python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import subprocess import matplotlib import os matplotlib.use('Agg') import librosa import librosa.filters import numpy as np from scipy import signal from scipy.io import wavfile def save_wav(wav, path, sr, norm=False): if norm: wav = wav / np.abs(wav).max() wav *= 32767 # proposed by @dsmiller wavfile.write(path, sr, wav.astype(np.int16)) def get_hop_size(hparams): hop_size = hparams['hop_size'] if hop_size is None: assert hparams['frame_shift_ms'] is not None hop_size = int(hparams['frame_shift_ms'] / 1000 * hparams['audio_sample_rate']) return hop_size ########################################################################################### def _stft(y, hparams): return librosa.stft(y=y, n_fft=hparams['fft_size'], hop_length=get_hop_size(hparams), win_length=hparams['win_size'], pad_mode='constant') def _istft(y, hparams): return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams['win_size']) def librosa_pad_lr(x, fsize, fshift, pad_sides=1): '''compute right padding (final frame) or both sides padding (first and final frames) ''' assert pad_sides in (1, 2) # return int(fsize // 2) pad = (x.shape[0] // fshift + 1) * fshift - x.shape[0] if pad_sides == 1: return 0, pad else: return pad // 2, pad // 2 + pad % 2 # Conversions def amp_to_db(x): return 20 * np.log10(np.maximum(1e-5, x)) def normalize(S, hparams): return (S - hparams['min_level_db']) / -hparams['min_level_db'] def denormalize(D, hparams): return (D * -hparams['min_level_db']) + hparams['min_level_db'] def rnnoise(filename, out_fn=None, verbose=False, out_sample_rate=22050): assert os.path.exists('./rnnoise/examples/rnnoise_demo'), INSTALL_STR if out_fn is None: out_fn = f"{filename[:-4]}.denoised.wav" out_48k_fn = f"{out_fn}.48000.wav" tmp0_fn = f"{out_fn}.0.wav" tmp1_fn = f"{out_fn}.1.wav" tmp2_fn = f"{out_fn}.2.raw" tmp3_fn = f"{out_fn}.3.raw" if verbose: print("Pre-processing audio...") # wav to pcm raw subprocess.check_call( f'sox "{filename}" -G -r48000 "{tmp0_fn}"', shell=True, stdin=subprocess.PIPE) # convert to raw subprocess.check_call( f'sox -v 0.95 "{tmp0_fn}" "{tmp1_fn}"', shell=True, stdin=subprocess.PIPE) # convert to raw subprocess.check_call( f'ffmpeg -y -i "{tmp1_fn}" -loglevel quiet -f s16le -ac 1 -ar 48000 "{tmp2_fn}"', shell=True, stdin=subprocess.PIPE) # convert to raw if verbose: print("Applying rnnoise algorithm to audio...") # rnnoise subprocess.check_call( f'./rnnoise/examples/rnnoise_demo "{tmp2_fn}" "{tmp3_fn}"', shell=True) if verbose: print("Post-processing audio...") # pcm raw to wav if filename == out_fn: subprocess.check_call(f'rm -f "{out_fn}"', shell=True) subprocess.check_call( f'sox -t raw -r 48000 -b 16 -e signed-integer -c 1 "{tmp3_fn}" "{out_48k_fn}"', shell=True) subprocess.check_call(f'sox "{out_48k_fn}" -G -r{out_sample_rate} "{out_fn}"', shell=True) subprocess.check_call(f'rm -f "{tmp0_fn}" "{tmp1_fn}" "{tmp2_fn}" "{tmp3_fn}" "{out_48k_fn}"', shell=True) if verbose: print("Audio-filtering completed!")
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/audio.py
from numpy import array, zeros, full, argmin, inf, ndim from scipy.spatial.distance import cdist from math import isinf def dtw(x, y, dist, warp=1, w=inf, s=1.0): """ Computes Dynamic Time Warping (DTW) of two sequences. :param array x: N1*M array :param array y: N2*M array :param func dist: distance used as cost measure :param int warp: how many shifts are computed. :param int w: window size limiting the maximal distance between indices of matched entries |i,j|. :param float s: weight applied on off-diagonal moves of the path. As s gets larger, the warping path is increasingly biased towards the diagonal Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path. """ assert len(x) assert len(y) assert isinf(w) or (w >= abs(len(x) - len(y))) assert s > 0 r, c = len(x), len(y) if not isinf(w): D0 = full((r + 1, c + 1), inf) for i in range(1, r + 1): D0[i, max(1, i - w):min(c + 1, i + w + 1)] = 0 D0[0, 0] = 0 else: D0 = zeros((r + 1, c + 1)) D0[0, 1:] = inf D0[1:, 0] = inf D1 = D0[1:, 1:] # view for i in range(r): for j in range(c): if (isinf(w) or (max(0, i - w) <= j <= min(c, i + w))): D1[i, j] = dist(x[i], y[j]) C = D1.copy() jrange = range(c) for i in range(r): if not isinf(w): jrange = range(max(0, i - w), min(c, i + w + 1)) for j in jrange: min_list = [D0[i, j]] for k in range(1, warp + 1): i_k = min(i + k, r) j_k = min(j + k, c) min_list += [D0[i_k, j] * s, D0[i, j_k] * s] D1[i, j] += min(min_list) if len(x) == 1: path = zeros(len(y)), range(len(y)) elif len(y) == 1: path = range(len(x)), zeros(len(x)) else: path = _traceback(D0) return D1[-1, -1], C, D1, path def accelerated_dtw(x, y, dist, warp=1): """ Computes Dynamic Time Warping (DTW) of two sequences in a faster way. Instead of iterating through each element and calculating each distance, this uses the cdist function from scipy (https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html) :param array x: N1*M array :param array y: N2*M array :param string or func dist: distance parameter for cdist. When string is given, cdist uses optimized functions for the distance metrics. If a string is passed, the distance function can be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'. :param int warp: how many shifts are computed. Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path. """ assert len(x) assert len(y) if ndim(x) == 1: x = x.reshape(-1, 1) if ndim(y) == 1: y = y.reshape(-1, 1) r, c = len(x), len(y) D0 = zeros((r + 1, c + 1)) D0[0, 1:] = inf D0[1:, 0] = inf D1 = D0[1:, 1:] D0[1:, 1:] = cdist(x, y, dist) C = D1.copy() for i in range(r): for j in range(c): min_list = [D0[i, j]] for k in range(1, warp + 1): min_list += [D0[min(i + k, r), j], D0[i, min(j + k, c)]] D1[i, j] += min(min_list) if len(x) == 1: path = zeros(len(y)), range(len(y)) elif len(y) == 1: path = range(len(x)), zeros(len(x)) else: path = _traceback(D0) return D1[-1, -1], C, D1, path def _traceback(D): i, j = array(D.shape) - 2 p, q = [i], [j] while (i > 0) or (j > 0): tb = argmin((D[i, j], D[i, j + 1], D[i + 1, j])) if tb == 0: i -= 1 j -= 1 elif tb == 1: i -= 1 else: # (tb == 2): j -= 1 p.insert(0, i) q.insert(0, j) return array(p), array(q) if __name__ == '__main__': w = inf s = 1.0 if 1: # 1-D numeric from sklearn.metrics.pairwise import manhattan_distances import numpy as np x = [0, 0, 1, 1, 2, 4, 2, 1, 2, 0] x = np.array(x).reshape([-1,1,1]) y = [1, 1, 1, 2, 2, 2, 2, 3, 2, 0] y = np.array(y).reshape([-1,1,1]) dist_fun = manhattan_distances w = 1 # s = 1.2 elif 0: # 2-D numeric from sklearn.metrics.pairwise import euclidean_distances x = [[0, 0], [0, 1], [1, 1], [1, 2], [2, 2], [4, 3], [2, 3], [1, 1], [2, 2], [0, 1]] y = [[1, 0], [1, 1], [1, 1], [2, 1], [4, 3], [4, 3], [2, 3], [3, 1], [1, 2], [1, 0]] dist_fun = euclidean_distances else: # 1-D list of strings from nltk.metrics.distance import edit_distance # x = ['we', 'shelled', 'clams', 'for', 'the', 'chowder'] # y = ['class', 'too'] x = ['i', 'soon', 'found', 'myself', 'muttering', 'to', 'the', 'walls'] y = ['see', 'drown', 'himself'] # x = 'we talked about the situation'.split() # y = 'we talked about the situation'.split() dist_fun = edit_distance dist, cost, acc, path = dtw(x, y, dist_fun, w=w, s=s) # Vizualize from matplotlib import pyplot as plt plt.imshow(cost.T, origin='lower', cmap=plt.cm.Reds, interpolation='nearest') plt.plot(path[0], path[1], '-o') # relation plt.xticks(range(len(x)), x) plt.yticks(range(len(y)), y) plt.xlabel('x') plt.ylabel('y') plt.axis('tight') if isinf(w): plt.title('Minimum distance: {}, slope weight: {}'.format(dist, s)) else: plt.title('Minimum distance: {}, window widht: {}, slope weight: {}'.format(dist, w, s)) plt.show()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/dtw.py
import os import traceback from multiprocessing import Queue, Process def chunked_worker(worker_id, map_func, args, results_queue=None, init_ctx_func=None): ctx = init_ctx_func(worker_id) if init_ctx_func is not None else None for job_idx, arg in args: try: if ctx is not None: res = map_func(*arg, ctx=ctx) else: res = map_func(*arg) results_queue.put((job_idx, res)) except: traceback.print_exc() results_queue.put((job_idx, None)) def chunked_multiprocess_run(map_func, args, num_workers=None, ordered=True, init_ctx_func=None, q_max_size=1000): args = zip(range(len(args)), args) args = list(args) n_jobs = len(args) if num_workers is None: num_workers = int(os.getenv('N_PROC', os.cpu_count())) results_queues = [] if ordered: for i in range(num_workers): results_queues.append(Queue(maxsize=q_max_size // num_workers)) else: results_queue = Queue(maxsize=q_max_size) for i in range(num_workers): results_queues.append(results_queue) workers = [] for i in range(num_workers): args_worker = args[i::num_workers] p = Process(target=chunked_worker, args=( i, map_func, args_worker, results_queues[i], init_ctx_func), daemon=True) workers.append(p) p.start() for n_finished in range(n_jobs): results_queue = results_queues[n_finished % num_workers] job_idx, res = results_queue.get() assert job_idx == n_finished or not ordered, (job_idx, n_finished) yield res for w in workers: w.join() w.close() def multiprocess_run_tqdm(map_func, args, num_workers=None, ordered=True, init_ctx_func=None, multithread=False, desc=None): for i, res in tqdm(enumerate( multiprocess_run(map_func, args, num_workers, ordered, init_ctx_func, multithread)), total=len(args), desc=desc): yield i, res
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/multiprocess_utils.py
import os from data_gen.tts.base_preprocess import BasePreprocessor import glob class LibrittsPreAlign(BasePreprocessor): def meta_data(self): wav_fns = sorted(glob.glob(f'{self.raw_data_dir}/*/*/*.wav')) for wav_fn in wav_fns: item_name = os.path.basename(wav_fn)[:-4] txt_fn = f'{wav_fn[:-4]}.normalized.txt' with open(txt_fn, 'r') as f: txt = f.readlines() f.close() spk = item_name.split("_")[0] # Example: # # 'item_name': '103_1241_000000_000001' # 'wav_fn': 'LibriTTS/train-clean-100/103/1241/103_1241_000000_000001.wav' # 'txt': 'matthew Cuthbert is surprised' # 'spk_name': '103' yield {'item_name': item_name, 'wav_fn': wav_fn, 'txt': txt[0], 'spk_name': spk} if __name__ == "__main__": LibrittsPreAlign().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/configs/tts/libritts/pre_align.py
import os from data_gen.tts.base_preprocess import BasePreprocessor import glob import re class EmoPreAlign(BasePreprocessor): def meta_data(self): spks = ['0012', '0011', '0013', '0014', '0015', '0016', '0017', '0018', '0019', '0020'] pattern = re.compile('[\t\n ]+') for spk in spks: for line in open(f"{self.raw_data_dir}/{spk}/{spk}.txt", 'r'): # 打开文件 line = re.sub(pattern, ' ', line) if line == ' ': continue split_ = line.split(' ') txt = ' '.join(split_[1: -2]) item_name = split_[0] emotion = split_[-2] wav_fn = f'{self.raw_data_dir}/{spk}/{emotion}/{item_name}.wav' yield item_name, wav_fn, txt, spk, emotion if __name__ == "__main__": EmoPreAlign().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/configs/tts/emotion/pre_align.py
import torch from inference.svs.base_svs_infer import BaseSVSInfer from utils import load_ckpt from utils.hparams import hparams from modulesmodules.diff.shallow_diffusion_tts import GaussianDiffusion from tasks.svs.diffsinger_task import DIFF_DECODERS class DiffSingerCascadeInfer(BaseSVSInfer): def build_model(self): model = GaussianDiffusion( phone_encoder=self.ph_encoder, out_dims=hparams['audio_num_mel_bins'], denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), timesteps=hparams['timesteps'], K_step=hparams['K_step'], loss_type=hparams['diff_loss_type'], spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], ) model.eval() load_ckpt(model, hparams['work_dir'], 'model') return model def forward_model(self, inp): sample = self.input_to_batch(inp) txt_tokens = sample['txt_tokens'] # [B, T_t] spk_id = sample.get('spk_ids') with torch.no_grad(): output = self.model(txt_tokens, spk_id=spk_id, ref_mels=None, infer=True, pitch_midi=sample['pitch_midi'], midi_dur=sample['midi_dur'], is_slur=sample['is_slur']) mel_out = output['mel_out'] # [B, T,80] f0_pred = output['f0_denorm'] wav_out = self.run_vocoder(mel_out, f0=f0_pred) wav_out = wav_out.cpu().numpy() return wav_out[0] if __name__ == '__main__': inp = { 'text': '小酒窝长睫毛AP是你最美的记号', 'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4', 'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340', 'input_type': 'word' } # user input: Chinese characters c = { 'text': '小酒窝长睫毛AP是你最美的记号', 'ph_seq': 'x iao j iu w o ch ang ang j ie ie m ao AP sh i n i z ui m ei d e j i h ao', 'note_seq': 'C#4/Db4 C#4/Db4 F#4/Gb4 F#4/Gb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 F#4/Gb4 F#4/Gb4 F#4/Gb4 C#4/Db4 C#4/Db4 C#4/Db4 rest C#4/Db4 C#4/Db4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 F4 F4 C#4/Db4 C#4/Db4', 'note_dur_seq': '0.407140 0.407140 0.376190 0.376190 0.242180 0.242180 0.509550 0.509550 0.183420 0.315400 0.315400 0.235020 0.361660 0.361660 0.223070 0.377270 0.377270 0.340550 0.340550 0.299620 0.299620 0.344510 0.344510 0.283770 0.283770 0.323390 0.323390 0.360340 0.360340', 'is_slur_seq': '0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0', 'input_type': 'phoneme' } # input like Opencpop dataset. DiffSingerCascadeInfer.example_run(inp) # # CUDA_VISIBLE_DEVICES=1 python inference/svs/ds_cascade.py --config egs/egs_bases/svs/midi/cascade/opencs/ds60_rel.yaml --exp_name 0303_opencpop_ds58_midi
EXA-1-master
exa/models/AudioGPT/NeuralSeq/inference/svs/ds_cascade.py
import os import torch import numpy as np from modules.hifigan.hifigan import HifiGanGenerator from vocoders.hifigan import HifiGAN from inference.svs.opencpop.map import cpop_pinyin2ph_func from utils import load_ckpt from utils.hparams import set_hparams, hparams from utils.text_encoder import TokenTextEncoder from pypinyin import pinyin, lazy_pinyin, Style import librosa import glob import re class BaseSVSInfer: def __init__(self, hparams, device=None): if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.hparams = hparams self.device = device phone_list = ["AP", "SP", "a", "ai", "an", "ang", "ao", "b", "c", "ch", "d", "e", "ei", "en", "eng", "er", "f", "g", "h", "i", "ia", "ian", "iang", "iao", "ie", "in", "ing", "iong", "iu", "j", "k", "l", "m", "n", "o", "ong", "ou", "p", "q", "r", "s", "sh", "t", "u", "ua", "uai", "uan", "uang", "ui", "un", "uo", "v", "van", "ve", "vn", "w", "x", "y", "z", "zh"] self.ph_encoder = TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',') self.pinyin2phs = cpop_pinyin2ph_func() self.spk_map = {'opencpop': 0} self.model = self.build_model() self.model.eval() self.model.to(self.device) self.vocoder = self.build_vocoder() self.vocoder.eval() self.vocoder.to(self.device) def build_model(self): raise NotImplementedError def forward_model(self, inp): raise NotImplementedError def build_vocoder(self): base_dir = hparams['vocoder_ckpt'] config_path = f'{base_dir}/config.yaml' ckpt = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key= lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0]))[-1] print('| load HifiGAN: ', ckpt) ckpt_dict = torch.load(ckpt, map_location="cpu") config = set_hparams(config_path, global_hparams=False) state = ckpt_dict["state_dict"]["model_gen"] vocoder = HifiGanGenerator(config) vocoder.load_state_dict(state, strict=True) vocoder.remove_weight_norm() vocoder = vocoder.eval().to(self.device) return vocoder def run_vocoder(self, c, **kwargs): c = c.transpose(2, 1) # [B, 80, T] f0 = kwargs.get('f0') # [B, T] if f0 is not None and hparams.get('use_nsf'): # f0 = torch.FloatTensor(f0).to(self.device) y = self.vocoder(c, f0).view(-1) else: y = self.vocoder(c).view(-1) # [T] return y[None] def preprocess_word_level_input(self, inp): # Pypinyin can't solve polyphonic words text_raw = inp['text'].replace('最长', '最常').replace('长睫毛', '常睫毛') \ .replace('那么长', '那么常').replace('多长', '多常') \ .replace('很长', '很常') # We hope someone could provide a better g2p module for us by opening pull requests. # lyric pinyins = lazy_pinyin(text_raw, strict=False) ph_per_word_lst = [self.pinyin2phs[pinyin.strip()] for pinyin in pinyins if pinyin.strip() in self.pinyin2phs] # Note note_per_word_lst = [x.strip() for x in inp['notes'].split('|') if x.strip() != ''] mididur_per_word_lst = [x.strip() for x in inp['notes_duration'].split('|') if x.strip() != ''] if len(note_per_word_lst) == len(ph_per_word_lst) == len(mididur_per_word_lst): print('Pass word-notes check.') else: print('The number of words does\'t match the number of notes\' windows. ', 'You should split the note(s) for each word by | mark.') print(ph_per_word_lst, note_per_word_lst, mididur_per_word_lst) print(len(ph_per_word_lst), len(note_per_word_lst), len(mididur_per_word_lst)) return None note_lst = [] ph_lst = [] midi_dur_lst = [] is_slur = [] for idx, ph_per_word in enumerate(ph_per_word_lst): # for phs in one word: # single ph like ['ai'] or multiple phs like ['n', 'i'] ph_in_this_word = ph_per_word.split() # for notes in one word: # single note like ['D4'] or multiple notes like ['D4', 'E4'] which means a 'slur' here. note_in_this_word = note_per_word_lst[idx].split() midi_dur_in_this_word = mididur_per_word_lst[idx].split() # process for the model input # Step 1. # Deal with note of 'not slur' case or the first note of 'slur' case # j ie # F#4/Gb4 F#4/Gb4 # 0 0 for ph in ph_in_this_word: ph_lst.append(ph) note_lst.append(note_in_this_word[0]) midi_dur_lst.append(midi_dur_in_this_word[0]) is_slur.append(0) # step 2. # Deal with the 2nd, 3rd... notes of 'slur' case # j ie ie # F#4/Gb4 F#4/Gb4 C#4/Db4 # 0 0 1 if len(note_in_this_word) > 1: # is_slur = True, we should repeat the YUNMU to match the 2nd, 3rd... notes. for idx in range(1, len(note_in_this_word)): ph_lst.append(ph_in_this_word[-1]) note_lst.append(note_in_this_word[idx]) midi_dur_lst.append(midi_dur_in_this_word[idx]) is_slur.append(1) ph_seq = ' '.join(ph_lst) if len(ph_lst) == len(note_lst) == len(midi_dur_lst): print(len(ph_lst), len(note_lst), len(midi_dur_lst)) print('Pass word-notes check.') else: print('The number of words does\'t match the number of notes\' windows. ', 'You should split the note(s) for each word by | mark.') return None return ph_seq, note_lst, midi_dur_lst, is_slur def preprocess_phoneme_level_input(self, inp): ph_seq = inp['ph_seq'] note_lst = inp['note_seq'].split() midi_dur_lst = inp['note_dur_seq'].split() is_slur = [float(x) for x in inp['is_slur_seq'].split()] print(len(note_lst), len(ph_seq.split()), len(midi_dur_lst)) if len(note_lst) == len(ph_seq.split()) == len(midi_dur_lst): print('Pass word-notes check.') else: print('The number of words does\'t match the number of notes\' windows. ', 'You should split the note(s) for each word by | mark.') return None return ph_seq, note_lst, midi_dur_lst, is_slur def preprocess_input(self, inp, input_type='word'): """ :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} :return: """ item_name = inp.get('item_name', '<ITEM_NAME>') spk_name = inp.get('spk_name', 'opencpop') # single spk spk_id = self.spk_map[spk_name] # get ph seq, note lst, midi dur lst, is slur lst. if input_type == 'word': ret = self.preprocess_word_level_input(inp) elif input_type == 'phoneme': # like transcriptions.txt in Opencpop dataset. ret = self.preprocess_phoneme_level_input(inp) else: print('Invalid input type.') return None if ret: ph_seq, note_lst, midi_dur_lst, is_slur = ret else: print('==========> Preprocess_word_level or phone_level input wrong.') return None # convert note lst to midi id; convert note dur lst to midi duration try: midis = [librosa.note_to_midi(x.split("/")[0]) if x != 'rest' else 0 for x in note_lst] midi_dur_lst = [float(x) for x in midi_dur_lst] except Exception as e: print(e) print('Invalid Input Type.') return None ph_token = self.ph_encoder.encode(ph_seq) item = {'item_name': item_name, 'text': inp['text'], 'ph': ph_seq, 'spk_id': spk_id, 'ph_token': ph_token, 'pitch_midi': np.asarray(midis), 'midi_dur': np.asarray(midi_dur_lst), 'is_slur': np.asarray(is_slur), } item['ph_len'] = len(item['ph_token']) return item def input_to_batch(self, item): item_names = [item['item_name']] text = [item['text']] ph = [item['ph']] txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) spk_ids = torch.LongTensor(item['spk_id'])[None, :].to(self.device) pitch_midi = torch.LongTensor(item['pitch_midi'])[None, :hparams['max_frames']].to(self.device) midi_dur = torch.FloatTensor(item['midi_dur'])[None, :hparams['max_frames']].to(self.device) is_slur = torch.LongTensor(item['is_slur'])[None, :hparams['max_frames']].to(self.device) batch = { 'item_name': item_names, 'text': text, 'ph': ph, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'spk_ids': spk_ids, 'pitch_midi': pitch_midi, 'midi_dur': midi_dur, 'is_slur': is_slur } return batch def postprocess_output(self, output): return output def infer_once(self, inp): inp = self.preprocess_input(inp, input_type=inp['input_type'] if inp.get('input_type') else 'word') output = self.forward_model(inp) output = self.postprocess_output(output) return output @classmethod def example_run(cls, inp): from utils.audio import save_wav set_hparams(print_hparams=False) infer_ins = cls(hparams) out = infer_ins.infer_once(inp) os.makedirs('infer_out', exist_ok=True) save_wav(out, f'infer_out/example_out.wav', hparams['audio_sample_rate']) # if __name__ == '__main__': # debug # a = BaseSVSInfer(hparams) # a.preprocess_input({'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP', # 'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest', # 'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590' # }) # b = { # 'text': '小酒窝长睫毛AP是你最美的记号', # 'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4', # 'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340' # } # c = { # 'text': '小酒窝长睫毛AP是你最美的记号', # 'ph_seq': 'x iao j iu w o ch ang ang j ie ie m ao AP sh i n i z ui m ei d e j i h ao', # 'note_seq': 'C#4/Db4 C#4/Db4 F#4/Gb4 F#4/Gb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 F#4/Gb4 F#4/Gb4 F#4/Gb4 C#4/Db4 C#4/Db4 C#4/Db4 rest C#4/Db4 C#4/Db4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 F4 F4 C#4/Db4 C#4/Db4', # 'note_dur_seq': '0.407140 0.407140 0.376190 0.376190 0.242180 0.242180 0.509550 0.509550 0.183420 0.315400 0.315400 0.235020 0.361660 0.361660 0.223070 0.377270 0.377270 0.340550 0.340550 0.299620 0.299620 0.344510 0.344510 0.283770 0.283770 0.323390 0.323390 0.360340 0.360340', # 'is_slur_seq': '0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' # } # input like Opencpop dataset. # a.preprocess_input(b) # a.preprocess_input(c, input_type='phoneme')
EXA-1-master
exa/models/AudioGPT/NeuralSeq/inference/svs/base_svs_infer.py
import torch # from inference.tts.fs import FastSpeechInfer # from modules.tts.fs2_orig import FastSpeech2Orig from inference.svs.base_svs_infer import BaseSVSInfer from utils import load_ckpt from utils.hparams import hparams from modules.diff.shallow_diffusion_tts import GaussianDiffusion from tasks.svs.diffsinger_task import DIFF_DECODERS from modules.fastspeech.pe import PitchExtractor import utils class DiffSingerE2EInfer(BaseSVSInfer): def build_model(self): model = GaussianDiffusion( phone_encoder=self.ph_encoder, out_dims=hparams['audio_num_mel_bins'], denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), timesteps=hparams['timesteps'], K_step=hparams['K_step'], loss_type=hparams['diff_loss_type'], spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], ) model.eval() load_ckpt(model, hparams['work_dir'], 'model') if hparams.get('pe_enable') is not None and hparams['pe_enable']: self.pe = PitchExtractor().to(self.device) utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True) self.pe.eval() return model def forward_model(self, inp): sample = self.input_to_batch(inp) txt_tokens = sample['txt_tokens'] # [B, T_t] spk_id = sample.get('spk_ids') with torch.no_grad(): output = self.model(txt_tokens, spk_id=spk_id, ref_mels=None, infer=True, pitch_midi=sample['pitch_midi'], midi_dur=sample['midi_dur'], is_slur=sample['is_slur']) mel_out = output['mel_out'] # [B, T,80] if hparams.get('pe_enable') is not None and hparams['pe_enable']: f0_pred = self.pe(mel_out)['f0_denorm_pred'] # pe predict from Pred mel else: f0_pred = output['f0_denorm'] wav_out = self.run_vocoder(mel_out, f0=f0_pred) wav_out = wav_out.cpu().numpy() return wav_out[0] if __name__ == '__main__': inp = { 'text': '小酒窝长睫毛AP是你最美的记号', 'notes': 'C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4', 'notes_duration': '0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340', 'input_type': 'word' } # user input: Chinese characters inp = { 'text': '小酒窝长睫毛AP是你最美的记号', 'ph_seq': 'x iao j iu w o ch ang ang j ie ie m ao AP sh i n i z ui m ei d e j i h ao', 'note_seq': 'C#4/Db4 C#4/Db4 F#4/Gb4 F#4/Gb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 F#4/Gb4 F#4/Gb4 F#4/Gb4 C#4/Db4 C#4/Db4 C#4/Db4 rest C#4/Db4 C#4/Db4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 A#4/Bb4 A#4/Bb4 G#4/Ab4 G#4/Ab4 F4 F4 C#4/Db4 C#4/Db4', 'note_dur_seq': '0.407140 0.407140 0.376190 0.376190 0.242180 0.242180 0.509550 0.509550 0.183420 0.315400 0.315400 0.235020 0.361660 0.361660 0.223070 0.377270 0.377270 0.340550 0.340550 0.299620 0.299620 0.344510 0.344510 0.283770 0.283770 0.323390 0.323390 0.360340 0.360340', 'is_slur_seq': '0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0', 'input_type': 'phoneme' } # input like Opencpop dataset. DiffSingerE2EInfer.example_run(inp) # CUDA_VISIBLE_DEVICES=3 python inference/svs/ds_e2e.py --config egs/egs_bases/svs/midi/e2e/opencpop/ds100_adj_rel.yaml --exp_name 0228_opencpop_ds100_rel
EXA-1-master
exa/models/AudioGPT/NeuralSeq/inference/svs/ds_e2e.py
def cpop_pinyin2ph_func(): # In the README file of opencpop dataset, they defined a "pinyin to phoneme mapping table" pinyin2phs = {'AP': 'AP', 'SP': 'SP'} with open('NeuralSeq/inference/svs/opencpop/cpop_pinyin2ph.txt') as rf: for line in rf.readlines(): elements = [x.strip() for x in line.split('|') if x.strip() != ''] pinyin2phs[elements[0]] = elements[1] return pinyin2phs
EXA-1-master
exa/models/AudioGPT/NeuralSeq/inference/svs/opencpop/map.py
import torch from inference.tts.base_tts_infer import BaseTTSInfer from utils.ckpt_utils import load_ckpt from modules.portaspeech.portaspeech import PortaSpeech class TTSInference(BaseTTSInfer): def __init__(self, hparams, device=None): super().__init__(hparams, device) print("Initializing TTS model to %s" % device) self.spk_map = self.preprocessor.load_spk_map(self.data_dir) print("TTS loaded!") def build_model(self): model = PortaSpeech(self.ph_encoder, self.word_encoder) load_ckpt(model, self.hparams['work_dir'], 'model') with torch.no_grad(): model.store_inverse_all() return model def forward_model(self, inp): sample = self.input_to_batch(inp) with torch.no_grad(): output = self.model( sample['txt_tokens'], sample['word_tokens'], ph2word=sample['ph2word'], word_len=sample['word_lengths'].max(), infer=True, forward_post_glow=True, spk_id=sample.get('spk_ids') ) mel_out = output['mel_out'] wav_out = self.run_vocoder(mel_out) wav_out = wav_out.cpu().numpy() return wav_out[0] def preprocess_input(self, inp): """ :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} :return: """ preprocessor, preprocess_args = self.preprocessor, self.preprocess_args text_raw = inp['text'] item_name = inp.get('item_name', '<ITEM_NAME>') spk_name = inp.get('spk_name', '<SINGLE_SPK>') ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph( preprocessor.txt_processor, text_raw, preprocess_args) word_token = self.word_encoder.encode(word) ph_token = self.ph_encoder.encode(ph) spk_id = self.spk_map[spk_name] item = {'item_name': item_name, 'text': txt, 'ph': ph, 'spk_id': spk_id, 'ph_token': ph_token, 'word_token': word_token, 'ph2word': ph2word, 'ph_words':ph_gb_word, 'words': word} item['ph_len'] = len(item['ph_token']) return item def input_to_batch(self, item): item_names = [item['item_name']] text = [item['text']] ph = [item['ph']] txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) word_tokens = torch.LongTensor(item['word_token'])[None, :].to(self.device) word_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) spk_ids = torch.LongTensor(item['spk_id'])[None, :].to(self.device) batch = { 'item_name': item_names, 'text': text, 'ph': ph, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'word_tokens': word_tokens, 'word_lengths': word_lengths, 'ph2word': ph2word, 'spk_ids': spk_ids, } return batch def postprocess_output(self, output): return output
EXA-1-master
exa/models/AudioGPT/NeuralSeq/inference/tts/PortaSpeech.py
import torch import os import importlib from inference.tts.base_tts_infer import BaseTTSInfer from utils.ckpt_utils import load_ckpt, get_last_checkpoint from modules.GenerSpeech.model.generspeech import GenerSpeech from data_gen.tts.emotion import inference as EmotionEncoder from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance from data_gen.tts.emotion.inference import preprocess_wav from data_gen.tts.data_gen_utils import is_sil_phoneme from resemblyzer import VoiceEncoder from utils import audio class GenerSpeechInfer(BaseTTSInfer): def build_model(self): model = GenerSpeech(self.ph_encoder) model.eval() load_ckpt(model, self.hparams['work_dir'], 'model') return model def preprocess_input(self, inp): """ :param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} :return: """ # processed text preprocessor, preprocess_args = self.preprocessor, self.preprocess_args text_raw = inp['text'] item_name = inp.get('item_name', '<ITEM_NAME>') ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw, preprocess_args) ph_token = self.ph_encoder.encode(ph) # processed ref audio ref_audio = inp['ref_audio'] processed_ref_audio = 'example/temp.wav' voice_encoder = VoiceEncoder().cuda() encoder = [self.ph_encoder, self.word_encoder] EmotionEncoder.load_model(self.hparams['emotion_encoder_path']) binarizer_cls = self.hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) ref_audio_raw, ref_text_raw = self.asr(ref_audio) # prepare text ph_ref, txt_ref, word_ref, ph2word_ref, ph_gb_word_ref = preprocessor.txt_to_ph(preprocessor.txt_processor, ref_text_raw, preprocess_args) ph_gb_word_nosil = ["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word_ref.split(" ") if not is_sil_phoneme(w)] phs_for_align = ['SIL'] + ph_gb_word_nosil + ['SIL'] phs_for_align = " ".join(phs_for_align) # prepare files for alignment os.system('rm -r example/; mkdir example/') audio.save_wav(ref_audio_raw, processed_ref_audio, self.hparams['audio_sample_rate']) with open(f'example/temp.lab', 'w') as f_txt: f_txt.write(phs_for_align) os.system(f'mfa align example/ {self.hparams["binary_data_dir"]}/mfa_dict.txt {self.hparams["binary_data_dir"]}/mfa_model.zip example/textgrid/ --clean') item2tgfn = 'example/textgrid/temp.TextGrid' # prepare textgrid alignment item = binarizer_cls.process_item(item_name, ph_ref, txt_ref, item2tgfn, processed_ref_audio, 0, 0, encoder, self.hparams['binarization_args']) item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) item.update({ 'ref_ph': item['ph'], 'ph': ph, 'ph_token': ph_token, 'text': txt }) return item def input_to_batch(self, item): item_names = [item['item_name']] text = [item['text']] ph = [item['ph']] txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) mels = torch.FloatTensor(item['mel'])[None, :].to(self.device) f0 = torch.FloatTensor(item['f0'])[None, :].to(self.device) # uv = torch.FloatTensor(item['uv']).to(self.device) mel2ph = torch.LongTensor(item['mel2ph'])[None, :].to(self.device) spk_embed = torch.FloatTensor(item['spk_embed'])[None, :].to(self.device) emo_embed = torch.FloatTensor(item['emo_embed'])[None, :].to(self.device) ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) mel2word = torch.LongTensor(item['mel2word'])[None, :].to(self.device) word_tokens = torch.LongTensor(item['word_tokens'])[None, :].to(self.device) batch = { 'item_name': item_names, 'text': text, 'ph': ph, 'mels': mels, 'f0': f0, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'spk_embed': spk_embed, 'emo_embed': emo_embed, 'mel2ph': mel2ph, 'ph2word': ph2word, 'mel2word': mel2word, 'word_tokens': word_tokens, } return batch def forward_model(self, inp): sample = self.input_to_batch(inp) txt_tokens = sample['txt_tokens'] # [B, T_t] with torch.no_grad(): output = self.model(txt_tokens, ref_mel2ph=sample['mel2ph'], ref_mel2word=sample['mel2word'], ref_mels=sample['mels'], spk_embed=sample['spk_embed'], emo_embed=sample['emo_embed'], global_steps=300000, infer=True) mel_out = output['mel_out'] wav_out = self.run_vocoder(mel_out) wav_out = wav_out.squeeze().cpu().numpy() return wav_out if __name__ == '__main__': inp = { 'text': 'here we go', 'ref_audio': 'assets/0011_001570.wav' } GenerSpeechInfer.example_run(inp)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/inference/tts/GenerSpeech.py
from tasks.tts.dataset_utils import FastSpeechWordDataset from tasks.tts.tts_utils import load_data_preprocessor from vocoders.hifigan import HifiGanGenerator import os import librosa import soundfile as sf from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from string import punctuation import torch from utils.ckpt_utils import load_ckpt from utils.hparams import set_hparams from utils.hparams import hparams as hp class BaseTTSInfer: def __init__(self, hparams, device=None): if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.hparams = hparams self.device = device self.data_dir = hparams['binary_data_dir'] self.preprocessor, self.preprocess_args = load_data_preprocessor() self.ph_encoder, self.word_encoder = self.preprocessor.load_dict(self.data_dir) self.ds_cls = FastSpeechWordDataset self.model = self.build_model() self.model.eval() self.model.to(self.device) self.vocoder = self.build_vocoder() self.vocoder.eval() self.vocoder.to(self.device) self.asr_processor, self.asr_model = self.build_asr() def build_model(self): raise NotImplementedError def forward_model(self, inp): raise NotImplementedError def build_asr(self): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") # facebook/wav2vec2-base-960h wav2vec2-large-960h-lv60-self model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(self.device) return processor, model def build_vocoder(self): base_dir = self.hparams['vocoder_ckpt'] config_path = f'{base_dir}/config.yaml' config = set_hparams(config_path, global_hparams=False) vocoder = HifiGanGenerator(config) load_ckpt(vocoder, base_dir, 'model_gen') return vocoder def run_vocoder(self, c): c = c.transpose(2, 1) y = self.vocoder(c)[:, 0] return y def preprocess_input(self, inp): raise NotImplementedError def input_to_batch(self, item): raise NotImplementedError def postprocess_output(self, output): return output def infer_once(self, inp): inp = self.preprocess_input(inp) output = self.forward_model(inp) output = self.postprocess_output(output) return output @classmethod def example_run(cls, inp): from utils.audio import save_wav #set_hparams(print_hparams=False) infer_ins = cls(hp) out = infer_ins.infer_once(inp) os.makedirs('infer_out', exist_ok=True) save_wav(out, f'infer_out/{hp["text"]}.wav', hp['audio_sample_rate']) print(f'Save at infer_out/{hp["text"]}.wav.') def asr(self, file): sample_rate = self.hparams['audio_sample_rate'] audio_input, source_sample_rate = sf.read(file) # Resample the wav if needed if sample_rate is not None and source_sample_rate != sample_rate: audio_input = librosa.resample(audio_input, source_sample_rate, sample_rate) # pad input values and return pt tensor input_values = self.asr_processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # retrieve logits & take argmax logits = self.asr_model(input_values.cuda()).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = self.asr_processor.decode(predicted_ids[0]) transcription = transcription.rstrip(punctuation) return audio_input, transcription
EXA-1-master
exa/models/AudioGPT/NeuralSeq/inference/tts/base_tts_infer.py
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/__init__.py
# -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """STFT-based Loss modules.""" import librosa import torch from modules.parallel_wavegan.losses import LogSTFTMagnitudeLoss, SpectralConvergengeLoss, stft class STFTLoss(torch.nn.Module): """STFT loss module.""" def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_mel_loss=False): """Initialize STFT loss module.""" super(STFTLoss, self).__init__() self.fft_size = fft_size self.shift_size = shift_size self.win_length = win_length self.window = getattr(torch, window)(win_length) self.spectral_convergenge_loss = SpectralConvergengeLoss() self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() self.use_mel_loss = use_mel_loss self.mel_basis = None def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Spectral convergence loss value. Tensor: Log STFT magnitude loss value. """ x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window) y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window) if self.use_mel_loss: if self.mel_basis is None: self.mel_basis = torch.from_numpy(librosa.filters.mel(22050, self.fft_size, 80)).cuda().T x_mag = x_mag @ self.mel_basis y_mag = y_mag @ self.mel_basis sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) return sc_loss, mag_loss class MultiResolutionSTFTLoss(torch.nn.Module): """Multi resolution STFT loss module.""" def __init__(self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window", use_mel_loss=False): """Initialize Multi resolution STFT loss module. Args: fft_sizes (list): List of FFT sizes. hop_sizes (list): List of hop sizes. win_lengths (list): List of window lengths. window (str): Window function type. """ super(MultiResolutionSTFTLoss, self).__init__() assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) self.stft_losses = torch.nn.ModuleList() for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): self.stft_losses += [STFTLoss(fs, ss, wl, window, use_mel_loss)] def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Multi resolution spectral convergence loss value. Tensor: Multi resolution log STFT magnitude loss value. """ sc_loss = 0.0 mag_loss = 0.0 for f in self.stft_losses: sc_l, mag_l = f(x, y) sc_loss += sc_l mag_loss += mag_l sc_loss /= len(self.stft_losses) mag_loss /= len(self.stft_losses) return sc_loss, mag_loss
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/stft_loss.py
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/__init__.py
# -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """STFT-based Loss modules.""" import torch import torch.nn.functional as F def stft(x, fft_size, hop_size, win_length, window): """Perform STFT and convert to magnitude spectrogram. Args: x (Tensor): Input signal tensor (B, T). fft_size (int): FFT size. hop_size (int): Hop size. win_length (int): Window length. window (str): Window function type. Returns: Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). """ x_stft = torch.stft(x, fft_size, hop_size, win_length, window) real = x_stft[..., 0] imag = x_stft[..., 1] # NOTE(kan-bayashi): clamp is needed to avoid nan or inf return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1) class SpectralConvergengeLoss(torch.nn.Module): """Spectral convergence loss module.""" def __init__(self): """Initilize spectral convergence loss module.""" super(SpectralConvergengeLoss, self).__init__() def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Spectral convergence loss value. """ return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro") class LogSTFTMagnitudeLoss(torch.nn.Module): """Log STFT magnitude loss module.""" def __init__(self): """Initilize los STFT magnitude loss module.""" super(LogSTFTMagnitudeLoss, self).__init__() def forward(self, x_mag, y_mag): """Calculate forward propagation. Args: x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). Returns: Tensor: Log STFT magnitude loss value. """ return F.l1_loss(torch.log(y_mag), torch.log(x_mag)) class STFTLoss(torch.nn.Module): """STFT loss module.""" def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window"): """Initialize STFT loss module.""" super(STFTLoss, self).__init__() self.fft_size = fft_size self.shift_size = shift_size self.win_length = win_length self.window = getattr(torch, window)(win_length) self.spectral_convergenge_loss = SpectralConvergengeLoss() self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Spectral convergence loss value. Tensor: Log STFT magnitude loss value. """ x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window) y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window) sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) return sc_loss, mag_loss class MultiResolutionSTFTLoss(torch.nn.Module): """Multi resolution STFT loss module.""" def __init__(self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240], window="hann_window"): """Initialize Multi resolution STFT loss module. Args: fft_sizes (list): List of FFT sizes. hop_sizes (list): List of hop sizes. win_lengths (list): List of window lengths. window (str): Window function type. """ super(MultiResolutionSTFTLoss, self).__init__() assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) self.stft_losses = torch.nn.ModuleList() for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): self.stft_losses += [STFTLoss(fs, ss, wl, window)] def forward(self, x, y): """Calculate forward propagation. Args: x (Tensor): Predicted signal (B, T). y (Tensor): Groundtruth signal (B, T). Returns: Tensor: Multi resolution spectral convergence loss value. Tensor: Multi resolution log STFT magnitude loss value. """ sc_loss = 0.0 mag_loss = 0.0 for f in self.stft_losses: sc_l, mag_l = f(x, y) sc_loss += sc_l mag_loss += mag_l sc_loss /= len(self.stft_losses) mag_loss /= len(self.stft_losses) return sc_loss, mag_loss
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/losses/stft_loss.py
from .stft_loss import * # NOQA
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/losses/__init__.py
# -*- coding: utf-8 -*- # Copyright 2020 MINH ANH (@dathudeptrai) # MIT License (https://opensource.org/licenses/MIT) """Tensorflow Layer modules complatible with pytorch.""" import tensorflow as tf class TFReflectionPad1d(tf.keras.layers.Layer): """Tensorflow ReflectionPad1d module.""" def __init__(self, padding_size): """Initialize TFReflectionPad1d module. Args: padding_size (int): Padding size. """ super(TFReflectionPad1d, self).__init__() self.padding_size = padding_size @tf.function def call(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, 1, C). Returns: Tensor: Padded tensor (B, T + 2 * padding_size, 1, C). """ return tf.pad(x, [[0, 0], [self.padding_size, self.padding_size], [0, 0], [0, 0]], "REFLECT") class TFConvTranspose1d(tf.keras.layers.Layer): """Tensorflow ConvTranspose1d module.""" def __init__(self, channels, kernel_size, stride, padding): """Initialize TFConvTranspose1d( module. Args: channels (int): Number of channels. kernel_size (int): kernel size. strides (int): Stride width. padding (str): Padding type ("same" or "valid"). """ super(TFConvTranspose1d, self).__init__() self.conv1d_transpose = tf.keras.layers.Conv2DTranspose( filters=channels, kernel_size=(kernel_size, 1), strides=(stride, 1), padding=padding, ) @tf.function def call(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, 1, C). Returns: Tensors: Output tensor (B, T', 1, C'). """ x = self.conv1d_transpose(x) return x class TFResidualStack(tf.keras.layers.Layer): """Tensorflow ResidualStack module.""" def __init__(self, kernel_size, channels, dilation, bias, nonlinear_activation, nonlinear_activation_params, padding, ): """Initialize TFResidualStack module. Args: kernel_size (int): Kernel size. channles (int): Number of channels. dilation (int): Dilation ine. bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. padding (str): Padding type ("same" or "valid"). """ super(TFResidualStack, self).__init__() self.block = [ getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), TFReflectionPad1d(dilation), tf.keras.layers.Conv2D( filters=channels, kernel_size=(kernel_size, 1), dilation_rate=(dilation, 1), use_bias=bias, padding="valid", ), getattr(tf.keras.layers, nonlinear_activation)(**nonlinear_activation_params), tf.keras.layers.Conv2D(filters=channels, kernel_size=1, use_bias=bias) ] self.shortcut = tf.keras.layers.Conv2D(filters=channels, kernel_size=1, use_bias=bias) @tf.function def call(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, T, 1, C). Returns: Tensor: Output tensor (B, T, 1, C). """ _x = tf.identity(x) for i, layer in enumerate(self.block): _x = layer(_x) shortcut = self.shortcut(x) return shortcut + _x
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/layers/tf_layers.py
# -*- coding: utf-8 -*- # Copyright 2020 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """Causal convolusion layer modules.""" import torch class CausalConv1d(torch.nn.Module): """CausalConv1d module with customized initialization.""" def __init__(self, in_channels, out_channels, kernel_size, dilation=1, bias=True, pad="ConstantPad1d", pad_params={"value": 0.0}): """Initialize CausalConv1d module.""" super(CausalConv1d, self).__init__() self.pad = getattr(torch.nn, pad)((kernel_size - 1) * dilation, **pad_params) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, bias=bias) def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, in_channels, T). Returns: Tensor: Output tensor (B, out_channels, T). """ return self.conv(self.pad(x))[:, :, :x.size(2)] class CausalConvTranspose1d(torch.nn.Module): """CausalConvTranspose1d module with customized initialization.""" def __init__(self, in_channels, out_channels, kernel_size, stride, bias=True): """Initialize CausalConvTranspose1d module.""" super(CausalConvTranspose1d, self).__init__() self.deconv = torch.nn.ConvTranspose1d( in_channels, out_channels, kernel_size, stride, bias=bias) self.stride = stride def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, in_channels, T_in). Returns: Tensor: Output tensor (B, out_channels, T_out). """ return self.deconv(x)[:, :, :-self.stride]
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/layers/causal_conv.py
from .causal_conv import * # NOQA from .pqmf import * # NOQA from .residual_block import * # NOQA from modules.parallel_wavegan.layers.residual_stack import * # NOQA from .upsample import * # NOQA
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/layers/__init__.py
# -*- coding: utf-8 -*- """Upsampling module. This code is modified from https://github.com/r9y9/wavenet_vocoder. """ import numpy as np import torch import torch.nn.functional as F from . import Conv1d class Stretch2d(torch.nn.Module): """Stretch2d module.""" def __init__(self, x_scale, y_scale, mode="nearest"): """Initialize Stretch2d module. Args: x_scale (int): X scaling factor (Time axis in spectrogram). y_scale (int): Y scaling factor (Frequency axis in spectrogram). mode (str): Interpolation mode. """ super(Stretch2d, self).__init__() self.x_scale = x_scale self.y_scale = y_scale self.mode = mode def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, C, F, T). Returns: Tensor: Interpolated tensor (B, C, F * y_scale, T * x_scale), """ return F.interpolate( x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode) class Conv2d(torch.nn.Conv2d): """Conv2d module with customized initialization.""" def __init__(self, *args, **kwargs): """Initialize Conv2d module.""" super(Conv2d, self).__init__(*args, **kwargs) def reset_parameters(self): """Reset parameters.""" self.weight.data.fill_(1. / np.prod(self.kernel_size)) if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) class UpsampleNetwork(torch.nn.Module): """Upsampling network module.""" def __init__(self, upsample_scales, nonlinear_activation=None, nonlinear_activation_params={}, interpolate_mode="nearest", freq_axis_kernel_size=1, use_causal_conv=False, ): """Initialize upsampling network module. Args: upsample_scales (list): List of upsampling scales. nonlinear_activation (str): Activation function name. nonlinear_activation_params (dict): Arguments for specified activation function. interpolate_mode (str): Interpolation mode. freq_axis_kernel_size (int): Kernel size in the direction of frequency axis. """ super(UpsampleNetwork, self).__init__() self.use_causal_conv = use_causal_conv self.up_layers = torch.nn.ModuleList() for scale in upsample_scales: # interpolation layer stretch = Stretch2d(scale, 1, interpolate_mode) self.up_layers += [stretch] # conv layer assert (freq_axis_kernel_size - 1) % 2 == 0, "Not support even number freq axis kernel size." freq_axis_padding = (freq_axis_kernel_size - 1) // 2 kernel_size = (freq_axis_kernel_size, scale * 2 + 1) if use_causal_conv: padding = (freq_axis_padding, scale * 2) else: padding = (freq_axis_padding, scale) conv = Conv2d(1, 1, kernel_size=kernel_size, padding=padding, bias=False) self.up_layers += [conv] # nonlinear if nonlinear_activation is not None: nonlinear = getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params) self.up_layers += [nonlinear] def forward(self, c): """Calculate forward propagation. Args: c : Input tensor (B, C, T). Returns: Tensor: Upsampled tensor (B, C, T'), where T' = T * prod(upsample_scales). """ c = c.unsqueeze(1) # (B, 1, C, T) for f in self.up_layers: if self.use_causal_conv and isinstance(f, Conv2d): c = f(c)[..., :c.size(-1)] else: c = f(c) return c.squeeze(1) # (B, C, T') class ConvInUpsampleNetwork(torch.nn.Module): """Convolution + upsampling network module.""" def __init__(self, upsample_scales, nonlinear_activation=None, nonlinear_activation_params={}, interpolate_mode="nearest", freq_axis_kernel_size=1, aux_channels=80, aux_context_window=0, use_causal_conv=False ): """Initialize convolution + upsampling network module. Args: upsample_scales (list): List of upsampling scales. nonlinear_activation (str): Activation function name. nonlinear_activation_params (dict): Arguments for specified activation function. mode (str): Interpolation mode. freq_axis_kernel_size (int): Kernel size in the direction of frequency axis. aux_channels (int): Number of channels of pre-convolutional layer. aux_context_window (int): Context window size of the pre-convolutional layer. use_causal_conv (bool): Whether to use causal structure. """ super(ConvInUpsampleNetwork, self).__init__() self.aux_context_window = aux_context_window self.use_causal_conv = use_causal_conv and aux_context_window > 0 # To capture wide-context information in conditional features kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1 # NOTE(kan-bayashi): Here do not use padding because the input is already padded self.conv_in = Conv1d(aux_channels, aux_channels, kernel_size=kernel_size, bias=False) self.upsample = UpsampleNetwork( upsample_scales=upsample_scales, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, interpolate_mode=interpolate_mode, freq_axis_kernel_size=freq_axis_kernel_size, use_causal_conv=use_causal_conv, ) def forward(self, c): """Calculate forward propagation. Args: c : Input tensor (B, C, T'). Returns: Tensor: Upsampled tensor (B, C, T), where T = (T' - aux_context_window * 2) * prod(upsample_scales). Note: The length of inputs considers the context window size. """ c_ = self.conv_in(c) c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_ return self.upsample(c)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/layers/upsample.py
# -*- coding: utf-8 -*- """Residual block module in WaveNet. This code is modified from https://github.com/r9y9/wavenet_vocoder. """ import math import torch import torch.nn.functional as F class Conv1d(torch.nn.Conv1d): """Conv1d module with customized initialization.""" def __init__(self, *args, **kwargs): """Initialize Conv1d module.""" super(Conv1d, self).__init__(*args, **kwargs) def reset_parameters(self): """Reset parameters.""" torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu") if self.bias is not None: torch.nn.init.constant_(self.bias, 0.0) class Conv1d1x1(Conv1d): """1x1 Conv1d with customized initialization.""" def __init__(self, in_channels, out_channels, bias): """Initialize 1x1 Conv1d module.""" super(Conv1d1x1, self).__init__(in_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=bias) class ResidualBlock(torch.nn.Module): """Residual block module in WaveNet.""" def __init__(self, kernel_size=3, residual_channels=64, gate_channels=128, skip_channels=64, aux_channels=80, dropout=0.0, dilation=1, bias=True, use_causal_conv=False ): """Initialize ResidualBlock module. Args: kernel_size (int): Kernel size of dilation convolution layer. residual_channels (int): Number of channels for residual connection. skip_channels (int): Number of channels for skip connection. aux_channels (int): Local conditioning channels i.e. auxiliary input dimension. dropout (float): Dropout probability. dilation (int): Dilation factor. bias (bool): Whether to add bias parameter in convolution layers. use_causal_conv (bool): Whether to use use_causal_conv or non-use_causal_conv convolution. """ super(ResidualBlock, self).__init__() self.dropout = dropout # no future time stamps available if use_causal_conv: padding = (kernel_size - 1) * dilation else: assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." padding = (kernel_size - 1) // 2 * dilation self.use_causal_conv = use_causal_conv # dilation conv self.conv = Conv1d(residual_channels, gate_channels, kernel_size, padding=padding, dilation=dilation, bias=bias) # local conditioning if aux_channels > 0: self.conv1x1_aux = Conv1d1x1(aux_channels, gate_channels, bias=False) else: self.conv1x1_aux = None # conv output is split into two groups gate_out_channels = gate_channels // 2 self.conv1x1_out = Conv1d1x1(gate_out_channels, residual_channels, bias=bias) self.conv1x1_skip = Conv1d1x1(gate_out_channels, skip_channels, bias=bias) def forward(self, x, c): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, residual_channels, T). c (Tensor): Local conditioning auxiliary tensor (B, aux_channels, T). Returns: Tensor: Output tensor for residual connection (B, residual_channels, T). Tensor: Output tensor for skip connection (B, skip_channels, T). """ residual = x x = F.dropout(x, p=self.dropout, training=self.training) x = self.conv(x) # remove future time steps if use_causal_conv conv x = x[:, :, :residual.size(-1)] if self.use_causal_conv else x # split into two part for gated activation splitdim = 1 xa, xb = x.split(x.size(splitdim) // 2, dim=splitdim) # local conditioning if c is not None: assert self.conv1x1_aux is not None c = self.conv1x1_aux(c) ca, cb = c.split(c.size(splitdim) // 2, dim=splitdim) xa, xb = xa + ca, xb + cb x = torch.tanh(xa) * torch.sigmoid(xb) # for skip connection s = self.conv1x1_skip(x) # for residual connection x = (self.conv1x1_out(x) + residual) * math.sqrt(0.5) return x, s
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/layers/residual_block.py
# -*- coding: utf-8 -*- # Copyright 2020 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """Pseudo QMF modules.""" import numpy as np import torch import torch.nn.functional as F from scipy.signal import kaiser def design_prototype_filter(taps=62, cutoff_ratio=0.15, beta=9.0): """Design prototype filter for PQMF. This method is based on `A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`_. Args: taps (int): The number of filter taps. cutoff_ratio (float): Cut-off frequency ratio. beta (float): Beta coefficient for kaiser window. Returns: ndarray: Impluse response of prototype filter (taps + 1,). .. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`: https://ieeexplore.ieee.org/abstract/document/681427 """ # check the arguments are valid assert taps % 2 == 0, "The number of taps mush be even number." assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0." # make initial filter omega_c = np.pi * cutoff_ratio with np.errstate(invalid='ignore'): h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) \ / (np.pi * (np.arange(taps + 1) - 0.5 * taps)) h_i[taps // 2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form # apply kaiser window w = kaiser(taps + 1, beta) h = h_i * w return h class PQMF(torch.nn.Module): """PQMF module. This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_. .. _`Near-perfect-reconstruction pseudo-QMF banks`: https://ieeexplore.ieee.org/document/258122 """ def __init__(self, subbands=4, taps=62, cutoff_ratio=0.15, beta=9.0): """Initilize PQMF module. Args: subbands (int): The number of subbands. taps (int): The number of filter taps. cutoff_ratio (float): Cut-off frequency ratio. beta (float): Beta coefficient for kaiser window. """ super(PQMF, self).__init__() # define filter coefficient h_proto = design_prototype_filter(taps, cutoff_ratio, beta) h_analysis = np.zeros((subbands, len(h_proto))) h_synthesis = np.zeros((subbands, len(h_proto))) for k in range(subbands): h_analysis[k] = 2 * h_proto * np.cos( (2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2)) + (-1) ** k * np.pi / 4) h_synthesis[k] = 2 * h_proto * np.cos( (2 * k + 1) * (np.pi / (2 * subbands)) * (np.arange(taps + 1) - ((taps - 1) / 2)) - (-1) ** k * np.pi / 4) # convert to tensor analysis_filter = torch.from_numpy(h_analysis).float().unsqueeze(1) synthesis_filter = torch.from_numpy(h_synthesis).float().unsqueeze(0) # register coefficients as beffer self.register_buffer("analysis_filter", analysis_filter) self.register_buffer("synthesis_filter", synthesis_filter) # filter for downsampling & upsampling updown_filter = torch.zeros((subbands, subbands, subbands)).float() for k in range(subbands): updown_filter[k, k, 0] = 1.0 self.register_buffer("updown_filter", updown_filter) self.subbands = subbands # keep padding info self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0) def analysis(self, x): """Analysis with PQMF. Args: x (Tensor): Input tensor (B, 1, T). Returns: Tensor: Output tensor (B, subbands, T // subbands). """ x = F.conv1d(self.pad_fn(x), self.analysis_filter) return F.conv1d(x, self.updown_filter, stride=self.subbands) def synthesis(self, x): """Synthesis with PQMF. Args: x (Tensor): Input tensor (B, subbands, T // subbands). Returns: Tensor: Output tensor (B, 1, T). """ x = F.conv_transpose1d(x, self.updown_filter * self.subbands, stride=self.subbands) return F.conv1d(self.pad_fn(x), self.synthesis_filter)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/layers/pqmf.py
# -*- coding: utf-8 -*- # Copyright 2020 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """Residual stack module in MelGAN.""" import torch from . import CausalConv1d class ResidualStack(torch.nn.Module): """Residual stack module introduced in MelGAN.""" def __init__(self, kernel_size=3, channels=32, dilation=1, bias=True, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, pad="ReflectionPad1d", pad_params={}, use_causal_conv=False, ): """Initialize ResidualStack module. Args: kernel_size (int): Kernel size of dilation convolution layer. channels (int): Number of channels of convolution layers. dilation (int): Dilation factor. bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. pad (str): Padding function module name before dilated convolution layer. pad_params (dict): Hyperparameters for padding function. use_causal_conv (bool): Whether to use causal convolution. """ super(ResidualStack, self).__init__() # defile residual stack part if not use_causal_conv: assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." self.stack = torch.nn.Sequential( getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), getattr(torch.nn, pad)((kernel_size - 1) // 2 * dilation, **pad_params), torch.nn.Conv1d(channels, channels, kernel_size, dilation=dilation, bias=bias), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), torch.nn.Conv1d(channels, channels, 1, bias=bias), ) else: self.stack = torch.nn.Sequential( getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), CausalConv1d(channels, channels, kernel_size, dilation=dilation, bias=bias, pad=pad, pad_params=pad_params), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), torch.nn.Conv1d(channels, channels, 1, bias=bias), ) # defile extra layer for skip connection self.skip_layer = torch.nn.Conv1d(channels, channels, 1, bias=bias) def forward(self, c): """Calculate forward propagation. Args: c (Tensor): Input tensor (B, channels, T). Returns: Tensor: Output tensor (B, chennels, T). """ return self.stack(c) + self.skip_layer(c)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/layers/residual_stack.py
from .utils import * # NOQA
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/utils/__init__.py
# -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """Utility functions.""" import fnmatch import logging import os import sys import h5py import numpy as np def find_files(root_dir, query="*.wav", include_root_dir=True): """Find files recursively. Args: root_dir (str): Root root_dir to find. query (str): Query to find. include_root_dir (bool): If False, root_dir name is not included. Returns: list: List of found filenames. """ files = [] for root, dirnames, filenames in os.walk(root_dir, followlinks=True): for filename in fnmatch.filter(filenames, query): files.append(os.path.join(root, filename)) if not include_root_dir: files = [file_.replace(root_dir + "/", "") for file_ in files] return files def read_hdf5(hdf5_name, hdf5_path): """Read hdf5 dataset. Args: hdf5_name (str): Filename of hdf5 file. hdf5_path (str): Dataset name in hdf5 file. Return: any: Dataset values. """ if not os.path.exists(hdf5_name): logging.error(f"There is no such a hdf5 file ({hdf5_name}).") sys.exit(1) hdf5_file = h5py.File(hdf5_name, "r") if hdf5_path not in hdf5_file: logging.error(f"There is no such a data in hdf5 file. ({hdf5_path})") sys.exit(1) hdf5_data = hdf5_file[hdf5_path][()] hdf5_file.close() return hdf5_data def write_hdf5(hdf5_name, hdf5_path, write_data, is_overwrite=True): """Write dataset to hdf5. Args: hdf5_name (str): Hdf5 dataset filename. hdf5_path (str): Dataset path in hdf5. write_data (ndarray): Data to write. is_overwrite (bool): Whether to overwrite dataset. """ # convert to numpy array write_data = np.array(write_data) # check folder existence folder_name, _ = os.path.split(hdf5_name) if not os.path.exists(folder_name) and len(folder_name) != 0: os.makedirs(folder_name) # check hdf5 existence if os.path.exists(hdf5_name): # if already exists, open with r+ mode hdf5_file = h5py.File(hdf5_name, "r+") # check dataset existence if hdf5_path in hdf5_file: if is_overwrite: logging.warning("Dataset in hdf5 file already exists. " "recreate dataset in hdf5.") hdf5_file.__delitem__(hdf5_path) else: logging.error("Dataset in hdf5 file already exists. " "if you want to overwrite, please set is_overwrite = True.") hdf5_file.close() sys.exit(1) else: # if not exists, open with w mode hdf5_file = h5py.File(hdf5_name, "w") # write data to hdf5 hdf5_file.create_dataset(hdf5_path, data=write_data) hdf5_file.flush() hdf5_file.close() class HDF5ScpLoader(object): """Loader class for a fests.scp file of hdf5 file. Examples: key1 /some/path/a.h5:feats key2 /some/path/b.h5:feats key3 /some/path/c.h5:feats key4 /some/path/d.h5:feats ... >>> loader = HDF5ScpLoader("hdf5.scp") >>> array = loader["key1"] key1 /some/path/a.h5 key2 /some/path/b.h5 key3 /some/path/c.h5 key4 /some/path/d.h5 ... >>> loader = HDF5ScpLoader("hdf5.scp", "feats") >>> array = loader["key1"] """ def __init__(self, feats_scp, default_hdf5_path="feats"): """Initialize HDF5 scp loader. Args: feats_scp (str): Kaldi-style feats.scp file with hdf5 format. default_hdf5_path (str): Path in hdf5 file. If the scp contain the info, not used. """ self.default_hdf5_path = default_hdf5_path with open(feats_scp) as f: lines = [line.replace("\n", "") for line in f.readlines()] self.data = {} for line in lines: key, value = line.split() self.data[key] = value def get_path(self, key): """Get hdf5 file path for a given key.""" return self.data[key] def __getitem__(self, key): """Get ndarray for a given key.""" p = self.data[key] if ":" in p: return read_hdf5(*p.split(":")) else: return read_hdf5(p, self.default_hdf5_path) def __len__(self): """Return the length of the scp file.""" return len(self.data) def __iter__(self): """Return the iterator of the scp file.""" return iter(self.data) def keys(self): """Return the keys of the scp file.""" return self.data.keys()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/utils/utils.py
from .melgan import * # NOQA from .parallel_wavegan import * # NOQA
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/models/__init__.py
# -*- coding: utf-8 -*- # Copyright 2020 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """MelGAN Modules.""" import logging import numpy as np import torch from modules.parallel_wavegan.layers import CausalConv1d from modules.parallel_wavegan.layers import CausalConvTranspose1d from modules.parallel_wavegan.layers import ResidualStack class MelGANGenerator(torch.nn.Module): """MelGAN generator module.""" def __init__(self, in_channels=80, out_channels=1, kernel_size=7, channels=512, bias=True, upsample_scales=[8, 8, 2, 2], stack_kernel_size=3, stacks=3, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, pad="ReflectionPad1d", pad_params={}, use_final_nonlinear_activation=True, use_weight_norm=True, use_causal_conv=False, ): """Initialize MelGANGenerator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (int): Kernel size of initial and final conv layer. channels (int): Initial number of channels for conv layer. bias (bool): Whether to add bias parameter in convolution layers. upsample_scales (list): List of upsampling scales. stack_kernel_size (int): Kernel size of dilated conv layers in residual stack. stacks (int): Number of stacks in a single residual stack. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. pad (str): Padding function module name before dilated convolution layer. pad_params (dict): Hyperparameters for padding function. use_final_nonlinear_activation (torch.nn.Module): Activation function for the final layer. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_causal_conv (bool): Whether to use causal convolution. """ super(MelGANGenerator, self).__init__() # check hyper parameters is valid assert channels >= np.prod(upsample_scales) assert channels % (2 ** len(upsample_scales)) == 0 if not use_causal_conv: assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." # add initial layer layers = [] if not use_causal_conv: layers += [ getattr(torch.nn, pad)((kernel_size - 1) // 2, **pad_params), torch.nn.Conv1d(in_channels, channels, kernel_size, bias=bias), ] else: layers += [ CausalConv1d(in_channels, channels, kernel_size, bias=bias, pad=pad, pad_params=pad_params), ] for i, upsample_scale in enumerate(upsample_scales): # add upsampling layer layers += [getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)] if not use_causal_conv: layers += [ torch.nn.ConvTranspose1d( channels // (2 ** i), channels // (2 ** (i + 1)), upsample_scale * 2, stride=upsample_scale, padding=upsample_scale // 2 + upsample_scale % 2, output_padding=upsample_scale % 2, bias=bias, ) ] else: layers += [ CausalConvTranspose1d( channels // (2 ** i), channels // (2 ** (i + 1)), upsample_scale * 2, stride=upsample_scale, bias=bias, ) ] # add residual stack for j in range(stacks): layers += [ ResidualStack( kernel_size=stack_kernel_size, channels=channels // (2 ** (i + 1)), dilation=stack_kernel_size ** j, bias=bias, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, pad=pad, pad_params=pad_params, use_causal_conv=use_causal_conv, ) ] # add final layer layers += [getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params)] if not use_causal_conv: layers += [ getattr(torch.nn, pad)((kernel_size - 1) // 2, **pad_params), torch.nn.Conv1d(channels // (2 ** (i + 1)), out_channels, kernel_size, bias=bias), ] else: layers += [ CausalConv1d(channels // (2 ** (i + 1)), out_channels, kernel_size, bias=bias, pad=pad, pad_params=pad_params), ] if use_final_nonlinear_activation: layers += [torch.nn.Tanh()] # define the model as a single function self.melgan = torch.nn.Sequential(*layers) # apply weight norm if use_weight_norm: self.apply_weight_norm() # reset parameters self.reset_parameters() def forward(self, c): """Calculate forward propagation. Args: c (Tensor): Input tensor (B, channels, T). Returns: Tensor: Output tensor (B, 1, T ** prod(upsample_scales)). """ return self.melgan(c) def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m): try: logging.debug(f"Weight norm is removed from {m}.") torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm) def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m): if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.ConvTranspose1d): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) def reset_parameters(self): """Reset parameters. This initialization follows official implementation manner. https://github.com/descriptinc/melgan-neurips/blob/master/spec2wav/modules.py """ def _reset_parameters(m): if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.ConvTranspose1d): m.weight.data.normal_(0.0, 0.02) logging.debug(f"Reset parameters in {m}.") self.apply(_reset_parameters) class MelGANDiscriminator(torch.nn.Module): """MelGAN discriminator module.""" def __init__(self, in_channels=1, out_channels=1, kernel_sizes=[5, 3], channels=16, max_downsample_channels=1024, bias=True, downsample_scales=[4, 4, 4, 4], nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, pad="ReflectionPad1d", pad_params={}, ): """Initilize MelGAN discriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer, and the first and the second kernel sizes will be used for the last two layers. For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15, the last two layers' kernel size will be 5 and 3, respectively. channels (int): Initial number of channels for conv layer. max_downsample_channels (int): Maximum number of channels for downsampling layers. bias (bool): Whether to add bias parameter in convolution layers. downsample_scales (list): List of downsampling scales. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. pad (str): Padding function module name before dilated convolution layer. pad_params (dict): Hyperparameters for padding function. """ super(MelGANDiscriminator, self).__init__() self.layers = torch.nn.ModuleList() # check kernel size is valid assert len(kernel_sizes) == 2 assert kernel_sizes[0] % 2 == 1 assert kernel_sizes[1] % 2 == 1 # add first layer self.layers += [ torch.nn.Sequential( getattr(torch.nn, pad)((np.prod(kernel_sizes) - 1) // 2, **pad_params), torch.nn.Conv1d(in_channels, channels, np.prod(kernel_sizes), bias=bias), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), ) ] # add downsample layers in_chs = channels for downsample_scale in downsample_scales: out_chs = min(in_chs * downsample_scale, max_downsample_channels) self.layers += [ torch.nn.Sequential( torch.nn.Conv1d( in_chs, out_chs, kernel_size=downsample_scale * 10 + 1, stride=downsample_scale, padding=downsample_scale * 5, groups=in_chs // 4, bias=bias, ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), ) ] in_chs = out_chs # add final layers out_chs = min(in_chs * 2, max_downsample_channels) self.layers += [ torch.nn.Sequential( torch.nn.Conv1d( in_chs, out_chs, kernel_sizes[0], padding=(kernel_sizes[0] - 1) // 2, bias=bias, ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), ) ] self.layers += [ torch.nn.Conv1d( out_chs, out_channels, kernel_sizes[1], padding=(kernel_sizes[1] - 1) // 2, bias=bias, ), ] def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List: List of output tensors of each layer. """ outs = [] for f in self.layers: x = f(x) outs += [x] return outs class MelGANMultiScaleDiscriminator(torch.nn.Module): """MelGAN multi-scale discriminator module.""" def __init__(self, in_channels=1, out_channels=1, scales=3, downsample_pooling="AvgPool1d", # follow the official implementation setting downsample_pooling_params={ "kernel_size": 4, "stride": 2, "padding": 1, "count_include_pad": False, }, kernel_sizes=[5, 3], channels=16, max_downsample_channels=1024, bias=True, downsample_scales=[4, 4, 4, 4], nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, pad="ReflectionPad1d", pad_params={}, use_weight_norm=True, ): """Initilize MelGAN multi-scale discriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. downsample_pooling (str): Pooling module name for downsampling of the inputs. downsample_pooling_params (dict): Parameters for the above pooling module. kernel_sizes (list): List of two kernel sizes. The sum will be used for the first conv layer, and the first and the second kernel sizes will be used for the last two layers. channels (int): Initial number of channels for conv layer. max_downsample_channels (int): Maximum number of channels for downsampling layers. bias (bool): Whether to add bias parameter in convolution layers. downsample_scales (list): List of downsampling scales. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. pad (str): Padding function module name before dilated convolution layer. pad_params (dict): Hyperparameters for padding function. use_causal_conv (bool): Whether to use causal convolution. """ super(MelGANMultiScaleDiscriminator, self).__init__() self.discriminators = torch.nn.ModuleList() # add discriminators for _ in range(scales): self.discriminators += [ MelGANDiscriminator( in_channels=in_channels, out_channels=out_channels, kernel_sizes=kernel_sizes, channels=channels, max_downsample_channels=max_downsample_channels, bias=bias, downsample_scales=downsample_scales, nonlinear_activation=nonlinear_activation, nonlinear_activation_params=nonlinear_activation_params, pad=pad, pad_params=pad_params, ) ] self.pooling = getattr(torch.nn, downsample_pooling)(**downsample_pooling_params) # apply weight norm if use_weight_norm: self.apply_weight_norm() # reset parameters self.reset_parameters() def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List: List of list of each discriminator outputs, which consists of each layer output tensors. """ outs = [] for f in self.discriminators: outs += [f(x)] x = self.pooling(x) return outs def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m): try: logging.debug(f"Weight norm is removed from {m}.") torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm) def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m): if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.ConvTranspose1d): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) def reset_parameters(self): """Reset parameters. This initialization follows official implementation manner. https://github.com/descriptinc/melgan-neurips/blob/master/spec2wav/modules.py """ def _reset_parameters(m): if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.ConvTranspose1d): m.weight.data.normal_(0.0, 0.02) logging.debug(f"Reset parameters in {m}.") self.apply(_reset_parameters)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/models/melgan.py
# -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) """Parallel WaveGAN Modules.""" import logging import math import torch from torch import nn from modules.parallel_wavegan.layers import Conv1d from modules.parallel_wavegan.layers import Conv1d1x1 from modules.parallel_wavegan.layers import ResidualBlock from modules.parallel_wavegan.layers import upsample from modules.parallel_wavegan import models class ParallelWaveGANGenerator(torch.nn.Module): """Parallel WaveGAN Generator module.""" def __init__(self, in_channels=1, out_channels=1, kernel_size=3, layers=30, stacks=3, residual_channels=64, gate_channels=128, skip_channels=64, aux_channels=80, aux_context_window=2, dropout=0.0, bias=True, use_weight_norm=True, use_causal_conv=False, upsample_conditional_features=True, upsample_net="ConvInUpsampleNetwork", upsample_params={"upsample_scales": [4, 4, 4, 4]}, use_pitch_embed=False, ): """Initialize Parallel WaveGAN Generator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (int): Kernel size of dilated convolution. layers (int): Number of residual block layers. stacks (int): Number of stacks i.e., dilation cycles. residual_channels (int): Number of channels in residual conv. gate_channels (int): Number of channels in gated conv. skip_channels (int): Number of channels in skip conv. aux_channels (int): Number of channels for auxiliary feature conv. aux_context_window (int): Context window size for auxiliary feature. dropout (float): Dropout rate. 0.0 means no dropout applied. bias (bool): Whether to use bias parameter in conv layer. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_causal_conv (bool): Whether to use causal structure. upsample_conditional_features (bool): Whether to use upsampling network. upsample_net (str): Upsampling network architecture. upsample_params (dict): Upsampling network parameters. """ super(ParallelWaveGANGenerator, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.aux_channels = aux_channels self.layers = layers self.stacks = stacks self.kernel_size = kernel_size # check the number of layers and stacks assert layers % stacks == 0 layers_per_stack = layers // stacks # define first convolution self.first_conv = Conv1d1x1(in_channels, residual_channels, bias=True) # define conv + upsampling network if upsample_conditional_features: upsample_params.update({ "use_causal_conv": use_causal_conv, }) if upsample_net == "MelGANGenerator": assert aux_context_window == 0 upsample_params.update({ "use_weight_norm": False, # not to apply twice "use_final_nonlinear_activation": False, }) self.upsample_net = getattr(models, upsample_net)(**upsample_params) else: if upsample_net == "ConvInUpsampleNetwork": upsample_params.update({ "aux_channels": aux_channels, "aux_context_window": aux_context_window, }) self.upsample_net = getattr(upsample, upsample_net)(**upsample_params) else: self.upsample_net = None # define residual blocks self.conv_layers = torch.nn.ModuleList() for layer in range(layers): dilation = 2 ** (layer % layers_per_stack) conv = ResidualBlock( kernel_size=kernel_size, residual_channels=residual_channels, gate_channels=gate_channels, skip_channels=skip_channels, aux_channels=aux_channels, dilation=dilation, dropout=dropout, bias=bias, use_causal_conv=use_causal_conv, ) self.conv_layers += [conv] # define output layers self.last_conv_layers = torch.nn.ModuleList([ torch.nn.ReLU(inplace=True), Conv1d1x1(skip_channels, skip_channels, bias=True), torch.nn.ReLU(inplace=True), Conv1d1x1(skip_channels, out_channels, bias=True), ]) self.use_pitch_embed = use_pitch_embed if use_pitch_embed: self.pitch_embed = nn.Embedding(300, aux_channels, 0) self.c_proj = nn.Linear(2 * aux_channels, aux_channels) # apply weight norm if use_weight_norm: self.apply_weight_norm() def forward(self, x, c=None, pitch=None, **kwargs): """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, C_in, T). c (Tensor): Local conditioning auxiliary features (B, C ,T'). pitch (Tensor): Local conditioning pitch (B, T'). Returns: Tensor: Output tensor (B, C_out, T) """ # perform upsampling if c is not None and self.upsample_net is not None: if self.use_pitch_embed: p = self.pitch_embed(pitch) c = self.c_proj(torch.cat([c.transpose(1, 2), p], -1)).transpose(1, 2) c = self.upsample_net(c) assert c.size(-1) == x.size(-1), (c.size(-1), x.size(-1)) # encode to hidden representation x = self.first_conv(x) skips = 0 for f in self.conv_layers: x, h = f(x, c) skips += h skips *= math.sqrt(1.0 / len(self.conv_layers)) # apply final layers x = skips for f in self.last_conv_layers: x = f(x) return x def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m): try: logging.debug(f"Weight norm is removed from {m}.") torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm) def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m): if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) @staticmethod def _get_receptive_field_size(layers, stacks, kernel_size, dilation=lambda x: 2 ** x): assert layers % stacks == 0 layers_per_cycle = layers // stacks dilations = [dilation(i % layers_per_cycle) for i in range(layers)] return (kernel_size - 1) * sum(dilations) + 1 @property def receptive_field_size(self): """Return receptive field size.""" return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size) class ParallelWaveGANDiscriminator(torch.nn.Module): """Parallel WaveGAN Discriminator module.""" def __init__(self, in_channels=1, out_channels=1, kernel_size=3, layers=10, conv_channels=64, dilation_factor=1, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, bias=True, use_weight_norm=True, ): """Initialize Parallel WaveGAN Discriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (int): Number of output channels. layers (int): Number of conv layers. conv_channels (int): Number of chnn layers. dilation_factor (int): Dilation factor. For example, if dilation_factor = 2, the dilation will be 2, 4, 8, ..., and so on. nonlinear_activation (str): Nonlinear function after each conv. nonlinear_activation_params (dict): Nonlinear function parameters bias (bool): Whether to use bias parameter in conv. use_weight_norm (bool) Whether to use weight norm. If set to true, it will be applied to all of the conv layers. """ super(ParallelWaveGANDiscriminator, self).__init__() assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." assert dilation_factor > 0, "Dilation factor must be > 0." self.conv_layers = torch.nn.ModuleList() conv_in_channels = in_channels for i in range(layers - 1): if i == 0: dilation = 1 else: dilation = i if dilation_factor == 1 else dilation_factor ** i conv_in_channels = conv_channels padding = (kernel_size - 1) // 2 * dilation conv_layer = [ Conv1d(conv_in_channels, conv_channels, kernel_size=kernel_size, padding=padding, dilation=dilation, bias=bias), getattr(torch.nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params) ] self.conv_layers += conv_layer padding = (kernel_size - 1) // 2 last_conv_layer = Conv1d( conv_in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias) self.conv_layers += [last_conv_layer] # apply weight norm if use_weight_norm: self.apply_weight_norm() def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: Tensor: Output tensor (B, 1, T) """ for f in self.conv_layers: x = f(x) return x def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m): if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m): try: logging.debug(f"Weight norm is removed from {m}.") torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm) class ResidualParallelWaveGANDiscriminator(torch.nn.Module): """Parallel WaveGAN Discriminator module.""" def __init__(self, in_channels=1, out_channels=1, kernel_size=3, layers=30, stacks=3, residual_channels=64, gate_channels=128, skip_channels=64, dropout=0.0, bias=True, use_weight_norm=True, use_causal_conv=False, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.2}, ): """Initialize Parallel WaveGAN Discriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_size (int): Kernel size of dilated convolution. layers (int): Number of residual block layers. stacks (int): Number of stacks i.e., dilation cycles. residual_channels (int): Number of channels in residual conv. gate_channels (int): Number of channels in gated conv. skip_channels (int): Number of channels in skip conv. dropout (float): Dropout rate. 0.0 means no dropout applied. bias (bool): Whether to use bias parameter in conv. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_causal_conv (bool): Whether to use causal structure. nonlinear_activation_params (dict): Nonlinear function parameters """ super(ResidualParallelWaveGANDiscriminator, self).__init__() assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." self.in_channels = in_channels self.out_channels = out_channels self.layers = layers self.stacks = stacks self.kernel_size = kernel_size # check the number of layers and stacks assert layers % stacks == 0 layers_per_stack = layers // stacks # define first convolution self.first_conv = torch.nn.Sequential( Conv1d1x1(in_channels, residual_channels, bias=True), getattr(torch.nn, nonlinear_activation)( inplace=True, **nonlinear_activation_params), ) # define residual blocks self.conv_layers = torch.nn.ModuleList() for layer in range(layers): dilation = 2 ** (layer % layers_per_stack) conv = ResidualBlock( kernel_size=kernel_size, residual_channels=residual_channels, gate_channels=gate_channels, skip_channels=skip_channels, aux_channels=-1, dilation=dilation, dropout=dropout, bias=bias, use_causal_conv=use_causal_conv, ) self.conv_layers += [conv] # define output layers self.last_conv_layers = torch.nn.ModuleList([ getattr(torch.nn, nonlinear_activation)( inplace=True, **nonlinear_activation_params), Conv1d1x1(skip_channels, skip_channels, bias=True), getattr(torch.nn, nonlinear_activation)( inplace=True, **nonlinear_activation_params), Conv1d1x1(skip_channels, out_channels, bias=True), ]) # apply weight norm if use_weight_norm: self.apply_weight_norm() def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: Tensor: Output tensor (B, 1, T) """ x = self.first_conv(x) skips = 0 for f in self.conv_layers: x, h = f(x, None) skips += h skips *= math.sqrt(1.0 / len(self.conv_layers)) # apply final layers x = skips for f in self.last_conv_layers: x = f(x) return x def apply_weight_norm(self): """Apply weight normalization module from all of the layers.""" def _apply_weight_norm(m): if isinstance(m, torch.nn.Conv1d) or isinstance(m, torch.nn.Conv2d): torch.nn.utils.weight_norm(m) logging.debug(f"Weight norm is applied to {m}.") self.apply(_apply_weight_norm) def remove_weight_norm(self): """Remove weight normalization module from all of the layers.""" def _remove_weight_norm(m): try: logging.debug(f"Weight norm is removed from {m}.") torch.nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(_remove_weight_norm)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/models/parallel_wavegan.py
import torch import numpy as np import sys import torch.nn.functional as torch_nn_func class SineGen(torch.nn.Module): """ Definition of sine generator SineGen(samp_rate, harmonic_num = 0, sine_amp = 0.1, noise_std = 0.003, voiced_threshold = 0, flag_for_pulse=False) samp_rate: sampling rate in Hz harmonic_num: number of harmonic overtones (default 0) sine_amp: amplitude of sine-wavefrom (default 0.1) noise_std: std of Gaussian noise (default 0.003) voiced_thoreshold: F0 threshold for U/V classification (default 0) flag_for_pulse: this SinGen is used inside PulseGen (default False) Note: when flag_for_pulse is True, the first time step of a voiced segment is always sin(np.pi) or cos(0) """ def __init__(self, samp_rate, harmonic_num=0, sine_amp=0.1, noise_std=0.003, voiced_threshold=0, flag_for_pulse=False): super(SineGen, self).__init__() self.sine_amp = sine_amp self.noise_std = noise_std self.harmonic_num = harmonic_num self.dim = self.harmonic_num + 1 self.sampling_rate = samp_rate self.voiced_threshold = voiced_threshold self.flag_for_pulse = flag_for_pulse def _f02uv(self, f0): # generate uv signal uv = torch.ones_like(f0) uv = uv * (f0 > self.voiced_threshold) return uv def _f02sine(self, f0_values): """ f0_values: (batchsize, length, dim) where dim indicates fundamental tone and overtones """ # convert to F0 in rad. The interger part n can be ignored # because 2 * np.pi * n doesn't affect phase rad_values = (f0_values / self.sampling_rate) % 1 # initial phase noise (no noise for fundamental component) rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ device=f0_values.device) rand_ini[:, 0] = 0 rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) if not self.flag_for_pulse: # for normal case # To prevent torch.cumsum numerical overflow, # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. # Buffer tmp_over_one_idx indicates the time step to add -1. # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi tmp_over_one = torch.cumsum(rad_values, 1) % 1 tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 cumsum_shift = torch.zeros_like(rad_values) cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi) else: # If necessary, make sure that the first time step of every # voiced segments is sin(pi) or cos(0) # This is used for pulse-train generation # identify the last time step in unvoiced segments uv = self._f02uv(f0_values) uv_1 = torch.roll(uv, shifts=-1, dims=1) uv_1[:, -1, :] = 1 u_loc = (uv < 1) * (uv_1 > 0) # get the instantanouse phase tmp_cumsum = torch.cumsum(rad_values, dim=1) # different batch needs to be processed differently for idx in range(f0_values.shape[0]): temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] # stores the accumulation of i.phase within # each voiced segments tmp_cumsum[idx, :, :] = 0 tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum # rad_values - tmp_cumsum: remove the accumulation of i.phase # within the previous voiced segment. i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) # get the sines sines = torch.cos(i_phase * 2 * np.pi) return sines def forward(self, f0): """ sine_tensor, uv = forward(f0) input F0: tensor(batchsize=1, length, dim=1) f0 for unvoiced steps should be 0 output sine_tensor: tensor(batchsize=1, length, dim) output uv: tensor(batchsize=1, length, 1) """ with torch.no_grad(): f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) # fundamental component f0_buf[:, :, 0] = f0[:, :, 0] for idx in np.arange(self.harmonic_num): # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) # generate sine waveforms sine_waves = self._f02sine(f0_buf) * self.sine_amp # generate uv signal # uv = torch.ones(f0.shape) # uv = uv * (f0 > self.voiced_threshold) uv = self._f02uv(f0) # noise: for unvoiced should be similar to sine_amp # std = self.sine_amp/3 -> max value ~ self.sine_amp # . for voiced regions is self.noise_std noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 noise = noise_amp * torch.randn_like(sine_waves) # first: set the unvoiced part to 0 by uv # then: additive noise sine_waves = sine_waves * uv + noise return sine_waves, uv, noise class PulseGen(torch.nn.Module): """ Definition of Pulse train generator There are many ways to implement pulse generator. Here, PulseGen is based on SinGen. For a perfect """ def __init__(self, samp_rate, pulse_amp = 0.1, noise_std = 0.003, voiced_threshold = 0): super(PulseGen, self).__init__() self.pulse_amp = pulse_amp self.sampling_rate = samp_rate self.voiced_threshold = voiced_threshold self.noise_std = noise_std self.l_sinegen = SineGen(self.sampling_rate, harmonic_num=0, \ sine_amp=self.pulse_amp, noise_std=0, \ voiced_threshold=self.voiced_threshold, \ flag_for_pulse=True) def forward(self, f0): """ Pulse train generator pulse_train, uv = forward(f0) input F0: tensor(batchsize=1, length, dim=1) f0 for unvoiced steps should be 0 output pulse_train: tensor(batchsize=1, length, dim) output uv: tensor(batchsize=1, length, 1) Note: self.l_sine doesn't make sure that the initial phase of a voiced segment is np.pi, the first pulse in a voiced segment may not be at the first time step within a voiced segment """ with torch.no_grad(): sine_wav, uv, noise = self.l_sinegen(f0) # sine without additive noise pure_sine = sine_wav - noise # step t corresponds to a pulse if # sine[t] > sine[t+1] & sine[t] > sine[t-1] # & sine[t-1], sine[t+1], and sine[t] are voiced # or # sine[t] is voiced, sine[t-1] is unvoiced # we use torch.roll to simulate sine[t+1] and sine[t-1] sine_1 = torch.roll(pure_sine, shifts=1, dims=1) uv_1 = torch.roll(uv, shifts=1, dims=1) uv_1[:, 0, :] = 0 sine_2 = torch.roll(pure_sine, shifts=-1, dims=1) uv_2 = torch.roll(uv, shifts=-1, dims=1) uv_2[:, -1, :] = 0 loc = (pure_sine > sine_1) * (pure_sine > sine_2) \ * (uv_1 > 0) * (uv_2 > 0) * (uv > 0) \ + (uv_1 < 1) * (uv > 0) # pulse train without noise pulse_train = pure_sine * loc # additive noise to pulse train # note that noise from sinegen is zero in voiced regions pulse_noise = torch.randn_like(pure_sine) * self.noise_std # with additive noise on pulse, and unvoiced regions pulse_train += pulse_noise * loc + pulse_noise * (1 - uv) return pulse_train, sine_wav, uv, pulse_noise class SignalsConv1d(torch.nn.Module): """ Filtering input signal with time invariant filter Note: FIRFilter conducted filtering given fixed FIR weight SignalsConv1d convolves two signals Note: this is based on torch.nn.functional.conv1d """ def __init__(self): super(SignalsConv1d, self).__init__() def forward(self, signal, system_ir): """ output = forward(signal, system_ir) signal: (batchsize, length1, dim) system_ir: (length2, dim) output: (batchsize, length1, dim) """ if signal.shape[-1] != system_ir.shape[-1]: print("Error: SignalsConv1d expects shape:") print("signal (batchsize, length1, dim)") print("system_id (batchsize, length2, dim)") print("But received signal: {:s}".format(str(signal.shape))) print(" system_ir: {:s}".format(str(system_ir.shape))) sys.exit(1) padding_length = system_ir.shape[0] - 1 groups = signal.shape[-1] # pad signal on the left signal_pad = torch_nn_func.pad(signal.permute(0, 2, 1), \ (padding_length, 0)) # prepare system impulse response as (dim, 1, length2) # also flip the impulse response ir = torch.flip(system_ir.unsqueeze(1).permute(2, 1, 0), \ dims=[2]) # convolute output = torch_nn_func.conv1d(signal_pad, ir, groups=groups) return output.permute(0, 2, 1) class CyclicNoiseGen_v1(torch.nn.Module): """ CyclicnoiseGen_v1 Cyclic noise with a single parameter of beta. Pytorch v1 implementation assumes f_t is also fixed """ def __init__(self, samp_rate, noise_std=0.003, voiced_threshold=0): super(CyclicNoiseGen_v1, self).__init__() self.samp_rate = samp_rate self.noise_std = noise_std self.voiced_threshold = voiced_threshold self.l_pulse = PulseGen(samp_rate, pulse_amp=1.0, noise_std=noise_std, voiced_threshold=voiced_threshold) self.l_conv = SignalsConv1d() def noise_decay(self, beta, f0mean): """ decayed_noise = noise_decay(beta, f0mean) decayed_noise = n[t]exp(-t * f_mean / beta / samp_rate) beta: (dim=1) or (batchsize=1, 1, dim=1) f0mean (batchsize=1, 1, dim=1) decayed_noise (batchsize=1, length, dim=1) """ with torch.no_grad(): # exp(-1.0 n / T) < 0.01 => n > -log(0.01)*T = 4.60*T # truncate the noise when decayed by -40 dB length = 4.6 * self.samp_rate / f0mean length = length.int() time_idx = torch.arange(0, length, device=beta.device) time_idx = time_idx.unsqueeze(0).unsqueeze(2) time_idx = time_idx.repeat(beta.shape[0], 1, beta.shape[2]) noise = torch.randn(time_idx.shape, device=beta.device) # due to Pytorch implementation, use f0_mean as the f0 factor decay = torch.exp(-time_idx * f0mean / beta / self.samp_rate) return noise * self.noise_std * decay def forward(self, f0s, beta): """ Producde cyclic-noise """ # pulse train pulse_train, sine_wav, uv, noise = self.l_pulse(f0s) pure_pulse = pulse_train - noise # decayed_noise (length, dim=1) if (uv < 1).all(): # all unvoiced cyc_noise = torch.zeros_like(sine_wav) else: f0mean = f0s[uv > 0].mean() decayed_noise = self.noise_decay(beta, f0mean)[0, :, :] # convolute cyc_noise = self.l_conv(pure_pulse, decayed_noise) # add noise in invoiced segments cyc_noise = cyc_noise + noise * (1.0 - uv) return cyc_noise, pulse_train, sine_wav, uv, noise class SineGen(torch.nn.Module): """ Definition of sine generator SineGen(samp_rate, harmonic_num = 0, sine_amp = 0.1, noise_std = 0.003, voiced_threshold = 0, flag_for_pulse=False) samp_rate: sampling rate in Hz harmonic_num: number of harmonic overtones (default 0) sine_amp: amplitude of sine-wavefrom (default 0.1) noise_std: std of Gaussian noise (default 0.003) voiced_thoreshold: F0 threshold for U/V classification (default 0) flag_for_pulse: this SinGen is used inside PulseGen (default False) Note: when flag_for_pulse is True, the first time step of a voiced segment is always sin(np.pi) or cos(0) """ def __init__(self, samp_rate, harmonic_num=0, sine_amp=0.1, noise_std=0.003, voiced_threshold=0, flag_for_pulse=False): super(SineGen, self).__init__() self.sine_amp = sine_amp self.noise_std = noise_std self.harmonic_num = harmonic_num self.dim = self.harmonic_num + 1 self.sampling_rate = samp_rate self.voiced_threshold = voiced_threshold self.flag_for_pulse = flag_for_pulse def _f02uv(self, f0): # generate uv signal uv = torch.ones_like(f0) uv = uv * (f0 > self.voiced_threshold) return uv def _f02sine(self, f0_values): """ f0_values: (batchsize, length, dim) where dim indicates fundamental tone and overtones """ # convert to F0 in rad. The interger part n can be ignored # because 2 * np.pi * n doesn't affect phase rad_values = (f0_values / self.sampling_rate) % 1 # initial phase noise (no noise for fundamental component) rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ device=f0_values.device) rand_ini[:, 0] = 0 rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) if not self.flag_for_pulse: # for normal case # To prevent torch.cumsum numerical overflow, # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. # Buffer tmp_over_one_idx indicates the time step to add -1. # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi tmp_over_one = torch.cumsum(rad_values, 1) % 1 tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 cumsum_shift = torch.zeros_like(rad_values) cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi) else: # If necessary, make sure that the first time step of every # voiced segments is sin(pi) or cos(0) # This is used for pulse-train generation # identify the last time step in unvoiced segments uv = self._f02uv(f0_values) uv_1 = torch.roll(uv, shifts=-1, dims=1) uv_1[:, -1, :] = 1 u_loc = (uv < 1) * (uv_1 > 0) # get the instantanouse phase tmp_cumsum = torch.cumsum(rad_values, dim=1) # different batch needs to be processed differently for idx in range(f0_values.shape[0]): temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] # stores the accumulation of i.phase within # each voiced segments tmp_cumsum[idx, :, :] = 0 tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum # rad_values - tmp_cumsum: remove the accumulation of i.phase # within the previous voiced segment. i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) # get the sines sines = torch.cos(i_phase * 2 * np.pi) return sines def forward(self, f0): """ sine_tensor, uv = forward(f0) input F0: tensor(batchsize=1, length, dim=1) f0 for unvoiced steps should be 0 output sine_tensor: tensor(batchsize=1, length, dim) output uv: tensor(batchsize=1, length, 1) """ with torch.no_grad(): f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, \ device=f0.device) # fundamental component f0_buf[:, :, 0] = f0[:, :, 0] for idx in np.arange(self.harmonic_num): # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) # generate sine waveforms sine_waves = self._f02sine(f0_buf) * self.sine_amp # generate uv signal # uv = torch.ones(f0.shape) # uv = uv * (f0 > self.voiced_threshold) uv = self._f02uv(f0) # noise: for unvoiced should be similar to sine_amp # std = self.sine_amp/3 -> max value ~ self.sine_amp # . for voiced regions is self.noise_std noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 noise = noise_amp * torch.randn_like(sine_waves) # first: set the unvoiced part to 0 by uv # then: additive noise sine_waves = sine_waves * uv + noise return sine_waves, uv, noise class SourceModuleCycNoise_v1(torch.nn.Module): """ SourceModuleCycNoise_v1 SourceModule(sampling_rate, noise_std=0.003, voiced_threshod=0) sampling_rate: sampling_rate in Hz noise_std: std of Gaussian noise (default: 0.003) voiced_threshold: threshold to set U/V given F0 (default: 0) cyc, noise, uv = SourceModuleCycNoise_v1(F0_upsampled, beta) F0_upsampled (batchsize, length, 1) beta (1) cyc (batchsize, length, 1) noise (batchsize, length, 1) uv (batchsize, length, 1) """ def __init__(self, sampling_rate, noise_std=0.003, voiced_threshod=0): super(SourceModuleCycNoise_v1, self).__init__() self.sampling_rate = sampling_rate self.noise_std = noise_std self.l_cyc_gen = CyclicNoiseGen_v1(sampling_rate, noise_std, voiced_threshod) def forward(self, f0_upsamped, beta): """ cyc, noise, uv = SourceModuleCycNoise_v1(F0, beta) F0_upsampled (batchsize, length, 1) beta (1) cyc (batchsize, length, 1) noise (batchsize, length, 1) uv (batchsize, length, 1) """ # source for harmonic branch cyc, pulse, sine, uv, add_noi = self.l_cyc_gen(f0_upsamped, beta) # source for noise branch, in the same shape as uv noise = torch.randn_like(uv) * self.noise_std / 3 return cyc, noise, uv class SourceModuleHnNSF(torch.nn.Module): """ SourceModule for hn-nsf SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, add_noise_std=0.003, voiced_threshod=0) sampling_rate: sampling_rate in Hz harmonic_num: number of harmonic above F0 (default: 0) sine_amp: amplitude of sine source signal (default: 0.1) add_noise_std: std of additive Gaussian noise (default: 0.003) note that amplitude of noise in unvoiced is decided by sine_amp voiced_threshold: threhold to set U/V given F0 (default: 0) Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) F0_sampled (batchsize, length, 1) Sine_source (batchsize, length, 1) noise_source (batchsize, length 1) uv (batchsize, length, 1) """ def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1, add_noise_std=0.003, voiced_threshod=0): super(SourceModuleHnNSF, self).__init__() self.sine_amp = sine_amp self.noise_std = add_noise_std # to produce sine waveforms self.l_sin_gen = SineGen(sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod) # to merge source harmonics into a single excitation self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) self.l_tanh = torch.nn.Tanh() def forward(self, x): """ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) F0_sampled (batchsize, length, 1) Sine_source (batchsize, length, 1) noise_source (batchsize, length 1) """ # source for harmonic branch sine_wavs, uv, _ = self.l_sin_gen(x) sine_merge = self.l_tanh(self.l_linear(sine_wavs)) # source for noise branch, in the same shape as uv noise = torch.randn_like(uv) * self.sine_amp / 3 return sine_merge, noise, uv if __name__ == '__main__': source = SourceModuleCycNoise_v1(24000) x = torch.randn(16, 25600, 1)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/models/source.py
from torch.optim import * # NOQA from .radam import * # NOQA
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/optimizers/__init__.py
# -*- coding: utf-8 -*- """RAdam optimizer. This code is drived from https://github.com/LiyuanLucasLiu/RAdam. """ import math import torch from torch.optim.optimizer import Optimizer class RAdam(Optimizer): """Rectified Adam optimizer.""" def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): """Initilize RAdam optimizer.""" defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.buffer = [[None, None, None] for ind in range(10)] super(RAdam, self).__init__(params, defaults) def __setstate__(self, state): """Set state.""" super(RAdam, self).__setstate__(state) def step(self, closure=None): """Run one step.""" loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 buffered = self.buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) # NOQA else: step_size = 1.0 / (1 - beta1 ** state['step']) buffered[2] = step_size if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) # more conservative since it's an approximated value if N_sma >= 5: denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) else: p_data_fp32.add_(-step_size * group['lr'], exp_avg) p.data.copy_(p_data_fp32) return loss
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/parallel_wavegan/optimizers/radam.py
from modules.commons.common_layers import * from modules.commons.common_layers import Embedding from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \ EnergyPredictor, FastspeechEncoder from utils.cwt import cwt2f0 from utils.hparams import hparams from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0 from modules.fastspeech.fs2 import FastSpeech2 class FastspeechMIDIEncoder(FastspeechEncoder): def forward_embedding(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding): # embed tokens and positions x = self.embed_scale * self.embed_tokens(txt_tokens) x = x + midi_embedding + midi_dur_embedding + slur_embedding if hparams['use_pos_embed']: if hparams.get('rel_pos') is not None and hparams['rel_pos']: x = self.embed_positions(x) else: positions = self.embed_positions(txt_tokens) x = x + positions x = F.dropout(x, p=self.dropout, training=self.training) return x def forward(self, txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding): """ :param txt_tokens: [B, T] :return: { 'encoder_out': [T x B x C] } """ encoder_padding_mask = txt_tokens.eq(self.padding_idx).data x = self.forward_embedding(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, H] x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask) return x FS_ENCODERS = { 'fft': lambda hp, embed_tokens, d: FastspeechMIDIEncoder( embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'], num_heads=hp['num_heads']), } class FastSpeech2MIDI(FastSpeech2): def __init__(self, dictionary, out_dims=None): super().__init__(dictionary, out_dims) del self.encoder self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary) self.midi_embed = Embedding(300, self.hidden_size, self.padding_idx) self.midi_dur_layer = Linear(1, self.hidden_size) self.is_slur_embed = Embedding(2, self.hidden_size) def forward(self, txt_tokens, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False, spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs): ret = {} midi_embedding = self.midi_embed(kwargs['pitch_midi']) midi_dur_embedding, slur_embedding = 0, 0 if kwargs.get('midi_dur') is not None: midi_dur_embedding = self.midi_dur_layer(kwargs['midi_dur'][:, :, None]) # [B, T, 1] -> [B, T, H] if kwargs.get('is_slur') is not None: slur_embedding = self.is_slur_embed(kwargs['is_slur']) encoder_out = self.encoder(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) # [B, T, C] src_nonpadding = (txt_tokens > 0).float()[:, :, None] # add ref style embed # Not implemented # variance encoder var_embed = 0 # encoder_out_dur denotes encoder outputs for duration predictor # in speech adaptation, duration predictor use old speaker embedding if hparams['use_spk_embed']: spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :] elif hparams['use_spk_id']: spk_embed_id = spk_embed if spk_embed_dur_id is None: spk_embed_dur_id = spk_embed_id if spk_embed_f0_id is None: spk_embed_f0_id = spk_embed_id spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :] spk_embed_dur = spk_embed_f0 = spk_embed if hparams['use_split_spk_id']: spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :] spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :] else: spk_embed_dur = spk_embed_f0 = spk_embed = 0 # add dur dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret) decoder_inp = F.pad(encoder_out, [0, 0, 1, 0]) mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]]) decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H] tgt_nonpadding = (mel2ph > 0).float()[:, :, None] # add pitch and energy embed pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding if hparams['use_pitch_embed']: pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph) if hparams['use_energy_embed']: decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret) ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding if skip_decoder: return ret ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) return ret
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/diffsinger_midi/fs2.py
import math import torch from torch import nn from torch.nn import Parameter import torch.onnx.operators import torch.nn.functional as F import utils class Reshape(nn.Module): def __init__(self, *args): super(Reshape, self).__init__() self.shape = args def forward(self, x): return x.view(self.shape) class Permute(nn.Module): def __init__(self, *args): super(Permute, self).__init__() self.args = args def forward(self, x): return x.permute(self.args) class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super(ConvNorm, self).__init__() if padding is None: assert (kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): conv_signal = self.conv(signal) return conv_signal def Embedding(num_embeddings, embedding_dim, padding_idx=None): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) return m def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): if not export and torch.cuda.is_available(): try: from apex.normalization import FusedLayerNorm return FusedLayerNorm(normalized_shape, eps, elementwise_affine) except ImportError: pass return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.) return m class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx, ) self.register_buffer('_float_tensor', torch.FloatTensor(1)) @staticmethod def get_embedding(num_embeddings, embedding_dim, padding_idx=None): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input.shape[:2] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx, ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = utils.make_positions(input, self.padding_idx) if positions is None else positions return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() def max_positions(self): """Maximum number of supported positions.""" return int(1e5) # an arbitrary large number class ConvTBC(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding=0): super(ConvTBC, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.weight = torch.nn.Parameter(torch.Tensor( self.kernel_size, in_channels, out_channels)) self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) def forward(self, input): return torch.conv_tbc(input.contiguous(), self.weight, self.bias, self.padding) class MultiheadAttention(nn.Module): def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \ 'value to be of the same size' if self.qkv_same_dim: self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) else: self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.enable_torch_version = False if hasattr(F, "multi_head_attention_forward"): self.enable_torch_version = True else: self.enable_torch_version = False self.last_attn_probs = None def reset_parameters(self): if self.qkv_same_dim: nn.init.xavier_uniform_(self.in_proj_weight) else: nn.init.xavier_uniform_(self.k_proj_weight) nn.init.xavier_uniform_(self.v_proj_weight) nn.init.xavier_uniform_(self.q_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.) nn.init.constant_(self.out_proj.bias, 0.) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None, before_softmax=False, need_head_weights=False, enc_dec_attn_constraint_mask=None, reset_attn_weight=None ): """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None: if self.qkv_same_dim: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask) else: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) if incremental_state is not None: print('Not implemented error.') exit() else: saved_state = None if self.self_attention: # self-attention q, k, v = self.in_proj_qkv(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k = self.in_proj_k(key) v = self.in_proj_v(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if saved_state is not None: print('Not implemented error.') exit() src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: if len(attn_mask.shape) == 2: attn_mask = attn_mask.unsqueeze(0) elif len(attn_mask.shape) == 3: attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( bsz * self.num_heads, tgt_len, src_len) attn_weights = attn_weights + attn_mask if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( enc_dec_attn_constraint_mask.unsqueeze(2).bool(), -1e9, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -1e9, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) if reset_attn_weight is not None: if reset_attn_weight: self.last_attn_probs = attn_probs.detach() else: assert self.last_attn_probs is not None attn_probs = self.last_attn_probs attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) else: attn_weights = None return attn, (attn_weights, attn_logits) def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_q(self, query): if self.qkv_same_dim: return self._in_proj(query, end=self.embed_dim) else: bias = self.in_proj_bias if bias is not None: bias = bias[:self.embed_dim] return F.linear(query, self.q_proj_weight, bias) def in_proj_k(self, key): if self.qkv_same_dim: return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) else: weight = self.k_proj_weight bias = self.in_proj_bias if bias is not None: bias = bias[self.embed_dim:2 * self.embed_dim] return F.linear(key, weight, bias) def in_proj_v(self, value): if self.qkv_same_dim: return self._in_proj(value, start=2 * self.embed_dim) else: weight = self.v_proj_weight bias = self.in_proj_bias if bias is not None: bias = bias[2 * self.embed_dim:] return F.linear(value, weight, bias) def _in_proj(self, input, start=0, end=None): weight = self.in_proj_weight bias = self.in_proj_bias weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): return attn_weights class Swish(torch.autograd.Function): @staticmethod def forward(ctx, i): result = i * torch.sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_variables[0] sigmoid_i = torch.sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) class CustomSwish(nn.Module): def forward(self, input_tensor): return Swish.apply(input_tensor) class TransformerFFNLayer(nn.Module): def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'): super().__init__() self.kernel_size = kernel_size self.dropout = dropout self.act = act if padding == 'SAME': self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2) elif padding == 'LEFT': self.ffn_1 = nn.Sequential( nn.ConstantPad1d((kernel_size - 1, 0), 0.0), nn.Conv1d(hidden_size, filter_size, kernel_size) ) self.ffn_2 = Linear(filter_size, hidden_size) if self.act == 'swish': self.swish_fn = CustomSwish() def forward(self, x, incremental_state=None): # x: T x B x C if incremental_state is not None: assert incremental_state is None, 'Nar-generation does not allow this.' exit(1) x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1) x = x * self.kernel_size ** -0.5 if incremental_state is not None: x = x[-1:] if self.act == 'gelu': x = F.gelu(x) if self.act == 'relu': x = F.relu(x) if self.act == 'swish': x = self.swish_fn(x) x = F.dropout(x, self.dropout, training=self.training) x = self.ffn_2(x) return x class BatchNorm1dTBC(nn.Module): def __init__(self, c): super(BatchNorm1dTBC, self).__init__() self.bn = nn.BatchNorm1d(c) def forward(self, x): """ :param x: [T, B, C] :return: [T, B, C] """ x = x.permute(1, 2, 0) # [B, C, T] x = self.bn(x) # [B, C, T] x = x.permute(2, 0, 1) # [T, B, C] return x class EncSALayer(nn.Module): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, padding='SAME', norm='ln', act='gelu'): super().__init__() self.c = c self.dropout = dropout self.num_heads = num_heads if num_heads > 0: if norm == 'ln': self.layer_norm1 = LayerNorm(c) elif norm == 'bn': self.layer_norm1 = BatchNorm1dTBC(c) self.self_attn = MultiheadAttention( self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False, ) if norm == 'ln': self.layer_norm2 = LayerNorm(c) elif norm == 'bn': self.layer_norm2 = BatchNorm1dTBC(c) self.ffn = TransformerFFNLayer( c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act) def forward(self, x, encoder_padding_mask=None, **kwargs): layer_norm_training = kwargs.get('layer_norm_training', None) if layer_norm_training is not None: self.layer_norm1.training = layer_norm_training self.layer_norm2.training = layer_norm_training if self.num_heads > 0: residual = x x = self.layer_norm1(x) x, _, = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask ) x = F.dropout(x, self.dropout, training=self.training) x = residual + x x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] residual = x x = self.layer_norm2(x) x = self.ffn(x) x = F.dropout(x, self.dropout, training=self.training) x = residual + x x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] return x class DecSALayer(nn.Module): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, act='gelu'): super().__init__() self.c = c self.dropout = dropout self.layer_norm1 = LayerNorm(c) self.self_attn = MultiheadAttention( c, num_heads, self_attention=True, dropout=attention_dropout, bias=False ) self.layer_norm2 = LayerNorm(c) self.encoder_attn = MultiheadAttention( c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False, ) self.layer_norm3 = LayerNorm(c) self.ffn = TransformerFFNLayer( c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) def forward( self, x, encoder_out=None, encoder_padding_mask=None, incremental_state=None, self_attn_mask=None, self_attn_padding_mask=None, attn_out=None, reset_attn_weight=None, **kwargs, ): layer_norm_training = kwargs.get('layer_norm_training', None) if layer_norm_training is not None: self.layer_norm1.training = layer_norm_training self.layer_norm2.training = layer_norm_training self.layer_norm3.training = layer_norm_training residual = x x = self.layer_norm1(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask ) x = F.dropout(x, self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm2(x) if encoder_out is not None: x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, enc_dec_attn_constraint_mask=None, #utils.get_incremental_state(self, incremental_state, 'enc_dec_attn_constraint_mask'), reset_attn_weight=reset_attn_weight ) attn_logits = attn[1] else: assert attn_out is not None x = self.encoder_attn.in_proj_v(attn_out.transpose(0, 1)) attn_logits = None x = F.dropout(x, self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm3(x) x = self.ffn(x, incremental_state=incremental_state) x = F.dropout(x, self.dropout, training=self.training) x = residual + x # if len(attn_logits.size()) > 3: # indices = attn_logits.softmax(-1).max(-1).values.sum(-1).argmax(-1) # attn_logits = attn_logits.gather(1, # indices[:, None, None, None].repeat(1, 1, attn_logits.size(-2), attn_logits.size(-1))).squeeze(1) return x, attn_logits
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/common_layers.py
# ''' # https://github.com/One-sixth/ms_ssim_pytorch/blob/master/ssim.py # ''' # # import torch # import torch.jit # import torch.nn.functional as F # # # @torch.jit.script # def create_window(window_size: int, sigma: float, channel: int): # ''' # Create 1-D gauss kernel # :param window_size: the size of gauss kernel # :param sigma: sigma of normal distribution # :param channel: input channel # :return: 1D kernel # ''' # coords = torch.arange(window_size, dtype=torch.float) # coords -= window_size // 2 # # g = torch.exp(-(coords ** 2) / (2 * sigma ** 2)) # g /= g.sum() # # g = g.reshape(1, 1, 1, -1).repeat(channel, 1, 1, 1) # return g # # # @torch.jit.script # def _gaussian_filter(x, window_1d, use_padding: bool): # ''' # Blur input with 1-D kernel # :param x: batch of tensors to be blured # :param window_1d: 1-D gauss kernel # :param use_padding: padding image before conv # :return: blured tensors # ''' # C = x.shape[1] # padding = 0 # if use_padding: # window_size = window_1d.shape[3] # padding = window_size // 2 # out = F.conv2d(x, window_1d, stride=1, padding=(0, padding), groups=C) # out = F.conv2d(out, window_1d.transpose(2, 3), stride=1, padding=(padding, 0), groups=C) # return out # # # @torch.jit.script # def ssim(X, Y, window, data_range: float, use_padding: bool = False): # ''' # Calculate ssim index for X and Y # :param X: images [B, C, H, N_bins] # :param Y: images [B, C, H, N_bins] # :param window: 1-D gauss kernel # :param data_range: value range of input images. (usually 1.0 or 255) # :param use_padding: padding image before conv # :return: # ''' # # K1 = 0.01 # K2 = 0.03 # compensation = 1.0 # # C1 = (K1 * data_range) ** 2 # C2 = (K2 * data_range) ** 2 # # mu1 = _gaussian_filter(X, window, use_padding) # mu2 = _gaussian_filter(Y, window, use_padding) # sigma1_sq = _gaussian_filter(X * X, window, use_padding) # sigma2_sq = _gaussian_filter(Y * Y, window, use_padding) # sigma12 = _gaussian_filter(X * Y, window, use_padding) # # mu1_sq = mu1.pow(2) # mu2_sq = mu2.pow(2) # mu1_mu2 = mu1 * mu2 # # sigma1_sq = compensation * (sigma1_sq - mu1_sq) # sigma2_sq = compensation * (sigma2_sq - mu2_sq) # sigma12 = compensation * (sigma12 - mu1_mu2) # # cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) # # Fixed the issue that the negative value of cs_map caused ms_ssim to output Nan. # cs_map = cs_map.clamp_min(0.) # ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map # # ssim_val = ssim_map.mean(dim=(1, 2, 3)) # reduce along CHW # cs = cs_map.mean(dim=(1, 2, 3)) # # return ssim_val, cs # # # @torch.jit.script # def ms_ssim(X, Y, window, data_range: float, weights, use_padding: bool = False, eps: float = 1e-8): # ''' # interface of ms-ssim # :param X: a batch of images, (N,C,H,W) # :param Y: a batch of images, (N,C,H,W) # :param window: 1-D gauss kernel # :param data_range: value range of input images. (usually 1.0 or 255) # :param weights: weights for different levels # :param use_padding: padding image before conv # :param eps: use for avoid grad nan. # :return: # ''' # levels = weights.shape[0] # cs_vals = [] # ssim_vals = [] # for _ in range(levels): # ssim_val, cs = ssim(X, Y, window=window, data_range=data_range, use_padding=use_padding) # # Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf. # ssim_val = ssim_val.clamp_min(eps) # cs = cs.clamp_min(eps) # cs_vals.append(cs) # # ssim_vals.append(ssim_val) # padding = (X.shape[2] % 2, X.shape[3] % 2) # X = F.avg_pool2d(X, kernel_size=2, stride=2, padding=padding) # Y = F.avg_pool2d(Y, kernel_size=2, stride=2, padding=padding) # # cs_vals = torch.stack(cs_vals, dim=0) # ms_ssim_val = torch.prod((cs_vals[:-1] ** weights[:-1].unsqueeze(1)) * (ssim_vals[-1] ** weights[-1]), dim=0) # return ms_ssim_val # # # class SSIM(torch.jit.ScriptModule): # __constants__ = ['data_range', 'use_padding'] # # def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False): # ''' # :param window_size: the size of gauss kernel # :param window_sigma: sigma of normal distribution # :param data_range: value range of input images. (usually 1.0 or 255) # :param channel: input channels (default: 3) # :param use_padding: padding image before conv # ''' # super().__init__() # assert window_size % 2 == 1, 'Window size must be odd.' # window = create_window(window_size, window_sigma, channel) # self.register_buffer('window', window) # self.data_range = data_range # self.use_padding = use_padding # # @torch.jit.script_method # def forward(self, X, Y): # r = ssim(X, Y, window=self.window, data_range=self.data_range, use_padding=self.use_padding) # return r[0] # # # class MS_SSIM(torch.jit.ScriptModule): # __constants__ = ['data_range', 'use_padding', 'eps'] # # def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False, weights=None, # levels=None, eps=1e-8): # ''' # class for ms-ssim # :param window_size: the size of gauss kernel # :param window_sigma: sigma of normal distribution # :param data_range: value range of input images. (usually 1.0 or 255) # :param channel: input channels # :param use_padding: padding image before conv # :param weights: weights for different levels. (default [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]) # :param levels: number of downsampling # :param eps: Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf. # ''' # super().__init__() # assert window_size % 2 == 1, 'Window size must be odd.' # self.data_range = data_range # self.use_padding = use_padding # self.eps = eps # # window = create_window(window_size, window_sigma, channel) # self.register_buffer('window', window) # # if weights is None: # weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333] # weights = torch.tensor(weights, dtype=torch.float) # # if levels is not None: # weights = weights[:levels] # weights = weights / weights.sum() # # self.register_buffer('weights', weights) # # @torch.jit.script_method # def forward(self, X, Y): # return ms_ssim(X, Y, window=self.window, data_range=self.data_range, weights=self.weights, # use_padding=self.use_padding, eps=self.eps) # # # if __name__ == '__main__': # print('Simple Test') # im = torch.randint(0, 255, (5, 3, 256, 256), dtype=torch.float, device='cuda') # img1 = im / 255 # img2 = img1 * 0.5 # # losser = SSIM(data_range=1.).cuda() # loss = losser(img1, img2).mean() # # losser2 = MS_SSIM(data_range=1.).cuda() # loss2 = losser2(img1, img2).mean() # # print(loss.item()) # print(loss2.item()) # # if __name__ == '__main__': # print('Training Test') # import cv2 # import torch.optim # import numpy as np # import imageio # import time # # out_test_video = False # # 最好不要直接输出gif图,会非常大,最好先输出mkv文件后用ffmpeg转换到GIF # video_use_gif = False # # im = cv2.imread('test_img1.jpg', 1) # t_im = torch.from_numpy(im).cuda().permute(2, 0, 1).float()[None] / 255. # # if out_test_video: # if video_use_gif: # fps = 0.5 # out_wh = (im.shape[1] // 2, im.shape[0] // 2) # suffix = '.gif' # else: # fps = 5 # out_wh = (im.shape[1], im.shape[0]) # suffix = '.mkv' # video_last_time = time.perf_counter() # video = imageio.get_writer('ssim_test' + suffix, fps=fps) # # # 测试ssim # print('Training SSIM') # rand_im = torch.randint_like(t_im, 0, 255, dtype=torch.float32) / 255. # rand_im.requires_grad = True # optim = torch.optim.Adam([rand_im], 0.003, eps=1e-8) # losser = SSIM(data_range=1., channel=t_im.shape[1]).cuda() # ssim_score = 0 # while ssim_score < 0.999: # optim.zero_grad() # loss = losser(rand_im, t_im) # (-loss).sum().backward() # ssim_score = loss.item() # optim.step() # r_im = np.transpose(rand_im.detach().cpu().numpy().clip(0, 1) * 255, [0, 2, 3, 1]).astype(np.uint8)[0] # r_im = cv2.putText(r_im, 'ssim %f' % ssim_score, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2) # # if out_test_video: # if time.perf_counter() - video_last_time > 1. / fps: # video_last_time = time.perf_counter() # out_frame = cv2.cvtColor(r_im, cv2.COLOR_BGR2RGB) # out_frame = cv2.resize(out_frame, out_wh, interpolation=cv2.INTER_AREA) # if isinstance(out_frame, cv2.UMat): # out_frame = out_frame.get() # video.append_data(out_frame) # # cv2.imshow('ssim', r_im) # cv2.setWindowTitle('ssim', 'ssim %f' % ssim_score) # cv2.waitKey(1) # # if out_test_video: # video.close() # # # 测试ms_ssim # if out_test_video: # if video_use_gif: # fps = 0.5 # out_wh = (im.shape[1] // 2, im.shape[0] // 2) # suffix = '.gif' # else: # fps = 5 # out_wh = (im.shape[1], im.shape[0]) # suffix = '.mkv' # video_last_time = time.perf_counter() # video = imageio.get_writer('ms_ssim_test' + suffix, fps=fps) # # print('Training MS_SSIM') # rand_im = torch.randint_like(t_im, 0, 255, dtype=torch.float32) / 255. # rand_im.requires_grad = True # optim = torch.optim.Adam([rand_im], 0.003, eps=1e-8) # losser = MS_SSIM(data_range=1., channel=t_im.shape[1]).cuda() # ssim_score = 0 # while ssim_score < 0.999: # optim.zero_grad() # loss = losser(rand_im, t_im) # (-loss).sum().backward() # ssim_score = loss.item() # optim.step() # r_im = np.transpose(rand_im.detach().cpu().numpy().clip(0, 1) * 255, [0, 2, 3, 1]).astype(np.uint8)[0] # r_im = cv2.putText(r_im, 'ms_ssim %f' % ssim_score, (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2) # # if out_test_video: # if time.perf_counter() - video_last_time > 1. / fps: # video_last_time = time.perf_counter() # out_frame = cv2.cvtColor(r_im, cv2.COLOR_BGR2RGB) # out_frame = cv2.resize(out_frame, out_wh, interpolation=cv2.INTER_AREA) # if isinstance(out_frame, cv2.UMat): # out_frame = out_frame.get() # video.append_data(out_frame) # # cv2.imshow('ms_ssim', r_im) # cv2.setWindowTitle('ms_ssim', 'ms_ssim %f' % ssim_score) # cv2.waitKey(1) # # if out_test_video: # video.close() """ Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim """ import torch import torch.nn.functional as F from torch.autograd import Variable import numpy as np from math import exp def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1) class SSIM(torch.nn.Module): def __init__(self, window_size=11, size_average=True): super(SSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window(window_size, self.channel) def forward(self, img1, img2): (_, channel, _, _) = img1.size() if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = create_window(self.window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return _ssim(img1, img2, window, self.window_size, channel, self.size_average) window = None def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.size() global window if window is None: window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/ssim.py
import torch from torch import nn def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts class WN(torch.nn.Module): def __init__(self, hidden_size, kernel_size, dilation_rate, n_layers, c_cond=0, p_dropout=0, share_cond_layers=False, is_BTC=False): super(WN, self).__init__() assert (kernel_size % 2 == 1) assert (hidden_size % 2 == 0) self.is_BTC = is_BTC self.hidden_size = hidden_size self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = c_cond self.p_dropout = p_dropout self.share_cond_layers = share_cond_layers self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if c_cond != 0 and not share_cond_layers: cond_layer = torch.nn.Conv1d(c_cond, 2 * hidden_size * n_layers, 1) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d(hidden_size, 2 * hidden_size, kernel_size, dilation=dilation, padding=padding) in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_size else: res_skip_channels = hidden_size res_skip_layer = torch.nn.Conv1d(hidden_size, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, x, nonpadding=None, cond=None): if self.is_BTC: x = x.transpose(1, 2) cond = cond.transpose(1, 2) if cond is not None else None nonpadding = nonpadding.transpose(1, 2) if nonpadding is not None else None if nonpadding is None: nonpadding = 1 output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_size]) if cond is not None and not self.share_cond_layers: cond = self.cond_layer(cond) for i in range(self.n_layers): x_in = self.in_layers[i](x) x_in = self.drop(x_in) if cond is not None: cond_offset = i * 2 * self.hidden_size cond_l = cond[:, cond_offset:cond_offset + 2 * self.hidden_size, :] else: cond_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, cond_l, n_channels_tensor) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: x = (x + res_skip_acts[:, :self.hidden_size, :]) * nonpadding output = output + res_skip_acts[:, self.hidden_size:, :] else: output = output + res_skip_acts output = output * nonpadding if self.is_BTC: output = output.transpose(1, 2) return output def remove_weight_norm(self): def remove_weight_norm(m): try: nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/wavenet.py
import math import torch from torch import nn from torch.nn import functional as F from utils.hparams import hparams from modules.commons.common_layers import Embedding from utils.tts_utils import group_hidden_by_segs, expand_word2ph import transformers def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def shift_1d(x): x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] return x def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) class Encoder(nn.Module): def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=None, block_length=None, pre_ln=False, **kwargs): super().__init__() self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.block_length = block_length self.pre_ln = pre_ln self.drop = nn.Dropout(p_dropout) self.attn_layers = nn.ModuleList() self.norm_layers_1 = nn.ModuleList() self.ffn_layers = nn.ModuleList() self.norm_layers_2 = nn.ModuleList() for i in range(self.n_layers): self.attn_layers.append( MultiHeadAttention(hidden_channels, hidden_channels, n_heads, window_size=window_size, p_dropout=p_dropout, block_length=block_length)) self.norm_layers_1.append(LayerNorm(hidden_channels)) self.ffn_layers.append( FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) self.norm_layers_2.append(LayerNorm(hidden_channels)) if pre_ln: self.last_ln = LayerNorm(hidden_channels) def forward(self, x, x_mask): attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) for i in range(self.n_layers): x = x * x_mask x_ = x if self.pre_ln: x = self.norm_layers_1[i](x) y = self.attn_layers[i](x, x, attn_mask) y = self.drop(y) x = x_ + y if not self.pre_ln: x = self.norm_layers_1[i](x) x_ = x if self.pre_ln: x = self.norm_layers_2[i](x) y = self.ffn_layers[i](x, x_mask) y = self.drop(y) x = x_ + y if not self.pre_ln: x = self.norm_layers_2[i](x) if self.pre_ln: x = self.last_ln(x) x = x * x_mask return x class MultiHeadAttention(nn.Module): def __init__(self, channels, out_channels, n_heads, window_size=None, heads_share=True, p_dropout=0., block_length=None, proximal_bias=False, proximal_init=False): super().__init__() assert channels % n_heads == 0 self.channels = channels self.out_channels = out_channels self.n_heads = n_heads self.window_size = window_size self.heads_share = heads_share self.block_length = block_length self.proximal_bias = proximal_bias self.p_dropout = p_dropout self.attn = None self.k_channels = channels // n_heads self.conv_q = nn.Conv1d(channels, channels, 1) self.conv_k = nn.Conv1d(channels, channels, 1) self.conv_v = nn.Conv1d(channels, channels, 1) if window_size is not None: n_heads_rel = 1 if heads_share else n_heads rel_stddev = self.k_channels ** -0.5 self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) self.conv_o = nn.Conv1d(channels, out_channels, 1) self.drop = nn.Dropout(p_dropout) nn.init.xavier_uniform_(self.conv_q.weight) nn.init.xavier_uniform_(self.conv_k.weight) if proximal_init: self.conv_k.weight.data.copy_(self.conv_q.weight.data) self.conv_k.bias.data.copy_(self.conv_q.bias.data) nn.init.xavier_uniform_(self.conv_v.weight) def forward(self, x, c, attn_mask=None): q = self.conv_q(x) k = self.conv_k(c) v = self.conv_v(c) x, self.attn = self.attention(q, k, v, mask=attn_mask) x = self.conv_o(x) return x def attention(self, query, key, value, mask=None): # reshape [b, d, t] -> [b, n_h, t, d_k] b, d, t_s, t_t = (*key.size(), query.size(2)) query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) if self.window_size is not None: assert t_s == t_t, "Relative attention is only available for self-attention." key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) rel_logits = self._relative_position_to_absolute_position(rel_logits) scores_local = rel_logits / math.sqrt(self.k_channels) scores = scores + scores_local if self.proximal_bias: assert t_s == t_t, "Proximal bias is only available for self-attention." scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) if mask is not None: scores = scores.masked_fill(mask == 0, -1e4) if self.block_length is not None: block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) scores = scores * block_mask + -1e4 * (1 - block_mask) p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] p_attn = self.drop(p_attn) output = torch.matmul(p_attn, value) if self.window_size is not None: relative_weights = self._absolute_position_to_relative_position(p_attn) value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] return output, p_attn def _matmul_with_relative_values(self, x, y): """ x: [b, h, l, m] y: [h or 1, m, d] ret: [b, h, l, d] """ ret = torch.matmul(x, y.unsqueeze(0)) return ret def _matmul_with_relative_keys(self, x, y): """ x: [b, h, l, d] y: [h or 1, m, d] ret: [b, h, l, m] """ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) return ret def _get_relative_embeddings(self, relative_embeddings, length): max_relative_position = 2 * self.window_size + 1 # Pad first before slice to avoid using cond ops. pad_length = max(length - (self.window_size + 1), 0) slice_start_position = max((self.window_size + 1) - length, 0) slice_end_position = slice_start_position + 2 * length - 1 if pad_length > 0: padded_relative_embeddings = F.pad( relative_embeddings, convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) else: padded_relative_embeddings = relative_embeddings used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] return used_relative_embeddings def _relative_position_to_absolute_position(self, x): """ x: [b, h, l, 2*l-1] ret: [b, h, l, l] """ batch, heads, length, _ = x.size() # Concat columns of pad to shift from relative to absolute indexing. x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) # Concat extra elements so to add up to shape (len+1, 2*len-1). x_flat = x.view([batch, heads, length * 2 * length]) x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])) # Reshape and slice out the padded elements. x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:] return x_final def _absolute_position_to_relative_position(self, x): """ x: [b, h, l, l] ret: [b, h, l, 2*l-1] """ batch, heads, length, _ = x.size() # padd along column x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])) x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)]) # add 0's in the beginning that will skew the elements after reshape x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])) x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] return x_final def _attention_bias_proximal(self, length): """Bias for self-attention to encourage attention to close positions. Args: length: an integer scalar. Returns: a Tensor with shape [1, 1, length, length] """ r = torch.arange(length, dtype=torch.float32) diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) class FFN(nn.Module): def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.activation = activation self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.conv_2 = nn.Conv1d(filter_channels, out_channels, 1) self.drop = nn.Dropout(p_dropout) def forward(self, x, x_mask): x = self.conv_1(x * x_mask) if self.activation == "gelu": x = x * torch.sigmoid(1.702 * x) else: x = torch.relu(x) x = self.drop(x) x = self.conv_2(x * x_mask) return x * x_mask class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-4): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): n_dims = len(x.shape) mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) shape = [1, -1] + [1] * (n_dims - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class ConvReluNorm(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout assert n_layers > 1, "Number of layers should be larger than 0." self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = nn.Sequential( nn.ReLU(), nn.Dropout(p_dropout)) for _ in range(n_layers - 1): self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): x_org = x for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x) x = self.relu_drop(x) x = x_org + self.proj(x) return x * x_mask class RelTransformerEncoder(nn.Module): def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout=0.0, window_size=4, block_length=None, prenet=True, pre_ln=True, ): super().__init__() self.n_vocab = n_vocab self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.block_length = block_length self.prenet = prenet if n_vocab > 0: self.emb = Embedding(n_vocab, hidden_channels, padding_idx=0) if prenet: self.pre = ConvReluNorm(hidden_channels, hidden_channels, hidden_channels, kernel_size=5, n_layers=3, p_dropout=0) self.encoder = Encoder( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, window_size=window_size, block_length=block_length, pre_ln=pre_ln, ) def forward(self, x, x_mask=None): if self.n_vocab > 0: x_lengths = (x > 0).long().sum(-1) x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] else: x_lengths = (x.abs().sum(-1) > 0).long().sum(-1) x = torch.transpose(x, 1, -1) # [b, h, t] x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) if self.prenet: x = self.pre(x, x_mask) x = self.encoder(x, x_mask) return x.transpose(1, 2) class Pooler(nn.Module): """ Parameter-free poolers to get the sentence embedding 'cls': [CLS] representation with BERT/RoBERTa's MLP pooler. 'cls_before_pooler': [CLS] representation without the original MLP pooler. 'avg': average of the last layers' hidden states at each token. 'avg_top2': average of the last two layers. 'avg_first_last': average of the first and the last layers. """ def __init__(self, pooler_type): super().__init__() self.pooler_type = pooler_type assert self.pooler_type in ["cls", "cls_before_pooler", "avg", "avg_top2", "avg_first_last"], "unrecognized pooling type %s" % self.pooler_type def forward(self, attention_mask, outputs): last_hidden = outputs.last_hidden_state pooler_output = outputs.pooler_output hidden_states = outputs.hidden_states if self.pooler_type in ['cls_before_pooler', 'cls']: return last_hidden[:, 0] elif self.pooler_type == "avg": return ((last_hidden * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)) elif self.pooler_type == "avg_first_last": first_hidden = hidden_states[0] last_hidden = hidden_states[-1] pooled_result = ((first_hidden + last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1) return pooled_result elif self.pooler_type == "avg_top2": second_last_hidden = hidden_states[-2] last_hidden = hidden_states[-1] pooled_result = ((last_hidden + second_last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1) return pooled_result else: raise NotImplementedError class Similarity(nn.Module): """ Dot product or cosine similarity """ def __init__(self, temp): super().__init__() self.temp = temp self.cos = nn.CosineSimilarity(dim=-1) self.record = None self.pos_avg = 0.0 self.neg_avg = 0.0 def forward(self, x, y): sim = self.cos(x, y) self.record = sim.detach() # [64,64] min_size = min(self.record.shape[0], self.record.shape[1]) # 64 num_item = self.record.shape[0] * self.record.shape[1] # 4096 self.pos_avg = self.record.diag().sum() / min_size if num_item - min_size == 0: self.neg_avg = (self.record.sum() - self.record.diag().sum()) / 1 return sim / self.temp if torch.any(torch.isnan(self.record)).item() is True: print("we got self.record has nan when compute neg_avg") if torch.any(torch.isnan(self.record.diag())).item() is True: print("we got self.record.diag() has nan when compute neg_avg") self.neg_avg = (self.record.sum() - self.record.diag().sum()) / (num_item - min_size) return sim / self.temp class BertPredictionHeadTransform(nn.Module): def __init__(self, hidden_size): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.transform_act_fn = F.gelu self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, hid_dim, out_dim): super().__init__() self.transform = BertPredictionHeadTransform(hid_dim) self.decoder = nn.Linear(hid_dim, out_dim, bias=False) self.bias = nn.Parameter(torch.zeros(out_dim)) self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # V2_2 # change add to concat. # now support finetune BERT # grad_bert=0.1 & trainable_block_idx=0 class BERTRelTransformerEncoder(nn.Module): def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout=0.0, window_size=4, block_length=None, prenet=True, pre_ln=True, ): super().__init__() self.n_vocab = n_vocab self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.window_size = window_size self.block_length = block_length self.prenet = prenet if n_vocab > 0: self.emb = Embedding(n_vocab, hidden_channels, padding_idx=0) if prenet: self.pre = ConvReluNorm(hidden_channels, hidden_channels, hidden_channels, kernel_size=5, n_layers=3, p_dropout=0) self.encoder1 = Encoder( hidden_channels, filter_channels, n_heads, n_layers//2, kernel_size, p_dropout, window_size=window_size, block_length=block_length, pre_ln=pre_ln, ) self.encoder2 = Encoder( hidden_channels, filter_channels, n_heads, n_layers - n_layers//2, kernel_size, p_dropout, window_size=window_size, block_length=block_length, pre_ln=pre_ln, ) if hparams['ds_name'] in ['ljspeech', 'libritts', 'librispeech']: model_name = 'bert-base-uncased' elif hparams['ds_name'] in ['biaobei', 'wenetspeech']: model_name = 'bert-base-chinese' else: raise NotImplementedError() self.tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) config = transformers.AutoConfig.from_pretrained(model_name) if hparams.get("load_bert_from_pretrained", True): print("Load BERT from pretrained model ...") self.bert = transformers.AutoModel.from_pretrained(model_name,config=config) trainable_start_block = hparams.get("bert_trainable_start_block", 0) else: print("Initialize BERT from scratch!") self.bert = transformers.BertModel(config=config) trainable_start_block = 0 for k, v in self.bert.named_parameters(): if 'embeddings' in k: v.requires_grad = False elif 'encoder.layer' in k: block_idx = int(k.split(".")[2]) if block_idx < trainable_start_block: v.requires_grad = False else: v.requires_grad = True elif 'cls' in k: v.requires_grad = True else: print("Unhandled key: {}, set to requires_grad...".format(k)) v.requires_grad = True self.bert_combine = nn.Sequential(*[ nn.Conv1d(768 + hidden_channels, hidden_channels, 3, 1, 1), nn.ReLU(), ]) self.pooler = Pooler("avg") self.sim = Similarity(temp=0.05) def forward(self, x, x_mask=None, bert_feats=None, ph2word=None, **kwargs): if self.n_vocab > 0: x_lengths = (x > 0).long().sum(-1) x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] else: x_lengths = (x.abs().sum(-1) > 0).long().sum(-1) x = torch.transpose(x, 1, -1) # [b, h, t] x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) if self.prenet: x = self.pre(x, x_mask) x = self.encoder1(x, x_mask) bert_outputs = self.bert(bert_feats['bert_input_ids'], attention_mask=bert_feats['bert_attention_mask'], token_type_ids=bert_feats['bert_token_type_ids'], output_hidden_states=True) bert_num_blocks = hparams.get("bert_num_blocks", 12) # total 1+12blocks in bert bert_embedding = bert_outputs['hidden_states'][bert_num_blocks] # bert_embedding = bert_outputs['last_hidden_state'] grad_bert = hparams.get("grad_bert", 0.1) bert_embedding = bert_embedding.detach() * (1-grad_bert) + bert_embedding * grad_bert bert_word_embedding, _ = group_hidden_by_segs(bert_embedding, bert_feats['bert_token2word'], bert_feats['bert_token2word'].max().item()) bert_ph_embedding = expand_word2ph(bert_word_embedding, ph2word) bert_ph_embedding = bert_ph_embedding.transpose(1,2) x = torch.cat([x, bert_ph_embedding], dim=1) x = self.bert_combine(x) x = self.encoder2(x, x_mask) return x.transpose(1, 2)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/rel_transformer.py
import math import torch from torch import nn from torch.nn import Parameter, Linear from modules.commons.common_layers import LayerNorm, Embedding from utils.tts_utils import get_incremental_state, set_incremental_state, softmax, make_positions import torch.nn.functional as F DEFAULT_MAX_SOURCE_POSITIONS = 2000 DEFAULT_MAX_TARGET_POSITIONS = 2000 class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx, ) self.register_buffer('_float_tensor', torch.FloatTensor(1)) @staticmethod def get_embedding(num_embeddings, embedding_dim, padding_idx=None): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input.shape[:2] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx, ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = make_positions(input, self.padding_idx) if positions is None else positions return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() def max_positions(self): """Maximum number of supported positions.""" return int(1e5) # an arbitrary large number class TransformerFFNLayer(nn.Module): def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'): super().__init__() self.kernel_size = kernel_size self.dropout = dropout self.act = act if padding == 'SAME': self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2) elif padding == 'LEFT': self.ffn_1 = nn.Sequential( nn.ConstantPad1d((kernel_size - 1, 0), 0.0), nn.Conv1d(hidden_size, filter_size, kernel_size) ) self.ffn_2 = Linear(filter_size, hidden_size) def forward(self, x, incremental_state=None): # x: T x B x C if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_input' in saved_state: prev_input = saved_state['prev_input'] x = torch.cat((prev_input, x), dim=0) x = x[-self.kernel_size:] saved_state['prev_input'] = x self._set_input_buffer(incremental_state, saved_state) x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1) x = x * self.kernel_size ** -0.5 if incremental_state is not None: x = x[-1:] if self.act == 'gelu': x = F.gelu(x) if self.act == 'relu': x = F.relu(x) x = F.dropout(x, self.dropout, training=self.training) x = self.ffn_2(x) return x def _get_input_buffer(self, incremental_state): return get_incremental_state( self, incremental_state, 'f', ) or {} def _set_input_buffer(self, incremental_state, buffer): set_incremental_state( self, incremental_state, 'f', buffer, ) def clear_buffer(self, incremental_state): if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_input' in saved_state: del saved_state['prev_input'] self._set_input_buffer(incremental_state, saved_state) class MultiheadAttention(nn.Module): def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \ 'value to be of the same size' if self.qkv_same_dim: self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) else: self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.enable_torch_version = False if hasattr(F, "multi_head_attention_forward"): self.enable_torch_version = True else: self.enable_torch_version = False self.last_attn_probs = None def reset_parameters(self): if self.qkv_same_dim: nn.init.xavier_uniform_(self.in_proj_weight) else: nn.init.xavier_uniform_(self.k_proj_weight) nn.init.xavier_uniform_(self.v_proj_weight) nn.init.xavier_uniform_(self.q_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.) nn.init.constant_(self.out_proj.bias, 0.) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None, before_softmax=False, need_head_weights=False, enc_dec_attn_constraint_mask=None, reset_attn_weight=None ): """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None: if self.qkv_same_dim: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask) else: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: # self-attention q, k, v = self.in_proj_qkv(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k = self.in_proj_k(key) v = self.in_proj_v(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if 'prev_key' in saved_state: prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: k = torch.cat((prev_key, k), dim=1) if 'prev_value' in saved_state: prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: v = torch.cat((prev_value, v), dim=1) if 'prev_key_padding_mask' in saved_state and saved_state['prev_key_padding_mask'] is not None: prev_key_padding_mask = saved_state['prev_key_padding_mask'] if static_kv: key_padding_mask = prev_key_padding_mask else: key_padding_mask = torch.cat((prev_key_padding_mask, key_padding_mask), dim=1) saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state['prev_key_padding_mask'] = key_padding_mask self._set_input_buffer(incremental_state, saved_state) src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: if len(attn_mask.shape) == 2: attn_mask = attn_mask.unsqueeze(0) elif len(attn_mask.shape) == 3: attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( bsz * self.num_heads, tgt_len, src_len) attn_weights = attn_weights + attn_mask if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( enc_dec_attn_constraint_mask.unsqueeze(2).bool(), -1e8, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -1e8, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) if reset_attn_weight is not None: if reset_attn_weight: self.last_attn_probs = attn_probs.detach() else: assert self.last_attn_probs is not None attn_probs = self.last_attn_probs attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) else: attn_weights = None return attn, (attn_weights, attn_logits) def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_q(self, query): if self.qkv_same_dim: return self._in_proj(query, end=self.embed_dim) else: bias = self.in_proj_bias if bias is not None: bias = bias[:self.embed_dim] return F.linear(query, self.q_proj_weight, bias) def in_proj_k(self, key): if self.qkv_same_dim: return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) else: weight = self.k_proj_weight bias = self.in_proj_bias if bias is not None: bias = bias[self.embed_dim:2 * self.embed_dim] return F.linear(key, weight, bias) def in_proj_v(self, value): if self.qkv_same_dim: return self._in_proj(value, start=2 * self.embed_dim) else: weight = self.v_proj_weight bias = self.in_proj_bias if bias is not None: bias = bias[2 * self.embed_dim:] return F.linear(value, weight, bias) def _in_proj(self, input, start=0, end=None): weight = self.in_proj_weight bias = self.in_proj_bias weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def _get_input_buffer(self, incremental_state): return get_incremental_state( self, incremental_state, 'attn_state', ) or {} def _set_input_buffer(self, incremental_state, buffer): set_incremental_state( self, incremental_state, 'attn_state', buffer, ) def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): return attn_weights def clear_buffer(self, incremental_state=None): if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: del saved_state['prev_key'] if 'prev_value' in saved_state: del saved_state['prev_value'] self._set_input_buffer(incremental_state, saved_state) class EncSALayer(nn.Module): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, padding='SAME', act='gelu'): super().__init__() self.c = c self.dropout = dropout self.num_heads = num_heads if num_heads > 0: self.layer_norm1 = LayerNorm(c) self.self_attn = MultiheadAttention( self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False) self.layer_norm2 = LayerNorm(c) self.ffn = TransformerFFNLayer( c, 4 * c, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act) def forward(self, x, encoder_padding_mask=None, **kwargs): layer_norm_training = kwargs.get('layer_norm_training', None) if layer_norm_training is not None: self.layer_norm1.training = layer_norm_training self.layer_norm2.training = layer_norm_training if self.num_heads > 0: residual = x x = self.layer_norm1(x) x, _, = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask ) x = F.dropout(x, self.dropout, training=self.training) x = residual + x x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] residual = x x = self.layer_norm2(x) x = self.ffn(x) x = F.dropout(x, self.dropout, training=self.training) x = residual + x x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] return x class DecSALayer(nn.Module): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, act='gelu'): super().__init__() self.c = c self.dropout = dropout self.layer_norm1 = LayerNorm(c) self.self_attn = MultiheadAttention( c, num_heads, self_attention=True, dropout=attention_dropout, bias=False ) self.layer_norm2 = LayerNorm(c) self.encoder_attn = MultiheadAttention( c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False, ) self.layer_norm3 = LayerNorm(c) self.ffn = TransformerFFNLayer( c, 4 * c, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) def forward( self, x, encoder_out=None, encoder_padding_mask=None, incremental_state=None, self_attn_mask=None, self_attn_padding_mask=None, attn_out=None, reset_attn_weight=None, **kwargs, ): layer_norm_training = kwargs.get('layer_norm_training', None) if layer_norm_training is not None: self.layer_norm1.training = layer_norm_training self.layer_norm2.training = layer_norm_training self.layer_norm3.training = layer_norm_training residual = x x = self.layer_norm1(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask ) x = F.dropout(x, self.dropout, training=self.training) x = residual + x attn_logits = None if encoder_out is not None or attn_out is not None: residual = x x = self.layer_norm2(x) if encoder_out is not None: x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, enc_dec_attn_constraint_mask=get_incremental_state(self, incremental_state, 'enc_dec_attn_constraint_mask'), reset_attn_weight=reset_attn_weight ) attn_logits = attn[1] elif attn_out is not None: x = self.encoder_attn.in_proj_v(attn_out) if encoder_out is not None or attn_out is not None: x = F.dropout(x, self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm3(x) x = self.ffn(x, incremental_state=incremental_state) x = F.dropout(x, self.dropout, training=self.training) x = residual + x return x, attn_logits def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None): self.encoder_attn.clear_buffer(incremental_state) self.ffn.clear_buffer(incremental_state) def set_buffer(self, name, tensor, incremental_state): return set_incremental_state(self, incremental_state, name, tensor) class TransformerEncoderLayer(nn.Module): def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=2): super().__init__() self.hidden_size = hidden_size self.dropout = dropout self.num_heads = num_heads self.op = EncSALayer( hidden_size, num_heads, dropout=dropout, attention_dropout=0.0, relu_dropout=dropout, kernel_size=kernel_size) def forward(self, x, **kwargs): return self.op(x, **kwargs) class TransformerDecoderLayer(nn.Module): def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=2): super().__init__() self.hidden_size = hidden_size self.dropout = dropout self.num_heads = num_heads self.op = DecSALayer( hidden_size, num_heads, dropout=dropout, attention_dropout=0.0, relu_dropout=dropout, kernel_size=kernel_size) def forward(self, x, **kwargs): return self.op(x, **kwargs) def clear_buffer(self, *args): return self.op.clear_buffer(*args) def set_buffer(self, *args): return self.op.set_buffer(*args) class FFTBlocks(nn.Module): def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=0.0, num_heads=2, use_pos_embed=True, use_last_norm=True, use_pos_embed_alpha=True): super().__init__() self.num_layers = num_layers embed_dim = self.hidden_size = hidden_size self.dropout = dropout self.use_pos_embed = use_pos_embed self.use_last_norm = use_last_norm if use_pos_embed: self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS self.padding_idx = 0 self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1 self.embed_positions = SinusoidalPositionalEmbedding( embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, ) self.layers = nn.ModuleList([]) self.layers.extend([ TransformerEncoderLayer(self.hidden_size, self.dropout, kernel_size=ffn_kernel_size, num_heads=num_heads) for _ in range(self.num_layers) ]) if self.use_last_norm: self.layer_norm = nn.LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False): """ :param x: [B, T, C] :param padding_mask: [B, T] :return: [B, T, C] or [L, B, T, C] """ padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] # [T, B, 1] if self.use_pos_embed: positions = self.pos_embed_alpha * self.embed_positions(x[..., 0]) x = x + positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) * nonpadding_mask_TB hiddens = [] for layer in self.layers: x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB hiddens.append(x) if self.use_last_norm: x = self.layer_norm(x) * nonpadding_mask_TB if return_hiddens: x = torch.stack(hiddens, 0) # [L, T, B, C] x = x.transpose(1, 2) # [L, B, T, C] else: x = x.transpose(0, 1) # [B, T, C] return x class FastSpeechEncoder(FFTBlocks): def __init__(self, dict_size, hidden_size=256, num_layers=4, kernel_size=9, num_heads=2, dropout=0.0): super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads, use_pos_embed=False, dropout=dropout) # use_pos_embed_alpha for compatibility self.embed_tokens = Embedding(dict_size, hidden_size, 0) self.embed_scale = math.sqrt(hidden_size) self.padding_idx = 0 self.embed_positions = SinusoidalPositionalEmbedding( hidden_size, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, ) def forward(self, txt_tokens, attn_mask=None): """ :param txt_tokens: [B, T] :return: { 'encoder_out': [B x T x C] } """ encoder_padding_mask = txt_tokens.eq(self.padding_idx).data x = self.forward_embedding(txt_tokens) # [B, T, H] if self.num_layers > 0: x = super(FastSpeechEncoder, self).forward(x, encoder_padding_mask, attn_mask=attn_mask) return x def forward_embedding(self, txt_tokens): # embed tokens and positions x = self.embed_scale * self.embed_tokens(txt_tokens) if self.use_pos_embed: positions = self.embed_positions(txt_tokens) x = x + positions x = F.dropout(x, p=self.dropout, training=self.training) return x class FastSpeechDecoder(FFTBlocks): def __init__(self, hidden_size=256, num_layers=4, kernel_size=9, num_heads=2): super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/transformer.py
import torch import torch.nn.functional as F def build_word_mask(x2word, y2word): return (x2word[:, :, None] == y2word[:, None, :]).long() def mel2ph_to_mel2word(mel2ph, ph2word): mel2word = (ph2word - 1).gather(1, (mel2ph - 1).clamp(min=0)) + 1 mel2word = mel2word * (mel2ph > 0).long() return mel2word def clip_mel2token_to_multiple(mel2token, frames_multiple): max_frames = mel2token.shape[1] // frames_multiple * frames_multiple mel2token = mel2token[:, :max_frames] return mel2token def expand_states(h, mel2token): h = F.pad(h, [0, 0, 1, 0]) mel2token_ = mel2token[..., None].repeat([1, 1, h.shape[-1]]) h = torch.gather(h, 1, mel2token_) # [B, T, H] return h
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/align_ops.py
import math import torch import torch.nn as nn import torch.nn.functional as F from modules.commons.common_layers import Embedding from modules.fastspeech.tts_modules import LayerNorm class LambdaLayer(nn.Module): def __init__(self, lambd): super(LambdaLayer, self).__init__() self.lambd = lambd def forward(self, x): return self.lambd(x) def init_weights_func(m): classname = m.__class__.__name__ if classname.find("Conv1d") != -1: torch.nn.init.xavier_uniform_(m.weight) class ResidualBlock(nn.Module): """Implements conv->PReLU->norm n-times""" def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0, c_multiple=2, ln_eps=1e-12): super(ResidualBlock, self).__init__() if norm_type == 'bn': norm_builder = lambda: nn.BatchNorm1d(channels) elif norm_type == 'in': norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True) elif norm_type == 'gn': norm_builder = lambda: nn.GroupNorm(8, channels) elif norm_type == 'ln': norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps) else: norm_builder = lambda: nn.Identity() self.blocks = [ nn.Sequential( norm_builder(), nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation, padding=(dilation * (kernel_size - 1)) // 2), LambdaLayer(lambda x: x * kernel_size ** -0.5), nn.GELU(), nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation), ) for i in range(n) ] self.blocks = nn.ModuleList(self.blocks) self.dropout = dropout def forward(self, x): nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] for b in self.blocks: x_ = b(x) if self.dropout > 0 and self.training: x_ = F.dropout(x_, self.dropout, training=self.training) x = x + x_ x = x * nonpadding return x class ConvBlocks(nn.Module): """Decodes the expanded phoneme encoding into spectrograms""" def __init__(self, hidden_size, out_dims, dilations, kernel_size, norm_type='ln', layers_in_block=2, c_multiple=2, dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True, num_layers=None, post_net_kernel=3): super(ConvBlocks, self).__init__() self.is_BTC = is_BTC if num_layers is not None: dilations = [1] * num_layers self.res_blocks = nn.Sequential( *[ResidualBlock(hidden_size, kernel_size, d, n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple, dropout=dropout, ln_eps=ln_eps) for d in dilations], ) if norm_type == 'bn': norm = nn.BatchNorm1d(hidden_size) elif norm_type == 'in': norm = nn.InstanceNorm1d(hidden_size, affine=True) elif norm_type == 'gn': norm = nn.GroupNorm(8, hidden_size) elif norm_type == 'ln': norm = LayerNorm(hidden_size, dim=1, eps=ln_eps) self.last_norm = norm self.post_net1 = nn.Conv1d(hidden_size, out_dims, kernel_size=post_net_kernel, padding=post_net_kernel // 2) if init_weights: self.apply(init_weights_func) def forward(self, x, nonpadding=None): """ :param x: [B, T, H] :return: [B, T, H] """ if self.is_BTC: x = x.transpose(1, 2) if nonpadding is None: nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] elif self.is_BTC: nonpadding = nonpadding.transpose(1, 2) x = self.res_blocks(x) * nonpadding x = self.last_norm(x) * nonpadding x = self.post_net1(x) * nonpadding if self.is_BTC: x = x.transpose(1, 2) return x class TextConvEncoder(ConvBlocks): def __init__(self, dict_size, hidden_size, out_dims, dilations, kernel_size, norm_type='ln', layers_in_block=2, c_multiple=2, dropout=0.0, ln_eps=1e-5, init_weights=True, num_layers=None, post_net_kernel=3): super().__init__(hidden_size, out_dims, dilations, kernel_size, norm_type, layers_in_block, c_multiple, dropout, ln_eps, init_weights, num_layers=num_layers, post_net_kernel=post_net_kernel) self.embed_tokens = Embedding(dict_size, hidden_size, 0) self.embed_scale = math.sqrt(hidden_size) def forward(self, txt_tokens): """ :param txt_tokens: [B, T] :return: { 'encoder_out': [B x T x C] } """ x = self.embed_scale * self.embed_tokens(txt_tokens) return super().forward(x) class ConditionalConvBlocks(ConvBlocks): def __init__(self, hidden_size, c_cond, c_out, dilations, kernel_size, norm_type='ln', layers_in_block=2, c_multiple=2, dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True, num_layers=None): super().__init__(hidden_size, c_out, dilations, kernel_size, norm_type, layers_in_block, c_multiple, dropout, ln_eps, init_weights, is_BTC=False, num_layers=num_layers) self.g_prenet = nn.Conv1d(c_cond, hidden_size, 3, padding=1) self.is_BTC_ = is_BTC if init_weights: self.g_prenet.apply(init_weights_func) def forward(self, x, cond, nonpadding=None): if self.is_BTC_: x = x.transpose(1, 2) cond = cond.transpose(1, 2) if nonpadding is not None: nonpadding = nonpadding.transpose(1, 2) if nonpadding is None: nonpadding = x.abs().sum(1)[:, None] x = x + self.g_prenet(cond) x = x * nonpadding x = super(ConditionalConvBlocks, self).forward(x) # input needs to be BTC if self.is_BTC_: x = x.transpose(1, 2) return x
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/conv.py
import math import torch class PositionalEncoding(torch.nn.Module): """Positional encoding. Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. reverse (bool): Whether to reverse the input position. """ def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): """Construct an PositionalEncoding object.""" super(PositionalEncoding, self).__init__() self.d_model = d_model self.reverse = reverse self.xscale = math.sqrt(self.d_model) self.dropout = torch.nn.Dropout(p=dropout_rate) self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, max_len)) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.d_model) if self.reverse: position = torch.arange( x.size(1) - 1, -1, -1.0, dtype=torch.float32 ).unsqueeze(1) else: position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, x: torch.Tensor): """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). """ self.extend_pe(x) x = x * self.xscale + self.pe[:, : x.size(1)] return self.dropout(x) class ScaledPositionalEncoding(PositionalEncoding): """Scaled positional encoding module. See Sec. 3.2 https://arxiv.org/abs/1809.08895 Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. """ def __init__(self, d_model, dropout_rate, max_len=5000): """Initialize class.""" super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len) self.alpha = torch.nn.Parameter(torch.tensor(1.0)) def reset_parameters(self): """Reset parameters.""" self.alpha.data = torch.tensor(1.0) def forward(self, x): """Add positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). """ self.extend_pe(x) x = x + self.alpha * self.pe[:, : x.size(1)] return self.dropout(x) class RelPositionalEncoding(PositionalEncoding): """Relative positional encoding module. See : Appendix B in https://arxiv.org/abs/1901.02860 Args: d_model (int): Embedding dimension. dropout_rate (float): Dropout rate. max_len (int): Maximum input length. """ def __init__(self, d_model, dropout_rate, max_len=5000): """Initialize class.""" super().__init__(d_model, dropout_rate, max_len, reverse=True) def forward(self, x): """Compute positional encoding. Args: x (torch.Tensor): Input tensor (batch, time, `*`). Returns: torch.Tensor: Encoded tensor (batch, time, `*`). torch.Tensor: Positional embedding tensor (1, time, `*`). """ self.extend_pe(x) x = x * self.xscale pos_emb = self.pe[:, : x.size(1)] return self.dropout(x) + self.dropout(pos_emb)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/espnet_positional_embedding.py
import scipy from torch.nn import functional as F import torch from torch import nn import numpy as np from modules.commons.wavenet import WN from modules.glow import utils class ActNorm(nn.Module): def __init__(self, channels, ddi=False, **kwargs): super().__init__() self.channels = channels self.initialized = not ddi self.logs = nn.Parameter(torch.zeros(1, channels, 1)) self.bias = nn.Parameter(torch.zeros(1, channels, 1)) def forward(self, x, x_mask=None, reverse=False, **kwargs): if x_mask is None: x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype) x_len = torch.sum(x_mask, [1, 2]) if not self.initialized: self.initialize(x, x_mask) self.initialized = True if reverse: z = (x - self.bias) * torch.exp(-self.logs) * x_mask logdet = torch.sum(-self.logs) * x_len else: z = (self.bias + torch.exp(self.logs) * x) * x_mask logdet = torch.sum(self.logs) * x_len # [b] return z, logdet def store_inverse(self): pass def set_ddi(self, ddi): self.initialized = not ddi def initialize(self, x, x_mask): with torch.no_grad(): denom = torch.sum(x_mask, [0, 2]) m = torch.sum(x * x_mask, [0, 2]) / denom m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom v = m_sq - (m ** 2) logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) self.bias.data.copy_(bias_init) self.logs.data.copy_(logs_init) class InvConvNear(nn.Module): def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs): super().__init__() assert (n_split % 2 == 0) self.channels = channels self.n_split = n_split self.n_sqz = n_sqz self.no_jacobian = no_jacobian w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0] if torch.det(w_init) < 0: w_init[:, 0] = -1 * w_init[:, 0] self.lu = lu if lu: # LU decomposition can slightly speed up the inverse np_p, np_l, np_u = scipy.linalg.lu(w_init) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1) eye = np.eye(*w_init.shape, dtype=float) self.register_buffer('p', torch.Tensor(np_p.astype(float))) self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True) self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True) self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True) self.register_buffer('l_mask', torch.Tensor(l_mask)) self.register_buffer('eye', torch.Tensor(eye)) else: self.weight = nn.Parameter(w_init) def forward(self, x, x_mask=None, reverse=False, **kwargs): b, c, t = x.size() assert (c % self.n_split == 0) if x_mask is None: x_mask = 1 x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t else: x_len = torch.sum(x_mask, [1, 2]) x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t) x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t) if self.lu: self.weight, log_s = self._get_weight() logdet = log_s.sum() logdet = logdet * (c / self.n_split) * x_len else: logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b] if reverse: if hasattr(self, "weight_inv"): weight = self.weight_inv else: weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) logdet = -logdet else: weight = self.weight if self.no_jacobian: logdet = 0 weight = weight.view(self.n_split, self.n_split, 1, 1) z = F.conv2d(x, weight) z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t) z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask return z, logdet def _get_weight(self): l, log_s, u = self.l, self.log_s, self.u l = l * self.l_mask + self.eye u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s)) weight = torch.matmul(self.p, torch.matmul(l, u)) return weight, log_s def store_inverse(self): weight, _ = self._get_weight() self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device) class InvConv(nn.Module): def __init__(self, channels, no_jacobian=False, lu=True, **kwargs): super().__init__() w_shape = [channels, channels] w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float) LU_decomposed = lu if not LU_decomposed: # Sample a random orthogonal matrix: self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init))) else: np_p, np_l, np_u = scipy.linalg.lu(w_init) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) l_mask = np.tril(np.ones(w_shape, dtype=float), -1) eye = np.eye(*w_shape, dtype=float) self.register_buffer('p', torch.Tensor(np_p.astype(float))) self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) self.l = nn.Parameter(torch.Tensor(np_l.astype(float))) self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float))) self.u = nn.Parameter(torch.Tensor(np_u.astype(float))) self.l_mask = torch.Tensor(l_mask) self.eye = torch.Tensor(eye) self.w_shape = w_shape self.LU = LU_decomposed self.weight = None def get_weight(self, device, reverse): w_shape = self.w_shape self.p = self.p.to(device) self.sign_s = self.sign_s.to(device) self.l_mask = self.l_mask.to(device) self.eye = self.eye.to(device) l = self.l * self.l_mask + self.eye u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s)) dlogdet = self.log_s.sum() if not reverse: w = torch.matmul(self.p, torch.matmul(l, u)) else: l = torch.inverse(l.double()).float() u = torch.inverse(u.double()).float() w = torch.matmul(u, torch.matmul(l, self.p.inverse())) return w.view(w_shape[0], w_shape[1], 1), dlogdet def forward(self, x, x_mask=None, reverse=False, **kwargs): """ log-det = log|abs(|W|)| * pixels """ b, c, t = x.size() if x_mask is None: x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t else: x_len = torch.sum(x_mask, [1, 2]) logdet = 0 if not reverse: weight, dlogdet = self.get_weight(x.device, reverse) z = F.conv1d(x, weight) if logdet is not None: logdet = logdet + dlogdet * x_len return z, logdet else: if self.weight is None: weight, dlogdet = self.get_weight(x.device, reverse) else: weight, dlogdet = self.weight, self.dlogdet z = F.conv1d(x, weight) if logdet is not None: logdet = logdet - dlogdet * x_len return z, logdet def store_inverse(self): self.weight, self.dlogdet = self.get_weight('cuda', reverse=True) class CouplingBlock(nn.Module): def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, sigmoid_scale=False, wn=None): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.sigmoid_scale = sigmoid_scale start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) start = torch.nn.utils.weight_norm(start) self.start = start # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(hidden_channels, in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout) if wn is not None: self.wn.in_layers = wn.in_layers self.wn.res_skip_layers = wn.res_skip_layers def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): if x_mask is None: x_mask = 1 x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] x = self.start(x_0) * x_mask x = self.wn(x, x_mask, g) out = self.end(x) z_0 = x_0 m = out[:, :self.in_channels // 2, :] logs = out[:, self.in_channels // 2:, :] if self.sigmoid_scale: logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) if reverse: z_1 = (x_1 - m) * torch.exp(-logs) * x_mask logdet = torch.sum(-logs * x_mask, [1, 2]) else: z_1 = (m + torch.exp(logs) * x_1) * x_mask logdet = torch.sum(logs * x_mask, [1, 2]) z = torch.cat([z_0, z_1], 1) return z, logdet def store_inverse(self): self.wn.remove_weight_norm() class Glow(nn.Module): def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_blocks, n_layers, p_dropout=0., n_split=4, n_sqz=2, sigmoid_scale=False, gin_channels=0, inv_conv_type='near', share_cond_layers=False, share_wn_layers=0, ): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_blocks = n_blocks self.n_layers = n_layers self.p_dropout = p_dropout self.n_split = n_split self.n_sqz = n_sqz self.sigmoid_scale = sigmoid_scale self.gin_channels = gin_channels self.share_cond_layers = share_cond_layers if gin_channels != 0 and share_cond_layers: cond_layer = torch.nn.Conv1d(gin_channels * n_sqz, 2 * hidden_channels * n_layers, 1) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') wn = None self.flows = nn.ModuleList() for b in range(n_blocks): self.flows.append(ActNorm(channels=in_channels * n_sqz)) if inv_conv_type == 'near': self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz)) if inv_conv_type == 'invconv': self.flows.append(InvConv(channels=in_channels * n_sqz)) if share_wn_layers > 0: if b % share_wn_layers == 0: wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels * n_sqz, p_dropout, share_cond_layers) self.flows.append( CouplingBlock( in_channels * n_sqz, hidden_channels, kernel_size=kernel_size, dilation_rate=dilation_rate, n_layers=n_layers, gin_channels=gin_channels * n_sqz, p_dropout=p_dropout, sigmoid_scale=sigmoid_scale, wn=wn )) def forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False): logdet_tot = 0 if not reverse: flows = self.flows else: flows = reversed(self.flows) if return_hiddens: hs = [] if self.n_sqz > 1: x, x_mask_ = utils.squeeze(x, x_mask, self.n_sqz) if g is not None: g, _ = utils.squeeze(g, x_mask, self.n_sqz) x_mask = x_mask_ if self.share_cond_layers and g is not None: g = self.cond_layer(g) for f in flows: x, logdet = f(x, x_mask, g=g, reverse=reverse) if return_hiddens: hs.append(x) logdet_tot += logdet if self.n_sqz > 1: x, x_mask = utils.unsqueeze(x, x_mask, self.n_sqz) if return_hiddens: return x, logdet_tot, hs return x, logdet_tot def store_inverse(self): def remove_weight_norm(m): try: nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm) for f in self.flows: f.store_inverse()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/normalizing_flow/glow_modules.py
import torch from torch import nn from modules.commons.conv import ConditionalConvBlocks from modules.commons.wavenet import WN class FlipLayer(nn.Module): def forward(self, x, nonpadding, cond=None, reverse=False): x = torch.flip(x, [1]) return x class CouplingLayer(nn.Module): def __init__(self, c_in, hidden_size, kernel_size, n_layers, p_dropout=0, c_in_g=0, nn_type='wn'): super().__init__() self.channels = c_in self.hidden_size = hidden_size self.kernel_size = kernel_size self.n_layers = n_layers self.c_half = c_in // 2 self.pre = nn.Conv1d(self.c_half, hidden_size, 1) if nn_type == 'wn': self.enc = WN(hidden_size, kernel_size, 1, n_layers, p_dropout=p_dropout, c_cond=c_in_g) elif nn_type == 'conv': self.enc = ConditionalConvBlocks( hidden_size, c_in_g, hidden_size, None, kernel_size, layers_in_block=1, is_BTC=False, num_layers=n_layers) self.post = nn.Conv1d(hidden_size, self.c_half, 1) def forward(self, x, nonpadding, cond=None, reverse=False): x0, x1 = x[:, :self.c_half], x[:, self.c_half:] x_ = self.pre(x0) * nonpadding x_ = self.enc(x_, nonpadding=nonpadding, cond=cond) m = self.post(x_) x1 = m + x1 if not reverse else x1 - m x = torch.cat([x0, x1], 1) return x * nonpadding class ResFlow(nn.Module): def __init__(self, c_in, hidden_size, kernel_size, n_flow_layers, n_flow_steps=4, c_cond=0, nn_type='wn'): super().__init__() self.flows = nn.ModuleList() for i in range(n_flow_steps): self.flows.append( CouplingLayer(c_in, hidden_size, kernel_size, n_flow_layers, c_in_g=c_cond, nn_type=nn_type)) self.flows.append(FlipLayer()) def forward(self, x, nonpadding, cond=None, reverse=False): for flow in (self.flows if not reverse else reversed(self.flows)): x = flow(x, nonpadding, cond=cond, reverse=reverse) return x
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/normalizing_flow/res_flow.py
import torch def squeeze(x, x_mask=None, n_sqz=2): b, c, t = x.size() t = (t // n_sqz) * n_sqz x = x[:, :, :t] x_sqz = x.view(b, c, t // n_sqz, n_sqz) x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz) if x_mask is not None: x_mask = x_mask[:, :, n_sqz - 1::n_sqz] else: x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype) return x_sqz * x_mask, x_mask def unsqueeze(x, x_mask=None, n_sqz=2): b, c, t = x.size() x_unsqz = x.view(b, n_sqz, c // n_sqz, t) x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz) if x_mask is not None: x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz) else: x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype) return x_unsqz * x_mask, x_mask
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/commons/normalizing_flow/utils.py
import numpy as np import torch import torch.utils.data from librosa.filters import mel as librosa_mel_fn from scipy.io.wavfile import read MAX_WAV_VALUE = 32768.0 def load_wav(full_path): sampling_rate, data = read(full_path) return data, sampling_rate def dynamic_range_compression(x, C=1, clip_val=1e-5): return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) def dynamic_range_decompression(x, C=1): return np.exp(x) / C def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): return torch.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output mel_basis = {} hann_window = {} def mel_spectrogram(y, hparams, center=False, complex=False): # hop_size: 512 # For 22050Hz, 275 ~= 12.5 ms (0.0125 * sample_rate) # win_size: 2048 # For 22050Hz, 1100 ~= 50 ms (If None, win_size: fft_size) (0.05 * sample_rate) # fmin: 55 # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) # fmax: 10000 # To be increased/reduced depending on data. # fft_size: 2048 # Extra window size is filled with 0 paddings to match this parameter # n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, n_fft = hparams['fft_size'] num_mels = hparams['audio_num_mel_bins'] sampling_rate = hparams['audio_sample_rate'] hop_size = hparams['hop_size'] win_size = hparams['win_size'] fmin = hparams['fmin'] fmax = hparams['fmax'] y = y.clamp(min=-1., max=1.) global mel_basis, hann_window if fmax not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[str(fmax) + '_' + str(y.device)] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode='reflect', normalized=False, onesided=True) if not complex: spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(mel_basis[str(fmax) + '_' + str(y.device)], spec) spec = spectral_normalize_torch(spec) else: B, C, T, _ = spec.shape spec = spec.transpose(1, 2) # [B, T, n_fft, 2] return spec
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/hifigan/mel_utils.py
import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from modules.parallel_wavegan.layers import UpsampleNetwork, ConvInUpsampleNetwork from modules.parallel_wavegan.models.source import SourceModuleHnNSF import numpy as np LRELU_SLOPE = 0.1 def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def apply_weight_norm(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: weight_norm(m) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) class ResBlock1(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.h = h self.convs1 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.h = h self.convs = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Conv1d1x1(Conv1d): """1x1 Conv1d with customized initialization.""" def __init__(self, in_channels, out_channels, bias): """Initialize 1x1 Conv1d module.""" super(Conv1d1x1, self).__init__(in_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=bias) class HifiGanGenerator(torch.nn.Module): def __init__(self, h, c_out=1): super(HifiGanGenerator, self).__init__() self.h = h self.num_kernels = len(h['resblock_kernel_sizes']) self.num_upsamples = len(h['upsample_rates']) if h['use_pitch_embed']: self.harmonic_num = 8 self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h['upsample_rates'])) self.m_source = SourceModuleHnNSF( sampling_rate=h['audio_sample_rate'], harmonic_num=self.harmonic_num) self.noise_convs = nn.ModuleList() self.conv_pre = weight_norm(Conv1d(80, h['upsample_initial_channel'], 7, 1, padding=3)) resblock = ResBlock1 if h['resblock'] == '1' else ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h['upsample_rates'], h['upsample_kernel_sizes'])): c_cur = h['upsample_initial_channel'] // (2 ** (i + 1)) self.ups.append(weight_norm( ConvTranspose1d(c_cur * 2, c_cur, k, u, padding=(k - u) // 2))) if h['use_pitch_embed']: if i + 1 < len(h['upsample_rates']): stride_f0 = np.prod(h['upsample_rates'][i + 1:]) self.noise_convs.append(Conv1d( 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2)) else: self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h['upsample_initial_channel'] // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(h['resblock_kernel_sizes'], h['resblock_dilation_sizes'])): self.resblocks.append(resblock(h, ch, k, d)) self.conv_post = weight_norm(Conv1d(ch, c_out, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x, f0=None): if f0 is not None: # harmonic-source signal, noise-source signal, uv flag f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) har_source, noi_source, uv = self.m_source(f0) har_source = har_source.transpose(1, 2) x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) if f0 is not None: x_source = self.noise_convs[i](har_source) x = x + x_source xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, use_cond=False, c_in=1): super(DiscriminatorP, self).__init__() self.use_cond = use_cond if use_cond: from utils.hparams import hparams t = hparams['hop_size'] self.cond_net = torch.nn.ConvTranspose1d(80, 1, t * 2, stride=t, padding=t // 2) c_in = 2 self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(c_in, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x, mel): fmap = [] if self.use_cond: x_mel = self.cond_net(mel) x = torch.cat([x_mel, x], 1) # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, use_cond=False, c_in=1): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2, use_cond=use_cond, c_in=c_in), DiscriminatorP(3, use_cond=use_cond, c_in=c_in), DiscriminatorP(5, use_cond=use_cond, c_in=c_in), DiscriminatorP(7, use_cond=use_cond, c_in=c_in), DiscriminatorP(11, use_cond=use_cond, c_in=c_in), ]) def forward(self, y, y_hat, mel=None): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y, mel) y_d_g, fmap_g = d(y_hat, mel) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False, use_cond=False, upsample_rates=None, c_in=1): super(DiscriminatorS, self).__init__() self.use_cond = use_cond if use_cond: t = np.prod(upsample_rates) self.cond_net = torch.nn.ConvTranspose1d(80, 1, t * 2, stride=t, padding=t // 2) c_in = 2 norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv1d(c_in, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x, mel): if self.use_cond: x_mel = self.cond_net(mel) x = torch.cat([x_mel, x], 1) fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(torch.nn.Module): def __init__(self, use_cond=False, c_in=1): super(MultiScaleDiscriminator, self).__init__() from utils.hparams import hparams self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True, use_cond=use_cond, upsample_rates=[4, 4, hparams['hop_size'] // 16], c_in=c_in), DiscriminatorS(use_cond=use_cond, upsample_rates=[4, 4, hparams['hop_size'] // 32], c_in=c_in), DiscriminatorS(use_cond=use_cond, upsample_rates=[4, 4, hparams['hop_size'] // 64], c_in=c_in), ]) self.meanpools = nn.ModuleList([ AvgPool1d(4, 2, padding=1), AvgPool1d(4, 2, padding=1) ]) def forward(self, y, y_hat, mel=None): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i - 1](y) y_hat = self.meanpools[i - 1](y_hat) y_d_r, fmap_r = d(y, mel) y_d_g, fmap_g = d(y_hat, mel) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss * 2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): r_losses = 0 g_losses = 0 for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1 - dr) ** 2) g_loss = torch.mean(dg ** 2) r_losses += r_loss g_losses += g_loss r_losses = r_losses / len(disc_real_outputs) g_losses = g_losses / len(disc_real_outputs) return r_losses, g_losses def cond_discriminator_loss(outputs): loss = 0 for dg in outputs: g_loss = torch.mean(dg ** 2) loss += g_loss loss = loss / len(outputs) return loss def generator_loss(disc_outputs): loss = 0 for dg in disc_outputs: l = torch.mean((1 - dg) ** 2) loss += l loss = loss / len(disc_outputs) return loss
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/hifigan/hifigan.py
import math import random from functools import partial from inspect import isfunction from pathlib import Path import numpy as np import torch import torch.nn.functional as F from torch import nn from tqdm import tqdm from einops import rearrange from modules.fastspeech.fs2 import FastSpeech2 from modules.diffsinger_midi.fs2 import FastSpeech2MIDI from utils.hparams import hparams def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cycle(dl): while True: for data in dl: yield data def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class Mish(nn.Module): def forward(self, x): return x * torch.tanh(F.softplus(x)) class Upsample(nn.Module): def __init__(self, dim): super().__init__() self.conv = nn.ConvTranspose2d(dim, dim, 4, 2, 1) def forward(self, x): return self.conv(x) class Downsample(nn.Module): def __init__(self, dim): super().__init__() self.conv = nn.Conv2d(dim, dim, 3, 2, 1) def forward(self, x): return self.conv(x) class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x): return self.fn(x) * self.g # building block modules class Block(nn.Module): def __init__(self, dim, dim_out, groups=8): super().__init__() self.block = nn.Sequential( nn.Conv2d(dim, dim_out, 3, padding=1), nn.GroupNorm(groups, dim_out), Mish() ) def forward(self, x): return self.block(x) class ResnetBlock(nn.Module): def __init__(self, dim, dim_out, *, time_emb_dim, groups=8): super().__init__() self.mlp = nn.Sequential( Mish(), nn.Linear(time_emb_dim, dim_out) ) self.block1 = Block(dim, dim_out) self.block2 = Block(dim_out, dim_out) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x, time_emb): h = self.block1(x) h += self.mlp(time_emb)[:, :, None, None] h = self.block2(h) return h + self.res_conv(x) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) # gaussian diffusion trainer class def extract(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) noise = lambda: torch.randn(shape, device=device) return repeat_noise() if repeat else noise() def cosine_beta_schedule(timesteps, s=0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 x = np.linspace(0, steps, steps) alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return np.clip(betas, a_min=0, a_max=0.999) class GaussianDiffusion(nn.Module): def __init__(self, phone_encoder, out_dims, denoise_fn, timesteps=1000, loss_type='l1', betas=None, spec_min=None, spec_max=None): super().__init__() self.denoise_fn = denoise_fn if hparams.get('use_midi') is not None and hparams['use_midi']: self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims) else: self.fs2 = FastSpeech2(phone_encoder, out_dims) self.fs2.decoder = None self.mel_bins = out_dims if exists(betas): betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas else: betas = cosine_beta_schedule(timesteps) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.loss_type = loss_type to_torch = partial(torch.tensor, dtype=torch.float32) self.register_buffer('betas', to_torch(betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) self.register_buffer('posterior_variance', to_torch(posterior_variance)) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) self.register_buffer('posterior_mean_coef1', to_torch( betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) self.register_buffer('posterior_mean_coef2', to_torch( (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']]) self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']]) def q_mean_variance(self, x_start, t): mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start variance = extract(1. - self.alphas_cumprod, t, x_start.shape) log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def predict_start_from_noise(self, x_t, t, noise): return ( extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, x, t, cond, clip_denoised: bool): noise_pred = self.denoise_fn(x, t, cond=cond) x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) if clip_denoised: x_recon.clamp_(-1., 1.) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised) noise = noise_like(x.shape, device, repeat_noise) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def p_losses(self, x_start, t, cond, noise=None, nonpadding=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) x_recon = self.denoise_fn(x_noisy, t, cond) if self.loss_type == 'l1': if nonpadding is not None: loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean() else: # print('are you sure w/o nonpadding?') loss = (noise - x_recon).abs().mean() elif self.loss_type == 'l2': loss = F.mse_loss(noise, x_recon) else: raise NotImplementedError() return loss def forward(self, txt_tokens, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, infer=False): b, *_, device = *txt_tokens.shape, txt_tokens.device ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy, skip_decoder=True, infer=infer) cond = ret['decoder_inp'].transpose(1, 2) if not infer: t = torch.randint(0, self.num_timesteps, (b,), device=device).long() x = ref_mels x = self.norm_spec(x) x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] nonpadding = (mel2ph != 0).float() ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding) else: t = self.num_timesteps shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) x = torch.randn(shape, device=device) for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) x = x[:, 0].transpose(1, 2) ret['mel_out'] = self.denorm_spec(x) return ret def norm_spec(self, x): return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 def denorm_spec(self, x): return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph) def out2mel(self, x): return x
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/diff/diffusion.py
import math import torch import torch.nn as nn import torch.nn.functional as F from math import sqrt from .diffusion import Mish from utils.hparams import hparams Linear = nn.Linear ConvTranspose2d = nn.ConvTranspose2d class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def override(self, attrs): if isinstance(attrs, dict): self.__dict__.update(**attrs) elif isinstance(attrs, (list, tuple, set)): for attr in attrs: self.override(attr) elif attrs is not None: raise NotImplementedError return self class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb def Conv1d(*args, **kwargs): layer = nn.Conv1d(*args, **kwargs) nn.init.kaiming_normal_(layer.weight) return layer @torch.jit.script def silu(x): return x * torch.sigmoid(x) class ResidualBlock(nn.Module): def __init__(self, encoder_hidden, residual_channels, dilation): super().__init__() self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation) self.diffusion_projection = Linear(residual_channels, residual_channels) self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1) self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1) def forward(self, x, conditioner, diffusion_step): diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1) conditioner = self.conditioner_projection(conditioner) y = x + diffusion_step y = self.dilated_conv(y) + conditioner gate, filter = torch.chunk(y, 2, dim=1) y = torch.sigmoid(gate) * torch.tanh(filter) y = self.output_projection(y) residual, skip = torch.chunk(y, 2, dim=1) return (x + residual) / sqrt(2.0), skip class DiffNet(nn.Module): def __init__(self, in_dims=80): super().__init__() self.params = params = AttrDict( # Model params encoder_hidden=hparams['hidden_size'], residual_layers=hparams['residual_layers'], residual_channels=hparams['residual_channels'], dilation_cycle_length=hparams['dilation_cycle_length'], ) self.input_projection = Conv1d(in_dims, params.residual_channels, 1) self.diffusion_embedding = SinusoidalPosEmb(params.residual_channels) dim = params.residual_channels self.mlp = nn.Sequential( nn.Linear(dim, dim * 4), Mish(), nn.Linear(dim * 4, dim) ) self.residual_layers = nn.ModuleList([ ResidualBlock(params.encoder_hidden, params.residual_channels, 2 ** (i % params.dilation_cycle_length)) for i in range(params.residual_layers) ]) self.skip_projection = Conv1d(params.residual_channels, params.residual_channels, 1) self.output_projection = Conv1d(params.residual_channels, in_dims, 1) nn.init.zeros_(self.output_projection.weight) def forward(self, spec, diffusion_step, cond): """ :param spec: [B, 1, M, T] :param diffusion_step: [B, 1] :param cond: [B, M, T] :return: """ x = spec[:, 0] x = self.input_projection(x) # x [B, residual_channel, T] x = F.relu(x) diffusion_step = self.diffusion_embedding(diffusion_step) diffusion_step = self.mlp(diffusion_step) skip = [] for layer_id, layer in enumerate(self.residual_layers): x, skip_connection = layer(x, cond, diffusion_step) skip.append(skip_connection) x = torch.sum(torch.stack(skip), dim=0) / sqrt(len(self.residual_layers)) x = self.skip_projection(x) x = F.relu(x) x = self.output_projection(x) # [B, 80, T] return x[:, None, :, :]
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/diff/net.py
import math import random from collections import deque from functools import partial from inspect import isfunction from pathlib import Path import numpy as np import torch import torch.nn.functional as F from torch import nn from tqdm import tqdm from einops import rearrange from modules.fastspeech.fs2 import FastSpeech2 from modules.diffsinger_midi.fs2 import FastSpeech2MIDI from utils.hparams import hparams def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d # gaussian diffusion trainer class def extract(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) noise = lambda: torch.randn(shape, device=device) return repeat_noise() if repeat else noise() def linear_beta_schedule(timesteps, max_beta=hparams.get('max_beta', 0.01)): """ linear schedule """ betas = np.linspace(1e-4, max_beta, timesteps) return betas def cosine_beta_schedule(timesteps, s=0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 x = np.linspace(0, steps, steps) alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return np.clip(betas, a_min=0, a_max=0.999) beta_schedule = { "cosine": cosine_beta_schedule, "linear": linear_beta_schedule, } class GaussianDiffusion(nn.Module): def __init__(self, phone_encoder, out_dims, denoise_fn, timesteps=1000, K_step=1000, loss_type=hparams.get('diff_loss_type', 'l1'), betas=None, spec_min=None, spec_max=None): super().__init__() self.denoise_fn = denoise_fn if hparams.get('use_midi') is not None and hparams['use_midi']: self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims) else: self.fs2 = FastSpeech2(phone_encoder, out_dims) self.mel_bins = out_dims if exists(betas): betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas else: if 'schedule_type' in hparams.keys(): betas = beta_schedule[hparams['schedule_type']](timesteps) else: betas = cosine_beta_schedule(timesteps) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.K_step = K_step self.loss_type = loss_type self.noise_list = deque(maxlen=4) to_torch = partial(torch.tensor, dtype=torch.float32) self.register_buffer('betas', to_torch(betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) self.register_buffer('posterior_variance', to_torch(posterior_variance)) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) self.register_buffer('posterior_mean_coef1', to_torch( betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) self.register_buffer('posterior_mean_coef2', to_torch( (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']]) self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']]) def q_mean_variance(self, x_start, t): mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start variance = extract(1. - self.alphas_cumprod, t, x_start.shape) log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def predict_start_from_noise(self, x_t, t, noise): return ( extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, x, t, cond, clip_denoised: bool): noise_pred = self.denoise_fn(x, t, cond=cond) x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) if clip_denoised: x_recon.clamp_(-1., 1.) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised) noise = noise_like(x.shape, device, repeat_noise) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False): """ Use the PLMS method from [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778). """ def get_x_pred(x, noise_t, t): a_t = extract(self.alphas_cumprod, t, x.shape) if t[0] < interval: a_prev = torch.ones_like(a_t) else: a_prev = extract(self.alphas_cumprod, torch.max(t-interval, torch.zeros_like(t)), x.shape) a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt() x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t) x_pred = x + x_delta return x_pred noise_list = self.noise_list noise_pred = self.denoise_fn(x, t, cond=cond) if len(noise_list) == 0: x_pred = get_x_pred(x, noise_pred, t) noise_pred_prev = self.denoise_fn(x_pred, max(t-interval, 0), cond=cond) noise_pred_prime = (noise_pred + noise_pred_prev) / 2 elif len(noise_list) == 1: noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2 elif len(noise_list) == 2: noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12 elif len(noise_list) >= 3: noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24 x_prev = get_x_pred(x, noise_pred_prime, t) noise_list.append(noise_pred) return x_prev def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def p_losses(self, x_start, t, cond, noise=None, nonpadding=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) x_recon = self.denoise_fn(x_noisy, t, cond) if self.loss_type == 'l1': if nonpadding is not None: loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean() else: # print('are you sure w/o nonpadding?') loss = (noise - x_recon).abs().mean() elif self.loss_type == 'l2': loss = F.mse_loss(noise, x_recon) else: raise NotImplementedError() return loss def forward(self, txt_tokens, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs): b, *_, device = *txt_tokens.shape, txt_tokens.device ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy, skip_decoder=(not infer), infer=infer, **kwargs) cond = ret['decoder_inp'].transpose(1, 2) if not infer: t = torch.randint(0, self.K_step, (b,), device=device).long() x = ref_mels x = self.norm_spec(x) x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] ret['diff_loss'] = self.p_losses(x, t, cond) # nonpadding = (mel2ph != 0).float() # ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding) else: ret['fs2_mel'] = ret['mel_out'] fs2_mels = ret['mel_out'] t = self.K_step fs2_mels = self.norm_spec(fs2_mels) fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :] x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long()) if hparams.get('gaussian_start') is not None and hparams['gaussian_start']: print('===> gaussion start.') shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) x = torch.randn(shape, device=device) if hparams.get('pndm_speedup'): print('===> pndm speed:', hparams['pndm_speedup']) self.noise_list = deque(maxlen=4) iteration_interval = hparams['pndm_speedup'] for i in tqdm(reversed(range(0, t, iteration_interval)), desc='sample time step', total=t // iteration_interval): x = self.p_sample_plms(x, torch.full((b,), i, device=device, dtype=torch.long), iteration_interval, cond) else: for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) x = x[:, 0].transpose(1, 2) if mel2ph is not None: # for singing ret['mel_out'] = self.denorm_spec(x) * ((mel2ph > 0).float()[:, :, None]) else: ret['mel_out'] = self.denorm_spec(x) return ret def norm_spec(self, x): return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 def denorm_spec(self, x): return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph) def out2mel(self, x): return x class OfflineGaussianDiffusion(GaussianDiffusion): def forward(self, txt_tokens, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs): b, *_, device = *txt_tokens.shape, txt_tokens.device ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy, skip_decoder=True, infer=True, **kwargs) cond = ret['decoder_inp'].transpose(1, 2) fs2_mels = ref_mels[1] ref_mels = ref_mels[0] if not infer: t = torch.randint(0, self.K_step, (b,), device=device).long() x = ref_mels x = self.norm_spec(x) x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] ret['diff_loss'] = self.p_losses(x, t, cond) else: t = self.K_step fs2_mels = self.norm_spec(fs2_mels) fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :] x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long()) if hparams.get('gaussian_start') is not None and hparams['gaussian_start']: print('===> gaussion start.') shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) x = torch.randn(shape, device=device) for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) x = x[:, 0].transpose(1, 2) ret['mel_out'] = self.denorm_spec(x) return ret
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/diff/shallow_diffusion_tts.py
from modules.fastspeech.tts_modules import FastspeechDecoder # from modules.fastspeech.fast_tacotron import DecoderRNN # from modules.fastspeech.speedy_speech.speedy_speech import ConvBlocks # from modules.fastspeech.conformer.conformer import ConformerDecoder import torch from torch.nn import functional as F import torch.nn as nn import math from utils.hparams import hparams from .diffusion import Mish Linear = nn.Linear class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb def Conv1d(*args, **kwargs): layer = nn.Conv1d(*args, **kwargs) nn.init.kaiming_normal_(layer.weight) return layer class FFT(FastspeechDecoder): def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=None): super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads) dim = hparams['residual_channels'] self.input_projection = Conv1d(hparams['audio_num_mel_bins'], dim, 1) self.diffusion_embedding = SinusoidalPosEmb(dim) self.mlp = nn.Sequential( nn.Linear(dim, dim * 4), Mish(), nn.Linear(dim * 4, dim) ) self.get_mel_out = Linear(hparams['hidden_size'], 80, bias=True) self.get_decode_inp = Linear(hparams['hidden_size'] + dim + dim, hparams['hidden_size']) # hs + dim + 80 -> hs def forward(self, spec, diffusion_step, cond, padding_mask=None, attn_mask=None, return_hiddens=False): """ :param spec: [B, 1, 80, T] :param diffusion_step: [B, 1] :param cond: [B, M, T] :return: """ x = spec[:, 0] x = self.input_projection(x).permute([0, 2, 1]) # [B, T, residual_channel] diffusion_step = self.diffusion_embedding(diffusion_step) diffusion_step = self.mlp(diffusion_step) # [B, dim] cond = cond.permute([0, 2, 1]) # [B, T, M] seq_len = cond.shape[1] # [T_mel] time_embed = diffusion_step[:, None, :] # [B, 1, dim] time_embed = time_embed.repeat([1, seq_len, 1]) # # [B, T, dim] decoder_inp = torch.cat([x, cond, time_embed], dim=-1) # [B, T, dim + H + dim] decoder_inp = self.get_decode_inp(decoder_inp) # [B, T, H] x = decoder_inp ''' Required x: [B, T, C] :return: [B, T, C] or [L, B, T, C] ''' padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] # [T, B, 1] if self.use_pos_embed: positions = self.pos_embed_alpha * self.embed_positions(x[..., 0]) x = x + positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) * nonpadding_mask_TB hiddens = [] for layer in self.layers: x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB hiddens.append(x) if self.use_last_norm: x = self.layer_norm(x) * nonpadding_mask_TB if return_hiddens: x = torch.stack(hiddens, 0) # [L, T, B, C] x = x.transpose(1, 2) # [L, B, T, C] else: x = x.transpose(0, 1) # [B, T, C] x = self.get_mel_out(x).permute([0, 2, 1]) # [B, 80, T] return x[:, None, :, :]
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/diff/candidate_decoder.py
import matplotlib matplotlib.use('Agg') from data_gen.tts.data_gen_utils import get_pitch from modules.fastspeech.tts_modules import mel2ph_to_dur import matplotlib.pyplot as plt from utils import audio from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse from vocoders.base_vocoder import get_vocoder_cls import json from utils.plot import spec_to_figure from utils.hparams import hparams import torch import torch.optim import torch.nn.functional as F import torch.utils.data from modules.GenerSpeech.task.dataset import GenerSpeech_dataset from modules.GenerSpeech.model.generspeech import GenerSpeech import torch.distributions import numpy as np from utils.tts_utils import select_attn import utils import os from tasks.tts.fs2 import FastSpeech2Task class GenerSpeechTask(FastSpeech2Task): def __init__(self): super(GenerSpeechTask, self).__init__() self.dataset_cls = GenerSpeech_dataset def build_tts_model(self): self.model = GenerSpeech(self.phone_encoder) def build_model(self): self.build_tts_model() if hparams['load_ckpt'] != '': self.load_ckpt(hparams['load_ckpt'], strict=False) utils.num_params(self.model) return self.model def run_model(self, model, sample, return_output=False): txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] mel2ph = sample['mel2ph'] # [B, T_s] mel2word = sample['mel2word'] f0 = sample['f0'] # [B, T_s] uv = sample['uv'] # [B, T_s] 0/1 spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') emo_embed = sample.get('emo_embed') output = model(txt_tokens, mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, ref_mels=target, f0=f0, uv=uv, tgt_mels=target, global_steps=self.global_step, infer=False) losses = {} losses['postflow'] = output['postflow'] if self.global_step > hparams['forcing']: losses['gloss'] = (output['gloss_utter'] + output['gloss_ph'] + output['gloss_word']) / 3 if self.global_step > hparams['vq_start']: losses['vq_loss'] = (output['vq_loss_utter'] + output['vq_loss_ph'] + output['vq_loss_word']) / 3 losses['ppl_utter'] = output['ppl_utter'] losses['ppl_ph'] = output['ppl_ph'] losses['ppl_word'] = output['ppl_word'] self.add_mel_loss(output['mel_out'], target, losses) self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) if hparams['use_pitch_embed']: self.add_pitch_loss(output, sample, losses) output['select_attn'] = select_attn(output['attn_ph']) if not return_output: return losses else: return losses, output def validation_step(self, sample, batch_idx): outputs = {} outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] encdec_attn = model_out['select_attn'] mel_out = self.model.out2mel(model_out['mel_out']) outputs = utils.tensors_to_scalars(outputs) if self.global_step % hparams['valid_infer_interval'] == 0 \ and batch_idx < hparams['num_valid_plots']: vmin = hparams['mel_vmin'] vmax = hparams['mel_vmax'] self.plot_mel(batch_idx, sample['mels'], mel_out) self.plot_dur(batch_idx, sample, model_out) if hparams['use_pitch_embed']: self.plot_pitch(batch_idx, sample, model_out) if self.vocoder is None: self.vocoder = get_vocoder_cls(hparams)() if self.global_step > 0: spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') emo_embed = sample.get('emo_embed') ref_mels = sample['mels'] mel2ph = sample['mel2ph'] # [B, T_s] mel2word = sample['mel2word'] # with gt duration model_out = self.model(sample['txt_tokens'], mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, ref_mels=ref_mels, global_steps=self.global_step, infer=True) wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu()) self.logger.add_audio(f'wav_gtdur_{batch_idx}', wav_pred, self.global_step, hparams['audio_sample_rate']) self.logger.add_figure(f'ali_{batch_idx}', spec_to_figure(encdec_attn[0]), self.global_step) self.logger.add_figure( f'mel_gtdur_{batch_idx}', spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step) # with pred duration model_out = self.model(sample['txt_tokens'], ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, ref_mels=ref_mels, global_steps=self.global_step, infer=True) self.logger.add_figure( f'mel_{batch_idx}', spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step) wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu()) self.logger.add_audio(f'wav_{batch_idx}', wav_pred, self.global_step, hparams['audio_sample_rate']) # gt wav if self.global_step <= hparams['valid_infer_interval']: mel_gt = sample['mels'][0].cpu() wav_gt = self.vocoder.spec2wav(mel_gt) self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, 22050) return outputs ############ # infer ############ def test_step(self, sample, batch_idx): spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') emo_embed = sample.get('emo_embed') txt_tokens = sample['txt_tokens'] mel2ph, uv, f0 = None, None, None ref_mel2word = sample['mel2word'] ref_mel2ph = sample['mel2ph'] ref_mels = sample['mels'] if hparams['use_gt_dur']: mel2ph = sample['mel2ph'] if hparams['use_gt_f0']: f0 = sample['f0'] uv = sample['uv'] global_steps = 200000 run_model = lambda: self.model( txt_tokens, spk_embed=spk_embed, emo_embed=emo_embed, mel2ph=mel2ph, ref_mel2ph=ref_mel2ph, ref_mel2word=ref_mel2word, f0=f0, uv=uv, ref_mels=ref_mels, global_steps=global_steps, infer=True) outputs = run_model() sample['outputs'] = self.model.out2mel(outputs['mel_out']) sample['mel2ph_pred'] = outputs['mel2ph'] if hparams['use_pitch_embed']: sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) if hparams['pitch_type'] == 'ph': sample['f0'] = torch.gather(F.pad(sample['f0'], [1, 0]), 1, sample['mel2ph']) sample['f0_pred'] = outputs.get('f0_denorm') return self.after_infer(sample) def after_infer(self, predictions, sil_start_frame=0): predictions = utils.unpack_dict_to_list(predictions) assert len(predictions) == 1, 'Only support batch_size=1 in inference.' prediction = predictions[0] prediction = utils.tensors_to_np(prediction) item_name = prediction.get('item_name') text = prediction.get('text') ph_tokens = prediction.get('txt_tokens') mel_gt = prediction["mels"] mel2ph_gt = prediction.get("mel2ph") mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None mel_pred = prediction["outputs"] mel2ph_pred = prediction.get("mel2ph_pred") f0_gt = prediction.get("f0") f0_pred = prediction.get("f0_pred") str_phs = None if self.phone_encoder is not None and 'txt_tokens' in prediction: str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True) if 'encdec_attn' in prediction: encdec_attn = prediction['encdec_attn'] # (1, Tph, Tmel) encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)] txt_lengths = prediction.get('txt_lengths') encdec_attn = encdec_attn.T[:, :txt_lengths] else: encdec_attn = None wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) wav_pred[:sil_start_frame * hparams['hop_size']] = 0 gen_dir = self.gen_dir base_fn = f'[{self.results_id:06d}][{item_name}][%s]' # if text is not None: # base_fn += text.replace(":", "%3A")[:80] base_fn = base_fn.replace(' ', '_') if not hparams['profile_infer']: os.makedirs(gen_dir, exist_ok=True) os.makedirs(f'{gen_dir}/wavs', exist_ok=True) os.makedirs(f'{gen_dir}/plot', exist_ok=True) if hparams.get('save_mel_npy', False): os.makedirs(f'{gen_dir}/npy', exist_ok=True) if 'encdec_attn' in prediction: os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True) self.saving_results_futures.append( self.saving_result_pool.apply_async(self.save_result, args=[ wav_pred, mel_pred, base_fn % 'TTS', gen_dir, str_phs, mel2ph_pred, encdec_attn])) if mel_gt is not None and hparams['save_gt']: wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) self.saving_results_futures.append( self.saving_result_pool.apply_async(self.save_result, args=[ wav_gt, mel_gt, base_fn % 'Ref', gen_dir, str_phs, mel2ph_gt])) if hparams['save_f0']: import matplotlib.pyplot as plt f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) fig = plt.figure() plt.plot(f0_pred_, label=r'$\hat{f_0}$') plt.plot(f0_gt_, label=r'$f_0$') plt.legend() plt.tight_layout() plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') plt.close(fig) print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") self.results_id += 1 return { 'item_name': item_name, 'text': text, 'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()), 'wav_fn_pred': base_fn % 'TTS', 'wav_fn_gt': base_fn % 'Ref', } @staticmethod def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None): audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'], norm=hparams['out_wav_norm']) fig = plt.figure(figsize=(14, 10)) spec_vmin = hparams['mel_vmin'] spec_vmax = hparams['mel_vmax'] heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) fig.colorbar(heatmap) f0, _ = get_pitch(wav_out, mel, hparams) f0 = f0 / 10 * (f0 > 0) plt.plot(f0, c='white', linewidth=1, alpha=0.6) if mel2ph is not None and str_phs is not None: decoded_txt = str_phs.split(" ") dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy() dur = [0] + list(np.cumsum(dur)) for i in range(len(dur) - 1): shift = (i % 20) + 1 plt.text(dur[i], shift, decoded_txt[i]) plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black') plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black', alpha=1, linewidth=1) plt.tight_layout() plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png') plt.close(fig) if hparams.get('save_mel_npy', False): np.save(f'{gen_dir}/npy/{base_fn}', mel) if alignment is not None: fig, ax = plt.subplots(figsize=(12, 16)) im = ax.imshow(alignment, aspect='auto', origin='lower', interpolation='none') ax.set_xticks(np.arange(0, alignment.shape[1], 5)) ax.set_yticks(np.arange(0, alignment.shape[0], 10)) ax.set_ylabel("$S_p$ index") ax.set_xlabel("$H_c$ index") fig.colorbar(im, ax=ax) fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png') plt.close(fig)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/GenerSpeech/task/generspeech.py
import matplotlib matplotlib.use('Agg') from tasks.base_task import data_loader from tasks.tts.fs2 import FastSpeech2Task from tasks.tts.dataset_utils import FastSpeechDataset, BaseTTSDataset import glob import importlib from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse from inference.base_tts_infer import load_data_preprocessor from data_gen.tts.emotion import inference as EmotionEncoder from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance from data_gen.tts.emotion.inference import preprocess_wav from tqdm import tqdm from utils.hparams import hparams from data_gen.tts.data_gen_utils import build_phone_encoder, build_word_encoder import random import torch import torch.optim import torch.nn.functional as F import torch.utils.data from utils.indexed_datasets import IndexedDataset from resemblyzer import VoiceEncoder import torch.distributions import numpy as np import utils import os class GenerSpeech_dataset(BaseTTSDataset): def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None): super().__init__(prefix, shuffle, test_items, test_sizes, data_dir) self.f0_mean, self.f0_std = hparams.get('f0_mean', None), hparams.get('f0_std', None) if prefix == 'valid': indexed_ds = IndexedDataset(f'{self.data_dir}/train') sizes = np.load(f'{self.data_dir}/train_lengths.npy') index = [i for i in range(len(indexed_ds))] random.shuffle(index) index = index[:300] self.sizes = sizes[index] self.indexed_ds = [] for i in index: self.indexed_ds.append(indexed_ds[i]) self.avail_idxs = list(range(len(self.sizes))) if hparams['min_frames'] > 0: self.avail_idxs = [x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']] self.sizes = [self.sizes[i] for i in self.avail_idxs] if prefix == 'test' and hparams['test_input_dir'] != '': self.preprocessor, self.preprocess_args = load_data_preprocessor() self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir']) self.avail_idxs = [i for i, _ in enumerate(self.sizes)] def load_test_inputs(self, test_input_dir): inp_wav_paths = sorted(glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3')) binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) phone_encoder = build_phone_encoder(hparams['binary_data_dir']) word_encoder = build_word_encoder(hparams['binary_data_dir']) voice_encoder = VoiceEncoder().cuda() encoder = [phone_encoder, word_encoder] sizes = [] items = [] EmotionEncoder.load_model(hparams['emotion_encoder_path']) preprocessor, preprocess_args = self.preprocessor, self.preprocess_args for wav_fn in tqdm(inp_wav_paths): item_name = wav_fn[len(test_input_dir) + 1:].replace("/", "_") spk_id = emotion = 0 item2tgfn = wav_fn.replace('.wav', '.TextGrid') # prepare textgrid alignment txtpath = wav_fn.replace('.wav', '.txt') # prepare text with open(txtpath, 'r') as f: text_raw = f.readlines() f.close() ph, txt = preprocessor.txt_to_ph(preprocessor.txt_processor, text_raw[0], preprocess_args) item = binarizer_cls.process_item(item_name, ph, txt, item2tgfn, wav_fn, spk_id, emotion, encoder, hparams['binarization_args']) item['emo_embed'] = Embed_utterance(preprocess_wav(item['wav_fn'])) item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) items.append(item) sizes.append(item['len']) return items, sizes def _get_item(self, index): if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: index = self.avail_idxs[index] if self.indexed_ds is None: self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') return self.indexed_ds[index] def __getitem__(self, index): hparams = self.hparams item = self._get_item(index) assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index]) max_frames = hparams['max_frames'] spec = torch.Tensor(item['mel'])[:max_frames] max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple'] spec = spec[:max_frames] phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']]) sample = { "id": index, "item_name": item['item_name'], "text": item['txt'], "txt_token": phone, "mel": spec, "mel_nonpadding": spec.abs().sum(-1) > 0, } spec = sample['mel'] T = spec.shape[0] sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] if 'mel2ph' in item else None if hparams['use_pitch_embed']: assert 'f0' in item if hparams.get('normalize_pitch', False): f0 = item["f0"] if len(f0 > 0) > 0 and f0[f0 > 0].std() > 0: f0[f0 > 0] = (f0[f0 > 0] - f0[f0 > 0].mean()) / f0[f0 > 0].std() * hparams['f0_std'] + \ hparams['f0_mean'] f0[f0 > 0] = f0[f0 > 0].clip(min=60, max=500) pitch = f0_to_coarse(f0) pitch = torch.LongTensor(pitch[:max_frames]) else: pitch = torch.LongTensor(item.get("pitch"))[:max_frames] if "pitch" in item else None f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams) uv = torch.FloatTensor(uv) f0 = torch.FloatTensor(f0) else: f0 = uv = torch.zeros_like(mel2ph) pitch = None sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch sample["spk_embed"] = torch.Tensor(item['spk_embed']) sample["emotion"] = item['emotion'] sample["emo_embed"] = torch.Tensor(item['emo_embed']) if hparams.get('use_word', False): sample["ph_words"] = item["ph_words"] sample["word_tokens"] = torch.LongTensor(item["word_tokens"]) sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames] sample["ph2word"] = torch.LongTensor(item['ph2word'][:hparams['max_input_tokens']]) return sample def collater(self, samples): if len(samples) == 0: return {} hparams = self.hparams id = torch.LongTensor([s['id'] for s in samples]) item_names = [s['item_name'] for s in samples] text = [s['text'] for s in samples] txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0) mels = utils.collate_2d([s['mel'] for s in samples], 0.0) txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples]) mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) batch = { 'id': id, 'item_name': item_names, 'nsamples': len(samples), 'text': text, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'mels': mels, 'mel_lengths': mel_lengths, } f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) pitch = utils.collate_1d([s['pitch'] for s in samples]) if samples[0]['pitch'] is not None else None uv = utils.collate_1d([s['uv'] for s in samples]) mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) if samples[0]['mel2ph'] is not None else None batch.update({ 'mel2ph': mel2ph, 'pitch': pitch, 'f0': f0, 'uv': uv, }) spk_embed = torch.stack([s['spk_embed'] for s in samples]) batch['spk_embed'] = spk_embed emo_embed = torch.stack([s['emo_embed'] for s in samples]) batch['emo_embed'] = emo_embed if hparams.get('use_word', False): ph_words = [s['ph_words'] for s in samples] batch['ph_words'] = ph_words word_tokens = utils.collate_1d([s['word_tokens'] for s in samples], 0) batch['word_tokens'] = word_tokens mel2word = utils.collate_1d([s['mel2word'] for s in samples], 0) batch['mel2word'] = mel2word ph2word = utils.collate_1d([s['ph2word'] for s in samples], 0) batch['ph2word'] = ph2word return batch
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/GenerSpeech/task/dataset.py
import scipy from torch.nn import functional as F import torch from torch import nn import numpy as np from modules.commons.common_layers import Permute from modules.fastspeech.tts_modules import FFTBlocks from modules.GenerSpeech.model.wavenet import fused_add_tanh_sigmoid_multiply, WN class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-4): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): n_dims = len(x.shape) mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) shape = [1, -1] + [1] * (n_dims - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class ConvReluNorm(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout assert n_layers > 1, "Number of layers should be larger than 0." self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = nn.Sequential( nn.ReLU(), nn.Dropout(p_dropout)) for _ in range(n_layers - 1): self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask): x_org = x for i in range(self.n_layers): x = self.conv_layers[i](x * x_mask) x = self.norm_layers[i](x) x = self.relu_drop(x) x = x_org + self.proj(x) return x * x_mask class ActNorm(nn.Module): # glow中的线性变换层 def __init__(self, channels, ddi=False, **kwargs): super().__init__() self.channels = channels self.initialized = not ddi self.logs = nn.Parameter(torch.zeros(1, channels, 1)) self.bias = nn.Parameter(torch.zeros(1, channels, 1)) def forward(self, x, x_mask=None, reverse=False, **kwargs): if x_mask is None: x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype) x_len = torch.sum(x_mask, [1, 2]) if not self.initialized: self.initialize(x, x_mask) self.initialized = True if reverse: z = (x - self.bias) * torch.exp(-self.logs) * x_mask logdet = torch.sum(-self.logs) * x_len else: z = (self.bias + torch.exp(self.logs) * x) * x_mask logdet = torch.sum(self.logs) * x_len # [b] return z, logdet def store_inverse(self): pass def set_ddi(self, ddi): self.initialized = not ddi def initialize(self, x, x_mask): with torch.no_grad(): denom = torch.sum(x_mask, [0, 2]) m = torch.sum(x * x_mask, [0, 2]) / denom m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom v = m_sq - (m ** 2) logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) self.bias.data.copy_(bias_init) self.logs.data.copy_(logs_init) class InvConvNear(nn.Module): # 可逆卷积 def __init__(self, channels, n_split=4, no_jacobian=False, lu=True, n_sqz=2, **kwargs): super().__init__() assert (n_split % 2 == 0) self.channels = channels self.n_split = n_split self.n_sqz = n_sqz self.no_jacobian = no_jacobian w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0] if torch.det(w_init) < 0: w_init[:, 0] = -1 * w_init[:, 0] self.lu = lu if lu: # LU decomposition can slightly speed up the inverse np_p, np_l, np_u = scipy.linalg.lu(w_init) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) l_mask = np.tril(np.ones(w_init.shape, dtype=float), -1) eye = np.eye(*w_init.shape, dtype=float) self.register_buffer('p', torch.Tensor(np_p.astype(float))) self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) self.l = nn.Parameter(torch.Tensor(np_l.astype(float)), requires_grad=True) self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float)), requires_grad=True) self.u = nn.Parameter(torch.Tensor(np_u.astype(float)), requires_grad=True) self.register_buffer('l_mask', torch.Tensor(l_mask)) self.register_buffer('eye', torch.Tensor(eye)) else: self.weight = nn.Parameter(w_init) def forward(self, x, x_mask=None, reverse=False, **kwargs): b, c, t = x.size() assert (c % self.n_split == 0) if x_mask is None: x_mask = 1 x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t else: x_len = torch.sum(x_mask, [1, 2]) x = x.view(b, self.n_sqz, c // self.n_split, self.n_split // self.n_sqz, t) x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t) if self.lu: self.weight, log_s = self._get_weight() logdet = log_s.sum() logdet = logdet * (c / self.n_split) * x_len else: logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b] if reverse: if hasattr(self, "weight_inv"): weight = self.weight_inv else: weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) logdet = -logdet else: weight = self.weight if self.no_jacobian: logdet = 0 weight = weight.view(self.n_split, self.n_split, 1, 1) z = F.conv2d(x, weight) z = z.view(b, self.n_sqz, self.n_split // self.n_sqz, c // self.n_split, t) z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask return z, logdet def _get_weight(self): l, log_s, u = self.l, self.log_s, self.u l = l * self.l_mask + self.eye u = u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(log_s)) weight = torch.matmul(self.p, torch.matmul(l, u)) return weight, log_s def store_inverse(self): weight, _ = self._get_weight() self.weight_inv = torch.inverse(weight.float()).to(next(self.parameters()).device) class InvConv(nn.Module): def __init__(self, channels, no_jacobian=False, lu=True, **kwargs): super().__init__() w_shape = [channels, channels] w_init = np.linalg.qr(np.random.randn(*w_shape))[0].astype(float) LU_decomposed = lu if not LU_decomposed: # Sample a random orthogonal matrix: self.register_parameter("weight", nn.Parameter(torch.Tensor(w_init))) else: np_p, np_l, np_u = scipy.linalg.lu(w_init) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) l_mask = np.tril(np.ones(w_shape, dtype=float), -1) eye = np.eye(*w_shape, dtype=float) self.register_buffer('p', torch.Tensor(np_p.astype(float))) self.register_buffer('sign_s', torch.Tensor(np_sign_s.astype(float))) self.l = nn.Parameter(torch.Tensor(np_l.astype(float))) self.log_s = nn.Parameter(torch.Tensor(np_log_s.astype(float))) self.u = nn.Parameter(torch.Tensor(np_u.astype(float))) self.l_mask = torch.Tensor(l_mask) self.eye = torch.Tensor(eye) self.w_shape = w_shape self.LU = LU_decomposed self.weight = None def get_weight(self, device, reverse): w_shape = self.w_shape self.p = self.p.to(device) self.sign_s = self.sign_s.to(device) self.l_mask = self.l_mask.to(device) self.eye = self.eye.to(device) l = self.l * self.l_mask + self.eye u = self.u * self.l_mask.transpose(0, 1).contiguous() + torch.diag(self.sign_s * torch.exp(self.log_s)) dlogdet = self.log_s.sum() if not reverse: w = torch.matmul(self.p, torch.matmul(l, u)) else: l = torch.inverse(l.double()).float() u = torch.inverse(u.double()).float() w = torch.matmul(u, torch.matmul(l, self.p.inverse())) return w.view(w_shape[0], w_shape[1], 1), dlogdet def forward(self, x, x_mask=None, reverse=False, **kwargs): """ log-det = log|abs(|W|)| * pixels """ b, c, t = x.size() if x_mask is None: x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t else: x_len = torch.sum(x_mask, [1, 2]) logdet = 0 if not reverse: weight, dlogdet = self.get_weight(x.device, reverse) z = F.conv1d(x, weight) if logdet is not None: logdet = logdet + dlogdet * x_len return z, logdet else: if self.weight is None: weight, dlogdet = self.get_weight(x.device, reverse) else: weight, dlogdet = self.weight, self.dlogdet z = F.conv1d(x, weight) if logdet is not None: logdet = logdet - dlogdet * x_len return z, logdet def store_inverse(self): self.weight, self.dlogdet = self.get_weight('cuda', reverse=True) class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet def store_inverse(self): pass class CouplingBlock(nn.Module): # 仿射耦合层 def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, sigmoid_scale=False, share_cond_layers=False, wn=None): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.sigmoid_scale = sigmoid_scale start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) start = torch.nn.utils.weight_norm(start) self.start = start # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(hidden_channels, in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end self.wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout, share_cond_layers) if wn is not None: self.wn.in_layers = wn.in_layers self.wn.res_skip_layers = wn.res_skip_layers def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): if x_mask is None: x_mask = 1 x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] x = self.start(x_0) * x_mask x = self.wn(x, x_mask, g) out = self.end(x) z_0 = x_0 m = out[:, :self.in_channels // 2, :] logs = out[:, self.in_channels // 2:, :] if self.sigmoid_scale: logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) if reverse: z_1 = (x_1 - m) * torch.exp(-logs) * x_mask logdet = torch.sum(-logs * x_mask, [1, 2]) else: z_1 = (m + torch.exp(logs) * x_1) * x_mask logdet = torch.sum(logs * x_mask, [1, 2]) z = torch.cat([z_0, z_1], 1) return z, logdet def store_inverse(self): self.wn.remove_weight_norm() class GlowFFTBlocks(FFTBlocks): def __init__(self, hidden_size=128, gin_channels=256, num_layers=2, ffn_kernel_size=5, dropout=None, num_heads=4, use_pos_embed=True, use_last_norm=True, norm='ln', use_pos_embed_alpha=True): super().__init__(hidden_size, num_layers, ffn_kernel_size, dropout, num_heads, use_pos_embed, use_last_norm, norm, use_pos_embed_alpha) self.inp_proj = nn.Conv1d(hidden_size + gin_channels, hidden_size, 1) def forward(self, x, x_mask=None, g=None): """ :param x: [B, C_x, T] :param x_mask: [B, 1, T] :param g: [B, C_g, T] :return: [B, C_x, T] """ if g is not None: x = self.inp_proj(torch.cat([x, g], 1)) x = x.transpose(1, 2) x = super(GlowFFTBlocks, self).forward(x, x_mask[:, 0] == 0) x = x.transpose(1, 2) return x class TransformerCouplingBlock(nn.Module): def __init__(self, in_channels, hidden_channels, n_layers, gin_channels=0, p_dropout=0, sigmoid_scale=False): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.sigmoid_scale = sigmoid_scale start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1) self.start = start # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(hidden_channels, in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end self.fft_blocks = GlowFFTBlocks( hidden_size=hidden_channels, ffn_kernel_size=3, gin_channels=gin_channels, num_layers=n_layers) def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): if x_mask is None: x_mask = 1 x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] x = self.start(x_0) * x_mask x = self.fft_blocks(x, x_mask, g) out = self.end(x) z_0 = x_0 m = out[:, :self.in_channels // 2, :] logs = out[:, self.in_channels // 2:, :] if self.sigmoid_scale: logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) if reverse: z_1 = (x_1 - m) * torch.exp(-logs) * x_mask logdet = torch.sum(-logs * x_mask, [1, 2]) else: z_1 = (m + torch.exp(logs) * x_1) * x_mask logdet = torch.sum(logs * x_mask, [1, 2]) z = torch.cat([z_0, z_1], 1) return z, logdet def store_inverse(self): pass class FreqFFTCouplingBlock(nn.Module): def __init__(self, in_channels, hidden_channels, n_layers, gin_channels=0, p_dropout=0, sigmoid_scale=False): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.sigmoid_scale = sigmoid_scale hs = hidden_channels stride = 8 self.start = torch.nn.Conv2d(3, hs, kernel_size=stride * 2, stride=stride, padding=stride // 2) end = nn.ConvTranspose2d(hs, 2, kernel_size=stride, stride=stride) end.weight.data.zero_() end.bias.data.zero_() self.end = nn.Sequential( nn.Conv2d(hs * 3, hs, 3, 1, 1), nn.ReLU(), nn.GroupNorm(4, hs), nn.Conv2d(hs, hs, 3, 1, 1), end ) self.fft_v = FFTBlocks(hidden_size=hs, ffn_kernel_size=1, num_layers=n_layers) self.fft_h = nn.Sequential( nn.Conv1d(hs, hs, 3, 1, 1), nn.ReLU(), nn.Conv1d(hs, hs, 3, 1, 1), ) self.fft_g = nn.Sequential( nn.Conv1d( gin_channels - 160, hs, kernel_size=stride * 2, stride=stride, padding=stride // 2), Permute(0, 2, 1), FFTBlocks(hidden_size=hs, ffn_kernel_size=1, num_layers=n_layers), Permute(0, 2, 1), ) def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): g_, _ = unsqueeze(g) g_mel = g_[:, :80] g_txt = g_[:, 80:] g_mel, _ = squeeze(g_mel) g_txt, _ = squeeze(g_txt) # [B, C, T] if x_mask is None: x_mask = 1 x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:] x = torch.stack([x_0, g_mel[:, :80], g_mel[:, 80:]], 1) x = self.start(x) # [B, C, N_bins, T] B, C, N_bins, T = x.shape x_v = self.fft_v(x.permute(0, 3, 2, 1).reshape(B * T, N_bins, C)) x_v = x_v.reshape(B, T, N_bins, -1).permute(0, 3, 2, 1) # x_v = x x_h = self.fft_h(x.permute(0, 2, 1, 3).reshape(B * N_bins, C, T)) x_h = x_h.reshape(B, N_bins, -1, T).permute(0, 2, 1, 3) # x_h = x x_g = self.fft_g(g_txt)[:, :, None, :].repeat(1, 1, 10, 1) x = torch.cat([x_v, x_h, x_g], 1) out = self.end(x) z_0 = x_0 m = out[:, 0] logs = out[:, 1] if self.sigmoid_scale: logs = torch.log(1e-6 + torch.sigmoid(logs + 2)) if reverse: z_1 = (x_1 - m) * torch.exp(-logs) * x_mask logdet = torch.sum(-logs * x_mask, [1, 2]) else: z_1 = (m + torch.exp(logs) * x_1) * x_mask logdet = torch.sum(logs * x_mask, [1, 2]) z = torch.cat([z_0, z_1], 1) return z, logdet def store_inverse(self): pass class Glow(nn.Module): def __init__(self, in_channels, hidden_channels, kernel_size, dilation_rate, n_blocks, n_layers, p_dropout=0., n_split=4, n_sqz=2, sigmoid_scale=False, gin_channels=0, inv_conv_type='near', share_cond_layers=False, share_wn_layers=0, ): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_blocks = n_blocks self.n_layers = n_layers self.p_dropout = p_dropout self.n_split = n_split self.n_sqz = n_sqz self.sigmoid_scale = sigmoid_scale self.gin_channels = gin_channels self.share_cond_layers = share_cond_layers if gin_channels != 0 and share_cond_layers: cond_layer = torch.nn.Conv1d(gin_channels * n_sqz, 2 * hidden_channels * n_layers, 1) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') wn = None self.flows = nn.ModuleList() for b in range(n_blocks): self.flows.append(ActNorm(channels=in_channels * n_sqz)) if inv_conv_type == 'near': self.flows.append(InvConvNear(channels=in_channels * n_sqz, n_split=n_split, n_sqz=n_sqz)) if inv_conv_type == 'invconv': self.flows.append(InvConv(channels=in_channels * n_sqz)) if share_wn_layers > 0: if b % share_wn_layers == 0: wn = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels * n_sqz, p_dropout, share_cond_layers) self.flows.append( CouplingBlock( in_channels * n_sqz, hidden_channels, kernel_size=kernel_size, dilation_rate=dilation_rate, n_layers=n_layers, gin_channels=gin_channels * n_sqz, p_dropout=p_dropout, sigmoid_scale=sigmoid_scale, share_cond_layers=share_cond_layers, wn=wn )) def forward(self, x, x_mask=None, g=None, reverse=False, return_hiddens=False): logdet_tot = 0 if not reverse: flows = self.flows else: flows = reversed(self.flows) if return_hiddens: hs = [] if self.n_sqz > 1: x, x_mask_ = squeeze(x, x_mask, self.n_sqz) if g is not None: g, _ = squeeze(g, x_mask, self.n_sqz) x_mask = x_mask_ if self.share_cond_layers and g is not None: g = self.cond_layer(g) for f in flows: x, logdet = f(x, x_mask, g=g, reverse=reverse) if return_hiddens: hs.append(x) logdet_tot += logdet if self.n_sqz > 1: x, x_mask = unsqueeze(x, x_mask, self.n_sqz) if return_hiddens: return x, logdet_tot, hs return x, logdet_tot def store_inverse(self): def remove_weight_norm(m): try: nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm) for f in self.flows: f.store_inverse() class GlowV2(nn.Module): def __init__(self, in_channels=256, hidden_channels=256, kernel_size=3, dilation_rate=1, n_blocks=8, n_layers=4, p_dropout=0., n_split=4, n_split_blocks=3, sigmoid_scale=False, gin_channels=0, share_cond_layers=True): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_blocks = n_blocks self.n_layers = n_layers self.p_dropout = p_dropout self.n_split = n_split self.n_split_blocks = n_split_blocks self.sigmoid_scale = sigmoid_scale self.gin_channels = gin_channels self.cond_layers = nn.ModuleList() self.share_cond_layers = share_cond_layers self.flows = nn.ModuleList() in_channels = in_channels * 2 for l in range(n_split_blocks): blocks = nn.ModuleList() self.flows.append(blocks) gin_channels = gin_channels * 2 if gin_channels != 0 and share_cond_layers: cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) self.cond_layers.append(torch.nn.utils.weight_norm(cond_layer, name='weight')) for b in range(n_blocks): blocks.append(ActNorm(channels=in_channels)) blocks.append(InvConvNear(channels=in_channels, n_split=n_split)) blocks.append(CouplingBlock( in_channels, hidden_channels, kernel_size=kernel_size, dilation_rate=dilation_rate, n_layers=n_layers, gin_channels=gin_channels, p_dropout=p_dropout, sigmoid_scale=sigmoid_scale, share_cond_layers=share_cond_layers)) def forward(self, x=None, x_mask=None, g=None, reverse=False, concat_zs=True, noise_scale=0.66, return_hiddens=False): logdet_tot = 0 if not reverse: flows = self.flows assert x_mask is not None zs = [] if return_hiddens: hs = [] for i, blocks in enumerate(flows): x, x_mask = squeeze(x, x_mask) g_ = None if g is not None: g, _ = squeeze(g) if self.share_cond_layers: g_ = self.cond_layers[i](g) else: g_ = g for layer in blocks: x, logdet = layer(x, x_mask=x_mask, g=g_, reverse=reverse) if return_hiddens: hs.append(x) logdet_tot += logdet if i == self.n_split_blocks - 1: zs.append(x) else: x, z = torch.chunk(x, 2, 1) zs.append(z) if concat_zs: zs = [z.reshape(x.shape[0], -1) for z in zs] zs = torch.cat(zs, 1) # [B, C*T] if return_hiddens: return zs, logdet_tot, hs return zs, logdet_tot else: flows = reversed(self.flows) if x is not None: assert isinstance(x, list) zs = x else: B, _, T = g.shape zs = self.get_prior(B, T, g.device, noise_scale) zs_ori = zs if g is not None: g_, g = g, [] for i in range(len(self.flows)): g_, _ = squeeze(g_) g.append(self.cond_layers[i](g_) if self.share_cond_layers else g_) else: g = [None for _ in range(len(self.flows))] if x_mask is not None: x_masks = [] for i in range(len(self.flows)): x_mask, _ = squeeze(x_mask) x_masks.append(x_mask) else: x_masks = [None for _ in range(len(self.flows))] x_masks = x_masks[::-1] g = g[::-1] zs = zs[::-1] x = None for i, blocks in enumerate(flows): x = zs[i] if x is None else torch.cat([x, zs[i]], 1) for layer in reversed(blocks): x, logdet = layer(x, x_masks=x_masks[i], g=g[i], reverse=reverse) logdet_tot += logdet x, _ = unsqueeze(x) return x, logdet_tot, zs_ori def store_inverse(self): for f in self.modules(): if hasattr(f, 'store_inverse') and f != self: f.store_inverse() def remove_weight_norm(m): try: nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm) def get_prior(self, B, T, device, noise_scale=0.66): C = 80 zs = [] for i in range(len(self.flows)): C, T = C, T // 2 if i == self.n_split_blocks - 1: zs.append(torch.randn(B, C * 2, T).to(device) * noise_scale) else: zs.append(torch.randn(B, C, T).to(device) * noise_scale) return zs def squeeze(x, x_mask=None, n_sqz=2): b, c, t = x.size() t = (t // n_sqz) * n_sqz x = x[:, :, :t] x_sqz = x.view(b, c, t // n_sqz, n_sqz) x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz) if x_mask is not None: x_mask = x_mask[:, :, n_sqz - 1::n_sqz] else: x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype) return x_sqz * x_mask, x_mask def unsqueeze(x, x_mask=None, n_sqz=2): b, c, t = x.size() x_unsqz = x.view(b, n_sqz, c // n_sqz, t) x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz) if x_mask is not None: x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz) else: x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype) return x_unsqz * x_mask, x_mask
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/GenerSpeech/model/glow_modules.py
from modules.commons.common_layers import * # @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts class WN(torch.nn.Module): def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, share_cond_layers=False): super(WN, self).__init__() assert (kernel_size % 2 == 1) assert (hidden_channels % 2 == 0) self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.p_dropout = p_dropout self.share_cond_layers = share_cond_layers self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if gin_channels != 0 and not share_cond_layers: cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=padding) in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_channels else: res_skip_channels = hidden_channels res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, x, x_mask=None, g=None, **kwargs): output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_channels]) if g is not None and not self.share_cond_layers: g = self.cond_layer(g) for i in range(self.n_layers): x_in = self.in_layers[i](x) x_in = self.drop(x_in) if g is not None: cond_offset = i * 2 * self.hidden_channels g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :] else: g_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: x = (x + res_skip_acts[:, :self.hidden_channels, :]) * x_mask output = output + res_skip_acts[:, self.hidden_channels:, :] else: output = output + res_skip_acts return output * x_mask def remove_weight_norm(self): def remove_weight_norm(m): try: nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/GenerSpeech/model/wavenet.py
from torch import nn import copy import torch from utils.hparams import hparams from modules.GenerSpeech.model.wavenet import WN import math from modules.fastspeech.tts_modules import LayerNorm import torch.nn.functional as F from utils.tts_utils import group_hidden_by_segs, sequence_mask from scipy.cluster.vq import kmeans2 from torch.nn import functional as F class VQEmbeddingEMA(nn.Module): def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5, print_vq_prob=False): super(VQEmbeddingEMA, self).__init__() self.commitment_cost = commitment_cost self.n_embeddings = n_embeddings self.decay = decay self.epsilon = epsilon self.print_vq_prob = print_vq_prob self.register_buffer('data_initialized', torch.zeros(1)) init_bound = 1 / 512 embedding = torch.Tensor(n_embeddings, embedding_dim) embedding.uniform_(-init_bound, init_bound) self.register_buffer("embedding", embedding) self.register_buffer("ema_count", torch.zeros(n_embeddings)) self.register_buffer("ema_weight", self.embedding.clone()) def encode(self, x): B, T, _ = x.shape M, D = self.embedding.size() x_flat = x.detach().reshape(-1, D) distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) + torch.sum(x_flat ** 2, dim=1, keepdim=True), x_flat, self.embedding.t(), alpha=-2.0, beta=1.0) # [B*T_mel, N_vq] indices = torch.argmin(distances.float(), dim=-1) # [B*T_mel] quantized = F.embedding(indices, self.embedding) quantized = quantized.view_as(x) return x_flat, quantized, indices def forward(self, x): """ :param x: [B, T, D] :return: [B, T, D] """ B, T, _ = x.shape M, D = self.embedding.size() if self.training and self.data_initialized.item() == 0: print('| running kmeans in VQVAE') # data driven initialization for the embeddings x_flat = x.detach().reshape(-1, D) rp = torch.randperm(x_flat.size(0)) kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points') self.embedding.copy_(torch.from_numpy(kd[0])) x_flat, quantized, indices = self.encode(x) encodings = F.one_hot(indices, M).float() self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat)) self.ema_count.copy_(torch.sum(encodings, dim=0)) x_flat, quantized, indices = self.encode(x) encodings = F.one_hot(indices, M).float() indices = indices.reshape(B, T) if self.training and self.data_initialized.item() != 0: self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0) n = torch.sum(self.ema_count) self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n dw = torch.matmul(encodings.t(), x_flat) self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1) self.data_initialized.fill_(1) e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none') nonpadding = (x.abs().sum(-1) > 0).float() e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum() loss = self.commitment_cost * e_latent_loss quantized = x + (quantized - x).detach() avg_probs = torch.mean(encodings, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) if self.print_vq_prob: print("| VQ code avg_probs: ", avg_probs) return quantized, loss, indices, perplexity class CrossAttenLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1): super(CrossAttenLayer, self).__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) self.linear2 = nn.Linear(dim_feedforward, d_model) self.dropout2 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) self.activation = nn.ReLU() def forward(self, src, local_emotion, emotion_key_padding_mask=None, forcing=False): # src: (Tph, B, 256) local_emotion: (Temo, B, 256) emotion_key_padding_mask: (B, Temo) if forcing: maxlength = src.shape[0] k = local_emotion.shape[0] / src.shape[0] lengths1 = torch.ceil(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) + 1 lengths2 = torch.floor(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) - 1 mask1 = sequence_mask(lengths1, local_emotion.shape[0]) mask2 = sequence_mask(lengths2, local_emotion.shape[0]) mask = mask1.float() - mask2.float() attn_emo = mask.repeat(src.shape[1], 1, 1) # (B, Tph, Temo) src2 = torch.matmul(local_emotion.permute(1, 2, 0), attn_emo.float().transpose(1, 2)).permute(2, 0, 1) else: src2, attn_emo = self.multihead_attn(src, local_emotion, local_emotion, key_padding_mask=emotion_key_padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.activation(self.linear1(src))) src = src + self.dropout2(src2) src = self.norm2(src) return src, attn_emo class ProsodyAligner(nn.Module): def __init__(self, num_layers, guided_sigma=0.3, guided_layers=None, norm=None): super(ProsodyAligner, self).__init__() self.layers = nn.ModuleList([CrossAttenLayer(d_model=hparams['hidden_size'], nhead=2) for _ in range(num_layers)]) self.num_layers = num_layers self.norm = norm self.guided_sigma = guided_sigma self.guided_layers = guided_layers if guided_layers is not None else num_layers def forward(self, src, local_emotion, src_key_padding_mask=None, emotion_key_padding_mask=None, forcing=False): output = src guided_loss = 0 attn_emo_list = [] for i, mod in enumerate(self.layers): # output: (Tph, B, 256), global_emotion: (1, B, 256), local_emotion: (Temo, B, 256) mask: None, src_key_padding_mask: (B, Tph), # emotion_key_padding_mask: (B, Temo) output, attn_emo = mod(output, local_emotion, emotion_key_padding_mask=emotion_key_padding_mask, forcing=forcing) attn_emo_list.append(attn_emo.unsqueeze(1)) # attn_emo: (B, Tph, Temo) attn: (B, Tph, Tph) if i < self.guided_layers and src_key_padding_mask is not None: s_length = (~src_key_padding_mask).float().sum(-1) # B emo_length = (~emotion_key_padding_mask).float().sum(-1) attn_w_emo = _make_guided_attention_mask(src_key_padding_mask.size(-1), s_length, emotion_key_padding_mask.size(-1), emo_length, self.guided_sigma) g_loss_emo = attn_emo * attn_w_emo # N, L, S non_padding_mask = (~src_key_padding_mask).unsqueeze(-1) & (~emotion_key_padding_mask).unsqueeze(1) guided_loss = g_loss_emo[non_padding_mask].mean() + guided_loss if self.norm is not None: output = self.norm(output) return output, guided_loss, attn_emo_list def _make_guided_attention_mask(ilen, rilen, olen, rolen, sigma): grid_x, grid_y = torch.meshgrid(torch.arange(ilen, device=rilen.device), torch.arange(olen, device=rolen.device)) grid_x = grid_x.unsqueeze(0).expand(rilen.size(0), -1, -1) grid_y = grid_y.unsqueeze(0).expand(rolen.size(0), -1, -1) rilen = rilen.unsqueeze(1).unsqueeze(1) rolen = rolen.unsqueeze(1).unsqueeze(1) return 1.0 - torch.exp( -((grid_y.float() / rolen - grid_x.float() / rilen) ** 2) / (2 * (sigma ** 2)) ) class LocalStyleAdaptor(nn.Module): def __init__(self, hidden_size, num_vq_codes=64, padding_idx=0): super(LocalStyleAdaptor, self).__init__() self.encoder = ConvBlocks(80, hidden_size, [1] * 5, 5, dropout=hparams['vae_dropout']) self.n_embed = num_vq_codes self.vqvae = VQEmbeddingEMA(self.n_embed, hidden_size, commitment_cost=hparams['lambda_commit']) self.wavenet = WN(hidden_channels=80, gin_channels=80, kernel_size=3, dilation_rate=1, n_layers=4) self.padding_idx = padding_idx self.hidden_size = hidden_size def forward(self, ref_mels, mel2ph=None, no_vq=False): """ :param ref_mels: [B, T, 80] :return: [B, 1, H] """ padding_mask = ref_mels[:, :, 0].eq(self.padding_idx).data ref_mels = self.wavenet(ref_mels.transpose(1, 2), x_mask=(~padding_mask).unsqueeze(1).repeat([1, 80, 1])).transpose(1, 2) if mel2ph is not None: ref_ph, _ = group_hidden_by_segs(ref_mels, mel2ph, torch.max(mel2ph)) else: ref_ph = ref_mels prosody = self.encoder(ref_ph) if no_vq: return prosody z, vq_loss, vq_tokens, ppl = self.vqvae(prosody) vq_loss = vq_loss.mean() return z, vq_loss, ppl class LambdaLayer(nn.Module): def __init__(self, lambd): super(LambdaLayer, self).__init__() self.lambd = lambd def forward(self, x): return self.lambd(x) class Conv1d(nn.Conv1d): """A wrapper around nn.Conv1d, that works on (batch, time, channels)""" def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, groups=1, bias=True, padding=0): super(Conv1d, self).__init__(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=groups, bias=bias, padding=padding) def forward(self, x): return super().forward(x.transpose(2, 1)).transpose(2, 1) def init_weights_func(m): classname = m.__class__.__name__ if classname.find("Conv1d") != -1: torch.nn.init.xavier_uniform_(m.weight) class ResidualBlock(nn.Module): """Implements conv->PReLU->norm n-times""" def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0, c_multiple=2, ln_eps=1e-12): super(ResidualBlock, self).__init__() if norm_type == 'bn': norm_builder = lambda: nn.BatchNorm1d(channels) elif norm_type == 'in': norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True) elif norm_type == 'gn': norm_builder = lambda: nn.GroupNorm(8, channels) elif norm_type == 'ln': norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps) else: norm_builder = lambda: nn.Identity() self.blocks = [ nn.Sequential( norm_builder(), nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation, padding=(dilation * (kernel_size - 1)) // 2), LambdaLayer(lambda x: x * kernel_size ** -0.5), nn.GELU(), nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation), ) for i in range(n) ] self.blocks = nn.ModuleList(self.blocks) self.dropout = dropout def forward(self, x): nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] for b in self.blocks: x_ = b(x) if self.dropout > 0 and self.training: x_ = F.dropout(x_, self.dropout, training=self.training) x = x + x_ x = x * nonpadding return x class Pad(nn.ZeroPad2d): def __init__(self, kernel_size, dilation): pad_total = dilation * (kernel_size - 1) begin = pad_total // 2 end = pad_total - begin super(Pad, self).__init__((begin, end, begin, end)) class ZeroTemporalPad(nn.ZeroPad2d): """Pad sequences to equal lentgh in the temporal dimension""" def __init__(self, kernel_size, dilation, causal=False): total_pad = (dilation * (kernel_size - 1)) if causal: super(ZeroTemporalPad, self).__init__((total_pad, 0)) else: begin = total_pad // 2 end = total_pad - begin super(ZeroTemporalPad, self).__init__((begin, end)) class ConvBlocks(nn.Module): """Decodes the expanded phoneme encoding into spectrograms""" def __init__(self, channels, out_dims, dilations, kernel_size, norm_type='ln', layers_in_block=2, c_multiple=2, dropout=0.0, ln_eps=1e-5, init_weights=True): super(ConvBlocks, self).__init__() self.res_blocks = nn.Sequential( *[ResidualBlock(channels, kernel_size, d, n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple, dropout=dropout, ln_eps=ln_eps) for d in dilations], ) if norm_type == 'bn': norm = nn.BatchNorm1d(channels) elif norm_type == 'in': norm = nn.InstanceNorm1d(channels, affine=True) elif norm_type == 'gn': norm = nn.GroupNorm(8, channels) elif norm_type == 'ln': norm = LayerNorm(channels, dim=1, eps=ln_eps) self.last_norm = norm self.post_net1 = nn.Conv1d(channels, out_dims, kernel_size=3, padding=1) if init_weights: self.apply(init_weights_func) def forward(self, x): """ :param x: [B, T, H] :return: [B, T, H] """ x = x.transpose(1, 2) nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] x = self.res_blocks(x) * nonpadding x = self.last_norm(x) * nonpadding x = self.post_net1(x) * nonpadding return x.transpose(1, 2) class TextConvEncoder(ConvBlocks): def __init__(self, embed_tokens, channels, out_dims, dilations, kernel_size, norm_type='ln', layers_in_block=2, c_multiple=2, dropout=0.0, ln_eps=1e-5, init_weights=True): super().__init__(channels, out_dims, dilations, kernel_size, norm_type, layers_in_block, c_multiple, dropout, ln_eps, init_weights) self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(channels) def forward(self, txt_tokens): """ :param txt_tokens: [B, T] :return: { 'encoder_out': [B x T x C] } """ x = self.embed_scale * self.embed_tokens(txt_tokens) return super().forward(x) class ConditionalConvBlocks(ConvBlocks): def __init__(self, channels, g_channels, out_dims, dilations, kernel_size, norm_type='ln', layers_in_block=2, c_multiple=2, dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True): super().__init__(channels, out_dims, dilations, kernel_size, norm_type, layers_in_block, c_multiple, dropout, ln_eps, init_weights) self.g_prenet = nn.Conv1d(g_channels, channels, 3, padding=1) self.is_BTC = is_BTC if init_weights: self.g_prenet.apply(init_weights_func) def forward(self, x, g, x_mask): if self.is_BTC: x = x.transpose(1, 2) g = g.transpose(1, 2) x_mask = x_mask.transpose(1, 2) x = x + self.g_prenet(g) x = x * x_mask if not self.is_BTC: x = x.transpose(1, 2) x = super(ConditionalConvBlocks, self).forward(x) # input needs to be BTC if not self.is_BTC: x = x.transpose(1, 2) return x
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/GenerSpeech/model/prosody_util.py
import torch from modules.GenerSpeech.model.glow_modules import Glow from modules.fastspeech.tts_modules import PitchPredictor import random from modules.GenerSpeech.model.prosody_util import ProsodyAligner, LocalStyleAdaptor from utils.pitch_utils import f0_to_coarse, denorm_f0 from modules.commons.common_layers import * import torch.distributions as dist from utils.hparams import hparams from modules.GenerSpeech.model.mixstyle import MixStyle from modules.fastspeech.fs2 import FastSpeech2 import json from modules.fastspeech.tts_modules import DEFAULT_MAX_SOURCE_POSITIONS, DEFAULT_MAX_TARGET_POSITIONS class GenerSpeech(FastSpeech2): ''' GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain Text-to-Speech https://arxiv.org/abs/2205.07211 ''' def __init__(self, dictionary, out_dims=None): super().__init__(dictionary, out_dims) # Mixstyle self.norm = MixStyle(p=0.5, alpha=0.1, eps=1e-6, hidden_size=self.hidden_size) # emotion embedding self.emo_embed_proj = Linear(256, self.hidden_size, bias=True) # build prosody extractor ## frame level self.prosody_extractor_utter = LocalStyleAdaptor(self.hidden_size, hparams['nVQ'], self.padding_idx) self.l1_utter = nn.Linear(self.hidden_size * 2, self.hidden_size) self.align_utter = ProsodyAligner(num_layers=2) ## phoneme level self.prosody_extractor_ph = LocalStyleAdaptor(self.hidden_size, hparams['nVQ'], self.padding_idx) self.l1_ph = nn.Linear(self.hidden_size * 2, self.hidden_size) self.align_ph = ProsodyAligner(num_layers=2) ## word level self.prosody_extractor_word = LocalStyleAdaptor(self.hidden_size, hparams['nVQ'], self.padding_idx) self.l1_word = nn.Linear(self.hidden_size * 2, self.hidden_size) self.align_word = ProsodyAligner(num_layers=2) self.pitch_inpainter_predictor = PitchPredictor( self.hidden_size, n_chans=self.hidden_size, n_layers=3, dropout_rate=0.1, odim=2, padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel']) # build attention layer self.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS self.embed_positions = SinusoidalPositionalEmbedding( self.hidden_size, self.padding_idx, init_size=self.max_source_positions + self.padding_idx + 1, ) # build post flow cond_hs = 80 if hparams.get('use_txt_cond', True): cond_hs = cond_hs + hparams['hidden_size'] cond_hs = cond_hs + hparams['hidden_size'] * 3 # for emo, spk embedding and prosody embedding self.post_flow = Glow( 80, hparams['post_glow_hidden'], hparams['post_glow_kernel_size'], 1, hparams['post_glow_n_blocks'], hparams['post_glow_n_block_layers'], n_split=4, n_sqz=2, gin_channels=cond_hs, share_cond_layers=hparams['post_share_cond_layers'], share_wn_layers=hparams['share_wn_layers'], sigmoid_scale=hparams['sigmoid_scale'] ) self.prior_dist = dist.Normal(0, 1) def forward(self, txt_tokens, mel2ph=None, ref_mel2ph=None, ref_mel2word=None, spk_embed=None, emo_embed=None, ref_mels=None, f0=None, uv=None, skip_decoder=False, global_steps=0, infer=False, **kwargs): ret = {} encoder_out = self.encoder(txt_tokens) # [B, T, C] src_nonpadding = (txt_tokens > 0).float()[:, :, None] # add spk/emo embed spk_embed = self.spk_embed_proj(spk_embed)[:, None, :] emo_embed = self.emo_embed_proj(emo_embed)[:, None, :] # add dur dur_inp = (encoder_out + spk_embed + emo_embed) * src_nonpadding mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret) tgt_nonpadding = (mel2ph > 0).float()[:, :, None] decoder_inp = self.expand_states(encoder_out, mel2ph) decoder_inp = self.norm(decoder_inp, spk_embed + emo_embed) # add prosody VQ ret['ref_mel2ph'] = ref_mel2ph ret['ref_mel2word'] = ref_mel2word prosody_utter_mel = self.get_prosody_utter(decoder_inp, ref_mels, ret, infer, global_steps) prosody_ph_mel = self.get_prosody_ph(decoder_inp, ref_mels, ret, infer, global_steps) prosody_word_mel = self.get_prosody_word(decoder_inp, ref_mels, ret, infer, global_steps) # add pitch embed pitch_inp_domain_agnostic = decoder_inp * tgt_nonpadding pitch_inp_domain_specific = (decoder_inp + spk_embed + emo_embed + prosody_utter_mel + prosody_ph_mel + prosody_word_mel) * tgt_nonpadding predicted_pitch = self.inpaint_pitch(pitch_inp_domain_agnostic, pitch_inp_domain_specific, f0, uv, mel2ph, ret) # decode decoder_inp = decoder_inp + spk_embed + emo_embed + predicted_pitch + prosody_utter_mel + prosody_ph_mel + prosody_word_mel ret['decoder_inp'] = decoder_inp = decoder_inp * tgt_nonpadding if skip_decoder: return ret ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) # postflow is_training = self.training ret['x_mask'] = tgt_nonpadding ret['spk_embed'] = spk_embed ret['emo_embed'] = emo_embed ret['ref_prosody'] = prosody_utter_mel + prosody_ph_mel + prosody_word_mel self.run_post_glow(ref_mels, infer, is_training, ret) return ret def get_prosody_ph(self, encoder_out, ref_mels, ret, infer=False, global_steps=0): # get VQ prosody if global_steps > hparams['vq_start'] or infer: prosody_embedding, loss, ppl = self.prosody_extractor_ph(ref_mels, ret['ref_mel2ph'], no_vq=False) ret['vq_loss_ph'] = loss ret['ppl_ph'] = ppl else: prosody_embedding = self.prosody_extractor_ph(ref_mels, ret['ref_mel2ph'], no_vq=True) # add positional embedding positions = self.embed_positions(prosody_embedding[:, :, 0]) prosody_embedding = self.l1_ph(torch.cat([prosody_embedding, positions], dim=-1)) # style-to-content attention src_key_padding_mask = encoder_out[:, :, 0].eq(self.padding_idx).data prosody_key_padding_mask = prosody_embedding[:, :, 0].eq(self.padding_idx).data if global_steps < hparams['forcing']: output, guided_loss, attn_emo = self.align_ph(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1), src_key_padding_mask, prosody_key_padding_mask, forcing=True) else: output, guided_loss, attn_emo = self.align_ph(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1), src_key_padding_mask, prosody_key_padding_mask, forcing=False) ret['gloss_ph'] = guided_loss ret['attn_ph'] = attn_emo return output.transpose(0, 1) def get_prosody_word(self, encoder_out, ref_mels, ret, infer=False, global_steps=0): # get VQ prosody if global_steps > hparams['vq_start'] or infer: prosody_embedding, loss, ppl = self.prosody_extractor_word(ref_mels, ret['ref_mel2word'], no_vq=False) ret['vq_loss_word'] = loss ret['ppl_word'] = ppl else: prosody_embedding = self.prosody_extractor_word(ref_mels, ret['ref_mel2word'], no_vq=True) # add positional embedding positions = self.embed_positions(prosody_embedding[:, :, 0]) prosody_embedding = self.l1_word(torch.cat([prosody_embedding, positions], dim=-1)) # style-to-content attention src_key_padding_mask = encoder_out[:, :, 0].eq(self.padding_idx).data prosody_key_padding_mask = prosody_embedding[:, :, 0].eq(self.padding_idx).data if global_steps < hparams['forcing']: output, guided_loss, attn_emo = self.align_word(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1), src_key_padding_mask, prosody_key_padding_mask, forcing=True) else: output, guided_loss, attn_emo = self.align_word(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1), src_key_padding_mask, prosody_key_padding_mask, forcing=False) ret['gloss_word'] = guided_loss ret['attn_word'] = attn_emo return output.transpose(0, 1) def get_prosody_utter(self, encoder_out, ref_mels, ret, infer=False, global_steps=0): # get VQ prosody if global_steps > hparams['vq_start'] or infer: prosody_embedding, loss, ppl = self.prosody_extractor_utter(ref_mels, no_vq=False) ret['vq_loss_utter'] = loss ret['ppl_utter'] = ppl else: prosody_embedding = self.prosody_extractor_utter(ref_mels, no_vq=True) # add positional embedding positions = self.embed_positions(prosody_embedding[:, :, 0]) prosody_embedding = self.l1_utter(torch.cat([prosody_embedding, positions], dim=-1)) # style-to-content attention src_key_padding_mask = encoder_out[:, :, 0].eq(self.padding_idx).data prosody_key_padding_mask = prosody_embedding[:, :, 0].eq(self.padding_idx).data if global_steps < hparams['forcing']: output, guided_loss, attn_emo = self.align_utter(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1), src_key_padding_mask, prosody_key_padding_mask, forcing=True) else: output, guided_loss, attn_emo = self.align_utter(encoder_out.transpose(0, 1), prosody_embedding.transpose(0, 1), src_key_padding_mask, prosody_key_padding_mask, forcing=False) ret['gloss_utter'] = guided_loss ret['attn_utter'] = attn_emo return output.transpose(0, 1) def inpaint_pitch(self, pitch_inp_domain_agnostic, pitch_inp_domain_specific, f0, uv, mel2ph, ret): if hparams['pitch_type'] == 'frame': pitch_padding = mel2ph == 0 if hparams['predictor_grad'] != 1: pitch_inp_domain_agnostic = pitch_inp_domain_agnostic.detach() + hparams['predictor_grad'] * (pitch_inp_domain_agnostic - pitch_inp_domain_agnostic.detach()) pitch_inp_domain_specific = pitch_inp_domain_specific.detach() + hparams['predictor_grad'] * (pitch_inp_domain_specific - pitch_inp_domain_specific.detach()) pitch_domain_agnostic = self.pitch_predictor(pitch_inp_domain_agnostic) pitch_domain_specific = self.pitch_inpainter_predictor(pitch_inp_domain_specific) pitch_pred = pitch_domain_agnostic + pitch_domain_specific ret['pitch_pred'] = pitch_pred use_uv = hparams['pitch_type'] == 'frame' and hparams['use_uv'] if f0 is None: f0 = pitch_pred[:, :, 0] # [B, T] if use_uv: uv = pitch_pred[:, :, 1] > 0 # [B, T] f0_denorm = denorm_f0(f0, uv if use_uv else None, hparams, pitch_padding=pitch_padding) pitch = f0_to_coarse(f0_denorm) # start from 0 [B, T_txt] ret['f0_denorm'] = f0_denorm ret['f0_denorm_pred'] = denorm_f0(pitch_pred[:, :, 0], (pitch_pred[:, :, 1] > 0) if use_uv else None, hparams, pitch_padding=pitch_padding) if hparams['pitch_type'] == 'ph': pitch = torch.gather(F.pad(pitch, [1, 0]), 1, mel2ph) ret['f0_denorm'] = torch.gather(F.pad(ret['f0_denorm'], [1, 0]), 1, mel2ph) ret['f0_denorm_pred'] = torch.gather(F.pad(ret['f0_denorm_pred'], [1, 0]), 1, mel2ph) pitch_embed = self.pitch_embed(pitch) return pitch_embed def run_post_glow(self, tgt_mels, infer, is_training, ret): x_recon = ret['mel_out'].transpose(1, 2) g = x_recon B, _, T = g.shape if hparams.get('use_txt_cond', True): g = torch.cat([g, ret['decoder_inp'].transpose(1, 2)], 1) g_spk_embed = ret['spk_embed'].repeat(1, T, 1).transpose(1, 2) g_emo_embed = ret['emo_embed'].repeat(1, T, 1).transpose(1, 2) l_ref_prosody = ret['ref_prosody'].transpose(1, 2) g = torch.cat([g, g_spk_embed, g_emo_embed, l_ref_prosody], dim=1) prior_dist = self.prior_dist if not infer: if is_training: self.train() x_mask = ret['x_mask'].transpose(1, 2) y_lengths = x_mask.sum(-1) g = g.detach() tgt_mels = tgt_mels.transpose(1, 2) z_postflow, ldj = self.post_flow(tgt_mels, x_mask, g=g) ldj = ldj / y_lengths / 80 ret['z_pf'], ret['ldj_pf'] = z_postflow, ldj ret['postflow'] = -prior_dist.log_prob(z_postflow).mean() - ldj.mean() else: x_mask = torch.ones_like(x_recon[:, :1, :]) z_post = prior_dist.sample(x_recon.shape).to(g.device) * hparams['noise_scale'] x_recon_, _ = self.post_flow(z_post, x_mask, g, reverse=True) x_recon = x_recon_ ret['mel_out'] = x_recon.transpose(1, 2)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/GenerSpeech/model/generspeech.py
from modules.commons.common_layers import * import random class MixStyle(nn.Module): """MixStyle. Reference: Zhou et al. Domain Generalization with MixStyle. ICLR 2021. """ def __init__(self, p=0.5, alpha=0.1, eps=1e-6, hidden_size=256): """ Args: p (float): probability of using MixStyle. alpha (float): parameter of the Beta distribution. eps (float): scaling parameter to avoid numerical issues. mix (str): how to mix. """ super().__init__() self.p = p self.beta = torch.distributions.Beta(alpha, alpha) self.eps = eps self.alpha = alpha self._activated = True self.hidden_size = hidden_size self.affine_layer = LinearNorm( hidden_size, 2 * hidden_size, # For both b (bias) g (gain) ) def __repr__(self): return f'MixStyle(p={self.p}, alpha={self.alpha}, eps={self.eps})' def set_activation_status(self, status=True): self._activated = status def forward(self, x, spk_embed): if not self.training or not self._activated: return x if random.random() > self.p: return x B = x.size(0) mu, sig = torch.mean(x, dim=-1, keepdim=True), torch.std(x, dim=-1, keepdim=True) x_normed = (x - mu) / (sig + 1e-6) # [B, T, H_m] lmda = self.beta.sample((B, 1, 1)) lmda = lmda.to(x.device) # Get Bias and Gain mu1, sig1 = torch.split(self.affine_layer(spk_embed), self.hidden_size, dim=-1) # [B, 1, 2 * H_m] --> 2 * [B, 1, H_m] # MixStyle perm = torch.randperm(B) mu2, sig2 = mu1[perm], sig1[perm] mu_mix = mu1*lmda + mu2 * (1-lmda) sig_mix = sig1*lmda + sig2 * (1-lmda) # Perform Scailing and Shifting return sig_mix * x_normed + mu_mix # [B, T, H_m]
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/GenerSpeech/model/mixstyle.py
import torch import torch.nn as nn import torch.nn.functional as F import dgl from dgl.nn.pytorch import GatedGraphConv def sequence_mask(lengths, maxlen, dtype=torch.bool): if maxlen is None: maxlen = lengths.max() mask = ~(torch.ones((len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths).t() mask.type(dtype) return mask def group_hidden_by_segs(h, seg_ids, max_len): """ :param h: [B, T, H] :param seg_ids: [B, T] :return: h_ph: [B, T_ph, H] """ B, T, H = h.shape h_gby_segs = h.new_zeros([B, max_len + 1, H]).scatter_add_(1, seg_ids[:, :, None].repeat([1, 1, H]), h) all_ones = h.new_ones(h.shape[:2]) cnt_gby_segs = h.new_zeros([B, max_len + 1]).scatter_add_(1, seg_ids, all_ones).contiguous() h_gby_segs = h_gby_segs[:, 1:] cnt_gby_segs = cnt_gby_segs[:, 1:] h_gby_segs = h_gby_segs / torch.clamp(cnt_gby_segs[:, :, None], min=1) # assert h_gby_segs.shape[-1] == 192 return h_gby_segs class GraphAuxEnc(nn.Module): def __init__(self, in_dim, hid_dim, out_dim, n_iterations=5, n_edge_types=6): super(GraphAuxEnc, self).__init__() self.in_dim = in_dim self.hid_dim = hid_dim self.out_dim = out_dim self.skip_connect = True self.dropout_after_gae = False self.ggc_1 = GatedGraphConv(in_feats=in_dim, out_feats=hid_dim , n_steps=n_iterations, n_etypes=n_edge_types) self.ggc_2 = GatedGraphConv(in_feats=hid_dim, out_feats=out_dim , n_steps=n_iterations, n_etypes=n_edge_types) self.dropout = nn.Dropout(p=0.5) @staticmethod def ph_encoding_to_word_encoding(ph_encoding, ph2word, word_len): """ ph_encoding: [batch, t_p, hid] ph2word: tensor [batch, t_w] word_len: tensor [batch] """ word_encoding_for_graph, batch_word_encoding, has_word_row_idx = GraphAuxEnc._process_ph_to_word_encoding( ph_encoding, ph2word, word_len) # [batch, t_w, hid] return batch_word_encoding, word_encoding_for_graph def pad_word_encoding_to_phoneme(self, word_encoding, ph2word, t_p): return self._postprocess_word2ph(word_encoding, ph2word, t_p) @staticmethod def _process_ph_to_word_encoding(ph_encoding, ph2word, word_len=None): """ ph_encoding: [batch, t_p, hid] ph2word: tensor [batch, t_w] word_len: tensor [batch] """ word_len = word_len.reshape([-1,]) max_len = max(word_len) num_nodes = sum(word_len) batch_word_encoding = group_hidden_by_segs(ph_encoding, ph2word, max_len) bs, t_p, hid = batch_word_encoding.shape has_word_mask = sequence_mask(word_len, max_len) # [batch, t_p, 1] word_encoding = batch_word_encoding.reshape([bs * t_p, hid]) has_word_row_idx = has_word_mask.reshape([-1]) word_encoding = word_encoding[has_word_row_idx] assert word_encoding.shape[0] == num_nodes return word_encoding, batch_word_encoding, has_word_row_idx @staticmethod def _postprocess_word2ph(word_encoding, ph2word, t_p): word_encoding = F.pad(word_encoding,[0,0,1,0]) ph2word_ = ph2word[:, :, None].repeat([1, 1, word_encoding.shape[-1]]) out = torch.gather(word_encoding, 1, ph2word_) # [B, T, H] return out @staticmethod def _repeat_one_sequence(x, d, T): """Repeat each frame according to duration.""" if d.sum() == 0: d = d.fill_(1) hid = x.shape[-1] expanded_lst = [x_.repeat(int(d_), 1) for x_, d_ in zip(x, d) if d_ != 0] expanded = torch.cat(expanded_lst, dim=0) if T > expanded.shape[0]: expanded = torch.cat([expanded, torch.zeros([T - expanded.shape[0], hid]).to(expanded.device)], dim=0) return expanded def word_forward(self, graph_lst, word_encoding, etypes_lst): """ word encoding in, word encoding out. """ batched_graph = dgl.batch(graph_lst) inp = word_encoding batched_etypes = torch.cat(etypes_lst) # [num_edges_in_batch, 1] assert batched_graph.num_nodes() == inp.shape[0] gcc1_out = self.ggc_1(batched_graph, inp, batched_etypes) if self.dropout_after_gae: gcc1_out = self.dropout(gcc1_out) gcc2_out = self.ggc_2(batched_graph, gcc1_out, batched_etypes) # [num_nodes_in_batch, hin] if self.dropout_after_gae: gcc2_out = self.ggc_2(batched_graph, gcc2_out, batched_etypes) if self.skip_connect: assert self.in_dim == self.hid_dim and self.hid_dim == self.out_dim gcc2_out = inp + gcc1_out + gcc2_out word_len = torch.tensor([g.num_nodes() for g in graph_lst]).reshape([-1]) max_len = max(word_len) has_word_mask = sequence_mask(word_len, max_len) # [batch, t_p, 1] has_word_row_idx = has_word_mask.reshape([-1]) bs = len(graph_lst) t_w = max([g.num_nodes() for g in graph_lst]) hid = word_encoding.shape[-1] output = torch.zeros([bs * t_w, hid]).to(gcc2_out.device) output[has_word_row_idx] = gcc2_out output = output.reshape([bs, t_w, hid]) word_level_output = output return torch.transpose(word_level_output, 1, 2) def forward(self, graph_lst, ph_encoding, ph2word, etypes_lst, return_word_encoding=False): """ graph_lst: [list of dgl_graph] ph_encoding: [batch, hid, t_p] ph2word: [list of list[1,2,2,2,3,3,3]] etypes_lst: [list of etypes]; etypes: torch.LongTensor """ t_p = ph_encoding.shape[-1] ph_encoding = ph_encoding.transpose(1,2) # [batch, t_p, hid] word_len = torch.tensor([g.num_nodes() for g in graph_lst]).reshape([-1]) batched_graph = dgl.batch(graph_lst) inp, batched_word_encoding, has_word_row_idx = self._process_ph_to_word_encoding(ph_encoding, ph2word, word_len=word_len) # [num_nodes_in_batch, in_dim] bs, t_w, hid = batched_word_encoding.shape batched_etypes = torch.cat(etypes_lst) # [num_edges_in_batch, 1] gcc1_out = self.ggc_1(batched_graph, inp, batched_etypes) gcc2_out = self.ggc_2(batched_graph, gcc1_out, batched_etypes) # [num_nodes_in_batch, hin] # skip connection gcc2_out = inp + gcc1_out + gcc2_out # [n_nodes, hid] output = torch.zeros([bs * t_w, hid]).to(gcc2_out.device) output[has_word_row_idx] = gcc2_out output = output.reshape([bs, t_w, hid]) word_level_output = output output = self._postprocess_word2ph(word_level_output, ph2word, t_p) # [batch, t_p, hid] output = torch.transpose(output, 1, 2) if return_word_encoding: return output, torch.transpose(word_level_output, 1, 2) else: return output if __name__ == '__main__': # Unit Test for batching graphs from modules.syntaspeech.syntactic_graph_buider import Sentence2GraphParser, plot_dgl_sentence_graph parser = Sentence2GraphParser("en") # Unit Test for English Graph Builder text1 = "To be or not to be , that 's a question ." text2 = "I love you . You love me . Mixue ice-scream and tea ." graph1, etypes1 = parser.parse(text1) graph2, etypes2 = parser.parse(text2) batched_text = "<BOS> " + text1 + " <EOS>" + " " + "<BOS> " + text2 + " <EOS>" batched_nodes = [graph1.num_nodes(), graph2.num_nodes()] plot_dgl_sentence_graph(dgl.batch([graph1, graph2]), {i: w for i, w in enumerate(batched_text.split(" "))}) etypes_lst = [etypes1, etypes2] # Unit Test for Graph Encoder forward in_feats = 4 out_feats = 4 enc = GraphAuxEnc(in_dim=in_feats, hid_dim=in_feats, out_dim=out_feats) ph2word = torch.tensor([ [1, 2, 3, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0], [1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] ]) inp = torch.randn([2, in_feats, 17]) # [N_sentence, feat, ph_length] graph_lst = [graph1, graph2] out = enc(graph_lst, inp, ph2word, etypes_lst) print(out.shape) # [N_sentence, feat, ph_length]
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/syntaspeech/syntactic_graph_encoder.py
from copy import deepcopy import torch import dgl import stanza import networkx as nx class Sentence2GraphParser: def __init__(self, language='zh', use_gpu=False, download=False): self.language = language if download: self.stanza_parser = stanza.Pipeline(lang=language, use_gpu=use_gpu) else: self.stanza_parser = stanza.Pipeline(lang=language, use_gpu=use_gpu, download_method=None) def parse(self, clean_sentence=None, words=None, ph_words=None): if self.language == 'zh': assert words is not None and ph_words is not None ret = self._parse_zh(words, ph_words) elif self.language == 'en': assert clean_sentence is not None ret = self._parse_en(clean_sentence) else: raise NotImplementedError return ret def _parse_zh(self, words, ph_words, enable_backward_edge=True, enable_recur_edge=True, enable_inter_sentence_edge=True, sequential_edge=False): """ words: <List of str>, each character in chinese is one item ph_words: <List of str>, each character in chinese is one item, represented by the phoneme Example: text1 = '宝马配挂跛骡鞍,貂蝉怨枕董翁榻.' words = ['<BOS>', '宝', '马', '配', '挂', '跛', '骡', '鞍', ',' , '貂', '蝉', '怨', '枕', '董', '翁', '榻', '<EOS>'] ph_words = ['<BOS>', 'b_ao3_|', 'm_a3_#', 'p_ei4_|', 'g_ua4_#', 'b_o3_#', 'l_uo2_|', 'an1', ',', 'd_iao1_|', 'ch_an2_#', 'van4_#', 'zh_en3_#', 'd_ong3_|', 'ueng1_#', 't_a4', '<EOS>'] """ words, ph_words = words[1:-1], ph_words[1:-1] # delete <BOS> and <EOS> for i, p_w in enumerate(ph_words): if p_w == ',': # change english ',' into chinese # we found it necessary in stanza's dependency parsing words[i], ph_words[i] = ',', ',' tmp_words = deepcopy(words) num_added_space = 0 for i, p_w in enumerate(ph_words): if p_w.endswith("#"): # add a blank after the p_w with '#', to separate words tmp_words.insert(num_added_space + i + 1, " ") num_added_space += 1 if p_w in [',', ',']: # add one blank before and after ', ', respectively tmp_words.insert(num_added_space + i + 1, " ") # insert behind ',' first tmp_words.insert(num_added_space + i, " ") # insert before num_added_space += 2 clean_text = ''.join(tmp_words).strip() parser_out = self.stanza_parser(clean_text) idx_to_word = {i + 1: w for i, w in enumerate(words)} vocab_nodes = {} vocab_idx_offset = 0 for sentence in parser_out.sentences: num_nodes_in_current_sentence = 0 for vocab_node in sentence.words: num_nodes_in_current_sentence += 1 vocab_idx = vocab_node.id + vocab_idx_offset vocab_text = vocab_node.text.replace(" ", "") # delete blank in vocab vocab_nodes[vocab_idx] = vocab_text vocab_idx_offset += num_nodes_in_current_sentence # start vocab-to-word alignment vocab_to_word = {} current_word_idx = 1 for vocab_i in vocab_nodes.keys(): vocab_to_word[vocab_i] = [] for w_in_vocab_i in vocab_nodes[vocab_i]: if w_in_vocab_i != idx_to_word[current_word_idx]: raise ValueError("Word Mismatch!") vocab_to_word[vocab_i].append(current_word_idx) # add a path (vocab_node_idx, word_global_idx) current_word_idx += 1 # then we compute the vocab-level edges if len(parser_out.sentences) > 5: print("Detect more than 5 input sentence! pls check whether the sentence is too long!") vocab_level_source_id, vocab_level_dest_id = [], [] vocab_level_edge_types = [] sentences_heads = [] vocab_id_offset = 0 # get forward edges for s in parser_out.sentences: for w in s.words: w_idx = w.id + vocab_id_offset # it starts from 1, just same as binarizer w_dest_idx = w.head + vocab_id_offset if w.head == 0: sentences_heads.append(w_idx) continue vocab_level_source_id.append(w_idx) vocab_level_dest_id.append(w_dest_idx) vocab_id_offset += len(s.words) vocab_level_edge_types += [0] * len(vocab_level_source_id) num_vocab = vocab_id_offset # optional: get backward edges if enable_backward_edge: back_source, back_dest = deepcopy(vocab_level_dest_id), deepcopy(vocab_level_source_id) vocab_level_source_id += back_source vocab_level_dest_id += back_dest vocab_level_edge_types += [1] * len(back_source) # optional: get inter-sentence edges if num_sentences > 1 inter_sentence_source, inter_sentence_dest = [], [] if enable_inter_sentence_edge and len(sentences_heads) > 1: def get_full_graph_edges(nodes): tmp_edges = [] for i, node_i in enumerate(nodes): for j, node_j in enumerate(nodes): if i == j: continue tmp_edges.append((node_i, node_j)) return tmp_edges tmp_edges = get_full_graph_edges(sentences_heads) for (source, dest) in tmp_edges: inter_sentence_source.append(source) inter_sentence_dest.append(dest) vocab_level_source_id += inter_sentence_source vocab_level_dest_id += inter_sentence_dest vocab_level_edge_types += [3] * len(inter_sentence_source) if sequential_edge: seq_source, seq_dest = list(range(1, num_vocab)) + list(range(num_vocab, 0, -1)), \ list(range(2, num_vocab + 1)) + list(range(num_vocab - 1, -1, -1)) vocab_level_source_id += seq_source vocab_level_dest_id += seq_dest vocab_level_edge_types += [4] * (num_vocab - 1) + [5] * (num_vocab - 1) # Then, we use the vocab-level edges and the vocab-to-word path, to construct the word-level graph num_word = len(words) source_id, dest_id, edge_types = [], [], [] for (vocab_start, vocab_end, vocab_edge_type) in zip(vocab_level_source_id, vocab_level_dest_id, vocab_level_edge_types): # connect the first word in the vocab word_start = min(vocab_to_word[vocab_start]) word_end = min(vocab_to_word[vocab_end]) source_id.append(word_start) dest_id.append(word_end) edge_types.append(vocab_edge_type) # sequential connection in words for word_indices_in_v in vocab_to_word.values(): for i, word_idx in enumerate(word_indices_in_v): if i + 1 < len(word_indices_in_v): source_id.append(word_idx) dest_id.append(word_idx + 1) edge_types.append(4) if i - 1 >= 0: source_id.append(word_idx) dest_id.append(word_idx - 1) edge_types.append(5) # optional: get recurrent edges if enable_recur_edge: recur_source, recur_dest = list(range(1, num_word + 1)), list(range(1, num_word + 1)) source_id += recur_source dest_id += recur_dest edge_types += [2] * len(recur_source) # add <BOS> and <EOS> source_id += [0, num_word + 1, 1, num_word] dest_id += [1, num_word, 0, num_word + 1] edge_types += [4, 4, 5, 5] # 4 represents sequentially forward, 5 is sequential backward edges = (torch.LongTensor(source_id), torch.LongTensor(dest_id)) dgl_graph = dgl.graph(edges) assert dgl_graph.num_edges() == len(edge_types) return dgl_graph, torch.LongTensor(edge_types) def _parse_en(self, clean_sentence, enable_backward_edge=True, enable_recur_edge=True, enable_inter_sentence_edge=True, sequential_edge=False, consider_bos_for_index=True): """ clean_sentence: <str>, each word or punctuation should be separated by one blank. """ edge_types = [] # required for gated graph neural network clean_sentence = clean_sentence.strip() if clean_sentence.endswith((" .", " ,", " ;", " :", " ?", " !")): clean_sentence = clean_sentence[:-2] if clean_sentence.startswith(". "): clean_sentence = clean_sentence[2:] parser_out = self.stanza_parser(clean_sentence) if len(parser_out.sentences) > 5: print("Detect more than 5 input sentence! pls check whether the sentence is too long!") print(clean_sentence) source_id, dest_id = [], [] sentences_heads = [] word_id_offset = 0 # get forward edges for s in parser_out.sentences: for w in s.words: w_idx = w.id + word_id_offset # it starts from 1, just same as binarizer w_dest_idx = w.head + word_id_offset if w.head == 0: sentences_heads.append(w_idx) continue source_id.append(w_idx) dest_id.append(w_dest_idx) word_id_offset += len(s.words) num_word = word_id_offset edge_types += [0] * len(source_id) # optional: get backward edges if enable_backward_edge: back_source, back_dest = deepcopy(dest_id), deepcopy(source_id) source_id += back_source dest_id += back_dest edge_types += [1] * len(back_source) # optional: get recurrent edges if enable_recur_edge: recur_source, recur_dest = list(range(1, num_word + 1)), list(range(1, num_word + 1)) source_id += recur_source dest_id += recur_dest edge_types += [2] * len(recur_source) # optional: get inter-sentence edges if num_sentences > 1 inter_sentence_source, inter_sentence_dest = [], [] if enable_inter_sentence_edge and len(sentences_heads) > 1: def get_full_graph_edges(nodes): tmp_edges = [] for i, node_i in enumerate(nodes): for j, node_j in enumerate(nodes): if i == j: continue tmp_edges.append((node_i, node_j)) return tmp_edges tmp_edges = get_full_graph_edges(sentences_heads) for (source, dest) in tmp_edges: inter_sentence_source.append(source) inter_sentence_dest.append(dest) source_id += inter_sentence_source dest_id += inter_sentence_dest edge_types += [3] * len(inter_sentence_source) # add <BOS> and <EOS> source_id += [0, num_word + 1, 1, num_word] dest_id += [1, num_word, 0, num_word + 1] edge_types += [4, 4, 5, 5] # 4 represents sequentially forward, 5 is sequential backward # optional: sequential edge if sequential_edge: seq_source, seq_dest = list(range(1, num_word)) + list(range(num_word, 0, -1)), \ list(range(2, num_word + 1)) + list(range(num_word - 1, -1, -1)) source_id += seq_source dest_id += seq_dest edge_types += [4] * (num_word - 1) + [5] * (num_word - 1) if consider_bos_for_index: edges = (torch.LongTensor(source_id), torch.LongTensor(dest_id)) else: edges = (torch.LongTensor(source_id) - 1, torch.LongTensor(dest_id) - 1) dgl_graph = dgl.graph(edges) assert dgl_graph.num_edges() == len(edge_types) return dgl_graph, torch.LongTensor(edge_types) def plot_dgl_sentence_graph(dgl_graph, labels): """ labels = {idx: word for idx,word in enumerate(sentence.split(" ")) } """ import matplotlib.pyplot as plt nx_graph = dgl_graph.to_networkx() pos = nx.random_layout(nx_graph) nx.draw(nx_graph, pos, with_labels=False) nx.draw_networkx_labels(nx_graph, pos, labels) plt.show() if __name__ == '__main__': # Unit Test for Chinese Graph Builder parser = Sentence2GraphParser("zh") text1 = '宝马配挂跛骡鞍,貂蝉怨枕董翁榻.' words = ['<BOS>', '宝', '马', '配', '挂', '跛', '骡', '鞍', ',', '貂', '蝉', '怨', '枕', '董', '翁', '榻', '<EOS>'] ph_words = ['<BOS>', 'b_ao3_|', 'm_a3_#', 'p_ei4_|', 'g_ua4_#', 'b_o3_#', 'l_uo2_|', 'an1', ',', 'd_iao1_|', 'ch_an2_#', 'van4_#', 'zh_en3_#', 'd_ong3_|', 'ueng1_#', 't_a4', '<EOS>'] graph1, etypes1 = parser.parse(text1, words, ph_words) plot_dgl_sentence_graph(graph1, {i: w for i, w in enumerate(ph_words)}) # Unit Test for English Graph Builder parser = Sentence2GraphParser("en") text2 = "I love you . You love me . Mixue ice-scream and tea ." graph2, etypes2 = parser.parse(text2) plot_dgl_sentence_graph(graph2, {i: w for i, w in enumerate(("<BOS> " + text2 + " <EOS>").split(" "))})
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/syntaspeech/syntactic_graph_buider.py
import numpy as np import torch import torch.nn as nn class SingleWindowDisc(nn.Module): def __init__(self, time_length, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128): super().__init__() padding = (kernel[0] // 2, kernel[1] // 2) self.model = nn.ModuleList([ nn.Sequential(*[ nn.Conv2d(c_in, hidden_size, kernel, (2, 2), padding), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.BatchNorm2d(hidden_size, 0.8) ]), nn.Sequential(*[ nn.Conv2d(hidden_size, hidden_size, kernel, (2, 2), padding), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.BatchNorm2d(hidden_size, 0.8) ]), nn.Sequential(*[ nn.Conv2d(hidden_size, hidden_size, kernel, (2, 2), padding), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), ]), ]) ds_size = (time_length // 2 ** 3, (freq_length + 7) // 2 ** 3) self.adv_layer = nn.Linear(hidden_size * ds_size[0] * ds_size[1], 1) def forward(self, x): """ :param x: [B, C, T, n_bins] :return: validity: [B, 1], h: List of hiddens """ h = [] for l in self.model: x = l(x) h.append(x) x = x.view(x.shape[0], -1) validity = self.adv_layer(x) # [B, 1] return validity, h class MultiWindowDiscriminator(nn.Module): def __init__(self, time_lengths, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128): super(MultiWindowDiscriminator, self).__init__() self.win_lengths = time_lengths self.discriminators = nn.ModuleList() for time_length in time_lengths: self.discriminators += [SingleWindowDisc(time_length, freq_length, kernel, c_in=c_in, hidden_size=hidden_size)] def forward(self, x, x_len, start_frames_wins=None): ''' Args: x (tensor): input mel, (B, c_in, T, n_bins). x_length (tensor): len of per mel. (B,). Returns: tensor : (B). ''' validity = [] if start_frames_wins is None: start_frames_wins = [None] * len(self.discriminators) h = [] for i, start_frames in zip(range(len(self.discriminators)), start_frames_wins): x_clip, start_frames = self.clip(x, x_len, self.win_lengths[i], start_frames) # (B, win_length, C) start_frames_wins[i] = start_frames if x_clip is None: continue x_clip, h_ = self.discriminators[i](x_clip) h += h_ validity.append(x_clip) if len(validity) != len(self.discriminators): return None, start_frames_wins, h validity = sum(validity) # [B] return validity, start_frames_wins, h def clip(self, x, x_len, win_length, start_frames=None): '''Ramdom clip x to win_length. Args: x (tensor) : (B, c_in, T, n_bins). cond (tensor) : (B, T, H). x_len (tensor) : (B,). win_length (int): target clip length Returns: (tensor) : (B, c_in, win_length, n_bins). ''' T_start = 0 T_end = x_len.max() - win_length if T_end < 0: return None, None, start_frames T_end = T_end.item() if start_frames is None: start_frame = np.random.randint(low=T_start, high=T_end + 1) start_frames = [start_frame] * x.size(0) else: start_frame = start_frames[0] x_batch = x[:, :, start_frame: start_frame + win_length] return x_batch, start_frames class Discriminator(nn.Module): def __init__(self, time_lengths=[32, 64, 128], freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128): super(Discriminator, self).__init__() self.time_lengths = time_lengths self.discriminator = MultiWindowDiscriminator( freq_length=freq_length, time_lengths=time_lengths, kernel=kernel, c_in=c_in, hidden_size=hidden_size ) def forward(self, x, start_frames_wins=None): """ :param x: [B, T, 80] :param return_y_only: :return: """ if len(x.shape) == 3: x = x[:, None, :, :] # [B,1,T,80] x_len = x.sum([1, -1]).ne(0).int().sum([-1]) ret = {'y_c': None, 'y': None} ret['y'], start_frames_wins, ret['h'] = self.discriminator( x, x_len, start_frames_wins=start_frames_wins) ret['start_frames_wins'] = start_frames_wins return ret
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/syntaspeech/multi_window_disc.py
import math import torch from torch import nn from torch.nn import Linear from utils.hparams import hparams from modules.commons.conv import ConvBlocks, ConditionalConvBlocks from modules.commons.common_layers import Embedding from modules.commons.rel_transformer import RelTransformerEncoder from modules.commons.transformer import MultiheadAttention, FFTBlocks from modules.commons.align_ops import clip_mel2token_to_multiple, build_word_mask, expand_states, mel2ph_to_mel2word from modules.tts.fastspeech import FS_DECODERS, FastSpeech from modules.portaspeech.fvae import SyntaFVAE, FVAE from utils.nn.seq_utils import group_hidden_by_segs from modules.fastspeech.tts_modules import SyntaDurationPredictor class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): """ :param x: [B, T] :return: [B, T, H] """ device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, :, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class SyntaSpeech(FastSpeech): def __init__(self, ph_dict_size, word_dict_size, out_dims=None): super().__init__(ph_dict_size, out_dims) # build linguistic encoder if hparams['num_spk'] > 1: self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size) if hparams['use_word_encoder']: self.word_encoder = RelTransformerEncoder( word_dict_size, self.hidden_size, self.hidden_size, self.hidden_size, 2, hparams['word_enc_layers'], hparams['enc_ffn_kernel_size']) if hparams['dur_level'] == 'word': if hparams['word_encoder_type'] == 'rel_fft': self.ph2word_encoder = RelTransformerEncoder( 0, self.hidden_size, self.hidden_size, self.hidden_size, 2, hparams['word_enc_layers'], hparams['enc_ffn_kernel_size']) if hparams['word_encoder_type'] == 'fft': self.ph2word_encoder = FFTBlocks( self.hidden_size, hparams['word_enc_layers'], 1, num_heads=hparams['num_heads']) self.sin_pos = SinusoidalPosEmb(self.hidden_size) self.enc_pos_proj = nn.Linear(2 * self.hidden_size, self.hidden_size) self.dec_query_proj = nn.Linear(2 * self.hidden_size, self.hidden_size) self.dec_res_proj = nn.Linear(2 * self.hidden_size, self.hidden_size) self.attn = MultiheadAttention(self.hidden_size, 1, encoder_decoder_attention=True, bias=False) self.attn.enable_torch_version = False if hparams['text_encoder_postnet']: self.text_encoder_postnet = ConvBlocks( self.hidden_size, self.hidden_size, [1] * 3, 5, layers_in_block=2) else: self.sin_pos = SinusoidalPosEmb(self.hidden_size) predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size self.dur_predictor = SyntaDurationPredictor( self.hidden_size, n_chans=predictor_hidden, n_layers=hparams['dur_predictor_layers'], dropout_rate=hparams['predictor_dropout'], kernel_size=hparams['dur_predictor_kernel']) # build VAE decoder if hparams['use_fvae']: del self.decoder del self.mel_out if hparams.get("use_gae_in_prior", True): self.fvae = SyntaFVAE( c_in_out=self.out_dims, hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'], kernel_size=hparams['fvae_kernel_size'], enc_n_layers=hparams['fvae_enc_n_layers'], dec_n_layers=hparams['fvae_dec_n_layers'], c_cond=self.hidden_size, use_prior_flow=hparams['use_prior_flow'], flow_hidden=hparams['prior_flow_hidden'], flow_kernel_size=hparams['prior_flow_kernel_size'], flow_n_steps=hparams['prior_flow_n_blocks'], strides=[hparams['fvae_strides']], encoder_type=hparams['fvae_encoder_type'], decoder_type=hparams['fvae_decoder_type'], ) else: self.fvae = FVAE( c_in_out=self.out_dims, hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'], kernel_size=hparams['fvae_kernel_size'], enc_n_layers=hparams['fvae_enc_n_layers'], dec_n_layers=hparams['fvae_dec_n_layers'], c_cond=self.hidden_size, use_prior_flow=hparams['use_prior_flow'], flow_hidden=hparams['prior_flow_hidden'], flow_kernel_size=hparams['prior_flow_kernel_size'], flow_n_steps=hparams['prior_flow_n_blocks'], strides=[hparams['fvae_strides']], encoder_type=hparams['fvae_encoder_type'], decoder_type=hparams['fvae_decoder_type'], ) else: self.decoder = FS_DECODERS[hparams['decoder_type']](hparams) self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True) if hparams['use_pitch_embed']: self.pitch_embed = Embedding(300, self.hidden_size, 0) if hparams['add_word_pos']: self.word_pos_proj = Linear(self.hidden_size, self.hidden_size) def build_embedding(self, dictionary, embed_dim): num_embeddings = len(dictionary) emb = Embedding(num_embeddings, embed_dim, self.padding_idx) return emb def forward(self, txt_tokens, word_tokens, ph2word, word_len, mel2word=None, mel2ph=None, spk_embed=None, spk_id=None, pitch=None, infer=False, tgt_mels=None, global_step=None, graph_lst=None, etypes_lst=None, *args, **kwargs): if hparams['use_spk_embed']: spk_embed = spk_embed elif hparams['use_spk_id']: spk_embed = self.spk_embed_proj(spk_id)[:, None, :] else: spk_embed = 0 ret = {} style_embed = self.forward_style_embed(spk_embed, spk_id) # speaker embedding, [B, 1, C] x, tgt_nonpadding = self.run_text_encoder( txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, graph_lst=graph_lst, etypes_lst=etypes_lst, **kwargs) x = x + style_embed # it maybe necessary to achieve multi-speaker x = x * tgt_nonpadding ret['nonpadding'] = tgt_nonpadding if hparams['use_pitch_embed']: x = x + self.pitch_embed(pitch) ret['decoder_inp'] = x if infer and (mel2ph is None or mel2word is None): mel2word = ret['mel2word'] ret['mel_out_fvae'] = ret['mel_out'] = self.run_decoder(x, tgt_nonpadding, ret, infer, tgt_mels, global_step, mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst) return ret def run_text_encoder(self, txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, graph_lst, etypes_lst, **kwargs): word2word = torch.arange(word_len)[None, :].to(ph2word.device) + 1 # [B, T_mel, T_word] src_nonpadding = (txt_tokens > 0).float()[:, :, None] use_bert = hparams.get("use_bert") is True if use_bert: ph_encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst, cl_feats=kwargs['cl_feats'], ret=ret) * src_nonpadding + style_embed else: ph_encoder_out = self.encoder(txt_tokens) * src_nonpadding + style_embed if hparams['use_word_encoder']: word_encoder_out = self.word_encoder(word_tokens) + style_embed ph_encoder_out = ph_encoder_out + expand_states(word_encoder_out, ph2word) dur_input = ph_encoder_out * src_nonpadding if hparams['dur_level'] == 'word': word_encoder_out = 0 h_ph_gb_word = group_hidden_by_segs(ph_encoder_out, ph2word, word_len)[0] word_encoder_out = word_encoder_out + self.ph2word_encoder(h_ph_gb_word) if hparams['use_word_encoder']: word_encoder_out = word_encoder_out + self.word_encoder(word_tokens) mel2word = self.forward_dur(dur_input, mel2word, ret, ph2word=ph2word, word_len=word_len, graph_lst=graph_lst, etypes_lst=etypes_lst) mel2word = clip_mel2token_to_multiple(mel2word, hparams['frames_multiple']) ret['mel2word'] = mel2word tgt_nonpadding = (mel2word > 0).float()[:, :, None] enc_pos = self.get_pos_embed(word2word, ph2word) # [B, T_ph, H] dec_pos = self.get_pos_embed(word2word, mel2word) # [B, T_mel, H] dec_word_mask = build_word_mask(mel2word, ph2word) # [B, T_mel, T_ph] x, weight = self.attention(ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask) if hparams['add_word_pos']: x = x + self.word_pos_proj(dec_pos) ret['attn'] = weight else: mel2ph = self.forward_dur(dur_input, mel2ph, ret) mel2ph = clip_mel2token_to_multiple(mel2ph, hparams['frames_multiple']) mel2word = mel2ph_to_mel2word(mel2ph, ph2word) x = expand_states(ph_encoder_out, mel2ph) if hparams['add_word_pos']: dec_pos = self.get_pos_embed(word2word, mel2word) # [B, T_mel, H] x = x + self.word_pos_proj(dec_pos) tgt_nonpadding = (mel2ph > 0).float()[:, :, None] if hparams['use_word_encoder']: x = x + expand_states(word_encoder_out, mel2word) return x, tgt_nonpadding def attention(self, ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask): ph_kv = self.enc_pos_proj(torch.cat([ph_encoder_out, enc_pos], -1)) word_enc_out_expend = expand_states(word_encoder_out, mel2word) word_enc_out_expend = torch.cat([word_enc_out_expend, dec_pos], -1) if hparams['text_encoder_postnet']: word_enc_out_expend = self.dec_res_proj(word_enc_out_expend) word_enc_out_expend = self.text_encoder_postnet(word_enc_out_expend) dec_q = x_res = word_enc_out_expend else: dec_q = self.dec_query_proj(word_enc_out_expend) x_res = self.dec_res_proj(word_enc_out_expend) ph_kv, dec_q = ph_kv.transpose(0, 1), dec_q.transpose(0, 1) x, (weight, _) = self.attn(dec_q, ph_kv, ph_kv, attn_mask=(1 - dec_word_mask) * -1e9) x = x.transpose(0, 1) x = x + x_res return x, weight def run_decoder(self, x, tgt_nonpadding, ret, infer, tgt_mels=None, global_step=0, mel2word=None, ph2word=None, graph_lst=None, etypes_lst=None): if not hparams['use_fvae']: x = self.decoder(x) x = self.mel_out(x) ret['kl'] = 0 return x * tgt_nonpadding else: # x is the phoneme encoding x = x.transpose(1, 2) # [B, H, T] tgt_nonpadding_BHT = tgt_nonpadding.transpose(1, 2) # [B, H, T] if infer: z = self.fvae(cond=x, infer=True, mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst) else: tgt_mels = tgt_mels.transpose(1, 2) # [B, 80, T] z, ret['kl'], ret['z_p'], ret['m_q'], ret['logs_q'] = self.fvae( tgt_mels, tgt_nonpadding_BHT, cond=x, mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst) if global_step < hparams['posterior_start_steps']: z = torch.randn_like(z) x_recon = self.fvae.decoder(z, nonpadding=tgt_nonpadding_BHT, cond=x).transpose(1, 2) ret['pre_mel_out'] = x_recon return x_recon def forward_dur(self, dur_input, mel2word, ret, **kwargs): """ :param dur_input: [B, T_txt, H] :param mel2ph: [B, T_mel] :param txt_tokens: [B, T_txt] :param ret: :return: """ word_len = kwargs['word_len'] ph2word = kwargs['ph2word'] graph_lst = kwargs['graph_lst'] etypes_lst = kwargs['etypes_lst'] src_padding = dur_input.data.abs().sum(-1) == 0 dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach()) dur = self.dur_predictor(dur_input, src_padding, ph2word, graph_lst, etypes_lst) B, T_ph = ph2word.shape dur = torch.zeros([B, word_len.max() + 1]).to(ph2word.device).scatter_add(1, ph2word, dur) dur = dur[:, 1:] ret['dur'] = dur if mel2word is None: mel2word = self.length_regulator(dur).detach() return mel2word def get_pos_embed(self, word2word, x2word): x_pos = build_word_mask(word2word, x2word).float() # [B, T_word, T_ph] x_pos = (x_pos.cumsum(-1) / x_pos.sum(-1).clamp(min=1)[..., None] * x_pos).sum(1) x_pos = self.sin_pos(x_pos.float()) # [B, T_ph, H] return x_pos def store_inverse_all(self): def remove_weight_norm(m): try: if hasattr(m, 'store_inverse'): m.store_inverse() nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/syntaspeech/syntaspeech.py
from utils.hparams import hparams from modules.commons.common_layers import * from modules.commons.common_layers import Embedding from modules.fastspeech.tts_modules import FastspeechDecoder, DurationPredictor, LengthRegulator, PitchPredictor, \ EnergyPredictor, FastspeechEncoder from utils.cwt import cwt2f0 from utils.pitch_utils import f0_to_coarse, denorm_f0, norm_f0 import torch.nn as nn from modules.commons.rel_transformer import RelTransformerEncoder, BERTRelTransformerEncoder FS_ENCODERS = { 'fft': lambda hp, embed_tokens, d: FastspeechEncoder( embed_tokens, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'], num_heads=hp['num_heads']), } FS_DECODERS = { 'fft': lambda hp: FastspeechDecoder( hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']), } class FastSpeech2(nn.Module): def __init__(self, dictionary, out_dims=None): super().__init__() self.dictionary = dictionary self.padding_idx = dictionary.pad() self.enc_layers = hparams['enc_layers'] self.dec_layers = hparams['dec_layers'] self.hidden_size = hparams['hidden_size'] self.encoder_embed_tokens = self.build_embedding(self.dictionary, self.hidden_size) if hparams.get("use_bert", False): self.ph_encoder = BERTRelTransformerEncoder(len(self.dictionary), hparams['hidden_size'], hparams['hidden_size'], hparams['ffn_hidden_size'], hparams['num_heads'], hparams['enc_layers'], hparams['enc_ffn_kernel_size'], hparams['dropout'], prenet=hparams['enc_prenet'], pre_ln=hparams['enc_pre_ln']) else: self.encoder = FS_ENCODERS[hparams['encoder_type']](hparams, self.encoder_embed_tokens, self.dictionary) self.decoder = FS_DECODERS[hparams['decoder_type']](hparams) self.out_dims = hparams['audio_num_mel_bins'] if out_dims is None else out_dims self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True) if hparams['use_spk_id']: self.spk_embed_proj = Embedding(hparams['num_spk'] + 1, self.hidden_size) if hparams['use_split_spk_id']: self.spk_embed_f0 = Embedding(hparams['num_spk'] + 1, self.hidden_size) self.spk_embed_dur = Embedding(hparams['num_spk'] + 1, self.hidden_size) elif hparams['use_spk_embed']: self.spk_embed_proj = Linear(256, self.hidden_size, bias=True) predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size self.dur_predictor = DurationPredictor( self.hidden_size, n_chans=predictor_hidden, n_layers=hparams['dur_predictor_layers'], dropout_rate=hparams['predictor_dropout'], kernel_size=hparams['dur_predictor_kernel']) self.length_regulator = LengthRegulator() if hparams['use_pitch_embed']: self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx) self.pitch_predictor = PitchPredictor( self.hidden_size, n_chans=predictor_hidden, n_layers=hparams['predictor_layers'], dropout_rate=hparams['predictor_dropout'], odim=2 if hparams['pitch_type'] == 'frame' else 1, kernel_size=hparams['predictor_kernel']) if hparams.get('use_energy_embed', False): self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx) self.energy_predictor = EnergyPredictor( self.hidden_size, n_chans=predictor_hidden, n_layers=hparams['predictor_layers'], dropout_rate=hparams['predictor_dropout'], odim=1, kernel_size=hparams['predictor_kernel']) def build_embedding(self, dictionary, embed_dim): num_embeddings = len(dictionary) emb = Embedding(num_embeddings, embed_dim, self.padding_idx) return emb def forward(self, txt_tokens, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, skip_decoder=False, spk_embed_dur_id=None, spk_embed_f0_id=None, infer=False, **kwargs): ret = {} if hparams.get("use_bert", False): encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=kwargs['ph2word'], ret=ret) else: encoder_out = self.encoder(txt_tokens) # [B, T, C] src_nonpadding = (txt_tokens > 0).float()[:, :, None] # add ref style embed # Not implemented # variance encoder var_embed = 0 # encoder_out_dur denotes encoder outputs for duration predictor # in speech adaptation, duration predictor use old speaker embedding if hparams['use_spk_embed']: spk_embed_dur = spk_embed_f0 = spk_embed = self.spk_embed_proj(spk_embed)[:, None, :] elif hparams['use_spk_id']: spk_embed_id = spk_embed if spk_embed_dur_id is None: spk_embed_dur_id = spk_embed_id if spk_embed_f0_id is None: spk_embed_f0_id = spk_embed_id spk_embed = self.spk_embed_proj(spk_embed_id)[:, None, :] spk_embed_dur = spk_embed_f0 = spk_embed if hparams['use_split_spk_id']: spk_embed_dur = self.spk_embed_dur(spk_embed_dur_id)[:, None, :] spk_embed_f0 = self.spk_embed_f0(spk_embed_f0_id)[:, None, :] else: spk_embed_dur = spk_embed_f0 = spk_embed = 0 # add dur dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding mel2ph = self.add_dur(dur_inp, mel2ph, txt_tokens, ret) decoder_inp = F.pad(encoder_out, [0, 0, 1, 0]) mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]]) decoder_inp_origin = decoder_inp = torch.gather(decoder_inp, 1, mel2ph_) # [B, T, H] tgt_nonpadding = (mel2ph > 0).float()[:, :, None] # add pitch and energy embed pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding if hparams['use_pitch_embed']: pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding decoder_inp = decoder_inp + self.add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph) if hparams.get('use_energy_embed', False): decoder_inp = decoder_inp + self.add_energy(pitch_inp, energy, ret) ret['decoder_inp'] = decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding if skip_decoder: return ret ret['mel_out'] = self.run_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) return ret def add_dur(self, dur_input, mel2ph, txt_tokens, ret): """ :param dur_input: [B, T_txt, H] :param mel2ph: [B, T_mel] :param txt_tokens: [B, T_txt] :param ret: :return: """ src_padding = txt_tokens == 0 dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach()) if mel2ph is None: dur, xs = self.dur_predictor.inference(dur_input, src_padding) ret['dur'] = xs ret['dur_choice'] = dur mel2ph = self.length_regulator(dur, src_padding).detach() # from modules.fastspeech.fake_modules import FakeLengthRegulator # fake_lr = FakeLengthRegulator() # fake_mel2ph = fake_lr(dur, (1 - src_padding.long()).sum(-1))[..., 0].detach() # print(mel2ph == fake_mel2ph) else: ret['dur'] = self.dur_predictor(dur_input, src_padding) ret['mel2ph'] = mel2ph return mel2ph def add_energy(self, decoder_inp, energy, ret): decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) ret['energy_pred'] = energy_pred = self.energy_predictor(decoder_inp)[:, :, 0] if energy is None: energy = energy_pred energy = torch.clamp(energy * 256 // 4, max=255).long() energy_embed = self.energy_embed(energy) return energy_embed def add_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None): if hparams['pitch_type'] == 'ph': pitch_pred_inp = encoder_out.detach() + hparams['predictor_grad'] * (encoder_out - encoder_out.detach()) pitch_padding = encoder_out.sum().abs() == 0 ret['pitch_pred'] = pitch_pred = self.pitch_predictor(pitch_pred_inp) if f0 is None: f0 = pitch_pred[:, :, 0] ret['f0_denorm'] = f0_denorm = denorm_f0(f0, None, hparams, pitch_padding=pitch_padding) pitch = f0_to_coarse(f0_denorm) # start from 0 [B, T_txt] pitch = F.pad(pitch, [1, 0]) pitch = torch.gather(pitch, 1, mel2ph) # [B, T_mel] pitch_embed = self.pitch_embed(pitch) return pitch_embed decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) pitch_padding = mel2ph == 0 if hparams['pitch_type'] == 'cwt': pitch_padding = None ret['cwt'] = cwt_out = self.cwt_predictor(decoder_inp) stats_out = self.cwt_stats_layers(encoder_out[:, 0, :]) # [B, 2] mean = ret['f0_mean'] = stats_out[:, 0] std = ret['f0_std'] = stats_out[:, 1] cwt_spec = cwt_out[:, :, :10] if f0 is None: std = std * hparams['cwt_std_scale'] f0 = self.cwt2f0_norm(cwt_spec, mean, std, mel2ph) if hparams['use_uv']: assert cwt_out.shape[-1] == 11 uv = cwt_out[:, :, -1] > 0 elif hparams['pitch_ar']: ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp, f0 if self.training else None) if f0 is None: f0 = pitch_pred[:, :, 0] else: ret['pitch_pred'] = pitch_pred = self.pitch_predictor(decoder_inp) if f0 is None: f0 = pitch_pred[:, :, 0] if hparams['use_uv'] and uv is None: uv = pitch_pred[:, :, 1] > 0 ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding) if pitch_padding is not None: f0[pitch_padding] = 0 pitch = f0_to_coarse(f0_denorm) # start from 0 pitch_embed = self.pitch_embed(pitch) return pitch_embed def run_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs): x = decoder_inp # [B, T, H] x = self.decoder(x) x = self.mel_out(x) return x * tgt_nonpadding def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): f0 = cwt2f0(cwt_spec, mean, std, hparams['cwt_scales']) f0 = torch.cat( [f0] + [f0[:, -1:]] * (mel2ph.shape[1] - f0.shape[1]), 1) f0_norm = norm_f0(f0, None, hparams) return f0_norm def out2mel(self, out): return out @staticmethod def mel_norm(x): return (x + 5.5) / (6.3 / 2) - 1 @staticmethod def mel_denorm(x): return (x + 1) * (6.3 / 2) - 5.5 def expand_states(self, h, mel2ph): h = F.pad(h, [0, 0, 1, 0]) mel2ph_ = mel2ph[..., None].repeat([1, 1, h.shape[-1]]) h = torch.gather(h, 1, mel2ph_) # [B, T, H] return h
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/fastspeech/fs2.py
import logging import math import torch import torch.nn as nn from torch.nn import functional as F from modules.commons.espnet_positional_embedding import RelPositionalEncoding from modules.commons.common_layers import SinusoidalPositionalEmbedding, Linear, EncSALayer, DecSALayer, BatchNorm1dTBC from utils.hparams import hparams DEFAULT_MAX_SOURCE_POSITIONS = 2000 DEFAULT_MAX_TARGET_POSITIONS = 2000 class TransformerEncoderLayer(nn.Module): def __init__(self, hidden_size, dropout, kernel_size=None, num_heads=2, norm='ln'): super().__init__() self.hidden_size = hidden_size self.dropout = dropout self.num_heads = num_heads self.op = EncSALayer( hidden_size, num_heads, dropout=dropout, attention_dropout=0.0, relu_dropout=dropout, kernel_size=kernel_size if kernel_size is not None else hparams['enc_ffn_kernel_size'], padding=hparams['ffn_padding'], norm=norm, act=hparams['ffn_act']) def forward(self, x, **kwargs): return self.op(x, **kwargs) ###################### # fastspeech modules ###################### class LayerNorm(torch.nn.LayerNorm): """Layer normalization module. :param int nout: output dim size :param int dim: dimension to be normalized """ def __init__(self, nout, dim=-1, eps=1e-5): """Construct an LayerNorm object.""" super(LayerNorm, self).__init__(nout, eps=eps) self.dim = dim def forward(self, x): """Apply layer normalization. :param torch.Tensor x: input tensor :return: layer normalized tensor :rtype torch.Tensor """ if self.dim == -1: return super(LayerNorm, self).forward(x) return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) class DurationPredictor(torch.nn.Module): """Duration predictor module. This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf Note: The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, idim, odims = 1, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0, padding='SAME'): """Initilize duration predictor module. Args: idim (int): Input dimension. n_layers (int, optional): Number of convolutional layers. n_chans (int, optional): Number of channels of convolutional layers. kernel_size (int, optional): Kernel size of convolutional layers. dropout_rate (float, optional): Dropout rate. offset (float, optional): Offset value to avoid nan in log domain. """ super(DurationPredictor, self).__init__() self.offset = offset self.conv = torch.nn.ModuleList() self.kernel_size = kernel_size self.padding = padding for idx in range(n_layers): in_chans = idim if idx == 0 else n_chans self.conv += [torch.nn.Sequential( torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2) if padding == 'SAME' else (kernel_size - 1, 0), 0), torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0), torch.nn.ReLU(), LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate) )] self.linear = torch.nn.Linear(n_chans, odims) def _forward(self, xs, x_masks=None, is_inference=False): xs = xs.transpose(1, -1) # (B, idim, Tmax) for f in self.conv: xs = f(xs) # (B, C, Tmax) if x_masks is not None: xs = xs * (1 - x_masks.float())[:, None, :] xs = self.linear(xs.transpose(1, -1)) # [B, T, C] xs = xs * (1 - x_masks.float())[:, :, None] # (B, T, C) if is_inference: return self.out2dur(xs), xs else: if hparams['dur_loss'] in ['mse']: xs = xs.squeeze(-1) # (B, Tmax) return xs def out2dur(self, xs): if hparams['dur_loss'] in ['mse']: # NOTE: calculate in log domain xs = xs.squeeze(-1) # (B, Tmax) dur = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value elif hparams['dur_loss'] == 'mog': return NotImplementedError elif hparams['dur_loss'] == 'crf': dur = torch.LongTensor(self.crf.decode(xs)).cuda() return dur def forward(self, xs, x_masks=None): """Calculate forward propagation. Args: xs (Tensor): Batch of input sequences (B, Tmax, idim). x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). Returns: Tensor: Batch of predicted durations in log domain (B, Tmax). """ return self._forward(xs, x_masks, False) def inference(self, xs, x_masks=None): """Inference duration. Args: xs (Tensor): Batch of input sequences (B, Tmax, idim). x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). Returns: LongTensor: Batch of predicted durations in linear domain (B, Tmax). """ return self._forward(xs, x_masks, True) class SyntaDurationPredictor(torch.nn.Module): def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0): super(SyntaDurationPredictor, self).__init__() from modules.syntaspeech.syntactic_graph_encoder import GraphAuxEnc self.graph_encoder = GraphAuxEnc(in_dim=idim, hid_dim=idim, out_dim=idim) self.offset = offset self.conv = torch.nn.ModuleList() self.kernel_size = kernel_size for idx in range(n_layers): in_chans = idim if idx == 0 else n_chans self.conv += [torch.nn.Sequential( torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=kernel_size // 2), torch.nn.ReLU(), LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate) )] self.linear = nn.Sequential(torch.nn.Linear(n_chans, 1), nn.Softplus()) def forward(self, x, x_padding=None, ph2word=None, graph_lst=None, etypes_lst=None): x = x.transpose(1, -1) # (B, idim, Tmax) assert ph2word is not None and graph_lst is not None and etypes_lst is not None x_graph = self.graph_encoder(graph_lst, x, ph2word, etypes_lst) x = x + x_graph * 1. for f in self.conv: x = f(x) # (B, C, Tmax) if x_padding is not None: x = x * (1 - x_padding.float())[:, None, :] x = self.linear(x.transpose(1, -1)) # [B, T, C] x = x * (1 - x_padding.float())[:, :, None] # (B, T, C) x = x[..., 0] # (B, Tmax) return x class LengthRegulator(torch.nn.Module): def __init__(self, pad_value=0.0): super(LengthRegulator, self).__init__() self.pad_value = pad_value def forward(self, dur, dur_padding=None, alpha=1.0): """ Example (no batch dim version): 1. dur = [2,2,3] 2. token_idx = [[1],[2],[3]], dur_cumsum = [2,4,7], dur_cumsum_prev = [0,2,4] 3. token_mask = [[1,1,0,0,0,0,0], [0,0,1,1,0,0,0], [0,0,0,0,1,1,1]] 4. token_idx * token_mask = [[1,1,0,0,0,0,0], [0,0,2,2,0,0,0], [0,0,0,0,3,3,3]] 5. (token_idx * token_mask).sum(0) = [1,1,2,2,3,3,3] :param dur: Batch of durations of each frame (B, T_txt) :param dur_padding: Batch of padding of each frame (B, T_txt) :param alpha: duration rescale coefficient :return: mel2ph (B, T_speech) """ assert alpha > 0 dur = torch.round(dur.float() * alpha).long() if dur_padding is not None: dur = dur * (1 - dur_padding.long()) token_idx = torch.arange(1, dur.shape[1] + 1)[None, :, None].to(dur.device) dur_cumsum = torch.cumsum(dur, 1) dur_cumsum_prev = F.pad(dur_cumsum, [1, -1], mode='constant', value=0) pos_idx = torch.arange(dur.sum(-1).max())[None, None].to(dur.device) token_mask = (pos_idx >= dur_cumsum_prev[:, :, None]) & (pos_idx < dur_cumsum[:, :, None]) mel2ph = (token_idx * token_mask.long()).sum(1) return mel2ph class PitchPredictor(torch.nn.Module): def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5, dropout_rate=0.1, padding='SAME'): """Initilize pitch predictor module. Args: idim (int): Input dimension. n_layers (int, optional): Number of convolutional layers. n_chans (int, optional): Number of channels of convolutional layers. kernel_size (int, optional): Kernel size of convolutional layers. dropout_rate (float, optional): Dropout rate. """ super(PitchPredictor, self).__init__() self.conv = torch.nn.ModuleList() self.kernel_size = kernel_size self.padding = padding for idx in range(n_layers): in_chans = idim if idx == 0 else n_chans self.conv += [torch.nn.Sequential( torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2) if padding == 'SAME' else (kernel_size - 1, 0), 0), torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0), torch.nn.ReLU(), LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate) )] self.linear = torch.nn.Linear(n_chans, odim) self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096) self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) def forward(self, xs): """ :param xs: [B, T, H] :return: [B, T, H] """ positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0]) xs = xs + positions xs = xs.transpose(1, -1) # (B, idim, Tmax) for f in self.conv: xs = f(xs) # (B, C, Tmax) # NOTE: calculate in log domain xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H) return xs class EnergyPredictor(PitchPredictor): pass def mel2ph_to_dur(mel2ph, T_txt, max_dur=None): B, _ = mel2ph.shape dur = mel2ph.new_zeros(B, T_txt + 1).scatter_add(1, mel2ph, torch.ones_like(mel2ph)) dur = dur[:, 1:] if max_dur is not None: dur = dur.clamp(max=max_dur) return dur class FFTBlocks(nn.Module): def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=None, num_heads=2, use_pos_embed=True, use_last_norm=True, norm='ln', use_pos_embed_alpha=True): super().__init__() self.num_layers = num_layers embed_dim = self.hidden_size = hidden_size self.dropout = dropout if dropout is not None else hparams['dropout'] self.use_pos_embed = use_pos_embed self.use_last_norm = use_last_norm if use_pos_embed: self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS self.padding_idx = 0 self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1 self.embed_positions = SinusoidalPositionalEmbedding( embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, ) self.layers = nn.ModuleList([]) self.layers.extend([ TransformerEncoderLayer(self.hidden_size, self.dropout, kernel_size=ffn_kernel_size, num_heads=num_heads) for _ in range(self.num_layers) ]) if self.use_last_norm: if norm == 'ln': self.layer_norm = nn.LayerNorm(embed_dim) elif norm == 'bn': self.layer_norm = BatchNorm1dTBC(embed_dim) else: self.layer_norm = None def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False): """ :param x: [B, T, C] :param padding_mask: [B, T] :return: [B, T, C] or [L, B, T, C] """ padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] # [T, B, 1] if self.use_pos_embed: positions = self.pos_embed_alpha * self.embed_positions(x[..., 0]) x = x + positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) * nonpadding_mask_TB hiddens = [] for layer in self.layers: x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB hiddens.append(x) if self.use_last_norm: x = self.layer_norm(x) * nonpadding_mask_TB if return_hiddens: x = torch.stack(hiddens, 0) # [L, T, B, C] x = x.transpose(1, 2) # [L, B, T, C] else: x = x.transpose(0, 1) # [B, T, C] return x class FastspeechEncoder(FFTBlocks): def __init__(self, embed_tokens, hidden_size=None, num_layers=None, kernel_size=None, num_heads=2): hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size kernel_size = hparams['enc_ffn_kernel_size'] if kernel_size is None else kernel_size num_layers = hparams['dec_layers'] if num_layers is None else num_layers super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads, use_pos_embed=False) # use_pos_embed_alpha for compatibility self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(hidden_size) self.padding_idx = 0 if hparams.get('rel_pos') is not None and hparams['rel_pos']: self.embed_positions = RelPositionalEncoding(hidden_size, dropout_rate=0.0) else: self.embed_positions = SinusoidalPositionalEmbedding( hidden_size, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, ) def forward(self, txt_tokens): """ :param txt_tokens: [B, T] :return: { 'encoder_out': [T x B x C] } """ encoder_padding_mask = txt_tokens.eq(self.padding_idx).data x = self.forward_embedding(txt_tokens) # [B, T, H] x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask) return x def forward_embedding(self, txt_tokens): # embed tokens and positions x = self.embed_scale * self.embed_tokens(txt_tokens) if hparams['use_pos_embed']: if hparams.get('rel_pos') is not None and hparams['rel_pos']: x = self.embed_positions(x) else: positions = self.embed_positions(txt_tokens) x = x + positions x = F.dropout(x, p=self.dropout, training=self.training) return x class FastspeechDecoder(FFTBlocks): def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=None): num_heads = hparams['num_heads'] if num_heads is None else num_heads hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size kernel_size = hparams['dec_ffn_kernel_size'] if kernel_size is None else kernel_size num_layers = hparams['dec_layers'] if num_layers is None else num_layers super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/fastspeech/tts_modules.py
from modules.commons.common_layers import * from utils.hparams import hparams from modules.fastspeech.tts_modules import PitchPredictor from utils.pitch_utils import denorm_f0 class Prenet(nn.Module): def __init__(self, in_dim=80, out_dim=256, kernel=5, n_layers=3, strides=None): super(Prenet, self).__init__() padding = kernel // 2 self.layers = [] self.strides = strides if strides is not None else [1] * n_layers for l in range(n_layers): self.layers.append(nn.Sequential( nn.Conv1d(in_dim, out_dim, kernel_size=kernel, padding=padding, stride=self.strides[l]), nn.ReLU(), nn.BatchNorm1d(out_dim) )) in_dim = out_dim self.layers = nn.ModuleList(self.layers) self.out_proj = nn.Linear(out_dim, out_dim) def forward(self, x): """ :param x: [B, T, 80] :return: [L, B, T, H], [B, T, H] """ padding_mask = x.abs().sum(-1).eq(0).data # [B, T] nonpadding_mask_TB = 1 - padding_mask.float()[:, None, :] # [B, 1, T] x = x.transpose(1, 2) hiddens = [] for i, l in enumerate(self.layers): nonpadding_mask_TB = nonpadding_mask_TB[:, :, ::self.strides[i]] x = l(x) * nonpadding_mask_TB hiddens.append(x) hiddens = torch.stack(hiddens, 0) # [L, B, H, T] hiddens = hiddens.transpose(2, 3) # [L, B, T, H] x = self.out_proj(x.transpose(1, 2)) # [B, T, H] x = x * nonpadding_mask_TB.transpose(1, 2) return hiddens, x class ConvBlock(nn.Module): def __init__(self, idim=80, n_chans=256, kernel_size=3, stride=1, norm='gn', dropout=0): super().__init__() self.conv = ConvNorm(idim, n_chans, kernel_size, stride=stride) self.norm = norm if self.norm == 'bn': self.norm = nn.BatchNorm1d(n_chans) elif self.norm == 'in': self.norm = nn.InstanceNorm1d(n_chans, affine=True) elif self.norm == 'gn': self.norm = nn.GroupNorm(n_chans // 16, n_chans) elif self.norm == 'ln': self.norm = LayerNorm(n_chans // 16, n_chans) elif self.norm == 'wn': self.conv = torch.nn.utils.weight_norm(self.conv.conv) self.dropout = nn.Dropout(dropout) self.relu = nn.ReLU() def forward(self, x): """ :param x: [B, C, T] :return: [B, C, T] """ x = self.conv(x) if not isinstance(self.norm, str): if self.norm == 'none': pass elif self.norm == 'ln': x = self.norm(x.transpose(1, 2)).transpose(1, 2) else: x = self.norm(x) x = self.relu(x) x = self.dropout(x) return x class ConvStacks(nn.Module): def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=5, norm='gn', dropout=0, strides=None, res=True): super().__init__() self.conv = torch.nn.ModuleList() self.kernel_size = kernel_size self.res = res self.in_proj = Linear(idim, n_chans) if strides is None: strides = [1] * n_layers else: assert len(strides) == n_layers for idx in range(n_layers): self.conv.append(ConvBlock( n_chans, n_chans, kernel_size, stride=strides[idx], norm=norm, dropout=dropout)) self.out_proj = Linear(n_chans, odim) def forward(self, x, return_hiddens=False): """ :param x: [B, T, H] :return: [B, T, H] """ x = self.in_proj(x) x = x.transpose(1, -1) # (B, idim, Tmax) hiddens = [] for f in self.conv: x_ = f(x) x = x + x_ if self.res else x_ # (B, C, Tmax) hiddens.append(x) x = x.transpose(1, -1) x = self.out_proj(x) # (B, Tmax, H) if return_hiddens: hiddens = torch.stack(hiddens, 1) # [B, L, C, T] return x, hiddens return x class PitchExtractor(nn.Module): def __init__(self, n_mel_bins=80, conv_layers=2): super().__init__() self.hidden_size = hparams['hidden_size'] self.predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size self.conv_layers = conv_layers self.mel_prenet = Prenet(n_mel_bins, self.hidden_size, strides=[1, 1, 1]) if self.conv_layers > 0: self.mel_encoder = ConvStacks( idim=self.hidden_size, n_chans=self.hidden_size, odim=self.hidden_size, n_layers=self.conv_layers) self.pitch_predictor = PitchPredictor( self.hidden_size, n_chans=self.predictor_hidden, n_layers=5, dropout_rate=0.1, odim=2, padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel']) def forward(self, mel_input=None): ret = {} mel_hidden = self.mel_prenet(mel_input)[1] if self.conv_layers > 0: mel_hidden = self.mel_encoder(mel_hidden) ret['pitch_pred'] = pitch_pred = self.pitch_predictor(mel_hidden) pitch_padding = mel_input.abs().sum(-1) == 0 use_uv = hparams['pitch_type'] == 'frame' and hparams['use_uv'] ret['f0_denorm_pred'] = denorm_f0( pitch_pred[:, :, 0], (pitch_pred[:, :, 1] > 0) if use_uv else None, hparams, pitch_padding=pitch_padding) return ret
EXA-1-master
exa/models/AudioGPT/NeuralSeq/modules/fastspeech/pe.py
import numpy as np import torch import torch.nn.functional as F from torch import nn from transformers import AutoModel from .audio import get_audio_encoder class Projection(nn.Module): def __init__(self, d_in: int, d_out: int, p: float=0.5) -> None: super().__init__() self.linear1 = nn.Linear(d_in, d_out, bias=False) self.linear2 = nn.Linear(d_out, d_out, bias=False) self.layer_norm = nn.LayerNorm(d_out) self.drop = nn.Dropout(p) def forward(self, x: torch.Tensor) -> torch.Tensor: embed1 = self.linear1(x) embed2 = self.drop(self.linear2(F.gelu(embed1))) embeds = self.layer_norm(embed1 + embed2) return embeds class AudioEncoder(nn.Module): def __init__(self, audioenc_name:str, d_in: int, d_out: int, sample_rate: int, window_size: int, hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int) -> None: super().__init__() audio_encoder = get_audio_encoder(audioenc_name) self.base = audio_encoder( sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num, d_in) self.projection = Projection(d_in, d_out) def forward(self, x): out_dict = self.base(x) audio_features, audio_classification_output = out_dict['embedding'], out_dict['clipwise_output'] projected_vec = self.projection(audio_features) return projected_vec, audio_classification_output class TextEncoder(nn.Module): def __init__(self, d_out: int, text_model: str, transformer_embed_dim: int) -> None: super().__init__() self.base = AutoModel.from_pretrained(text_model) self.projection = Projection(transformer_embed_dim, d_out) def forward(self, x): out = self.base(**x)[0] out = out[:, 0, :] # get CLS token output projected_vec = self.projection(out) return projected_vec class CLAP(nn.Module): def __init__(self, # audio audioenc_name: str, sample_rate: int, window_size: int, hop_size: int, mel_bins: int, fmin: int, fmax: int, classes_num: int, out_emb: int, # text text_model: str, transformer_embed_dim: int, # common d_proj: int, ): super().__init__() self.audio_encoder = AudioEncoder( audioenc_name, out_emb, d_proj, sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num) self.caption_encoder = TextEncoder( d_proj, text_model, transformer_embed_dim ) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) def forward(self, audio, text): audio_embed, _ = self.audio_encoder(audio) caption_embed = self.caption_encoder(text) return caption_embed, audio_embed, self.logit_scale.exp()
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/wav_evaluation/models/clap.py
from . import clap from . import audio from . import utils
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/wav_evaluation/models/__init__.py
import argparse import yaml import sys def read_config_as_args(config_path,args=None,is_config_str=False): return_dict = {} if config_path is not None: if is_config_str: yml_config = yaml.load(config_path, Loader=yaml.FullLoader) else: with open(config_path, "r") as f: yml_config = yaml.load(f, Loader=yaml.FullLoader) if args != None: for k, v in yml_config.items(): if k in args.__dict__: args.__dict__[k] = v else: sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k)) else: for k, v in yml_config.items(): return_dict[k] = v args = args if args != None else return_dict return argparse.Namespace(**args)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/wav_evaluation/models/utils.py
import torch import torch.nn as nn import torch.nn.functional as F from torchlibrosa.stft import Spectrogram, LogmelFilterBank def get_audio_encoder(name: str): if name == "Cnn14": return Cnn14 else: raise Exception('The audio encoder name {} is incorrect or not supported'.format(name)) class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) def forward(self, input, pool_size=(2, 2), pool_type='avg'): x = input x = F.relu_(self.bn1(self.conv1(x))) x = F.relu_(self.bn2(self.conv2(x))) if pool_type == 'max': x = F.max_pool2d(x, kernel_size=pool_size) elif pool_type == 'avg': x = F.avg_pool2d(x, kernel_size=pool_size) elif pool_type == 'avg+max': x1 = F.avg_pool2d(x, kernel_size=pool_size) x2 = F.max_pool2d(x, kernel_size=pool_size) x = x1 + x2 else: raise Exception('Incorrect argument!') return x class ConvBlock5x5(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlock5x5, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False) self.bn1 = nn.BatchNorm2d(out_channels) def forward(self, input, pool_size=(2, 2), pool_type='avg'): x = input x = F.relu_(self.bn1(self.conv1(x))) if pool_type == 'max': x = F.max_pool2d(x, kernel_size=pool_size) elif pool_type == 'avg': x = F.avg_pool2d(x, kernel_size=pool_size) elif pool_type == 'avg+max': x1 = F.avg_pool2d(x, kernel_size=pool_size) x2 = F.max_pool2d(x, kernel_size=pool_size) x = x1 + x2 else: raise Exception('Incorrect argument!') return x class AttBlock(nn.Module): def __init__(self, n_in, n_out, activation='linear', temperature=1.): super(AttBlock, self).__init__() self.activation = activation self.temperature = temperature self.att = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True) self.cla = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True) self.bn_att = nn.BatchNorm1d(n_out) def forward(self, x): # x: (n_samples, n_in, n_time) norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1) cla = self.nonlinear_transform(self.cla(x)) x = torch.sum(norm_att * cla, dim=2) return x, norm_att, cla def nonlinear_transform(self, x): if self.activation == 'linear': return x elif self.activation == 'sigmoid': return torch.sigmoid(x) class Cnn14(nn.Module): def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num, out_emb): super(Cnn14, self).__init__() window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None # Spectrogram extractor self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, win_length=window_size, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True) # Logmel feature extractor self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True) self.bn0 = nn.BatchNorm2d(64) self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024) self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048) # out_emb is 2048 for best Cnn14 self.fc1 = nn.Linear(2048, out_emb, bias=True) self.fc_audioset = nn.Linear(out_emb, classes_num, bias=True) def forward(self, input, mixup_lambda=None): """ Input: (batch_size, data_length) """ x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) x = x.transpose(1, 3) x = self.bn0(x) x = x.transpose(1, 3) x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg') x = F.dropout(x, p=0.2, training=self.training) x = torch.mean(x, dim=3) (x1, _) = torch.max(x, dim=2) x2 = torch.mean(x, dim=2) x = x1 + x2 x = F.dropout(x, p=0.5, training=self.training) x = F.relu_(self.fc1(x)) embedding = F.dropout(x, p=0.5, training=self.training) clipwise_output = torch.sigmoid(self.fc_audioset(x)) output_dict = {'clipwise_output': clipwise_output, 'embedding': embedding} return output_dict
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/wav_evaluation/models/audio.py
import random import torchaudio from torch._six import string_classes import collections import re import torch.nn.functional as F import numpy as np from transformers import AutoTokenizer from wav_evaluation.models.utils import read_config_as_args from wav_evaluation.models.clap import CLAP import math import torchaudio.transforms as T import os import torch from importlib_resources import files class CLAPWrapper(): """ A class for interfacing CLAP model. """ def __init__(self, model_fp,config_path, use_cuda=False): self.np_str_obj_array_pattern = re.compile(r'[SaUO]') self.file_path = os.path.realpath(__file__) self.default_collate_err_msg_format = ( "default_collate: batch must contain tensors, numpy arrays, numbers, " "dicts or lists; found {}") with open(config_path,'r') as f: self.config_as_str = f.read() self.model_fp = model_fp self.use_cuda = use_cuda self.clap, self.tokenizer, self.args = self.load_clap() def load_clap(self): r"""Load CLAP model with args from config file""" args = read_config_as_args(self.config_as_str, is_config_str=True) if 'bert' in args.text_model: self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask'] else: self.token_keys = ['input_ids', 'attention_mask'] clap = CLAP( audioenc_name=args.audioenc_name, sample_rate=args.sampling_rate, window_size=args.window_size, hop_size=args.hop_size, mel_bins=args.mel_bins, fmin=args.fmin, fmax=args.fmax, classes_num=args.num_classes, out_emb=args.out_emb, text_model=args.text_model, transformer_embed_dim=args.transformer_embed_dim, d_proj=args.d_proj ) # Load pretrained weights for model model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model'] clap.load_state_dict(model_state_dict) clap.eval() # set clap in eval mode tokenizer = AutoTokenizer.from_pretrained(args.text_model) if self.use_cuda and torch.cuda.is_available(): clap = clap.cuda() return clap, tokenizer, args def default_collate(self, batch): r"""Puts each data field into a tensor with outer dimension batch size""" elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError( self.default_collate_err_msg_format.format(elem.dtype)) return self.default_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, float): return torch.tensor(batch, dtype=torch.float64) elif isinstance(elem, int): return torch.tensor(batch) elif isinstance(elem, string_classes): return batch elif isinstance(elem, collections.abc.Mapping): return {key: self.default_collate([d[key] for d in batch]) for key in elem} elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple return elem_type(*(self.default_collate(samples) for samples in zip(*batch))) elif isinstance(elem, collections.abc.Sequence): # check to make sure that the elements in batch have consistent size it = iter(batch) elem_size = len(next(it)) if not all(len(elem) == elem_size for elem in it): raise RuntimeError( 'each element in list of batch should be of equal size') transposed = zip(*batch) return [self.default_collate(samples) for samples in transposed] raise TypeError(self.default_collate_err_msg_format.format(elem_type)) def resample_and_duration(self,wav_sr,audio_duration,resample=False): audio_time_series,sample_rate = wav_sr resample_rate = self.args.sampling_rate if resample: resampler = T.Resample(sample_rate, resample_rate) audio_time_series = resampler(audio_time_series) audio_time_series = audio_time_series.reshape(-1) # audio_time_series is shorter than predefined audio duration, # so audio_time_series is extended if audio_duration*sample_rate >= audio_time_series.shape[0]: repeat_factor = int(np.ceil((audio_duration*sample_rate) / audio_time_series.shape[0])) # Repeat audio_time_series by repeat_factor to match audio_duration audio_time_series = audio_time_series.repeat(repeat_factor) # remove excess part of audio_time_series audio_time_series = audio_time_series[0:audio_duration*sample_rate] else: # audio_time_series is longer than predefined audio duration, # so audio_time_series is trimmed start_index = random.randrange( audio_time_series.shape[0] - audio_duration*sample_rate) audio_time_series = audio_time_series[start_index:start_index + audio_duration*sample_rate] return torch.FloatTensor(audio_time_series) def load_audio_into_tensor(self, audio_path, audio_duration, resample=False): r"""Loads audio file and returns raw audio.""" # Randomly sample a segment of audio_duration from the clip or pad to match duration audio_time_series, sample_rate = torchaudio.load(audio_path) return self.resample_and_duration((audio_time_series, sample_rate),audio_duration,resample) def preprocess_audio(self, audio_files, resample): r"""Load list of audio files and return raw audio""" audio_tensors = [] for audio_file in audio_files: if isinstance(audio_file,str): audio_tensor = self.load_audio_into_tensor(audio_file, self.args.duration, resample) elif isinstance(audio_file,tuple): audio_tensor = self.resample_and_duration(audio_file, self.args.duration, resample) else: raise TypeError(f"type of audiofile is {type(audio_file)},which is not supported") audio_tensor = audio_tensor.reshape( 1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1) audio_tensors.append(audio_tensor) return self.default_collate(audio_tensors) def preprocess_text(self, text_queries): r"""Load list of class labels and return tokenized text""" tokenized_texts = [] for ttext in text_queries: tok = self.tokenizer.encode_plus( text=ttext, add_special_tokens=True, max_length=self.args.text_len, padding="max_length", return_tensors="pt") # max_length=self.args.text_len, padding=True, for key in self.token_keys: tok[key] = tok[key].reshape(-1).cuda() if self.use_cuda and torch.cuda.is_available() else tok[key].reshape(-1) tokenized_texts.append(tok) return self.default_collate(tokenized_texts) def get_text_embeddings(self, class_labels): r"""Load list of class labels and return text embeddings""" preprocessed_text = self.preprocess_text(class_labels) text_embeddings = self._get_text_embeddings(preprocessed_text) text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True) return text_embeddings def get_audio_embeddings(self, audio_files, resample): r"""Load list of audio files and return a audio embeddings""" preprocessed_audio = self.preprocess_audio(audio_files, resample) audio_embeddings = self._get_audio_embeddings(preprocessed_audio) audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True) return audio_embeddings def _get_text_embeddings(self, preprocessed_text): r"""Load preprocessed text and return text embeddings""" with torch.no_grad(): text_embeddings = self.clap.caption_encoder(preprocessed_text) text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True) return text_embeddings def _get_audio_embeddings(self, preprocessed_audio): r"""Load preprocessed audio and return a audio embeddings""" with torch.no_grad(): preprocessed_audio = preprocessed_audio.reshape( preprocessed_audio.shape[0], preprocessed_audio.shape[2]) #Append [0] the audio emebdding, [1] has output class probabilities audio_embeddings = self.clap.audio_encoder(preprocessed_audio)[0] audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True) return audio_embeddings def compute_similarity(self, audio_embeddings, text_embeddings,use_logit_scale = True): r"""Compute similarity between text and audio embeddings""" if use_logit_scale: logit_scale = self.clap.logit_scale.exp() similarity = logit_scale*text_embeddings @ audio_embeddings.T else: similarity = text_embeddings @ audio_embeddings.T return similarity.T def cal_clap_score(self,txt,audio_path): text_embeddings = self.get_text_embeddings([txt])# 经过了norm的embedding audio_embeddings = self.get_audio_embeddings([audio_path], resample=True)# 这一步比较耗时,读取音频并重采样到44100 score = self.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy() return score def _generic_batch_inference(self, func, *args): r"""Process audio and/or text per batch""" input_tmp = args[0] batch_size = args[-1] # args[0] has audio_files, args[1] has class_labels inputs = [args[0], args[1]] if len(args) == 3 else [args[0]] args0_len = len(args[0]) # compute text_embeddings once for all the audio_files batches if len(inputs) == 2: text_embeddings = self.get_text_embeddings(args[1]) inputs = [args[0], args[1], text_embeddings] dataset_idx = 0 for _ in range(math.ceil(args0_len/batch_size)): next_batch_idx = dataset_idx + batch_size # batch size is bigger than available audio/text items if next_batch_idx >= args0_len: inputs[0] = input_tmp[dataset_idx:] return func(*tuple(inputs)) else: inputs[0] = input_tmp[dataset_idx:next_batch_idx] yield func(*tuple(inputs)) dataset_idx = next_batch_idx def get_audio_embeddings_per_batch(self, audio_files, batch_size): r"""Load preprocessed audio and return a audio embeddings per batch""" return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size) def get_text_embeddings_per_batch(self, class_labels, batch_size): r"""Load preprocessed text and return text embeddings per batch""" return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size) def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size): r"""Compute classification probabilities for each audio recording in a batch and each class label""" return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/wav_evaluation/models/CLAPWrapper.py
import os import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from pathlib import Path import yaml import numpy as np from argparse import Namespace LRELU_SLOPE = 0.1 def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) class ResBlock1(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.h = h self.convs1 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.h = h self.convs = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(torch.nn.Module): def __init__(self, h): super(Generator, self).__init__() self.h = h self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 if h.resblock == '1' else ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h.upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d)) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2), DiscriminatorP(3), DiscriminatorP(5), DiscriminatorP(7), DiscriminatorP(11), ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(torch.nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True), DiscriminatorS(), DiscriminatorS(), ]) self.meanpools = nn.ModuleList([ AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2) ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i-1](y) y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l return loss, gen_losses class VocoderHifigan(object): def __init__(self, ckpt_vocoder,device='cuda'): with open(os.path.join(ckpt_vocoder,'args.yml'), 'r') as f: vocoder_args = Namespace(**yaml.load(f, Loader=yaml.UnsafeLoader)) self.generator = Generator(vocoder_args) netG_path = os.path.join(ckpt_vocoder,'best_netG.pt') if os.path.exists(netG_path): vocoder_sd = torch.load(netG_path, map_location='cpu') self.generator.load_state_dict(vocoder_sd['generator']) self.generator.eval() self.device = device self.generator.to(self.device) def vocode(self, spec, global_step=None): with torch.no_grad(): if isinstance(spec,np.ndarray): spec = torch.from_numpy(spec).unsqueeze(0) spec = spec.to(dtype=torch.float32,device=self.device) return self.generator(spec).squeeze().cpu().numpy() class VocoderHifigan_noload(object): def __init__(self, vocoder_args,device='cuda'): self.generator = Generator(vocoder_args) self.generator.eval() self.device = device self.generator.to(self.device) def vocode(self, spec, global_step=None): with torch.no_grad(): if isinstance(spec,np.ndarray): spec = torch.from_numpy(spec).unsqueeze(0) spec = spec.to(dtype=torch.float32,device=self.device) return self.generator(spec).squeeze().cpu().numpy()
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/vocoder/hifigan/modules.py
import numpy as np class LambdaWarmUpCosineScheduler: """ note: use with a base_lr of 1.0 """ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0): self.lr_warm_up_steps = warm_up_steps self.lr_start = lr_start self.lr_min = lr_min self.lr_max = lr_max self.lr_max_decay_steps = max_decay_steps self.last_lr = 0. self.verbosity_interval = verbosity_interval def schedule(self, n, **kwargs): if self.verbosity_interval > 0: if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}") if n < self.lr_warm_up_steps: lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start self.last_lr = lr return lr else: t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps) t = min(t, 1.0) lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * ( 1 + np.cos(t * np.pi)) self.last_lr = lr return lr def __call__(self, n, **kwargs): return self.schedule(n,**kwargs) class LambdaWarmUpCosineScheduler2: """ supports repeated iterations, configurable via lists note: use with a base_lr of 1.0. """ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0): assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths) self.lr_warm_up_steps = warm_up_steps self.f_start = f_start self.f_min = f_min self.f_max = f_max self.cycle_lengths = cycle_lengths self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths)) self.last_f = 0. self.verbosity_interval = verbosity_interval def find_in_interval(self, n): interval = 0 for cl in self.cum_cycles[1:]: if n <= cl: return interval interval += 1 def schedule(self, n, **kwargs): cycle = self.find_in_interval(n) n = n - self.cum_cycles[cycle] if self.verbosity_interval > 0: if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " f"current cycle {cycle}") if n < self.lr_warm_up_steps[cycle]: f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] self.last_f = f return f else: t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]) t = min(t, 1.0) f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * ( 1 + np.cos(t * np.pi)) self.last_f = f return f def __call__(self, n, **kwargs): return self.schedule(n, **kwargs) class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2): def schedule(self, n, **kwargs): cycle = self.find_in_interval(n) n = n - self.cum_cycles[cycle] if self.verbosity_interval > 0: if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, " f"current cycle {cycle}") if n < self.lr_warm_up_steps[cycle]: f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] self.last_f = f return f else: f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle]) self.last_f = f return f
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/lr_scheduler.py
import importlib import torch import numpy as np from tqdm import tqdm from inspect import isfunction from PIL import Image, ImageDraw, ImageFont import hashlib import requests import os URL_MAP = { 'vggishish_lpaps': 'https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/vggishish16.pt', 'vggishish_mean_std_melspec_10s_22050hz': 'https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/train_means_stds_melspec_10s_22050hz.txt', 'melception': 'https://a3s.fi/swift/v1/AUTH_a235c0f452d648828f745589cde1219a/specvqgan_public/melception-21-05-10T09-28-40.pt', } CKPT_MAP = { 'vggishish_lpaps': 'vggishish16.pt', 'vggishish_mean_std_melspec_10s_22050hz': 'train_means_stds_melspec_10s_22050hz.txt', 'melception': 'melception-21-05-10T09-28-40.pt', } MD5_MAP = { 'vggishish_lpaps': '197040c524a07ccacf7715d7080a80bd', 'vggishish_mean_std_melspec_10s_22050hz': 'f449c6fd0e248936c16f6d22492bb625', 'melception': 'a71a41041e945b457c7d3d814bbcf72d', } def download(url, local_path, chunk_size=1024): os.makedirs(os.path.split(local_path)[0], exist_ok=True) with requests.get(url, stream=True) as r: total_size = int(r.headers.get("content-length", 0)) with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: with open(local_path, "wb") as f: for data in r.iter_content(chunk_size=chunk_size): if data: f.write(data) pbar.update(chunk_size) def md5_hash(path): with open(path, "rb") as f: content = f.read() return hashlib.md5(content).hexdigest() def log_txt_as_img(wh, xc, size=10): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new("RGB", wh, color="white") draw = ImageDraw.Draw(txt) font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) nc = int(40 * (wh[0] / 256)) lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) try: draw.text((0, 0), lines, fill="black", font=font) except UnicodeEncodeError: print("Cant encode string for logging. Skipping.") txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x,torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def mean_flat(tensor): """ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") return total_params def instantiate_from_config(config,reload=False): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"],reload=reload)(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def get_ckpt_path(name, root, check=False): assert name in URL_MAP path = os.path.join(root, CKPT_MAP[name]) if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) download(URL_MAP[name], path) md5 = md5_hash(path) assert md5 == MD5_MAP[name], md5 return path
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/util.py
""" 与autoencoder.py的区别在于,autoencoder.py计算loss时只有一个discriminator,而此处又多了个multiwindowDiscriminator,所以优化器 优化的参数改为: opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()), lr=lr, betas=(0.5, 0.9)) """ import os import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager from packaging import version import numpy as np from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.modules.distributions.distributions import DiagonalGaussianDistribution from torch.optim.lr_scheduler import LambdaLR from ldm.util import instantiate_from_config class AutoencoderKL(pl.LightningModule): def __init__(self, ddconfig, lossconfig, embed_dim, ckpt_path=None, ignore_keys=[], image_key="image", colorize_nlabels=None, monitor=None, ): super().__init__() self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) assert ddconfig["double_z"] self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim if colorize_nlabels is not None: assert type(colorize_nlabels)==int self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) if monitor is not None: self.monitor = monitor if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] self.load_state_dict(sd, strict=False) print(f"Restored from {path}") def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() return x def training_step(self, batch, batch_idx, optimizer_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) if optimizer_idx == 0: # train encoder+decoder+logvar aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) return aeloss if optimizer_idx == 1: # train the discriminator discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) return discloss def validation_step(self, batch, batch_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, last_layer=self.get_last_layer(), split="val") discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, last_layer=self.get_last_layer(), split="val") self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def test_step(self, batch, batch_idx): inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w) reconstructions, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w) reconstructions = (reconstructions + 1)/2 # to mel scale test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') if not os.path.exists(savedir): os.makedirs(savedir) file_names = batch['f_name'] # print(f"reconstructions.shape:{reconstructions.shape}",file_names) reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim for b in range(reconstructions.shape[0]): vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy') np.save(save_img_path,reconstructions[b]) return None def configure_optimizers(self): lr = self.learning_rate opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ list(self.decoder.parameters())+ list(self.quant_conv.parameters())+ list(self.post_quant_conv.parameters()), lr=lr, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()), lr=lr, betas=(0.5, 0.9)) return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight @torch.no_grad() def log_images(self, batch, only_inputs=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if not only_inputs: xrec, posterior = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log["samples"] = self.decode(torch.randn_like(posterior.sample())) log["reconstructions"] = xrec log["inputs"] = x return log def to_rgb(self, x): assert self.image_key == "segmentation" if not hasattr(self, "colorize"): self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) x = F.conv2d(x, weight=self.colorize) x = 2.*(x-x.min())/(x.max()-x.min()) - 1. return x class IdentityFirstStage(torch.nn.Module): def __init__(self, *args, vq_interface=False, **kwargs): self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff super().__init__() def encode(self, x, *args, **kwargs): return x def decode(self, x, *args, **kwargs): return x def quantize(self, x, *args, **kwargs): if self.vq_interface: return x, None, [None, None, None] return x def forward(self, x, *args, **kwargs): return x
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/autoencoder_multi.py
import os import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager from packaging import version import numpy as np from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.modules.distributions.distributions import DiagonalGaussianDistribution from torch.optim.lr_scheduler import LambdaLR from ldm.util import instantiate_from_config # from icecream import ic class VQModel(pl.LightningModule): def __init__(self, ddconfig, lossconfig, n_embed, embed_dim, ckpt_path=None, ignore_keys=[], image_key="image", colorize_nlabels=None, monitor=None, batch_resize_range=None, scheduler_config=None, lr_g_factor=1.0, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw use_ema=False ): super().__init__() self.embed_dim = embed_dim self.n_embed = n_embed self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape) self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) if colorize_nlabels is not None: assert type(colorize_nlabels)==int self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) if monitor is not None: self.monitor = monitor self.batch_resize_range = batch_resize_range if self.batch_resize_range is not None: print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.") self.use_ema = use_ema if self.use_ema: self.model_ema = LitEma(self) print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) self.scheduler_config = scheduler_config self.lr_g_factor = lr_g_factor @contextmanager def ema_scope(self, context=None): if self.use_ema: self.model_ema.store(self.parameters()) self.model_ema.copy_to(self) if context is not None: print(f"{context}: Switched to EMA weights") try: yield None finally: if self.use_ema: self.model_ema.restore(self.parameters()) if context is not None: print(f"{context}: Restored training weights") def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if len(missing) > 0: print(f"Missing Keys: {missing}") print(f"Unexpected Keys: {unexpected}") def on_train_batch_end(self, *args, **kwargs): if self.use_ema: self.model_ema(self) def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) quant, emb_loss, info = self.quantize(h) return quant, emb_loss, info def encode_to_prequant(self, x): h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, quant): quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec def decode_code(self, code_b): quant_b = self.quantize.embed_code(code_b) dec = self.decode(quant_b) return dec def forward(self, input, return_pred_indices=False): quant, diff, (_,_,ind) = self.encode(input) dec = self.decode(quant) if return_pred_indices: return dec, diff, ind return dec, diff def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() if self.batch_resize_range is not None: lower_size = self.batch_resize_range[0] upper_size = self.batch_resize_range[1] if self.global_step <= 4: # do the first few batches with max size to avoid later oom new_resize = upper_size else: new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16)) if new_resize != x.shape[2]: x = F.interpolate(x, size=new_resize, mode="bicubic") x = x.detach() return x def training_step(self, batch, batch_idx, optimizer_idx): # https://github.com/pytorch/pytorch/issues/37142 # try not to fool the heuristics x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) if optimizer_idx == 0: # autoencode aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train", predicted_indices=ind) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) return aeloss if optimizer_idx == 1: # discriminator discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) return discloss def validation_step(self, batch, batch_idx): log_dict = self._validation_step(batch, batch_idx) with self.ema_scope(): log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") return log_dict def _validation_step(self, batch, batch_idx, suffix=""): x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step, last_layer=self.get_last_layer(), split="val"+suffix, predicted_indices=ind ) discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step, last_layer=self.get_last_layer(), split="val"+suffix, predicted_indices=ind ) rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] self.log(f"val{suffix}/rec_loss", rec_loss, prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) self.log(f"val{suffix}/aeloss", aeloss, prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) if version.parse(pl.__version__) >= version.parse('1.4.0'): del log_dict_ae[f"val{suffix}/rec_loss"] self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def test_step(self, batch, batch_idx): x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) reconstructions = (xrec + 1)/2 # to mel scale test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') if not os.path.exists(savedir): os.makedirs(savedir) file_names = batch['f_name'] # print(f"reconstructions.shape:{reconstructions.shape}",file_names) reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim for b in range(reconstructions.shape[0]): vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy') np.save(save_img_path,reconstructions[b]) return None def configure_optimizers(self): lr_d = self.learning_rate lr_g = self.lr_g_factor*self.learning_rate print("lr_d", lr_d) print("lr_g", lr_g) opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ list(self.decoder.parameters())+ list(self.quantize.parameters())+ list(self.quant_conv.parameters())+ list(self.post_quant_conv.parameters()), lr=lr_g, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9)) if self.scheduler_config is not None: scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }, { 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }, ] return [opt_ae, opt_disc], scheduler return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if only_inputs: log["inputs"] = x return log xrec, _ = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log["inputs"] = x log["reconstructions"] = xrec if plot_ema: with self.ema_scope(): xrec_ema, _ = self(x) if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) log["reconstructions_ema"] = xrec_ema return log def to_rgb(self, x): assert self.image_key == "segmentation" if not hasattr(self, "colorize"): self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) x = F.conv2d(x, weight=self.colorize) x = 2.*(x-x.min())/(x.max()-x.min()) - 1. return x class VQModelInterface(VQModel): def __init__(self, embed_dim, *args, **kwargs): super().__init__(embed_dim=embed_dim, *args, **kwargs) self.embed_dim = embed_dim def encode(self, x):# VQModel的quantize写在encoder里,VQModelInterface则将其写在decoder里 h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, h, force_not_quantize=False): # also go through quantization layer if not force_not_quantize: quant, emb_loss, info = self.quantize(h) else: quant = h quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec class AutoencoderKL(pl.LightningModule): def __init__(self, ddconfig, lossconfig, embed_dim, ckpt_path=None, ignore_keys=[], image_key="image", colorize_nlabels=None, monitor=None, ): super().__init__() self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) assert ddconfig["double_z"] self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim if colorize_nlabels is not None: assert type(colorize_nlabels)==int self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) if monitor is not None: self.monitor = monitor if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) # self.automatic_optimization = False # hjw for debug def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] self.load_state_dict(sd, strict=False) print(f"Restored from {path}") def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() return x def training_step(self, batch, batch_idx, optimizer_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) if optimizer_idx == 0: # train encoder+decoder+logvar aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) return aeloss if optimizer_idx == 1: # train the discriminator discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) return discloss def validation_step(self, batch, batch_idx): # self.log_images(batch,only_inputs=False,save_dir='mel_result_ae13_26/fake_class') return self.log_dict def test_step(self, batch, batch_idx): test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') os.makedirs(savedir,exist_ok=True) inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w) # ic(inputs.shape) # inputs = inputs[...,:624] # ic(inputs.shape) xrec, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w) file_names = batch['f_name'] # print(f"reconstructions.shape:{reconstructions.shape}",file_names) for b in range(len(file_names)): rcon = (xrec[b].squeeze().detach().cpu().numpy() + 1) / 2 # to mel scale,squeeze channel dim vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy') np.save(save_img_path,rcon) return None def configure_optimizers(self): lr = self.learning_rate opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ list(self.decoder.parameters())+ list(self.quant_conv.parameters())+ list(self.post_quant_conv.parameters()), lr=lr, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)) return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight @torch.no_grad() def log_images(self, batch, only_inputs=False,save_dir = 'mel_result_ae13_26_debug/fake_class', **kwargs): # 在main.py的on_validation_batch_end中调用 log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if not only_inputs: xrec, posterior = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log["samples"] = self.decode(torch.randn_like(posterior.sample())) log["reconstructions"] = xrec log["inputs"] = x return log def to_rgb(self, x): assert self.image_key == "segmentation" if not hasattr(self, "colorize"): self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) x = F.conv2d(x, weight=self.colorize) x = 2.*(x-x.min())/(x.max()-x.min()) - 1. return x class IdentityFirstStage(torch.nn.Module): def __init__(self, *args, vq_interface=False, **kwargs): self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff super().__init__() def encode(self, x, *args, **kwargs): return x def decode(self, x, *args, **kwargs): return x def quantize(self, x, *args, **kwargs): if self.vq_interface: return x, None, [None, None, None] return x def forward(self, x, *args, **kwargs): return x
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/autoencoder.py
"""SAMPLING ONLY.""" import torch import numpy as np from tqdm import tqdm from functools import partial from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \ extract_into_tensor class DDIMSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: # if attr.device != torch.device("cuda"): # attr = attr.to(torch.device("cuda")) attr = attr.to(self.device) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] while isinstance(ctmp, list): ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) # print(f'Data shape for DDIM sampling is {size}, eta {eta}') samples, intermediates = self.ddim_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, ) return samples, intermediates @torch.no_grad() def ddim_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None,): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] # iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(time_range): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning) img, pred_x0 = outs if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.: e_t = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) if isinstance(c, dict): assert isinstance(unconditional_conditioning, dict) c_in = dict() for k in c: if isinstance(c[k], list): c_in[k] = [torch.cat([ unconditional_conditioning[k][i], c[k][i]]) for i in range(len(c[k]))] else: c_in[k] = torch.cat([ unconditional_conditioning[k], c[k]]) elif isinstance(c, list): c_in = list() assert isinstance(unconditional_conditioning, list) for i in range(len(c)): c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) else: c_in = torch.cat([unconditional_conditioning, c])# c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim] e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) if score_corrector is not None: assert self.model.parameterization == "eps" e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 @torch.no_grad() def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): # fast, but does not allow for exact reconstruction # t serves as an index to gather the correct alphas if use_original_steps: sqrt_alphas_cumprod = self.sqrt_alphas_cumprod sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod else: sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas if noise is None: noise = torch.randn_like(x0) return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) @torch.no_grad() def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, use_original_steps=False): timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps timesteps = timesteps[:t_start] time_range = np.flip(timesteps) total_steps = timesteps.shape[0] # print(f"Running DDIM Sampling with {total_steps} timesteps") # iterator = tqdm(time_range, desc='Decoding image', total=total_steps) x_dec = x_latent for i, step in enumerate(time_range): index = total_steps - i - 1 ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning) return x_dec
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/diffusion/ddim.py
import os import torch import pytorch_lightning as pl from omegaconf import OmegaConf from torch.nn import functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from copy import deepcopy from einops import rearrange from glob import glob from natsort import natsorted from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config __models__ = { 'class_label': EncoderUNetModel, 'segmentation': UNetModel } def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class NoisyLatentImageClassifier(pl.LightningModule): def __init__(self, diffusion_path, num_classes, ckpt_path=None, pool='attention', label_key=None, diffusion_ckpt_path=None, scheduler_config=None, weight_decay=1.e-2, log_steps=10, monitor='val/loss', *args, **kwargs): super().__init__(*args, **kwargs) self.num_classes = num_classes # get latest config of diffusion model diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1] self.diffusion_config = OmegaConf.load(diffusion_config).model self.diffusion_config.params.ckpt_path = diffusion_ckpt_path self.load_diffusion() self.monitor = monitor self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 self.log_time_interval = self.diffusion_model.num_timesteps // log_steps self.log_steps = log_steps self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \ else self.diffusion_model.cond_stage_key assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params' if self.label_key not in __models__: raise NotImplementedError() self.load_classifier(ckpt_path, pool) self.scheduler_config = scheduler_config self.use_scheduler = self.scheduler_config is not None self.weight_decay = weight_decay def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if len(missing) > 0: print(f"Missing Keys: {missing}") if len(unexpected) > 0: print(f"Unexpected Keys: {unexpected}") def load_diffusion(self): model = instantiate_from_config(self.diffusion_config) self.diffusion_model = model.eval() self.diffusion_model.train = disabled_train for param in self.diffusion_model.parameters(): param.requires_grad = False def load_classifier(self, ckpt_path, pool): model_config = deepcopy(self.diffusion_config.params.unet_config.params) model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels model_config.out_channels = self.num_classes if self.label_key == 'class_label': model_config.pool = pool self.model = __models__[self.label_key](**model_config) if ckpt_path is not None: print('#####################################################################') print(f'load from ckpt "{ckpt_path}"') print('#####################################################################') self.init_from_ckpt(ckpt_path) @torch.no_grad() def get_x_noisy(self, x, t, noise=None): noise = default(noise, lambda: torch.randn_like(x)) continuous_sqrt_alpha_cumprod = None if self.diffusion_model.use_continuous_noise: continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) # todo: make sure t+1 is correct here return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod) def forward(self, x_noisy, t, *args, **kwargs): return self.model(x_noisy, t) @torch.no_grad() def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = rearrange(x, 'b h w c -> b c h w') x = x.to(memory_format=torch.contiguous_format).float() return x @torch.no_grad() def get_conditioning(self, batch, k=None): if k is None: k = self.label_key assert k is not None, 'Needs to provide label key' targets = batch[k].to(self.device) if self.label_key == 'segmentation': targets = rearrange(targets, 'b h w c -> b c h w') for down in range(self.numd): h, w = targets.shape[-2:] targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest') # targets = rearrange(targets,'b c h w -> b h w c') return targets def compute_top_k(self, logits, labels, k, reduction="mean"): _, top_ks = torch.topk(logits, k, dim=1) if reduction == "mean": return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() elif reduction == "none": return (top_ks == labels[:, None]).float().sum(dim=-1) def on_train_epoch_start(self): # save some memory self.diffusion_model.model.to('cpu') @torch.no_grad() def write_logs(self, loss, logits, targets): log_prefix = 'train' if self.training else 'val' log = {} log[f"{log_prefix}/loss"] = loss.mean() log[f"{log_prefix}/acc@1"] = self.compute_top_k( logits, targets, k=1, reduction="mean" ) log[f"{log_prefix}/acc@5"] = self.compute_top_k( logits, targets, k=5, reduction="mean" ) self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True) self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False) self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True) lr = self.optimizers().param_groups[0]['lr'] self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True) def shared_step(self, batch, t=None): x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key) targets = self.get_conditioning(batch) if targets.dim() == 4: targets = targets.argmax(dim=1) if t is None: t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long() else: t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() x_noisy = self.get_x_noisy(x, t) logits = self(x_noisy, t) loss = F.cross_entropy(logits, targets, reduction='none') self.write_logs(loss.detach(), logits.detach(), targets.detach()) loss = loss.mean() return loss, logits, x_noisy, targets def training_step(self, batch, batch_idx): loss, *_ = self.shared_step(batch) return loss def reset_noise_accs(self): self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)} def on_validation_start(self): self.reset_noise_accs() @torch.no_grad() def validation_step(self, batch, batch_idx): loss, *_ = self.shared_step(batch) for t in self.noisy_acc: _, logits, _, targets = self.shared_step(batch, t) self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean')) self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean')) return loss def configure_optimizers(self): optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) if self.use_scheduler: scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }] return [optimizer], scheduler return optimizer @torch.no_grad() def log_images(self, batch, N=8, *args, **kwargs): log = dict() x = self.get_input(batch, self.diffusion_model.first_stage_key) log['inputs'] = x y = self.get_conditioning(batch) if self.label_key == 'class_label': y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) log['labels'] = y if ismap(y): log['labels'] = self.diffusion_model.to_rgb(y) for step in range(self.log_steps): current_time = step * self.log_time_interval _, logits, x_noisy, _ = self.shared_step(batch, t=current_time) log[f'inputs@t{current_time}'] = x_noisy pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) pred = rearrange(pred, 'b h w c -> b c h w') log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred) for key in log: log[key] = log[key][:N] return log
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/diffusion/classifier.py
""" wild mixture of https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py https://github.com/CompVis/taming-transformers -- merci """ import os import torch import torch.nn as nn import numpy as np import pytorch_lightning as pl from torch.optim.lr_scheduler import LambdaLR from einops import rearrange, repeat from contextlib import contextmanager from functools import partial from tqdm import tqdm from torchvision.utils import make_grid from pytorch_lightning.utilities.distributed import rank_zero_only from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config from ldm.modules.ema import LitEma from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.ddpm import DDPM, disabled_train from omegaconf import ListConfig __conditioning_keys__ = {'concat': 'c_concat', 'crossattn': 'c_crossattn', 'adm': 'y'} class LatentDiffusion_audio(DDPM): """main class""" def __init__(self, first_stage_config, cond_stage_config, num_timesteps_cond=None, mel_dim=80, mel_length=848, cond_stage_key="image", cond_stage_trainable=False, concat_mode=True, cond_stage_forward=None, conditioning_key=None, scale_factor=1.0, scale_by_std=False, *args, **kwargs): self.num_timesteps_cond = default(num_timesteps_cond, 1) self.scale_by_std = scale_by_std assert self.num_timesteps_cond <= kwargs['timesteps'] # for backwards compatibility after implementation of DiffusionWrapper if conditioning_key is None: conditioning_key = 'concat' if concat_mode else 'crossattn' if cond_stage_config == '__is_unconditional__': conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) super().__init__(conditioning_key=conditioning_key, *args, **kwargs) self.concat_mode = concat_mode self.mel_dim = mel_dim self.mel_length = mel_length self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 except: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor else: self.register_buffer('scale_factor', torch.tensor(scale_factor)) self.instantiate_first_stage(first_stage_config) self.instantiate_cond_stage(cond_stage_config) self.cond_stage_forward = cond_stage_forward self.clip_denoised = False self.bbox_tokenizer = None self.restarted_from_ckpt = False if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys) self.restarted_from_ckpt = True def make_cond_schedule(self, ): self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() self.cond_ids[:self.num_timesteps_cond] = ids @rank_zero_only @torch.no_grad() def on_train_batch_start(self, batch, batch_idx, dataloader_idx): # only for very first batch if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' # set rescale weight to 1./std of encodings print("### USING STD-RESCALING ###") x = super().get_input(batch, self.first_stage_key) x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() del self.scale_factor self.register_buffer('scale_factor', 1. / z.flatten().std()) print(f"setting self.scale_factor to {self.scale_factor}") print("### USING STD-RESCALING ###") def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) self.shorten_cond_schedule = self.num_timesteps_cond > 1 if self.shorten_cond_schedule: self.make_cond_schedule() def instantiate_first_stage(self, config): model = instantiate_from_config(config) self.first_stage_model = model.eval() self.first_stage_model.train = disabled_train for param in self.first_stage_model.parameters(): param.requires_grad = False def instantiate_cond_stage(self, config): if not self.cond_stage_trainable: if config == "__is_first_stage__": print("Using first stage also as cond stage.") self.cond_stage_model = self.first_stage_model elif config == "__is_unconditional__": print(f"Training {self.__class__.__name__} as an unconditional model.") self.cond_stage_model = None # self.be_unconditional = True else: model = instantiate_from_config(config) self.cond_stage_model = model.eval() self.cond_stage_model.train = disabled_train for param in self.cond_stage_model.parameters(): param.requires_grad = False else: assert config != '__is_first_stage__' assert config != '__is_unconditional__' model = instantiate_from_config(config) self.cond_stage_model = model def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): denoise_row = [] for zd in tqdm(samples, desc=desc): denoise_row.append(self.decode_first_stage(zd.to(self.device), force_not_quantize=force_no_decoder_quantization)) n_imgs_per_row = len(denoise_row) denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) return denoise_grid def get_first_stage_encoding(self, encoder_posterior): if isinstance(encoder_posterior, DiagonalGaussianDistribution): z = encoder_posterior.sample() elif isinstance(encoder_posterior, torch.Tensor): z = encoder_posterior else: raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") return self.scale_factor * z def get_learned_conditioning(self, c): if self.cond_stage_forward is None: if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): c = self.cond_stage_model.encode(c) if isinstance(c, DiagonalGaussianDistribution): c = c.mode() else: c = self.cond_stage_model(c) else: assert hasattr(self.cond_stage_model, self.cond_stage_forward) c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) return c @torch.no_grad() def get_unconditional_conditioning(self, batch_size, null_label=None): if null_label is not None: xc = null_label if isinstance(xc, ListConfig): xc = list(xc) if isinstance(xc, dict) or isinstance(xc, list): c = self.get_learned_conditioning(xc) else: if hasattr(xc, "to"): xc = xc.to(self.device) c = self.get_learned_conditioning(xc) else: if self.cond_stage_key in ["class_label", "cls"]: xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device) return self.get_learned_conditioning(xc) else: raise NotImplementedError("todo") if isinstance(c, list): # in case the encoder gives us a list for i in range(len(c)): c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device) else: c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device) return c def meshgrid(self, h, w): y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) arr = torch.cat([y, x], dim=-1) return arr def delta_border(self, h, w): """ :param h: height :param w: width :return: normalized distance to image border, wtith min distance = 0 at border and max dist = 0.5 at image center """ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) arr = self.meshgrid(h, w) / lower_right_corner dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] return edge_dist def get_weighting(self, h, w, Ly, Lx, device): weighting = self.delta_border(h, w) weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], self.split_input_params["clip_max_weight"], ) weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) if self.split_input_params["tie_braker"]: L_weighting = self.delta_border(Ly, Lx) L_weighting = torch.clip(L_weighting, self.split_input_params["clip_min_tie_weight"], self.split_input_params["clip_max_tie_weight"]) L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) weighting = weighting * L_weighting return weighting def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code """ :param x: img of size (bs, c, h, w) :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) """ bs, nc, h, w = x.shape # number of crops in image Ly = (h - kernel_size[0]) // stride[0] + 1 Lx = (w - kernel_size[1]) // stride[1] + 1 if uf == 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) elif uf > 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), dilation=1, padding=0, stride=(stride[0] * uf, stride[1] * uf)) fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) elif df > 1 and uf == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), dilation=1, padding=0, stride=(stride[0] // df, stride[1] // df)) fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) else: raise NotImplementedError return fold, unfold, normalization, weighting @torch.no_grad() def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, cond_key=None, return_original_cond=False, bs=None): x = super().get_input(batch, k) if bs is not None: x = x[:bs] x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() if self.model.conditioning_key is not None: if cond_key is None: cond_key = self.cond_stage_key if cond_key != self.first_stage_key: if cond_key in ['caption', 'coordinates_bbox']: xc = batch[cond_key] elif cond_key == 'class_label': xc = batch else: xc = super().get_input(batch, cond_key).to(self.device) else: xc = x if not self.cond_stage_trainable or force_c_encode: if isinstance(xc, dict) or isinstance(xc, list): # import pudb; pudb.set_trace() c = self.get_learned_conditioning(xc) else: c = self.get_learned_conditioning(xc.to(self.device)) else: c = xc if bs is not None: c = c[:bs] # Testing # if cond_key == 'masked_image': mask = super().get_input(batch, "mask") cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106] c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106] # Testing # if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) ckey = __conditioning_keys__[self.model.conditioning_key] c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} else: c = None xc = None if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) c = {'pos_x': pos_x, 'pos_y': pos_y} out = [z, c] if return_first_stage_outputs: xrec = self.decode_first_stage(z) out.extend([x, xrec]) if return_original_cond: out.append(xc) return out @torch.no_grad() def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): if predict_cids: if z.dim() == 4: z = torch.argmax(z.exp(), dim=1).long() z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) z = rearrange(z, 'b h w c -> b c h w').contiguous() z = 1. / self.scale_factor * z if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) uf = self.split_input_params["vqf"] bs, nc, h, w = z.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) z = unfold(z) # (bn, nc * prod(**ks), L) # 1. Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] else: output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) o = o * weighting # Reverse 1. reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization # norm is shape (1, 1, h, w) return decoded else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) # same as above but without decorator def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): if predict_cids: if z.dim() == 4: z = torch.argmax(z.exp(), dim=1).long() z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) z = rearrange(z, 'b h w c -> b c h w').contiguous() z = 1. / self.scale_factor * z if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) uf = self.split_input_params["vqf"] bs, nc, h, w = z.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) z = unfold(z) # (bn, nc * prod(**ks), L) # 1. Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] else: output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) o = o * weighting # Reverse 1. reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization # norm is shape (1, 1, h, w) return decoded else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) @torch.no_grad() def encode_first_stage(self, x): if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) df = self.split_input_params["vqf"] self.split_input_params['original_image_size'] = x.shape[-2:] bs, nc, h, w = x.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) z = unfold(x) # (bn, nc * prod(**ks), L) # Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) o = o * weighting # Reverse reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization return decoded else: return self.first_stage_model.encode(x) else: return self.first_stage_model.encode(x) def shared_step(self, batch, **kwargs): x, c = self.get_input(batch, self.first_stage_key) loss = self(x, c) return loss def test_step(self,batch,batch_idx): cond = batch[self.cond_stage_key] * self.test_repeat cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim] batch_size = len(cond) enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length] xrec = self.decode_first_stage(enc_emb) reconstructions = (xrec + 1)/2 # to mel scale test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') if not os.path.exists(savedir): os.makedirs(savedir) file_names = batch['f_name'] nfiles = len(file_names) reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim for k in range(reconstructions.shape[0]): b,repeat = k % nfiles, k // nfiles vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition np.save(save_img_path,reconstructions[b]) return None def forward(self, x, c, *args, **kwargs): t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() if self.model.conditioning_key is not None: assert c is not None if self.cond_stage_trainable: c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim] if self.shorten_cond_schedule: # TODO: drop this option tc = self.cond_ids[t].to(self.device) c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset def rescale_bbox(bbox): x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) w = min(bbox[2] / crop_coordinates[2], 1 - x0) h = min(bbox[3] / crop_coordinates[3], 1 - y0) return x0, y0, w, h return [rescale_bbox(b) for b in bboxes] def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): # hybrid case, cond is exptected to be a dict pass else: if not isinstance(cond, list): cond = [cond] key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' cond = {key: cond} if hasattr(self, "split_input_params"): assert len(cond) == 1 # todo can only deal with one conditioning atm assert not return_ids ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) h, w = x_noisy.shape[-2:] fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) z = unfold(x_noisy) # (bn, nc * prod(**ks), L) # Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] if self.cond_stage_key in ["image", "LR_image", "segmentation", 'bbox_img'] and self.model.conditioning_key: # todo check for completeness c_key = next(iter(cond.keys())) # get key c = next(iter(cond.values())) # get value assert (len(c) == 1) # todo extend to list with more than one elem c = c[0] # get element c = unfold(c) c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] elif self.cond_stage_key == 'coordinates_bbox': assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' # assuming padding of unfold is always 0 and its dilation is always 1 n_patches_per_row = int((w - ks[0]) / stride[0] + 1) full_img_h, full_img_w = self.split_input_params['original_image_size'] # as we are operating on latents, we need the factor from the original image size to the # spatial latent size to properly rescale the crops for regenerating the bbox annotations num_downs = self.first_stage_model.encoder.num_resolutions - 1 rescale_latent = 2 ** (num_downs) # get top left postions of patches as conforming for the bbbox tokenizer, therefore we # need to rescale the tl patch coordinates to be in between (0,1) tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) for patch_nr in range(z.shape[-1])] # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) patch_limits = [(x_tl, y_tl, rescale_latent * ks[0] / full_img_w, rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] # tokenize crop coordinates for the bounding boxes of the respective patches patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) for bbox in patch_limits] # list of length l with tensors of shape (1, 2) print(patch_limits_tknzd[0].shape) # cut tknzd crop position from conditioning assert isinstance(cond, dict), 'cond must be dict to be fed into model' cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) print(cut_cond.shape) adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') print(adapted_cond.shape) adapted_cond = self.get_learned_conditioning(adapted_cond) print(adapted_cond.shape) adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) print(adapted_cond.shape) cond_list = [{'c_crossattn': [e]} for e in adapted_cond] else: cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient # apply model by loop over crops output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] assert not isinstance(output_list[0], tuple) # todo cant deal with multiple model outputs check this never happens o = torch.stack(output_list, axis=-1) o = o * weighting # Reverse reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together x_recon = fold(o) / normalization else: x_recon = self.model(x_noisy, t, **cond) if isinstance(x_recon, tuple) and not return_ids: return x_recon[0] else: return x_recon def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_flat(kl_prior) / np.log(2.0) def p_losses(self, x_start, cond, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) model_output = self.apply_model(x_noisy, t, cond) loss_dict = {} prefix = 'train' if self.training else 'val' if self.parameterization == "x0": target = x_start elif self.parameterization == "eps": target = noise else: raise NotImplementedError() loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) logvar_t = self.logvar[t].to(self.device) loss = loss_simple / torch.exp(logvar_t) + logvar_t # loss = loss_simple / torch.exp(self.logvar) + self.logvar if self.learn_logvar: loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) loss_dict.update({'logvar': self.logvar.data.mean()}) loss = self.l_simple_weight * loss.mean() loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) loss += (self.original_elbo_weight * loss_vlb) loss_dict.update({f'{prefix}/loss': loss}) return loss, loss_dict def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, return_x0=False, score_corrector=None, corrector_kwargs=None): t_in = t model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) if score_corrector is not None: assert self.parameterization == "eps" model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) if return_codebook_ids: model_out, logits = model_out if self.parameterization == "eps": x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) elif self.parameterization == "x0": x_recon = model_out else: raise NotImplementedError() if clip_denoised: x_recon.clamp_(-1., 1.) if quantize_denoised: x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) if return_codebook_ids: return model_mean, posterior_variance, posterior_log_variance, logits elif return_x0: return model_mean, posterior_variance, posterior_log_variance, x_recon else: return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_codebook_ids=False, quantize_denoised=False, return_x0=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): b, *_, device = *x.shape, x.device outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_codebook_ids=return_codebook_ids, quantize_denoised=quantize_denoised, return_x0=return_x0, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if return_codebook_ids: raise DeprecationWarning("Support dropped.") model_mean, _, model_log_variance, logits = outputs elif return_x0: model_mean, _, model_log_variance, x0 = outputs else: model_mean, _, model_log_variance = outputs noise = noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) if return_codebook_ids: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) if return_x0: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 else: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t timesteps = self.num_timesteps if batch_size is not None: b = batch_size if batch_size is not None else shape[0] shape = [batch_size] + list(shape) else: b = batch_size = shape[0] if x_T is None: img = torch.randn(shape, device=self.device) else: img = x_T intermediates = [] if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', total=timesteps) if verbose else reversed( range(0, timesteps)) if type(temperature) == float: temperature = [temperature] * timesteps for i in iterator: ts = torch.full((b,), i, device=self.device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img, x0_partial = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised, return_x0=True, temperature=temperature[i], noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if mask is not None: assert x0 is not None img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) if callback: callback(i) if img_callback: img_callback(img, i) return img, intermediates @torch.no_grad() def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t device = self.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T intermediates = [img] if timesteps is None: timesteps = self.num_timesteps if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( range(0, timesteps)) if mask is not None: assert x0 is not None assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match for i in iterator: ts = torch.full((b,), i, device=device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised) if mask is not None: img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) if callback: callback(i) if img_callback: img_callback(img, i) if return_intermediates: return img, intermediates return img @torch.no_grad() def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, verbose=True, timesteps=None, quantize_denoised=False, mask=None, x0=None, shape=None,**kwargs): if shape is None: shape = (batch_size, self.channels, self.mel_dim, self.mel_length) if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, shape, return_intermediates=return_intermediates, x_T=x_T, verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, mask=mask, x0=x0) @torch.no_grad() def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): if ddim: ddim_sampler = DDIMSampler(self) shape = (self.channels, self.mel_dim, self.mel_length) samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, shape,cond,verbose=False,**kwargs) else: samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True,**kwargs) return samples, intermediates @torch.no_grad() def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, **kwargs): use_ddim = ddim_steps is not None log = dict() z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=N) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) log["inputs"] = x log["reconstruction"] = xrec if self.model.conditioning_key is not None: if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image": xc = self.cond_stage_model.decode(c) log["conditioning"] = xc elif self.cond_stage_key == "masked_image": log["mask"] = c[:, -1, :, :][:, None, :, :] xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :]) log["conditioning"] = xc elif self.cond_stage_key in ["caption"]: xc = log_txt_as_img((256, 256), batch["caption"]) log["conditioning"] = xc elif self.cond_stage_key == 'class_label': xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) log['conditioning'] = xc elif isimage(xc): log["conditioning"] = xc if ismap(xc): log["original_conditioning"] = self.to_rgb(xc) if plot_diffusion_rows: # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample: # get denoise row with self.ema_scope("Plotting"): samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, ddim_steps=ddim_steps,eta=ddim_eta) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( self.first_stage_model, IdentityFirstStage): # also display when quantizing x0 while sampling with self.ema_scope("Plotting Quantized Denoised"): samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, ddim_steps=ddim_steps,eta=ddim_eta, quantize_denoised=True) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, # quantize_denoised=True) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_x0_quantized"] = x_samples if inpaint: # make a simple center square b, h, w = z.shape[0], z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. mask = mask[:, None, ...] with self.ema_scope("Plotting Inpaint"): samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_inpainting"] = x_samples log["mask_inpainting"] = mask # outpaint mask = 1 - mask with self.ema_scope("Plotting Outpaint"): samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_outpainting"] = x_samples log["mask_outpainting"] = mask if plot_progressive_rows: with self.ema_scope("Plotting Progressives"): img, progressives = self.progressive_denoising(c, shape=(self.channels, self.mel_dim, self.mel_length), batch_size=N) prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") log["progressive_row"] = prog_row if return_keys: if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: return log else: return {key: log[key] for key in return_keys} return log def configure_optimizers(self): lr = self.learning_rate params = list(self.model.parameters()) if self.cond_stage_trainable: print(f"{self.__class__.__name__}: Also optimizing conditioner params!") params = params + list(self.cond_stage_model.parameters()) if self.learn_logvar: print('Diffusion model optimizing logvar') params.append(self.logvar) opt = torch.optim.AdamW(params, lr=lr) if self.use_scheduler: assert 'target' in self.scheduler_config scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }] return [opt], scheduler return opt @torch.no_grad() def to_rgb(self, x): x = x.float() if not hasattr(self, "colorize"): self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) x = nn.functional.conv2d(x, weight=self.colorize) x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. return x class LatentFinetuneDiffusion(LatentDiffusion_audio): """ Basis for different finetunas, such as inpainting or depth2image To disable finetuning mode, set finetune_keys to None """ def __init__(self, concat_keys: tuple, finetune_keys=("model.diffusion_model.input_blocks.0.0.weight", "model_ema.diffusion_modelinput_blocks00weight" ), keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels c_concat_log_start=None, # to log reconstruction of c_concat codes c_concat_log_end=None, *args, **kwargs ): ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", list()) super().__init__(*args, **kwargs) self.finetune_keys = finetune_keys self.concat_keys = concat_keys self.keep_dims = keep_finetune_dims self.c_concat_log_start = c_concat_log_start self.c_concat_log_end = c_concat_log_end if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint' if exists(ckpt_path): self.init_from_ckpt(ckpt_path, ignore_keys) def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] # make it explicit, finetune by including extra input channels if exists(self.finetune_keys) and k in self.finetune_keys: new_entry = None for name, param in self.named_parameters(): if name in self.finetune_keys: print( f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only") new_entry = torch.zeros_like(param) # zero init assert exists(new_entry), 'did not find matching parameter to modify' new_entry[:, :self.keep_dims, ...] = sd[k] sd[k] = new_entry missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if len(missing) > 0: print(f"Missing Keys: {missing}") if len(unexpected) > 0: print(f"Unexpected Keys: {unexpected}") @torch.no_grad() def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True, **kwargs): use_ddim = ddim_steps is not None log = dict() z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True) c_cat, c = c["c_concat"][0], c["c_crossattn"][0] N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) log["inputs"] = x log["reconstruction"] = xrec if self.model.conditioning_key is not None: if hasattr(self.cond_stage_model, "decode"): xc = self.cond_stage_model.decode(c) log["conditioning"] = xc elif self.cond_stage_key in ["caption"]: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) log["conditioning"] = xc elif self.cond_stage_key == 'class_label': xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) log['conditioning'] = xc elif isimage(xc): log["conditioning"] = xc if ismap(xc): log["original_conditioning"] = self.to_rgb(xc) if not (self.c_concat_log_start is None and self.c_concat_log_end is None): log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end]) if plot_diffusion_rows: # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample: # get denoise row with self.ema_scope("Sampling"): samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if unconditional_guidance_scale > 1.0: uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label) uc_cat = c_cat uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} with self.ema_scope("Sampling with classifier-free guidance"): samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, batch_size=N, ddim=use_ddim, ddim_steps=ddim_steps, eta=ddim_eta, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=uc_full, ) x_samples_cfg = self.decode_first_stage(samples_cfg) log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg return log class LatentInpaintDiffusion(LatentFinetuneDiffusion): """ can either run as pure inpainting model (only concat mode) or with mixed conditionings, e.g. mask as concat and text via cross-attn. To disable finetuning mode, set finetune_keys to None """ def __init__(self, concat_keys=("mask", "masked_image"), masked_image_key="masked_image", *args, **kwargs ): super().__init__(concat_keys, *args, **kwargs) self.masked_image_key = masked_image_key assert self.masked_image_key in concat_keys @torch.no_grad() def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False): # note: restricted to non-trainable encoders currently assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting' z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=bs) assert exists(self.concat_keys) c_cat = list() for ck in self.concat_keys: if len(batch[ck].shape) == 3: batch[ck] = batch[ck][..., None] cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() if bs is not None: cc = cc[:bs] cc = cc.to(self.device) bchw = z.shape if ck != self.masked_image_key: cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) else: cc = self.get_first_stage_encoding(self.encode_first_stage(cc)) c_cat.append(cc) c_cat = torch.cat(c_cat, dim=1) all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} if return_first_stage_outputs: return z, all_conds, x, xrec, xc return z, all_conds @torch.no_grad() def log_images(self, *args, **kwargs): log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs) log["masked_image"] = rearrange(args[0]["masked_image"], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float() return log
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/diffusion/ddpm_audio.py
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/diffusion/__init__.py
""" wild mixture of https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py https://github.com/CompVis/taming-transformers -- merci """ import os import torch import torch.nn as nn import numpy as np import pytorch_lightning as pl from torch.optim.lr_scheduler import LambdaLR from einops import rearrange, repeat from contextlib import contextmanager from functools import partial from tqdm import tqdm from torchvision.utils import make_grid from pytorch_lightning.utilities.distributed import rank_zero_only from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config from ldm.modules.ema import LitEma from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.ddpm import DDPM, disabled_train __conditioning_keys__ = {'concat': 'c_concat', 'crossattn': 'c_crossattn', 'adm': 'y'} # add mel_dim and mel_length params to ensure correct shape class LatentDiffusion_audioinpaint(DDPM): """main class""" def __init__(self, first_stage_config, cond_stage_config, num_timesteps_cond=None, mel_dim=80, mel_length=848, cond_stage_key="image", cond_stage_trainable=False, concat_mode=True, cond_stage_forward=None, conditioning_key=None, scale_factor=1.0, scale_by_std=False, test_repeat=1, test_numsteps = None, *args, **kwargs): self.num_timesteps_cond = default(num_timesteps_cond, 1) self.scale_by_std = scale_by_std assert self.num_timesteps_cond <= kwargs['timesteps'] # for backwards compatibility after implementation of DiffusionWrapper if conditioning_key is None: conditioning_key = 'concat' if concat_mode else 'crossattn' if cond_stage_config == '__is_unconditional__': conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) super().__init__(conditioning_key=conditioning_key, *args, **kwargs) self.test_repeat = test_repeat if test_numsteps == None: self.test_numsteps = self.num_timesteps self.concat_mode = concat_mode self.mel_dim = mel_dim self.mel_length = mel_length self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 except: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor else: self.register_buffer('scale_factor', torch.tensor(scale_factor)) self.instantiate_first_stage(first_stage_config) self.instantiate_cond_stage(cond_stage_config) self.cond_stage_forward = cond_stage_forward self.clip_denoised = False self.bbox_tokenizer = None self.restarted_from_ckpt = False if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys) self.restarted_from_ckpt = True def make_cond_schedule(self, ): self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() self.cond_ids[:self.num_timesteps_cond] = ids @rank_zero_only @torch.no_grad() def on_train_batch_start(self, batch, batch_idx, dataloader_idx): # only for very first batch if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' # set rescale weight to 1./std of encodings print("### USING STD-RESCALING ###") x = super().get_input(batch, self.first_stage_key) x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() del self.scale_factor self.register_buffer('scale_factor', 1. / z.flatten().std()) print(f"setting self.scale_factor to {self.scale_factor}") print("### USING STD-RESCALING ###") def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) self.shorten_cond_schedule = self.num_timesteps_cond > 1 if self.shorten_cond_schedule: self.make_cond_schedule() def instantiate_first_stage(self, config): model = instantiate_from_config(config) self.first_stage_model = model.eval() self.first_stage_model.train = disabled_train for param in self.first_stage_model.parameters(): param.requires_grad = False def instantiate_cond_stage(self, config): if not self.cond_stage_trainable: if config == "__is_first_stage__":# for no_text inpainting task print("Using first stage also as cond stage.") self.cond_stage_model = self.first_stage_model elif config == "__is_unconditional__":# for unconditional image generation such as human face、ImageNet print(f"Training {self.__class__.__name__} as an unconditional model.") self.cond_stage_model = None # self.be_unconditional = True else: model = instantiate_from_config(config) self.cond_stage_model = model.eval() self.cond_stage_model.train = disabled_train for param in self.cond_stage_model.parameters(): param.requires_grad = False else: assert config != '__is_first_stage__' assert config != '__is_unconditional__' model = instantiate_from_config(config) self.cond_stage_model = model def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): denoise_row = [] for zd in tqdm(samples, desc=desc): denoise_row.append(self.decode_first_stage(zd.to(self.device), force_not_quantize=force_no_decoder_quantization)) n_imgs_per_row = len(denoise_row) denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) return denoise_grid def get_first_stage_encoding(self, encoder_posterior):# encode_emb from autoencoder if isinstance(encoder_posterior, DiagonalGaussianDistribution): z = encoder_posterior.sample() elif isinstance(encoder_posterior, torch.Tensor): z = encoder_posterior else: raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") return self.scale_factor * z def get_learned_conditioning(self, c): if self.cond_stage_forward is None: if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): c = self.cond_stage_model.encode(c) if isinstance(c, DiagonalGaussianDistribution): c = c.mode() else: c = self.cond_stage_model(c) else: assert hasattr(self.cond_stage_model, self.cond_stage_forward) c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) return c def meshgrid(self, h, w): y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) arr = torch.cat([y, x], dim=-1) return arr def delta_border(self, h, w): """ :param h: height :param w: width :return: normalized distance to image border, wtith min distance = 0 at border and max dist = 0.5 at image center """ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) arr = self.meshgrid(h, w) / lower_right_corner dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] return edge_dist def get_weighting(self, h, w, Ly, Lx, device): weighting = self.delta_border(h, w) weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], self.split_input_params["clip_max_weight"], ) weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) if self.split_input_params["tie_braker"]: L_weighting = self.delta_border(Ly, Lx) L_weighting = torch.clip(L_weighting, self.split_input_params["clip_min_tie_weight"], self.split_input_params["clip_max_tie_weight"]) L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) weighting = weighting * L_weighting return weighting def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code """ :param x: img of size (bs, c, h, w) :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) """ bs, nc, h, w = x.shape # number of crops in image Ly = (h - kernel_size[0]) // stride[0] + 1 Lx = (w - kernel_size[1]) // stride[1] + 1 if uf == 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) elif uf > 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), dilation=1, padding=0, stride=(stride[0] * uf, stride[1] * uf)) fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) elif df > 1 and uf == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), dilation=1, padding=0, stride=(stride[0] // df, stride[1] // df)) fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) else: raise NotImplementedError return fold, unfold, normalization, weighting @torch.no_grad() def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, cond_key=None, return_original_cond=False, bs=None): x = super().get_input(batch, k) if bs is not None: x = x[:bs] x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() if self.model.conditioning_key is not None:# 'crossattn' for txt2image, 'hybird' for txt_inpaint if cond_key is None: cond_key = self.cond_stage_key # 'caption' for txt_inpaint if self.model.conditioning_key == 'hybrid': xc = {} assert cond_key == 'caption' # only txt_inpaint is implemented now assert 'masked_image' in batch.keys() assert 'mask' in batch.keys() masked_image = super().get_input(batch,'masked_image') mask = super().get_input(batch,'mask') if bs is not None: masked_image,mask = masked_image[:bs],mask[:bs] masked_image,mask = masked_image.to(self.device),mask.to(self.device) masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach() resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:]) xc['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1) xc[cond_key] = batch[cond_key] else: if cond_key != self.first_stage_key: if cond_key in ['caption', 'coordinates_bbox']: xc = batch[cond_key] elif cond_key == 'class_label': xc = batch else: xc = super().get_input(batch, cond_key).to(self.device) else:# cond_key == 'image' xc = x if not self.cond_stage_trainable or force_c_encode:# cond_stage_trainable is true for txt2img,force_c_encoder = True,when called in log_images if isinstance(xc, list): # import pudb; pudb.set_trace() c = self.get_learned_conditioning(xc)# 因为log_images内接下来要调用sample_log,所以需要预先得到处理好的c if isinstance(xc, dict): c = {} c['c_concat'] = xc['c_concat'] c['c_crossattn'] = self.get_learned_conditioning(xc[cond_key]) else: c = self.get_learned_conditioning(xc.to(self.device)) else: c = xc if bs is not None: if isinstance(c,dict): for k in c.keys(): c[k] = c[k][:bs] else: c = c[:bs] if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) ckey = __conditioning_keys__[self.model.conditioning_key] c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} else: c = None xc = None if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) c = {'pos_x': pos_x, 'pos_y': pos_y} out = [z, c] if return_first_stage_outputs: xrec = self.decode_first_stage(z) out.extend([x, xrec]) if return_original_cond: out.append(xc) return out @torch.no_grad() def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): if predict_cids: if z.dim() == 4: z = torch.argmax(z.exp(), dim=1).long() z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) z = rearrange(z, 'b h w c -> b c h w').contiguous() z = 1. / self.scale_factor * z if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) uf = self.split_input_params["vqf"] bs, nc, h, w = z.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) z = unfold(z) # (bn, nc * prod(**ks), L) # 1. Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] else: output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) o = o * weighting # Reverse 1. reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization # norm is shape (1, 1, h, w) return decoded else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) # same as above but without decorator def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): if predict_cids: if z.dim() == 4: z = torch.argmax(z.exp(), dim=1).long() z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) z = rearrange(z, 'b h w c -> b c h w').contiguous() z = 1. / self.scale_factor * z if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) uf = self.split_input_params["vqf"] bs, nc, h, w = z.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) z = unfold(z) # (bn, nc * prod(**ks), L) # 1. Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] else: output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) o = o * weighting # Reverse 1. reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization # norm is shape (1, 1, h, w) return decoded else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) @torch.no_grad() def encode_first_stage(self, x): if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) df = self.split_input_params["vqf"] self.split_input_params['original_image_size'] = x.shape[-2:] bs, nc, h, w = x.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) z = unfold(x) # (bn, nc * prod(**ks), L) # Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) o = o * weighting # Reverse reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization return decoded else: return self.first_stage_model.encode(x) else: return self.first_stage_model.encode(x) def shared_step(self, batch, **kwargs): x, c = self.get_input(batch, self.first_stage_key)# get latent and condition loss = self(x, c) return loss def test_step(self,batch,batch_idx): # TODO make self.test_repeat work cond = {} cond[self.cond_stage_key] = batch[self.cond_stage_key] cond[self.cond_stage_key] = self.get_learned_conditioning(cond[self.cond_stage_key]) # c: string -> [B, T, Context_dim] cond['c_crossattn'] = cond.pop(self.cond_stage_key) masked_image = super().get_input(batch,'masked_image') mask = super().get_input(batch,'mask') masked_image,mask = masked_image.to(self.device),mask.to(self.device) masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach() resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:]) cond['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1) batch_size = len(batch[self.cond_stage_key]) # shape = [batch_size,self.channels,self.mel_dim,self.mel_length] enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps) xrec = self.decode_first_stage(enc_emb) reconstructions = (xrec + 1)/2 # to mel scale test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path) savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class') if not os.path.exists(savedir): os.makedirs(savedir) file_names = batch['f_name'] nfiles = len(file_names) reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim for k in range(reconstructions.shape[0]): b,repeat = k % nfiles, k // nfiles vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:] save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition np.save(save_img_path,reconstructions[b]) return None def forward(self, x, c, *args, **kwargs): t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() if self.model.conditioning_key is not None: assert c is not None if self.cond_stage_trainable: if isinstance(c,dict): c[self.cond_stage_key] = self.get_learned_conditioning(c[self.cond_stage_key]) c['c_crossattn'] = c.pop(self.cond_stage_key) else: c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim] if self.shorten_cond_schedule: # TODO: drop this option tc = self.cond_ids[t].to(self.device) c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset def rescale_bbox(bbox): x0 = torch.clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) y0 = torch.clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) w = min(bbox[2] / crop_coordinates[2], 1 - x0) h = min(bbox[3] / crop_coordinates[3], 1 - y0) return x0, y0, w, h return [rescale_bbox(b) for b in bboxes] def apply_model(self, x_noisy, t, cond, return_ids=False): # make values to list to enable concat operation in if isinstance(cond, dict): # hybrid case, cond is exptected to be a dict. (txt2inpaint) cond_tmp = {}# use cond_tmp to avoid inplace edit for k,v in cond.items(): if not isinstance(v, list): cond_tmp[k] = [cond[k]] else: cond_tmp[k] = cond[k] cond = cond_tmp else: if not isinstance(cond, list): cond = [cond] key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' cond = {key: cond} if hasattr(self, "split_input_params"): assert len(cond) == 1 # todo can only deal with one conditioning atm assert not return_ids ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) h, w = x_noisy.shape[-2:] fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) z = unfold(x_noisy) # (bn, nc * prod(**ks), L) # Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] if self.cond_stage_key in ["image", "LR_image", "segmentation", 'bbox_img'] and self.model.conditioning_key: # todo check for completeness c_key = next(iter(cond.keys())) # get key c = next(iter(cond.values())) # get value assert (len(c) == 1) # todo extend to list with more than one elem c = c[0] # get element c = unfold(c) c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] elif self.cond_stage_key == 'coordinates_bbox': assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' # assuming padding of unfold is always 0 and its dilation is always 1 n_patches_per_row = int((w - ks[0]) / stride[0] + 1) full_img_h, full_img_w = self.split_input_params['original_image_size'] # as we are operating on latents, we need the factor from the original image size to the # spatial latent size to properly rescale the crops for regenerating the bbox annotations num_downs = self.first_stage_model.encoder.num_resolutions - 1 rescale_latent = 2 ** (num_downs) # get top left postions of patches as conforming for the bbbox tokenizer, therefore we # need to rescale the tl patch coordinates to be in between (0,1) tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) for patch_nr in range(z.shape[-1])] # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) patch_limits = [(x_tl, y_tl, rescale_latent * ks[0] / full_img_w, rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] # tokenize crop coordinates for the bounding boxes of the respective patches patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) for bbox in patch_limits] # list of length l with tensors of shape (1, 2) print(patch_limits_tknzd[0].shape) # cut tknzd crop position from conditioning assert isinstance(cond, dict), 'cond must be dict to be fed into model' cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) print(cut_cond.shape) adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') print(adapted_cond.shape) adapted_cond = self.get_learned_conditioning(adapted_cond) print(adapted_cond.shape) adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) print(adapted_cond.shape) cond_list = [{'c_crossattn': [e]} for e in adapted_cond] else: cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient # apply model by loop over crops output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] assert not isinstance(output_list[0], tuple) # todo cant deal with multiple model outputs check this never happens o = torch.stack(output_list, axis=-1) o = o * weighting # Reverse reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together x_recon = fold(o) / normalization else: # x_noisy is tensor with shape [b,c,mel_len,T] # if condition is caption ,cond['c_crossattn'] is a list, each item shape is [1, 77, 1280] x_recon = self.model(x_noisy, t, **cond)# tensor with shape [b,c,mel_len,T] if isinstance(x_recon, tuple) and not return_ids: return x_recon[0] else: return x_recon def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_flat(kl_prior) / np.log(2.0) def p_losses(self, x_start, cond, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) model_output = self.apply_model(x_noisy, t, cond) loss_dict = {} prefix = 'train' if self.training else 'val' if self.parameterization == "x0": target = x_start elif self.parameterization == "eps": target = noise else: raise NotImplementedError() loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) logvar_t = self.logvar[t].to(self.device) loss = loss_simple / torch.exp(logvar_t) + logvar_t # loss = loss_simple / torch.exp(self.logvar) + self.logvar if self.learn_logvar: loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) loss_dict.update({'logvar': self.logvar.data.mean()}) loss = self.l_simple_weight * loss.mean() loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) loss += (self.original_elbo_weight * loss_vlb) loss_dict.update({f'{prefix}/loss': loss}) return loss, loss_dict def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, return_x0=False, score_corrector=None, corrector_kwargs=None): t_in = t model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) if score_corrector is not None: assert self.parameterization == "eps" model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) if return_codebook_ids: model_out, logits = model_out if self.parameterization == "eps": x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) elif self.parameterization == "x0": x_recon = model_out else: raise NotImplementedError() if clip_denoised: x_recon.clamp_(-1., 1.) if quantize_denoised: x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) if return_codebook_ids: return model_mean, posterior_variance, posterior_log_variance, logits elif return_x0: return model_mean, posterior_variance, posterior_log_variance, x_recon else: return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_codebook_ids=False, quantize_denoised=False, return_x0=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): b, *_, device = *x.shape, x.device outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_codebook_ids=return_codebook_ids, quantize_denoised=quantize_denoised, return_x0=return_x0, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if return_codebook_ids: raise DeprecationWarning("Support dropped.") model_mean, _, model_log_variance, logits = outputs elif return_x0: model_mean, _, model_log_variance, x0 = outputs else: model_mean, _, model_log_variance = outputs noise = noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) if return_codebook_ids: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) if return_x0: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 else: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t timesteps = self.num_timesteps if batch_size is not None: b = batch_size if batch_size is not None else shape[0] shape = [batch_size] + list(shape) else: b = batch_size = shape[0] if x_T is None: img = torch.randn(shape, device=self.device) else: img = x_T intermediates = [] if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', total=timesteps) if verbose else reversed( range(0, timesteps)) if type(temperature) == float: temperature = [temperature] * timesteps for i in iterator: ts = torch.full((b,), i, device=self.device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img, x0_partial = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised, return_x0=True, temperature=temperature[i], noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if mask is not None: assert x0 is not None img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) if callback: callback(i) if img_callback: img_callback(img, i) return img, intermediates @torch.no_grad() def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t device = self.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T intermediates = [img] if timesteps is None: timesteps = self.num_timesteps if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( range(0, timesteps)) if mask is not None: assert x0 is not None assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match for i in iterator: ts = torch.full((b,), i, device=device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised) if mask is not None: img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) if callback: callback(i) if img_callback: img_callback(img, i) if return_intermediates: return img, intermediates return img @torch.no_grad() def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, verbose=True, timesteps=None, quantize_denoised=False, mask=None, x0=None, shape=None,**kwargs): if shape is None: shape = (batch_size, self.channels, self.mel_dim, self.mel_length) if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, shape, return_intermediates=return_intermediates, x_T=x_T, verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, mask=mask, x0=x0) @torch.no_grad() def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): if ddim: ddim_sampler = DDIMSampler(self) shape = (self.channels, self.mel_dim, self.mel_length) samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, shape,cond,verbose=False,**kwargs) else: samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True,**kwargs) return samples, intermediates @torch.no_grad() def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, **kwargs): use_ddim = ddim_steps is not None log = dict() z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=N) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) log["inputs"] = x # 原始输入图像 log["reconstruction"] = xrec # 重建得到的图像 if self.model.conditioning_key is not None: if hasattr(self.cond_stage_model, "decode"):# when cond_stage is first_stage. (bert embedder doesnot have decode) xc = self.cond_stage_model.decode(c)# decoded masked image log["conditioning"] = xc # 重建后的图像 elif self.cond_stage_key in ["caption"]: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) log["conditioning"] = xc # 含有文本的图像 if self.model.conditioning_key == 'hybrid': log["decoded_maskedimg"] = self.first_stage_model.decode(c['c_concat'][:,:self.first_stage_model.embed_dim])# c_concat is the concat result of masked_img latent and resized mask. get latent here to decode elif self.cond_stage_key == 'class_label': xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) log['conditioning'] = xc # 文本为类标签的图像 elif isimage(xc): log["conditioning"] = xc if ismap(xc): log["original_conditioning"] = self.to_rgb(xc) if plot_diffusion_rows:# diffusion每一步的图像 # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample:# # get denoise row with self.ema_scope("Plotting"): samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, ddim_steps=ddim_steps,eta=ddim_eta) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( self.first_stage_model, IdentityFirstStage): # also display when quantizing x0 while sampling with self.ema_scope("Plotting Quantized Denoised"): samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, ddim_steps=ddim_steps,eta=ddim_eta, quantize_denoised=True) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, # quantize_denoised=True) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_x0_quantized"] = x_samples if inpaint: # make a simple center square b, h, w = z.shape[0], z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. mask = mask[:, None, ...]# N,1,H,W with self.ema_scope("Plotting Inpaint"): samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_inpainting"] = x_samples log["mask"] = mask # outpaint with self.ema_scope("Plotting Outpaint"): samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_outpainting"] = x_samples if plot_progressive_rows: with self.ema_scope("Plotting Progressives"): img, progressives = self.progressive_denoising(c, shape=(self.channels, self.mel_dim, self.mel_length), batch_size=N) prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") log["progressive_row"] = prog_row if return_keys: if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: return log else: return {key: log[key] for key in return_keys} return log def configure_optimizers(self): lr = self.learning_rate params = list(self.model.parameters()) if self.cond_stage_trainable: print(f"{self.__class__.__name__}: Also optimizing conditioner params!") params = params + list(self.cond_stage_model.parameters()) if self.learn_logvar: print('Diffusion model optimizing logvar') params.append(self.logvar) opt = torch.optim.AdamW(params, lr=lr) if self.use_scheduler: assert 'target' in self.scheduler_config scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }] return [opt], scheduler return opt @torch.no_grad() def to_rgb(self, x): x = x.float() if not hasattr(self, "colorize"): self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) x = nn.functional.conv2d(x, weight=self.colorize) x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. return x
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/diffusion/ddpm_audio_inpaint.py
"""SAMPLING ONLY.""" import torch import numpy as np from tqdm import tqdm from functools import partial from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like class PLMSSampler(object): def __init__(self, model, schedule="linear", **kwargs): super().__init__() self.model = model self.ddpm_num_timesteps = model.num_timesteps self.schedule = schedule def register_buffer(self, name, attr): if type(attr) == torch.Tensor: if attr.device != torch.device("cuda"): attr = attr.to(torch.device("cuda")) setattr(self, name, attr) def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): if ddim_eta != 0: raise ValueError('ddim_eta must be 0 for PLMS') self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) alphas_cumprod = self.model.alphas_cumprod assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) self.register_buffer('betas', to_torch(self.model.betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) # ddim sampling parameters ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta,verbose=verbose) self.register_buffer('ddim_sigmas', ddim_sigmas) self.register_buffer('ddim_alphas', ddim_alphas) self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs ): if conditioning is not None: if isinstance(conditioning, dict): cbs = conditioning[list(conditioning.keys())[0]].shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) # sampling C, H, W = shape size = (batch_size, C, H, W) print(f'Data shape for PLMS sampling is {size}') samples, intermediates = self.plms_sampling(conditioning, size, callback=callback, img_callback=img_callback, quantize_denoised=quantize_x0, mask=mask, x0=x0, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_T=x_T, log_every_t=log_every_t, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, ) return samples, intermediates @torch.no_grad() def plms_sampling(self, cond, shape, x_T=None, ddim_use_original_steps=False, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, log_every_t=100, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None,): device = self.model.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'x_inter': [img], 'pred_x0': [img]} time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] print(f"Running PLMS Sampling with {total_steps} timesteps") iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps) old_eps = [] for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((b,), step, device=device, dtype=torch.long) ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long) if mask is not None: assert x0 is not None img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? img = img_orig * mask + (1. - mask) * img outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, quantize_denoised=quantize_denoised, temperature=temperature, noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, old_eps=old_eps, t_next=ts_next) img, pred_x0, e_t = outs old_eps.append(e_t) if len(old_eps) >= 4: old_eps.pop(0) if callback: callback(i) if img_callback: img_callback(pred_x0, i) if index % log_every_t == 0 or index == total_steps - 1: intermediates['x_inter'].append(img) intermediates['pred_x0'].append(pred_x0) return img, intermediates @torch.no_grad() def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None): b, *_, device = *x.shape, x.device def get_model_output(x, t): if unconditional_conditioning is None or unconditional_guidance_scale == 1.: e_t = self.model.apply_model(x, t, c) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) c_in = torch.cat([unconditional_conditioning, c]) e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) if score_corrector is not None: assert self.model.parameterization == "eps" e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) return e_t alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas def get_x_prev_and_pred_x0(e_t, index): # select parameters corresponding to the currently considered timestep a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() if quantize_denoised: pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) # direction pointing to x_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 e_t = get_model_output(x, t) if len(old_eps) == 0: # Pseudo Improved Euler (2nd order) x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) e_t_next = get_model_output(x_prev, t_next) e_t_prime = (e_t + e_t_next) / 2 elif len(old_eps) == 1: # 2nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (3 * e_t - old_eps[-1]) / 2 elif len(old_eps) == 2: # 3nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 elif len(old_eps) >= 3: # 4nd order Pseudo Linear Multistep (Adams-Bashforth) e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) return x_prev, pred_x0, e_t
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/diffusion/plms.py
""" wild mixture of https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py https://github.com/CompVis/taming-transformers -- merci """ import torch import torch.nn as nn import numpy as np import pytorch_lightning as pl from torch.optim.lr_scheduler import LambdaLR from einops import rearrange, repeat from contextlib import contextmanager from functools import partial from tqdm import tqdm from torchvision.utils import make_grid from pytorch_lightning.utilities.distributed import rank_zero_only from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config from ldm.modules.ema import LitEma from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like from ldm.models.diffusion.ddim import DDIMSampler __conditioning_keys__ = {'concat': 'c_concat', 'crossattn': 'c_crossattn', 'adm': 'y'} def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def uniform_on_device(r1, r2, shape, device): return (r1 - r2) * torch.rand(*shape, device=device) + r2 class DDPM(pl.LightningModule): # classic DDPM with Gaussian diffusion, in image space def __init__(self, unet_config, timesteps=1000, beta_schedule="linear", loss_type="l2", ckpt_path=None, ignore_keys=[], load_only_unet=False, monitor="val/loss", use_ema=True, first_stage_key="image", image_size=256, channels=3, log_every_t=100, clip_denoised=True, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, given_betas=None, original_elbo_weight=0., v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta l_simple_weight=1., conditioning_key=None, parameterization="eps", # all config files uses "eps" scheduler_config=None, use_positional_encodings=False, learn_logvar=False, logvar_init=0., ): super().__init__() assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' self.parameterization = parameterization print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") self.cond_stage_model = None self.clip_denoised = clip_denoised self.log_every_t = log_every_t self.first_stage_key = first_stage_key self.image_size = image_size # try conv? self.channels = channels self.use_positional_encodings = use_positional_encodings self.model = DiffusionWrapper(unet_config, conditioning_key) count_params(self.model, verbose=True) self.use_ema = use_ema if self.use_ema: self.model_ema = LitEma(self.model) print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") self.use_scheduler = scheduler_config is not None if self.use_scheduler: self.scheduler_config = scheduler_config self.v_posterior = v_posterior self.original_elbo_weight = original_elbo_weight self.l_simple_weight = l_simple_weight if monitor is not None: self.monitor = monitor if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) self.loss_type = loss_type self.learn_logvar = learn_logvar self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) if self.learn_logvar: self.logvar = nn.Parameter(self.logvar, requires_grad=True) def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): if exists(given_betas): betas = given_betas else: betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.linear_start = linear_start self.linear_end = linear_end assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' to_torch = partial(torch.tensor, dtype=torch.float32) self.register_buffer('betas', to_torch(betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( 1. - alphas_cumprod) + self.v_posterior * betas # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) self.register_buffer('posterior_variance', to_torch(posterior_variance)) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) self.register_buffer('posterior_mean_coef1', to_torch( betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) self.register_buffer('posterior_mean_coef2', to_torch( (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) if self.parameterization == "eps": lvlb_weights = self.betas ** 2 / ( 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) elif self.parameterization == "x0": lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) else: raise NotImplementedError("mu not supported") # TODO how to choose this term lvlb_weights[0] = lvlb_weights[1] self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) assert not torch.isnan(self.lvlb_weights).all() @contextmanager def ema_scope(self, context=None): if self.use_ema: self.model_ema.store(self.model.parameters()) self.model_ema.copy_to(self.model) if context is not None: print(f"{context}: Switched to EMA weights") try: yield None finally: if self.use_ema: self.model_ema.restore(self.model.parameters()) if context is not None: print(f"{context}: Restored training weights") def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if len(missing) > 0: print(f"Missing Keys: {missing}") if len(unexpected) > 0: print(f"Unexpected Keys: {unexpected}") def q_mean_variance(self, x_start, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def predict_start_from_noise(self, x_t, t, noise): return ( extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, x, t, clip_denoised: bool): model_out = self.model(x, t) if self.parameterization == "eps": x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) elif self.parameterization == "x0": x_recon = model_out if clip_denoised: x_recon.clamp_(-1., 1.) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) noise = noise_like(x.shape, device, repeat_noise) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def p_sample_loop(self, shape, return_intermediates=False): device = self.betas.device b = shape[0] img = torch.randn(shape, device=device) intermediates = [img] for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), clip_denoised=self.clip_denoised) if i % self.log_every_t == 0 or i == self.num_timesteps - 1: intermediates.append(img) if return_intermediates: return img, intermediates return img @torch.no_grad() def sample(self, batch_size=16, return_intermediates=False): image_size = self.image_size channels = self.channels return self.p_sample_loop((batch_size, channels, image_size, image_size), return_intermediates=return_intermediates) def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) def get_loss(self, pred, target, mean=True): if self.loss_type == 'l1': loss = (target - pred).abs() if mean: loss = loss.mean() elif self.loss_type == 'l2': if mean: loss = torch.nn.functional.mse_loss(target, pred) else: loss = torch.nn.functional.mse_loss(target, pred, reduction='none') else: raise NotImplementedError("unknown loss type '{loss_type}'") return loss def p_losses(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) model_out = self.model(x_noisy, t) loss_dict = {} if self.parameterization == "eps": target = noise elif self.parameterization == "x0": target = x_start else: raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) log_prefix = 'train' if self.training else 'val' loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) loss_simple = loss.mean() * self.l_simple_weight loss_vlb = (self.lvlb_weights[t] * loss).mean() loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) loss = loss_simple + self.original_elbo_weight * loss_vlb loss_dict.update({f'{log_prefix}/loss': loss}) return loss, loss_dict def forward(self, x, *args, **kwargs): # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() return self.p_losses(x, t, *args, **kwargs) def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = rearrange(x, 'b h w c -> b c h w') x = x.to(memory_format=torch.contiguous_format).float() return x def shared_step(self, batch): x = self.get_input(batch, self.first_stage_key) loss, loss_dict = self(x) return loss, loss_dict def training_step(self, batch, batch_idx): loss, loss_dict = self.shared_step(batch) self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False) if self.use_scheduler: lr = self.optimizers().param_groups[0]['lr'] self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) return loss @torch.no_grad() def validation_step(self, batch, batch_idx): _, loss_dict_no_ema = self.shared_step(batch) with self.ema_scope(): _, loss_dict_ema = self.shared_step(batch) loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) def on_train_batch_end(self, *args, **kwargs): if self.use_ema: self.model_ema(self.model) def _get_rows_from_list(self, samples): n_imgs_per_row = len(samples) denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) return denoise_grid @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): log = dict() x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) x = x.to(self.device)[:N] log["inputs"] = x # get diffusion row diffusion_row = list() x_start = x[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(x_start) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) diffusion_row.append(x_noisy) log["diffusion_row"] = self._get_rows_from_list(diffusion_row) if sample: # get denoise row with self.ema_scope("Plotting"): samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) log["samples"] = samples log["denoise_row"] = self._get_rows_from_list(denoise_row) if return_keys: if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: return log else: return {key: log[key] for key in return_keys} return log def configure_optimizers(self): lr = self.learning_rate params = list(self.model.parameters()) if self.learn_logvar: params = params + [self.logvar] opt = torch.optim.AdamW(params, lr=lr) return opt class LatentDiffusion(DDPM): """main class""" def __init__(self, first_stage_config, cond_stage_config, num_timesteps_cond=None, cond_stage_key="image",# 'caption' for txt2image, 'masked_image' for inpainting cond_stage_trainable=False, concat_mode=True,# true for inpainting cond_stage_forward=None, conditioning_key=None, # 'crossattn' for txt2image, None for inpainting scale_factor=1.0, scale_by_std=False, *args, **kwargs): self.num_timesteps_cond = default(num_timesteps_cond, 1) self.scale_by_std = scale_by_std assert self.num_timesteps_cond <= kwargs['timesteps'] # for backwards compatibility after implementation of DiffusionWrapper if conditioning_key is None: conditioning_key = 'concat' if concat_mode else 'crossattn' if cond_stage_config == '__is_unconditional__': conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) super().__init__(conditioning_key=conditioning_key, *args, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 except: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor else: self.register_buffer('scale_factor', torch.tensor(scale_factor)) self.instantiate_first_stage(first_stage_config) self.instantiate_cond_stage(cond_stage_config) self.cond_stage_forward = cond_stage_forward self.clip_denoised = False self.bbox_tokenizer = None self.restarted_from_ckpt = False if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys) self.restarted_from_ckpt = True def make_cond_schedule(self, ): self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() self.cond_ids[:self.num_timesteps_cond] = ids @rank_zero_only @torch.no_grad() def on_train_batch_start(self, batch, batch_idx, dataloader_idx): # only for very first batch if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' # set rescale weight to 1./std of encodings print("### USING STD-RESCALING ###") x = super().get_input(batch, self.first_stage_key) x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() del self.scale_factor self.register_buffer('scale_factor', 1. / z.flatten().std()) print(f"setting self.scale_factor to {self.scale_factor}") print("### USING STD-RESCALING ###") def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) self.shorten_cond_schedule = self.num_timesteps_cond > 1 if self.shorten_cond_schedule: self.make_cond_schedule() def instantiate_first_stage(self, config): model = instantiate_from_config(config) self.first_stage_model = model.eval() self.first_stage_model.train = disabled_train for param in self.first_stage_model.parameters(): param.requires_grad = False def instantiate_cond_stage(self, config): if not self.cond_stage_trainable: if config == "__is_first_stage__":# inpaint print("Using first stage also as cond stage.") self.cond_stage_model = self.first_stage_model elif config == "__is_unconditional__": print(f"Training {self.__class__.__name__} as an unconditional model.") self.cond_stage_model = None # self.be_unconditional = True else: model = instantiate_from_config(config) self.cond_stage_model = model.eval() self.cond_stage_model.train = disabled_train for param in self.cond_stage_model.parameters(): param.requires_grad = False else: assert config != '__is_first_stage__' assert config != '__is_unconditional__' model = instantiate_from_config(config) self.cond_stage_model = model def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): denoise_row = [] for zd in tqdm(samples, desc=desc): denoise_row.append(self.decode_first_stage(zd.to(self.device), force_not_quantize=force_no_decoder_quantization)) n_imgs_per_row = len(denoise_row) denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) return denoise_grid def get_first_stage_encoding(self, encoder_posterior): if isinstance(encoder_posterior, DiagonalGaussianDistribution): z = encoder_posterior.sample() elif isinstance(encoder_posterior, torch.Tensor): z = encoder_posterior else: raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") return self.scale_factor * z def get_learned_conditioning(self, c): if self.cond_stage_forward is None: if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): c = self.cond_stage_model.encode(c) if isinstance(c, DiagonalGaussianDistribution): c = c.mode() else: c = self.cond_stage_model(c) else: assert hasattr(self.cond_stage_model, self.cond_stage_forward) c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) return c def meshgrid(self, h, w): y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) arr = torch.cat([y, x], dim=-1) return arr def delta_border(self, h, w): """ :param h: height :param w: width :return: normalized distance to image border, wtith min distance = 0 at border and max dist = 0.5 at image center """ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) arr = self.meshgrid(h, w) / lower_right_corner dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] return edge_dist def get_weighting(self, h, w, Ly, Lx, device): weighting = self.delta_border(h, w) weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], self.split_input_params["clip_max_weight"], ) weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) if self.split_input_params["tie_braker"]: L_weighting = self.delta_border(Ly, Lx) L_weighting = torch.clip(L_weighting, self.split_input_params["clip_min_tie_weight"], self.split_input_params["clip_max_tie_weight"]) L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) weighting = weighting * L_weighting return weighting def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code """ :param x: img of size (bs, c, h, w) :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) """ bs, nc, h, w = x.shape # number of crops in image Ly = (h - kernel_size[0]) // stride[0] + 1 Lx = (w - kernel_size[1]) // stride[1] + 1 if uf == 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) elif uf > 1 and df == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), dilation=1, padding=0, stride=(stride[0] * uf, stride[1] * uf)) fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) elif df > 1 and uf == 1: fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) unfold = torch.nn.Unfold(**fold_params) fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), dilation=1, padding=0, stride=(stride[0] // df, stride[1] // df)) fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) else: raise NotImplementedError return fold, unfold, normalization, weighting @torch.no_grad() def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, cond_key=None, return_original_cond=False, bs=None): x = super().get_input(batch, k) if bs is not None: x = x[:bs] x = x.to(self.device) encoder_posterior = self.encode_first_stage(x) z = self.get_first_stage_encoding(encoder_posterior).detach() if self.model.conditioning_key is not None: if cond_key is None: cond_key = self.cond_stage_key if cond_key != self.first_stage_key:# cond_key is not image. for inapint it's masked_img if cond_key in ['caption', 'coordinates_bbox']: xc = batch[cond_key] elif cond_key == 'class_label': xc = batch else: xc = super().get_input(batch, cond_key).to(self.device) else: xc = x if not self.cond_stage_trainable or force_c_encode: if isinstance(xc, dict) or isinstance(xc, list): # import pudb; pudb.set_trace() c = self.get_learned_conditioning(xc) else: c = self.get_learned_conditioning(xc.to(self.device)) else: c = xc if bs is not None: c = c[:bs] if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) ckey = __conditioning_keys__[self.model.conditioning_key] c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} else: c = None xc = None if self.use_positional_encodings: pos_x, pos_y = self.compute_latent_shifts(batch) c = {'pos_x': pos_x, 'pos_y': pos_y} out = [z, c] if return_first_stage_outputs: xrec = self.decode_first_stage(z) out.extend([x, xrec]) if return_original_cond: out.append(xc) return out @torch.no_grad() def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): if predict_cids: if z.dim() == 4: z = torch.argmax(z.exp(), dim=1).long() z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) z = rearrange(z, 'b h w c -> b c h w').contiguous() z = 1. / self.scale_factor * z if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) uf = self.split_input_params["vqf"] bs, nc, h, w = z.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) z = unfold(z) # (bn, nc * prod(**ks), L) # 1. Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] else: output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) o = o * weighting # Reverse 1. reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization # norm is shape (1, 1, h, w) return decoded else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) # same as above but without decorator def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): if predict_cids: if z.dim() == 4: z = torch.argmax(z.exp(), dim=1).long() z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) z = rearrange(z, 'b h w c -> b c h w').contiguous() z = 1. / self.scale_factor * z if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) uf = self.split_input_params["vqf"] bs, nc, h, w = z.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) z = unfold(z) # (bn, nc * prod(**ks), L) # 1. Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] else: output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) o = o * weighting # Reverse 1. reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization # norm is shape (1, 1, h, w) return decoded else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) else: if isinstance(self.first_stage_model, VQModelInterface): return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) else: return self.first_stage_model.decode(z) @torch.no_grad() def encode_first_stage(self, x): if hasattr(self, "split_input_params"): if self.split_input_params["patch_distributed_vq"]: ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) df = self.split_input_params["vqf"] self.split_input_params['original_image_size'] = x.shape[-2:] bs, nc, h, w = x.shape if ks[0] > h or ks[1] > w: ks = (min(ks[0], h), min(ks[1], w)) print("reducing Kernel") if stride[0] > h or stride[1] > w: stride = (min(stride[0], h), min(stride[1], w)) print("reducing stride") fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) z = unfold(x) # (bn, nc * prod(**ks), L) # Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) for i in range(z.shape[-1])] o = torch.stack(output_list, axis=-1) o = o * weighting # Reverse reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together decoded = fold(o) decoded = decoded / normalization return decoded else: return self.first_stage_model.encode(x) else: return self.first_stage_model.encode(x) def shared_step(self, batch, **kwargs): x, c = self.get_input(batch, self.first_stage_key) loss = self(x, c) return loss def forward(self, x, c, *args, **kwargs): t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() if self.model.conditioning_key is not None: assert c is not None if self.cond_stage_trainable:# true when use text c = self.get_learned_conditioning(c) # c: string list -> [B, T, Context_dim] if self.shorten_cond_schedule: # TODO: drop this option tc = self.cond_ids[t].to(self.device) c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset def rescale_bbox(bbox): x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) w = min(bbox[2] / crop_coordinates[2], 1 - x0) h = min(bbox[3] / crop_coordinates[3], 1 - y0) return x0, y0, w, h return [rescale_bbox(b) for b in bboxes] def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): # hybrid case, cond is exptected to be a dict pass else: if not isinstance(cond, list): cond = [cond] key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' cond = {key: cond} if hasattr(self, "split_input_params"): assert len(cond) == 1 # todo can only deal with one conditioning atm assert not return_ids ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) h, w = x_noisy.shape[-2:] fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) z = unfold(x_noisy) # (bn, nc * prod(**ks), L) # Reshape to img shape z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] if self.cond_stage_key in ["image", "LR_image", "segmentation", 'bbox_img'] and self.model.conditioning_key: # todo check for completeness c_key = next(iter(cond.keys())) # get key c = next(iter(cond.values())) # get value assert (len(c) == 1) # todo extend to list with more than one elem c = c[0] # get element c = unfold(c) c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] elif self.cond_stage_key == 'coordinates_bbox': assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' # assuming padding of unfold is always 0 and its dilation is always 1 n_patches_per_row = int((w - ks[0]) / stride[0] + 1) full_img_h, full_img_w = self.split_input_params['original_image_size'] # as we are operating on latents, we need the factor from the original image size to the # spatial latent size to properly rescale the crops for regenerating the bbox annotations num_downs = self.first_stage_model.encoder.num_resolutions - 1 rescale_latent = 2 ** (num_downs) # get top left postions of patches as conforming for the bbbox tokenizer, therefore we # need to rescale the tl patch coordinates to be in between (0,1) tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) for patch_nr in range(z.shape[-1])] # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) patch_limits = [(x_tl, y_tl, rescale_latent * ks[0] / full_img_w, rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] # tokenize crop coordinates for the bounding boxes of the respective patches patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) for bbox in patch_limits] # list of length l with tensors of shape (1, 2) print(patch_limits_tknzd[0].shape) # cut tknzd crop position from conditioning assert isinstance(cond, dict), 'cond must be dict to be fed into model' cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) print(cut_cond.shape) adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') print(adapted_cond.shape) adapted_cond = self.get_learned_conditioning(adapted_cond) print(adapted_cond.shape) adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) print(adapted_cond.shape) cond_list = [{'c_crossattn': [e]} for e in adapted_cond] else: cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient # apply model by loop over crops output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] assert not isinstance(output_list[0], tuple) # todo cant deal with multiple model outputs check this never happens o = torch.stack(output_list, axis=-1) o = o * weighting # Reverse reshape to img shape o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) # stitch crops together x_recon = fold(o) / normalization else: x_recon = self.model(x_noisy, t, **cond) if isinstance(x_recon, tuple) and not return_ids: return x_recon[0] else: return x_recon def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) return mean_flat(kl_prior) / np.log(2.0) def p_losses(self, x_start, cond, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) model_output = self.apply_model(x_noisy, t, cond) loss_dict = {} prefix = 'train' if self.training else 'val' if self.parameterization == "x0": target = x_start elif self.parameterization == "eps": target = noise else: raise NotImplementedError() loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) logvar_t = self.logvar[t].to(self.device) loss = loss_simple / torch.exp(logvar_t) + logvar_t # loss = loss_simple / torch.exp(self.logvar) + self.logvar if self.learn_logvar: loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) loss_dict.update({'logvar': self.logvar.data.mean()}) loss = self.l_simple_weight * loss.mean() loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) loss += (self.original_elbo_weight * loss_vlb) loss_dict.update({f'{prefix}/loss': loss}) return loss, loss_dict def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, return_x0=False, score_corrector=None, corrector_kwargs=None): t_in = t model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) if score_corrector is not None: assert self.parameterization == "eps" model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) if return_codebook_ids: model_out, logits = model_out if self.parameterization == "eps": x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) elif self.parameterization == "x0": x_recon = model_out else: raise NotImplementedError() if clip_denoised: x_recon.clamp_(-1., 1.) if quantize_denoised: x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) if return_codebook_ids: return model_mean, posterior_variance, posterior_log_variance, logits elif return_x0: return model_mean, posterior_variance, posterior_log_variance, x_recon else: return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_codebook_ids=False, quantize_denoised=False, return_x0=False, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): b, *_, device = *x.shape, x.device outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_codebook_ids=return_codebook_ids, quantize_denoised=quantize_denoised, return_x0=return_x0, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if return_codebook_ids: raise DeprecationWarning("Support dropped.") model_mean, _, model_log_variance, logits = outputs elif return_x0: model_mean, _, model_log_variance, x0 = outputs else: model_mean, _, model_log_variance = outputs noise = noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) if return_codebook_ids: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) if return_x0: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 else: return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t timesteps = self.num_timesteps if batch_size is not None: b = batch_size if batch_size is not None else shape[0] shape = [batch_size] + list(shape) else: b = batch_size = shape[0] if x_T is None: img = torch.randn(shape, device=self.device) else: img = x_T intermediates = [] if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', total=timesteps) if verbose else reversed( range(0, timesteps)) if type(temperature) == float: temperature = [temperature] * timesteps for i in iterator: ts = torch.full((b,), i, device=self.device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img, x0_partial = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised, return_x0=True, temperature=temperature[i], noise_dropout=noise_dropout, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) if mask is not None: assert x0 is not None img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) if callback: callback(i) if img_callback: img_callback(img, i) return img, intermediates @torch.no_grad() def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None): if not log_every_t: log_every_t = self.log_every_t device = self.betas.device b = shape[0] if x_T is None: img = torch.randn(shape, device=device) else: img = x_T intermediates = [img] if timesteps is None: timesteps = self.num_timesteps if start_T is not None: timesteps = min(timesteps, start_T) iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( range(0, timesteps)) if mask is not None: assert x0 is not None assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match for i in iterator: ts = torch.full((b,), i, device=device, dtype=torch.long) if self.shorten_cond_schedule: assert self.model.conditioning_key != 'hybrid' tc = self.cond_ids[ts].to(cond.device) cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, quantize_denoised=quantize_denoised) if mask is not None: img_orig = self.q_sample(x0, ts) img = img_orig * mask + (1. - mask) * img if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) if callback: callback(i) if img_callback: img_callback(img, i) if return_intermediates: return img, intermediates return img @torch.no_grad() def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, verbose=True, timesteps=None, quantize_denoised=False, mask=None, x0=None, shape=None,**kwargs): if shape is None: shape = (batch_size, self.channels, self.image_size, self.image_size) if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else list(map(lambda x: x[:batch_size], cond[key])) for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, shape, return_intermediates=return_intermediates, x_T=x_T, verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, mask=mask, x0=x0) @torch.no_grad() def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): if ddim: ddim_sampler = DDIMSampler(self) shape = (self.channels, self.image_size, self.image_size) samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, shape,cond,verbose=False,**kwargs) else: samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True,**kwargs) return samples, intermediates @torch.no_grad() def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True, **kwargs): use_ddim = ddim_steps is not None log = dict() z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, return_original_cond=True, bs=N) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) log["inputs"] = x log["reconstruction"] = xrec if self.model.conditioning_key is not None: if hasattr(self.cond_stage_model, "decode"): xc = self.cond_stage_model.decode(c) log["conditioning"] = xc elif self.cond_stage_key in ["caption"]: xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) log["conditioning"] = xc elif self.cond_stage_key == 'class_label': xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) log['conditioning'] = xc elif isimage(xc): log["conditioning"] = xc if ismap(xc): log["original_conditioning"] = self.to_rgb(xc) if plot_diffusion_rows: # get diffusion row diffusion_row = list() z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: t = repeat(torch.tensor([t]), '1 -> b', b=n_row) t = t.to(self.device).long() noise = torch.randn_like(z_start) z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) diffusion_row.append(self.decode_first_stage(z_noisy)) diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) log["diffusion_row"] = diffusion_grid if sample: # get denoise row with self.ema_scope("Plotting"): samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, ddim_steps=ddim_steps,eta=ddim_eta) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) x_samples = self.decode_first_stage(samples) log["samples"] = x_samples if plot_denoise_rows: denoise_grid = self._get_denoise_row_from_list(z_denoise_row) log["denoise_row"] = denoise_grid if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( self.first_stage_model, IdentityFirstStage): # also display when quantizing x0 while sampling with self.ema_scope("Plotting Quantized Denoised"): samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, ddim_steps=ddim_steps,eta=ddim_eta, quantize_denoised=True) # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, # quantize_denoised=True) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_x0_quantized"] = x_samples if inpaint: # make a simple center square b, h, w = z.shape[0], z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. mask = mask[:, None, ...] with self.ema_scope("Plotting Inpaint"): samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_inpainting"] = x_samples log["mask"] = mask # outpaint with self.ema_scope("Plotting Outpaint"): samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, ddim_steps=ddim_steps, x0=z[:N], mask=mask) x_samples = self.decode_first_stage(samples.to(self.device)) log["samples_outpainting"] = x_samples if plot_progressive_rows: with self.ema_scope("Plotting Progressives"): img, progressives = self.progressive_denoising(c, shape=(self.channels, self.image_size, self.image_size), batch_size=N) prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") log["progressive_row"] = prog_row if return_keys: if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: return log else: return {key: log[key] for key in return_keys} return log def configure_optimizers(self): lr = self.learning_rate params = list(self.model.parameters()) if self.cond_stage_trainable: print(f"{self.__class__.__name__}: Also optimizing conditioner params!") params = params + list(self.cond_stage_model.parameters()) if self.learn_logvar: print('Diffusion model optimizing logvar') params.append(self.logvar) opt = torch.optim.AdamW(params, lr=lr) if self.use_scheduler: assert 'target' in self.scheduler_config scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }] return [opt], scheduler return opt @torch.no_grad() def to_rgb(self, x): x = x.float() if not hasattr(self, "colorize"): self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) x = nn.functional.conv2d(x, weight=self.colorize) x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. return x class DiffusionWrapper(pl.LightningModule): def __init__(self, diff_model_config, conditioning_key): super().__init__() self.diffusion_model = instantiate_from_config(diff_model_config) self.conditioning_key = conditioning_key # 'crossattn' for txt2image, concat for inpainting assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): """param x: tensor with shape:[B,C,mel_len,T]""" if self.conditioning_key is None: out = self.diffusion_model(x, t) elif self.conditioning_key == 'concat': xc = torch.cat([x] + c_concat, dim=1)# channel dim,x shape (b,3,64,64) c_concat shape(b,4,64,64) out = self.diffusion_model(xc, t) elif self.conditioning_key == 'crossattn': cc = torch.cat(c_crossattn, 1)# [b,seq_len,dim] out = self.diffusion_model(x, t, context=cc) elif self.conditioning_key == 'hybrid':# not implemented in the LatentDiffusion xc = torch.cat([x] + c_concat, dim=1) cc = torch.cat(c_crossattn, 1) out = self.diffusion_model(xc, t, context=cc) elif self.conditioning_key == 'adm': cc = c_crossattn[0] out = self.diffusion_model(x, t, y=cc) else: raise NotImplementedError() return out class Layout2ImgDiffusion(LatentDiffusion): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): logs = super().log_images(batch=batch, N=N, *args, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] mapper = dset.conditional_builders[self.cond_stage_key] bbox_imgs = [] map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) for tknzd_bbox in batch[self.cond_stage_key][:N]: bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) bbox_imgs.append(bboximg) cond_img = torch.stack(bbox_imgs, dim=0) logs['bbox_image'] = cond_img return logs
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/models/diffusion/ddpm.py
from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from ldm.modules.diffusionmodules.util import checkpoint def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x+h_ class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):# 如果设置了context_dim就不是自注意力了 super().__init__() inner_dim = dim_head * heads # inner_dim == SpatialTransformer.model_channels context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None):# x:(b,h*w,c), context:(b,seq_len,context_dim) h = self.heads q = self.to_q(x)# q:(b,h*w,inner_dim) context = default(context, x) k = self.to_k(context)# (b,seq_len,inner_dim) v = self.to_v(context)# (b,seq_len,inner_dim) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))# n is seq_len for k and v sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # (b*head,h*w,seq_len) if exists(mask):# false mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v)# (b*head,h*w,inner_dim/head) out = rearrange(out, '(b h) n d -> b n (h d)', h=h)# (b,h*w,inner_dim) return self.to_out(out) class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): super().__init__() self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None): x = self.attn1(self.norm1(x)) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape # such as [2,320,10,106] x_in = x x = self.norm(x)# group norm x = self.proj_in(x)# no shape change x = rearrange(x, 'b c h w -> b (h w) c') for block in self.transformer_blocks: x = block(x, context=context)# context shape [b,seq_len=77,context_dim] x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) x = self.proj_out(x) return x + x_in
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/attention.py
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" import torch from torch import nn, einsum import torch.nn.functional as F from functools import partial from inspect import isfunction from collections import namedtuple from einops import rearrange, repeat, reduce # constants DEFAULT_DIM_HEAD = 64 Intermediates = namedtuple('Intermediates', [ 'pre_softmax_attn', 'post_softmax_attn' ]) LayerIntermediates = namedtuple('Intermediates', [ 'hiddens', 'attn_intermediates' ]) class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.emb = nn.Embedding(max_seq_len, dim) self.init_() def init_(self): nn.init.normal_(self.emb.weight, std=0.02) def forward(self, x): n = torch.arange(x.shape[1], device=x.device) return self.emb(n)[None, :, :] class FixedPositionalEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x, seq_dim=1, offset=0): t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) return emb[None, :, :] # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def always(val): def inner(*args, **kwargs): return val return inner def not_equals(val): def inner(x): return x != val return inner def equals(val): def inner(x): return x == val return inner def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(), dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # classes class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): x, *rest = self.fn(x, **kwargs) return (x * self.value, *rest) class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x, **kwargs): x, *rest = self.fn(x, **kwargs) return (x * self.g, *rest) class ScaleNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class Residual(nn.Module): def forward(self, x, residual): return x + residual class GRUGating(nn.Module): def __init__(self, dim): super().__init__() self.gru = nn.GRUCell(dim, dim) def forward(self, x, residual): gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) # attention. class Attention(nn.Module): def __init__( self, dim, dim_head=DEFAULT_DIM_HEAD, heads=8, causal=False, mask=None, talking_heads=False, sparse_topk=None, use_entmax15=False, num_mem_kv=0, dropout=0., on_attn=False ): super().__init__() if use_entmax15: raise NotImplementedError("Check out entmax activation instead of softmax activation!") self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.mask = mask inner_dim = dim_head * heads self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_k = nn.Linear(dim, inner_dim, bias=False) self.to_v = nn.Linear(dim, inner_dim, bias=False) self.dropout = nn.Dropout(dropout) # talking heads self.talking_heads = talking_heads if talking_heads: self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) # explicit topk sparse attention self.sparse_topk = sparse_topk # entmax #self.attn_fn = entmax15 if use_entmax15 else F.softmax self.attn_fn = F.softmax # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim) def forward( self, x, context=None, mask=None, context_mask=None, rel_pos=None, sinusoidal_emb=None, prev_attn=None, mem=None ): b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input if exists(mem): k_input = torch.cat((mem, k_input), dim=-2) v_input = torch.cat((mem, v_input), dim=-2) if exists(sinusoidal_emb): # in shortformer, the query would start at a position offset depending on the past cached memory offset = k_input.shape[-2] - q_input.shape[-2] q_input = q_input + sinusoidal_emb(q_input, offset=offset) k_input = k_input + sinusoidal_emb(k_input) q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) input_mask = None if any(map(exists, (mask, context_mask))): q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) k_mask = q_mask if not exists(context) else context_mask k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) q_mask = rearrange(q_mask, 'b i -> b () i ()') k_mask = rearrange(k_mask, 'b j -> b () () j') input_mask = q_mask * k_mask if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v)) k = torch.cat((mem_k, k), dim=-2) v = torch.cat((mem_v, v), dim=-2) if exists(input_mask): input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale mask_value = max_neg_value(dots) if exists(prev_attn): dots = dots + prev_attn pre_softmax_attn = dots if talking_heads: dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() if exists(rel_pos): dots = rel_pos(dots) if exists(input_mask): dots.masked_fill_(~input_mask, mask_value) del input_mask if self.causal: i, j = dots.shape[-2:] r = torch.arange(i, device=device) mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') mask = F.pad(mask, (j - i, 0), value=False) dots.masked_fill_(mask, mask_value) del mask if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: top, _ = dots.topk(self.sparse_topk, dim=-1) vk = top[..., -1].unsqueeze(-1).expand_as(dots) mask = dots < vk dots.masked_fill_(mask, mask_value) del mask attn = self.attn_fn(dots, dim=-1) post_softmax_attn = attn attn = self.dropout(attn) if talking_heads: attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') intermediates = Intermediates( pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn ) return self.to_out(out), intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads=8, causal=False, cross_attend=False, only_cross=False, use_scalenorm=False, use_rmsnorm=False, use_rezero=False, rel_pos_num_buckets=32, rel_pos_max_distance=128, position_infused_attn=False, custom_layers=None, sandwich_coef=None, par_ratio=None, residual_attn=False, cross_residual_attn=False, macaron=False, pre_norm=True, gate_residual=False, **kwargs ): super().__init__() ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) self.has_pos_emb = position_infused_attn self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None self.rotary_pos_emb = always(None) assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' self.rel_pos = None self.pre_norm = pre_norm self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm norm_class = RMSNorm if use_rmsnorm else norm_class norm_fn = partial(norm_class, dim) norm_fn = nn.Identity if use_rezero else norm_fn branch_fn = Rezero if use_rezero else None if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) for layer_type in self.layer_types: if layer_type == 'a': layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads=heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if isinstance(layer, Attention) and exists(branch_fn): layer = branch_fn(layer) if gate_residual: residual_fn = GRUGating(dim) else: residual_fn = Residual() self.layers.append(nn.ModuleList([ norm_fn(), layer, residual_fn ])) def forward( self, x, context=None, mask=None, context_mask=None, mems=None, return_hiddens=False ): hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): is_last = ind == (len(self.layers) - 1) if layer_type == 'a': hiddens.append(x) layer_mem = mems.pop(0) residual = x if self.pre_norm: x = norm(x) if layer_type == 'a': out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos, prev_attn=prev_attn, mem=layer_mem) elif layer_type == 'c': out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn) elif layer_type == 'f': out = block(x) x = residual_fn(out, residual) if layer_type in ('a', 'c'): intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if not self.pre_norm and not is_last: x = norm(x) if return_hiddens: intermediates = LayerIntermediates( hiddens=hiddens, attn_intermediates=intermediates ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal=False, **kwargs) class TransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim=None, max_mem_len=0., emb_dropout=0., num_memory_tokens=None, tie_embedding=False, use_pos_emb=True ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.num_tokens = num_tokens self.token_emb = nn.Embedding(num_tokens, emb_dim) self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if ( use_pos_emb and not attn_layers.has_pos_emb) else always(0) self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.init_() self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) # let funnel encoder know number of memory tokens, if specified if hasattr(attn_layers, 'num_memory_tokens'): attn_layers.num_memory_tokens = num_memory_tokens def init_(self): nn.init.normal_(self.token_emb.weight, std=0.02) def forward( self, x, return_embeddings=False, mask=None, return_mems=False, return_attn=False, mems=None, **kwargs ): b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens x = self.token_emb(x) x += self.pos_emb(x) x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b=b) x = torch.cat((mem, x), dim=1) # auto-handle masking after appending memory tokens if exists(mask): mask = F.pad(mask, (num_mem, 0), value=True) x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) x = self.norm(x) mem, x = x[:, :num_mem], x[:, num_mem:] out = self.to_logits(x) if not return_embeddings else x if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/x_transformer.py
import torch from torch import nn class LitEma(nn.Module): def __init__(self, model, decay=0.9999, use_num_upates=True): super().__init__() if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.m_name2s_name = {} self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates else torch.tensor(-1,dtype=torch.int)) for name, p in model.named_parameters(): if p.requires_grad: #remove as '.'-character is not allowed in buffers s_name = name.replace('.','') self.m_name2s_name.update({name:s_name}) self.register_buffer(s_name,p.clone().detach().data) self.collected_params = [] def forward(self,model): decay = self.decay if self.num_updates >= 0: self.num_updates += 1 decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: sname = self.m_name2s_name[key] shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: assert not key in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: assert not key in self.m_name2s_name def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/ema.py
import functools import torch.nn as nn class ActNorm(nn.Module): def __init__(self, num_features, logdet=False, affine=True, allow_reverse_init=False): assert affine super().__init__() self.logdet = logdet self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) self.allow_reverse_init = allow_reverse_init self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) def initialize(self, input): with torch.no_grad(): flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) mean = ( flatten.mean(1) .unsqueeze(1) .unsqueeze(2) .unsqueeze(3) .permute(1, 0, 2, 3) ) std = ( flatten.std(1) .unsqueeze(1) .unsqueeze(2) .unsqueeze(3) .permute(1, 0, 2, 3) ) self.loc.data.copy_(-mean) self.scale.data.copy_(1 / (std + 1e-6)) def forward(self, input, reverse=False): if reverse: return self.reverse(input) if len(input.shape) == 2: input = input[:, :, None, None] squeeze = True else: squeeze = False _, _, height, width = input.shape if self.training and self.initialized.item() == 0: self.initialize(input) self.initialized.fill_(1) h = self.scale * (input + self.loc) if squeeze: h = h.squeeze(-1).squeeze(-1) if self.logdet: log_abs = torch.log(torch.abs(self.scale)) logdet = height * width * torch.sum(log_abs) logdet = logdet * torch.ones(input.shape[0]).to(input) return h, logdet return h def reverse(self, output): if self.training and self.initialized.item() == 0: if not self.allow_reverse_init: raise RuntimeError( "Initializing ActNorm in reverse direction is " "disabled by default. Use allow_reverse_init=True to enable." ) else: self.initialize(output) self.initialized.fill_(1) if len(output.shape) == 2: output = output[:, :, None, None] squeeze = True else: squeeze = False h = output / self.scale - self.loc if squeeze: h = h.squeeze(-1).squeeze(-1) return h def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm') != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator as in Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] # output 1 channel prediction map sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.main(input) class NLayerDiscriminator1dFeats(NLayerDiscriminator): """Defines a PatchGAN discriminator as in Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input feats ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm) if not use_actnorm: norm_layer = nn.BatchNorm1d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters use_bias = norm_layer.func != nn.BatchNorm1d else: use_bias = norm_layer != nn.BatchNorm1d kw = 4 padw = 1 sequence = [nn.Conv1d(input_nc, input_nc//2, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = input_nc//2 nf_mult_prev = 1 for n in range(1, n_layers): # gradually decrease the number of filters nf_mult_prev = nf_mult nf_mult = max(nf_mult_prev // (2 ** n), 8) sequence += [ nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = max(nf_mult_prev // (2 ** n), 8) sequence += [ nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = max(nf_mult_prev // (2 ** n), 8) sequence += [ nn.Conv1d(nf_mult_prev, nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(nf_mult), nn.LeakyReLU(0.2, True) ] # output 1 channel prediction map sequence += [nn.Conv1d(nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] self.main = nn.Sequential(*sequence) class NLayerDiscriminator1dSpecs(NLayerDiscriminator): """Defines a PatchGAN discriminator as in Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=80, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input specs ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super().__init__(input_nc=input_nc, ndf=64, n_layers=n_layers, use_actnorm=use_actnorm) if not use_actnorm: norm_layer = nn.BatchNorm1d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm has affine parameters use_bias = norm_layer.func != nn.BatchNorm1d else: use_bias = norm_layer != nn.BatchNorm1d kw = 4 padw = 1 sequence = [nn.Conv1d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually decrease the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv1d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] # output 1 channel prediction map sequence += [nn.Conv1d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" # (B, C, L) input = input.squeeze(1) input = self.main(input) return input if __name__ == '__main__': import torch ## FEATURES disc_in_channels = 2048 disc_num_layers = 2 use_actnorm = False disc_ndf = 64 discriminator = NLayerDiscriminator1dFeats(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init) inputs = torch.rand((6, 2048, 212)) outputs = discriminator(inputs) print(outputs.shape) ## AUDIO disc_in_channels = 1 disc_num_layers = 3 use_actnorm = False disc_ndf = 64 discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init) inputs = torch.rand((6, 1, 80, 848)) outputs = discriminator(inputs) print(outputs.shape) ## IMAGE disc_in_channels = 3 disc_num_layers = 3 use_actnorm = False disc_ndf = 64 discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf).apply(weights_init) inputs = torch.rand((6, 3, 256, 256)) outputs = discriminator(inputs) print(outputs.shape)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/discriminator/model.py
import numpy as np import torch import torch.nn as nn class Discriminator2DFactory(nn.Module): def __init__(self, time_length, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128, norm_type='bn', reduction='sum'): super(Discriminator2DFactory, self).__init__() padding = (kernel[0] // 2, kernel[1] // 2) def discriminator_block(in_filters, out_filters, first=False): """ Input: (B, in, 2H, 2W) Output:(B, out, H, W) """ conv = nn.Conv2d(in_filters, out_filters, kernel, (2, 2), padding) if norm_type == 'sn': conv = nn.utils.spectral_norm(conv) block = [ conv, # padding = kernel//2 nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25) ] if norm_type == 'bn' and not first: block.append(nn.BatchNorm2d(out_filters, 0.8)) if norm_type == 'in' and not first: block.append(nn.InstanceNorm2d(out_filters, affine=True)) block = nn.Sequential(*block) return block self.model = nn.ModuleList([ discriminator_block(c_in, hidden_size, first=True), discriminator_block(hidden_size, hidden_size), discriminator_block(hidden_size, hidden_size), ]) self.reduction = reduction ds_size = (time_length // 2 ** 3, (freq_length + 7) // 2 ** 3) if reduction != 'none': # The height and width of downsampled image self.adv_layer = nn.Linear(hidden_size * ds_size[0] * ds_size[1], 1) else: self.adv_layer = nn.Linear(hidden_size * ds_size[1], 1) def forward(self, x): """ :param x: [B, C, T, n_bins] :return: validity: [B, 1], h: List of hiddens """ h = [] for l in self.model: x = l(x) h.append(x) if self.reduction != 'none': x = x.view(x.shape[0], -1) validity = self.adv_layer(x) # [B, 1] else: B, _, T_, _ = x.shape x = x.transpose(1, 2).reshape(B, T_, -1) validity = self.adv_layer(x)[:, :, 0] # [B, T] return validity, h class MultiWindowDiscriminator(nn.Module): def __init__(self, time_lengths, cond_size=0, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128, norm_type='bn', reduction='sum'): super(MultiWindowDiscriminator, self).__init__() self.win_lengths = time_lengths self.reduction = reduction self.conv_layers = nn.ModuleList() if cond_size > 0: self.cond_proj_layers = nn.ModuleList() self.mel_proj_layers = nn.ModuleList() for time_length in time_lengths: conv_layer = [ Discriminator2DFactory( time_length, freq_length, kernel, c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, reduction=reduction) ] self.conv_layers += conv_layer if cond_size > 0: self.cond_proj_layers.append(nn.Linear(cond_size, freq_length)) self.mel_proj_layers.append(nn.Linear(freq_length, freq_length)) def forward(self, x, x_len, cond=None, start_frames_wins=None): ''' Args: x (tensor): input mel, (B, c_in, T, n_bins). x_length (tensor): len of per mel. (B,). Returns: tensor : (B). ''' validity = [] if start_frames_wins is None: start_frames_wins = [None] * len(self.conv_layers) h = [] for i, start_frames in zip(range(len(self.conv_layers)), start_frames_wins): x_clip, c_clip, start_frames = self.clip( x, cond, x_len, self.win_lengths[i], start_frames) # (B, win_length, C) start_frames_wins[i] = start_frames if x_clip is None: continue if cond is not None: x_clip = self.mel_proj_layers[i](x_clip) # (B, 1, win_length, C) c_clip = self.cond_proj_layers[i](c_clip)[:, None] # (B, 1, win_length, C) x_clip = x_clip + c_clip x_clip, h_ = self.conv_layers[i](x_clip) h += h_ validity.append(x_clip) if len(validity) != len(self.conv_layers): return None, start_frames_wins, h if self.reduction == 'sum': validity = sum(validity) # [B] elif self.reduction == 'stack': validity = torch.stack(validity, -1) # [B, W_L] elif self.reduction == 'none': validity = torch.cat(validity, -1) # [B, W_sum] return validity, start_frames_wins, h def clip(self, x, cond, x_len, win_length, start_frames=None): '''Ramdom clip x to win_length. Args: x (tensor) : (B, c_in, T, n_bins). cond (tensor) : (B, T, H). x_len (tensor) : (B,). win_length (int): target clip length Returns: (tensor) : (B, c_in, win_length, n_bins). ''' T_start = 0 T_end = x_len.max() - win_length if T_end < 0: return None, None, start_frames T_end = T_end.item() if start_frames is None: start_frame = np.random.randint(low=T_start, high=T_end + 1) start_frames = [start_frame] * x.size(0) else: start_frame = start_frames[0] x_batch = x[:, :, start_frame: start_frame + win_length] c_batch = cond[:, start_frame: start_frame + win_length] if cond is not None else None return x_batch, c_batch, start_frames class Discriminator(nn.Module): def __init__(self, time_lengths=[32, 64, 128], freq_length=80, cond_size=0, kernel=(3, 3), c_in=1, hidden_size=128, norm_type='bn', reduction='sum', uncond_disc=True): super(Discriminator, self).__init__() self.time_lengths = time_lengths self.cond_size = cond_size self.reduction = reduction self.uncond_disc = uncond_disc if uncond_disc: self.discriminator = MultiWindowDiscriminator( freq_length=freq_length, time_lengths=time_lengths, kernel=kernel, c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, reduction=reduction ) if cond_size > 0: self.cond_disc = MultiWindowDiscriminator( freq_length=freq_length, time_lengths=time_lengths, cond_size=cond_size, kernel=kernel, c_in=c_in, hidden_size=hidden_size, norm_type=norm_type, reduction=reduction ) def forward(self, x, cond=None, start_frames_wins=None): """ :param x: [B, T, 80] :param cond: [B, T, cond_size] :param return_y_only: :return: """ if len(x.shape) == 3: x = x[:, None, :, :] x_len = x.sum([1, -1]).ne(0).int().sum([-1]) ret = {'y_c': None, 'y': None} if self.uncond_disc: ret['y'], start_frames_wins, ret['h'] = self.discriminator( x, x_len, start_frames_wins=start_frames_wins) if self.cond_size > 0 and cond is not None: ret['y_c'], start_frames_wins, ret['h_c'] = self.cond_disc( x, x_len, cond, start_frames_wins=start_frames_wins) ret['start_frames_wins'] = start_frames_wins return ret
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/discriminator/multi_window_disc.py
""" Based on https://github.com/CompVis/taming-transformers/blob/52720829/taming/modules/losses/lpips.py Adapted for spectrograms by Vladimir Iashin (v-iashin) """ from collections import namedtuple import numpy as np import torch import torch.nn as nn import sys sys.path.insert(0, '.') # nopep8 from ldm.modules.losses_audio.vggishish.model import VGGishish from ldm.util import get_ckpt_path class LPAPS(nn.Module): # Learned perceptual metric def __init__(self, use_dropout=True): super().__init__() self.scaling_layer = ScalingLayer() self.chns = [64, 128, 256, 512, 512] # vggish16 features self.net = vggishish16(pretrained=True, requires_grad=False) self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) self.load_from_pretrained() for param in self.parameters(): param.requires_grad = False def load_from_pretrained(self, name="vggishish_lpaps"): ckpt = get_ckpt_path(name, "ldm/modules/autoencoder/lpaps") self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) print("loaded pretrained LPAPS loss from {}".format(ckpt)) @classmethod def from_pretrained(cls, name="vggishish_lpaps"): if name != "vggishish_lpaps": raise NotImplementedError model = cls() ckpt = get_ckpt_path(name) model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) return model def forward(self, input, target): in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) outs0, outs1 = self.net(in0_input), self.net(in1_input) feats0, feats1, diffs = {}, {}, {} lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] for kk in range(len(self.chns)): feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] val = res[0] for l in range(1, len(self.chns)): val += res[l] return val class ScalingLayer(nn.Module): def __init__(self): super(ScalingLayer, self).__init__() # we are gonna use get_ckpt_path to donwload the stats as well stat_path = get_ckpt_path('vggishish_mean_std_melspec_10s_22050hz', 'ldm/modules/autoencoder/lpaps') # if for images we normalize on the channel dim, in spectrogram we will norm on frequency dimension means, stds = np.loadtxt(stat_path, dtype=np.float32).T # the normalization in means and stds are given for [0, 1], but specvqgan expects [-1, 1]: means = 2 * means - 1 stds = 2 * stds # input is expected to be (B, 1, F, T) self.register_buffer('shift', torch.from_numpy(means)[None, None, :, None]) self.register_buffer('scale', torch.from_numpy(stds)[None, None, :, None]) def forward(self, inp): return (inp - self.shift) / self.scale class NetLinLayer(nn.Module): """ A single linear layer which does a 1x1 conv """ def __init__(self, chn_in, chn_out=1, use_dropout=False): super(NetLinLayer, self).__init__() layers = [nn.Dropout(), ] if (use_dropout) else [] layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] self.model = nn.Sequential(*layers) class vggishish16(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True): super().__init__() vgg_pretrained_features = self.vggishish16(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.N_slices = 5 for x in range(4): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(4, 9): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(9, 16): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(16, 23): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(23, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h = self.slice1(X) h_relu1_2 = h h = self.slice2(h) h_relu2_2 = h h = self.slice3(h) h_relu3_3 = h h = self.slice4(h) h_relu4_3 = h h = self.slice5(h) h_relu5_3 = h vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) return out def vggishish16(self, pretrained: bool = True) -> VGGishish: # loading vggishish pretrained on vggsound num_classes_vggsound = 309 conv_layers = [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512] model = VGGishish(conv_layers, use_bn=False, num_classes=num_classes_vggsound) if pretrained: ckpt_path = get_ckpt_path('vggishish_lpaps', "ldm/modules/autoencoder/lpaps") ckpt = torch.load(ckpt_path, map_location=torch.device("cpu")) model.load_state_dict(ckpt, strict=False) return model def normalize_tensor(x, eps=1e-10): norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True)) return x / (norm_factor+eps) def spatial_average(x, keepdim=True): return x.mean([2, 3], keepdim=keepdim) if __name__ == '__main__': inputs = torch.rand((16, 1, 80, 848)) reconstructions = torch.rand((16, 1, 80, 848)) lpips = LPAPS().eval() loss_p = lpips(inputs.contiguous(), reconstructions.contiguous()) # (16, 1, 1, 1) print(loss_p.shape)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/lpaps.py
from ldm.modules.losses_audio.vqperceptual import DummyLoss # relative imports pain import os import sys path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'vggishish') sys.path.append(path)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F import sys from ldm.util import exists sys.path.insert(0, '.') # nopep8 from ldm.modules.discriminator.model import (NLayerDiscriminator, NLayerDiscriminator1dFeats, NLayerDiscriminator1dSpecs, weights_init) from ldm.modules.losses_audio.lpaps import LPAPS from ldm.modules.losses.vqperceptual import l1, l2, measure_perplexity, hinge_d_loss, vanilla_d_loss, adopt_weight class DummyLoss(nn.Module): def __init__(self): super().__init__() class VQLPAPSWithDiscriminator(nn.Module): def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_ndf=64, disc_loss="hinge", n_classes=None, pixel_loss="l1"): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.codebook_weight = codebook_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPAPS().eval() self.perceptual_weight = perceptual_weight if pixel_loss == "l1": self.pixel_loss = l1 else: self.pixel_loss = l2 self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf ).apply(weights_init) self.discriminator_iter_start = disc_start if disc_loss == "hinge": self.disc_loss = hinge_d_loss elif disc_loss == "vanilla": self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f"VQLPAPSWithDiscriminator running with {disc_loss} loss.") self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional self.n_classes = n_classes def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, global_step, last_layer=None, cond=None, split="train", predicted_indices=None): if not exists(codebook_loss): codebook_loss = torch.tensor([0.]).to(inputs.device) rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) rec_loss = rec_loss + self.perceptual_weight * p_loss else: p_loss = torch.tensor([0.0]) nll_loss = rec_loss # nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] nll_loss = torch.mean(nll_loss) # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) g_loss = -torch.mean(logits_fake) try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/quant_loss".format(split): codebook_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/p_loss".format(split): p_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } # if predicted_indices is not None: # assert self.n_classes is not None # with torch.no_grad(): # perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes) # log[f"{split}/perplexity"] = perplexity # log[f"{split}/cluster_usage"] = cluster_usage return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean() } return d_loss, log
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vqperceptual.py
import torch import torch.nn as nn import torch.nn.functional as F import sys sys.path.insert(0, '.') # nopep8 from ldm.modules.losses_audio.vqperceptual import * class LPAPSWithDiscriminator(nn.Module): def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge"): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPAPS().eval()# LPIPS用于日常图像,而LPAPS用于梅尔谱图 self.perceptual_weight = perceptual_weight # output log variance self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ).apply(weights_init) self.discriminator_iter_start = disc_start if disc_loss == "hinge": self.disc_loss = hinge_d_loss elif disc_loss == "vanilla": self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f"LPAPSWithDiscriminator running with {disc_loss} loss.") self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, inputs, reconstructions, posteriors, optimizer_idx, global_step, last_layer=None, cond=None, split="train", weights=None): rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) # print(f"p_loss {p_loss}") rec_loss = rec_loss + self.perceptual_weight * p_loss else: p_loss = torch.tensor([0.0]) nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights*nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) g_loss = -torch.mean(logits_fake) try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean() } return d_loss, log
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/contperceptual.py
import torch import torch.nn as nn import torch.nn.functional as F import sys sys.path.insert(0, '.') # nopep8 from ldm.modules.losses_audio.vqperceptual import * from ldm.modules.discriminator.multi_window_disc import Discriminator class LPAPSWithDiscriminator(nn.Module):# 相比于contperceptual.py添加了MultiWindowDiscriminator def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge"): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPAPS().eval() self.perceptual_weight = perceptual_weight # output log variance self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ).apply(weights_init) self.discriminator_iter_start = disc_start if disc_loss == "hinge": self.disc_loss = hinge_d_loss elif disc_loss == "vanilla": self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f"LPAPSWithDiscriminator running with {disc_loss} loss.") self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional disc_win_num = 3 mel_disc_hidden_size = 128 self.discriminator_multi = Discriminator(time_lengths=[32, 64, 128][:disc_win_num], freq_length=80, hidden_size=mel_disc_hidden_size, kernel=(3, 3), cond_size=0, norm_type="in", reduction="stack") def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, inputs, reconstructions, posteriors, optimizer_idx, global_step, last_layer=None, cond=None, split="train", weights=None): rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) rec_loss = rec_loss + self.perceptual_weight * p_loss else: p_loss = torch.tensor([0.0]) nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights*nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) logits_fake_multi = self.discriminator_multi(reconstructions.contiguous().squeeze(1).transpose(1, 2)) g_loss = -torch.mean(logits_fake) g_loss_multi = -torch.mean(logits_fake_multi['y']) try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) d_weight_multi = self.calculate_adaptive_weight(nll_loss, g_loss_multi, last_layer=last_layer) except RuntimeError: assert not self.training d_weight = d_weight_multi = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss + d_weight_multi * disc_factor * g_loss_multi log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), "{}/g_loss_multi".format(split): g_loss_multi.detach().mean(), } return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) logits_real_multi = self.discriminator_multi(inputs.contiguous().detach().squeeze(1).transpose(1, 2)) logits_fake_multi = self.discriminator_multi(reconstructions.contiguous().detach().squeeze(1).transpose(1, 2)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) d_loss_multi = disc_factor * self.disc_loss(logits_real_multi['y'], logits_fake_multi['y']) log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/disc_loss_multi".format(split): d_loss_multi.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean() } return d_loss+d_loss_multi, log
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/contperceptual_dis.py
import logging import numpy as np import scipy import torch from sklearn.metrics import average_precision_score, roc_auc_score logger = logging.getLogger(f'main.{__name__}') def metrics(targets, outputs, topk=(1, 5)): """ Adapted from https://github.com/hche11/VGGSound/blob/master/utils.py Calculate statistics including mAP, AUC, and d-prime. Args: output: 2d tensors, (dataset_size, classes_num) - before softmax target: 1d tensors, (dataset_size, ) topk: tuple Returns: metric_dict: a dict of metrics """ metrics_dict = dict() num_cls = outputs.shape[-1] # accuracy@k _, preds = torch.topk(outputs, k=max(topk), dim=1) correct_for_maxtopk = preds == targets.view(-1, 1).expand_as(preds) for k in topk: metrics_dict[f'accuracy_{k}'] = float(correct_for_maxtopk[:, :k].sum() / correct_for_maxtopk.shape[0]) # avg precision, average roc_auc, and dprime targets = torch.nn.functional.one_hot(targets, num_classes=num_cls) # ids of the predicted classes (same as softmax) targets_pred = torch.softmax(outputs, dim=1) targets = targets.numpy() targets_pred = targets_pred.numpy() # one-vs-rest avg_p = [average_precision_score(targets[:, c], targets_pred[:, c], average=None) for c in range(num_cls)] try: roc_aucs = [roc_auc_score(targets[:, c], targets_pred[:, c], average=None) for c in range(num_cls)] except ValueError: logger.warning('Weird... Some classes never occured in targets. Do not trust the metrics.') roc_aucs = np.array([0.5]) avg_p = np.array([0]) metrics_dict['mAP'] = np.mean(avg_p) metrics_dict['mROCAUC'] = np.mean(roc_aucs) # Percent point function (ppf) (inverse of cdf — percentiles). metrics_dict['dprime'] = scipy.stats.norm().ppf(metrics_dict['mROCAUC']) * np.sqrt(2) return metrics_dict if __name__ == '__main__': targets = torch.tensor([3, 3, 1, 2, 1, 0]) outputs = torch.tensor([ [1.2, 1.3, 1.1, 1.5], [1.3, 1.4, 1.0, 1.1], [1.5, 1.1, 1.4, 1.3], [1.0, 1.2, 1.4, 1.5], [1.2, 1.3, 1.1, 1.1], [1.2, 1.1, 1.1, 1.1], ]).float() metrics_dict = metrics(targets, outputs, topk=(1, 3)) print(metrics_dict)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/metrics.py
import logging import os from pathlib import Path import albumentations import numpy as np import torch from tqdm import tqdm logger = logging.getLogger(f'main.{__name__}') class StandardNormalizeAudio(object): ''' Frequency-wise normalization ''' def __init__(self, specs_dir, train_ids_path='./data/vggsound_train.txt', cache_path='./data/'): self.specs_dir = specs_dir self.train_ids_path = train_ids_path # making the stats filename to match the specs dir name self.cache_path = os.path.join(cache_path, f'train_means_stds_{Path(specs_dir).stem}.txt') logger.info('Assuming that the input stats are calculated using preprocessed spectrograms (log)') self.train_stats = self.calculate_or_load_stats() def __call__(self, item): # just to generalizat the input handling. Useful for FID, IS eval and training other staff if isinstance(item, dict): if 'input' in item: input_key = 'input' elif 'image' in item: input_key = 'image' else: raise NotImplementedError item[input_key] = (item[input_key] - self.train_stats['means']) / self.train_stats['stds'] elif isinstance(item, torch.Tensor): # broadcasts np.ndarray (80, 1) to (1, 80, 1) because item is torch.Tensor (B, 80, T) item = (item - self.train_stats['means']) / self.train_stats['stds'] else: raise NotImplementedError return item def calculate_or_load_stats(self): try: # (F, 2) train_stats = np.loadtxt(self.cache_path) means, stds = train_stats.T logger.info('Trying to load train stats for Standard Normalization of inputs') except OSError: logger.info('Could not find the precalculated stats for Standard Normalization. Calculating...') train_vid_ids = open(self.train_ids_path) specs_paths = [os.path.join(self.specs_dir, f'{i.rstrip()}_mel.npy') for i in train_vid_ids] means = [None] * len(specs_paths) stds = [None] * len(specs_paths) for i, path in enumerate(tqdm(specs_paths)): spec = np.load(path) means[i] = spec.mean(axis=1) stds[i] = spec.std(axis=1) # (F) <- (num_files, F) means = np.array(means).mean(axis=0) stds = np.array(stds).mean(axis=0) # saving in two columns np.savetxt(self.cache_path, np.vstack([means, stds]).T, fmt='%0.8f') means = means.reshape(-1, 1) stds = stds.reshape(-1, 1) return {'means': means, 'stds': stds} class ToTensor(object): def __call__(self, item): item['input'] = torch.from_numpy(item['input']).float() # if 'target' in item: item['target'] = torch.tensor(item['target']) return item class Crop(object): def __init__(self, cropped_shape=None, random_crop=False): self.cropped_shape = cropped_shape if cropped_shape is not None: mel_num, spec_len = cropped_shape if random_crop: self.cropper = albumentations.RandomCrop else: self.cropper = albumentations.CenterCrop self.preprocessor = albumentations.Compose([self.cropper(mel_num, spec_len)]) else: self.preprocessor = lambda **kwargs: kwargs def __call__(self, item): item['input'] = self.preprocessor(image=item['input'])['image'] return item if __name__ == '__main__': cropper = Crop([80, 848]) item = {'input': torch.rand([80, 860])} outputs = cropper(item) print(outputs['input'].shape)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/transforms.py
import os from torch.utils.data import DataLoader import torchvision from tqdm import tqdm from dataset import VGGSound import torch import torch.nn as nn from metrics import metrics from omegaconf import OmegaConf from model import VGGishish from transforms import Crop, StandardNormalizeAudio, ToTensor if __name__ == '__main__': cfg_cli = OmegaConf.from_cli() print(cfg_cli.config) cfg_yml = OmegaConf.load(cfg_cli.config) # the latter arguments are prioritized cfg = OmegaConf.merge(cfg_yml, cfg_cli) OmegaConf.set_readonly(cfg, True) print(OmegaConf.to_yaml(cfg)) # logger = LoggerWithTBoard(cfg) transforms = [ StandardNormalizeAudio(cfg.mels_path), ToTensor(), ] if cfg.cropped_size not in [None, 'None', 'none']: transforms.append(Crop(cfg.cropped_size)) transforms = torchvision.transforms.transforms.Compose(transforms) datasets = { 'test': VGGSound('test', cfg.mels_path, transforms), } loaders = { 'test': DataLoader(datasets['test'], batch_size=cfg.batch_size, num_workers=cfg.num_workers, pin_memory=True) } device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu') model = VGGishish(cfg.conv_layers, cfg.use_bn, num_classes=len(datasets['test'].target2label)) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=cfg.learning_rate) criterion = nn.CrossEntropyLoss() # loading the best model folder_name = os.path.split(cfg.config)[0].split('/')[-1] print(folder_name) ckpt = torch.load(f'./logs/{folder_name}/vggishish-{folder_name}.pt', map_location='cpu') model.load_state_dict(ckpt['model']) print((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}')) # Testing the model model.eval() running_loss = 0 preds_from_each_batch = [] targets_from_each_batch = [] for i, batch in enumerate(tqdm(loaders['test'])): inputs = batch['input'].to(device) targets = batch['target'].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize with torch.set_grad_enabled(False): outputs = model(inputs) loss = criterion(outputs, targets) # loss running_loss += loss.item() # for metrics calculation later on preds_from_each_batch += [outputs.detach().cpu()] targets_from_each_batch += [targets.cpu()] # logging metrics preds_from_each_batch = torch.cat(preds_from_each_batch) targets_from_each_batch = torch.cat(targets_from_each_batch) test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch) test_metrics_dict['avg_loss'] = running_loss / len(loaders['test']) test_metrics_dict['param_num'] = sum(p.numel() for p in model.parameters() if p.requires_grad) # TODO: I have no idea why tboard doesn't keep metrics (hparams) in a tensorboard when # I run this experiment from cli: `python main.py config=./configs/vggish.yaml` # while when I run it in vscode debugger the metrics are present in the tboard (weird) print(test_metrics_dict)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/predict.py
import logging import os import time from shutil import copytree, ignore_patterns import torch from omegaconf import OmegaConf from torch.utils.tensorboard import SummaryWriter, summary class LoggerWithTBoard(SummaryWriter): def __init__(self, cfg): # current time stamp and experiment log directory self.start_time = time.strftime('%y-%m-%dT%H-%M-%S', time.localtime()) self.logdir = os.path.join(cfg.logdir, self.start_time) # init tboard super().__init__(self.logdir) # backup the cfg OmegaConf.save(cfg, os.path.join(self.log_dir, 'cfg.yaml')) # backup the code state if cfg.log_code_state: dest_dir = os.path.join(self.logdir, 'code') copytree(os.getcwd(), dest_dir, ignore=ignore_patterns(*cfg.patterns_to_ignore)) # init logger which handles printing and logging mostly same things to the log file self.print_logger = logging.getLogger('main') self.print_logger.setLevel(logging.INFO) msgfmt = '[%(levelname)s] %(asctime)s - %(name)s \n %(message)s' datefmt = '%d %b %Y %H:%M:%S' formatter = logging.Formatter(msgfmt, datefmt) # stdout sh = logging.StreamHandler() sh.setLevel(logging.DEBUG) sh.setFormatter(formatter) self.print_logger.addHandler(sh) # log file fh = logging.FileHandler(os.path.join(self.log_dir, 'log.txt')) fh.setLevel(logging.INFO) fh.setFormatter(formatter) self.print_logger.addHandler(fh) self.print_logger.info(f'Saving logs and checkpoints @ {self.logdir}') def log_param_num(self, model): param_num = sum(p.numel() for p in model.parameters() if p.requires_grad) self.print_logger.info(f'The number of parameters: {param_num/1e+6:.3f} mil') self.add_scalar('num_params', param_num, 0) return param_num def log_iter_loss(self, loss, iter, phase): self.add_scalar(f'{phase}/loss_iter', loss, iter) def log_epoch_loss(self, loss, epoch, phase): self.add_scalar(f'{phase}/loss', loss, epoch) self.print_logger.info(f'{phase} ({epoch}): loss {loss:.3f};') def log_epoch_metrics(self, metrics_dict, epoch, phase): for metric, val in metrics_dict.items(): self.add_scalar(f'{phase}/{metric}', val, epoch) metrics_dict = {k: round(v, 4) for k, v in metrics_dict.items()} self.print_logger.info(f'{phase} ({epoch}) metrics: {metrics_dict};') def log_test_metrics(self, metrics_dict, hparams_dict, best_epoch): allowed_types = (int, float, str, bool, torch.Tensor) hparams_dict = {k: v for k, v in hparams_dict.items() if isinstance(v, allowed_types)} metrics_dict = {f'test/{k}': round(v, 4) for k, v in metrics_dict.items()} exp, ssi, sei = summary.hparams(hparams_dict, metrics_dict) self.file_writer.add_summary(exp) self.file_writer.add_summary(ssi) self.file_writer.add_summary(sei) for k, v in metrics_dict.items(): self.add_scalar(k, v, best_epoch) self.print_logger.info(f'test ({best_epoch}) metrics: {metrics_dict};') def log_best_model(self, model, loss, epoch, optimizer, metrics_dict): model_name = model.__class__.__name__ self.best_model_path = os.path.join(self.logdir, f'{model_name}-{self.start_time}.pt') checkpoint = { 'loss': loss, 'metrics': metrics_dict, 'epoch': epoch, 'optimizer': optimizer.state_dict(), 'model': model.state_dict(), } torch.save(checkpoint, self.best_model_path) self.print_logger.info(f'Saved model in {self.best_model_path}')
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/logger.py
import torch import torch.nn as nn class VGGishish(nn.Module): def __init__(self, conv_layers, use_bn, num_classes): ''' Mostly from https://pytorch.org/vision/0.8/_modules/torchvision/models/vgg.html ''' super().__init__() layers = [] in_channels = 1 # a list of channels with 'MP' (maxpool) from config for v in conv_layers: if v == 'MP': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, stride=1) if use_bn: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v self.features = nn.Sequential(*layers) self.avgpool = nn.AdaptiveAvgPool2d((5, 10)) self.flatten = nn.Flatten() self.classifier = nn.Sequential( nn.Linear(512 * 5 * 10, 4096), nn.ReLU(True), nn.Linear(4096, 4096), nn.ReLU(True), nn.Linear(4096, num_classes) ) # weight init self.reset_parameters() def forward(self, x): # adding channel dim for conv2d (B, 1, F, T) <- x = x.unsqueeze(1) # backbone (B, 1, 5, 53) <- (B, 1, 80, 860) x = self.features(x) # adaptive avg pooling (B, 1, 5, 10) <- (B, 1, 5, 53) – if no MP is used as the end of VGG x = self.avgpool(x) # flatten x = self.flatten(x) # classify x = self.classifier(x) return x def reset_parameters(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) if __name__ == '__main__': num_classes = 309 inputs = torch.rand(3, 80, 848) conv_layers = [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512] # conv_layers = [64, 'MP', 128, 'MP', 256, 256, 'MP', 512, 512, 'MP'] model = VGGishish(conv_layers, use_bn=False, num_classes=num_classes) outputs = model(inputs) print(outputs.shape)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/model.py
import collections import csv import logging import os import random from glob import glob from pathlib import Path import numpy as np import torch import torchvision logger = logging.getLogger(f'main.{__name__}') class VGGSound(torch.utils.data.Dataset): def __init__(self, split, specs_dir, transforms=None, splits_path='./data', meta_path='./data/vggsound.csv'): super().__init__() self.split = split self.specs_dir = specs_dir self.transforms = transforms self.splits_path = splits_path self.meta_path = meta_path vggsound_meta = list(csv.reader(open(meta_path), quotechar='"')) unique_classes = sorted(list(set(row[2] for row in vggsound_meta))) self.label2target = {label: target for target, label in enumerate(unique_classes)} self.target2label = {target: label for label, target in self.label2target.items()} self.video2target = {row[0]: self.label2target[row[2]] for row in vggsound_meta} split_clip_ids_path = os.path.join(splits_path, f'vggsound_{split}.txt') if not os.path.exists(split_clip_ids_path): self.make_split_files() clip_ids_with_timestamp = open(split_clip_ids_path).read().splitlines() clip_paths = [os.path.join(specs_dir, v + '_mel.npy') for v in clip_ids_with_timestamp] self.dataset = clip_paths # self.dataset = clip_paths[:10000] # overfit one batch # 'zyTX_1BXKDE_16000_26000'[:11] -> 'zyTX_1BXKDE' vid_classes = [self.video2target[Path(path).stem[:11]] for path in self.dataset] class2count = collections.Counter(vid_classes) self.class_counts = torch.tensor([class2count[cls] for cls in range(len(class2count))]) # self.sample_weights = [len(self.dataset) / class2count[self.video2target[Path(path).stem[:11]]] for path in self.dataset] def __getitem__(self, idx): item = {} spec_path = self.dataset[idx] # 'zyTX_1BXKDE_16000_26000' -> 'zyTX_1BXKDE' video_name = Path(spec_path).stem[:11] item['input'] = np.load(spec_path) item['input_path'] = spec_path # if self.split in ['train', 'valid']: item['target'] = self.video2target[video_name] item['label'] = self.target2label[item['target']] if self.transforms is not None: item = self.transforms(item) return item def __len__(self): return len(self.dataset) def make_split_files(self): random.seed(1337) logger.info(f'The split files do not exist @ {self.splits_path}. Calculating the new ones.') # The downloaded videos (some went missing on YouTube and no longer available) available_vid_paths = sorted(glob(os.path.join(self.specs_dir, '*_mel.npy'))) logger.info(f'The number of clips available after download: {len(available_vid_paths)}') # original (full) train and test sets vggsound_meta = list(csv.reader(open(self.meta_path), quotechar='"')) train_vids = {row[0] for row in vggsound_meta if row[3] == 'train'} test_vids = {row[0] for row in vggsound_meta if row[3] == 'test'} logger.info(f'The number of videos in vggsound train set: {len(train_vids)}') logger.info(f'The number of videos in vggsound test set: {len(test_vids)}') # class counts in test set. We would like to have the same distribution in valid unique_classes = sorted(list(set(row[2] for row in vggsound_meta))) label2target = {label: target for target, label in enumerate(unique_classes)} video2target = {row[0]: label2target[row[2]] for row in vggsound_meta} test_vid_classes = [video2target[vid] for vid in test_vids] test_target2count = collections.Counter(test_vid_classes) # now given the counts from test set, sample the same count for validation and the rest leave in train train_vids_wo_valid, valid_vids = set(), set() for target, label in enumerate(label2target.keys()): class_train_vids = [vid for vid in train_vids if video2target[vid] == target] random.shuffle(class_train_vids) count = test_target2count[target] valid_vids.update(class_train_vids[:count]) train_vids_wo_valid.update(class_train_vids[count:]) # make file with a list of available test videos (each video should contain timestamps as well) train_i = valid_i = test_i = 0 with open(os.path.join(self.splits_path, 'vggsound_train.txt'), 'w') as train_file, \ open(os.path.join(self.splits_path, 'vggsound_valid.txt'), 'w') as valid_file, \ open(os.path.join(self.splits_path, 'vggsound_test.txt'), 'w') as test_file: for path in available_vid_paths: path = path.replace('_mel.npy', '') vid_name = Path(path).name # 'zyTX_1BXKDE_16000_26000'[:11] -> 'zyTX_1BXKDE' if vid_name[:11] in train_vids_wo_valid: train_file.write(vid_name + '\n') train_i += 1 elif vid_name[:11] in valid_vids: valid_file.write(vid_name + '\n') valid_i += 1 elif vid_name[:11] in test_vids: test_file.write(vid_name + '\n') test_i += 1 else: raise Exception(f'Clip {vid_name} is neither in train, valid nor test. Strange.') logger.info(f'Put {train_i} clips to the train set and saved it to ./data/vggsound_train.txt') logger.info(f'Put {valid_i} clips to the valid set and saved it to ./data/vggsound_valid.txt') logger.info(f'Put {test_i} clips to the test set and saved it to ./data/vggsound_test.txt') if __name__ == '__main__': from transforms import Crop, StandardNormalizeAudio, ToTensor specs_path = '/home/nvme/data/vggsound/features/melspec_10s_22050hz/' transforms = torchvision.transforms.transforms.Compose([ StandardNormalizeAudio(specs_path), ToTensor(), Crop([80, 848]), ]) datasets = { 'train': VGGSound('train', specs_path, transforms), 'valid': VGGSound('valid', specs_path, transforms), 'test': VGGSound('test', specs_path, transforms), } print(datasets['train'][0]) print(datasets['valid'][0]) print(datasets['test'][0]) print(datasets['train'].class_counts) print(datasets['valid'].class_counts) print(datasets['test'].class_counts)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/dataset.py
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class WeightedCrossEntropy(nn.CrossEntropyLoss): def __init__(self, weights, **pytorch_ce_loss_args) -> None: super().__init__(reduction='none', **pytorch_ce_loss_args) self.weights = weights def __call__(self, outputs, targets, to_weight=True): loss = super().__call__(outputs, targets) if to_weight: return (loss * self.weights[targets]).sum() / self.weights[targets].sum() else: return loss.mean() if __name__ == '__main__': x = torch.randn(10, 5) target = torch.randint(0, 5, (10,)) weights = torch.tensor([1., 2., 3., 4., 5.]) # criterion_weighted = nn.CrossEntropyLoss(weight=weights) # loss_weighted = criterion_weighted(x, target) # criterion_weighted_manual = nn.CrossEntropyLoss(reduction='none') # loss_weighted_manual = criterion_weighted_manual(x, target) # print(loss_weighted, loss_weighted_manual.mean()) # loss_weighted_manual = (loss_weighted_manual * weights[target]).sum() / weights[target].sum() # print(loss_weighted, loss_weighted_manual) # print(torch.allclose(loss_weighted, loss_weighted_manual)) pytorch_weighted = nn.CrossEntropyLoss(weight=weights) pytorch_unweighted = nn.CrossEntropyLoss() custom = WeightedCrossEntropy(weights) assert torch.allclose(pytorch_weighted(x, target), custom(x, target, to_weight=True)) assert torch.allclose(pytorch_unweighted(x, target), custom(x, target, to_weight=False)) print(custom(x, target, to_weight=True), custom(x, target, to_weight=False))
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/loss.py
from loss import WeightedCrossEntropy import random import numpy as np import torch import torchvision from omegaconf import OmegaConf from torch.utils.data.dataloader import DataLoader from tqdm import tqdm from dataset import VGGSound from transforms import Crop, StandardNormalizeAudio, ToTensor from logger import LoggerWithTBoard from metrics import metrics from model import VGGishish if __name__ == "__main__": cfg_cli = OmegaConf.from_cli() cfg_yml = OmegaConf.load(cfg_cli.config) # the latter arguments are prioritized cfg = OmegaConf.merge(cfg_yml, cfg_cli) OmegaConf.set_readonly(cfg, True) print(OmegaConf.to_yaml(cfg)) logger = LoggerWithTBoard(cfg) random.seed(cfg.seed) np.random.seed(cfg.seed) torch.manual_seed(cfg.seed) torch.cuda.manual_seed_all(cfg.seed) # makes iterations faster (in this case 30%) if your inputs are of a fixed size # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3 torch.backends.cudnn.benchmark = True transforms = [ StandardNormalizeAudio(cfg.mels_path), ] if cfg.cropped_size not in [None, 'None', 'none']: logger.print_logger.info(f'Using cropping {cfg.cropped_size}') transforms.append(Crop(cfg.cropped_size)) transforms.append(ToTensor()) transforms = torchvision.transforms.transforms.Compose(transforms) datasets = { 'train': VGGSound('train', cfg.mels_path, transforms), 'valid': VGGSound('valid', cfg.mels_path, transforms), 'test': VGGSound('test', cfg.mels_path, transforms), } loaders = { 'train': DataLoader(datasets['train'], batch_size=cfg.batch_size, shuffle=True, drop_last=True, num_workers=cfg.num_workers, pin_memory=True), 'valid': DataLoader(datasets['valid'], batch_size=cfg.batch_size, num_workers=cfg.num_workers, pin_memory=True), 'test': DataLoader(datasets['test'], batch_size=cfg.batch_size, num_workers=cfg.num_workers, pin_memory=True), } device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu') model = VGGishish(cfg.conv_layers, cfg.use_bn, num_classes=len(datasets['train'].target2label)) model = model.to(device) param_num = logger.log_param_num(model) if cfg.optimizer == 'adam': optimizer = torch.optim.Adam( model.parameters(), lr=cfg.learning_rate, betas=cfg.betas, weight_decay=cfg.weight_decay) elif cfg.optimizer == 'sgd': optimizer = torch.optim.SGD( model.parameters(), lr=cfg.learning_rate, momentum=cfg.momentum, weight_decay=cfg.weight_decay) else: raise NotImplementedError if cfg.cls_weights_in_loss: weights = 1 / datasets['train'].class_counts else: weights = torch.ones(len(datasets['train'].target2label)) criterion = WeightedCrossEntropy(weights.to(device)) # loop over the train and validation multiple times (typical PT boilerplate) no_change_epochs = 0 best_valid_loss = float('inf') early_stop_triggered = False for epoch in range(cfg.num_epochs): for phase in ['train', 'valid']: if phase == 'train': model.train() else: model.eval() running_loss = 0 preds_from_each_batch = [] targets_from_each_batch = [] prog_bar = tqdm(loaders[phase], f'{phase} ({epoch})', ncols=0) for i, batch in enumerate(prog_bar): inputs = batch['input'].to(device) targets = batch['target'].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) loss = criterion(outputs, targets, to_weight=phase == 'train') if phase == 'train': loss.backward() optimizer.step() # loss running_loss += loss.item() # for metrics calculation later on preds_from_each_batch += [outputs.detach().cpu()] targets_from_each_batch += [targets.cpu()] # iter logging if i % 50 == 0: logger.log_iter_loss(loss.item(), epoch*len(loaders[phase])+i, phase) # tracks loss in the tqdm progress bar prog_bar.set_postfix(loss=loss.item()) # logging loss epoch_loss = running_loss / len(loaders[phase]) logger.log_epoch_loss(epoch_loss, epoch, phase) # logging metrics preds_from_each_batch = torch.cat(preds_from_each_batch) targets_from_each_batch = torch.cat(targets_from_each_batch) metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch) logger.log_epoch_metrics(metrics_dict, epoch, phase) # Early stopping if phase == 'valid': if epoch_loss < best_valid_loss: no_change_epochs = 0 best_valid_loss = epoch_loss logger.log_best_model(model, epoch_loss, epoch, optimizer, metrics_dict) else: no_change_epochs += 1 logger.print_logger.info( f'Valid loss hasnt changed for {no_change_epochs} patience: {cfg.patience}' ) if no_change_epochs >= cfg.patience: early_stop_triggered = True if early_stop_triggered: logger.print_logger.info(f'Training is early stopped @ {epoch}') break logger.print_logger.info('Finished Training') # loading the best model ckpt = torch.load(logger.best_model_path) model.load_state_dict(ckpt['model']) logger.print_logger.info(f'Loading the best model from {logger.best_model_path}') logger.print_logger.info((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}')) # Testing the model model.eval() running_loss = 0 preds_from_each_batch = [] targets_from_each_batch = [] for i, batch in enumerate(loaders['test']): inputs = batch['input'].to(device) targets = batch['target'].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize with torch.set_grad_enabled(False): outputs = model(inputs) loss = criterion(outputs, targets, to_weight=False) # loss running_loss += loss.item() # for metrics calculation later on preds_from_each_batch += [outputs.detach().cpu()] targets_from_each_batch += [targets.cpu()] # logging metrics preds_from_each_batch = torch.cat(preds_from_each_batch) targets_from_each_batch = torch.cat(targets_from_each_batch) test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch) test_metrics_dict['avg_loss'] = running_loss / len(loaders['test']) test_metrics_dict['param_num'] = param_num # TODO: I have no idea why tboard doesn't keep metrics (hparams) when # I run this experiment from cli: `python train_vggishish.py config=./configs/vggish.yaml` # while when I run it in vscode debugger the metrics are logger (wtf) logger.log_test_metrics(test_metrics_dict, dict(cfg), ckpt['epoch']) logger.print_logger.info('Finished the experiment')
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/train_vggishish.py
import random import numpy as np import torch import torchvision from omegaconf import OmegaConf from torch.utils.data.dataloader import DataLoader from torchvision.models.inception import BasicConv2d, Inception3 from tqdm import tqdm from dataset import VGGSound from logger import LoggerWithTBoard from loss import WeightedCrossEntropy from metrics import metrics from transforms import Crop, StandardNormalizeAudio, ToTensor # TODO: refactor ./evaluation/feature_extractors/melception.py to handle this class as well. # So far couldn't do it because of the difference in outputs class Melception(Inception3): def __init__(self, num_classes, **kwargs): # inception = Melception(num_classes=309) super().__init__(num_classes=num_classes, **kwargs) # the same as https://github.com/pytorch/vision/blob/5339e63148/torchvision/models/inception.py#L95 # but for 1-channel input instead of RGB. self.Conv2d_1a_3x3 = BasicConv2d(1, 32, kernel_size=3, stride=2) # also the 'hight' of the mel spec is 80 (vs 299 in RGB) we remove all max pool from Inception self.maxpool1 = torch.nn.Identity() self.maxpool2 = torch.nn.Identity() def forward(self, x): x = x.unsqueeze(1) return super().forward(x) def train_inception_scorer(cfg): logger = LoggerWithTBoard(cfg) random.seed(cfg.seed) np.random.seed(cfg.seed) torch.manual_seed(cfg.seed) torch.cuda.manual_seed_all(cfg.seed) # makes iterations faster (in this case 30%) if your inputs are of a fixed size # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3 torch.backends.cudnn.benchmark = True meta_path = './data/vggsound.csv' train_ids_path = './data/vggsound_train.txt' cache_path = './data/' splits_path = cache_path transforms = [ StandardNormalizeAudio(cfg.mels_path, train_ids_path, cache_path), ] if cfg.cropped_size not in [None, 'None', 'none']: logger.print_logger.info(f'Using cropping {cfg.cropped_size}') transforms.append(Crop(cfg.cropped_size)) transforms.append(ToTensor()) transforms = torchvision.transforms.transforms.Compose(transforms) datasets = { 'train': VGGSound('train', cfg.mels_path, transforms, splits_path, meta_path), 'valid': VGGSound('valid', cfg.mels_path, transforms, splits_path, meta_path), 'test': VGGSound('test', cfg.mels_path, transforms, splits_path, meta_path), } loaders = { 'train': DataLoader(datasets['train'], batch_size=cfg.batch_size, shuffle=True, drop_last=True, num_workers=cfg.num_workers, pin_memory=True), 'valid': DataLoader(datasets['valid'], batch_size=cfg.batch_size, num_workers=cfg.num_workers, pin_memory=True), 'test': DataLoader(datasets['test'], batch_size=cfg.batch_size, num_workers=cfg.num_workers, pin_memory=True), } device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu') model = Melception(num_classes=len(datasets['train'].target2label)) model = model.to(device) param_num = logger.log_param_num(model) if cfg.optimizer == 'adam': optimizer = torch.optim.Adam( model.parameters(), lr=cfg.learning_rate, betas=cfg.betas, weight_decay=cfg.weight_decay) elif cfg.optimizer == 'sgd': optimizer = torch.optim.SGD( model.parameters(), lr=cfg.learning_rate, momentum=cfg.momentum, weight_decay=cfg.weight_decay) else: raise NotImplementedError if cfg.cls_weights_in_loss: weights = 1 / datasets['train'].class_counts else: weights = torch.ones(len(datasets['train'].target2label)) criterion = WeightedCrossEntropy(weights.to(device)) # loop over the train and validation multiple times (typical PT boilerplate) no_change_epochs = 0 best_valid_loss = float('inf') early_stop_triggered = False for epoch in range(cfg.num_epochs): for phase in ['train', 'valid']: if phase == 'train': model.train() else: model.eval() running_loss = 0 preds_from_each_batch = [] targets_from_each_batch = [] prog_bar = tqdm(loaders[phase], f'{phase} ({epoch})', ncols=0) for i, batch in enumerate(prog_bar): inputs = batch['input'].to(device) targets = batch['target'].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize with torch.set_grad_enabled(phase == 'train'): # inception v3 if phase == 'train': outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, targets) loss2 = criterion(aux_outputs, targets) loss = loss1 + 0.4*loss2 loss = criterion(outputs, targets, to_weight=True) else: outputs = model(inputs) loss = criterion(outputs, targets, to_weight=False) if phase == 'train': loss.backward() optimizer.step() # loss running_loss += loss.item() # for metrics calculation later on preds_from_each_batch += [outputs.detach().cpu()] targets_from_each_batch += [targets.cpu()] # iter logging if i % 50 == 0: logger.log_iter_loss(loss.item(), epoch*len(loaders[phase])+i, phase) # tracks loss in the tqdm progress bar prog_bar.set_postfix(loss=loss.item()) # logging loss epoch_loss = running_loss / len(loaders[phase]) logger.log_epoch_loss(epoch_loss, epoch, phase) # logging metrics preds_from_each_batch = torch.cat(preds_from_each_batch) targets_from_each_batch = torch.cat(targets_from_each_batch) metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch) logger.log_epoch_metrics(metrics_dict, epoch, phase) # Early stopping if phase == 'valid': if epoch_loss < best_valid_loss: no_change_epochs = 0 best_valid_loss = epoch_loss logger.log_best_model(model, epoch_loss, epoch, optimizer, metrics_dict) else: no_change_epochs += 1 logger.print_logger.info( f'Valid loss hasnt changed for {no_change_epochs} patience: {cfg.patience}' ) if no_change_epochs >= cfg.patience: early_stop_triggered = True if early_stop_triggered: logger.print_logger.info(f'Training is early stopped @ {epoch}') break logger.print_logger.info('Finished Training') # loading the best model ckpt = torch.load(logger.best_model_path) model.load_state_dict(ckpt['model']) logger.print_logger.info(f'Loading the best model from {logger.best_model_path}') logger.print_logger.info((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}')) # Testing the model model.eval() running_loss = 0 preds_from_each_batch = [] targets_from_each_batch = [] for i, batch in enumerate(loaders['test']): inputs = batch['input'].to(device) targets = batch['target'].to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize with torch.set_grad_enabled(False): outputs = model(inputs) loss = criterion(outputs, targets, to_weight=False) # loss running_loss += loss.item() # for metrics calculation later on preds_from_each_batch += [outputs.detach().cpu()] targets_from_each_batch += [targets.cpu()] # logging metrics preds_from_each_batch = torch.cat(preds_from_each_batch) targets_from_each_batch = torch.cat(targets_from_each_batch) test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch) test_metrics_dict['avg_loss'] = running_loss / len(loaders['test']) test_metrics_dict['param_num'] = param_num # TODO: I have no idea why tboard doesn't keep metrics (hparams) when # I run this experiment from cli: `python train_melception.py config=./configs/vggish.yaml` # while when I run it in vscode debugger the metrics are logger (wtf) logger.log_test_metrics(test_metrics_dict, dict(cfg), ckpt['epoch']) logger.print_logger.info('Finished the experiment') if __name__ == '__main__': # input = torch.rand(16, 1, 80, 848) # output, aux = inception(input) # print(output.shape, aux.shape) # Expected input size: (3, 299, 299) in RGB -> (1, 80, 848) in Mel Spec # train_inception_scorer() cfg_cli = OmegaConf.from_cli() cfg_yml = OmegaConf.load(cfg_cli.config) # the latter arguments are prioritized cfg = OmegaConf.merge(cfg_yml, cfg_cli) OmegaConf.set_readonly(cfg, True) print(OmegaConf.to_yaml(cfg)) train_inception_scorer(cfg)
EXA-1-master
exa/models/AudioGPT/text_to_audio/MakeAnAudio/ldm/modules/losses_audio/vggishish/train_melception.py