layer = tuple(metric.split('/')) A, B = tuple(vectors.split('_')) # L2 norm would've been squared in previous branch A_rank_subset_norm = math.sqrt( optimizer_metrics[f'l2_norm/{A}/{layer}']) B_rank_subset_norm = math.sqrt( optimizer_metrics[f'l2_norm/{B}/{layer}']) optimizer_metrics[ metric] *= A_rank_subset_norm * B_rank_subset_norm return optimizer_metrics def report_per_parameter_metrics(self, param: torch.Tensor, name: str, optimizer_metrics: dict): lr = self.param_groups[0]['lr'] weight_decay = self.param_groups[0]['weight_decay'] initial_lr = self.param_groups[0]['initial_lr'] beta1, _ = self.param_groups[0]['betas'] if param in self.state: param_optim_state = self.state[param] step_tensor = param_optim_state['exp_avg'].clone().lerp_( param.grad, 1 - beta1).sign_().mul_(lr) decay_factor = (lr / initial_lr) if initial_lr else 1.0 step_tensor.add_(param, alpha=-weight_decay * decay_factor) for metric in self.metric_functions: optimizer_metrics[f'{metric}/{name}'] = self.metric_functions[ metric](param, param_optim_state, step_tensor) return optimizer_metrics
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/optim/lion.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from llmfoundry.optim.adaptive_lion import DecoupledAdaLRLion, DecoupledClipLion from llmfoundry.optim.lion import DecoupledLionW __all__ = ['DecoupledLionW', 'DecoupledClipLion', 'DecoupledAdaLRLion']
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/optim/__init__.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import collections class OutlierDetector: """OutlierDetector. This class implements an algorithm to detect outliers in sequential numeric data (e.g. for gradient/moment norms in optimizers). It relies on a delayed moving average which is the moving average of observations from time step T-2*`delay_interval` to T-`delay_interval`. The motivation is that outliers typically occur in clusters that can potentially stretch for many observations, hence it's best to use a delayed moving average to detect outliers. It defines an outlier as any data point that is `threshold` times larger than the delayed moving average. The class assumes data is inserted sequentially at evenly spaced intervals of unit length 1. """ def __init__(self, threshold: float = 7.5, delay_interval: int = 500): self.intermediate_data_queue = collections.deque(maxlen=delay_interval) self.delayed_moving_average = collections.deque(maxlen=delay_interval) self.threshold = threshold def insert_observation(self, obs: float) -> bool: """Insert observation. Inserts obs into the data buffer and returns true if it is an "outlier", defined `threshold` times larger than the windowed moving average from [T-2*`delay_interval` : T-`delay_interval`]. This algorithm first moves recent data into an intermediate circular buffer, and then moves data in to the delayed moving average buffer once it is old enough to be evicted from the intermediate data. This is to ensure that we take a delayed moving average that doesn't include recent data. Args: obs (float): Numeric observation for the current timestep. Returns: bool: Indicator of whether the most recent observation was an outlier. """ if len(self.intermediate_data_queue # type: ignore ) >= self.intermediate_data_queue.maxlen: # move data from intermediate queue to slow moving average queue intermediate_obs = self.intermediate_data_queue.popleft() self.delayed_moving_average.append(intermediate_obs) self.intermediate_data_queue.append(obs) delayed_mva = self.get_delayed_mva() return delayed_mva is not None and obs > self.threshold * delayed_mva def get_delayed_mva(self): if len(self.delayed_moving_average) > 0: return sum(self.delayed_moving_average) / len( self.delayed_moving_average) else: return None
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/optim/outlier_detection.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import logging import math from typing import Callable, Optional, Tuple import torch from composer.utils import dist from torch.optim.optimizer import Optimizer from llmfoundry.optim.outlier_detection import OutlierDetector log = logging.getLogger(__name__) class DecoupledAdaLRLion(Optimizer): """DecoupledAdaLRLion. This class implements a variant of Lion which lowers the layerwise learning rate when the layer's moment becomes an outlier. A moment is an outlier if it is some multiple `outlier_threshold` times larger than the simple windowed moving average (MVA) of moment norms taken from steps T-1000 to T-500. If an outlier is detected, the LR is lowered by `lr_penalty` for `timeout` steps. If N outliers are detected within `timeout` steps, the LR is scaled down by min(`lr_penalty` ** N, `min_scale`). Args: params (Iterable[torch.Parameter]): Model parameters to optimize lr (float): Learning rate for updates betas (Tuple[float]): Momentum factors weight_decay (float): Weight decay outlier_threshold (float): Multiplicative factor determining what constitutes an "outlier" relative to the MVA of gradient norms. timeout (int): Number of steps to lower the learning for after seeing an outlier. lr_penalty (float): Multiplicative scale by which to lower the LR for each outlier. min_scale (float): Minimum allowed scaling of the LR . """ metric_functions = { 'l2_norm/moment': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( optim_state['exp_avg']), 'l2_norm/param': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( param.data), 'l2_norm/update': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( step_tensor), 'l2_norm/grad': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( param.grad), 'cosine/update_grad': lambda param, optim_state, step_tensor: torch.nn.functional. cosine_similarity( param.grad.flatten(), step_tensor.flatten(), dim=0), 'cosine/moment_grad': lambda param, optim_state, step_tensor: torch.nn.functional. cosine_similarity( param.grad.flatten(), optim_state['exp_avg'].flatten(), dim=0), } def __init__(self, params, lr: float = 1e-4, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, outlier_threshold: float = 10.0, timeout: int = 100, lr_penalty: float = .707, min_scale: float = 1e-4): if lr <= 0.: raise Exception(f'Invalid LR: {lr}. LR must be > 0') if not all([0. <= beta <= 1. for beta in betas]): raise Exception( f'Invalid beta values: {betas} All betas must be between 0 and 1.' ) if weight_decay >= 1e-3: log.warning( f'You are using a high value of `weight_decay={weight_decay}` for the `DecoupledLionW` optimizer. Are you sure you want to do this? ' f'Your model\'s weights will be multiplied by {1.0 - weight_decay} on every step!' ) defaults = {'lr': lr, 'betas': betas, 'weight_decay': weight_decay} super().__init__(params, defaults) for group in self.param_groups: group['initial_lr'] = group['lr'] self.outlier_threshold = outlier_threshold self.timeout = timeout self.lr_penalty = lr_penalty self.min_scale = min_scale @staticmethod def lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) -> None: # stepweight decay if wd != 0: decay_factor = (lr / initial_lr) if initial_lr else 1.0 p.data.mul_(1 - decay_factor * wd) # update is interpolation between gradient and momentum update = exp_avg.lerp(grad, 1 - beta1).sign_() p.add_(update, alpha=-lr) # momentum is interp b/w gradient and itself exp_avg.lerp_(grad, 1 - beta2) @staticmethod def adjust_lr(lr: float, lr_penalty: float, num_times: int, min_scale: float): """Adjusts LR. Multiplicatively scales down the LR by lr_penalty for each outlier that has occurred in the last `timeout` number of steps, capping the scaling to be no smaller than `min_scale`. Args: lr (float): Base learning rate lr_penalty (float): Scaling factor to multiply by for each outlier num_times (int): Number of outliers in the last `timeout` steps min_scale (float): Minimum scaling to apply to our LR. Returns: float: Scaled LR """ return lr * max(min_scale, lr_penalty**num_times) @torch.no_grad() def step(self, closure: Optional[Callable] = None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in filter(lambda p: p.grad is not None and p.requires_grad, group['params']): grad, lr, initial_lr, wd, beta1, beta2, state = p.grad, group[ 'lr'], group['initial_lr'], group[ 'weight_decay'], *group['betas'], self.state[p] # init state - exponential moving average of gradient values if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['moment_tracker'] = OutlierDetector( self.outlier_threshold) state['outlier_timestamp'] = [] state['step'] = 0 exp_avg = state['exp_avg'] # determine if the new moment resulting from this grad would be an outlier moment_norm = torch.linalg.vector_norm( exp_avg.lerp(grad, 1 - beta2))**2 if dist.get_world_size() > 1: dist.all_reduce(moment_norm, reduce_operation='SUM') moment_norm = math.sqrt(moment_norm) if state['moment_tracker'].insert_observation(moment_norm): state['outlier_timestamp'].append(state['step']) removed = [] for ts in state['outlier_timestamp']: if state['step'] - ts > self.timeout: removed.append(ts) for ts in removed: state['outlier_timestamp'].remove(ts) lr = self.adjust_lr(lr, self.lr_penalty, len(state['outlier_timestamp']), self.min_scale) self.lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) state['step'] += 1 return loss def dist_reduce_metrics(self, optimizer_metrics): for metric in optimizer_metrics: if metric.startswith('l2_norm'): reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') optimizer_metrics[metric] = math.sqrt(reduced) elif metric.startswith('cosine'): reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') _, vectors, layer = tuple(metric.split('/')) A, B = tuple(vectors.split('_')) A_reduced_norm = optimizer_metrics[f'l2_norm/{A}/{layer}'] B_reduced_norm = optimizer_metrics[f'l2_norm/{B}/{layer}'] optimizer_metrics[metric] = reduced / (A_reduced_norm * B_reduced_norm) elif metric.startswith('layerwise_lr'): continue else: reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') optimizer_metrics[metric] = reduced / dist.get_world_size() return optimizer_metrics def pre_reduce_metrics(self, optimizer_metrics): """Preprocess metrics to reduce across ranks correctly.""" # Sort L2 norms first so they are squared before other metrics, which depend on squared values metrics = optimizer_metrics.keys() metrics = sorted(metrics, key=lambda metric: 0 if 'l2_norm' in metric else 1) for metric in metrics: if metric.startswith('l2_norm'): # L2 norms need to be squared, before they are reduced via summation optimizer_metrics[metric] = optimizer_metrics[metric]**2 elif metric.startswith('cosine'): _, vectors, layer = tuple(metric.split('/')) A, B = tuple(vectors.split('_')) # L2 norm would've been squared in previous branch A_rank_subset_norm = math.sqrt( optimizer_metrics[f'l2_norm/{A}/{layer}']) B_rank_subset_norm = math.sqrt( optimizer_metrics[f'l2_norm/{B}/{layer}']) optimizer_metrics[ metric] *= A_rank_subset_norm * B_rank_subset_norm return optimizer_metrics def report_per_parameter_metrics(self, param: torch.Tensor, name: str, optimizer_metrics: dict): lr = self.param_groups[0]['lr'] weight_decay = self.param_groups[0]['weight_decay'] initial_lr = self.param_groups[0]['initial_lr'] beta1, _ = self.param_groups[0]['betas'] if param in self.state: param_optim_state = self.state[param] layerwise_lr = self.adjust_lr( lr, self.lr_penalty, len(param_optim_state['outlier_timestamp']), self.min_scale) step_tensor = param_optim_state['exp_avg'].clone().lerp_( param.grad, 1 - beta1).sign_().mul_(lr) decay_factor = (lr / initial_lr) if initial_lr else 1.0 step_tensor.add_(param, alpha=-weight_decay * decay_factor) for metric in self.metric_functions: optimizer_metrics[f'{metric}/{name}'] = self.metric_functions[ metric](param, param_optim_state, step_tensor) optimizer_metrics[f'layerwise_lr/{name}'] = torch.tensor( layerwise_lr) return optimizer_metrics class DecoupledClipLion(Optimizer): """DecoupledClipLION. This class implements a variant of Lion which clips layerwise gradients that are "outliers". A gradient is an outlier if it is some multiple k times larger than the simple windowed moving average (MVA) of gradient norms taken from steps T-1000 to T-500. If an outlier is detected, it is clipped. to no longer have norm k * MVA. Args: params (Iterable[torch.Parameter]): Model parameters to optimize lr (float): Learning rate for updates betas (Tuple[float]): Momentum factors weight_decay (float): Weight decay outlier_threshold (float): Multiplicative factor determining what constitutes an "outlier" relative to the MVA of gradient norms. """ metric_functions = { 'l2_norm/moment': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( optim_state['exp_avg']), 'l2_norm/param': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( param.data), 'l2_norm/update': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( step_tensor), 'l2_norm/grad': lambda param, optim_state, step_tensor: torch.linalg.vector_norm( param.grad), 'cosine/update_grad': lambda param, optim_state, step_tensor: torch.nn.functional. cosine_similarity( param.grad.flatten(), step_tensor.flatten(), dim=0), 'cosine/moment_grad': lambda param, optim_state, step_tensor: torch.nn.functional. cosine_similarity( param.grad.flatten(), optim_state['exp_avg'].flatten(), dim=0), } def __init__(self, params, lr: float = 1e-4, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, outlier_threshold=5.0): if lr <= 0.: raise Exception(f'Invalid LR: {lr}. LR must be > 0') if not all([0. <= beta <= 1. for beta in betas]): raise Exception( f'Invalid beta values: {betas} All betas must be between 0 and 1.' ) if weight_decay >= 1e-3: log.warning( f'You are using a high value of `weight_decay={weight_decay}` for the `DecoupledLionW` optimizer. Are you sure you want to do this? ' f'Your model\'s weights will be multiplied by {1.0 - weight_decay} on every step!' ) defaults = {'lr': lr, 'betas': betas, 'weight_decay': weight_decay} super().__init__(params, defaults) for group in self.param_groups: group['initial_lr'] = group['lr'] self.outlier_threshold = outlier_threshold @staticmethod def lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) -> None: # stepweight decay if wd != 0: decay_factor = (lr / initial_lr) if initial_lr else 1.0 p.data.mul_(1 - decay_factor * wd) # update is interpolation between gradient and momentum update = exp_avg.lerp(grad, 1 - beta1).sign_() p.add_(update, alpha=-lr) # momentum is interp b/w gradient and itself exp_avg.lerp_(grad, 1 - beta2) @torch.no_grad() def step(self, closure: Optional[Callable] = None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in filter(lambda p: p.grad is not None and p.requires_grad, group['params']): grad, lr, initial_lr, wd, beta1, beta2, state = p.grad, group[ 'lr'], group['initial_lr'], group[ 'weight_decay'], *group['betas'], self.state[p] # init state - exponential moving average of gradient values if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['grad_tracker'] = OutlierDetector( self.outlier_threshold) state['clipped_batches'] = torch.tensor(0.0) exp_avg = state['exp_avg'] # determine if the new moment resulting from this grad would be an outlier grad_norm = torch.linalg.vector_norm(grad)**2 if dist.get_world_size() > 1: dist.all_reduce(grad_norm, reduce_operation='SUM') grad_norm = math.sqrt(grad_norm) if state['grad_tracker'].insert_observation(grad_norm): state['clipped_batches'] += 1.0 clip_norm = state['grad_tracker'].get_slow_mva( ) * self.outlier_threshold grad = grad.div(grad_norm).mul_(clip_norm) self.lionw(p, grad, exp_avg, lr, initial_lr, wd, beta1, beta2) return loss def dist_reduce_metrics(self, optimizer_metrics): for metric in optimizer_metrics: if metric.startswith('l2_norm'): reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') optimizer_metrics[metric] = math.sqrt(reduced) elif metric.startswith('cosine'): reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') _, vectors, layer = tuple(metric.split('/')) A, B = tuple(vectors.split('_')) A_reduced_norm = optimizer_metrics[f'l2_norm/{A}/{layer}'] B_reduced_norm = optimizer_metrics[f'l2_norm/{B}/{layer}'] optimizer_metrics[metric] = reduced / (A_reduced_norm * B_reduced_norm) elif metric.startswith('clipped_batches'): continue else: reduced = optimizer_metrics[metric] if dist.get_world_size() > 1: dist.all_reduce(reduced, reduce_operation='SUM') optimizer_metrics[metric] = reduced / dist.get_world_size() return optimizer_metrics def pre_reduce_metrics(self, optimizer_metrics): """Preprocess metrics to reduce across ranks correctly.""" # Sort L2 norms first so they are squared before other metrics, which depend on squared values metrics = optimizer_metrics.keys() metrics = sorted(metrics, key=lambda metric: 0 if 'l2_norm' in metric else 1) for metric in metrics: if metric.startswith('l2_norm'): # L2 norms need to be squared, before they are reduced via summation optimizer_metrics[metric] = optimizer_metrics[metric]**2 elif metric.startswith('cosine'): _, vectors, layer = tuple(metric.split('/')) A, B = tuple(vectors.split('_')) # L2 norm would've been squared in previous branch A_rank_subset_norm = math.sqrt( optimizer_metrics[f'l2_norm/{A}/{layer}']) B_rank_subset_norm = math.sqrt( optimizer_metrics[f'l2_norm/{B}/{layer}']) optimizer_metrics[ metric] *= A_rank_subset_norm * B_rank_subset_norm return optimizer_metrics def report_per_parameter_metrics(self, param: torch.Tensor, name: str, optimizer_metrics: dict): lr = self.param_groups[0]['lr'] weight_decay = self.param_groups[0]['weight_decay'] initial_lr = self.param_groups[0]['initial_lr'] beta1, _ = self.param_groups[0]['betas'] if param in self.state: param_optim_state = self.state[param] step_tensor = param_optim_state['exp_avg'].clone().lerp_( param.grad, 1 - beta1).sign_().mul_(lr) decay_factor = (lr / initial_lr) if initial_lr else 1.0 step_tensor.add_(param, alpha=-weight_decay * decay_factor) for metric in self.metric_functions: optimizer_metrics[f'{metric}/{name}'] = self.metric_functions[ metric](param, param_optim_state, step_tensor) optimizer_metrics[f'clipped_batches/{name}'] = param_optim_state[ 'clipped_batches'] return optimizer_metrics
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/optim/adaptive_lion.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import os from typing import Union from composer import algorithms from composer.callbacks import (HealthChecker, LRMonitor, MemoryMonitor, OptimizerMonitor, RuntimeEstimator, SpeedMonitor) from composer.core import Evaluator from composer.datasets.in_context_learning_evaluation import \ get_icl_task_dataloader from composer.loggers import WandBLogger from composer.optim import DecoupledAdamW from composer.optim.scheduler import (ConstantWithWarmupScheduler, CosineAnnealingWithWarmupScheduler, LinearWithWarmupScheduler) from composer.utils import dist from omegaconf import DictConfig from omegaconf import OmegaConf as om from transformers import (AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast) from llmfoundry.callbacks import (FDiffMetrics, Generate, GlobalLRScaling, LayerFreezing, MonolithicCheckpointSaver, ScheduledGarbageCollector) from llmfoundry.optim import (DecoupledAdaLRLion, DecoupledClipLion, DecoupledLionW) Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] def build_callback(name, kwargs): if name == 'lr_monitor': return LRMonitor() elif name == 'memory_monitor': return MemoryMonitor() elif name == 'speed_monitor': return SpeedMonitor(window_size=kwargs.get('window_size', 1), gpu_flops_available=kwargs.get( 'gpu_flops_available', None)) elif name == 'fdiff': return FDiffMetrics(**kwargs) elif name == 'runtime_estimator': return RuntimeEstimator() elif name == 'optimizer_monitor': return OptimizerMonitor(log_optimizer_metrics=kwargs.get( 'log_optimizer_metrics', True),) elif name == 'health_checker': return HealthChecker(**kwargs) elif name == 'generate_callback': prompts = kwargs.pop('prompts') return Generate(prompts=list(prompts), **kwargs) elif name == 'global_lr_scaling': return GlobalLRScaling(**kwargs) elif name == 'layer_freezing': return LayerFreezing(**kwargs) elif name == 'mono_ckpt_saver': return MonolithicCheckpointSaver(**kwargs) elif name == 'scheduled_gc': return ScheduledGarbageCollector(**kwargs) else: raise ValueError(f'Not sure how to build callback: {name}') def build_logger(name, kwargs): if name == 'wandb': return WandBLogger(**kwargs) else: raise ValueError(f'Not sure how to build logger: {name}') def build_algorithm(name, kwargs): if name == 'gradient_clipping': return algorithms.GradientClipping(**kwargs) elif name == 'alibi': return algorithms.Alibi(**kwargs) elif name == 'fused_layernorm': return algorithms.FusedLayerNorm(**kwargs) elif name == 'gated_linear_units': return algorithms.GatedLinearUnits(**kwargs) elif name == 'low_precision_layernorm': return algorithms.LowPrecisionLayerNorm(**kwargs) else: raise ValueError(f'Not sure how to build algorithm: {name}') def build_optimizer(cfg, model): if cfg.name == 'decoupled_adamw': return DecoupledAdamW(model.parameters(), lr=cfg.lr, betas=cfg.betas, eps=cfg.eps, weight_decay=cfg.weight_decay) elif cfg.name == 'decoupled_lionw': return DecoupledLionW(model.parameters(), lr=cfg.lr, betas=cfg.betas, weight_decay=cfg.weight_decay) elif cfg.name == 'clip_lion': return DecoupledClipLion(model.parameters(), lr=cfg.lr, betas=cfg.betas, weight_decay=cfg.weight_decay, outlier_threshold=cfg.outlier_threshold) elif cfg.name == 'adalr_lion': return DecoupledAdaLRLion(model.parameters(), lr=cfg.lr, betas=cfg.betas, weight_decay=cfg.weight_decay, outlier_threshold=cfg.outlier_threshold, timeout=cfg.timeout, lr_penalty=cfg.lr_penalty, min_scale=cfg.min_scale) else: raise ValueError(f'Not sure how to build optimizer: {cfg.name}') def build_scheduler(cfg): if cfg.name == 'constant_with_warmup': return ConstantWithWarmupScheduler(t_warmup=cfg.t_warmup) elif cfg.name == 'cosine_with_warmup': return CosineAnnealingWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f) elif cfg.name == 'linear_decay_with_warmup': return LinearWithWarmupScheduler(t_warmup=cfg.t_warmup, alpha_f=cfg.alpha_f) else: raise ValueError(f'Not sure how to build scheduler: {cfg.name}') def build_tokenizer(om_tokenizer_config: DictConfig,) -> Tokenizer: os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = '1' os.environ['TOKENIZERS_PARALLELISM'] = 'false' resolved_om_tokenizer_config = om.to_container(om_tokenizer_config, resolve=True) tokenizer_kwargs = resolved_om_tokenizer_config.get( # type: ignore 'kwargs', {}) tokenizer_name = resolved_om_tokenizer_config['name'] # type: ignore tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **tokenizer_kwargs) # HuggingFace does not respect the model_max_length kwarg, and overrides it with # min(kwargs['model_max_length'], original_config['model_max_length']), so we # explicitly set it here tokenizer.model_max_length = tokenizer_kwargs.get( 'model_max_length', int(1e30), ) return tokenizer def build_icl_evaluators(icl_tasks, tokenizer, default_max_seq_len, default_batch_size, destination_dir=os.getcwd()): evaluators = [] logger_keys = [] if isinstance(icl_tasks, str): print(f'Extracting ICL task config from path: {icl_tasks}') with open(icl_tasks, 'r') as icl_f: icl_task_cfg = om.load(icl_f) icl_tasks = icl_task_cfg.icl_tasks def _validate_cfg(icl_cfg): assert 'label' in icl_cfg assert 'dataset_uri' in icl_cfg and icl_cfg.dataset_uri is not None assert 'icl_task_type' in icl_cfg assert 'num_fewshot' in icl_cfg if 'metric_names' not in icl_cfg: if icl_cfg.icl_task_type == 'language_modeling': icl_cfg.metric_names = ['InContextLearningLMAccuracy'] elif icl_cfg.icl_task_type == 'multiple_choice': icl_cfg.metric_names = [ 'InContextLearningMultipleChoiceAccuracy' ] elif icl_cfg.icl_task_type == 'schema': icl_cfg.metric_names = [ 'InContextLearningMultipleChoiceAccuracy' ] elif icl_cfg.icl_task_type == 'question_answering': icl_cfg.metric_names = ['InContextLearningQAAccuracy'] else: raise ValueError( f'No metric_names defined, unable to build default metrics for icl_task_type={icl_cfg.icl_task_type}.' ) if 'prompt_string' not in icl_cfg: icl_cfg.prompt_string = '' if 'example_delimiter' not in icl_cfg: icl_cfg.example_delimiter = '\n' if 'continuation_delimiter' not in icl_cfg: icl_cfg.continuation_delimiter = ' ' if 'max_seq_len' not in icl_cfg: icl_cfg.max_seq_len = default_max_seq_len if 'batch_size' not in icl_cfg: icl_cfg.batch_size = default_batch_size for icl_cfg in icl_tasks: _validate_cfg(icl_cfg) for num_fewshot in list(icl_cfg.num_fewshot): if tokenizer.pad_token_id is None: # Current workaround to support GPT2 tokenizer with `pad_token_id = None` pad_tok_id = tokenizer.eos_token_id else: pad_tok_id = tokenizer.pad_token_id label = f'{icl_cfg.label}/{num_fewshot}-shot' metric_names = list(icl_cfg.metric_names) # TODO: fix Composer bug when copying local paths and destination exists destination_path = f'{destination_dir}/{icl_cfg.label}-{num_fewshot}.jsonl' with dist.run_local_rank_zero_first(): if os.path.exists(destination_path): os.remove(destination_path) dataloaders = get_icl_task_dataloader( icl_cfg.icl_task_type, icl_cfg.dataset_uri, tokenizer, batch_size=icl_cfg.batch_size, max_seq_len=icl_cfg.max_seq_len, pad_tok_id=pad_tok_id, num_fewshot=num_fewshot, prompt_string=icl_cfg.prompt_string, example_delimiter=icl_cfg.example_delimiter, continuation_delimiter=icl_cfg.continuation_delimiter, destination_path=destination_path, has_categories=icl_cfg.get('has_categories', False), ) if hasattr( icl_cfg, 'has_categories') and icl_cfg.has_categories and isinstance( dataloaders, dict): for category in dataloaders.keys(): logger_keys.extend([ f'metrics/{label}/{category}/{m}' for m in metric_names ]) evaluators.append( Evaluator(label=f'{label}/{category}', dataloader=dataloaders[category], metric_names=metric_names),) else: logger_keys.extend( [f'metrics/{label}/{m}' for m in metric_names]) evaluators.append( Evaluator(label=label, dataloader=dataloaders, metric_names=metric_names),) return evaluators, logger_keys
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/utils/builders.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 try: from llmfoundry.utils.builders import (build_algorithm, build_callback, build_icl_evaluators, build_logger, build_optimizer, build_scheduler, build_tokenizer) from llmfoundry.utils.config_utils import (calculate_batch_size_info, log_config, update_batch_size_info) except ImportError as e: raise ImportError( 'Please make sure to pip install . to get requirements for llm-foundry.' ) from e __all__ = [ 'build_callback', 'build_logger', 'build_algorithm', 'build_optimizer', 'build_scheduler', 'build_icl_evaluators', 'build_tokenizer', 'calculate_batch_size_info', 'update_batch_size_info', 'log_config', ]
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/utils/__init__.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import math from typing import Union from composer.utils import dist from omegaconf import DictConfig from omegaconf import OmegaConf as om def calculate_batch_size_info(global_batch_size: int, device_microbatch_size: Union[int, str]): if global_batch_size % dist.get_world_size() != 0: raise ValueError( f'Global batch size {global_batch_size} is not divisible by {dist.get_world_size()} ' 'as a result, the batch size would be truncated, please adjust `global_batch_size` ' f'to be divisible by world size, {dist.get_world_size()}.') device_batch_size = global_batch_size // dist.get_world_size() if device_microbatch_size == 'auto': device_grad_accum = 'auto' elif isinstance(device_microbatch_size, int): if device_microbatch_size > device_batch_size: print( f'WARNING: device_microbatch_size > device_batch_size, ' f'will be reduced from {device_microbatch_size} -> {device_batch_size}.' ) device_microbatch_size = device_batch_size device_grad_accum = math.ceil(device_batch_size / device_microbatch_size) else: raise ValueError(f'Not sure how to parse {device_microbatch_size=}') return device_batch_size, device_microbatch_size, device_grad_accum # Coming soon: this conversion math will be done inside Composer Trainer def update_batch_size_info(cfg: DictConfig): device_train_batch_size, device_train_microbatch_size, device_train_grad_accum = calculate_batch_size_info( cfg.global_train_batch_size, cfg.device_train_microbatch_size) cfg.n_gpus = dist.get_world_size() cfg.device_train_batch_size = device_train_batch_size cfg.device_train_microbatch_size = device_train_microbatch_size cfg.device_train_grad_accum = device_train_grad_accum # Safely set `device_eval_batch_size` if not provided by user if 'device_eval_batch_size' not in cfg: if cfg.device_train_microbatch_size == 'auto': cfg.device_eval_batch_size = 1 # TODO debug auto eval microbatching else: cfg.device_eval_batch_size = cfg.device_train_microbatch_size return cfg def log_config(cfg: DictConfig): print(om.to_yaml(cfg)) if 'wandb' in cfg.get('loggers', {}): try: import wandb except ImportError as e: raise e if wandb.run: wandb.config.update(om.to_container(cfg, resolve=True))
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/utils/config_utils.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from llmfoundry.models.hf import (ComposerHFCausalLM, ComposerHFPrefixLM, ComposerHFT5) from llmfoundry.models.mpt import (ComposerMPTCausalLM, MPTConfig, MPTForCausalLM, MPTModel, MPTPreTrainedModel) __all__ = [ 'ComposerHFCausalLM', 'ComposerHFPrefixLM', 'ComposerHFT5', 'MPTConfig', 'MPTPreTrainedModel', 'MPTModel', 'MPTForCausalLM', 'ComposerMPTCausalLM', ]
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/__init__.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from llmfoundry.models.hf import (ComposerHFCausalLM, ComposerHFPrefixLM, ComposerHFT5) from llmfoundry.models.mpt import ComposerMPTCausalLM COMPOSER_MODEL_REGISTRY = { 'mpt_causal_lm': ComposerMPTCausalLM, 'hf_causal_lm': ComposerHFCausalLM, 'hf_prefix_lm': ComposerHFPrefixLM, 'hf_t5': ComposerHFT5, }
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/model_registry.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """Attention layers.""" import math import warnings from typing import Optional import torch import torch.nn as nn from einops import rearrange from torch import nn from llmfoundry.models.layers.norm import LPLayerNorm def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool): if original_is_causal and num_query_tokens != num_key_tokens: if num_query_tokens != 1: raise NotImplementedError( 'MPT does not support query and key with different number of tokens, unless number of query tokens is 1.' ) else: return False return original_is_causal def scaled_multihead_dot_product_attention( query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads) # includes key.t() v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads) min_val = torch.finfo(q.dtype).min b, _, s_q, d = q.shape s_k = k.size(-1) if softmax_scale is None: softmax_scale = 1 / math.sqrt(d) attn_weight = q.matmul(k) * softmax_scale if attn_bias is not None: if (attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): raise RuntimeError( f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.' ) attn_weight = attn_weight + attn_bias if key_padding_mask is not None: if attn_bias is not None: warnings.warn( 'Propogating key_padding_mask to the attention module ' +\ 'and applying it within the attention module can cause ' +\ 'unneccessary computation/memory usage. Consider integrating ' +\ 'into attn_bias once and passing that to each attention ' +\ 'module instead.' ) attn_weight = attn_weight.masked_fill( ~key_padding_mask.view((b, 1, 1, s_k)), min_val) if is_causal: s = max(s_q, s_k) causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) causal_mask = causal_mask.tril() causal_mask = causal_mask.to(torch.bool) causal_mask = ~causal_mask causal_mask = causal_mask[-s_q:, -s_k:] attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) attn_weight = torch.softmax(attn_weight, dim=-1) if dropout_p: attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) out = attn_weight.matmul(v) out = rearrange(out, 'b h s d -> b s (h d)') if needs_weights: return out, attn_weight return out, None def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): for tensor in tensors: if tensor.dtype not in valid_dtypes: raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.') if not tensor.is_cuda: raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).') def flash_attn_fn( query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from flash_attn import bert_padding, flash_attn_interface # type: ignore # yapf: disable # isort: skip except: raise RuntimeError('Please install flash-attn==1.0.3.post0') check_valid_inputs(query, key, value) if attn_bias is not None: raise NotImplementedError(f'attn_bias not implemented for flash attn.') batch_size, seqlen = query.shape[:2] if key_padding_mask is None: key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) query_padding_mask = key_padding_mask[:, -query.size(1):] query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input( query, query_padding_mask) query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input( key, key_padding_mask) key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask) value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) if multiquery: # Expanding a tensor does not allocate new memory, but only creates a new # view on the existing tensor where a dimension of size one is expanded # to a larger size by setting the stride to 0. # - pytorch docs # # hopefully the kernels can utilize this and we're jot just wasting BW here key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) dropout_p = dropout_p if training else 0.0 reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) output_unpad = flash_attn_interface.flash_attn_unpadded_func( query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) output = bert_padding.pad_input( rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) return output, None def triton_flash_attn_fn( query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False, ): try: from flash_attn import flash_attn_triton # type: ignore except: raise RuntimeError( 'Please install flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202' ) check_valid_inputs(query, key, value) if dropout_p: raise NotImplementedError( f'Dropout not implemented for attn_impl: triton.') if needs_weights: raise NotImplementedError( f'attn_impl: triton cannot return attn weights.') if key_padding_mask is not None: warnings.warn( 'Propagating key_padding_mask to the attention module ' +\ 'and applying it within the attention module can cause ' +\ 'unnecessary computation/memory usage. Consider integrating ' +\ 'into attn_bias once and passing that to each attention ' +\ 'module instead.' ) b_size, s_k = key_padding_mask.shape[:2] if attn_bias is None: attn_bias = query.new_zeros(b_size, 1, 1, s_k) attn_bias = attn_bias.masked_fill( ~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min) query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) if multiquery: # Expanding a tensor does not allocate new memory, but only creates a new # view on the existing tensor where a dimension of size one is expanded # to a larger size by setting the stride to 0. # - pytorch docs # # hopefully the kernels can utilize this and we're jot just wasting BW here key = key.expand(*key.shape[:2], n_heads, key.size(-1)) value = value.expand(*value.shape[:2], n_heads, value.size(-1)) reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) attn_output = flash_attn_triton.flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale) output = attn_output.view(*attn_output.shape[:2], -1) return output, None class MultiheadAttention(nn.Module): """Multi-head self attention. Using torch or triton attention implemetation enables user to also use additive bias. """ def __init__( self, d_model: int, n_heads: int, attn_impl: str = 'triton', clip_qkv: Optional[float] = None, qk_ln: bool = False, softmax_scale: Optional[float] = None, attn_pdrop: float = 0.0, low_precision_layernorm: bool = False, verbose: int = 0, device: Optional[str] = None, ): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.d_model = d_model self.n_heads = n_heads self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) self.attn_dropout_p = attn_pdrop self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device) # for param init fn; enables shape based init of fused layers fuse_splits = (d_model, 2 * d_model) self.Wqkv._fused = (0, fuse_splits) # type: ignore if self.qk_ln: layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm self.q_ln = layernorm_class(self.d_model, device=device) self.k_ln = layernorm_class(self.d_model, device=device) if self.attn_impl == 'flash': self.attn_fn = flash_attn_fn elif self.attn_impl == 'triton': self.attn_fn = triton_flash_attn_fn if verbose: warnings.warn( 'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ 'it uses more memory. When training larger models this can trigger ' +\ 'alloc retries which hurts performance. If encountered, we recommend ' +\ 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' ) elif self.attn_impl == 'torch': self.attn_fn = scaled_multihead_dot_product_attention if torch.cuda.is_available() and verbose: warnings.warn( 'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ 'we recommend using `attn_impl: triton`.' ) else: raise ValueError(f'{attn_impl=} is an invalid setting.') self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) self.out_proj._is_residual = True # type: ignore def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False): qkv = self.Wqkv(x) if self.clip_qkv: qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) query, key, value = qkv.chunk(3, dim=2) key_padding_mask = attention_mask if self.qk_ln: # Applying layernorm to qk dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):] context, attn_weights = self.attn_fn( query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, ) return self.out_proj(context), attn_weights, past_key_value class MultiQueryAttention(nn.Module): """Multi-Query self attention. Using torch or triton attention implemetation enables user to also use additive bias. """ def __init__( self, d_model: int, n_heads: int, attn_impl: str = 'triton', clip_qkv: Optional[float] = None, qk_ln: bool = False, softmax_scale: Optional[float] = None, attn_pdrop: float = 0.0, low_precision_layernorm: bool = False, verbose: int = 0, device: Optional[str] = None, ): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.d_model = d_model self.n_heads = n_heads self.head_dim = d_model // n_heads self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.head_dim) self.attn_dropout_p = attn_pdrop # NOTE: if we ever want to make attn TensorParallel, I'm pretty sure we'll # want to split Wqkv into Wq and Wkv where Wq can be TensorParallel but # Wkv shouldn't be TensorParallel # - vchiley self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device) # for param init fn; enables shape based init of fused layers fuse_splits = (d_model, d_model + self.head_dim) self.Wqkv._fused = (0, fuse_splits) # type: ignore if self.qk_ln: layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm self.q_ln = layernorm_class(d_model, device=device) self.k_ln = layernorm_class(self.head_dim, device=device) if self.attn_impl == 'flash': self.attn_fn = flash_attn_fn elif self.attn_impl == 'triton': self.attn_fn = triton_flash_attn_fn if verbose: warnings.warn( 'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\ 'it uses more memory. When training larger models this can trigger ' +\ 'alloc retries which hurts performance. If encountered, we recommend ' +\ 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.' ) elif self.attn_impl == 'torch': self.attn_fn = scaled_multihead_dot_product_attention if torch.cuda.is_available() and verbose: warnings.warn( 'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\ '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\ 'we recommend using `attn_impl: triton`.' ) else: raise ValueError(f'{attn_impl=} is an invalid setting.') self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) self.out_proj._is_residual = True # type: ignore def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False): qkv = self.Wqkv(x) if self.clip_qkv: qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) query, key, value = qkv.split( [self.d_model, self.head_dim, self.head_dim], dim=2) key_padding_mask = attention_mask if self.qk_ln: # Applying layernorm to qk dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):] context, attn_weights = self.attn_fn( query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True, ) return self.out_proj(context), attn_weights, past_key_value def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id): if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: if (prefix_lm or not causal) or use_sequence_id: return (1, n_heads, seq_len, seq_len) return (1, n_heads, 1, seq_len) elif prefix_lm or use_sequence_id: return (1, 1, seq_len, seq_len) return None else: raise ValueError(f'{attn_impl=} is an invalid setting.') def build_attn_bias( attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8, ): if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: # in place add alibi to attn bias device, dtype = attn_bias.device, attn_bias.dtype attn_bias = attn_bias.add( build_alibi_bias( n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype, )) return attn_bias else: raise ValueError(f'{attn_impl=} is an invalid setting.') def gen_slopes(n_heads, alibi_bias_max=8, device=None): _n_heads = 2**math.ceil(math.log2(n_heads)) m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) m = m.mul(alibi_bias_max / _n_heads) slopes = (1. / torch.pow(2, m)) if _n_heads != n_heads: # if n_heads is not a power of two, # Huggingface and FasterTransformer calculate slopes normally, # then return this strided concatenation of slopes slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] return slopes.view(1, n_heads, 1, 1) def build_alibi_bias( n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None, ): alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) if full: # generate 1 x Heads x SeqLen x SeqLen alibi bias mask # otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size) alibi_bias = alibi_bias - torch.arange( 1 - seq_len, 1, dtype=torch.int32, device=device).view( 1, 1, seq_len, 1) alibi_bias = alibi_bias.abs().mul(-1) slopes = gen_slopes(n_heads, alibi_bias_max, device=device) alibi_bias = alibi_bias * slopes return alibi_bias.to(dtype=dtype) ATTN_CLASS_REGISTRY = { 'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, }
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/layers/attention.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import torch def _cast_if_autocast_enabled(tensor): if torch.is_autocast_enabled(): if tensor.device.type == 'cuda': dtype = torch.get_autocast_gpu_dtype() elif tensor.device.type == 'cpu': dtype = torch.get_autocast_cpu_dtype() else: raise NotImplementedError() return tensor.to(dtype=dtype) return tensor class LPLayerNorm(torch.nn.LayerNorm): def __init__( self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None, ): super().__init__( normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype, ) def forward(self, x): module_device = x.device downcast_x = _cast_if_autocast_enabled(x) downcast_weight = _cast_if_autocast_enabled( self.weight) if self.weight is not None else self.weight downcast_bias = _cast_if_autocast_enabled( self.bias) if self.bias is not None else self.bias with torch.autocast(enabled=False, device_type=module_device.type): return torch.nn.functional.layer_norm( downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps, ) def rms_norm(x, weight=None, eps=1e-5): output = x / torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) if weight is not None: return output * weight return output class RMSNorm(torch.nn.Module): def __init__( self, normalized_shape, eps=1e-5, weight=True, dtype=None, device=None, ): super().__init__() self.eps = eps if weight: self.weight = torch.nn.Parameter( torch.ones(normalized_shape, dtype=dtype, device=device)) else: self.register_parameter('weight', None) def forward(self, x): return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) class LPRMSNorm(RMSNorm): def __init__( self, normalized_shape, eps=1e-5, weight=True, dtype=None, device=None, ): super().__init__( normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device, ) def forward(self, x): downcast_x = _cast_if_autocast_enabled(x) downcast_weight = _cast_if_autocast_enabled( self.weight) if self.weight is not None else self.weight with torch.autocast(enabled=False, device_type=x.device.type): return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) NORM_CLASS_REGISTRY = { 'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm, }
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/layers/norm.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from llmfoundry.models.layers.attention import ( ATTN_CLASS_REGISTRY, MultiheadAttention, MultiQueryAttention, attn_bias_shape, build_alibi_bias, build_attn_bias, flash_attn_fn, scaled_multihead_dot_product_attention, triton_flash_attn_fn) from llmfoundry.models.layers.blocks import MPTMLP, MPTBlock from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY, LPLayerNorm __all__ = [ 'scaled_multihead_dot_product_attention', 'flash_attn_fn', 'triton_flash_attn_fn', 'MultiheadAttention', 'MultiQueryAttention', 'attn_bias_shape', 'build_attn_bias', 'build_alibi_bias', 'ATTN_CLASS_REGISTRY', 'MPTMLP', 'MPTBlock', 'NORM_CLASS_REGISTRY', 'LPLayerNorm', ]
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/layers/__init__.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """GPT Blocks used for the GPT Model.""" from typing import Dict, Optional, Tuple import torch import torch.nn as nn from llmfoundry.models.layers.attention import ATTN_CLASS_REGISTRY from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY class MPTMLP(nn.Module): def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str] = None): super().__init__() self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device) self.act = nn.GELU(approximate='none') self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device) self.down_proj._is_residual = True # type: ignore def forward(self, x): return self.down_proj(self.act(self.up_proj(x))) class MPTBlock(nn.Module): def __init__( self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict = { 'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8, }, resid_pdrop: float = 0.0, norm_type: str = 'low_precision_layernorm', verbose: int = 0, device: Optional[str] = None, **kwargs): del kwargs # unused, just to capture any extra args from the config super().__init__() norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']] self.norm_1 = norm_class(d_model, device=device) self.attn = attn_class( attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, verbose=verbose, device=device, ) self.norm_2 = norm_class(d_model, device=device) self.ffn = MPTMLP( d_model=d_model, expansion_ratio=expansion_ratio, device=device, ) self.resid_attn_dropout = nn.Dropout(resid_pdrop) self.resid_ffn_dropout = nn.Dropout(resid_pdrop) def forward( self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]] = None, attn_bias: Optional[torch.Tensor] = None, attention_mask: Optional[torch.ByteTensor] = None, is_causal: bool = True, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: a = self.norm_1(x) b, _, past_key_value = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal) x = x + self.resid_attn_dropout(b) m = self.norm_2(x) n = self.ffn(m) x = x + self.resid_ffn_dropout(n) return x, past_key_value
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/layers/blocks.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 from llmfoundry.models.mpt.configuration_mpt import MPTConfig from llmfoundry.models.mpt.modeling_mpt import (ComposerMPTCausalLM, MPTForCausalLM, MPTModel, MPTPreTrainedModel) __all__ = [ 'MPTPreTrainedModel', 'MPTModel', 'MPTForCausalLM', 'ComposerMPTCausalLM', 'MPTConfig', ]
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/mpt/__init__.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """A simple, flexible implementation of a GPT model. Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from composer.metrics import (InContextLearningLMAccuracy, InContextLearningLMExpectedCalibrationError, InContextLearningMCExpectedCalibrationError, InContextLearningMultipleChoiceAccuracy, InContextLearningQAAccuracy) from composer.metrics.nlp import LanguageCrossEntropy, LanguagePerplexity from composer.models import HuggingFaceModel from omegaconf import DictConfig from omegaconf import OmegaConf as om from transformers import (PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast) from transformers.modeling_outputs import (BaseModelOutputWithPast, CausalLMOutputWithPast) from llmfoundry.models.layers.attention import attn_bias_shape, build_attn_bias from llmfoundry.models.layers.blocks import MPTBlock from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY from llmfoundry.models.mpt.configuration_mpt import MPTConfig # NOTE: We import all the utils directly just so that HuggingFace will detect # all the files that it needs to copy into its modules folder. Otherwise it misses # the ones imported in the submodule from llmfoundry.models.utils.adapt_tokenizer import ( AutoTokenizerForMOD, adapt_tokenizer_for_denoising) from llmfoundry.models.utils.hf_prefixlm_converter import ( add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm) from llmfoundry.models.utils.meta_init_context import init_empty_weights from llmfoundry.models.utils.param_init_fns import ( # type: ignore MODEL_INIT_REGISTRY, generic_param_init_fn_) Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] class MPTPreTrainedModel(PreTrainedModel): config_class = MPTConfig base_model_prefix = 'model' class MPTModel(MPTPreTrainedModel): def __init__(self, config: MPTConfig): config._validate_config() super().__init__(config) self.attn_impl = config.attn_config['attn_impl'] self.prefix_lm = config.attn_config['prefix_lm'] self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] self.alibi = config.attn_config['alibi'] self.alibi_bias_max = config.attn_config['alibi_bias_max'] if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) raise NotImplementedError( f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).' ) norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] # CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414) # both report this helping with stabilizing training self.embedding_fraction = config.embedding_fraction self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device) if not self.alibi: self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) self.emb_drop = nn.Dropout(config.emb_pdrop) self.blocks = nn.ModuleList([ MPTBlock( device=config.init_device, **config.to_dict(), ) for _ in range(config.n_layers) ]) self.norm_f = norm_class(config.d_model, device=config.init_device) if config.init_device != 'meta': print( f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.' ) self.apply(self.param_init_fn) self.is_causal = not self.prefix_lm # define attn mask self._attn_bias_initialized = False self.attn_bias = None self.attn_bias_shape = attn_bias_shape( self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) if config.no_bias: for module in self.modules(): if hasattr(module, 'bias') and isinstance( module.bias, nn.Parameter): if config.verbose: warnings.warn( f'Removing bias ({module.bias}) from {module}.') module.register_parameter('bias', None) # Print verbose info if config.verbose and config.verbose > 2: print(self) if 'verbose' not in self.config.init_config: self.config.init_config['verbose'] = self.config.verbose if self.config.init_config['verbose'] > 1: init_fn_name = self.config.init_config['name'] warnings.warn(f'Using {init_fn_name} initialization.') def get_input_embeddings(self): return self.wte def set_input_embeddings(self, value): self.wte = value @torch.no_grad() def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None): if not self._attn_bias_initialized: if self.attn_bias_shape: self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) self.attn_bias = build_attn_bias( self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max, ) self._attn_bias_initialized = True # flash does not support prefix_lm and will incorporate any # attention_mask inside the attention module if self.attn_impl == 'flash': return self.attn_bias, attention_mask if self.attn_bias is not None: # .to(*args, **kwargs) is a no-op if tensor is already on # specified device or of specificed dtype self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) attn_bias = self.attn_bias # If using torch or triton, we incorporate the prefix_mask (if appropriate) if self.prefix_lm: assert isinstance(attn_bias, torch.Tensor) # pyright assert isinstance(prefix_mask, torch.Tensor) # pyright attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) # If using torch or triton, we incorporate sequence_id (if appropriate) if self.attn_uses_sequence_id and sequence_id is not None: assert isinstance(attn_bias, torch.Tensor) # pyright attn_bias = self._apply_sequence_id(attn_bias, sequence_id) # If using torch or triton, we incorporate attention_mask. This will output # None in place of attention_mask since it will not be further needed in the # attention modules. if attention_mask is not None: s_k = attention_mask.shape[-1] if attn_bias is None: attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) else: attn_bias = attn_bias[:, :, :, -s_k:] if prefix_mask is not None and (attention_mask.shape != prefix_mask.shape): raise ValueError( f'attention_mask shape={attention_mask.shape} ' +\ f'and prefix_mask shape={prefix_mask.shape} are not equal.' ) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill( ~attention_mask.view(-1, 1, 1, s_k), min_val) return attn_bias, None def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): s_k, s_q = attn_bias.shape[-2:] if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len): raise ValueError( 'attn_bias does not match the expected shape. ' +\ f'The last two dimensions should both be {self.config.max_length} ' +\ f'but are {s_k} and {s_q}.' ) seq_len = prefix_mask.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}' ) # select seq_len subset of attn mask attn_bias = attn_bias[..., :seq_len, :seq_len] # Mix the causal max and the bidirectional mask to get the full # allowable attention (i.e. full = not accounting for padding yet) causal = torch.tril( torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len) prefix = prefix_mask.view(-1, 1, 1, seq_len) cannot_attend = ~torch.logical_or(causal, prefix.bool()) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor): seq_len = sequence_id.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}' ) # select seq_len subset of attn mask attn_bias = attn_bias[..., :seq_len, :seq_len] # Restrict attention to tokens that share the same value # in sequence_id cannot_attend = torch.logical_not( torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None): return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if attention_mask is not None: attention_mask = attention_mask.bool() if prefix_mask is not None: prefix_mask = prefix_mask.bool() # These args are passed in by keyword in huggingface's generate function # https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206 # but have not yet been fully implemented in MPTModel if not return_dict: raise NotImplementedError( 'return_dict False is not implemented yet for MPT') if output_attentions: raise NotImplementedError( 'output_attentions is not implemented yet for MPT') if attention_mask is not None and attention_mask[:, 0].sum( ) != attention_mask.shape[0] and self.training: raise NotImplementedError( 'MPT does not support training with left padding.') if self.prefix_lm and prefix_mask is None: raise ValueError( 'prefix_mask is a required argument when MPT is configured with prefix_lm=True.' ) if self.training: if self.attn_uses_sequence_id and sequence_id is None: raise ValueError( 'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' +\ 'and the model is in train mode.' ) elif (self.attn_uses_sequence_id is False) and (sequence_id is not None): warnings.warn( 'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' +\ 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.' ) S = input_ids.size(1) assert ( S <= self.config.max_seq_len ), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' tok_emb = self.wte(input_ids) # type: ignore if self.alibi: x = tok_emb else: past_position = 0 if past_key_values is not None: if len(past_key_values) != self.config.n_layers: raise ValueError( f'past_key_values must provide a past_key_value for each attention ' +\ f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).' ) # get the key tensor whose spec should be (batch, seq, dim), and # collect the `seq`, so that the position embedding is shifted past_position = past_key_values[0][0].size(1) if S + past_position > self.config.max_seq_len: raise ValueError( f'Cannot forward input with past sequence length {past_position} and current sequence length ' f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.' ) pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0) if attention_mask is not None: # adjust the position indices to account for padding tokens pos = torch.clamp(pos - torch.cumsum( (~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) pos_emb = self.wpe(pos) # type: ignore x = tok_emb + pos_emb if self.embedding_fraction == 1: x = self.emb_drop(x) # type: ignore else: # this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414 x_shrunk = (x * self.embedding_fraction) + ( x.detach() * (1 - self.embedding_fraction)) assert isinstance(self.emb_drop, nn.Module) # pyright x = self.emb_drop(x_shrunk) attn_bias, attention_mask = self._attn_bias( device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id) # initialize the past key values cache if it should be used if use_cache and past_key_values is None: past_key_values = [() for _ in range(self.config.n_layers) ] # type: ignore all_hidden_states = () if output_hidden_states else None for b_idx, block in enumerate(self.blocks): # type: ignore if output_hidden_states: assert all_hidden_states is not None # pyright all_hidden_states = all_hidden_states + (x,) past_key_value = past_key_values[ b_idx] if past_key_values is not None else None x, past_key_value = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal) if past_key_values is not None: past_key_values[b_idx] = past_key_value x = self.norm_f(x) # type: ignore return BaseModelOutputWithPast( last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, ) # Param Initialization, needed for device='meta' fast initialization def param_init_fn(self, module): init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) # FSDP Wrap function def fsdp_wrap_fn(self, module): return isinstance(module, MPTBlock) # Activation Checkpointing def activation_checkpointing_fn(self, module): return isinstance(module, MPTBlock) class MPTForCausalLM(MPTPreTrainedModel): def __init__(self, config: MPTConfig): super().__init__(config) if not config.tie_word_embeddings: raise ValueError( 'MPTForCausalLM only supports tied word embeddings') self.transformer = MPTModel(config) # enables scaling output logits; similar to a softmax "temperature" # PaLM paper uses scale 1/sqrt(config.d_model) self.logit_scale = None if config.logit_scale is not None: logit_scale = config.logit_scale if isinstance(logit_scale, str): if logit_scale == 'inv_sqrt_d_model': logit_scale = 1 / math.sqrt(config.d_model) else: raise ValueError( f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." ) self.logit_scale = logit_scale def get_input_embeddings(self): return self.transformer.wte def set_input_embeddings(self, value): self.transformer.wte = value def get_output_embeddings(self): return self.transformer.wte def set_output_embeddings(self, new_embeddings): self.transformer.wte = new_embeddings def set_decoder(self, decoder): self.transformer = decoder def get_decoder(self): return self.transformer def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None, ): return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight) if self.logit_scale is not None: if self.logit_scale == 0: warnings.warn( f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.' ) logits *= self.logit_scale loss = None if labels is not None: labels = torch.roll(labels, shifts=-1) labels[:, -1] = -100 loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, ) # Param Initialization, needed for device='meta' fast initialization def param_init_fn(self, module): init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) # FSDP Wrap function def fsdp_wrap_fn(self, module): return isinstance(module, MPTBlock) # Activation Checkpointing def activation_checkpointing_fn(self, module): return isinstance(module, MPTBlock) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): if inputs_embeds is not None: raise NotImplementedError( 'inputs_embeds is not implemented for MPT yet') attention_mask = kwargs['attention_mask'].bool() if attention_mask[:, -1].sum() != attention_mask.shape[0]: raise NotImplementedError( 'MPT does not support generation with right padding.') if self.transformer.attn_uses_sequence_id and self.training: sequence_id = torch.zeros_like(input_ids[:1]) else: sequence_id = None if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if self.transformer.prefix_lm: # Leverage a convenience of sequential generation! prefix_mask = torch.ones_like(attention_mask) # This requires that we're using the cache if kwargs.get('use_cache') == False: raise NotImplementedError( 'MPT with prefix_lm=True does not support use_cache=False.') else: prefix_mask = None return { 'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), } @staticmethod def _reorder_cache(past_key_values, beam_idx): """Used by HuggingFace generate when using beam search with kv-caching. See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 for an example in transformers. """ reordered_past = [] for layer_past in past_key_values: reordered_past += [ tuple( past_state.index_select(0, beam_idx) for past_state in layer_past) ] return reordered_past class ComposerMPTCausalLM(HuggingFaceModel): def __init__( self, om_model_config: DictConfig, tokenizer: Optional[Tokenizer] = None, ): resolved_om_model_config = om.to_container(om_model_config, resolve=True) hf_config = MPTConfig.from_dict(resolved_om_model_config) model = MPTForCausalLM(hf_config) train_metrics = [ LanguageCrossEntropy(hf_config.vocab_size), LanguagePerplexity(hf_config.vocab_size) ] eval_metrics = [ LanguageCrossEntropy(hf_config.vocab_size), LanguagePerplexity(hf_config.vocab_size), InContextLearningLMAccuracy(), InContextLearningMultipleChoiceAccuracy(), InContextLearningQAAccuracy(), InContextLearningLMExpectedCalibrationError(), InContextLearningMCExpectedCalibrationError() ] super().__init__( model=model, tokenizer=tokenizer, use_logits=True, metrics=train_metrics, eval_metrics=eval_metrics, shift_labels=True, allow_embedding_resizing=True, ) self.n_active_params = sum(p.numel() for p in self.parameters()) loss_fn_config = om_model_config.get('loss_fn', 'fused_crossentropy') if loss_fn_config == 'fused_crossentropy': try: from flash_attn.losses.cross_entropy import CrossEntropyLoss as FusedCrossEntropyLoss # type: ignore # isort: skip if hf_config.verbose > 1: warnings.warn('Using Fused Cross Entropy Loss.') self.loss_fn = FusedCrossEntropyLoss(ignore_index=-100) except: raise ValueError( 'Fused Cross Entropy is not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]`, or (2) set your config model.loss_fn=torch_crossentropy.' ) elif loss_fn_config == 'torch_crossentropy': self.loss_fn = nn.CrossEntropyLoss(ignore_index=-100) else: raise ValueError( f'Specified loss_fn={self.loss_fn} not recognized. `loss_fn` must be one of [`fused_crossentropy`, `torch_crossentropy`].' ) def get_targets(self, batch): targets = torch.roll(batch['labels'], shifts=-1) targets[:, -1] = -100 return targets def forward(self, batch): if self.model.transformer.prefix_lm: add_bidirectional_mask_if_missing(batch) # Note: prefix_mask is only used if model.prefix_lm is True return self.model( input_ids=batch['input_ids'], attention_mask=batch.get('attention_mask', None), prefix_mask=batch.get('bidirectional_mask', None), sequence_id=batch.get('sequence_id', None), ) def loss(self, outputs, batch): targets = self.get_targets(batch) return self.loss_fn(outputs.logits.view(-1, outputs.logits.size(-1)), targets.view(-1)) def flops_per_batch(self, batch): # Note: this computation does not take into account padding, and assumes # that the dataset has been constructed without padding. Additionally, we # assume the backward pass is approximately 2x the forward pass bs, msl = batch['input_ids'].shape[0:2] params_flops_per_token = 2 * self.n_active_params params_flops_per_seq = params_flops_per_token * msl attn_flops_per_seq = self.model.config.n_layers * 2 * 2 * ( self.model.config.d_model * (msl**2)) return (params_flops_per_seq + attn_flops_per_seq) * 3 * bs
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/mpt/modeling_mpt.py
# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 """A HuggingFace-style model configuration.""" from typing import Dict, Optional, Union from transformers import PretrainedConfig attn_config_defaults: Dict = { 'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8, } init_config_defaults: Dict = { 'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', } class MPTConfig(PretrainedConfig): model_type = 'mpt' def __init__( self, d_model: int = 2048, n_heads: int = 16, n_layers: int = 24, expansion_ratio: int = 4, max_seq_len: int = 2048, vocab_size: int = 50368, resid_pdrop: float = 0.0, emb_pdrop: float = 0.0, learned_pos_emb: bool = True, attn_config: Dict = attn_config_defaults, init_device: str = 'cpu', logit_scale: Optional[Union[float, str]] = None, no_bias: bool = False, verbose: int = 0, embedding_fraction: float = 1.0, norm_type: str = 'low_precision_layernorm', use_cache: bool = False, init_config: Dict = init_config_defaults, **kwargs, ): """The MPT configuration class. Args: d_model (int): The size of the embedding dimension of the model. n_heads (int): The number of attention heads. n_layers (int): The number of layers in the model. expansion_ratio (int): The ratio of the up/down scale in the MLP. max_seq_len (int): The maximum sequence length of the model. vocab_size (int): The size of the vocabulary. resid_pdrop (float): The dropout probability applied to the attention output before combining with residual. emb_pdrop (float): The dropout probability for the embedding layer. learned_pos_emb (bool): Whether to use learned positional embeddings attn_config (Dict): A dictionary used to configure the model's attention module: attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention attn_pdrop (float): The dropout probability for the attention layers. attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'. qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer. clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to this value. softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None, use the default scale of ``1/sqrt(d_keys)``. prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another bi-directionally. Tokens outside the prefix use causal attention. attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id. When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates which sub-sequence each token belongs to. Defaults to ``False`` meaning any provided `sequence_id` will be ignored. alibi (bool): Whether to use the alibi bias instead of position embeddings. alibi_bias_max (int): The maximum value of the alibi bias. init_device (str): The device to use for parameter initialization. logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value. no_bias (bool): Whether to use bias in all layers. verbose (int): The verbosity level. 0 is silent. embedding_fraction (float): The fraction to scale the gradients of the embedding layer by. norm_type (str): choose type of norm to use multiquery_attention (bool): Whether to use multiquery attention implementation. use_cache (bool): Whether or not the model should return the last key/values attentions init_config (Dict): A dictionary used to configure the model initialization: init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_', 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch. init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True. emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer. emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``. init_std (float): The standard deviation of the normal distribution used to initialize the model, if using the baseline_ parameter initialization scheme. init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes. fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes. init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes. --- See llmfoundry.models.utils.param_init_fns.py for info on other param init config options """ self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers self.expansion_ratio = expansion_ratio self.max_seq_len = max_seq_len self.vocab_size = vocab_size self.resid_pdrop = resid_pdrop self.emb_pdrop = emb_pdrop self.learned_pos_emb = learned_pos_emb self.attn_config = attn_config self.init_device = init_device self.logit_scale = logit_scale self.no_bias = no_bias self.verbose = verbose self.embedding_fraction = embedding_fraction self.norm_type = norm_type self.use_cache = use_cache self.init_config = init_config if 'name' in kwargs: del kwargs['name'] if 'loss_fn' in kwargs: del kwargs['loss_fn'] super().__init__(**kwargs) self._validate_config() def _set_config_defaults(self, config, config_defaults): # set config defaults for k, v in config_defaults.items(): if k not in config: config[k] = v return config def _validate_config(self): # set config defaults self.attn_config = self._set_config_defaults( self.attn_config, attn_config_defaults, ) self.init_config = self._set_config_defaults( self.init_config, init_config_defaults, ) if self.d_model % self.n_heads != 0: raise ValueError('d_model must be divisible by n_heads') if any( prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop]): raise ValueError( "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1" ) if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']: raise ValueError( f"Unknown attn_impl={self.attn_config['attn_impl']}") if self.attn_config['prefix_lm'] and self.attn_config[ 'attn_impl'] not in ['torch', 'triton']: raise NotImplementedError( 'prefix_lm only implemented with torch and triton attention.') if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in [ 'torch', 'triton' ]: raise NotImplementedError( 'alibi only implemented with torch and triton attention.') if self.attn_config['attn_uses_sequence_id'] and self.attn_config[ 'attn_impl'] not in ['torch', 'triton']: raise NotImplementedError( 'attn_uses_sequence_id only implemented with torch and triton attention.' ) if self.embedding_fraction > 1 or self.embedding_fraction <= 0: raise ValueError( 'model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!' ) if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model': raise ValueError( f"{self.logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." ) if self.init_config.get('name', None) is None: raise ValueError(f"{self.init_config=} 'name' needs to be set.") if not self.learned_pos_emb and not self.attn_config['alibi']: raise ValueError( f'Positional information must be provided to the model using either learned_pos_emb or alibi.' )
EXA-1-master
exa/libraries/llm-foundry/llmfoundry/models/mpt/configuration_mpt.py