python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
#!/usr/bin/env python3 # Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, # Wei Kang, # Mingshuang Luo) # Copyright 2023 (authors: Feiteng Li) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: python3 bin/trainer.py \ --decoder-dim 1024 --nhead 16 --num-decoder-layers 12 \ --max-duration 40 --model-name valle \ --exp-dir exp/valle --dtype "bfloat16" \ """ import argparse import copy import logging import os os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" import random import warnings from pathlib import Path from shutil import copyfile from typing import Any, Dict, Optional, Tuple, Union import torch import torch.multiprocessing as mp import torch.nn as nn from icefall.checkpoint import load_checkpoint, remove_checkpoints from icefall.checkpoint import save_checkpoint as save_checkpoint_impl from icefall.checkpoint import ( save_checkpoint_with_global_batch_idx, update_averaged_model, ) from icefall.dist import cleanup_dist, setup_dist from icefall.env import get_env_info from icefall.hooks import register_inf_check_hooks from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool from lhotse import CutSet from lhotse.cut import Cut from lhotse.dataset.sampling.base import CutSampler from lhotse.utils import fix_random_seed from torch import Tensor from torch.cuda.amp import GradScaler from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from valle.data import TtsDataModule from valle.models import add_model_arguments, get_model from valle.modules.optim import Eden, Eve, ScaledAdam from valle.modules.scheduler import get_scheduler LRSchedulerType = torch.optim.lr_scheduler._LRScheduler def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: if isinstance(model, DDP): # get underlying nn.Module model = model.module for module in model.modules(): if hasattr(module, "batch_count"): module.batch_count = batch_count def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--world-size", type=int, default=1, help="Number of GPUs for DDP training.", ) parser.add_argument( "--master-port", type=int, default=12354, help="Master port to use for DDP training.", ) parser.add_argument( "--tensorboard", type=str2bool, default=True, help="Should various information be logged in tensorboard.", ) parser.add_argument( "--num-epochs", type=int, default=20, help="Number of epochs to train.", ) parser.add_argument( "--start-epoch", type=int, default=1, help="""Resume training from this epoch. It should be positive. If larger than 1, it will load checkpoint from exp-dir/epoch-{start_epoch-1}.pt """, ) parser.add_argument( "--start-batch", type=int, default=0, help="""If positive, --start-epoch is ignored and it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt """, ) parser.add_argument( "--exp-dir", type=str, default="exp/valle_dev", help="""The experiment dir. It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, ) parser.add_argument( "--optimizer-name", type=str, default="ScaledAdam", help="The optimizer.", ) parser.add_argument( "--scheduler-name", type=str, default="Eden", help="The scheduler.", ) parser.add_argument( "--base-lr", type=float, default=0.05, help="The base learning rate." ) parser.add_argument( "--warmup-steps", type=int, default=200, help="""Number of steps that affects how rapidly the learning rate decreases. We suggest not to change this.""", ) parser.add_argument( "--seed", type=int, default=42, help="The seed for random generators intended for reproducibility", ) parser.add_argument( "--inf-check", type=str2bool, default=False, help="Add hooks to check for infinite module outputs and gradients.", ) parser.add_argument( "--save-every-n", type=int, default=10000, help="""Save checkpoint after processing this number of batches" periodically. We save checkpoint to exp-dir/ whenever params.batch_idx_train % save_every_n == 0. The checkpoint filename has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt' Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the end of each epoch where `xxx` is the epoch number counting from 0. """, ) parser.add_argument( "--keep-last-k", type=int, default=20, help="""Only keep this number of checkpoints on disk. For instance, if it is 3, there are only 3 checkpoints in the exp-dir with filenames `checkpoint-xxx.pt`. It does not affect checkpoints with name `epoch-xxx.pt`. """, ) parser.add_argument( "--average-period", type=int, default=0, help="""Update the averaged model, namely `model_avg`, after processing this number of batches. `model_avg` is a separate version of model, in which each floating-point parameter is the average of all the parameters from the start of training. Each time we take the average, we do: `model_avg = model * (average_period / batch_idx_train) + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. """, ) parser.add_argument( "--accumulate-grad-steps", type=int, default=1, help="""update gradient when batch_idx_train % accumulate_grad_steps == 0. """, ) parser.add_argument( "--dtype", type=str, default="float32", help="Training dtype: float32 bfloat16 float16.", ) parser.add_argument( "--filter-min-duration", type=float, default=0.0, help="Keep only utterances with duration > this.", ) parser.add_argument( "--filter-max-duration", type=float, default=20.0, help="Keep only utterances with duration < this.", ) parser.add_argument( "--train-stage", type=int, default=0, help="""0: train all modules, For VALL-E, support 1: AR Decoder 2: NAR Decoder(s) """, ) add_model_arguments(parser) return parser def get_params() -> AttributeDict: """Return a dict containing training parameters. All training related parameters that are not passed from the commandline are saved in the variable `params`. Commandline options are merged into `params` after they are parsed, so you can also access them via `params`. Explanation of options saved in `params`: - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. - best_valid_loss: Best validation loss so far. It is used to select the model that has the lowest validation loss. It is updated during the training. - best_train_epoch: It is the epoch that has the best training loss. - best_valid_epoch: It is the epoch that has the best validation loss. - batch_idx_train: Used to writing statistics to tensorboard. It contains number of batches trained so far across epochs. - log_interval: Print training loss if batch_idx % log_interval` is 0 - reset_interval: Reset statistics if batch_idx % reset_interval is 0 - valid_interval: Run validation if batch_idx % valid_interval is 0 """ params = AttributeDict( { "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, "best_valid_epoch": -1, "batch_idx_train": 0, "log_interval": 100, # 10: debug 100: train "reset_interval": 200, "valid_interval": 10000, # parameters for TTS "env_info": get_env_info(), } ) return params def load_checkpoint_if_available( params: AttributeDict, model: nn.Module, model_avg: nn.Module = None, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[LRSchedulerType] = None, ) -> Optional[Dict[str, Any]]: """Load checkpoint from file. If params.start_batch is positive, it will load the checkpoint from `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if params.start_epoch is larger than 1, it will load the checkpoint from `params.start_epoch - 1`. Apart from loading state dict for `model` and `optimizer` it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, and `best_valid_loss` in `params`. Args: params: The return value of :func:`get_params`. model: The training model. model_avg: The stored model averaged from the start of training. optimizer: The optimizer that we are using. scheduler: The scheduler that we are using. Returns: Return a dict containing previously saved training info. """ if params.start_batch > 0: filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" elif params.start_epoch > 1: filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" else: return None assert filename.is_file(), f"{filename} does not exist!" if isinstance(model, DDP): raise ValueError("load_checkpoint before DDP") saved_params = load_checkpoint( filename, model=model, model_avg=model_avg, optimizer=optimizer, scheduler=scheduler, ) saved_stage = saved_params.get("train_stage", 0) if params.train_stage != saved_stage: # switch training stage if params.train_stage and saved_stage: # switch between 1 and 2 params.start_epoch = 1 params.start_batch = 0 else: # switch between 0 and 1/2 assert params.num_epochs >= params.start_epoch params.batch_idx_train = saved_params["batch_idx_train"] for key in ["optimizer", "grad_scaler", "sampler"]: if key in saved_params: saved_params.pop(key) # when base on stage 0, we keep scheduler if saved_stage != 0: for key in ["scheduler"]: if key in saved_params: saved_params.pop(key) best_train_filename = params.exp_dir / "best-train-loss.pt" if best_train_filename.is_file(): copyfile( src=best_train_filename, dst=params.exp_dir / f"best-train-loss-stage{saved_stage}.pt", ) best_valid_filename = params.exp_dir / "best-valid-loss.pt" if best_valid_filename.is_file(): copyfile( src=best_valid_filename, dst=params.exp_dir / f"best-valid-loss-stage{saved_stage}.pt", ) else: keys = [ "best_train_epoch", "best_valid_epoch", "batch_idx_train", "best_train_loss", "best_valid_loss", ] for k in keys: params[k] = saved_params[k] if params.start_batch > 0: if "cur_epoch" in saved_params: params["start_epoch"] = saved_params["cur_epoch"] return saved_params def save_checkpoint( params: AttributeDict, model: Union[nn.Module, DDP], model_avg: Optional[nn.Module] = None, optimizer: Optional[torch.optim.Optimizer] = None, scheduler: Optional[LRSchedulerType] = None, sampler: Optional[CutSampler] = None, scaler: Optional[GradScaler] = None, rank: int = 0, ) -> None: """Save model, optimizer, scheduler and training stats to file. Args: params: It is returned by :func:`get_params`. model: The training model. model_avg: The stored model averaged from the start of training. optimizer: The optimizer used in the training. sampler: The sampler for the training dataset. scaler: The scaler used for mix precision training. """ if rank != 0: return filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" save_checkpoint_impl( filename=filename, model=model, model_avg=model_avg, params=params, optimizer=optimizer, scheduler=scheduler, sampler=sampler, scaler=scaler, rank=rank, ) if params.best_train_epoch == params.cur_epoch: best_train_filename = params.exp_dir / "best-train-loss.pt" copyfile(src=filename, dst=best_train_filename) if params.best_valid_epoch == params.cur_epoch: best_valid_filename = params.exp_dir / "best-valid-loss.pt" copyfile(src=filename, dst=best_valid_filename) def compute_loss( params: AttributeDict, model: Union[nn.Module, DDP], batch: dict, is_training: bool, ) -> Tuple[Tensor, MetricsTracker]: """ Compute transducer loss given the model and its inputs. Args: params: Parameters for training. See :func:`get_params`. model: The model for training. It is an instance of Zipformer in our case. batch: A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` for the content in it. is_training: True for training. False for validation. When it is True, this function enables autograd during computation; when it is False, it disables autograd. warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. """ device = ( model.device if isinstance(model, DDP) else next(model.parameters()).device ) # at entry, TextTokens is (N, P) text_tokens = batch["text_tokens"].to(device) text_tokens_lens = batch["text_tokens_lens"].to(device) assert text_tokens.ndim == 2 audio_features = batch["audio_features"].to(device) audio_features_lens = batch["audio_features_lens"].to(device) assert audio_features.ndim == 3 with torch.set_grad_enabled(is_training): predicts, loss, metrics = model( x=text_tokens, x_lens=text_tokens_lens, y=audio_features, y_lens=audio_features_lens, train_stage=params.train_stage, ) assert loss.requires_grad == is_training info = MetricsTracker() with warnings.catch_warnings(): warnings.simplefilter("ignore") info["frames"] = (audio_features_lens).sum().item() # Note: We use reduction=sum while computing the loss. info["loss"] = loss.detach().cpu().item() for metric in metrics: info[metric] = metrics[metric].detach().cpu().item() del metrics return predicts, loss, info def compute_validation_loss( params: AttributeDict, model: Union[nn.Module, DDP], valid_dl: torch.utils.data.DataLoader, world_size: int = 1, ) -> MetricsTracker: """Run the validation process.""" model.eval() tot_loss = MetricsTracker() for batch_idx, batch in enumerate(valid_dl): predicts, loss, loss_info = compute_loss( params=params, model=model, batch=batch, is_training=False, ) assert loss.requires_grad is False tot_loss = tot_loss + loss_info if world_size > 1: tot_loss.reduce(loss.device) loss_value = tot_loss["loss"] / tot_loss["frames"] if loss_value < params.best_valid_loss: params.best_valid_epoch = params.cur_epoch params.best_valid_loss = loss_value if False: from valle.models import visualize output_dir = Path( f"{params.exp_dir}/eval/step-{params.batch_idx_train:06d}" ) output_dir.mkdir(parents=True, exist_ok=True) visualize(predicts, batch, output_dir=output_dir) return tot_loss def train_one_epoch( params: AttributeDict, model: Union[nn.Module, DDP], optimizer: torch.optim.Optimizer, scheduler: LRSchedulerType, train_dl: torch.utils.data.DataLoader, valid_dl: torch.utils.data.DataLoader, rng: random.Random, scaler: GradScaler, model_avg: Optional[nn.Module] = None, tb_writer: Optional[SummaryWriter] = None, world_size: int = 1, rank: int = 0, ) -> None: """Train the model for one epoch. The training loss from the mean of all frames is saved in `params.train_loss`. It runs the validation process every `params.valid_interval` batches. Args: params: It is returned by :func:`get_params`. model: The model for training. optimizer: The optimizer we are using. scheduler: The learning rate scheduler, we call step() every step. train_dl: Dataloader for the training dataset. valid_dl: Dataloader for the validation dataset. rng: Random for selecting. scaler: The scaler used for mix precision training. model_avg: The stored model averaged from the start of training. tb_writer: Writer to write log messages to tensorboard. world_size: Number of nodes in DDP training. If it is 1, DDP is disabled. rank: The rank of the node in DDP training. If no DDP is used, it should be set to 0. """ model.train() tot_loss = MetricsTracker() iter_dl = iter(train_dl) dtype, enabled = torch.float32, False if params.dtype in ["bfloat16", "bf16"]: dtype, enabled = torch.bfloat16, True elif params.dtype in ["float16", "fp16"]: dtype, enabled = torch.float16, True def evaluate(): logging.info("Computing validation loss") with torch.cuda.amp.autocast(dtype=dtype): valid_info = compute_validation_loss( params=params, model=model, valid_dl=valid_dl, world_size=world_size, ) model.train() logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") logging.info( f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" ) if tb_writer is not None: valid_info.write_summary( tb_writer, "train/valid_", params.batch_idx_train ) batch_idx = 0 while True: try: batch = next(iter_dl) except StopIteration: logging.info("Reaches end of dataloader.") if params.batch_idx_train % params.accumulate_grad_steps: scaler.step(optimizer) scaler.update() optimizer.zero_grad() break batch_idx += 1 params.batch_idx_train += 1 batch_size = len(batch["text"]) try: with torch.cuda.amp.autocast(dtype=dtype, enabled=enabled): _, loss, loss_info = compute_loss( params=params, model=model, batch=batch, is_training=True, ) # summary stats tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info # NOTE: We use reduction==sum and loss is computed over utterances # in the batch and there is no normalization to it so far. scaler.scale(loss).backward() if params.batch_idx_train >= params.accumulate_grad_steps: if params.batch_idx_train % params.accumulate_grad_steps == 0: if params.optimizer_name not in ["ScaledAdam", "Eve"]: # Unscales the gradients of optimizer's assigned params in-place scaler.unscale_(optimizer) # Since the gradients of optimizer's assigned params are unscaled, clips as usual: torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) scaler.step(optimizer) scaler.update() optimizer.zero_grad() for k in range(params.accumulate_grad_steps): if isinstance(scheduler, Eden): scheduler.step_batch(params.batch_idx_train) else: scheduler.step() set_batch_count(model, params.batch_idx_train) except: # noqa display_and_save_batch(batch, params=params) raise if params.average_period > 0: if ( rank == 0 and params.batch_idx_train > 0 and params.batch_idx_train % params.average_period == 0 ): update_averaged_model( params=params, model_cur=model, model_avg=model_avg, ) if ( params.batch_idx_train > 0 and params.batch_idx_train % params.save_every_n == 0 ): save_checkpoint_with_global_batch_idx( out_dir=params.exp_dir, global_batch_idx=params.batch_idx_train, model=model, model_avg=model_avg, params=params, optimizer=optimizer, scheduler=scheduler, sampler=train_dl.sampler, scaler=scaler, rank=rank, ) remove_checkpoints( out_dir=params.exp_dir, topk=params.keep_last_k, rank=rank, ) if batch_idx % 100 == 0 and params.dtype in ["float16", "fp16"]: # If the grad scale was less than 1, try increasing it. The _growth_interval # of the grad scaler is configurable, but we can't configure it to have different # behavior depending on the current grad scale. cur_grad_scale = scaler._scale.item() if cur_grad_scale < 1.0 or ( cur_grad_scale < 8.0 and batch_idx % 400 == 0 ): scaler.update(cur_grad_scale * 2.0) if cur_grad_scale < 0.01: logging.warning(f"Grad scale is small: {cur_grad_scale}") if cur_grad_scale < 1.0e-05: raise RuntimeError( f"grad_scale is too small, exiting: {cur_grad_scale}" ) if batch_idx % params.log_interval == 0: cur_lr = scheduler.get_last_lr()[0] cur_grad_scale = ( scaler._scale.item() if params.dtype in ["float16", "fp16"] else 1.0 ) logging.info( f"Epoch {params.cur_epoch}, " f"batch {batch_idx}, train_loss[{loss_info}], " f"tot_loss[{tot_loss}], " f"batch size: {batch_size}, " f"lr: {cur_lr:.2e}" + ( f", grad_scale: {cur_grad_scale}" if params.dtype in ["float16", "fp16"] else "" ) ) if tb_writer is not None: tb_writer.add_scalar( "train/learning_rate", cur_lr, params.batch_idx_train ) loss_info.write_summary( tb_writer, "train/current_", params.batch_idx_train, ) tot_loss.write_summary( tb_writer, "train/tot_", params.batch_idx_train ) tot_loss.write_summary( tb_writer, "train/tot_", params.batch_idx_train ) if params.dtype in ["float16", "fp16"]: tb_writer.add_scalar( "train/grad_scale", cur_grad_scale, params.batch_idx_train, ) if params.batch_idx_train % params.valid_interval == 0: evaluate() if True: # eval every epoch evaluate() loss_value = tot_loss["loss"] / tot_loss["frames"] params.train_loss = loss_value if params.train_loss < params.best_train_loss: params.best_train_epoch = params.cur_epoch params.best_train_loss = params.train_loss def filter_short_and_long_utterances( cuts: CutSet, min_duration: float, max_duration: float ) -> CutSet: def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 0.6 second and 20 seconds if c.duration < min_duration or c.duration > max_duration: # logging.warning( # f"Exclude cut with ID {c.id} from training. Duration: {c.duration}" # ) return False return True cuts = cuts.filter(remove_short_and_long_utt) return cuts def run(rank, world_size, args): """ Args: rank: It is a value between 0 and `world_size-1`, which is passed automatically by `mp.spawn()` in :func:`main`. The node with rank 0 is responsible for saving checkpoint. world_size: Number of GPUs for DDP training. args: The return value of get_parser().parse_args() """ params = get_params() params.update(vars(args)) fix_random_seed(params.seed) rng = random.Random(params.seed) if world_size > 1: setup_dist(rank, world_size, params.master_port) setup_logger(f"{params.exp_dir}/log/log-train") logging.info("Training started") if args.tensorboard and rank == 0: if params.train_stage: tb_writer = SummaryWriter( log_dir=f"{params.exp_dir}/tensorboard_stage{params.train_stage}" ) else: tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") else: tb_writer = None device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", rank) # https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True logging.info(f"Device: {device}") logging.info(params) logging.info("About to create model") model = get_model(params) num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") assert params.save_every_n >= params.average_period model_avg: Optional[nn.Module] = None if rank == 0 and params.average_period > 0: # model_avg is only used with rank 0 model_avg = copy.deepcopy(model).to(torch.float64) assert params.start_epoch > 0, params.start_epoch checkpoints = load_checkpoint_if_available( params=params, model=model, model_avg=model_avg ) model.to(device) if world_size > 1: logging.info("Using DDP") model = DDP(model, device_ids=[rank], find_unused_parameters=True) if params.train_stage: _model = model.module if isinstance(model, DDP) else model model_parameters = _model.stage_parameters(params.train_stage) else: model_parameters = model.parameters() if params.optimizer_name == "ScaledAdam": parameters_names = [] if params.train_stage: # != 0 _model = model.module if isinstance(model, DDP) else model parameters_names.append( [ name_param_pair[0] for name_param_pair in _model.stage_named_parameters( params.train_stage ) ] ) else: parameters_names.append( [ name_param_pair[0] for name_param_pair in model.named_parameters() ] ) optimizer = ScaledAdam( model_parameters, lr=params.base_lr, betas=(0.9, 0.95), clipping_scale=2.0, parameters_names=parameters_names, show_dominant_parameters=False, clipping_update_period=1000, ) elif params.optimizer_name == "Eve": optimizer = Eve( model_parameters, lr=params.base_lr, betas=(0.9, 0.98), ) elif params.optimizer_name == "AdamW": optimizer = torch.optim.AdamW( model_parameters, lr=params.base_lr, betas=(0.9, 0.95), weight_decay=1e-2, eps=1e-8, ) elif params.optimizer_name == "Adam": optimizer = torch.optim.Adam( model_parameters, lr=params.base_lr, betas=(0.9, 0.95), eps=1e-8, ) else: raise NotImplementedError() scheduler = get_scheduler(params, optimizer) optimizer.zero_grad() if checkpoints and "optimizer" in checkpoints: logging.info("Loading optimizer state dict") optimizer.load_state_dict(checkpoints["optimizer"]) if ( checkpoints and "scheduler" in checkpoints and checkpoints["scheduler"] is not None ): logging.info("Loading scheduler state dict") scheduler.load_state_dict(checkpoints["scheduler"]) if params.inf_check: register_inf_check_hooks(model) if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: sampler_state_dict = checkpoints["sampler"] else: sampler_state_dict = None dataset = TtsDataModule(args) train_cuts = dataset.train_cuts() valid_cuts = dataset.dev_cuts() train_cuts = filter_short_and_long_utterances( train_cuts, params.filter_min_duration, params.filter_max_duration ) valid_cuts = filter_short_and_long_utterances( valid_cuts, params.filter_min_duration, params.filter_max_duration ) train_dl = dataset.train_dataloaders( train_cuts, sampler_state_dict=sampler_state_dict ) valid_dl = dataset.valid_dataloaders(valid_cuts) if True: scan_pessimistic_batches_for_oom( model=model, train_dl=train_dl, optimizer=optimizer, params=params, ) scaler = GradScaler( enabled=(params.dtype in ["fp16", "float16"]), init_scale=1.0 ) if checkpoints and "grad_scaler" in checkpoints: logging.info("Loading grad scaler state dict") scaler.load_state_dict(checkpoints["grad_scaler"]) for epoch in range(params.start_epoch, params.num_epochs + 1): if isinstance(scheduler, Eden): scheduler.step_epoch(epoch - 1) fix_random_seed(params.seed + epoch - 1) train_dl.sampler.set_epoch(epoch - 1) if tb_writer is not None: tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) params.cur_epoch = epoch train_one_epoch( params=params, model=model, model_avg=model_avg, optimizer=optimizer, scheduler=scheduler, train_dl=train_dl, valid_dl=valid_dl, rng=rng, scaler=scaler, tb_writer=tb_writer, world_size=world_size, rank=rank, ) save_checkpoint( params=params, model=model, model_avg=model_avg, optimizer=optimizer, scheduler=scheduler, sampler=train_dl.sampler, scaler=scaler, rank=rank, ) logging.info("Done!") if world_size > 1: torch.distributed.barrier() cleanup_dist() def display_and_save_batch( batch: dict, params: AttributeDict, ) -> None: """Display the batch statistics and save the batch into disk. Args: batch: A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` for the content in it. params: Parameters for training. See :func:`get_params`. """ from lhotse.utils import uuid4 filename = f"{params.exp_dir}/batch-{uuid4()}.pt" logging.info(f"Saving batch to {filename}") torch.save(batch, filename) def scan_pessimistic_batches_for_oom( model: Union[nn.Module, DDP], train_dl: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, params: AttributeDict, ): from lhotse.dataset import find_pessimistic_batches logging.info( "Sanity check -- see if any of the batches in epoch 1 would cause OOM." ) batches, crit_values = find_pessimistic_batches(train_dl.sampler) dtype = torch.float32 if params.dtype in ["bfloat16", "bf16"]: dtype = torch.bfloat16 elif params.dtype in ["float16", "fp16"]: dtype = torch.float16 for criterion, cuts in batches.items(): batch = train_dl.dataset[cuts] try: with torch.cuda.amp.autocast(dtype=dtype): _, loss, _ = compute_loss( params=params, model=model, batch=batch, is_training=True, ) loss.backward() optimizer.zero_grad() except Exception as e: if "CUDA out of memory" in str(e): logging.error( "Your GPU ran out of memory with the current " "max_duration setting. We recommend decreasing " "max_duration and trying again.\n" f"Failing criterion: {criterion} " f"(={crit_values[criterion]}) ..." ) display_and_save_batch(batch, params=params) raise logging.info( f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" ) def main(): parser = get_parser() TtsDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) world_size = args.world_size assert world_size >= 1 if world_size > 1: mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) else: run(rank=0, world_size=1, args=args) torch.set_num_threads(1) torch.set_num_interop_threads(1) if __name__ == "__main__": main()
EXA-1-master
exa/models/valle/vall-e-main/valle/bin/trainer.py
# Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from icefall.utils import AttributeDict from torchmetrics.classification import MulticlassAccuracy from valle.data.input_strategies import PromptedFeatures from valle.models import NUM_MEL_BINS, get_model class TestModel(unittest.TestCase): @classmethod def setUpClass(cls): cls.devices = [torch.device("cpu")] if torch.cuda.is_available(): cls.devices.append(torch.device("cuda", 0)) if torch.cuda.device_count() > 1: torch.cuda.set_device(1) cls.devices.append(torch.device("cuda", 1)) def test_vallf(self): params = AttributeDict() params.decoder_dim = 64 params.nhead = 16 params.num_decoder_layers = 4 x = torch.from_numpy(np.random.randint(0, 100, size=[4, 8])) x_lens = torch.from_numpy(np.random.randint(4, 8, size=[4])) x_lens[-1] = 8 enroll_x_lens = torch.from_numpy(np.random.randint(1, 3, size=[4])) y = torch.from_numpy(np.random.randint(0, 1000, size=[4, 16, 8])) y_lens = torch.from_numpy(np.random.randint(8, 16, size=[4])) y_lens[-1] = 16 params.norm_first = True params.add_prenet = False params.model_name = "VALL-F" params.share_embedding = True params.scale_factor = 1.0 for device in self.devices: for mode in [0, 1, 2]: params.prefix_mode = mode # VALL-E model = get_model(params) # VALL-F model.to(device) x = x.to(device) x_lens = x_lens.to(device) y = y.to(device) y_lens = y_lens.to(device) # Training for train_stage in [0, 1, 2]: codes, loss, metrics = model( x, x_lens, y, y_lens, train_stage=train_stage ) # Inference model.eval() codes = model.inference( x[-1:], x_lens[-1:], y[-1:], enroll_x_lens=enroll_x_lens[-1:], ) def test_valle(self): params = AttributeDict() params.decoder_dim = 64 params.nhead = 16 params.num_decoder_layers = 4 x = torch.from_numpy(np.random.randint(0, 100, size=[4, 8])) x_lens = torch.from_numpy(np.random.randint(4, 8, size=[4])) x_lens[-1] = 8 enroll_x_lens = torch.from_numpy(np.random.randint(1, 3, size=[4])) y = torch.from_numpy(np.random.randint(0, 1000, size=[4, 16, 8])) y_lens = torch.from_numpy(np.random.randint(8, 16, size=[4])) y_lens[-1] = 16 params.norm_first = False params.add_prenet = True params.model_name = "VALL-E" params.share_embedding = True params.scale_factor = 1.0 for device in self.devices: for mode in [0, 1, 2]: params.prefix_mode = mode # VALL-E model = get_model(params) model.to(device) x = x.to(device) x_lens = x_lens.to(device) y = y.to(device) y_lens = y_lens.to(device) # Training codes, loss, metrics = model(x, x_lens, y, y_lens) # Inference model.eval() codes = model.inference( x[-1:], x_lens[-1:], y[-1:], enroll_x_lens=enroll_x_lens ) params.scale_factor = 0.5 def test_vallef_prefix4(self): params = AttributeDict() params.decoder_dim = 64 params.nhead = 16 params.num_decoder_layers = 4 x = torch.from_numpy(np.random.randint(0, 100, size=[4, 8])) x_lens = torch.from_numpy(np.random.randint(4, 8, size=[4])) x_lens[-1] = 8 enroll_x_lens = torch.from_numpy(np.random.randint(1, 3, size=[4])) y = torch.from_numpy(np.random.randint(0, 1000, size=[4, 16, 8])) y_lens = torch.from_numpy(np.random.randint(8, 16, size=[4])) y_lens[-1] = 16 prompts = torch.from_numpy(np.random.randint(0, 1000, size=[4, 12, 8])) prompts_lens = torch.from_numpy(np.random.randint(12, 13, size=[4])) params.norm_first = False params.add_prenet = True params.share_embedding = False params.scale_factor = 1.0 for device in self.devices: for model_name in ["VALL-E", "VALL-F"]: for mode in [4]: params.prefix_mode = mode params.model_name = model_name # VALL-E model = get_model(params) model.to(device) x = x.to(device) x_lens = x_lens.to(device) y = y.to(device) _y = PromptedFeatures(prompts, y).to(device) _y_lens = PromptedFeatures(prompts_lens, y_lens).to(device) # Training codes, loss, metrics = model(x, x_lens, _y, _y_lens) # Inference model.eval() codes = model.inference( x[-1:], x_lens[-1:], y[-1:], enroll_x_lens=enroll_x_lens ) def test_topmetric(self): metric_top10 = MulticlassAccuracy(1024, top_k=10, average="micro") metric_top1 = MulticlassAccuracy(1024, top_k=1, average="micro") batch_size, seq_len = 4, 16 targets = np.random.randint(0, 1000, size=[batch_size, seq_len]) logits = np.random.random([batch_size, 1024, seq_len]).astype( np.float32 ) larger_logits = np.clip(logits, -1.0, 1.0) smaller_logits = np.clip(logits, -1.0, 1.0) for b in range(batch_size): for t in range(seq_len): assert targets[b, t] >= 0 larger_logits[b, targets[b, t], t] = 2.0 smaller_logits[b, targets[b, t], t] = -2.0 targets = torch.from_numpy(targets) larger_logits = torch.from_numpy(larger_logits) smaller_logits = torch.from_numpy(smaller_logits) for device in self.devices: metric_top10.to(device) metric_top1.to(device) targets = targets.to(device) one = metric_top10(larger_logits.to(device), targets) assert one.cpu().item() == 1.0, one.cpu().item() zero = metric_top1(smaller_logits.to(device), targets) assert zero.cpu().item() == 0.0, zero.cpu().item() half = metric_top1( torch.concat( [smaller_logits.to(device), larger_logits.to(device)], dim=2 ), torch.concat([targets, targets], dim=1), ) assert half.cpu().item() == 0.5, half.cpu().item() def test_transformer(self): params = AttributeDict() params.decoder_dim = 64 params.nhead = 4 params.num_decoder_layers = 4 x = torch.from_numpy(np.random.randint(0, 100, size=[4, 8])) x_lens = torch.from_numpy(np.random.randint(4, 8, size=[4])) x_lens[-1] = 8 y = torch.from_numpy( np.random.random((4, 16, NUM_MEL_BINS)).astype(np.float32) ) y_lens = torch.from_numpy(np.random.randint(8, 16, size=[4])) y_lens[-1] = 16 params.model_name = "Transformer" params.norm_first = False params.add_prenet = True for device in self.devices: # Transformer model = get_model(params) num_param = sum([p.numel() for p in model.parameters()]) model.to(device) x = x.to(device) x_lens = x_lens.to(device) y = y.to(device) y_lens = y_lens.to(device) # Training codes, loss, metrics = model(x, x_lens, y, y_lens) # Inference model.eval() codes = model.inference(x[-1:], x_lens[-1:]) params.add_prenet = False if __name__ == "__main__": unittest.main()
EXA-1-master
exa/models/valle/vall-e-main/valle/tests/model_test.py
# Copyright 2023 (authors: Zhao Ming) # Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from valle.data import TextTokenizer class TestTextTokenizer(unittest.TestCase): def test_espeak(self): text_tokenizer = TextTokenizer(backend="espeak") for (_input, _target) in [ ("The two parties, the sheep and the wolves, met each other.", ['ð', 'ə', '_', 't', 'uː', '_', 'p', 'ɑːɹ', 'ɾ', 'i', 'z', ',', '_', 'ð']), ("Mother! dear father! do you hear me?", ['m', 'ʌ', 'ð', 'ɚ', '!', '_', 'd', 'ɪɹ', '_', 'f', 'ɑː', 'ð', 'ɚ', '!']), ("\"Whoever thou art,\" She exclaimed, suddenly seizing Rodolfo's hand,", ['"', 'h', 'uː', 'ɛ', 'v', 'ɚ', '_', 'ð', 'aʊ', '_', 'ɑːɹ', 't', ',', '"', '_', 'ʃ', 'iː', '_', 'ɛ', 'k', 's', 'k', 'l', 'eɪ', 'm', 'd', ',', '_', 's', 'ʌ', 'd', 'ə', 'n', 'l', 'i', '_', 's', 'iː', 'z', 'ɪ', 'ŋ', '_', 'ɹ', 'ə', 'd', 'ɑː', 'l', 'f', 'oʊ', 'z', '_', 'h', 'æ', 'n', 'd', ',']) ]: phonemized = text_tokenizer(_input) self.assertEqual(phonemized[0][:len(_target)], _target) def test_pypinyin(self): text_tokenizer = TextTokenizer(backend="pypinyin") for (_input, _target) in [ ("你好这是测试", ["ni3", '-', "hao3", '-', "zhe4", '-', "shi4", '-', "ce4", '-', "shi4"]), ("\"你好\", 这是测试.", ["\"", "ni3", '-', "hao3", "\"", ",", '_', "zhe4", '-', "shi4", '-', "ce4", '-', "shi4", "."]), ("此项 工作 还能 怎么 改进", ['ci3', '-', 'xiang4', '_', 'gong1', '-', 'zuo4', '_', 'hai2', '-', 'neng2', '_', 'zen3', '-', 'me5', '_', 'gai3', '-', 'jin4']), # AISHELL ]: phonemized = text_tokenizer(_input) self.assertEqual(phonemized[0], _target) def test_pypinyin_initials_finals(self): text_tokenizer = TextTokenizer(backend="pypinyin_initials_finals") for (_input, _target) in [ ("你好这是测试", ["n", "i3", "-", "h", "ao3", "-", "zh", "e4", "-", "sh", "i4", "-", "c", "e4", "-", "sh", "i4"], ), ("\"你好.这是测试.", ["\"", "n", "i3", "-", "h", "ao3", ".", "zh", "e4", "-", "sh", "i4", "-", "c", "e4", "-", "sh", "i4", "."], ), ("\"你好. 这是测试.", ["\"", "n", "i3", "-", "h", "ao3", ".", "_", "zh", "e4", "-", "sh", "i4", "-", "c", "e4", "-", "sh", "i4", "."], ), ("此项 工作 还能 怎么 改进", ['c', 'i3', '-', 'x', 'iang4', '_', 'g', 'ong1', '-', 'z', 'uo4', '_', 'h', 'ai2', '-', 'n', 'eng2', '_', 'z', 'en3', '-', 'm', 'e5', '_', 'g', 'ai3', '-', 'j', 'in4']), # AISHELL ]: phonemized = text_tokenizer(_input) self.assertListEqual(phonemized[0], _target) if __name__ == "__main__": unittest.main()
EXA-1-master
exa/models/valle/vall-e-main/valle/tests/data/tokenizer_test.py
# Copyright 2020 Mobvoi Inc. (authors: Fangjun Kuang) # # See ../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from dataclasses import field from typing import Dict from typing import Generic from typing import List from typing import Optional from typing import TypeVar from typing import Union Symbol = TypeVar('Symbol') # Disable __repr__ otherwise it could freeze e.g. Jupyter. @dataclass(repr=False) class SymbolTable(Generic[Symbol]): '''SymbolTable that maps symbol IDs, found on the FSA arcs to actual objects. These objects can be arbitrary Python objects that can serve as keys in a dictionary (i.e. they need to be hashable and immutable). The SymbolTable can only be read to/written from disk if the symbols are strings. ''' _id2sym: Dict[int, Symbol] = field(default_factory=dict) '''Map an integer to a symbol. ''' _sym2id: Dict[Symbol, int] = field(default_factory=dict) '''Map a symbol to an integer. ''' _next_available_id: int = 1 '''A helper internal field that helps adding new symbols to the table efficiently. ''' eps: Symbol = '<eps>' '''Null symbol, always mapped to index 0. ''' def __post_init__(self): for idx, sym in self._id2sym.items(): assert self._sym2id[sym] == idx assert idx >= 0 for sym, idx in self._sym2id.items(): assert idx >= 0 assert self._id2sym[idx] == sym if 0 not in self._id2sym: self._id2sym[0] = self.eps self._sym2id[self.eps] = 0 else: assert self._id2sym[0] == self.eps assert self._sym2id[self.eps] == 0 self._next_available_id = max(self._id2sym) + 1 @staticmethod def from_str(s: str) -> 'SymbolTable': '''Build a symbol table from a string. The string consists of lines. Every line has two fields separated by space(s), tab(s) or both. The first field is the symbol and the second the integer id of the symbol. Args: s: The input string with the format described above. Returns: An instance of :class:`SymbolTable`. ''' id2sym: Dict[int, str] = dict() sym2id: Dict[str, int] = dict() for line in s.split('\n'): fields = line.split() if len(fields) == 0: continue # skip empty lines assert len(fields) == 2, \ f'Expect a line with 2 fields. Given: {len(fields)}' sym, idx = fields[0], int(fields[1]) assert sym not in sym2id, f'Duplicated symbol {sym}' assert idx not in id2sym, f'Duplicated id {idx}' id2sym[idx] = sym sym2id[sym] = idx eps = id2sym.get(0, '<eps>') return SymbolTable(_id2sym=id2sym, _sym2id=sym2id, eps=eps) @staticmethod def from_file(filename: str) -> 'SymbolTable': '''Build a symbol table from file. Every line in the symbol table file has two fields separated by space(s), tab(s) or both. The following is an example file: .. code-block:: <eps> 0 a 1 b 2 c 3 Args: filename: Name of the symbol table file. Its format is documented above. Returns: An instance of :class:`SymbolTable`. ''' with open(filename, 'r', encoding='utf-8') as f: return SymbolTable.from_str(f.read().strip()) def to_str(self) -> str: ''' Returns: Return a string representation of this object. You can pass it to the method ``from_str`` to recreate an identical object. ''' s = '' for idx, symbol in sorted(self._id2sym.items()): s += f'{symbol} {idx}\n' return s def to_file(self, filename: str): '''Serialize the SymbolTable to a file. Every line in the symbol table file has two fields separated by space(s), tab(s) or both. The following is an example file: .. code-block:: <eps> 0 a 1 b 2 c 3 Args: filename: Name of the symbol table file. Its format is documented above. ''' with open(filename, 'w') as f: for idx, symbol in sorted(self._id2sym.items()): print(symbol, idx, file=f) def add(self, symbol: Symbol, index: Optional[int] = None) -> int: '''Add a new symbol to the SymbolTable. Args: symbol: The symbol to be added. index: Optional int id to which the symbol should be assigned. If it is not available, a ValueError will be raised. Returns: The int id to which the symbol has been assigned. ''' # Already in the table? Return its ID. if symbol in self._sym2id: return self._sym2id[symbol] # Specific ID not provided - use next available. if index is None: index = self._next_available_id # Specific ID provided but not available. if index in self._id2sym: raise ValueError(f"Cannot assign id '{index}' to '{symbol}' - " f"already occupied by {self._id2sym[index]}") self._sym2id[symbol] = index self._id2sym[index] = symbol # Update next available ID if needed if self._next_available_id <= index: self._next_available_id = index + 1 return index def get(self, k: Union[int, Symbol]) -> Union[Symbol, int]: '''Get a symbol for an id or get an id for a symbol Args: k: If it is an id, it tries to find the symbol corresponding to the id; if it is a symbol, it tries to find the id corresponding to the symbol. Returns: An id or a symbol depending on the given `k`. ''' if isinstance(k, int): return self._id2sym[k] else: return self._sym2id[k] def merge(self, other: 'SymbolTable') -> 'SymbolTable': '''Create a union of two SymbolTables. Raises an AssertionError if the same IDs are occupied by different symbols. Args: other: A symbol table to merge with ``self``. Returns: A new symbol table. ''' self._check_compatible(other) id2sym = {**self._id2sym, **other._id2sym} sym2id = {**self._sym2id, **other._sym2id} return SymbolTable(_id2sym=id2sym, _sym2id=sym2id, eps=self.eps) def _check_compatible(self, other: 'SymbolTable') -> None: # Epsilon compatibility assert self.eps == other.eps, f'Mismatched epsilon symbol: ' \ f'{self.eps} != {other.eps}' # IDs compatibility common_ids = set(self._id2sym).intersection(other._id2sym) for idx in common_ids: assert self[idx] == other[idx], f'ID conflict for id: {idx}, ' \ f'self[idx] = "{self[idx]}", ' \ f'other[idx] = "{other[idx]}"' # Symbols compatibility common_symbols = set(self._sym2id).intersection(other._sym2id) for sym in common_symbols: assert self[sym] == other[sym], f'ID conflict for id: {sym}, ' \ f'self[sym] = "{self[sym]}", ' \ f'other[sym] = "{other[sym]}"' def __getitem__(self, item: Union[int, Symbol]) -> Union[Symbol, int]: return self.get(item) def __contains__(self, item: Union[int, Symbol]) -> bool: if isinstance(item, int): return item in self._id2sym else: return item in self._sym2id def __len__(self) -> int: return len(self._id2sym) def __eq__(self, other: 'SymbolTable') -> bool: if len(self) != len(other): return False for s in self.symbols: if self[s] != other[s]: return False return True @property def ids(self) -> List[int]: '''Returns a list of integer IDs corresponding to the symbols. ''' ans = list(self._id2sym.keys()) ans.sort() return ans @property def symbols(self) -> List[Symbol]: '''Returns a list of symbols (e.g., strings) corresponding to the integer IDs. ''' ans = list(self._sym2id.keys()) ans.sort() return ans
EXA-1-master
exa/models/valle/vall-e-main/valle/utils/symbol_table.py
from .symbol_table import SymbolTable
EXA-1-master
exa/models/valle/vall-e-main/valle/utils/__init__.py
# Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from typing import Iterator, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from icefall.utils import make_pad_mask from torchmetrics.classification import MulticlassAccuracy from valle.data.input_strategies import PromptedFeatures from valle.modules.embedding import SinePositionalEmbedding, TokenEmbedding from valle.modules.transformer import ( AdaptiveLayerNorm, LayerNorm, TransformerDecoderLayer, TransformerEncoder, TransformerEncoderLayer, ) NUM_TEXT_TOKENS = 512 NUM_AUDIO_TOKENS = 1024 # EnCodec RVQ bins NUM_MEL_BINS = 100 # BigVGAN bigvgan_24khz_100band class Transpose(nn.Identity): """(N, T, D) -> (N, D, T)""" def forward(self, input: torch.Tensor) -> torch.Tensor: return input.transpose(1, 2) # NOTE: There are two ways to implement the model # 1) [VALL-F] standard TransformerDecoder, use x as memory # 2) [VALL-E] modified TransformerDecoder like GPT-x(e.g. causal TransformerEncoder), # use x as the prefix of decoder inputs class VALLF(nn.Module): """It implements https://arxiv.org/abs/2301.02111 "Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers" """ def __init__( self, d_model: int, nhead: int, num_layers: int, norm_first: bool = True, add_prenet: bool = False, decoder_cls: Union[ nn.TransformerDecoder, nn.TransformerEncoder ] = nn.TransformerDecoder, decoder_layer_cls: Union[ TransformerDecoderLayer, TransformerEncoderLayer ] = TransformerDecoderLayer, prefix_mode: int = 0, share_embedding: bool = True, nar_scale_factor: float = 1.0, ): """ Args: d_model: The number of expected features in the input (required). nhead: The number of heads in the multiheadattention models (required). num_layers: The number of sub-decoder-layers in the decoder (required). """ super().__init__() nar_d_model = int(d_model * nar_scale_factor) self.ar_text_embedding = TokenEmbedding(d_model, NUM_TEXT_TOKENS) # W_x self.nar_text_embedding = TokenEmbedding(nar_d_model, NUM_TEXT_TOKENS) self.ar_audio_embedding = TokenEmbedding(d_model, NUM_AUDIO_TOKENS + 1) self.nar_audio_embeddings = nn.ModuleList( [TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS + 1)] + [TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS) for i in range(7)] ) # W_a # PreNet if add_prenet: self.ar_text_prenet = nn.Sequential( Transpose(), nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), nn.BatchNorm1d(d_model), nn.ReLU(), nn.Dropout(0.5), nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), nn.BatchNorm1d(d_model), nn.ReLU(), nn.Dropout(0.5), nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), nn.BatchNorm1d(d_model), nn.ReLU(), nn.Dropout(0.5), Transpose(), nn.Linear(d_model, d_model), ) self.ar_audio_prenet = nn.Sequential( nn.Linear(d_model, 256), nn.ReLU(), nn.Dropout(0.25), nn.Linear(256, 256), nn.ReLU(), nn.Dropout(0.25), nn.Linear(256, d_model), ) self.nar_text_prenet = nn.Sequential( Transpose(), nn.Conv1d( nar_d_model, nar_d_model, kernel_size=5, padding="same" ), nn.BatchNorm1d(nar_d_model), nn.ReLU(), nn.Dropout(0.5), nn.Conv1d( nar_d_model, nar_d_model, kernel_size=5, padding="same" ), nn.BatchNorm1d(nar_d_model), nn.ReLU(), nn.Dropout(0.5), nn.Conv1d( nar_d_model, nar_d_model, kernel_size=5, padding="same" ), nn.BatchNorm1d(nar_d_model), nn.ReLU(), nn.Dropout(0.5), Transpose(), nn.Linear(nar_d_model, nar_d_model), ) self.nar_audio_prenet = nn.Sequential( nn.Linear(nar_d_model, 256), nn.ReLU(), nn.Dropout(0.25), nn.Linear(256, 256), nn.ReLU(), nn.Dropout(0.25), nn.Linear(256, nar_d_model), ) else: self.ar_text_prenet = nn.Identity() self.ar_audio_prenet = nn.Identity() self.nar_text_prenet = nn.Identity() self.nar_audio_prenet = nn.Identity() self.ar_text_position = SinePositionalEmbedding( d_model, dropout=0.1, scale=False, alpha=True, ) self.ar_audio_position = SinePositionalEmbedding( d_model, dropout=0.1, scale=False, alpha=True, ) self.nar_text_position = SinePositionalEmbedding( nar_d_model, dropout=0.0, scale=False, alpha=False, ) self.nar_audio_position = SinePositionalEmbedding( nar_d_model, dropout=0.1, scale=False, alpha=False, ) self.ar_decoder = decoder_cls( decoder_layer_cls( d_model, nhead, dim_feedforward=d_model * 4, dropout=0.1, batch_first=True, norm_first=norm_first, ), num_layers=num_layers, norm=LayerNorm(d_model) if norm_first else None, ) self.ar_predict_layer = nn.Linear( d_model, NUM_AUDIO_TOKENS + 1, bias=False ) self.num_heads = nhead self.nar_decoder = decoder_cls( decoder_layer_cls( nar_d_model, int(nhead * nar_scale_factor), dim_feedforward=nar_d_model * 4, dropout=0.1, batch_first=True, norm_first=norm_first, adaptive_layer_norm=True, ), num_layers=int(num_layers * nar_scale_factor), norm=AdaptiveLayerNorm(nar_d_model, norm=nn.LayerNorm(nar_d_model)) if norm_first else None, ) self.nar_predict_layers = nn.ModuleList( [ nn.Linear(nar_d_model, NUM_AUDIO_TOKENS, bias=False) for i in range(7) ] ) self.nar_stage_embeddings = nn.ModuleList( [TokenEmbedding(nar_d_model, 1) for i in range(7)] ) self.prefix_mode = prefix_mode if share_embedding: # We share the parameters of the output projection layer with the parameters of the acoustic embedding Wa # NOTE(Feiteng): In the experiment, this undermines accuracy # self.ar_predict_layer.weight = self.ar_audio_embedding.weight # We also share the parameters of the acoustic embedding layer and the output prediction layer, # which means the weights of the j-th prediction layer are the same as the (j + 1)-th acoustic embedding layer. for j in range(0, 6): self.nar_predict_layers[j].weight = self.nar_audio_embeddings[ j + 2 ].weight self.rng = random.Random(0) self.ar_accuracy_metric = MulticlassAccuracy( NUM_AUDIO_TOKENS + 1, top_k=10, average="micro", multidim_average="global", ignore_index=NUM_AUDIO_TOKENS, ) self.nar_accuracy_metric = MulticlassAccuracy( NUM_AUDIO_TOKENS + 1, top_k=10, average="micro", multidim_average="global", ignore_index=NUM_AUDIO_TOKENS, ) # self.apply(self._init_weights) # def _init_weights(self, module): # if isinstance(module, (nn.Linear)): # module.weight.data.normal_(mean=0.0, std=0.02) # if isinstance(module, nn.Linear) and module.bias is not None: # module.bias.data.zero_() # elif isinstance(module, nn.LayerNorm): # module.bias.data.zero_() # module.weight.data.fill_(1.0) # elif isinstance(module, nn.Embedding): # module.weight.data.normal_(mean=0.0, std=1.0) def stage_parameters(self, stage: int = 1) -> Iterator[nn.Parameter]: assert stage > 0 if stage == 1: for name, param in self.named_parameters(): if name.startswith("ar_"): print(f" AR parameter: {name}") yield param if stage == 2: for name, param in self.named_parameters(): if name.startswith("nar_"): print(f"NAR parameter: {name}") yield param def stage_named_parameters( self, stage: int = 1 ) -> Iterator[Tuple[str, nn.Parameter]]: assert stage > 0 if stage == 1: for pair in self.named_parameters(): if pair[0].startswith("ar_"): yield pair if stage == 2: for pair in self.named_parameters(): if pair[0].startswith("nar_"): yield pair def _prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes): # 5.1 For the NAR acoustic prompt tokens, we select a random segment waveform of 3 seconds # from the same utterance. # We implement this differently. if self.prefix_mode == 0: # no prefix prefix_len = 0 y_emb = self.nar_audio_embeddings[0](y) for j in range(1, nar_stage): # Formula (4) (5) y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j]) elif self.prefix_mode == 1: # prefix at begining int_low = (0.25 * y_lens.min()).type(torch.int64).item() prefix_len = torch.randint(int_low, int_low * 2, size=()).item() prefix_len = min(prefix_len, 225) # 24000/320 * 3s = 225 frames y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len]) y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:]) for j in range(1, 8): y_prompts += self.nar_audio_embeddings[j]( codes[:, :prefix_len, j] ) if j < nar_stage: y_emb += self.nar_audio_embeddings[j]( codes[:, prefix_len:, j] ) y_emb = torch.concat([y_prompts, y_emb], axis=1) elif self.prefix_mode in [2, 4]: if self.prefix_mode == 2: # random prefix prefix_len = min(225, int(0.25 * y_lens.min().item())) y_prompts_codes = [] for b in range(codes.shape[0]): start = self.rng.randint(0, y_lens[b].item() - prefix_len) y_prompts_codes.append(codes[b, start : start + prefix_len]) y_prompts_codes = torch.stack(y_prompts_codes, dim=0) y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0]) y_emb = self.nar_audio_embeddings[0](y) for j in range(1, 8): y_prompts += self.nar_audio_embeddings[j]( y_prompts_codes[..., j] ) if j < nar_stage: y_emb += self.nar_audio_embeddings[j](codes[..., j]) y_emb = torch.concat([y_prompts, y_emb], axis=1) prefix_len = 0 else: raise ValueError return y_emb, prefix_len def forward( self, x: torch.Tensor, x_lens: torch.Tensor, y: Union[torch.Tensor, PromptedFeatures], y_lens: Union[torch.Tensor, PromptedFeatures], reduction: str = "sum", train_stage: int = 0, ) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]: """ Args: x: A 2-D tensor of shape (N, S). x_lens: A 1-D tensor of shape (N,). It contains the number of tokens in `x` before padding. y: A 3-D tensor of shape (N, T, 8). y_lens: A 1-D tensor of shape (N,). It contains the number of tokens in `x` before padding. train_stage: 0: AR & NAR modules, 1: AR modules, 2: NAR modules Returns: Return the predicted audio code matrix, cross-entropy loss and Top-10 accuracy. """ assert x.ndim == 2, x.shape assert x_lens.ndim == 1, x_lens.shape y_prompts_codes = None if isinstance(y, PromptedFeatures): y_prompts_codes, y = y.data prompts_len, y_lens = y_lens.data assert prompts_len.min() == prompts_len.max() assert self.prefix_mode == 4 y_prompts_codes = y_prompts_codes.type(torch.int64) assert y.ndim == 3, y.shape assert y_lens.ndim == 1, y_lens.shape # NOTE: x has been padded in TextTokenCollater x_mask = make_pad_mask(x_lens).to(x.device) text = x x = self.ar_text_embedding(text) x = self.ar_text_prenet(x) x = self.ar_text_position(x) total_loss, metrics = 0.0, {} y_mask = make_pad_mask(y_lens).to(y.device) y_mask_int = y_mask.type(torch.int64) codes = y.type(torch.int64) * (1 - y_mask_int.unsqueeze(dim=-1)) # Training # AR Decoder def pad_y_eos(y, eos_id): y = F.pad(y, (0, 1), value=0) + eos_id * F.pad( y_mask_int, (0, 1), value=1 ) # inputs, targets return y[:, :-1], y[:, 1:] y, targets = pad_y_eos(codes[..., 0], eos_id=NUM_AUDIO_TOKENS) if train_stage in [0, 1]: y_emb = self.ar_audio_embedding(y) y_emb = self.ar_audio_prenet(y_emb) y_pos = self.ar_audio_position(y_emb) y_len = y_lens.max() tgt_mask = torch.triu( torch.ones(y_len, y_len, device=y.device, dtype=torch.bool), diagonal=1, ) y_dec, _ = self.ar_decoder( (y_pos, None), x, tgt_mask=tgt_mask, tgt_key_padding_mask=y_mask, memory_mask=None, memory_key_padding_mask=x_mask, ) logits = self.ar_predict_layer(y_dec).permute(0, 2, 1) # loss total_loss = F.cross_entropy(logits, targets, reduction=reduction) metrics["ArTop10Accuracy"] = self.ar_accuracy_metric( logits.detach(), targets ).item() * y_lens.sum().type(torch.float32) # Non-AR Decoders if train_stage in [0, 2]: nar_stage = self.rng.choices( (1, 2, 3, 4, 5, 6, 7), weights=[1.0 / 7] * 7, k=1 )[0] x = self.nar_text_embedding(text) x = self.nar_text_prenet(x) x = self.nar_text_position(x) y_len = y_lens.max() targets = codes[..., nar_stage] + NUM_AUDIO_TOKENS * y_mask_int y_emb, prefix_len = self._prepare_prompts( y, y_lens, codes, nar_stage, y_prompts_codes ) targets = targets[:, -(y_len - prefix_len) :] if self.prefix_mode in [2, 4]: y_mask = F.pad(y_mask, (y_emb.shape[1] - y_len, 0), value=False) y_pos = self.nar_audio_prenet(y_emb) y_pos = self.nar_audio_position(y_pos) y_dec, _ = self.nar_decoder( (y_pos, self.nar_stage_embeddings[nar_stage - 1].weight), x, tgt_mask=None, tgt_key_padding_mask=y_mask, memory_mask=None, memory_key_padding_mask=x_mask, ) logits = self.nar_predict_layers[nar_stage - 1]( y_dec[:, -(y_len - prefix_len) :] ).permute(0, 2, 1) # loss total_length = (y_lens).sum().type(torch.float32) total_loss += F.cross_entropy( logits, targets, ignore_index=NUM_AUDIO_TOKENS, reduction=reduction, ) metrics["NarTop10Accuracy"] = ( self.nar_accuracy_metric( F.pad( logits.detach(), (0, 0, 0, 1, 0, 0), value=logits.min().cpu().item(), ), targets, ).item() * (total_length / (total_length - prefix_len * x.shape[0])) ) if train_stage == 0: total_loss = total_loss / 2.0 return ((x, codes), total_loss, metrics) def inference( self, x: torch.Tensor, x_lens: torch.Tensor, y: torch.Tensor, enroll_x_lens: Union[torch.Tensor, None] = None, top_k: int = -100, temperature: float = 1.0, ) -> torch.Tensor: """ Args: x: A 2-D tensor of shape (1, S). x_lens: A 1-D tensor of shape (1,). It contains the number of tokens in `x` before padding. y: A 3-D tensor of shape (1, T, 8). top_k: (`optional`) int The number of highest probability tokens to keep for top-k-filtering. Default to -100. temperature: (`optional`) float The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. Returns: Return the predicted audio code matrix and cross-entropy loss. """ assert x.ndim == 2, x.shape assert x_lens.ndim == 1, x_lens.shape assert y.ndim == 3, y.shape assert y.shape[0] == 1, y.shape assert torch.all(x_lens > 0) text = x x = self.ar_text_embedding(text) x = self.ar_text_prenet(x) x = self.ar_text_position(x) # NOTE: x has been padded in TextTokenCollater x_mask = make_pad_mask(x_lens).to(x.device) prompts = y prefix_len = y.shape[1] # AR Decoder # TODO: Managing decoder steps avoid repetitive computation y = prompts[..., 0] while True: y_emb = self.ar_audio_embedding(y) y_emb = self.ar_audio_prenet(y_emb) y_pos = self.ar_audio_position(y_emb) tgt_mask = torch.triu( torch.ones( y.shape[1], y.shape[1], device=y.device, dtype=torch.bool ), diagonal=1, ) y_dec, _ = self.ar_decoder( (y_pos, None), x, tgt_mask=tgt_mask, memory_mask=None, memory_key_padding_mask=x_mask, ) logits = self.ar_predict_layer(y_dec[:, -1]) samples = topk_sampling( logits, top_k=top_k, top_p=1.0, temperature=temperature ) if ( torch.argmax(logits, dim=-1)[0] == NUM_AUDIO_TOKENS or samples[0, 0] == NUM_AUDIO_TOKENS or (y.shape[1] - prefix_len) > x_lens.max() * 16 ): if prompts.shape[1] == y.shape[1]: y = torch.concat([y, samples], dim=1) print(f"VALL-F EOS [{prefix_len} -> {y.shape[1]}]") break y = torch.concat([y, samples], dim=1) codes = [y[:, prefix_len:]] # Non-AR Decoders y_emb = self.nar_audio_embeddings[0](y) if self.prefix_mode in [2, 4]: # Exclude enrolled_phonemes enrolled_len = enroll_x_lens.max().item() # SOS + Synthesis Text + EOS text = torch.concat( [ text[:, :1], text[:, enrolled_len - 1 :], ], dim=1, ) assert text.shape[0] == 1 x = self.nar_text_embedding(text) x = self.nar_text_prenet(x) x = self.nar_text_position(x) if self.prefix_mode != 0: for j in range(1, 8): y_emb[:, :prefix_len] += self.nar_audio_embeddings[j]( prompts[..., j] ) for i, (predict_layer, embedding_layer) in enumerate( zip( self.nar_predict_layers, self.nar_audio_embeddings[1:], ) ): y_pos = self.nar_audio_prenet(y_emb) y_pos = self.nar_audio_position(y_pos) y_dec, _ = self.nar_decoder( (y_pos, self.nar_stage_embeddings[i].weight), x, tgt_mask=None, memory_mask=None, memory_key_padding_mask=None, ) logits = predict_layer(y_dec[:, prefix_len:]) samples = torch.argmax(logits, dim=-1) codes.append(samples) # Formula (4) (5) if i < 6: if self.prefix_mode == 0: y_emb[:, :prefix_len] += embedding_layer( prompts[..., i + 1] ) y_emb[:, prefix_len:] += embedding_layer(samples) assert len(codes) == 8 return torch.stack(codes, dim=-1) class VALLE(VALLF): """It implements https://arxiv.org/abs/2301.02111 "Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers" """ def __init__( self, d_model: int, nhead: int, num_layers: int, norm_first: bool = True, add_prenet: bool = False, prefix_mode: int = 0, share_embedding: bool = True, nar_scale_factor: float = 1.0, ): """ Args: d_model: The number of expected features in the input (required). nhead: The number of heads in the multiheadattention models (required). num_layers: The number of sub-decoder-layers in the decoder (required). """ super(VALLE, self).__init__( d_model, nhead, num_layers, norm_first=norm_first, add_prenet=add_prenet, decoder_cls=TransformerEncoder, decoder_layer_cls=TransformerEncoderLayer, prefix_mode=prefix_mode, share_embedding=share_embedding, nar_scale_factor=nar_scale_factor, ) def forward( self, x: torch.Tensor, x_lens: torch.Tensor, y: Union[torch.Tensor, PromptedFeatures], y_lens: Union[torch.Tensor, PromptedFeatures], reduction: str = "sum", train_stage: int = 0, ) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]: """ Args: x: A 2-D tensor of shape (N, S). x_lens: A 1-D tensor of shape (N,). It contains the number of tokens in `x` before padding. y: A 3-D tensor of shape (N, T, 8). y_lens: A 1-D tensor of shape (N,). It contains the number of tokens in `x` before padding. train_stage: 0: AR & NAR modules, 1: AR modules, 2: NAR modules Returns: Return the predicted audio code matrix, cross-entropy loss and Top-10 accuracy. """ assert x.ndim == 2, x.shape assert x_lens.ndim == 1, x_lens.shape y_prompts_codes = None if isinstance(y, PromptedFeatures): y_prompts_codes, y = y.data prompts_len, y_lens = y_lens.data assert prompts_len.min() == prompts_len.max() assert self.prefix_mode == 4 y_prompts_codes = y_prompts_codes.type(torch.int64) assert y.ndim == 3, y.shape assert y_lens.ndim == 1, y_lens.shape # NOTE: x has been padded in TextTokenCollater x_mask = make_pad_mask(x_lens).to(x.device) y_mask = make_pad_mask(y_lens).to(y.device) xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) y_mask_int = y_mask.type(torch.int64) text = x codes = y.type(torch.int64) * (1 - y_mask_int.unsqueeze(dim=-1)) def pad_y_eos(y, eos_id): y = F.pad(y, (0, 1)) + eos_id * F.pad(y_mask_int, (0, 1), value=1) # inputs, targets return y[:, :-1], y[:, 1:] y, targets = pad_y_eos(codes[..., 0], eos_id=NUM_AUDIO_TOKENS) x_len = x_lens.max() metrics = {} total_loss = 0.0 # AR Decoder if train_stage in [0, 1]: x = self.ar_text_embedding(text) x = self.ar_text_prenet(x) x = self.ar_text_position(x) y_len = y_lens.max() x_attn_mask = F.pad( torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device), (0, y_len), value=True, ) y_attn_mask = F.pad( torch.triu( torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1, ), (x_len, 0), value=False, ) xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0) # merge key padding and attention masks bsz, src_len = x.shape[0], x_len + y_len _xy_padding_mask = ( xy_padding_mask.view(bsz, 1, 1, src_len) .expand(-1, self.num_heads, -1, -1) .reshape(bsz * self.num_heads, 1, src_len) ) xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask) new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) new_attn_mask.masked_fill_(xy_attn_mask, float("-inf")) xy_attn_mask = new_attn_mask y_emb = self.ar_audio_embedding(y) y_emb = self.ar_audio_prenet(y_emb) y_pos = self.ar_audio_position(y_emb) xy_pos = torch.concat([x, y_pos], dim=1) xy_dec, _ = self.ar_decoder( (xy_pos, None), mask=xy_attn_mask, # src_key_padding_mask=xy_padding_mask, # is_causal=True, ) logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1) # loss total_loss = F.cross_entropy(logits, targets, reduction=reduction) metrics["ArTop10Accuracy"] = self.ar_accuracy_metric( logits.detach(), targets ).item() * y_lens.sum().type(torch.float32) # Non-AR Decoders if train_stage in [0, 2]: nar_stage = self.rng.choices( (1, 2, 3, 4, 5, 6, 7), weights=[1.0 / 7] * 7, k=1 )[0] x = self.nar_text_embedding(text) x = self.nar_text_prenet(x) x = self.nar_text_position(x) targets = codes[..., nar_stage] + NUM_AUDIO_TOKENS * y_mask_int y_emb, prefix_len = self._prepare_prompts( y, y_lens, codes, nar_stage, y_prompts_codes ) y_len = y_lens.max() targets = targets[:, -(y_len - prefix_len) :] # VALL-E if self.prefix_mode in [2, 4]: xy_padding_mask = torch.concat( [ x_mask, F.pad(y_mask, (y_emb.shape[1] - y_len, 0), value=False), ], dim=1, ) y_pos = self.nar_audio_prenet(y_emb) y_pos = self.nar_audio_position(y_pos) xy_pos = torch.concat([x, y_pos], dim=1) xy_dec, _ = self.nar_decoder( (xy_pos, self.nar_stage_embeddings[nar_stage - 1].weight), src_key_padding_mask=xy_padding_mask, # is_causal=False, ) logits = self.nar_predict_layers[nar_stage - 1]( xy_dec[:, -(y_len - prefix_len) :] ).permute(0, 2, 1) # loss total_length = (y_lens).sum().type(torch.float32) total_loss += ( F.cross_entropy( logits, targets, ignore_index=NUM_AUDIO_TOKENS, reduction=reduction, ) * (total_length / (total_length - prefix_len * x.shape[0])) ) metrics["NarTop10Accuracy"] = ( self.nar_accuracy_metric( F.pad( logits.detach(), (0, 0, 0, 1, 0, 0), value=logits.min().cpu().item(), ), targets, ).item() * total_length ) if train_stage == 0: total_loss = total_loss / 2.0 return ((x, codes), total_loss, metrics) def inference( self, x: torch.Tensor, x_lens: torch.Tensor, y: torch.Tensor, enroll_x_lens: torch.Tensor, top_k: int = -100, temperature: float = 1.0, ) -> torch.Tensor: """ Args: x: A 2-D tensor of shape (1, S). x_lens: A 1-D tensor of shape (1,). It contains the number of tokens in `x` before padding. y: A 3-D tensor of shape (1, T, 8). top_k: (`optional`) int The number of highest probability tokens to keep for top-k-filtering. Default to -100. temperature: (`optional`) float The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. Returns: Return the predicted audio code matrix. """ assert x.ndim == 2, x.shape assert x_lens.ndim == 1, x_lens.shape assert y.ndim == 3, y.shape assert y.shape[0] == 1, y.shape assert torch.all(x_lens > 0) # NOTE: x has been padded in TextTokenCollater text = x x = self.ar_text_embedding(text) x = self.ar_text_prenet(x) x = self.ar_text_position(x) text_len = x_lens.max() prompts = y prefix_len = y.shape[1] # AR Decoder # TODO: Managing decoder steps avoid repetitive computation y = prompts[..., 0] x_len = x_lens.max() x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) while True: y_emb = self.ar_audio_embedding(y) y_emb = self.ar_audio_prenet(y_emb) y_pos = self.ar_audio_position(y_emb) xy_pos = torch.concat([x, y_pos], dim=1) y_len = y.shape[1] x_attn_mask_pad = F.pad( x_attn_mask, (0, y_len), value=True, ) y_attn_mask = F.pad( torch.triu( torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1 ), (x_len, 0), value=False, ) xy_attn_mask = torch.concat( [x_attn_mask_pad, y_attn_mask], dim=0 ).to(y.device) xy_dec, _ = self.ar_decoder( (xy_pos, None), mask=xy_attn_mask, ) logits = self.ar_predict_layer(xy_dec[:, -1]) samples = topk_sampling( logits, top_k=top_k, top_p=1.0, temperature=temperature ) if ( torch.argmax(logits, dim=-1)[0] == NUM_AUDIO_TOKENS or samples[0, 0] == NUM_AUDIO_TOKENS or (y.shape[1] - prompts.shape[1]) > x_lens.max() * 16 ): if prompts.shape[1] == y.shape[1]: y = torch.concat([y, samples], dim=1) print(f"VALL-E EOS [{prompts.shape[1]} -> {y.shape[1]}]") break y = torch.concat([y, samples], dim=1) codes = [y[:, prefix_len:]] # Non-AR Decoders y_emb = self.nar_audio_embeddings[0](y) if self.prefix_mode in [2, 4]: # Exclude enrolled_phonemes enrolled_len = enroll_x_lens.max().item() # SOS + Synthesis Text + EOS text = torch.concat( [ text[:, :1], text[:, enrolled_len - 1 :], ], dim=1, ) text_len = text_len - (enrolled_len - 2) assert text.shape[0] == 1 x = self.nar_text_embedding(text) x = self.nar_text_prenet(x) x = self.nar_text_position(x) if self.prefix_mode == 0: for i, (predict_layer, embedding_layer) in enumerate( zip( self.nar_predict_layers, self.nar_audio_embeddings[1:], ) ): y_pos = self.nar_audio_prenet(y_emb) y_pos = self.nar_audio_position(y_pos) xy_pos = torch.concat([x, y_pos], dim=1) xy_dec, _ = self.nar_decoder( (xy_pos, self.nar_stage_embeddings[i].weight) ) logits = predict_layer(xy_dec[:, text_len + prefix_len :]) samples = torch.argmax(logits, dim=-1) codes.append(samples) if i < 6: y_emb[:, :prefix_len] += embedding_layer( prompts[..., i + 1] ) y_emb[:, prefix_len:] += embedding_layer(samples) else: for j in range(1, 8): y_emb[:, :prefix_len] += self.nar_audio_embeddings[j]( prompts[..., j] ) for i, (predict_layer, embedding_layer) in enumerate( zip( self.nar_predict_layers, self.nar_audio_embeddings[1:], ) ): y_pos = self.nar_audio_prenet(y_emb) y_pos = self.nar_audio_position(y_pos) xy_pos = torch.concat([x, y_pos], dim=1) xy_dec, _ = self.nar_decoder( (xy_pos, self.nar_stage_embeddings[i].weight) ) logits = predict_layer(xy_dec[:, text_len + prefix_len :]) samples = torch.argmax(logits, dim=-1) codes.append(samples) if i < 6: y_emb[:, prefix_len:] += embedding_layer(samples) assert len(codes) == 8 return torch.stack(codes, dim=-1) def continual( self, x: torch.Tensor, x_lens: torch.Tensor, y: torch.Tensor, ) -> torch.Tensor: """ Args: x: A 2-D tensor of shape (1, S). x_lens: A 1-D tensor of shape (1,). It contains the number of tokens in `x` before padding. y: A 3-D tensor of shape (1, T, 8). Returns: Return the predicted audio code matrix. """ assert x.ndim == 2, x.shape assert x_lens.ndim == 1, x_lens.shape assert y.ndim == 3, y.shape assert y.shape[0] == 1, y.shape assert torch.all(x_lens > 0) # NOTE: x has been padded in TextTokenCollater text = x x = self.ar_text_embedding(text) x = self.ar_text_prenet(x) x = self.ar_text_position(x) text_len = x_lens.max() prefix_len = min(int(y.shape[1] * 0.5), 3 * 75) # AR Decoder prompts = y[:, :prefix_len] codes = [y[:, prefix_len:, 0]] # Non-AR Decoders x = self.nar_text_embedding(text) x = self.nar_text_prenet(x) x = self.nar_text_position(x) y_emb = self.nar_audio_embeddings[0](y[..., 0]) if self.prefix_mode == 0: for i, (predict_layer, embedding_layer) in enumerate( zip( self.nar_predict_layers, self.nar_audio_embeddings[1:], ) ): y_pos = self.nar_audio_position(y_emb) y_pos = self.nar_audio_prenet(y_pos) xy_pos = torch.concat([x, y_pos], dim=1) xy_dec, _ = self.nar_decoder( (xy_pos, self.nar_stage_embeddings[i].weight) ) logits = predict_layer(xy_dec[:, text_len + prefix_len :]) samples = torch.argmax(logits, dim=-1) codes.append(samples) if i < 6: y_emb[:, :prefix_len] += embedding_layer( prompts[..., i + 1] ) y_emb[:, prefix_len:] += embedding_layer(samples) else: for j in range(1, 8): y_emb[:, :prefix_len] += self.nar_audio_embeddings[j]( prompts[..., j] ) for i, (predict_layer, embedding_layer) in enumerate( zip( self.nar_predict_layers, self.nar_audio_embeddings[1:], ) ): y_pos = self.nar_audio_prenet(y_emb) y_pos = self.nar_audio_position(y_pos) xy_pos = torch.concat([x, y_pos], dim=1) xy_dec, _ = self.nar_decoder( (xy_pos, self.nar_stage_embeddings[i].weight) ) logits = predict_layer(xy_dec[:, text_len + prefix_len :]) samples = torch.argmax(logits, dim=-1) codes.append(samples) if i < 6: y_emb[:, prefix_len:] += embedding_layer(samples) assert len(codes) == 8 return torch.stack(codes, dim=-1) # https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1 ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: top_k = min( max(top_k, min_tokens_to_keep), logits.size(-1) ) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum( F.softmax(sorted_logits, dim=-1), dim=-1 ) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ ..., :-1 ].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) logits[indices_to_remove] = filter_value return logits def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0): # temperature: (`optional`) float # The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. # top_k: (`optional`) int # The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. # top_p: (`optional`) float # The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: logits = logits / temperature # Top-p/top-k filtering logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) # Sample token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) return token
EXA-1-master
exa/models/valle/vall-e-main/valle/models/valle.py
import argparse import torch.nn as nn from icefall.utils import AttributeDict, str2bool from .transformer import Transformer from .valle import NUM_MEL_BINS, VALLE, VALLF from .visualizer import visualize def add_model_arguments(parser: argparse.ArgumentParser): parser.add_argument( "--model-name", type=str, default="VALL-E", help="VALL-E, VALL-F or Transformer.", ) parser.add_argument( "--decoder-dim", type=int, default=1024, help="Embedding dimension in the decoder model.", ) parser.add_argument( "--nhead", type=int, default=16, help="Number of attention heads in the Decoder layers.", ) parser.add_argument( "--num-decoder-layers", type=int, default=12, help="Number of Decoder layers.", ) parser.add_argument( "--scale-factor", type=float, default=1.0, help="Model scale factor which will be assigned different meanings in different models.", ) parser.add_argument( "--norm-first", type=str2bool, default=True, help="Pre or Post Normalization.", ) parser.add_argument( "--add-prenet", type=str2bool, default=False, help="Whether add PreNet after Inputs.", ) parser.add_argument( "--prefix-mode", type=int, default=0, help="The mode for how to prefix VALL-E NAR Decoder, " "0: no prefix, 1: 0 to random, 2: random to random, 4: chunk of pre or post utterance.", ) parser.add_argument( "--share-embedding", type=str2bool, default=True, help="Share the parameters of the output projection layer with the parameters of the acoustic embedding.", ) def get_model(params: AttributeDict) -> nn.Module: if params.model_name.lower() in ["vall-f", "vallf"]: model = VALLF( params.decoder_dim, params.nhead, params.num_decoder_layers, norm_first=params.norm_first, add_prenet=params.add_prenet, prefix_mode=params.prefix_mode, share_embedding=params.share_embedding, nar_scale_factor=params.scale_factor, ) elif params.model_name.lower() in ["vall-e", "valle"]: model = VALLE( params.decoder_dim, params.nhead, params.num_decoder_layers, norm_first=params.norm_first, add_prenet=params.add_prenet, prefix_mode=params.prefix_mode, share_embedding=params.share_embedding, nar_scale_factor=params.scale_factor, ) else: assert params.model_name in ["Transformer"] model = Transformer( params.decoder_dim, params.nhead, params.num_decoder_layers, norm_first=params.norm_first, add_prenet=params.add_prenet, ) return model
EXA-1-master
exa/models/valle/vall-e-main/valle/models/__init__.py
# Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from icefall.utils import make_pad_mask from torchmetrics.classification import BinaryAccuracy from valle.models.valle import NUM_TEXT_TOKENS, Transpose from valle.modules.embedding import SinePositionalEmbedding, TokenEmbedding NUM_MEL_BINS = 100 # BigVGAN bigvgan_24khz_100band class Transformer(nn.Module): """It implements seq2seq Transformer TTS for debug(No StopPredictor and SpeakerEmbeding) Neural Speech Synthesis with Transformer Network https://arxiv.org/abs/1809.08895 """ def __init__( self, d_model: int, nhead: int, num_layers: int, norm_first: bool = True, add_prenet: bool = False, ): """ Args: d_model: The number of expected features in the input (required). nhead: The number of heads in the multiheadattention models (required). num_layers: The number of sub-decoder-layers in the decoder (required). """ super().__init__() self.text_embedding = TokenEmbedding(d_model, NUM_TEXT_TOKENS) # W_x if add_prenet: self.encoder_prenet = nn.Sequential( Transpose(), nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), nn.BatchNorm1d(d_model), nn.ReLU(), nn.Dropout(0.5), nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), nn.BatchNorm1d(d_model), nn.ReLU(), nn.Dropout(0.5), nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), nn.BatchNorm1d(d_model), nn.ReLU(), nn.Dropout(0.5), Transpose(), nn.Linear(d_model, d_model), ) self.decoder_prenet = nn.Sequential( nn.Linear(NUM_MEL_BINS, 256), nn.ReLU(), nn.Dropout(0.5), nn.Linear(256, 256), nn.ReLU(), nn.Dropout(0.5), nn.Linear(256, d_model), ) else: self.encoder_prenet = nn.Identity() self.decoder_prenet = nn.Linear(NUM_MEL_BINS, d_model) self.encoder_position = SinePositionalEmbedding( d_model, dropout=0.1, scale=False, ) self.decoder_position = SinePositionalEmbedding( d_model, dropout=0.1, scale=False ) self.encoder = nn.TransformerEncoder( nn.TransformerEncoderLayer( d_model, nhead, dim_feedforward=d_model * 4, activation=F.relu, dropout=0.1, batch_first=True, norm_first=norm_first, ), num_layers=num_layers, norm=nn.LayerNorm(d_model) if norm_first else None, ) self.decoder = nn.TransformerDecoder( nn.TransformerDecoderLayer( d_model, nhead, dim_feedforward=d_model * 4, activation=F.relu, dropout=0.1, batch_first=True, norm_first=norm_first, ), num_layers=num_layers, norm=nn.LayerNorm(d_model) if norm_first else None, ) self.predict_layer = nn.Linear(d_model, NUM_MEL_BINS) self.stop_layer = nn.Linear(d_model, 1) self.stop_accuracy_metric = BinaryAccuracy( threshold=0.5, multidim_average="global" ) # self.apply(self._init_weights) # def _init_weights(self, module): # if isinstance(module, (nn.Linear)): # module.weight.data.normal_(mean=0.0, std=0.02) # if isinstance(module, nn.Linear) and module.bias is not None: # module.bias.data.zero_() # elif isinstance(module, nn.LayerNorm): # module.bias.data.zero_() # module.weight.data.fill_(1.0) # elif isinstance(module, nn.Embedding): # module.weight.data.normal_(mean=0.0, std=0.02) def forward( self, x: torch.Tensor, x_lens: torch.Tensor, y: torch.Tensor, y_lens: torch.Tensor, reduction: str = "sum", train_stage: int = 0, ) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]: """ Args: x: A 2-D tensor of shape (N, S). x_lens: A 1-D tensor of shape (N,). It contains the number of tokens in `x` before padding. y: A 3-D tensor of shape (N, T, 8). y_lens: A 1-D tensor of shape (N,). It contains the number of tokens in `x` before padding. train_stage: Not used in this model. Returns: Return the predicted audio code matrix, cross-entropy loss and Top-10 accuracy. """ del train_stage assert x.ndim == 2, x.shape assert x_lens.ndim == 1, x_lens.shape assert y.ndim == 3, y.shape assert y_lens.ndim == 1, y_lens.shape assert torch.all(x_lens > 0) # NOTE: x has been padded in TextTokenCollater x_mask = make_pad_mask(x_lens).to(x.device) x = self.text_embedding(x) x = self.encoder_prenet(x) x = self.encoder_position(x) x = self.encoder(x, src_key_padding_mask=x_mask) total_loss, metrics = 0.0, {} y_mask = make_pad_mask(y_lens).to(y.device) y_mask_float = y_mask.type(torch.float32) data_mask = 1.0 - y_mask_float.unsqueeze(-1) # Training # AR Decoder def pad_y(y): y = F.pad(y, (0, 0, 1, 0, 0, 0), value=0).detach() # inputs, targets return y[:, :-1], y[:, 1:] y, targets = pad_y(y * data_mask) # mask padding as zeros y_emb = self.decoder_prenet(y) y_pos = self.decoder_position(y_emb) y_len = y_lens.max() tgt_mask = torch.triu( torch.ones(y_len, y_len, device=y.device, dtype=torch.bool), diagonal=1, ) y_dec = self.decoder( y_pos, x, tgt_mask=tgt_mask, memory_key_padding_mask=x_mask, ) predict = self.predict_layer(y_dec) # loss total_loss = F.mse_loss(predict, targets, reduction=reduction) logits = self.stop_layer(y_dec).squeeze(-1) stop_loss = F.binary_cross_entropy_with_logits( logits, y_mask_float.detach(), weight=1.0 + y_mask_float.detach() * 4.0, reduction=reduction, ) metrics["stop_loss"] = stop_loss.detach() stop_accuracy = self.stop_accuracy_metric( (torch.sigmoid(logits) >= 0.5).type(torch.int64), y_mask.type(torch.int64), ) # icefall MetricsTracker.norm_items() metrics["stop_accuracy"] = stop_accuracy.item() * y_lens.sum().type( torch.float32 ) return ((x, predict), total_loss + 100.0 * stop_loss, metrics) def inference( self, x: torch.Tensor, x_lens: torch.Tensor, y: Any = None, **kwargs, ) -> torch.Tensor: """ Args: x: A 2-D tensor of shape (1, S). x_lens: A 1-D tensor of shape (1,). It contains the number of tokens in `x` before padding. Returns: Return the predicted audio code matrix and cross-entropy loss. """ assert x.ndim == 2, x.shape assert x_lens.ndim == 1, x_lens.shape assert torch.all(x_lens > 0) x_mask = make_pad_mask(x_lens).to(x.device) x = self.text_embedding(x) x = self.encoder_prenet(x) x = self.encoder_position(x) x = self.encoder(x, src_key_padding_mask=x_mask) x_mask = make_pad_mask(x_lens).to(x.device) # AR Decoder # TODO: Managing decoder steps avoid repetitive computation y = torch.zeros( [x.shape[0], 1, NUM_MEL_BINS], dtype=torch.float32, device=x.device ) while True: y_emb = self.decoder_prenet(y) y_pos = self.decoder_position(y_emb) tgt_mask = torch.triu( torch.ones( y.shape[1], y.shape[1], device=y.device, dtype=torch.bool ), diagonal=1, ) y_dec = self.decoder( y_pos, x, tgt_mask=tgt_mask, memory_mask=None, memory_key_padding_mask=x_mask, ) predict = self.predict_layer(y_dec[:, -1:]) logits = self.stop_layer(y_dec[:, -1:]) > 0 # sigmoid(0.0) = 0.5 if y.shape[1] > x_lens.max() * 10 or all(logits.cpu().numpy()): print( f"TransformerTTS EOS [Text {x_lens[0]} -> Audio {y.shape[1]}]" ) break y = torch.concat([y, predict], dim=1) return y[:, 1:] def visualize( self, fbank: torch.Tensor, output_path: str, ) -> torch.Tensor: """ Args: fbank: A 3-D tensor of shape (N, T, NUM_MEL_BINS). Returns: None. """ import matplotlib.pyplot as plt fbank = fbank.transpose(1, 2).cpu().numpy() for b in range(fbank.shape[0]): _ = plt.figure(figsize=(12, 6)) plt.imshow( X=fbank[b], cmap=plt.get_cmap("jet"), aspect="auto", interpolation="nearest", ) plt.gca().invert_yaxis() plt.savefig(f"{output_path}/{b}_mels.png") plt.close()
EXA-1-master
exa/models/valle/vall-e-main/valle/models/transformer.py
#!/usr/bin/env python3 # Copyright 2023 (authors: Feiteng Li) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Tuple, Union import matplotlib.pyplot as plt import numpy as np import torch def visualize( predicts: Tuple[torch.Tensor], batch: Dict[str, Union[List, torch.Tensor]], output_dir: str, limit: int = 4, ) -> None: text_tokens = batch["text_tokens"].to("cpu").detach().numpy() text_tokens_lens = batch["text_tokens_lens"].to("cpu").detach().numpy() audio_features = batch["audio_features"].to("cpu").detach().numpy() audio_features_lens = ( batch["audio_features_lens"].to("cpu").detach().numpy() ) assert text_tokens.ndim == 2 utt_ids, texts = batch["utt_id"], batch["text"] encoder_outputs = predicts[0].to("cpu").detach().numpy() decoder_outputs = predicts[1].to("cpu").detach().numpy() vmin, vmax = 0, 1024 # Encodec if decoder_outputs.dtype == np.float32: vmin, vmax = -6, 0 # Fbank num_figures = 3 for b, (utt_id, text) in enumerate(zip(utt_ids[:limit], texts[:limit])): _ = plt.figure(figsize=(14, 8 * num_figures)) S = text_tokens_lens[b] T = audio_features_lens[b] # encoder plt.subplot(num_figures, 1, 1) plt.title(f"Text: {text}") plt.imshow( X=np.transpose(encoder_outputs[b]), cmap=plt.get_cmap("jet"), aspect="auto", interpolation="nearest", ) plt.gca().invert_yaxis() plt.axvline(x=S - 0.4, linewidth=2, color="r") plt.xlabel("Encoder Output") plt.colorbar() # decoder plt.subplot(num_figures, 1, 2) plt.imshow( X=np.transpose(decoder_outputs[b]), cmap=plt.get_cmap("jet"), aspect="auto", interpolation="nearest", vmin=vmin, vmax=vmax, ) plt.gca().invert_yaxis() plt.axvline(x=T - 0.4, linewidth=2, color="r") plt.xlabel("Decoder Output") plt.colorbar() # target plt.subplot(num_figures, 1, 3) plt.imshow( X=np.transpose(audio_features[b]), cmap=plt.get_cmap("jet"), aspect="auto", interpolation="nearest", vmin=vmin, vmax=vmax, ) plt.gca().invert_yaxis() plt.axvline(x=T - 0.4, linewidth=2, color="r") plt.xlabel("Decoder Target") plt.colorbar() plt.savefig(f"{output_dir}/{utt_id}_features.png") plt.close()
EXA-1-master
exa/models/valle/vall-e-main/valle/models/visualizer.py
# Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch import torch.nn as nn class TokenEmbedding(nn.Module): def __init__( self, dim_model: int, vocab_size: int, dropout: float = 0.0, ): super().__init__() self.vocab_size = vocab_size self.dim_model = dim_model self.dropout = torch.nn.Dropout(p=dropout) self.word_embeddings = nn.Embedding(self.vocab_size, self.dim_model) @property def weight(self) -> torch.Tensor: return self.word_embeddings.weight def embedding(self, index: int) -> torch.Tensor: return self.word_embeddings.weight[index : index + 1] def forward(self, x: torch.Tensor): X = self.word_embeddings(x) X = self.dropout(X) return X class SinePositionalEmbedding(nn.Module): def __init__( self, dim_model: int, dropout: float = 0.0, scale: bool = False, alpha: bool = False, ): super().__init__() self.dim_model = dim_model self.x_scale = math.sqrt(dim_model) if scale else 1.0 self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha) self.dropout = torch.nn.Dropout(p=dropout) self.reverse = False self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, 4000)) def extend_pe(self, x): """Reset the positional encodings.""" if self.pe is not None: if self.pe.size(1) >= x.size(1): if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = torch.zeros(x.size(1), self.dim_model) if self.reverse: position = torch.arange( x.size(1) - 1, -1, -1.0, dtype=torch.float32 ).unsqueeze(1) else: position = torch.arange( 0, x.size(1), dtype=torch.float32 ).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.dim_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.dim_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.pe = pe.to(device=x.device, dtype=x.dtype).detach() def forward(self, x: torch.Tensor) -> torch.Tensor: self.extend_pe(x) output = x.unsqueeze(-1) if x.ndim == 2 else x output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)] return self.dropout(output)
EXA-1-master
exa/models/valle/vall-e-main/valle/modules/embedding.py
EXA-1-master
exa/models/valle/vall-e-main/valle/modules/__init__.py
from typing import Optional, Tuple import torch from torch import Tensor from torch.nn import Module from torch.nn import functional as F from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ from torch.nn.modules.linear import NonDynamicallyQuantizableLinear from torch.nn.parameter import Parameter class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces as described in the paper: `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. Multi-Head Attention is defined as: .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. ``forward()`` will use a special optimized implementation if all of the following conditions are met: - self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This restriction will be loosened in the future.) - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad`` - training is disabled (using ``.eval()``) - dropout is 0 - ``add_bias_kv`` is ``False`` - ``add_zero_attn`` is ``False`` - ``batch_first`` is ``True`` and the input is batched - ``kdim`` and ``vdim`` are equal to ``embed_dim`` - at most one of ``key_padding_mask`` or ``attn_mask`` is passed - if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask`` nor ``attn_mask`` is passed If the optimized implementation is in use, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for ``query``/``key``/``value`` to represent padding more efficiently than using a padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be returned, and an additional speedup proportional to the fraction of the input that is padding can be expected. Args: embed_dim: Total dimension of the model. num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). bias: If specified, adds bias to input / output projection layers. Default: ``True``. add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. Default: ``False``. kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). Examples:: >>> # xdoctest: +SKIP >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ __constants__ = ["batch_first"] bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__( self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = ( self.kdim == embed_dim and self.vdim == embed_dim ) self.num_heads = num_heads self.dropout = dropout self.batch_first = batch_first self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" if not self._qkv_same_embed_dim: self.q_proj_weight = Parameter( torch.empty((embed_dim, embed_dim), **factory_kwargs) ) self.k_proj_weight = Parameter( torch.empty((embed_dim, self.kdim), **factory_kwargs) ) self.v_proj_weight = Parameter( torch.empty((embed_dim, self.vdim), **factory_kwargs) ) self.register_parameter("in_proj_weight", None) else: self.in_proj_weight = Parameter( torch.empty((3 * embed_dim, embed_dim), **factory_kwargs) ) self.register_parameter("q_proj_weight", None) self.register_parameter("k_proj_weight", None) self.register_parameter("v_proj_weight", None) if bias: self.in_proj_bias = Parameter( torch.empty(3 * embed_dim, **factory_kwargs) ) else: self.register_parameter("in_proj_bias", None) self.out_proj = NonDynamicallyQuantizableLinear( embed_dim, embed_dim, bias=bias, **factory_kwargs ) if add_bias_kv: self.bias_k = Parameter( torch.empty((1, 1, embed_dim), **factory_kwargs) ) self.bias_v = Parameter( torch.empty((1, 1, embed_dim), **factory_kwargs) ) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.0) constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if "_qkv_same_embed_dim" not in state: state["_qkv_same_embed_dim"] = True super(MultiheadAttention, self).__setstate__(state) def forward( self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, average_attn_weights: bool = True, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against key-value pairs to produce the output. See "Attention Is All You Need" for more details. key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details. value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details. key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. Binary and byte masks are supported. For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value. need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. Default: ``True``. attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the corresponding position is not allowed to attend. For a float mask, the mask values will be added to the attention weight. average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads) Outputs: - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched, :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the embedding dimension ``embed_dim``. - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`. .. note:: `batch_first` argument is ignored for unbatched inputs. """ is_batched = query.dim() == 3 if key_padding_mask is not None: _kpm_dtype = key_padding_mask.dtype if _kpm_dtype != torch.bool and not torch.is_floating_point( key_padding_mask ): raise AssertionError( "only bool and floating types of key_padding_mask are supported" ) why_not_fast_path = "" if not is_batched: why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}" elif query is not key or key is not value: # When lifting this restriction, don't forget to either # enforce that the dtypes all match or test cases where # they don't! why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" elif ( self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype ): why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" elif ( self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype ): # this case will fail anyway, but at least they'll get a useful error message. why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match" elif self.training: why_not_fast_path = "training is enabled" elif not self.batch_first: why_not_fast_path = "batch_first was not True" elif self.bias_k is not None: why_not_fast_path = "self.bias_k was not None" elif self.bias_v is not None: why_not_fast_path = "self.bias_v was not None" elif self.dropout: why_not_fast_path = f"dropout was {self.dropout}, required zero" elif self.add_zero_attn: why_not_fast_path = "add_zero_attn was enabled" elif not self._qkv_same_embed_dim: why_not_fast_path = "_qkv_same_embed_dim was not True" elif attn_mask is not None: why_not_fast_path = "attn_mask was not None" elif query.is_nested and key_padding_mask is not None: why_not_fast_path = ( "key_padding_mask is not supported with NestedTensor input" ) elif self.num_heads % 2 == 1: why_not_fast_path = "num_heads is odd" elif torch.is_autocast_enabled(): why_not_fast_path = "autocast is enabled" if not why_not_fast_path: tensor_args = ( query, key, value, self.in_proj_weight, self.in_proj_bias, self.out_proj.weight, self.out_proj.bias, ) # We have to use list comprehensions below because TorchScript does not support # generator expressions. if torch.overrides.has_torch_function(tensor_args): why_not_fast_path = "some Tensor argument has_torch_function" elif not all( [ (x is None or x.is_cuda or "cpu" in str(x.device)) for x in tensor_args ] ): why_not_fast_path = ( "some Tensor argument is neither CUDA nor CPU" ) elif torch.is_grad_enabled() and any( [x is not None and x.requires_grad for x in tensor_args] ): why_not_fast_path = ( "grad is enabled and at least one of query or the " "input/output projection weights or biases requires_grad" ) if not why_not_fast_path: return torch._native_multi_head_attention( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.out_proj.weight, self.out_proj.bias, key_padding_mask if key_padding_mask is not None else attn_mask, need_weights, average_attn_weights, 1 if key_padding_mask is not None else 0 if attn_mask is not None else None, ) any_nested = query.is_nested or key.is_nested or value.is_nested assert not any_nested, ( "MultiheadAttention does not support NestedTensor outside of its fast path. " + f"The fast path was not hit because {why_not_fast_path}" ) if self.batch_first and is_batched: # make sure that the transpose op does not affect the "is" property if key is value: if query is key: query = key = value = query.transpose(1, 0) else: query, key = [x.transpose(1, 0) for x in (query, key)] value = key else: query, key, value = [ x.transpose(1, 0) for x in (query, key, value) ] if not self._qkv_same_embed_dim: attn_output, attn_output_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, average_attn_weights=average_attn_weights, ) else: attn_output, attn_output_weights = F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, average_attn_weights=average_attn_weights, ) if self.batch_first and is_batched: return attn_output.transpose(1, 0), attn_output_weights else: return attn_output, attn_output_weights
EXA-1-master
exa/models/valle/vall-e-main/valle/modules/activation.py
import copy import numbers from typing import Any, Callable, List, Optional, Tuple, Union import torch from torch import Tensor, nn from torch.nn import functional as F from .activation import MultiheadAttention _shape_t = Union[int, List[int], torch.Size] class LayerNorm(nn.Module): __constants__ = ["normalized_shape", "eps", "elementwise_affine"] normalized_shape: Tuple[int, ...] eps: float elementwise_affine: bool def __init__( self, normalized_shape: _shape_t, eps: float = 1e-5, elementwise_affine: bool = True, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super(LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: self.weight = nn.Parameter( torch.empty(self.normalized_shape, **factory_kwargs) ) self.bias = nn.Parameter( torch.empty(self.normalized_shape, **factory_kwargs) ) else: self.register_parameter("weight", None) self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) nn.init.zeros_(self.bias) def forward(self, input: Tensor, embedding: Any = None) -> Tensor: if isinstance(input, tuple): input, embedding = input return ( F.layer_norm( input, self.normalized_shape, self.weight, self.bias, self.eps, ), embedding, ) assert embedding is None return F.layer_norm( input, self.normalized_shape, self.weight, self.bias, self.eps ) def extra_repr(self) -> str: return ( "{normalized_shape}, eps={eps}, " "elementwise_affine={elementwise_affine}".format(**self.__dict__) ) class AdaptiveLayerNorm(nn.Module): r"""Adaptive Layer Normalization""" def __init__(self, d_model, norm) -> None: super(AdaptiveLayerNorm, self).__init__() self.project_layer = nn.Linear(d_model, 2 * d_model) self.norm = norm self.d_model = d_model self.eps = self.norm.eps def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: if isinstance(input, tuple): input, embedding = input weight, bias = torch.split( self.project_layer(embedding), split_size_or_sections=self.d_model, dim=-1, ) return (weight * self.norm(input) + bias, embedding) weight, bias = torch.split( self.project_layer(embedding), split_size_or_sections=self.d_model, dim=-1, ) return weight * self.norm(input) + bias class TransformerEncoderLayer(nn.Module): __constants__ = ["batch_first", "norm_first"] def __init__( self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, device=None, dtype=None, adaptive_layer_norm=False, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super(TransformerEncoderLayer, self).__init__() self.self_attn = MultiheadAttention( d_model, nhead, dropout=dropout, batch_first=batch_first, **factory_kwargs, ) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs) self.norm_first = norm_first self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) # Legacy string support for activation function. if isinstance(activation, str): activation = _get_activation_fn(activation) # We can't test self.activation in forward() in TorchScript, # so stash some information about it instead. if activation is F.relu or isinstance(activation, torch.nn.ReLU): self.activation_relu_or_gelu = 1 elif activation is F.gelu or isinstance(activation, torch.nn.GELU): self.activation_relu_or_gelu = 2 else: self.activation_relu_or_gelu = 0 self.activation = activation if adaptive_layer_norm: norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.norm1 = AdaptiveLayerNorm(d_model, norm1) self.norm2 = AdaptiveLayerNorm(d_model, norm2) else: self.norm1 = LayerNorm( d_model, eps=layer_norm_eps, **factory_kwargs ) self.norm2 = LayerNorm( d_model, eps=layer_norm_eps, **factory_kwargs ) def __setstate__(self, state): super(TransformerEncoderLayer, self).__setstate__(state) if not hasattr(self, "activation"): self.activation = F.relu def forward( self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, ) -> Tensor: r"""Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in Transformer class. """ if src_key_padding_mask is not None: _skpm_dtype = src_key_padding_mask.dtype if _skpm_dtype != torch.bool and not torch.is_floating_point( src_key_padding_mask ): raise AssertionError( "only bool and floating types of key_padding_mask are supported" ) # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf # why_not_sparsity_fast_path = "TODO:" x, stage_embedding = src if self.norm_first: x = x + self._sa_block( self.norm1(x, stage_embedding), src_mask, src_key_padding_mask, ) x = x + self._ff_block(self.norm2(x, stage_embedding)) else: x = self.norm1( x + self._sa_block(x, src_mask, src_key_padding_mask), stage_embedding, ) x = self.norm2(x + self._ff_block(x), stage_embedding) return (x, stage_embedding) # self-attention block def _sa_block( self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], ) -> Tensor: x = self.self_attn( x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False, )[0] return self.dropout1(x) # feed forward block def _ff_block(self, x: Tensor) -> Tensor: x = self.linear2(self.dropout(self.activation(self.linear1(x)))) return self.dropout2(x) class TransformerEncoder(nn.Module): r"""TransformerEncoder is a stack of N encoder layers. Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. Args: encoder_layer: an instance of the TransformerEncoderLayer() class (required). num_layers: the number of sub-encoder-layers in the encoder (required). norm: the layer normalization component (optional). enable_nested_tensor: if True, input will automatically convert to nested tensor (and convert back on output). This will improve the overall performance of TransformerEncoder when padding rate is high. Default: ``True`` (enabled). Examples:: >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> out = transformer_encoder(src) """ __constants__ = ["norm"] def __init__(self, encoder_layer, num_layers, norm=None): super(TransformerEncoder, self).__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward( self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, return_layer_states: bool = False, ) -> Tensor: r"""Pass the input through the encoder layers in turn. Args: src: the sequence to the encoder (required). mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). return_layer_states: return layers' state (optional). Shape: see the docs in Transformer class. """ if return_layer_states: output = src for mod in self.layers: output = mod( output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, ) if self.norm is not None: output = self.norm(output) return output output = src for mod in self.layers: output = mod( output, src_mask=mask, src_key_padding_mask=src_key_padding_mask ) if self.norm is not None: output = self.norm(output) return output class TransformerDecoderLayer(nn.Module): __constants__ = ["batch_first", "norm_first"] def __init__( self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, device=None, dtype=None, adaptive_layer_norm=False, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super(TransformerDecoderLayer, self).__init__() self.self_attn = nn.MultiheadAttention( d_model, nhead, dropout=dropout, batch_first=batch_first, **factory_kwargs, ) self.multihead_attn = nn.MultiheadAttention( d_model, nhead, dropout=dropout, batch_first=batch_first, **factory_kwargs, ) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs) self.norm_first = norm_first self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) # Legacy string support for activation function. if isinstance(activation, str): self.activation = _get_activation_fn(activation) else: self.activation = activation if adaptive_layer_norm: norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) norm3 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.norm1 = AdaptiveLayerNorm(d_model, norm1) self.norm2 = AdaptiveLayerNorm(d_model, norm2) self.norm3 = AdaptiveLayerNorm(d_model, norm3) else: self.norm1 = LayerNorm( d_model, eps=layer_norm_eps, **factory_kwargs ) self.norm2 = LayerNorm( d_model, eps=layer_norm_eps, **factory_kwargs ) self.norm3 = LayerNorm( d_model, eps=layer_norm_eps, **factory_kwargs ) def forward( self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, ) -> Tensor: r"""Pass the inputs (and mask) through the decoder layer. Args: tgt: the sequence to the decoder layer (required). memory: the sequence from the last layer of the encoder (required). tgt_mask: the mask for the tgt sequence (optional). memory_mask: the mask for the memory sequence (optional). tgt_key_padding_mask: the mask for the tgt keys per batch (optional). memory_key_padding_mask: the mask for the memory keys per batch (optional). Shape: see the docs in Transformer class. """ x, stage_embedding = tgt if self.norm_first: x = x + self._sa_block( self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask ) x = x + self._mha_block( self.norm2(x, stage_embedding), memory, memory_mask, memory_key_padding_mask, ) x = x + self._ff_block(self.norm3(x, stage_embedding)) else: x = self.norm1( x + self._sa_block(x, tgt_mask, tgt_key_padding_mask), stage_embedding, ) x = self.norm2( x + self._mha_block( x, memory, memory_mask, memory_key_padding_mask ), stage_embedding, ) x = self.norm3(x + self._ff_block(x), stage_embedding) return (x, stage_embedding) # self-attention block def _sa_block( self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], ) -> Tensor: x = self.self_attn( x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False, )[0] return self.dropout1(x) # multihead attention block def _mha_block( self, x: Tensor, mem: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], ) -> Tensor: x = self.multihead_attn( x, mem, mem, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False, )[0] return self.dropout2(x) # feed forward block def _ff_block(self, x: Tensor) -> Tensor: x = self.linear2(self.dropout(self.activation(self.linear1(x)))) return self.dropout3(x) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: if activation == "relu": return F.relu elif activation == "gelu": return F.gelu raise RuntimeError( "activation should be relu/gelu, not {}".format(activation) )
EXA-1-master
exa/models/valle/vall-e-main/valle/modules/transformer.py
#!/usr/bin/env python3 # Copyright 2023 (authors: Feiteng Li) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from valle.modules.optim import Eden def calc_lr(step, dim_embed, warmup_steps): return dim_embed ** (-0.5) * min( step ** (-0.5), step * warmup_steps ** (-1.5) ) class NoamScheduler(torch.optim.lr_scheduler._LRScheduler): def __init__( self, base_lr: float, optimizer: torch.optim.Optimizer, dim_embed: int, warmup_steps: int, last_epoch: int = -1, verbose: bool = False, ) -> None: self.dim_embed = dim_embed self.base_lr = base_lr self.warmup_steps = warmup_steps self.num_param_groups = len(optimizer.param_groups) super().__init__(optimizer, last_epoch, verbose) def get_lr(self) -> float: lr = self.base_lr * calc_lr( self._step_count, self.dim_embed, self.warmup_steps ) return [lr] * self.num_param_groups def set_step(self, step: int): self._step_count = step def get_scheduler(params, optimizer): if params.scheduler_name.lower() == "eden": scheduler = Eden(optimizer, 5000, 4, warmup_batches=params.warmup_steps) elif params.scheduler_name.lower() == "noam": scheduler = NoamScheduler( params.base_lr, optimizer, params.decoder_dim, warmup_steps=params.warmup_steps, ) # scheduler.set_step(params.start_batch or params.batch_idx_train) elif params.scheduler_name.lower() == "cosine": scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( params.warmup_steps, optimizer, eta_min=params.base_lr, ) else: raise NotImplementedError(f"{params.scheduler_name}") return scheduler
EXA-1-master
exa/models/valle/vall-e-main/valle/modules/scheduler.py
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) # # See ../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import logging import random from collections import defaultdict from typing import List, Optional, Tuple, Union import torch from lhotse.utils import fix_random_seed from torch import Tensor from torch.optim import Optimizer class BatchedOptimizer(Optimizer): """ This class adds to class Optimizer the capability to optimize parameters in batches: it will stack the parameters and their grads for you so the optimizer can work on tensors with an extra leading dimension. This is intended for speed with GPUs, as it reduces the number of kernels launched in the optimizer. Args: params: """ def __init__(self, params, defaults): super(BatchedOptimizer, self).__init__(params, defaults) @contextlib.contextmanager def batched_params(self, param_group, group_params_names): """ This function returns (technically, yields) a list of of tuples (p, state), where p is a `fake` parameter that is stacked (over axis 0) from real parameters that share the same shape, and its gradient is also stacked; `state` is the state corresponding to this batch of parameters (it will be physically located in the "state" for one of the real parameters, the last one that has any particular shape and dtype). This function is decorated as a context manager so that it can write parameters back to their "real" locations. The idea is, instead of doing: <code> for p in group["params"]: state = self.state[p] ... </code> you can do: <code> with self.batched_params(group["params"]) as batches: for p, state, p_names in batches: ... </code> Args: group: a parameter group, which is a list of parameters; should be one of self.param_groups. group_params_names: name for each parameter in group, which is List[str]. """ batches = defaultdict( list ) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter batches_names = defaultdict( list ) # `batches` maps from tuple (dtype_as_str,*shape) to list of str assert len(param_group) == len(group_params_names) for p, named_p in zip(param_group, group_params_names): key = (str(p.dtype), *p.shape) batches[key].append(p) batches_names[key].append(named_p) batches_names_keys = list(batches_names.keys()) sorted_idx = sorted( range(len(batches_names)), key=lambda i: batches_names_keys[i] ) batches_names = [ batches_names[batches_names_keys[idx]] for idx in sorted_idx ] batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] stacked_params_dict = dict() # turn batches into a list, in deterministic order. # tuples will contain tuples of (stacked_param, state, stacked_params_names), # one for each batch in `batches`. tuples = [] for batch, batch_names in zip(batches, batches_names): p = batch[0] # we arbitrarily store the state in the # state corresponding to the 1st parameter in the # group. class Optimizer will take care of saving/loading state. state = self.state[p] p_stacked = torch.stack(batch) grad = torch.stack( [ torch.zeros_like(p) if p.grad is None else p.grad for p in batch ] ) p_stacked.grad = grad stacked_params_dict[key] = p_stacked tuples.append((p_stacked, state, batch_names)) yield tuples # <-- calling code will do the actual optimization here! for ((stacked_params, _state, _names), batch) in zip(tuples, batches): for i, p in enumerate(batch): # batch is list of Parameter p.copy_(stacked_params[i]) class ScaledAdam(BatchedOptimizer): """ Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update proportional to the norm of that parameter; and also learn the scale of the parameter, in log space, subject to upper and lower limits (as if we had factored each parameter as param = underlying_param * log_scale.exp()) Args: params: The parameters or param_groups to optimize (like other Optimizer subclasses) lr: The learning rate. We will typically use a learning rate schedule that starts at 0.03 and decreases over time, i.e. much higher than other common optimizers. clipping_scale: (e.g. 2.0) A scale for gradient-clipping: if specified, the normalized gradients over the whole model will be clipped to have 2-norm equal to `clipping_scale` times the median 2-norm over the most recent period of `clipping_update_period` minibatches. By "normalized gradients", we mean after multiplying by the rms parameter value for this tensor [for non-scalars]; this is appropriate because our update is scaled by this quantity. betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad. Must satisfy 0 < beta <= beta2 < 1. scalar_lr_scale: A scaling factor on the learning rate, that we use to update the scale of each parameter tensor and scalar parameters of the mode.. If each parameter were decomposed as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale would be a the scaling factor on the learning rate of p_scale. eps: A general-purpose epsilon to prevent division by zero param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of learning the scale on the parameters (we'll constrain the rms of each non-scalar parameter tensor to be >= this value) param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of learning the scale on the parameters (we'll constrain the rms of each non-scalar parameter tensor to be <= this value) scalar_max: Maximum absolute value for scalar parameters (applicable if your model has any parameters with numel() == 1). size_update_period: The periodicity, in steps, with which we update the size (scale) of the parameter tensor. This is provided to save a little time in the update. clipping_update_period: if clipping_scale is specified, this is the period """ def __init__( self, params, lr=3e-02, clipping_scale=None, betas=(0.9, 0.98), scalar_lr_scale=0.1, eps=1.0e-08, param_min_rms=1.0e-05, param_max_rms=3.0, scalar_max=10.0, size_update_period=4, clipping_update_period=100, parameters_names=None, show_dominant_parameters=True, ): assert parameters_names is not None, ( "Please prepare parameters_names," "which is a List[List[str]]. Each List[str] is for a group" "and each str is for a parameter" ) defaults = dict( lr=lr, clipping_scale=clipping_scale, betas=betas, scalar_lr_scale=scalar_lr_scale, eps=eps, param_min_rms=param_min_rms, param_max_rms=param_max_rms, scalar_max=scalar_max, size_update_period=size_update_period, clipping_update_period=clipping_update_period, ) super(ScaledAdam, self).__init__(params, defaults) assert len(self.param_groups) == len(parameters_names) self.parameters_names = parameters_names self.show_dominant_parameters = show_dominant_parameters def __setstate__(self, state): super(ScaledAdam, self).__setstate__(state) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() batch = True for group, group_params_names in zip( self.param_groups, self.parameters_names ): with self.batched_params( group["params"], group_params_names ) as batches: # batches is list of pairs (stacked_param, state). stacked_param is like # a regular parameter, and will have a .grad, but the 1st dim corresponds to # a stacking dim, it is not a real dim. if ( len(batches[0][1]) == 0 ): # if len(first state) == 0: not yet initialized clipping_scale = 1 else: clipping_scale = self._get_clipping_scale(group, batches) for p, state, _ in batches: # Perform optimization step. # grad is not going to be None, we handled that when creating the batches. grad = p.grad if grad.is_sparse: raise RuntimeError( "ScaledAdam optimizer does not support sparse gradients" ) # State initialization if len(state) == 0: self._init_state(group, p, state) self._step_one_batch(group, p, state, clipping_scale) return loss def _init_state(self, group: dict, p: Tensor, state: dict): """ Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p is actually the batch dimension, corresponding to batched-together parameters of a given shape. Args: group: Dict to look up configuration values. p: The parameter that we are initializing the state for state: Dict from string to whatever state we are initializing """ size_update_period = group["size_update_period"] state["step"] = 0 kwargs = {"device": p.device, "dtype": p.dtype} # 'delta' implements conventional momentum. There are # several different kinds of update going on, so rather than # compute "exp_avg" like in Adam, we store and decay a # parameter-change "delta", which combines all forms of # update. this is equivalent to how it's done in Adam, # except for the first few steps. state["delta"] = torch.zeros_like( p, memory_format=torch.preserve_format ) batch_size = p.shape[0] numel = p.numel() // batch_size numel = p.numel() if numel > 1: # "param_rms" just periodically records the scalar root-mean-square value of # the parameter tensor. # it has a shape like (batch_size, 1, 1, 1, 1) param_rms = ( (p ** 2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() ) state["param_rms"] = param_rms state["scale_exp_avg_sq"] = torch.zeros_like(param_rms) state["scale_grads"] = torch.zeros( size_update_period, *param_rms.shape, **kwargs ) # exp_avg_sq is the weighted sum of scaled gradients. as in Adam. state["exp_avg_sq"] = torch.zeros_like( p, memory_format=torch.preserve_format ) def _get_clipping_scale( self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]] ) -> float: """ Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients by this amount before applying the rest of the update. Args: group: the parameter group, an item in self.param_groups tuples: a list of tuples of (param, state, param_names) where param is a batched set of parameters, with a .grad (1st dim is batch dim) and state is the state-dict where optimization parameters are kept. param_names is a List[str] while each str is name for a parameter in batched set of parameters "param". """ assert len(tuples) >= 1 clipping_scale = group["clipping_scale"] (first_p, first_state, _) = tuples[0] step = first_state["step"] if clipping_scale is None or step == 0: # no clipping. return early on step == 0 because the other # parameters' state won't have been initialized yet. return 1.0 clipping_update_period = group["clipping_update_period"] tot_sumsq = torch.tensor(0.0, device=first_p.device) for (p, state, param_names) in tuples: grad = p.grad if grad.is_sparse: raise RuntimeError( "ScaledAdam optimizer does not support sparse gradients" ) if p.numel() == p.shape[0]: # a batch of scalars tot_sumsq += ( grad ** 2 ).sum() # sum() to change shape [1] to [] else: tot_sumsq += ((grad * state["param_rms"]) ** 2).sum() tot_norm = tot_sumsq.sqrt() if "model_norms" not in first_state: first_state["model_norms"] = torch.zeros( clipping_update_period, device=p.device ) first_state["model_norms"][step % clipping_update_period] = tot_norm if step % clipping_update_period == 0: # Print some stats. # We don't reach here if step == 0 because we would have returned # above. sorted_norms = first_state["model_norms"].sort()[0].to("cpu") quartiles = [] for n in range(0, 5): index = min( clipping_update_period - 1, (clipping_update_period // 4) * n, ) quartiles.append(sorted_norms[index].item()) median = quartiles[2] threshold = clipping_scale * median first_state["model_norm_threshold"] = threshold percent_clipped = ( first_state["num_clipped"] * 100.0 / clipping_update_period if "num_clipped" in first_state else 0.0 ) first_state["num_clipped"] = 0 quartiles = " ".join(["%.3e" % x for x in quartiles]) logging.info( f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, " f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}" ) if step < clipping_update_period: return 1.0 # We have not yet estimated a norm to clip to. else: try: model_norm_threshold = first_state["model_norm_threshold"] except KeyError: logging.info( "Warning: model_norm_threshold not in state: possibly " "you changed config when restarting, adding clipping_scale option?" ) return 1.0 ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item()) if ans < 1.0: first_state["num_clipped"] += 1 if ans < 0.1: logging.warn( f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}" ) if self.show_dominant_parameters: assert p.shape[0] == len(param_names) self._show_gradient_dominating_parameter(tuples, tot_sumsq) return ans def _show_gradient_dominating_parameter( self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor ): """ Show information of parameter wihch dominanting tot_sumsq. Args: tuples: a list of tuples of (param, state, param_names) where param is a batched set of parameters, with a .grad (1st dim is batch dim) and state is the state-dict where optimization parameters are kept. param_names is a List[str] while each str is name for a parameter in batched set of parameters "param". tot_sumsq: sumsq of all parameters. Though it's could be calculated from tuples, we still pass it to save some time. """ all_sumsq_orig = {} for (p, state, batch_param_names) in tuples: # p is a stacked batch parameters. batch_grad = p.grad if p.numel() == p.shape[0]: # a batch of scalars batch_sumsq_orig = batch_grad ** 2 # Dummpy values used by following `zip` statement. batch_rms_orig = torch.ones(p.shape[0]) else: batch_rms_orig = state["param_rms"] batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum( dim=list(range(1, batch_grad.ndim)) ) for name, sumsq_orig, rms, grad in zip( batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad ): proportion_orig = sumsq_orig / tot_sumsq all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad) assert torch.isclose( sum([value[0] for value in all_sumsq_orig.values()]).cpu(), torch.tensor(1.0), ) sorted_by_proportion = { k: v for k, v in sorted( all_sumsq_orig.items(), key=lambda item: item[1][0], reverse=True, ) } dominant_param_name = next(iter(sorted_by_proportion)) ( dominant_proportion, dominant_sumsq, dominant_rms, dominant_grad, ) = sorted_by_proportion[dominant_param_name] logging.info( f"Parameter Dominanting tot_sumsq {dominant_param_name}" f" with proportion {dominant_proportion:.2f}," f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)" f"={dominant_sumsq:.3e}," f" grad_sumsq = {(dominant_grad**2).sum():.3e}," f" orig_rms_sq={(dominant_rms**2).item():.3e}" ) def _step_one_batch( self, group: dict, p: Tensor, state: dict, clipping_scale: float ): """ Do the step for one parameter, which is actually going to be a batch of `real` parameters, with dim 0 as the batch dim. Args: group: dict to look up configuration values p: parameter to update (actually multiple parameters stacked together as a batch) state: state-dict for p, to look up the optimizer state """ lr = group["lr"] size_update_period = group["size_update_period"] beta1 = group["betas"][0] grad = p.grad if clipping_scale != 1.0: grad = grad * clipping_scale step = state["step"] delta = state["delta"] delta.mul_(beta1) batch_size = p.shape[0] numel = p.numel() // batch_size if numel > 1: # Update the size/scale of p, and set param_rms scale_grads = state["scale_grads"] scale_grads[step % size_update_period] = (p * grad).sum( dim=list(range(1, p.ndim)), keepdim=True ) if step % size_update_period == size_update_period - 1: param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..) param_rms.copy_( (p ** 2) .mean(dim=list(range(1, p.ndim)), keepdim=True) .sqrt() ) if step > 0: # self._size_update() learns the overall scale on the # parameter, by shrinking or expanding it. self._size_update(group, scale_grads, p, state) if numel == 1: # For parameters with 1 element we just use regular Adam. # Updates delta. self._step_scalar(group, p, state) else: self._step(group, p, state) state["step"] = step + 1 def _size_update( self, group: dict, scale_grads: Tensor, p: Tensor, state: dict ) -> None: """ Called only where p.numel() > 1, this updates the scale of the parameter. If we imagine: p = underlying_param * scale.exp(), and we are doing gradient descent on underlying param and on scale, this function does the update on `scale`. Args: group: dict to look up configuration values scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing grads w.r.t. the scales. p: The parameter to update state: The state-dict of p """ param_rms = state["param_rms"] beta1, beta2 = group["betas"] size_lr = group["lr"] * group["scalar_lr_scale"] param_min_rms = group["param_min_rms"] param_max_rms = group["param_max_rms"] eps = group["eps"] step = state["step"] batch_size = p.shape[0] size_update_period = scale_grads.shape[0] # correct beta2 for the size update period: we will have # faster decay at this level. beta2_corr = beta2 ** size_update_period scale_exp_avg_sq = state[ "scale_exp_avg_sq" ] # shape: (batch_size, 1, 1, ..) scale_exp_avg_sq.mul_(beta2_corr).add_( (scale_grads ** 2).mean( dim=0 ), # mean over dim `size_update_period` alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...) # The 1st time we reach here is when size_step == 1. size_step = (step + 1) // size_update_period bias_correction2 = 1 - beta2_corr ** size_step # we don't bother with bias_correction1; this will help prevent divergence # at the start of training. denom = scale_exp_avg_sq.sqrt() + eps scale_step = ( -size_lr * (bias_correction2 ** 0.5) * scale_grads.sum(dim=0) / denom ) is_too_small = param_rms < param_min_rms is_too_large = param_rms > param_max_rms # when the param gets too small, just don't shrink it any further. scale_step.masked_fill_(is_too_small, 0.0) # when it gets too large, stop it from getting any larger. scale_step.masked_fill_(is_too_large, -size_lr * size_update_period) delta = state["delta"] # the factor of (1-beta1) relates to momentum. delta.add_(p * scale_step, alpha=(1 - beta1)) def _step(self, group: dict, p: Tensor, state: dict): """ This function does the core update of self.step(), in the case where the members of the batch have more than 1 element. Args: group: A dict which will be used to look up configuration values p: The parameter to be updated grad: The grad of p state: The state-dict corresponding to parameter p This function modifies p. """ grad = p.grad lr = group["lr"] beta1, beta2 = group["betas"] eps = group["eps"] param_min_rms = group["param_min_rms"] step = state["step"] exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) this_step = state["step"] - ( state["zero_step"] if "zero_step" in state else 0 ) bias_correction2 = 1 - beta2 ** (this_step + 1) if bias_correction2 < 0.99: # note: not in-place. exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2) denom = exp_avg_sq.sqrt() denom += eps grad = grad / denom alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms) delta = state["delta"] delta.add_(grad * alpha) p.add_(delta) def _step_scalar(self, group: dict, p: Tensor, state: dict): """ A simplified form of the core update for scalar tensors, where we cannot get a good estimate of the parameter rms. """ beta1, beta2 = group["betas"] scalar_max = group["scalar_max"] eps = group["eps"] lr = group["lr"] * group["scalar_lr_scale"] grad = p.grad exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # bias_correction2 is like in Adam. Don't bother with bias_correction1; # slower update at the start will help stability anyway. bias_correction2 = 1 - beta2 ** (state["step"] + 1) denom = (exp_avg_sq / bias_correction2).sqrt() + eps delta = state["delta"] delta.add_(grad / denom, alpha=-lr * (1 - beta1)) p.clamp_(min=-scalar_max, max=scalar_max) p.add_(delta) class LRScheduler(object): """ Base-class for learning rate schedulers where the learning-rate depends on both the batch and the epoch. """ def __init__(self, optimizer: Optimizer, verbose: bool = False): # Attach optimizer if not isinstance(optimizer, Optimizer): raise TypeError( "{} is not an Optimizer".format(type(optimizer).__name__) ) self.optimizer = optimizer self.verbose = verbose for group in optimizer.param_groups: group.setdefault("base_lr", group["lr"]) self.base_lrs = [group["base_lr"] for group in optimizer.param_groups] self.epoch = 0 self.batch = 0 def state_dict(self): """Returns the state of the scheduler as a :class:`dict`. It contains an entry for every variable in self.__dict__ which is not the optimizer. """ return { "base_lrs": self.base_lrs, "epoch": self.epoch, "batch": self.batch, } def load_state_dict(self, state_dict): """Loads the schedulers state. Args: state_dict (dict): scheduler state. Should be an object returned from a call to :meth:`state_dict`. """ self.__dict__.update(state_dict) def get_last_lr(self) -> List[float]: """Return last computed learning rate by current scheduler. Will be a list of float.""" return self._last_lr def get_lr(self): # Compute list of learning rates from self.epoch and self.batch and # self.base_lrs; this must be overloaded by the user. # e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ] raise NotImplementedError def step_batch(self, batch: Optional[int] = None) -> None: # Step the batch index, or just set it. If `batch` is specified, it # must be the batch index from the start of training, i.e. summed over # all epochs. # You can call this in any order; if you don't provide 'batch', it should # of course be called once per batch. if batch is not None: self.batch = batch else: self.batch = self.batch + 1 self._set_lrs() def step_epoch(self, epoch: Optional[int] = None): # Step the epoch index, or just set it. If you provide the 'epoch' arg, # you should call this at the start of the epoch; if you don't provide the 'epoch' # arg, you should call it at the end of the epoch. if epoch is not None: self.epoch = epoch else: self.epoch = self.epoch + 1 self._set_lrs() def _set_lrs(self): values = self.get_lr() assert len(values) == len(self.optimizer.param_groups) for i, data in enumerate(zip(self.optimizer.param_groups, values)): param_group, lr = data param_group["lr"] = lr self.print_lr(self.verbose, i, lr) self._last_lr = [group["lr"] for group in self.optimizer.param_groups] def print_lr(self, is_verbose, group, lr): """Display the current learning rate.""" if is_verbose: logging.info( f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate" f" of group {group} to {lr:.4e}." ) class Eden(LRScheduler): """ Eden scheduler. The basic formula (before warmup) is: lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 * (((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches and then stays constant at 1. E.g. suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam Args: optimizer: the optimizer to change the learning rates on lr_batches: the number of batches after which we start significantly decreasing the learning rate, suggest 5000. lr_epochs: the number of epochs after which we start significantly decreasing the learning rate, suggest 6 if you plan to do e.g. 20 to 40 epochs, but may need smaller number if dataset is huge and you will do few epochs. """ def __init__( self, optimizer: Optimizer, lr_batches: Union[int, float], lr_epochs: Union[int, float], warmup_batches: Union[int, float] = 500.0, verbose: bool = False, ): super(Eden, self).__init__(optimizer, verbose) self.lr_batches = lr_batches self.lr_epochs = lr_epochs self.warmup_batches = warmup_batches def get_lr(self): factor = ( (self.batch ** 2 + self.lr_batches ** 2) / self.lr_batches ** 2 ) ** -0.25 * ( ((self.epoch ** 2 + self.lr_epochs ** 2) / self.lr_epochs ** 2) ** -0.25 ) warmup_factor = ( 1.0 if self.batch >= self.warmup_batches else 0.5 + 0.5 * (self.batch / self.warmup_batches) ) return [x * factor * warmup_factor for x in self.base_lrs] def _test_eden(): m = torch.nn.Linear(100, 100) optim = ScaledAdam(m.parameters(), lr=0.03) scheduler = Eden(optim, lr_batches=100, lr_epochs=2, verbose=True) for epoch in range(10): scheduler.step_epoch(epoch) # sets epoch to `epoch` for step in range(20): x = torch.randn(200, 100).detach() x.requires_grad = True y = m(x) dy = torch.randn(200, 100).detach() f = (y * dy).sum() f.backward() optim.step() scheduler.step_batch() optim.zero_grad() logging.info(f"last lr = {scheduler.get_last_lr()}") logging.info(f"state dict = {scheduler.state_dict()}") # This is included mostly as a baseline for ScaledAdam. class Eve(Optimizer): """ Implements Eve algorithm. This is a modified version of AdamW with a special way of setting the weight-decay / shrinkage-factor, which is designed to make the rms of the parameters approach a particular target_rms (default: 0.1). This is for use with networks with 'scaled' versions of modules (see scaling.py), which will be close to invariant to the absolute scale on the parameter matrix. The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. Eve is unpublished so far. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 3e-4; this value means that the weight would decay significantly after about 3k minibatches. Is not multiplied by learning rate, but is conditional on RMS-value of parameter being > target_rms. target_rms (float, optional): target root-mean-square value of parameters, if they fall below this we will stop applying weight decay. .. _Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.98), eps=1e-8, weight_decay=1e-3, target_rms=0.1, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( "Invalid beta parameter at index 0: {}".format(betas[0]) ) if not 0.0 <= betas[1] < 1.0: raise ValueError( "Invalid beta parameter at index 1: {}".format(betas[1]) ) if not 0 <= weight_decay <= 0.1: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay) ) if not 0 < target_rms <= 10.0: raise ValueError("Invalid target_rms value: {}".format(target_rms)) defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, target_rms=target_rms, ) super(Eve, self).__init__(params, defaults) def __setstate__(self, state): super(Eve, self).__setstate__(state) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue # Perform optimization step grad = p.grad if grad.is_sparse: raise RuntimeError( "AdamW does not support sparse gradients" ) state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like( p, memory_format=torch.preserve_format ) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like( p, memory_format=torch.preserve_format ) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_( group["eps"] ) step_size = group["lr"] / bias_correction1 target_rms = group["target_rms"] weight_decay = group["weight_decay"] if p.numel() > 1: # avoid applying this weight-decay on "scaling factors" # (which are scalar). is_above_target_rms = p.norm() > ( target_rms * (p.numel() ** 0.5) ) p.mul_(1 - (weight_decay * is_above_target_rms)) p.addcdiv_(exp_avg, denom, value=-step_size) # if random.random() < 0.0005: # step = (exp_avg / denom) * step_size # logging.info( # f"Delta rms = {(step**2).mean().item()}, shape = {step.shape}" # ) return loss def _test_scaled_adam(hidden_dim: int): import timeit from scaling import ScaledLinear E = 100 B = 4 T = 2 logging.info("in test_eve_cain") # device = torch.device('cuda') device = torch.device("cpu") dtype = torch.float32 fix_random_seed(42) # these input_magnitudes and output_magnitudes are to test that # Abel is working as we expect and is able to adjust scales of # different dims differently. input_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() output_magnitudes = (1.0 * torch.randn(E, dtype=dtype, device=device)).exp() for iter in [1, 0]: fix_random_seed(42) Linear = torch.nn.Linear if iter == 0 else ScaledLinear m = torch.nn.Sequential( Linear(E, hidden_dim), torch.nn.PReLU(), Linear(hidden_dim, hidden_dim), torch.nn.PReLU(), Linear(hidden_dim, E), ).to(device) train_pairs = [ ( 100.0 * torch.randn(B, T, E, device=device, dtype=dtype) * input_magnitudes, torch.randn(B, T, E, device=device, dtype=dtype) * output_magnitudes, ) for _ in range(20) ] if iter == 0: optim = Eve(m.parameters(), lr=0.003) elif iter == 1: optim = ScaledAdam(m.parameters(), lr=0.03, clipping_scale=2.0) scheduler = Eden(optim, lr_batches=200, lr_epochs=5, verbose=False) start = timeit.default_timer() avg_loss = 0.0 for epoch in range(180): scheduler.step_epoch() # if epoch == 100 and iter in [2,3]: # optim.reset_speedup() # check it doesn't crash. # if epoch == 130: # opts = diagnostics.TensorDiagnosticOptions( # 2 ** 22 # ) # allow 4 megabytes per sub-module # diagnostic = diagnostics.attach_diagnostics(m, opts) for n, (x, y) in enumerate(train_pairs): y_out = m(x) loss = ((y_out - y) ** 2).mean() * 100.0 if epoch == 0 and n == 0: avg_loss = loss.item() else: avg_loss = 0.98 * avg_loss + 0.02 * loss.item() if n == 0 and epoch % 5 == 0: # norm1 = '%.2e' % (m[0].weight**2).mean().sqrt().item() # norm1b = '%.2e' % (m[0].bias**2).mean().sqrt().item() # norm2 = '%.2e' % (m[2].weight**2).mean().sqrt().item() # norm2b = '%.2e' % (m[2].bias**2).mean().sqrt().item() # scale1 = '%.2e' % (m[0].weight_scale.exp().item()) # scale1b = '%.2e' % (m[0].bias_scale.exp().item()) # scale2 = '%.2e' % (m[2].weight_scale.exp().item()) # scale2b = '%.2e' % (m[2].bias_scale.exp().item()) lr = scheduler.get_last_lr()[0] logging.info( f"Iter {iter}, epoch {epoch}, batch {n}, avg_loss {avg_loss:.4g}, lr={lr:.4e}" ) # , norms={norm1,norm1b,norm2,norm2b}") # scales={scale1,scale1b,scale2,scale2b} loss.log().backward() optim.step() optim.zero_grad() scheduler.step_batch() # diagnostic.print_diagnostics() stop = timeit.default_timer() logging.info(f"Iter={iter}, Time taken: {stop - start}") logging.info(f"last lr = {scheduler.get_last_lr()}") # logging.info("state dict = ", scheduler.state_dict()) # logging.info("optim state_dict = ", optim.state_dict()) logging.info(f"input_magnitudes = {input_magnitudes}") logging.info(f"output_magnitudes = {output_magnitudes}") if __name__ == "__main__": torch.set_num_threads(1) torch.set_num_interop_threads(1) logging.getLogger().setLevel(logging.INFO) import subprocess s = subprocess.check_output( "git status -uno .; git log -1; git diff HEAD .", shell=True ) logging.info(s) import sys if len(sys.argv) > 1: hidden_dim = int(sys.argv[1]) else: hidden_dim = 200 _test_scaled_adam(hidden_dim) _test_eden()
EXA-1-master
exa/models/valle/vall-e-main/valle/modules/optim.py
# Copyright 2023 (authors: Feiteng Li) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import asdict, dataclass from typing import Any, Dict, Optional, Union import numpy as np import torch from lhotse.features.base import FeatureExtractor from lhotse.utils import EPSILON, Seconds, compute_num_frames from librosa.filters import mel as librosa_mel_fn @dataclass class BigVGANFbankConfig: # Spectogram-related part # Note that frame_length and frame_shift will be converted to milliseconds before torchaudio/Kaldi sees them frame_length: Seconds = 1024 / 24000.0 frame_shift: Seconds = 256 / 24000.0 remove_dc_offset: bool = True round_to_power_of_two: bool = True # Fbank-related part low_freq: float = 0.0 high_freq: float = 12000.0 num_mel_bins: int = 100 use_energy: bool = False def to_dict(self) -> Dict[str, Any]: return asdict(self) @staticmethod def from_dict(data: Dict[str, Any]) -> "BigVGANFbankConfig": return BigVGANFbankConfig(**data) def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C) def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output # https://github.com/NVIDIA/BigVGAN # bigvgan_24khz_100band https://drive.google.com/drive/folders/1EpxX6AsxjCbbk0mmAhE0td6eYiABr8Oz class BigVGANFbank(FeatureExtractor): name = "fbank" config_type = BigVGANFbankConfig def __init__(self, config: Optional[Any] = None): super(BigVGANFbank, self).__init__(config) sampling_rate = 24000 self.mel_basis = torch.from_numpy( librosa_mel_fn( sampling_rate, 1024, self.config.num_mel_bins, self.config.low_freq, self.config.high_freq, ).astype(np.float32) ) self.hann_window = torch.hann_window(1024) def _feature_fn(self, samples, **kwargs): win_length, n_fft = 1024, 1024 hop_size = 256 if True: sampling_rate = 24000 duration = round(samples.shape[-1] / sampling_rate, ndigits=12) expected_num_frames = compute_num_frames( duration=duration, frame_shift=self.frame_shift, sampling_rate=sampling_rate, ) pad_size = ( (expected_num_frames - 1) * hop_size + win_length - samples.shape[-1] ) assert pad_size >= 0 y = torch.nn.functional.pad( samples, (0, pad_size), mode="constant", ) else: y = torch.nn.functional.pad( samples, (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect", ) y = y.squeeze(1) # complex tensor as default, then use view_as_real for future pytorch compatibility spec = torch.stft( y, n_fft, hop_length=hop_size, win_length=win_length, window=self.hann_window, center=False, pad_mode="reflect", normalized=False, onesided=True, return_complex=True, ) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(self.mel_basis, spec) spec = spectral_normalize_torch(spec) return spec.transpose(2, 1).squeeze(0) def extract( self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int ) -> np.ndarray: assert sampling_rate == 24000 params = asdict(self.config) params.update({"sample_frequency": sampling_rate, "snip_edges": False}) params["frame_shift"] *= 1000.0 params["frame_length"] *= 1000.0 if not isinstance(samples, torch.Tensor): samples = torch.from_numpy(samples) # Torchaudio Kaldi feature extractors expect the channel dimension to be first. if len(samples.shape) == 1: samples = samples.unsqueeze(0) features = self._feature_fn(samples, **params).to(torch.float32) return features.numpy() @property def frame_shift(self) -> Seconds: return self.config.frame_shift def feature_dim(self, sampling_rate: int) -> int: return self.config.num_mel_bins @staticmethod def mix( features_a: np.ndarray, features_b: np.ndarray, energy_scaling_factor_b: float, ) -> np.ndarray: return np.log( np.maximum( # protection against log(0); max with EPSILON is adequate since these are energies (always >= 0) EPSILON, np.exp(features_a) + energy_scaling_factor_b * np.exp(features_b), ) ) @staticmethod def compute_energy(features: np.ndarray) -> float: return float(np.sum(np.exp(features))) def get_fbank_extractor() -> BigVGANFbank: return BigVGANFbank(BigVGANFbankConfig()) if __name__ == "__main__": extractor = BigVGANFbank(BigVGANFbankConfig()) samples = torch.from_numpy(np.random.random([1000]).astype(np.float32)) samples = torch.clip(samples, -1.0, 1.0) fbank = extractor.extract(samples, 24000.0) print(f"fbank {fbank.shape}") from scipy.io.wavfile import read MAX_WAV_VALUE = 32768.0 sampling_rate, samples = read( "egs/libritts/prompts/5639_40744_000000_000002.wav" ) print(f"samples: [{samples.min()}, {samples.max()}]") fbank = extractor.extract(samples.astype(np.float32) / MAX_WAV_VALUE, 24000) print(f"fbank {fbank.shape}") import matplotlib.pyplot as plt _ = plt.figure(figsize=(18, 10)) plt.imshow( X=fbank.transpose(1, 0), cmap=plt.get_cmap("jet"), aspect="auto", interpolation="nearest", ) plt.gca().invert_yaxis() plt.savefig("egs/libritts/prompts/5639_40744_000000_000002.png") plt.close() print("fbank test PASS!")
EXA-1-master
exa/models/valle/vall-e-main/valle/data/fbank.py
from .datamodule import * from .tokenizer import * from .collation import *
EXA-1-master
exa/models/valle/vall-e-main/valle/data/__init__.py
from pathlib import Path from typing import List, Tuple import numpy as np import torch from valle.utils import SymbolTable class TextTokenCollater: """Collate list of text tokens Map sentences to integers. Sentences are padded to equal length. Beginning and end-of-sequence symbols can be added. Example: >>> token_collater = TextTokenCollater(text_tokens) >>> tokens_batch, tokens_lens = token_collater(text) Returns: tokens_batch: IntTensor of shape (B, L) B: batch dimension, number of input sentences L: length of the longest sentence tokens_lens: IntTensor of shape (B,) Length of each sentence after adding <eos> and <bos> but before padding. """ def __init__( self, text_tokens: List[str], add_eos: bool = True, add_bos: bool = True, pad_symbol: str = "<pad>", bos_symbol: str = "<bos>", eos_symbol: str = "<eos>", ): self.pad_symbol = pad_symbol self.add_eos = add_eos self.add_bos = add_bos self.bos_symbol = bos_symbol self.eos_symbol = eos_symbol unique_tokens = ( [pad_symbol] + ([bos_symbol] if add_bos else []) + ([eos_symbol] if add_eos else []) + sorted(text_tokens) ) self.token2idx = {token: idx for idx, token in enumerate(unique_tokens)} self.idx2token = [token for token in unique_tokens] def index( self, tokens_list: List[str] ) -> Tuple[torch.Tensor, torch.Tensor]: seqs, seq_lens = [], [] for tokens in tokens_list: assert ( all([True if s in self.token2idx else False for s in tokens]) is True ) seq = ( ([self.bos_symbol] if self.add_bos else []) + list(tokens) + ([self.eos_symbol] if self.add_eos else []) ) seqs.append(seq) seq_lens.append(len(seq)) max_len = max(seq_lens) for k, (seq, seq_len) in enumerate(zip(seqs, seq_lens)): seq.extend([self.pad_symbol] * (max_len - seq_len)) tokens = torch.from_numpy( np.array( [[self.token2idx[token] for token in seq] for seq in seqs], dtype=np.int64, ) ) tokens_lens = torch.IntTensor(seq_lens) return tokens, tokens_lens def __call__(self, texts: List[str]) -> Tuple[torch.Tensor, torch.Tensor]: tokens_seqs = [[p for p in text] for text in texts] max_len = len(max(tokens_seqs, key=len)) seqs = [ ([self.bos_symbol] if self.add_bos else []) + list(seq) + ([self.eos_symbol] if self.add_eos else []) + [self.pad_symbol] * (max_len - len(seq)) for seq in tokens_seqs ] tokens_batch = torch.from_numpy( np.array( [[self.token2idx[token] for token in seq] for seq in seqs], dtype=np.int64, ) ) tokens_lens = torch.IntTensor( [ len(seq) + int(self.add_eos) + int(self.add_bos) for seq in tokens_seqs ] ) return tokens_batch, tokens_lens def get_text_token_collater(text_tokens_file: str) -> TextTokenCollater: text_tokens_path = Path(text_tokens_file) unique_tokens = SymbolTable.from_file(text_tokens_path) collater = TextTokenCollater( unique_tokens.symbols, add_bos=True, add_eos=True ) return collater
EXA-1-master
exa/models/valle/vall-e-main/valle/data/collation.py
# Copyright 2023 (authors: Feiteng Li) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ modified from lhoste.dataset.speech_synthesis.py """ from typing import Callable, Dict, List, Sequence, Union import torch from lhotse import validate from lhotse.cut import CutSet from lhotse.dataset.collation import collate_audio from lhotse.dataset.input_strategies import BatchIO, PrecomputedFeatures from lhotse.utils import ifnone from valle.data.collation import TextTokenCollater class SpeechSynthesisDataset(torch.utils.data.Dataset): """ The PyTorch Dataset for the speech synthesis(e.g. TTS) task. Each item in this dataset is a dict of: .. code-block:: { 'audio': (B x NumSamples) float tensor 'audio_lens': (B, ) int tensor 'text': str 'audio_features': (B x NumFrames x NumFeatures) float tensor 'audio_features_lens': (B, ) int tensor 'text_tokens': (B x NumTextTokens) long tensor 'text_tokens_lens': (B, ) int tensor } """ def __init__( self, text_token_collater: TextTokenCollater, cut_transforms: List[Callable[[CutSet], CutSet]] = None, feature_input_strategy: BatchIO = PrecomputedFeatures(), feature_transforms: Union[Sequence[Callable], Callable] = None, ) -> None: super().__init__() self.text_token_collater = text_token_collater self.cut_transforms = ifnone(cut_transforms, []) self.feature_input_strategy = feature_input_strategy if feature_transforms is None: feature_transforms = [] elif not isinstance(feature_transforms, Sequence): feature_transforms = [feature_transforms] assert all( isinstance(transform, Callable) for transform in feature_transforms ), "Feature transforms must be Callable" self.feature_transforms = feature_transforms def __getitem__(self, cuts: CutSet) -> Dict[str, torch.Tensor]: validate_for_tts(cuts) for transform in self.cut_transforms: cuts = transform(cuts) if False: # not used audio, audio_lens = collate_audio(cuts) else: # for sharing tokenized features in different machines audio, audio_lens = None, None audio_features, audio_features_lens = self.feature_input_strategy(cuts) for transform in self.feature_transforms: audio_features = transform(audio_features) text_tokens, text_tokens_lens = self.text_token_collater( [cut.supervisions[0].custom["tokens"]["text"] for cut in cuts] ) return { "utt_id": [cut.id for cut in cuts], "text": [cut.supervisions[0].text for cut in cuts], "audio": audio, "audio_lens": audio_lens, "audio_features": audio_features, "audio_features_lens": audio_features_lens, "text_tokens": text_tokens, "text_tokens_lens": text_tokens_lens, } def validate_for_tts(cuts: CutSet) -> None: validate(cuts) for cut in cuts: assert ( len(cut.supervisions) == 1 ), "Only the Cuts with single supervision are supported."
EXA-1-master
exa/models/valle/vall-e-main/valle/data/dataset.py
#!/usr/bin/env python3 # Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from dataclasses import asdict, dataclass from typing import Any, Dict, List, Optional, Pattern, Union import numpy as np import torch import torchaudio from encodec import EncodecModel from encodec.utils import convert_audio from lhotse.features import FeatureExtractor from lhotse.utils import Seconds, compute_num_frames from phonemizer.backend import EspeakBackend from phonemizer.backend.espeak.language_switch import LanguageSwitch from phonemizer.backend.espeak.words_mismatch import WordMismatch from phonemizer.punctuation import Punctuation from phonemizer.separator import Separator try: from pypinyin import Style, pinyin from pypinyin.style._utils import get_finals, get_initials except Exception: pass class PypinyinBackend: """PypinyinBackend for Chinese. Most codes is referenced from espnet. There are two types pinyin or initials_finals, one is just like "ni1 hao3", the other is like "n i1 h ao3". """ def __init__( self, backend="initials_finals", punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(), ) -> None: self.backend = backend self.punctuation_marks = punctuation_marks def phonemize( self, text: List[str], separator: Separator, strip=True, njobs=1 ) -> List[str]: assert isinstance(text, List) phonemized = [] for _text in text: _text = re.sub(" +", " ", _text.strip()) _text = _text.replace(" ", separator.word) phones = [] if self.backend == "pypinyin": for n, py in enumerate( pinyin( _text, style=Style.TONE3, neutral_tone_with_five=True ) ): if all([c in self.punctuation_marks for c in py[0]]): if len(phones): assert phones[-1] == separator.syllable phones.pop(-1) phones.extend(list(py[0])) else: phones.extend([py[0], separator.syllable]) elif self.backend == "pypinyin_initials_finals": for n, py in enumerate( pinyin( _text, style=Style.TONE3, neutral_tone_with_five=True ) ): if all([c in self.punctuation_marks for c in py[0]]): if len(phones): assert phones[-1] == separator.syllable phones.pop(-1) phones.extend(list(py[0])) else: if py[0][-1].isalnum(): initial = get_initials(py[0], strict=False) if py[0][-1].isdigit(): final = ( get_finals(py[0][:-1], strict=False) + py[0][-1] ) else: final = get_finals(py[0], strict=False) phones.extend( [ initial, separator.phone, final, separator.syllable, ] ) else: assert ValueError else: raise NotImplementedError phonemized.append( "".join(phones).rstrip(f"{separator.word}{separator.syllable}") ) return phonemized class TextTokenizer: """Phonemize Text.""" def __init__( self, language="en-us", backend="espeak", separator=Separator(word="_", syllable="-", phone="|"), preserve_punctuation=True, punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(), with_stress: bool = False, tie: Union[bool, str] = False, language_switch: LanguageSwitch = "keep-flags", words_mismatch: WordMismatch = "ignore", ) -> None: if backend == "espeak": phonemizer = EspeakBackend( language, punctuation_marks=punctuation_marks, preserve_punctuation=preserve_punctuation, with_stress=with_stress, tie=tie, language_switch=language_switch, words_mismatch=words_mismatch, ) elif backend in ["pypinyin", "pypinyin_initials_finals"]: phonemizer = PypinyinBackend( backend=backend, punctuation_marks=punctuation_marks + separator.word, ) else: raise NotImplementedError(f"{backend}") self.backend = phonemizer self.separator = separator def to_list(self, phonemized: str) -> List[str]: fields = [] for word in phonemized.split(self.separator.word): # "ɐ m|iː|n?" ɹ|ɪ|z|ɜː|v; h|ɪ|z. pp = re.findall(r"\w+|[^\w\s]", word, re.UNICODE) fields.extend( [p for p in pp if p != self.separator.phone] + [self.separator.word] ) assert len("".join(fields[:-1])) == len(phonemized) - phonemized.count( self.separator.phone ) return fields[:-1] def __call__(self, text, strip=True) -> List[List[str]]: if isinstance(text, str): text = [text] phonemized = self.backend.phonemize( text, separator=self.separator, strip=strip, njobs=1 ) return [self.to_list(p) for p in phonemized] def tokenize_text(tokenizer: TextTokenizer, text: str) -> List[str]: phonemes = tokenizer([text.strip()]) return phonemes[0] # k2symbols def remove_encodec_weight_norm(model): from encodec.modules import SConv1d from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock from torch.nn.utils import remove_weight_norm encoder = model.encoder.model for key in encoder._modules: if isinstance(encoder._modules[key], SEANetResnetBlock): remove_weight_norm(encoder._modules[key].shortcut.conv.conv) block_modules = encoder._modules[key].block._modules for skey in block_modules: if isinstance(block_modules[skey], SConv1d): remove_weight_norm(block_modules[skey].conv.conv) elif isinstance(encoder._modules[key], SConv1d): remove_weight_norm(encoder._modules[key].conv.conv) decoder = model.decoder.model for key in decoder._modules: if isinstance(decoder._modules[key], SEANetResnetBlock): remove_weight_norm(decoder._modules[key].shortcut.conv.conv) block_modules = decoder._modules[key].block._modules for skey in block_modules: if isinstance(block_modules[skey], SConv1d): remove_weight_norm(block_modules[skey].conv.conv) elif isinstance(decoder._modules[key], SConvTranspose1d): remove_weight_norm(decoder._modules[key].convtr.convtr) elif isinstance(decoder._modules[key], SConv1d): remove_weight_norm(decoder._modules[key].conv.conv) class AudioTokenizer: """EnCodec audio.""" def __init__( self, device: Any = None, ) -> None: # Instantiate a pretrained EnCodec model model = EncodecModel.encodec_model_24khz() model.set_target_bandwidth(6.0) remove_encodec_weight_norm(model) if not device: device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda:0") self._device = device self.codec = model.to(device) self.sample_rate = model.sample_rate self.channels = model.channels @property def device(self): return self._device def encode(self, wav: torch.Tensor) -> torch.Tensor: return self.codec.encode(wav.to(self.device)) def decode(self, frames: torch.Tensor) -> torch.Tensor: return self.codec.decode(frames) def tokenize_audio(tokenizer: AudioTokenizer, audio_path: str): # Load and pre-process the audio waveform wav, sr = torchaudio.load(audio_path) wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels) wav = wav.unsqueeze(0) # Extract discrete codes from EnCodec with torch.no_grad(): encoded_frames = tokenizer.encode(wav) return encoded_frames @dataclass class AudioTokenConfig: frame_shift: Seconds = 320.0 / 24000 num_quantizers: int = 8 def to_dict(self) -> Dict[str, Any]: return asdict(self) @staticmethod def from_dict(data: Dict[str, Any]) -> "AudioTokenConfig": return AudioTokenConfig(**data) class AudioTokenExtractor(FeatureExtractor): name = "encodec" config_type = AudioTokenConfig def __init__(self, config: Optional[Any] = None): super(AudioTokenExtractor, self).__init__(config) self.tokenizer = AudioTokenizer() def extract( self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int ) -> np.ndarray: if not isinstance(samples, torch.Tensor): samples = torch.from_numpy(samples) if sampling_rate != self.tokenizer.sample_rate: samples = convert_audio( samples, sampling_rate, self.tokenizer.sample_rate, self.tokenizer.channels, ) if len(samples.shape) == 2: samples = samples.unsqueeze(0) else: raise ValueError() device = self.tokenizer.device encoded_frames = self.tokenizer.encode(samples.detach().to(device)) codes = encoded_frames[0][0] # [B, n_q, T] if True: duration = round(samples.shape[-1] / sampling_rate, ndigits=12) expected_num_frames = compute_num_frames( duration=duration, frame_shift=self.frame_shift, sampling_rate=sampling_rate, ) assert abs(codes.shape[-1] - expected_num_frames) <= 1 codes = codes[..., :expected_num_frames] return codes.cpu().squeeze(0).permute(1, 0).numpy() @property def frame_shift(self) -> Seconds: return self.config.frame_shift def feature_dim(self, sampling_rate: int) -> int: return self.config.num_quantizers def pad_tensor_list(self, tensor_list, device, padding_value=0): # 计算每个张量的长度 lengths = [tensor.shape[0] for tensor in tensor_list] # 使用pad_sequence函数进行填充 tensor_list = [torch.Tensor(t).to(device) for t in tensor_list] padded_tensor = torch.nn.utils.rnn.pad_sequence( tensor_list, batch_first=True, padding_value=padding_value ) return padded_tensor, lengths def extract_batch(self, samples, sampling_rate, lengths) -> np.ndarray: samples = [wav.squeeze() for wav in samples] device = self.tokenizer.device samples, lengths = self.pad_tensor_list(samples, device) samples = samples.unsqueeze(1) if not isinstance(samples, torch.Tensor): samples = torch.from_numpy(samples) if len(samples.shape) != 3: raise ValueError() if sampling_rate != self.tokenizer.sample_rate: samples = [ convert_audio( wav, sampling_rate, self.tokenizer.sample_rate, self.tokenizer.channels, ) for wav in samples ] # Extract discrete codes from EnCodec with torch.no_grad(): encoded_frames = self.tokenizer.encode(samples.detach().to(device)) encoded_frames = encoded_frames[0][0] # [B, n_q, T] batch_codes = [] for b, length in enumerate(lengths): codes = encoded_frames[b] duration = round(length / sampling_rate, ndigits=12) expected_num_frames = compute_num_frames( duration=duration, frame_shift=self.frame_shift, sampling_rate=sampling_rate, ) batch_codes.append(codes[..., :expected_num_frames]) return [codes.cpu().permute(1, 0).numpy() for codes in batch_codes] if __name__ == "__main__": model = EncodecModel.encodec_model_24khz() model.set_target_bandwidth(6.0) samples = torch.from_numpy(np.random.random([4, 1, 1600])).type( torch.float32 ) codes_raw = model.encode(samples) remove_encodec_weight_norm(model) codes_norm = model.encode(samples) assert torch.allclose(codes_raw[0][0], codes_norm[0][0])
EXA-1-master
exa/models/valle/vall-e-main/valle/data/tokenizer.py
import random from collections import defaultdict from concurrent.futures import ThreadPoolExecutor from typing import Tuple, Type from lhotse import CutSet from lhotse.dataset.collation import collate_features from lhotse.dataset.input_strategies import ( ExecutorType, PrecomputedFeatures, _get_executor, ) from lhotse.utils import fastcopy class PromptedFeatures: def __init__(self, prompts, features): self.prompts = prompts self.features = features def to(self, device): return PromptedFeatures( self.prompts.to(device), self.features.to(device) ) def sum(self): return self.features.sum() @property def ndim(self): return self.features.ndim @property def data(self): return (self.prompts, self.features) class PromptedPrecomputedFeatures(PrecomputedFeatures): """ :class:`InputStrategy` that reads pre-computed features, whose manifests are attached to cuts, from disk. It automatically pads the feature matrices with pre or post feature. .. automethod:: __call__ """ def __init__( self, dataset: str, cuts: CutSet, num_workers: int = 0, executor_type: Type[ExecutorType] = ThreadPoolExecutor, ) -> None: super(PromptedPrecomputedFeatures, self).__init__( num_workers, executor_type ) self.utt2neighbors = defaultdict(lambda: []) if dataset.lower() == "libritts": # 909_131041_000013_000002 # 909_131041_000013_000003 speaker2utts = defaultdict(lambda: []) utt2cut = {} for cut in cuts: speaker = cut.supervisions[0].speaker speaker2utts[speaker].append(cut.id) utt2cut[cut.id] = cut for spk in speaker2utts: uttids = sorted(speaker2utts[spk]) # Using the property of sorted keys to find previous utterance # The keys has structure speaker_book_x_y e.g. 1089_134691_000004_000001 if len(uttids) == 1: self.utt2neighbors[uttids[0]].append(utt2cut[uttids[0]]) continue utt2prevutt = dict(zip(uttids, [uttids[1]] + uttids[:-1])) utt2postutt = dict(zip(uttids[:-1], uttids[1:])) for utt in utt2prevutt: self.utt2neighbors[utt].append(utt2cut[utt2prevutt[utt]]) for utt in utt2postutt: self.utt2neighbors[utt].append(utt2cut[utt2postutt[utt]]) elif dataset.lower() == "ljspeech": utt2cut = {} uttids = [] for cut in cuts: uttids.append(cut.id) utt2cut[cut.id] = cut if len(uttids) == 1: self.utt2neighbors[uttids[0]].append(utt2cut[uttids[0]]) else: # Using the property of sorted keys to find previous utterance # The keys has structure: LJ001-0010 utt2prevutt = dict(zip(uttids, [uttids[1]] + uttids[:-1])) utt2postutt = dict(zip(uttids[:-1], uttids[1:])) for utt in utt2postutt: postutt = utt2postutt[utt] if utt[:5] == postutt[:5]: self.utt2neighbors[utt].append(utt2cut[postutt]) for utt in utt2prevutt: prevutt = utt2prevutt[utt] if utt[:5] == prevutt[:5] or not self.utt2neighbors[utt]: self.utt2neighbors[utt].append(utt2cut[prevutt]) else: raise ValueError def __call__( self, cuts: CutSet ) -> Tuple[PromptedFeatures, PromptedFeatures]: """ Reads the pre-computed features from disk/other storage. The returned shape is``(B, T, F) => (batch_size, num_frames, num_features)``. :return: a tensor with collated features, and a tensor of ``num_frames`` of each cut before padding. """ features, features_lens = collate_features( cuts, executor=_get_executor( self.num_workers, executor_type=self._executor_type ), ) prompts_cuts = [] for k, cut in enumerate(cuts): prompts_cut = random.choice(self.utt2neighbors[cut.id]) prompts_cuts.append(fastcopy(prompts_cut, id=f"{cut.id}-{str(k)}")) mini_duration = min([cut.duration for cut in prompts_cuts] + [3.0]) # prompts_cuts = CutSet.from_cuts(prompts_cuts).truncate( # max_duration=mini_duration, # offset_type="random", # preserve_id=True, # ) prompts_cuts = CutSet( cuts={k: cut for k, cut in enumerate(prompts_cuts)} ).truncate( max_duration=mini_duration, offset_type="random", preserve_id=False, ) prompts, prompts_lens = collate_features( prompts_cuts, executor=_get_executor( self.num_workers, executor_type=self._executor_type ), ) return PromptedFeatures(prompts, features), PromptedFeatures( prompts_lens, features_lens )
EXA-1-master
exa/models/valle/vall-e-main/valle/data/input_strategies.py
# Copyright 2023 (authors: Feiteng Li) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import inspect import logging from functools import lru_cache from pathlib import Path from typing import Any, Dict, Optional import torch from icefall.utils import str2bool from lhotse import CutSet, load_manifest_lazy from lhotse.dataset import ( CutConcatenate, DynamicBucketingSampler, PrecomputedFeatures, SingleCutSampler, SpecAugment, ) from lhotse.dataset.input_strategies import OnTheFlyFeatures from lhotse.utils import fix_random_seed from torch.utils.data import DataLoader from valle.data.collation import get_text_token_collater from valle.data.dataset import SpeechSynthesisDataset from valle.data.fbank import get_fbank_extractor from valle.data.input_strategies import PromptedPrecomputedFeatures PrecomputedFeatures = PrecomputedFeatures class _SeedWorkers: def __init__(self, seed: int): self.seed = seed def __call__(self, worker_id: int): fix_random_seed(self.seed + worker_id) def _get_input_strategy(input_strategy, dataset, cuts): if input_strategy == "PromptedPrecomputedFeatures": return PromptedPrecomputedFeatures(dataset, cuts) return eval(input_strategy)() class TtsDataModule: """ DataModule for VALL-E TTS experiments. It assumes there is always one train and valid dataloader. It contains all the common data pipeline modules used in TTS experiments, e.g.: - dynamic batch size, - bucketing samplers, - cut concatenation[not used & tested yet], - augmentation[not used & tested yet], - on-the-fly feature extraction[not used & tested yet] This class should be derived for specific corpora used in TTS tasks. """ def __init__(self, args: argparse.Namespace): self.args = args @classmethod def add_arguments(cls, parser: argparse.ArgumentParser): group = parser.add_argument_group( title="TTS data related options", description="These options are used for the preparation of " "PyTorch DataLoaders from Lhotse CutSet's -- they control the " "effective batch sizes, sampling strategies, applied data " "augmentations, etc.", ) group.add_argument( "--manifest-dir", type=Path, default=Path("data/tokenized"), help="Path to directory with train/valid/test cuts.", ) group.add_argument( "--max-duration", type=int, default=40.0, help="Maximum pooled recordings duration (seconds) in a " "single batch. You can reduce it if it causes CUDA OOM.", ) group.add_argument( "--bucketing-sampler", type=str2bool, default=True, help="When enabled, the batches will come from buckets of " "similar duration (saves padding frames).", ) group.add_argument( "--num-buckets", type=int, default=10, help="The number of buckets for the DynamicBucketingSampler" "(you might want to increase it for larger datasets).", ) group.add_argument( "--concatenate-cuts", type=str2bool, default=False, help="When enabled, utterances (cuts) will be concatenated " "to minimize the amount of padding.", ) group.add_argument( "--duration-factor", type=float, default=1.0, help="Determines the maximum duration of a concatenated cut " "relative to the duration of the longest cut in a batch.", ) group.add_argument( "--gap", type=float, default=0.1, help="The amount of padding (in seconds) inserted between " "concatenated cuts. This padding is filled with noise when " "noise augmentation is used.", ) group.add_argument( "--on-the-fly-feats", type=str2bool, default=False, help="When enabled, use on-the-fly cut mixing and feature " "extraction. Will drop existing precomputed feature manifests " "if available.", ) group.add_argument( "--shuffle", type=str2bool, default=True, help="When enabled (=default), the examples will be " "shuffled for each epoch.", ) group.add_argument( "--drop-last", type=str2bool, default=False, help="Whether to drop last batch. Used by sampler.", ) group.add_argument( "--return-cuts", type=str2bool, default=True, help="When enabled, each batch will have the " "field: batch['supervisions']['cut'] with the cuts that " "were used to construct it.", ) group.add_argument( "--num-workers", type=int, default=8, help="The number of training dataloader workers that " "collect the batches.", ) group.add_argument( "--enable-spec-aug", type=str2bool, default=False, help="When enabled, use SpecAugment for training dataset.", ) group.add_argument( "--spec-aug-time-warp-factor", type=int, default=80, help="Used only when --enable-spec-aug is True. " "It specifies the factor for time warping in SpecAugment. " "Larger values mean more warping. " "A value less than 1 means to disable time warp.", ) group.add_argument( "--input-strategy", type=str, default="PrecomputedFeatures", help="AudioSamples or PrecomputedFeatures or PromptedPrecomputedFeatures", ) group.add_argument( "--dataset", type=str, default="libritts", help="--input-strategy PromptedPrecomputedFeatures needs dataset name to prepare prompts.", ) parser.add_argument( "--text-tokens", type=str, default="data/tokenized/unique_text_tokens.k2symbols", help="Path to the unique text tokens file", ) parser.add_argument( "--sampling-rate", type=int, default=24000, help="""Audio sampling rate.""", ) def train_dataloaders( self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None, ) -> DataLoader: """ Args: cuts_train: CutSet for training. sampler_state_dict: The state dict for the training sampler. """ transforms = [] if self.args.concatenate_cuts: logging.info( f"Using cut concatenation with duration factor " f"{self.args.duration_factor} and gap {self.args.gap}." ) # Cut concatenation should be the first transform in the list, # so that if we e.g. mix noise in, it will fill the gaps between # different utterances. transforms = [ CutConcatenate( duration_factor=self.args.duration_factor, gap=self.args.gap ) ] + transforms input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") logging.info( f"Time warp factor: {self.args.spec_aug_time_warp_factor}" ) # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. num_frame_masks = 10 num_frame_masks_parameter = inspect.signature( SpecAugment.__init__ ).parameters["num_frame_masks"] if num_frame_masks_parameter.default == 1: num_frame_masks = 2 logging.info(f"Num frame mask: {num_frame_masks}") input_transforms.append( SpecAugment( time_warp_factor=self.args.spec_aug_time_warp_factor, num_frame_masks=num_frame_masks, features_mask_size=27, num_feature_masks=2, frames_mask_size=100, ) ) else: logging.info("Disable SpecAugment") logging.info("About to create train dataset") if self.args.on_the_fly_feats: # NOTE: the PerturbSpeed transform should be added only if we # remove it from data prep stage. # Add on-the-fly speed perturbation; since originally it would # have increased epoch size by 3, we will apply prob 2/3 and use # 3x more epochs. # Speed perturbation probably should come first before # concatenation, but in principle the transforms order doesn't have # to be strict (e.g. could be randomized) # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa # Drop feats to be on the safe side. train = SpeechSynthesisDataset( get_text_token_collater(self.args.text_tokens), cut_transforms=transforms, feature_input_strategy=OnTheFlyFeatures(get_fbank_extractor()), feature_transforms=input_transforms, ) else: train = SpeechSynthesisDataset( get_text_token_collater(self.args.text_tokens), feature_input_strategy=_get_input_strategy( self.args.input_strategy, self.args.dataset, cuts_train ), cut_transforms=transforms, feature_transforms=input_transforms, ) if self.args.bucketing_sampler: logging.info("Using DynamicBucketingSampler") train_sampler = DynamicBucketingSampler( cuts_train, max_duration=self.args.max_duration, shuffle=self.args.shuffle, num_buckets=self.args.num_buckets, drop_last=self.args.drop_last, ) else: logging.info( "Using SingleCutSampler and sort by duraton(ascending=True)." ) cuts_train = cuts_train.to_eager().sort_by_duration(ascending=True) train_sampler = SingleCutSampler( cuts_train, max_duration=self.args.max_duration, shuffle=self.args.shuffle, ) logging.info("About to create train dataloader") if sampler_state_dict is not None: logging.info("Loading sampler state dict") train_sampler.load_state_dict(sampler_state_dict) # 'seed' is derived from the current random state, which will have # previously been set in the main process. seed = torch.randint(0, 100000, ()).item() worker_init_fn = _SeedWorkers(seed) train_dl = DataLoader( train, sampler=train_sampler, batch_size=None, num_workers=self.args.num_workers, persistent_workers=False, worker_init_fn=worker_init_fn, ) return train_dl def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: logging.info("About to create dev dataset") if self.args.on_the_fly_feats: validate = SpeechSynthesisDataset( get_text_token_collater(self.args.text_tokens), feature_input_strategy=OnTheFlyFeatures(get_fbank_extractor()), cut_transforms=[], ) else: validate = SpeechSynthesisDataset( get_text_token_collater(self.args.text_tokens), feature_input_strategy=_get_input_strategy( self.args.input_strategy, self.args.dataset, cuts_valid ), cut_transforms=[], ) valid_sampler = DynamicBucketingSampler( cuts_valid, max_duration=self.args.max_duration, shuffle=False, ) logging.info("About to create dev dataloader") valid_dl = DataLoader( validate, sampler=valid_sampler, batch_size=None, num_workers=4, persistent_workers=False, ) return valid_dl def test_dataloaders(self, cuts: CutSet) -> DataLoader: logging.debug("About to create test dataset") test = SpeechSynthesisDataset( get_text_token_collater(self.args.text_tokens), feature_input_strategy=OnTheFlyFeatures(get_fbank_extractor()) if self.args.on_the_fly_feats else _get_input_strategy( self.args.input_strategy, self.args.dataset, cuts ), cut_transforms=[], ) sampler = DynamicBucketingSampler( cuts, max_duration=self.args.max_duration, shuffle=False, ) logging.debug("About to create test dataloader") test_dl = DataLoader( test, batch_size=None, sampler=sampler, num_workers=self.args.num_workers, ) return test_dl @lru_cache() def train_cuts(self) -> CutSet: logging.info("About to get train cuts") return load_manifest_lazy( self.args.manifest_dir / "cuts_train.jsonl.gz" ) @lru_cache() def dev_cuts(self) -> CutSet: logging.info("About to get dev cuts") return load_manifest_lazy(self.args.manifest_dir / "cuts_dev.jsonl.gz") @lru_cache() def test_cuts(self) -> CutSet: logging.info("About to get test cuts") return load_manifest_lazy(self.args.manifest_dir / "cuts_test.jsonl.gz")
EXA-1-master
exa/models/valle/vall-e-main/valle/data/datamodule.py
import subprocess from pathlib import Path from datetime import datetime from setuptools import setup, find_packages def shell(*args): out = subprocess.check_output(args) return out.decode("ascii").strip() def write_version(version_core, pre_release=True): if pre_release: time = shell("git", "log", "-1", "--format=%cd", "--date=iso") time = datetime.strptime(time, "%Y-%m-%d %H:%M:%S %z") time = time.strftime("%Y%m%d%H%M%S") version = f"{version_core}-dev{time}" else: version = version_core with open(Path("vall_e", "version.py"), "w") as f: f.write('__version__ = "{}"\n'.format(version)) return version with open("README.md", "r") as f: long_description = f.read() setup( name="vall-e", python_requires=">=3.10.0", version=write_version("0.0.1"), description="An unofficial toy implementation of the audio LM VALL-E", author="enhuiz", author_email="[email protected]", long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(), install_requires=[ "coloredlogs>=15.0.1", "deepspeed>=0.7.7", "diskcache>=5.4.0", "einops>=0.6.0", "encodec>=0.1.1", "g2p_en>=2.1.0", "humanize>=4.4.0", "matplotlib>=3.6.0", "numpy>=1.23.3", "omegaconf>=2.2.3", "openTSNE>=0.6.2", "pandas>=1.5.0", "soundfile>=0.11.0", "torch>=1.13.0", "torchaudio>=0.13.0", "tqdm>=4.64.1", ], url="https://github.com/enhuiz/vall-e", )
EXA-1-master
exa/models/valle/vall-e-main 2/setup.py
#!/usr/bin/env python3 import argparse import json import re from pathlib import Path import matplotlib.pyplot as plt import pandas as pd def plot(paths, args): dfs = [] for path in paths: with open(path, "r") as f: text = f.read() rows = [] pattern = r"(\{.+?\})" for row in re.findall(pattern, text, re.DOTALL): try: row = json.loads(row) except Exception as e: continue if "global_step" in row: rows.append(row) df = pd.DataFrame(rows) if "name" in df: df["name"] = df["name"].fillna("train") else: df["name"] = "train" df["group"] = str(path.parents[args.group_level]) df["group"] = df["group"] + "/" + df["name"] dfs.append(df) df = pd.concat(dfs) if args.max_y is not None: df = df[df["global_step"] < args.max_x] for gtag, gdf in sorted( df.groupby("group"), key=lambda p: (p[0].split("/")[-1], p[0]), ): for y in args.ys: gdf = gdf.sort_values("global_step") if gdf[y].isna().all(): continue if args.max_y is not None: gdf = gdf[gdf[y] < args.max_y] gdf[y] = gdf[y].ewm(10).mean() gdf.plot( x="global_step", y=y, label=f"{gtag}/{y}", ax=plt.gca(), marker="x" if len(gdf) < 100 else None, alpha=0.7, ) plt.gca().legend( loc="center left", fancybox=True, shadow=True, bbox_to_anchor=(1.04, 0.5), ) def main(): parser = argparse.ArgumentParser() parser.add_argument("ys", nargs="+") parser.add_argument("--log-dir", default="logs", type=Path) parser.add_argument("--out-dir", default="logs", type=Path) parser.add_argument("--filename", default="log.txt") parser.add_argument("--max-x", type=float, default=float("inf")) parser.add_argument("--max-y", type=float, default=float("inf")) parser.add_argument("--group-level", default=1) parser.add_argument("--filter", default=None) args = parser.parse_args() paths = args.log_dir.rglob(f"**/{args.filename}") if args.filter: paths = filter(lambda p: re.match(".*" + args.filter + ".*", str(p)), paths) plot(paths, args) name = "-".join(args.ys) out_path = (args.out_dir / name).with_suffix(".png") plt.savefig(out_path, bbox_inches="tight") if __name__ == "__main__": main()
EXA-1-master
exa/models/valle/vall-e-main 2/scripts/plot.py
from dataclasses import dataclass, field from functools import cached_property from pathlib import Path import diskcache from .utils import Config as ConfigBase @dataclass(frozen=True) class Config(ConfigBase): data_root: Path = Path("data") data_dirs: list[Path] = field(default_factory=lambda: []) @property def sample_rate(self): return 24_000 p_additional_prompt: float = 0.8 max_prompts: int = 3 max_num_val: int = 20 max_val_ar_steps: int = 300 token_dim: int = 256 num_tokens: int = 1024 nj: int = 8 batch_size: int = 32 eval_batch_size: int = 32 warmup_min_lr: float = 1e-6 warmup_max_lr: float = 2e-4 dis_warmup_max_lr: float = 4e-4 warmup_num_steps: int = 1_000 max_iter: int = 1_000_000 gradient_clipping: float = 100 eval_every: int = 2_000 save_ckpt_every: int = 2_000 model: str = "ar-quarter" spkr_name_getter: str = "lambda p: p.parts[-2]" min_phones: int = 10 max_phones: int = 50 use_fp16: bool = True gradient_accumulation_steps: int = 1 sampling_temperature: float = 1.0 cache_dataloader: bool = False @cached_property def get_spkr(self): return eval(self.spkr_name_getter) @property def fp16_cfg(self): return { "enabled": self.use_fp16, } @property def ds_cfg(self): return { "train_micro_batch_size_per_gpu": self.batch_size, "gradient_accumulation_steps": self.gradient_accumulation_steps, "optimizer": { "type": "Adam", "lr": self.warmup_min_lr, }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": self.warmup_min_lr, "warmup_max_lr": self.warmup_max_lr, "warmup_num_steps": self.warmup_num_steps, "total_num_steps": self.max_iter, "warmup_type": "linear", }, }, "gradient_clipping": self.gradient_clipping, "fp16": self.fp16_cfg, } @property def cache_dir(self): return ".cache" / self.relpath @cached_property def diskcache(self): if self.cache_dataloader: return diskcache.Cache(self.cache_dir).memoize return lambda: lambda x: x cfg = Config.from_cli() if __name__ == "__main__": print(cfg)
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/config.py
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/__init__.py
import argparse import torch from .data import VALLEDatset, create_train_val_dataloader from .train import load_engines def main(): parser = argparse.ArgumentParser("Save trained model to path.") parser.add_argument("path") args = parser.parse_args() engine = load_engines() model = engine["model"].module.cpu() train_dl, *_ = create_train_val_dataloader() assert isinstance(train_dl.dataset, VALLEDatset) model.phone_symmap = train_dl.dataset.phone_symmap model.spkr_symmap = train_dl.dataset.spkr_symmap torch.save(model, args.path) print(args.path, "saved.") if __name__ == "__main__": main()
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/export.py
import json import logging from collections import defaultdict import torch from tqdm import tqdm from .config import cfg from .data import create_train_val_dataloader from .emb import qnt from .utils import setup_logging, to_device, trainer from .vall_e import get_model _logger = logging.getLogger(__name__) def load_engines(): model = get_model(cfg.model) engines = dict( model=trainer.Engine( model=model, config=cfg.ds_cfg, ), ) return trainer.load_engines(engines, cfg) def main(): setup_logging(cfg.log_dir) train_dl, subtrain_dl, val_dl = create_train_val_dataloader() def train_feeder(engines, batch, name): model = engines["model"] if cfg.model.startswith("ar"): _ = model( text_list=batch["text"], proms_list=batch["proms"], resp_list=batch["resp"], ) elif cfg.model.startswith("nar"): _ = model( text_list=batch["text"], proms_list=batch["proms"], resps_list=batch["resps"], ) else: raise NotImplementedError(cfg.model) losses = model.gather_attribute("loss") loss = torch.stack([*losses.values()]).sum() stats = {} stats |= {k: v.item() for k, v in losses.items()} stats |= engines.gather_attribute("scalar") return loss, stats @torch.inference_mode() def run_eval(engines, name, dl): log_dir = cfg.log_dir / str(engines.global_step) / name model = engines["model"] log_dir = cfg.log_dir / str(engines.global_step) / name stats = defaultdict(list) for batch in tqdm(dl): batch: dict = to_device(batch, cfg.device) if cfg.model.startswith("ar"): resp_list = model( text_list=batch["text"], proms_list=batch["proms"], max_steps=cfg.max_val_ar_steps, sampling_temperature=cfg.sampling_temperature, ) resps_list = [r.unsqueeze(-1) for r in resp_list] elif cfg.model.startswith("nar"): resps_list = model( text_list=batch["text"], proms_list=batch["proms"], resps_list=[r.unsqueeze(-1) for r in batch["resp"]], sampling_temperature=cfg.sampling_temperature, ) else: raise NotImplementedError(cfg.model) losses = model.gather_attribute("loss") batch_stats = {k: v.item() for k, v in losses.items()} for k, v in batch_stats.items(): stats[k].append(v) for path, ref, hyp in zip(batch["path"], batch["resps"], resps_list): relpath = path.relative_to(cfg.data_root) hyp_path = (log_dir / "hyp" / relpath).with_suffix(".wav") ref_path = (log_dir / "ref" / relpath).with_suffix(".wav") hyp_path.parent.mkdir(parents=True, exist_ok=True) ref_path.parent.mkdir(parents=True, exist_ok=True) qnt.decode_to_file(ref, ref_path) if len(hyp) > 0: qnt.decode_to_file(hyp, hyp_path) qnt.unload_model() stats = {k: sum(v) / len(v) for k, v in stats.items()} stats["global_step"] = engines.global_step stats["name"] = name _logger.info(f"Eval: {stats}.") _logger.info(f"{json.dumps(stats)}.") def eval_fn(engines): run_eval(engines, "subtrain", subtrain_dl) run_eval(engines, "val", val_dl) trainer.train( engines_loader=load_engines, train_dl=train_dl, train_feeder=train_feeder, eval_fn=eval_fn, ) if __name__ == "__main__": main()
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/train.py
""" A sampler that balances data by key_fns. MIT License Copyright (c) 2023 Zhe Niu [email protected] """ import random class Sampler: def __init__(self, l, key_fns): self.tree = self._build(l, key_fns) def _build(self, l, key_fns) -> dict[dict, list]: if not key_fns: return l tree = {} key_fn, *key_fns = key_fns for x in l: k = key_fn(x) if k in tree: tree[k].append(x) else: tree[k] = [x] for k in tree: tree[k] = self._build(tree[k], key_fns) return tree def _sample(self, tree: dict | list): if isinstance(tree, list): ret = random.choice(tree) else: key = random.choice([*tree.keys()]) ret = self._sample(tree[key]) return ret def sample(self): return self._sample(self.tree)
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/sampler.py
import argparse from pathlib import Path import torch from einops import rearrange from .emb import g2p, qnt from .utils import to_device def main(): parser = argparse.ArgumentParser("VALL-E TTS") parser.add_argument("text") parser.add_argument("reference", type=Path) parser.add_argument("out_path", type=Path) parser.add_argument("--ar-ckpt", type=Path, default="zoo/ar.pt") parser.add_argument("--nar-ckpt", type=Path, default="zoo/nar.pt") parser.add_argument("--device", default="cuda") args = parser.parse_args() ar = torch.load(args.ar_ckpt).to(args.device) nar = torch.load(args.nar_ckpt).to(args.device) symmap = ar.phone_symmap proms = qnt.encode_from_file(args.reference) proms = rearrange(proms, "1 l t -> t l") phns = torch.tensor([symmap[p] for p in g2p.encode(args.text)]) proms = to_device(proms, args.device) phns = to_device(phns, args.device) resp_list = ar(text_list=[phns], proms_list=[proms]) resps_list = [r.unsqueeze(-1) for r in resp_list] resps_list = nar(text_list=[phns], proms_list=[proms], resps_list=resps_list) qnt.decode_to_file(resps=resps_list[0], path=args.out_path) print(args.out_path, "saved.") if __name__ == "__main__": main()
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/__main__.py
import copy import logging import random from collections import defaultdict from functools import cache, cached_property from itertools import groupby, zip_longest from typing import Any import numpy as np import torch from torch import Tensor from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from .config import cfg from .sampler import Sampler torch.multiprocessing.set_sharing_strategy("file_system") _logger = logging.getLogger(__name__) def _replace_file_extension(path, suffix): return (path.parent / path.name.split(".")[0]).with_suffix(suffix) def _get_quant_path(path): return _replace_file_extension(path, ".qnt.pt") def _load_quants(path) -> Tensor: """ Returns: quants: (t q) """ path = _get_quant_path(path) return torch.load(path)[0].t() @cache def _get_phones(path): path = _replace_file_extension(path, ".phn.txt") with open(path, "r", encoding="utf8") as f: content = f.read() return ["<s>"] + content.split() + ["</s>"] def _interleaved_reorder(l, fn): groups = defaultdict(list) for e in l: groups[fn(e)].append(e) groups = {k: groups[k] for k in sorted(groups)} for interleaved in zip_longest(*groups.values()): for value in interleaved: if value is not None: yield value @cache def _validate(path, min_phones, max_phones): phones = _get_phones(path) unique_phones = list(set(phones)) if len(unique_phones) == 0: return False if len(unique_phones) == 1 and unique_phones[0] == "_": return False if len(phones) < min_phones: return False if len(phones) > max_phones: return False return True class VALLEDatset(Dataset): def __init__( self, paths, phone_symmap=None, spkr_symmap=None, min_phones=cfg.min_phones, max_phones=cfg.max_phones, training=False, extra_paths_by_spkr_name: dict[str, list] = {}, ): super().__init__() self._head = None self.min_phones = min_phones self.max_phones = max_phones self.paths = [ path for path in paths if _validate(path, self.min_phones, self.max_phones) ] self.spkr_symmap = spkr_symmap or self._get_spkr_symmap() self.phone_symmap = phone_symmap or self._get_phone_symmap() self.training = training self.paths_by_spkr_name = self._get_paths_by_spkr_name(extra_paths_by_spkr_name) self.paths = [ p for p in self.paths if len(self.paths_by_spkr_name[cfg.get_spkr(p)]) > 1 ] if len(self.paths) == 0 and training: raise ValueError("No valid path is found for training.") if training: self.sampler = Sampler(self.paths, [cfg.get_spkr]) else: self.sampler = None def _get_paths_by_spkr_name(self, extra_paths_by_spkr_name: dict[str, list]): ret = defaultdict(list) for path in self.paths: if _get_quant_path(path).exists(): ret[cfg.get_spkr(path)].append(path) for k, v in extra_paths_by_spkr_name.items(): ret[k].extend(v) return {**ret} @cached_property def phones(self): return sorted(set().union(*[_get_phones(path) for path in self.paths])) def _get_phone_symmap(self): # Note that we use phone symmap starting from 1 so that we can safely pad 0. return {s: i for i, s in enumerate(self.phones, 1)} @cached_property def spkrs(self): return sorted({cfg.get_spkr(path) for path in self.paths}) def _get_spkr_symmap(self): return {s: i for i, s in enumerate(self.spkrs)} def sample_prompts(self, spkr_name, ignore): prom_list = [] choices = set(self.paths_by_spkr_name[spkr_name]) - {ignore} choices = [*choices] if len(choices) == 0: raise ValueError( f"Failed to find another different utterance for {spkr_name}." ) for _ in range(cfg.max_prompts): path = random.choice(choices) prom_list.append(_load_quants(path)) if random.random() > cfg.p_additional_prompt: break prom = torch.cat(prom_list) return prom def __getitem__(self, index): if self.training: assert self.sampler is not None path = self.sampler.sample() else: path = self.paths[index] spkr_name = cfg.get_spkr(path) text = torch.tensor([*map(self.phone_symmap.get, _get_phones(path))]) proms = self.sample_prompts(spkr_name, ignore=path) resps = _load_quants(path) resp = resps[..., 0] return dict( path=path, spkr_name=spkr_name, text=text, proms=proms, resps=resps, resp=resp, ) def head_(self, n): self._head = n def training_(self, value): self.training = value def interleaved_reorder_(self, fn): self.paths = [*_interleaved_reorder(self.paths, fn)] def __len__(self): return min(len(self.paths), self._head or len(self.paths)) def collate_fn(samples: list[dict]): batch: dict[str, Any] = {k: [s[k] for s in samples] for k in samples[0]} return batch def _seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) def _create_dataloader(dataset, training): return DataLoader( dataset=dataset, batch_size=cfg.batch_size if training else cfg.eval_batch_size, shuffle=training, drop_last=training, num_workers=cfg.nj, collate_fn=collate_fn, persistent_workers=True, worker_init_fn=_seed_worker, ) def _load_train_val_paths(): paths = [] train_paths = [] val_paths = [] for data_dir in cfg.data_dirs: paths.extend(tqdm(data_dir.rglob("*.qnt.pt"))) if len(paths) == 0: raise RuntimeError(f"Failed to find any .qnt.pt file in {cfg.data_dirs}.") pairs = sorted([(cfg.get_spkr(p), p) for p in paths]) del paths for _, group in groupby(pairs, lambda pair: pair[0]): paths = sorted([p for _, p in group]) random.seed(0) random.shuffle(paths) n = round(len(paths) * 0.95) train_paths.extend(paths[:n]) val_paths.extend(paths[n:]) train_paths, val_paths = map(sorted, [train_paths, val_paths]) return train_paths, val_paths @cfg.diskcache() def create_datasets(): train_paths, val_paths = _load_train_val_paths() train_dataset = VALLEDatset( train_paths, training=True, ) val_dataset = VALLEDatset( val_paths, train_dataset.phone_symmap, train_dataset.spkr_symmap, extra_paths_by_spkr_name=train_dataset.paths_by_spkr_name, ) val_dataset.interleaved_reorder_(cfg.get_spkr) val_dataset.head_(cfg.max_num_val) return train_dataset, val_dataset def create_train_val_dataloader(): train_dataset, val_dataset = create_datasets() train_dl = _create_dataloader(train_dataset, training=True) val_dl = _create_dataloader(val_dataset, training=False) _logger.info(str(train_dataset.phone_symmap)) _logger.info(str(train_dataset.spkr_symmap)) _logger.info(f"#samples (train): {len(train_dataset)}.") _logger.info(f"#samples (val): {len(val_dataset)}.") subtrain_dataset = copy.deepcopy(train_dataset) subtrain_dataset.interleaved_reorder_(cfg.get_spkr) subtrain_dataset.head_(cfg.max_num_val) subtrain_dataset.training_(False) subtrain_dl = _create_dataloader(subtrain_dataset, training=False) assert isinstance(subtrain_dl.dataset, VALLEDatset) return train_dl, subtrain_dl, val_dl if __name__ == "__main__": train_dl, subtrain_dl, val_dl = create_train_val_dataloader() sample = train_dl.dataset[0] print(sample)
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/data.py
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/emb/__init__.py
import argparse import random from functools import cache from pathlib import Path import soundfile import torch import torchaudio from einops import rearrange from encodec import EncodecModel from encodec.utils import convert_audio from torch import Tensor from tqdm import tqdm from ..config import cfg @cache def _load_model(device="cuda"): # Instantiate a pretrained EnCodec model assert cfg.sample_rate == 24_000 model = EncodecModel.encodec_model_24khz() model.set_target_bandwidth(6.0) model.to(device) return model def unload_model(): return _load_model.cache_clear() @torch.inference_mode() def decode(codes: Tensor, device="cuda"): """ Args: codes: (b q t) """ assert codes.dim() == 3 model = _load_model(device) return model.decode([(codes, None)]), model.sample_rate def decode_to_file(resps: Tensor, path: Path): assert resps.dim() == 2, f"Require shape (t q), but got {resps.shape}." resps = rearrange(resps, "t q -> 1 q t") wavs, sr = decode(resps) soundfile.write(str(path), wavs.cpu()[0, 0], sr) def _replace_file_extension(path, suffix): return (path.parent / path.name.split(".")[0]).with_suffix(suffix) @torch.inference_mode() def encode(wav: Tensor, sr: int, device="cuda"): """ Args: wav: (t) sr: int """ model = _load_model(device) wav = wav.unsqueeze(0) wav = convert_audio(wav, sr, model.sample_rate, model.channels) wav = wav.to(device) encoded_frames = model.encode(wav) qnt = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # (b q t) return qnt def encode_from_file(path, device="cuda"): wav, sr = torchaudio.load(str(path)) if wav.shape[0] == 2: wav = wav[:1] return encode(wav, sr, device) def main(): parser = argparse.ArgumentParser() parser.add_argument("folder", type=Path) parser.add_argument("--suffix", default=".wav") args = parser.parse_args() paths = [*args.folder.rglob(f"*{args.suffix}")] random.shuffle(paths) for path in tqdm(paths): out_path = _replace_file_extension(path, ".qnt.pt") if out_path.exists(): continue qnt = encode_from_file(path) torch.save(qnt.cpu(), out_path) if __name__ == "__main__": main()
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/emb/qnt.py
import argparse import random import string from functools import cache from pathlib import Path import torch from g2p_en import G2p from tqdm import tqdm @cache def _get_model(): return G2p() @cache def _get_graphs(path): with open(path, "r") as f: graphs = f.read() return graphs def encode(graphs: str) -> list[str]: g2p = _get_model() phones = g2p(graphs) ignored = {" ", *string.punctuation} return ["_" if p in ignored else p for p in phones] @torch.no_grad() def main(): parser = argparse.ArgumentParser() parser.add_argument("folder", type=Path) parser.add_argument("--suffix", type=str, default=".normalized.txt") args = parser.parse_args() paths = list(args.folder.rglob(f"*{args.suffix}")) random.shuffle(paths) for path in tqdm(paths): phone_path = path.with_name(path.stem.split(".")[0] + ".phn.txt") if phone_path.exists(): continue graphs = _get_graphs(path) phones = encode(graphs) with open(phone_path, "w") as f: f.write(" ".join(phones)) if __name__ == "__main__": main()
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/emb/g2p.py
from ..config import cfg from .ar import AR from .nar import NAR def get_model(name): name = name.lower() if name.startswith("ar"): Model = AR elif name.startswith("nar"): Model = NAR else: raise ValueError("Model name should start with AR or NAR.") if "-quarter" in name: model = Model( cfg.num_tokens, d_model=256, n_heads=4, n_layers=12, ) elif "-half" in name: model = Model( cfg.num_tokens, d_model=512, n_heads=8, n_layers=12, ) else: if name not in ["ar", "nar"]: raise NotImplementedError(name) model = Model( cfg.num_tokens, d_model=1024, n_heads=16, n_layers=12, ) return model
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/vall_e/__init__.py
import torch from torch import Tensor from .base import Base class NAR(Base): @property def n_resp_levels(self): return 7 @property def casual(self): return False @property def use_stop_token(self): return False @property def norm_type(self): return "adaln" @property def resp_loss_only(self): return True def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], sampling_temperature: float = 0.2, ): """ Args: text_list: [t] * b proms_list: [t' l] * b, l=8 resps_list: [t'' l] * b, l=1 or 8, 1 for testing and 8 for training. Returns: [t'' l], l=8 if testing. empty list will be returned during training. """ n_levels_set = {r.shape[-1] for r in resps_list} if len(n_levels_set) > 1: raise ValueError(f"Please give only one level, got {n_levels_set}.") n_levels = next(iter(n_levels_set)) device = text_list[0].device if n_levels == self.n_resp_levels + 1: assert resps_list is not None quant_levels = torch.randint(0, self.n_resp_levels, (len(resps_list),)) prev_list = [o[..., : l + 1] for o, l in zip(resps_list, quant_levels)] targ_list = [o[..., l + 1] for o, l in zip(resps_list, quant_levels)] quant_levels = quant_levels.to(device=device) _ = super().forward( text_list, proms_list, prev_list, targ_list, return_all_resp=True, shift_targ_list=False, quant_levels=quant_levels, ) # Yes, just nothing as we are training prev_list = [] else: prev_list = resps_list while True: level = prev_list[0].shape[-1] - 1 if level >= self.n_resp_levels: break quant_levels = torch.full((len(text_list),), level, device=device) resp_list = super().forward( text_list, proms_list, prev_list, return_all_resp=True, shift_targ_list=False, quant_levels=quant_levels, sampling_temperature=sampling_temperature, ) prev_list = [ torch.cat([rs, r.unsqueeze(-1)], dim=-1) for rs, r in zip(prev_list, resp_list) ] return prev_list def example_usage(): from functools import partial from pathlib import Path from einops import repeat from ..emb.qnt import decode_to_file from ..utils import gather_attribute device = "cuda" resps = torch.load("data/test/test.qnt.pt")[0].to(device) num_qnts = 1024 model = NAR(num_qnts).to(device) text_list = [ torch.tensor([2, 3], device=device), ] x8 = partial(repeat, pattern="t -> t l", l=8) proms_list = [ x8(torch.tensor([2, 3], device=device)), ] resps_x1_list = [ resps[:1].t().to(device), ] resps_x8_list = [ resps.t().to(device), ] codes = model( text_list, proms_list, resps_list=resps_x1_list, sampling_temperature=0.2, )[0] decode_to_file( codes, Path("data/test/test.nar.init.wav"), ) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) for i in range(200): optimizer.zero_grad() _ = model(text_list, proms_list, resps_list=resps_x8_list) losses = gather_attribute(model, "loss") loss = sum(losses.values()) loss.backward() optimizer.step() if i % 20 == 0: stats = {k: v.item() for k, v in losses.items()} stats["loss"] = loss.item() print(f"iter={i}, {stats}.") for i in range(1, 8): resps_list = [ resps[:i].t().to(device), ] codes = model( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2, )[0] decode_to_file( codes, Path(f"data/test/test.nar.1-{i}.wav"), ) if __name__ == "__main__": example_usage()
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/vall_e/nar.py
import torch from einops import rearrange from torch import Tensor from tqdm import trange from .base import Base class AR(Base): @property def n_resp_levels(self): return 1 @property def casual(self): return True @property def use_stop_token(self): return True @property def norm_type(self): return "ln" @property def resp_loss_only(self): return False def _prune(self, l: Tensor): indices = (l == self.stop_token).nonzero() if len(indices) == 0: return l return l[: indices.min().item()] @staticmethod def _unsqueeze_list(x_list, axis=-1): return [x.unsqueeze(dim=axis) for x in x_list] def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resp_list: list[Tensor] | None = None, max_steps: int = 1000, sampling_temperature: float = 1.0, ): if resp_list is not None: return super().forward( text_list, proms_list, self._unsqueeze_list(resp_list), resp_list, quant_levels=None, shift_targ_list=True, return_all_resp=False, ) else: return self._generate( text_list, proms_list, max_steps, sampling_temperature, ) def _generate( self, text_list: list[Tensor], proms_list: list[Tensor], max_steps: int, sampling_temperature: float, ): device = text_list[0].device resp_list: list[Tensor] = [ torch.zeros(0, device=device).long() for _ in text_list ] stopped = torch.zeros(len(text_list), device=device).bool() for _ in trange(max_steps): r = super().forward( text_list, proms_list, self._unsqueeze_list(resp_list), sampling_temperature=sampling_temperature, ) stopped |= r == self.stop_token for i, ri in enumerate(r): resp_list[i] = torch.cat([resp_list[i], ri[None]]) if stopped.all().item(): break pruned = [self._prune(r) for r in resp_list] return pruned def example_usage(): from functools import partial import soundfile from einops import repeat device = "cuda" qnt = torch.load("data/test/test.qnt.pt")[0, 0].to(device) num_qnts = 1024 model = AR(num_qnts).to(device) text_list = [ torch.tensor([1, 2, 3], device=device), torch.tensor([2, 3], device=device), ] x8 = partial(repeat, pattern="t -> t l", l=8) proms_list = [ x8(torch.tensor([1, 2, 3], device=device)), x8(torch.tensor([2, 3], device=device)), ] resp_list = [ torch.tensor([1, 2, 3], device=device), qnt.to(device), ] out = model(text_list, proms_list, max_steps=200) print(out) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) for i in range(100): optimizer.zero_grad() _ = model(text_list, proms_list, resp_list) losses = model.loss sum(losses.values()).backward() optimizer.step() if i % 20 == 0: print(f"iter={i}, {losses}.") out = model(text_list, proms_list, max_steps=200) print(qnt) print(out) from ..emb.qnt import decode codes = rearrange(out[1], "t -> 1 1 t") wavs, sr = decode(codes) soundfile.write("data/test/test.ar.recon.wav", wavs.cpu()[0, 0], sr) if __name__ == "__main__": example_usage()
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/vall_e/ar.py
import math from functools import partial from typing import Literal, overload import torch import torch.nn.functional as F from einops import rearrange from torch import Tensor, einsum, nn from torch.distributions import Categorical from torch.nn.utils.rnn import pad_sequence from torch.utils.checkpoint import checkpoint def _create_mask(l, device): """1 is valid region and 0 is invalid.""" seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t) stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1) return (seq < stop).float() # (b t) def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"): """ Args: x_list: [(t d)] Returns: x: (? ? ?) m: (? ? ?), same as x """ l = list(map(len, x_list)) x = rearrange(pad_sequence(x_list), pattern) m = _create_mask(l, x_list[0].device) m = m.t().unsqueeze(-1) # (t b 1) m = rearrange(m, pattern) m = m.to(x) return x, m class SinusodialEmbedding(nn.Module): def __init__(self, d_model): super().__init__() self.d_model = d_model exponent = torch.arange(self.d_half, dtype=torch.float32) exponent = exponent / self.d_half omega = torch.exp(-math.log(1e4) * exponent) self.omega: torch.Tensor self.register_buffer("omega", omega, persistent=False) @property def d_half(self): assert self.d_model % 2 == 0, "Only support even d_model." return self.d_model // 2 def forward(self, x): """ Args: x: (...) Returns: pe: (... d) """ omega = self.omega while omega.dim() <= x.dim(): omega = omega.unsqueeze(0) # (... d) x = x.unsqueeze(-1) # (... 1) x = omega * x x = torch.cat([x.sin(), x.cos()], dim=-1) return x def get_pe(self, n: int): """ Args: n: int Returns: pe: (n d) """ device = self.omega.device return self.forward(torch.arange(n, device=device)) def add_pe(self, x): """ Args: x: (b t c) """ e = self.get_pe(x.shape[1]) # t d e = e[None] # b t d x = x + e return x class Attention(nn.Module): def __init__(self, d_model, n_heads, casual): super().__init__() assert d_model % n_heads == 0 dim_head = d_model // n_heads self.casual = casual self.n_heads = n_heads self.scale = dim_head**-0.5 self.to_qkv = nn.Linear(d_model, d_model * 3, bias=False) self.to_out = nn.Linear(d_model, d_model) def forward(self, x, m): """ Args: x: (b t c) m: (b t c), 1 is data, 0 is padding Returns: x: (b t c) """ h = self.n_heads q, k, v = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, "b t (h d) -> b t h d", h=h), (q, k, v)) e = einsum("b i h d, b j h d -> b i j h", q, k) e = e * self.scale kpm = m.unsqueeze(1) * m.unsqueeze(2) # b i j 1 if self.casual: kpm = kpm.squeeze(-1).tril().unsqueeze(-1) # b i j 1 e = e.masked_fill(kpm == 0, -torch.finfo(e.dtype).max) a = e.softmax(dim=2) # Normalize on j, i.e. key o = einsum("b i j h, b j h d -> b i h d", a, v) o = o.flatten(-2) o = self.to_out(o) # b t c o = o * m return o class AdaLN(nn.Module): def __init__(self, d_model, n_levels, eps=1e-5, k=0.1, c=2): super().__init__() self.eps = eps self.emb = nn.Embedding(n_levels, d_model * 2) self.k = k self.c = c nn.init.zeros_(self.emb.weight) def forward(self, x, l): logγ, β = self.emb(l).unsqueeze(1).chunk(2, dim=-1) h = F.layer_norm(x, x.shape[-1:], eps=self.eps) # The initial implementation (https://github.com/enhuiz/vall-e/blob/fbf023448c08e55c0422eefed7fc234cf8b76680/vall_e/vall_e/base.py#L135) # performed worse than vanilla LayerNorm. # The authors mentioned another AdaNorm paper (https://openreview.net/pdf?id=HyxndNrxLB) as they introduce AdaLN. # Did they use AdaNorm inside AdaLN? (as follows) h = self.c * (1 - (self.k * h).detach()) * h y = logγ.exp() * h + β return y class PrenormResidual(nn.Module): def __init__( self, block, d_model, p_dropout, requires_mask=False, norm_type="ln", n_levels: int | None = None, ): super().__init__() self.block = block self.requires_mask = requires_mask self.norm_type = norm_type if norm_type == "ln": self.norm = nn.LayerNorm(d_model) elif norm_type == "adaln": assert n_levels is not None self.norm = AdaLN(d_model, n_levels) else: raise NotImplementedError(norm_type) self.dropout = nn.Dropout(p_dropout) def forward(self, x, m, l): """ Args: x: input (b t d) m: mask (b t 1), 1 is valuable and 0 is padding l: level to use, required only for AdaLN """ nopts = {"l": l} if self.norm_type == "adaln" else {} bopts = {"m": m} if self.requires_mask else {} x = x + self.dropout(self.block(self.norm(x, **nopts) * m, **bopts)) return x * m class Block(nn.Sequential): def __init__(self, d_model, n_heads, p_dropout, casual, norm_type, n_levels): super().__init__() self.attn = PrenormResidual( Attention(d_model, n_heads, casual), d_model=d_model, p_dropout=p_dropout, requires_mask=True, norm_type=norm_type, n_levels=n_levels, ) self.ffn = PrenormResidual( nn.Sequential( nn.Linear(d_model, d_model * 4), nn.GELU(), nn.Dropout(p_dropout), nn.Linear(d_model * 4, d_model), ), d_model=d_model, p_dropout=p_dropout, norm_type=norm_type, n_levels=n_levels, ) def forward(self, x, m, l): """ Args: x: (b t c) m: (b t 1) l: (b) """ poor_in_vram = True if x.requires_grad and poor_in_vram: x = checkpoint(self.attn, x, m, l) else: x = self.attn(x, m, l) x = self.ffn(x, m, l) return x class Embedding(nn.Embedding): def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] return super().forward(torch.cat(x_list)).split([*map(len, x_list)]) class MultiEmbedding(nn.Module): """ This embedding sums embeddings on different levels. """ def __init__(self, max_n_levels, n_tokens, token_dim): super().__init__() self.max_n_levels = max_n_levels self.n_tokens = n_tokens self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim)) def forward(self, x_list: list[Tensor]) -> list[Tensor]: if len(x_list) == 0: return [] w = self.weight padded_x_list = [] for xi in x_list: xi = F.one_hot(xi, num_classes=self.n_tokens) # t l' k xi = F.pad(xi, (0, 0, 0, w.shape[0] - xi.shape[1])) # t l k padded_x_list.append(xi.to(w)) x = torch.cat(padded_x_list) # n l k x = einsum("l k d, n l k -> n d", w, x) x_list = x.split([*map(len, x_list)]) return x_list def _join(x: tuple[Tensor], sep: Tensor): """ Args: x: (k t d) sep: (d) """ ret = x[0] for i in range(1, len(x)): ret = torch.cat((ret, sep[None], x[i]), dim=0) return ret class Base(nn.Module): @property def casual(self) -> bool: raise NotImplementedError @property def n_resp_levels(self) -> int: raise NotImplementedError @property def use_stop_token(self) -> bool: raise NotImplementedError @property def norm_type(self): raise NotImplementedError @property def n_prom_levels(self) -> int: return 8 @property def resp_loss_only(self): raise NotImplementedError def __init__( self, n_tokens: int, d_model: int = 512, n_heads: int = 8, n_layers: int = 12, p_dropout: float = 0.1, ): super().__init__() self.n_tokens = n_tokens casual = self.casual # +1 to include the stop token n_stop_tokens = 1 if self.use_stop_token else 0 n_resp_tokens = n_tokens + n_stop_tokens self.text_emb = Embedding(n_tokens, d_model) # Here I simply use all prom levels self.proms_emb = MultiEmbedding(self.n_prom_levels, n_tokens, d_model) self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model) self.sin_emb = SinusodialEmbedding(d_model) self.sep = nn.Parameter(torch.randn(d_model)) blocks = [ Block( d_model=d_model, n_heads=n_heads, p_dropout=p_dropout, casual=casual, norm_type=self.norm_type, n_levels=self.n_resp_levels, ) for _ in range(n_layers) ] self.blocks = nn.ModuleList(blocks) self.classifier = nn.Linear(d_model, n_resp_tokens) @property def stop_token(self): if not self.use_stop_token: raise ValueError("Not using stop token!") return self.n_tokens @property def ignore_index(self): return -100 @staticmethod def _samplewise_merge_tensors(*l, sep: Tensor | None): if sep is None: cat = torch.cat else: cat = partial(_join, sep=sep) return [*map(cat, zip(*l))] @overload def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, shift_targ_list: bool = False, return_all_resp: Literal[False] = False, sampling_temperature: float = 1.0, ) -> Tensor: ... @overload def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, shift_targ_list: bool = False, return_all_resp: Literal[True] = True, sampling_temperature: float = 1.0, ) -> list[Tensor]: ... def forward( self, text_list: list[Tensor], proms_list: list[Tensor], resps_list: list[Tensor], targ_list: list[Tensor] | None = None, quant_levels: Tensor | None = None, shift_targ_list: bool = False, return_all_resp: bool = False, sampling_temperature: float = 1.0, ): """ Args: text_list: [t] * b proms_list: [t' l] * b, l quantization levels. resps_list: [t'' l] * b, l quantization levels. targ_list: [t''] * b, one quantization level only, when given, loss will be computed quant_levels: specify which quant_levels to feed forward, used in NAR mode. shift_targ_list: whether to shift target list when computing loss. True if AR. return_all_resp: True if NAR. sampling_temperature: a lower temperature makes the result more robust but less diverse. Returns: y: sampled tokens """ x_list = self._samplewise_merge_tensors( self.text_emb(text_list), self.proms_emb(proms_list), self.resps_emb(resps_list), sep=self.sep, ) x, m = list_to_tensor(x_list) x = self.sin_emb.add_pe(x) for block in self.blocks: x = block(x, m, quant_levels) h = self.classifier(x) * m # Remove padding h_list = [hi[:li] for hi, li in zip(h, map(len, x_list))] if targ_list is not None: if any([l == 0 for l in map(len, targ_list)]): raise ValueError("Cannot compute loss given empty targ_list.") device = h.device ignore_sep = torch.tensor(self.ignore_index, device=device) # Ignore prom in the target prom_list = [ torch.full_like(t[..., 0], self.ignore_index) for t in proms_list ] text_prom_list = self._samplewise_merge_tensors( text_list, prom_list, sep=ignore_sep ) # Make every token earlier as it is future that is unknown # If we don't want compute loss, set all to ignored for i in range(len(text_prom_list)): if self.resp_loss_only: text_prom_list[i][:] = self.ignore_index else: text_prom_list[i] = text_prom_list[i].roll(-1, dims=0) text_prom_list[i][-1] = self.ignore_index if shift_targ_list: # Also make target earlier if in autoregressive mode targ_list = [*targ_list] for i in range(len(targ_list)): targ_list[i] = targ_list[i].roll(-1, dims=0) targ_list[i][-1] = self.stop_token y_list = self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep ) self.loss = dict( nll=F.cross_entropy( torch.cat(h_list), torch.cat(y_list), ignore_index=self.ignore_index, ) ) if return_all_resp: logits = [hi[-li:] for hi, li in zip(h_list, map(len, resps_list))] ret = [ Categorical(logits=hi / sampling_temperature).sample() for hi in logits ] else: logits = torch.stack([hi[-1] for hi in h_list]) ret = Categorical(logits=logits / sampling_temperature).sample() return ret
EXA-1-master
exa/models/valle/vall-e-main 2/vall_e/vall_e/base.py
import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__))) sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'NeuralSeq')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio_img')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio_inpaint')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'audio_detection')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'mono2binaural')) import gradio as gr import matplotlib import librosa import torch from langchain.agents.initialize import initialize_agent from langchain.agents.tools import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.llms.openai import OpenAI import re import uuid import soundfile from PIL import Image import numpy as np from omegaconf import OmegaConf from einops import repeat from ldm.util import instantiate_from_config from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000 from vocoder.bigvgan.models import VocoderBigVGAN from ldm.models.diffusion.ddim import DDIMSampler import whisper from utils.hparams import set_hparams from utils.hparams import hparams as hp import scipy.io.wavfile as wavfile import librosa from audio_infer.utils import config as detection_config from audio_infer.pytorch.models import PVT import clip import numpy as np AUDIO_CHATGPT_PREFIX = """AudioGPT AudioGPT can not directly read audios, but it has a list of tools to finish different speech, audio, and singing voice tasks. Each audio will have a file name formed as "audio/xxx.wav". When talking about audios, AudioGPT is very strict to the file name and will never fabricate nonexistent files. AudioGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the audio content and audio file name. It will remember to provide the file name from the last tool observation, if a new audio is generated. Human may provide new audios to AudioGPT with a description. The description helps AudioGPT to understand this audio, but AudioGPT should use tools to finish following tasks, rather than directly imagine from the description. Overall, AudioGPT is a powerful audio dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. TOOLS: ------ AudioGPT has access to the following tools:""" AUDIO_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: ``` Thought: Do I need to use a tool? Yes Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ``` When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: ``` Thought: Do I need to use a tool? No {ai_prefix}: [your response here] ``` """ AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists. You will remember to provide the audio file name loyally if it's provided in the last tool observation. Begin! Previous conversation history: {chat_history} New input: {input} Thought: Do I need to use a tool? {agent_scratchpad}""" def cut_dialogue_history(history_memory, keep_last_n_words = 500): tokens = history_memory.split() n_tokens = len(tokens) print(f"history_memory:{history_memory}, n_tokens: {n_tokens}") if n_tokens < keep_last_n_words: return history_memory else: paragraphs = history_memory.split('\n') last_n_tokens = n_tokens while last_n_tokens >= keep_last_n_words: last_n_tokens = last_n_tokens - len(paragraphs[0].split(' ')) paragraphs = paragraphs[1:] return '\n' + '\n'.join(paragraphs) def merge_audio(audio_path_1, audio_path_2): merged_signal = [] sr_1, signal_1 = wavfile.read(audio_path_1) sr_2, signal_2 = wavfile.read(audio_path_2) merged_signal.append(signal_1) merged_signal.append(signal_2) merged_signal = np.hstack(merged_signal) merged_signal = np.asarray(merged_signal, dtype=np.int16) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, sr_2, merged_signal) return audio_filename class T2I: def __init__(self, device): from transformers import AutoModelForCausalLM, AutoTokenizer from diffusers import StableDiffusionPipeline from transformers import pipeline print("Initializing T2I to %s" % device) self.device = device self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device) self.pipe.to(device) def inference(self, text): image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"] print(f'{text} refined to {refined_text}') image = self.pipe(refined_text).images[0] image.save(image_filename) print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}") return image_filename class ImageCaptioning: def __init__(self, device): from transformers import BlipProcessor, BlipForConditionalGeneration print("Initializing ImageCaptioning to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device) def inference(self, image_path): inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device) out = self.model.generate(**inputs) captions = self.processor.decode(out[0], skip_special_tokens=True) return captions class T2A: def __init__(self, device): print("Initializing Make-An-Audio to %s" % device) self.device = device self.sampler = self._initialize_model('text_to_audio/Make_An_Audio/configs/text_to_audio/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio/useful_ckpts/ta40multi_epoch=000085.ckpt', device=device) self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio/vocoder/logs/bigv16k53w',device=device) def _initialize_model(self, config, ckpt, device): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False) model = model.to(device) model.cond_stage_model.to(model.device) model.cond_stage_model.device = model.device sampler = DDIMSampler(model) return sampler def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80): SAMPLE_RATE = 16000 prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) uc = self.sampler.model.get_learned_conditioning(n_samples * [""]) c = self.sampler.model.get_learned_conditioning(n_samples * [text]) shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = self.sampler.sample(S = ddim_steps, conditioning = c, batch_size = n_samples, shape = shape, verbose = False, unconditional_guidance_scale = scale, unconditional_conditioning = uc, x_T = start_code) x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = self.vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = self.select_best_audio(text, wav_list) return best_wav def select_best_audio(self, prompt, wav_list): from wav_evaluation.models.CLAPWrapper import CLAPWrapper clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth', 'useful_ckpts/CLAP/config.yml', use_cuda=torch.cuda.is_available()) text_embeddings = clap_model.get_text_embeddings([prompt]) score_list = [] for data in wav_list: sr, wav = data audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav), sr)], resample=True) score = clap_model.compute_similarity(audio_embeddings, text_embeddings, use_logit_scale=False).squeeze().cpu().numpy() score_list.append(score) max_index = np.array(score_list).argmax() print(score_list, max_index) return wav_list[max_index] def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80): melbins,mel_len = 80,624 with torch.no_grad(): result = self.txt2audio( text = text, H = melbins, W = mel_len ) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, result[1], samplerate = 16000) print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}") return audio_filename class I2A: def __init__(self, device): print("Initializing Make-An-Audio-Image to %s" % device) self.device = device self.sampler = self._initialize_model('text_to_audio/Make_An_Audio_img/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio_img/useful_ckpts/ta54_epoch=000216.ckpt', device=device) self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio_img/vocoder/logs/bigv16k53w',device=device) def _initialize_model(self, config, ckpt, device): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False) model = model.to(device) model.cond_stage_model.to(model.device) model.cond_stage_model.device = model.device sampler = DDIMSampler(model) return sampler def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80): SAMPLE_RATE = 16000 n_samples = 1 # only support 1 sample prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) uc = self.sampler.model.get_learned_conditioning(n_samples * [""]) #image = Image.fromarray(image) image = Image.open(image) image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0) image_embedding = self.sampler.model.cond_stage_model.forward_img(image) c = image_embedding.repeat(n_samples, 1, 1) shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = self.sampler.sample(S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, x_T=start_code) x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = self.vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = wav_list[0] return best_wav def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80): melbins,mel_len = 80,624 with torch.no_grad(): result = self.img2audio( image=image, H=melbins, W=mel_len ) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, result[1], samplerate = 16000) print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}") return audio_filename class TTS: def __init__(self, device=None): from inference.tts.PortaSpeech import TTSInference if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing PortaSpeech to %s" % device) self.device = device self.exp_name = 'checkpoints/ps_adv_baseline' self.set_model_hparams() self.inferencer = TTSInference(self.hp, device) def set_model_hparams(self): set_hparams(exp_name=self.exp_name, print_hparams=False) self.hp = hp def inference(self, text): self.set_model_hparams() inp = {"text": text} out = self.inferencer.infer_once(inp) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, out, samplerate=22050) return audio_filename class T2S: def __init__(self, device= None): from inference.svs.ds_e2e import DiffSingerE2EInfer if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing DiffSinger to %s" % device) self.device = device self.exp_name = 'checkpoints/0831_opencpop_ds1000' self.config= 'NeuralSeq/egs/egs_bases/svs/midi/e2e/opencpop/ds1000.yaml' self.set_model_hparams() self.pipe = DiffSingerE2EInfer(self.hp, device) self.default_inp = { 'text': '你 说 你 不 SP 懂 为 何 在 这 时 牵 手 AP', 'notes': 'D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | D#4/Eb4 | rest | D#4/Eb4 | D4 | D4 | D4 | D#4/Eb4 | F4 | D#4/Eb4 | D4 | rest', 'notes_duration': '0.113740 | 0.329060 | 0.287950 | 0.133480 | 0.150900 | 0.484730 | 0.242010 | 0.180820 | 0.343570 | 0.152050 | 0.266720 | 0.280310 | 0.633300 | 0.444590' } def set_model_hparams(self): set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False) self.hp = hp def inference(self, inputs): self.set_model_hparams() val = inputs.split(",") key = ['text', 'notes', 'notes_duration'] try: inp = {k: v for k, v in zip(key, val)} wav = self.pipe.infer_once(inp) except: print('Error occurs. Generate default audio sample.\n') inp = self.default_inp wav = self.pipe.infer_once(inp) #if inputs == '' or len(val) < len(key): # inp = self.default_inp #else: # inp = {k:v for k,v in zip(key,val)} #wav = self.pipe.infer_once(inp) wav *= 32767 audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16)) print(f"Processed T2S.run, audio_filename: {audio_filename}") return audio_filename class t2s_VISinger: def __init__(self, device=None): from espnet2.bin.svs_inference import SingingGenerate if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing VISingere to %s" % device) tag = 'AQuarterMile/opencpop_visinger1' self.model = SingingGenerate.from_pretrained( model_tag=str_or_none(tag), device=device, ) phn_dur = [[0. , 0.219 ], [0.219 , 0.50599998], [0.50599998, 0.71399999], [0.71399999, 1.097 ], [1.097 , 1.28799999], [1.28799999, 1.98300004], [1.98300004, 7.10500002], [7.10500002, 7.60400009]] phn = ['sh', 'i', 'q', 'v', 'n', 'i', 'SP', 'AP'] score = [[0, 0.50625, 'sh_i', 58, 'sh_i'], [0.50625, 1.09728, 'q_v', 56, 'q_v'], [1.09728, 1.9832100000000001, 'n_i', 53, 'n_i'], [1.9832100000000001, 7.105360000000001, 'SP', 0, 'SP'], [7.105360000000001, 7.604390000000001, 'AP', 0, 'AP']] tempo = 70 tmp = {} tmp["label"] = phn_dur, phn tmp["score"] = tempo, score self.default_inp = tmp def inference(self, inputs): val = inputs.split(",") key = ['text', 'notes', 'notes_duration'] try: # TODO: input will be update inp = {k: v for k, v in zip(key, val)} wav = self.model(text=inp)["wav"] except: print('Error occurs. Generate default audio sample.\n') inp = self.default_inp wav = self.model(text=inp)["wav"] audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, wav, samplerate=self.model.fs) return audio_filename class TTS_OOD: def __init__(self, device): from inference.tts.GenerSpeech import GenerSpeechInfer if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' print("Initializing GenerSpeech to %s" % device) self.device = device self.exp_name = 'checkpoints/GenerSpeech' self.config = 'NeuralSeq/modules/GenerSpeech/config/generspeech.yaml' self.set_model_hparams() self.pipe = GenerSpeechInfer(self.hp, device) def set_model_hparams(self): set_hparams(config=self.config, exp_name=self.exp_name, print_hparams=False) f0_stats_fn = f'{hp["binary_data_dir"]}/train_f0s_mean_std.npy' if os.path.exists(f0_stats_fn): hp['f0_mean'], hp['f0_std'] = np.load(f0_stats_fn) hp['f0_mean'] = float(hp['f0_mean']) hp['f0_std'] = float(hp['f0_std']) hp['emotion_encoder_path'] = 'checkpoints/Emotion_encoder.pt' self.hp = hp def inference(self, inputs): self.set_model_hparams() key = ['ref_audio', 'text'] val = inputs.split(",") inp = {k: v for k, v in zip(key, val)} wav = self.pipe.infer_once(inp) wav *= 32767 audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16)) print( f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}") return audio_filename class Inpaint: def __init__(self, device): print("Initializing Make-An-Audio-inpaint to %s" % device) self.device = device self.sampler = self._initialize_model_inpaint('text_to_audio/Make_An_Audio_inpaint/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio_inpaint/useful_ckpts/inpaint7_epoch00047.ckpt') self.vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w',device=device) self.cmap_transform = matplotlib.cm.viridis def _initialize_model_inpaint(self, config, ckpt): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt, map_location='cpu')["state_dict"], strict=False) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) print(model.device, device, model.cond_stage_model.device) sampler = DDIMSampler(model) return sampler def make_batch_sd(self, mel, mask, num_samples=1): mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32) mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32) masked_mel = (1 - mask) * mel mel = mel * 2 - 1 mask = mask * 2 - 1 masked_mel = masked_mel * 2 -1 batch = { "mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples), "mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples), "masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples), } return batch def gen_mel(self, input_audio_path): SAMPLE_RATE = 16000 sr, ori_wav = wavfile.read(input_audio_path) print("gen_mel") print(sr,ori_wav.shape,ori_wav) ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 if len(ori_wav.shape)==2:# stereo ori_wav = librosa.to_mono(ori_wav.T) print(sr,ori_wav.shape,ori_wav) ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE) mel_len,hop_size = 848,256 input_len = mel_len * hop_size if len(ori_wav) < input_len: input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0) else: input_wav = ori_wav[:input_len] mel = TRANSFORMS_16000(input_wav) return mel def gen_mel_audio(self, input_audio): SAMPLE_RATE = 16000 sr,ori_wav = input_audio print("gen_mel_audio") print(sr,ori_wav.shape,ori_wav) ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 if len(ori_wav.shape)==2:# stereo ori_wav = librosa.to_mono(ori_wav.T) print(sr,ori_wav.shape,ori_wav) ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE) mel_len,hop_size = 848,256 input_len = mel_len * hop_size if len(ori_wav) < input_len: input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0) else: input_wav = ori_wav[:input_len] mel = TRANSFORMS_16000(input_wav) return mel def show_mel_fn(self, input_audio_path): crop_len = 500 crop_mel = self.gen_mel(input_audio_path)[:,:crop_len] color_mel = self.cmap_transform(crop_mel) image = Image.fromarray((color_mel*255).astype(np.uint8)) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") image.save(image_filename) return image_filename def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512): model = self.sampler.model prng = np.random.RandomState(seed) start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32) c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"])) cc = torch.nn.functional.interpolate(batch["mask"], size=c.shape[-2:]) c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask shape = (c.shape[1]-1,)+c.shape[2:] samples_ddim, _ = self.sampler.sample(S=ddim_steps, conditioning=c, batch_size=c.shape[0], shape=shape, verbose=False) x_samples_ddim = model.decode_first_stage(samples_ddim) mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0) mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0) predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0) inpainted = (1-mask)*mel+mask*predicted_mel inpainted = inpainted.cpu().numpy().squeeze() inapint_wav = self.vocoder.vocode(inpainted) return inpainted, inapint_wav def inference(self, input_audio, mel_and_mask, seed = 55, ddim_steps = 100): SAMPLE_RATE = 16000 torch.set_grad_enabled(False) mel_img = Image.open(mel_and_mask['image']) mask_img = Image.open(mel_and_mask["mask"]) show_mel = np.array(mel_img.convert("L"))/255 mask = np.array(mask_img.convert("L"))/255 mel_bins,mel_len = 80,848 input_mel = self.gen_mel_audio(input_audio)[:,:mel_len] mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0) print(mask.shape,input_mel.shape) with torch.no_grad(): batch = self.make_batch_sd(input_mel,mask,num_samples=1) inpainted,gen_wav = self.inpaint( batch=batch, seed=seed, ddim_steps=ddim_steps, num_samples=1, H=mel_bins, W=mel_len ) inpainted = inpainted[:,:show_mel.shape[1]] color_mel = self.cmap_transform(inpainted) input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0]) gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len] image = Image.fromarray((color_mel*255).astype(np.uint8)) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") image.save(image_filename) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename, gen_wav, samplerate = 16000) return image_filename, audio_filename class ASR: def __init__(self, device): print("Initializing Whisper to %s" % device) self.device = device self.model = whisper.load_model("base", device=device) def inference(self, audio_path): audio = whisper.load_audio(audio_path) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(self.device) _, probs = self.model.detect_language(mel) options = whisper.DecodingOptions() result = whisper.decode(self.model, mel, options) return result.text def translate_english(self, audio_path): audio = self.model.transcribe(audio_path, language='English') return audio['text'] class A2T: def __init__(self, device): from audio_to_text.inference_waveform import AudioCapModel print("Initializing Audio-To-Text Model to %s" % device) self.device = device self.model = AudioCapModel("audio_to_text/audiocaps_cntrstv_cnn14rnn_trm") def inference(self, audio_path): audio = whisper.load_audio(audio_path) caption_text = self.model(audio) return caption_text[0] class GeneFace: def __init__(self, device=None): print("Initializing GeneFace model to %s" % device) from audio_to_face.GeneFace_binding import GeneFaceInfer if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = device self.geneface_model = GeneFaceInfer(device) print("Loaded GeneFace model") def inference(self, audio_path): audio_base_name = os.path.basename(audio_path)[:-4] out_video_name = audio_path.replace("audio","video").replace(".wav", ".mp4") inp = { 'audio_source_name': audio_path, 'out_npy_name': f'geneface/tmp/{audio_base_name}.npy', 'cond_name': f'geneface/tmp/{audio_base_name}.npy', 'out_video_name': out_video_name, 'tmp_imgs_dir': f'video/tmp_imgs', } self.geneface_model.infer_once(inp) return out_video_name class SoundDetection: def __init__(self, device): self.device = device self.sample_rate = 32000 self.window_size = 1024 self.hop_size = 320 self.mel_bins = 64 self.fmin = 50 self.fmax = 14000 self.model_type = 'PVT' self.checkpoint_path = 'audio_detection/audio_infer/useful_ckpts/audio_detection.pth' self.classes_num = detection_config.classes_num self.labels = detection_config.labels self.frames_per_second = self.sample_rate // self.hop_size # Model = eval(self.model_type) self.model = PVT(sample_rate=self.sample_rate, window_size=self.window_size, hop_size=self.hop_size, mel_bins=self.mel_bins, fmin=self.fmin, fmax=self.fmax, classes_num=self.classes_num) checkpoint = torch.load(self.checkpoint_path, map_location=self.device) self.model.load_state_dict(checkpoint['model']) self.model.to(device) def inference(self, audio_path): # Forward (waveform, _) = librosa.core.load(audio_path, sr=self.sample_rate, mono=True) waveform = waveform[None, :] # (1, audio_length) waveform = torch.from_numpy(waveform) waveform = waveform.to(self.device) # Forward with torch.no_grad(): self.model.eval() batch_output_dict = self.model(waveform, None) framewise_output = batch_output_dict['framewise_output'].data.cpu().numpy()[0] """(time_steps, classes_num)""" # print('Sound event detection result (time_steps x classes_num): {}'.format( # framewise_output.shape)) import numpy as np import matplotlib.pyplot as plt sorted_indexes = np.argsort(np.max(framewise_output, axis=0))[::-1] top_k = 10 # Show top results top_result_mat = framewise_output[:, sorted_indexes[0 : top_k]] """(time_steps, top_k)""" # Plot result stft = librosa.core.stft(y=waveform[0].data.cpu().numpy(), n_fft=self.window_size, hop_length=self.hop_size, window='hann', center=True) frames_num = stft.shape[-1] fig, axs = plt.subplots(2, 1, sharex=True, figsize=(10, 4)) axs[0].matshow(np.log(np.abs(stft)), origin='lower', aspect='auto', cmap='jet') axs[0].set_ylabel('Frequency bins') axs[0].set_title('Log spectrogram') axs[1].matshow(top_result_mat.T, origin='upper', aspect='auto', cmap='jet', vmin=0, vmax=1) axs[1].xaxis.set_ticks(np.arange(0, frames_num, self.frames_per_second)) axs[1].xaxis.set_ticklabels(np.arange(0, frames_num / self.frames_per_second)) axs[1].yaxis.set_ticks(np.arange(0, top_k)) axs[1].yaxis.set_ticklabels(np.array(self.labels)[sorted_indexes[0 : top_k]]) axs[1].yaxis.grid(color='k', linestyle='solid', linewidth=0.3, alpha=0.3) axs[1].set_xlabel('Seconds') axs[1].xaxis.set_ticks_position('bottom') plt.tight_layout() image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") plt.savefig(image_filename) return image_filename class SoundExtraction: def __init__(self, device): from sound_extraction.model.LASSNet import LASSNet from sound_extraction.utils.stft import STFT import torch.nn as nn self.device = device self.model_file = 'sound_extraction/useful_ckpts/LASSNet.pt' self.stft = STFT() self.model = nn.DataParallel(LASSNet(device)).to(device) checkpoint = torch.load(self.model_file) self.model.load_state_dict(checkpoint['model']) self.model.eval() def inference(self, inputs): #key = ['ref_audio', 'text'] from sound_extraction.utils.wav_io import load_wav, save_wav val = inputs.split(",") audio_path = val[0] # audio_path, text text = val[1] waveform = load_wav(audio_path) waveform = torch.tensor(waveform).transpose(1,0) mixed_mag, mixed_phase = self.stft.transform(waveform) text_query = ['[CLS] ' + text] mixed_mag = mixed_mag.transpose(2,1).unsqueeze(0).to(self.device) est_mask = self.model(mixed_mag, text_query) est_mag = est_mask * mixed_mag est_mag = est_mag.squeeze(1) est_mag = est_mag.permute(0, 2, 1) est_wav = self.stft.inverse(est_mag.cpu().detach(), mixed_phase) est_wav = est_wav.squeeze(0).squeeze(0).numpy() #est_path = f'output/est{i}.wav' audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") print('audio_filename ', audio_filename) save_wav(est_wav, audio_filename) return audio_filename class Binaural: def __init__(self, device): from src.models import BinauralNetwork self.device = device self.model_file = 'mono2binaural/useful_ckpts/m2b/binaural_network.net' self.position_file = ['mono2binaural/useful_ckpts/m2b/tx_positions.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions2.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions3.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions4.txt', 'mono2binaural/useful_ckpts/m2b/tx_positions5.txt'] self.net = BinauralNetwork(view_dim=7, warpnet_layers=4, warpnet_channels=64, ) self.net.load_from_file(self.model_file) self.sr = 48000 def inference(self, audio_path): mono, sr = librosa.load(path=audio_path, sr=self.sr, mono=True) mono = torch.from_numpy(mono) mono = mono.unsqueeze(0) import numpy as np import random rand_int = random.randint(0,4) view = np.loadtxt(self.position_file[rand_int]).transpose().astype(np.float32) view = torch.from_numpy(view) if not view.shape[-1] * 400 == mono.shape[-1]: mono = mono[:,:(mono.shape[-1]//400)*400] # if view.shape[1]*400 > mono.shape[1]: m_a = view.shape[1] - mono.shape[-1]//400 rand_st = random.randint(0,m_a) view = view[:,m_a:m_a+(mono.shape[-1]//400)] # # binauralize and save output self.net.eval().to(self.device) mono, view = mono.to(self.device), view.to(self.device) chunk_size = 48000 # forward in chunks of 1s rec_field = 1000 # add 1000 samples as "safe bet" since warping has undefined rec. field rec_field -= rec_field % 400 # make sure rec_field is a multiple of 400 to match audio and view frequencies chunks = [ { "mono": mono[:, max(0, i-rec_field):i+chunk_size], "view": view[:, max(0, i-rec_field)//400:(i+chunk_size)//400] } for i in range(0, mono.shape[-1], chunk_size) ] for i, chunk in enumerate(chunks): with torch.no_grad(): mono = chunk["mono"].unsqueeze(0) view = chunk["view"].unsqueeze(0) binaural = self.net(mono, view).squeeze(0) if i > 0: binaural = binaural[:, -(mono.shape[-1]-rec_field):] chunk["binaural"] = binaural binaural = torch.cat([chunk["binaural"] for chunk in chunks], dim=-1) binaural = torch.clamp(binaural, min=-1, max=1).cpu() #binaural = chunked_forwarding(net, mono, view) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") import torchaudio torchaudio.save(audio_filename, binaural, sr) #soundfile.write(audio_filename, binaural, samplerate = 48000) print(f"Processed Binaural.run, audio_filename: {audio_filename}") return audio_filename class TargetSoundDetection: def __init__(self, device): from target_sound_detection.src import models as tsd_models from target_sound_detection.src.models import event_labels self.device = device self.MEL_ARGS = { 'n_mels': 64, 'n_fft': 2048, 'hop_length': int(22050 * 20 / 1000), 'win_length': int(22050 * 40 / 1000) } self.EPS = np.spacing(1) self.clip_model, _ = clip.load("ViT-B/32", device=self.device) self.event_labels = event_labels self.id_to_event = {i : label for i, label in enumerate(self.event_labels)} config = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_config.pth', map_location='cpu') config_parameters = dict(config) config_parameters['tao'] = 0.6 if 'thres' not in config_parameters.keys(): config_parameters['thres'] = 0.5 if 'time_resolution' not in config_parameters.keys(): config_parameters['time_resolution'] = 125 model_parameters = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/run_model_7_loss=-0.0724.pt' , map_location=lambda storage, loc: storage) # load parameter self.model = getattr(tsd_models, config_parameters['model'])(config_parameters, inputdim=64, outputdim=2, time_resolution=config_parameters['time_resolution'], **config_parameters['model_args']) self.model.load_state_dict(model_parameters) self.model = self.model.to(self.device).eval() self.re_embeds = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/text_emb.pth') self.ref_mel = torch.load('audio_detection/target_sound_detection/useful_ckpts/tsd/ref_mel.pth') def extract_feature(self, fname): import soundfile as sf y, sr = sf.read(fname, dtype='float32') print('y ', y.shape) ti = y.shape[0]/sr if y.ndim > 1: y = y.mean(1) y = librosa.resample(y, sr, 22050) lms_feature = np.log(librosa.feature.melspectrogram(y, **self.MEL_ARGS) + self.EPS).T return lms_feature,ti def build_clip(self, text): text = clip.tokenize(text).to(self.device) # ["a diagram with dog", "a dog", "a cat"] text_features = self.clip_model.encode_text(text) return text_features def cal_similarity(self, target, retrievals): ans = [] #target =torch.from_numpy(target) for name in retrievals.keys(): tmp = retrievals[name] #tmp = torch.from_numpy(tmp) s = torch.cosine_similarity(target.squeeze(), tmp.squeeze(), dim=0) ans.append(s.item()) return ans.index(max(ans)) def inference(self, text, audio_path): from target_sound_detection.src.utils import median_filter, decode_with_timestamps target_emb = self.build_clip(text) # torch type idx = self.cal_similarity(target_emb, self.re_embeds) target_event = self.id_to_event[idx] embedding = self.ref_mel[target_event] embedding = torch.from_numpy(embedding) embedding = embedding.unsqueeze(0).to(self.device).float() #print('embedding ', embedding.shape) inputs,ti = self.extract_feature(audio_path) #print('ti ', ti) inputs = torch.from_numpy(inputs) inputs = inputs.unsqueeze(0).to(self.device).float() #print('inputs ', inputs.shape) decision, decision_up, logit = self.model(inputs, embedding) pred = decision_up.detach().cpu().numpy() pred = pred[:,:,0] frame_num = decision_up.shape[1] time_ratio = ti / frame_num filtered_pred = median_filter(pred, window_size=1, threshold=0.5) #print('filtered_pred ', filtered_pred) time_predictions = [] for index_k in range(filtered_pred.shape[0]): decoded_pred = [] decoded_pred_ = decode_with_timestamps(target_event, filtered_pred[index_k,:]) if len(decoded_pred_) == 0: # neg deal decoded_pred_.append((target_event, 0, 0)) decoded_pred.append(decoded_pred_) for num_batch in range(len(decoded_pred)): # when we test our model,the batch_size is 1 cur_pred = pred[num_batch] # Save each frame output, for later visualization label_prediction = decoded_pred[num_batch] # frame predict # print(label_prediction) for event_label, onset, offset in label_prediction: time_predictions.append({ 'onset': onset*time_ratio, 'offset': offset*time_ratio,}) ans = '' for i,item in enumerate(time_predictions): ans = ans + 'segment' + str(i+1) + ' start_time: ' + str(item['onset']) + ' end_time: ' + str(item['offset']) + '\t' #print(ans) return ans # class Speech_Enh_SS_SC: # """Speech Enhancement or Separation in single-channel # Example usage: # enh_model = Speech_Enh_SS("cuda") # enh_wav = enh_model.inference("./test_chime4_audio_M05_440C0213_PED_REAL.wav") # """ # def __init__(self, device="cuda", model_name="lichenda/chime4_fasnet_dprnn_tac"): # self.model_name = model_name # self.device = device # print("Initializing ESPnet Enh to %s" % device) # self._initialize_model() # def _initialize_model(self): # from espnet_model_zoo.downloader import ModelDownloader # from espnet2.bin.enh_inference import SeparateSpeech # d = ModelDownloader() # cfg = d.download_and_unpack(self.model_name) # self.separate_speech = SeparateSpeech( # train_config=cfg["train_config"], # model_file=cfg["model_file"], # # for segment-wise process on long speech # segment_size=2.4, # hop_size=0.8, # normalize_segment_scale=False, # show_progressbar=True, # ref_channel=None, # normalize_output_wav=True, # device=self.device, # ) # def inference(self, speech_path, ref_channel=0): # speech, sr = soundfile.read(speech_path) # speech = speech[:, ref_channel] # assert speech.dim() == 1 # enh_speech = self.separate_speech(speech[None, ], fs=sr) # if len(enh_speech) == 1: # return enh_speech[0] # return enh_speech # class Speech_Enh_SS_MC: # """Speech Enhancement or Separation in multi-channel""" # def __init__(self, device="cuda", model_name=None, ref_channel=4): # self.model_name = model_name # self.ref_channel = ref_channel # self.device = device # print("Initializing ESPnet Enh to %s" % device) # self._initialize_model() # def _initialize_model(self): # from espnet_model_zoo.downloader import ModelDownloader # from espnet2.bin.enh_inference import SeparateSpeech # d = ModelDownloader() # cfg = d.download_and_unpack(self.model_name) # self.separate_speech = SeparateSpeech( # train_config=cfg["train_config"], # model_file=cfg["model_file"], # # for segment-wise process on long speech # segment_size=2.4, # hop_size=0.8, # normalize_segment_scale=False, # show_progressbar=True, # ref_channel=self.ref_channel, # normalize_output_wav=True, # device=self.device, # ) # def inference(self, speech_path): # speech, sr = soundfile.read(speech_path) # speech = speech.T # enh_speech = self.separate_speech(speech[None, ...], fs=sr) # if len(enh_speech) == 1: # return enh_speech[0] # return enh_speech class Speech_Enh_SS_SC: """Speech Enhancement or Separation in single-channel Example usage: enh_model = Speech_Enh_SS("cuda") enh_wav = enh_model.inference("./test_chime4_audio_M05_440C0213_PED_REAL.wav") """ def __init__(self, device="cuda", model_name="espnet/Wangyou_Zhang_chime4_enh_train_enh_conv_tasnet_raw"): self.model_name = model_name self.device = device print("Initializing ESPnet Enh to %s" % device) self._initialize_model() def _initialize_model(self): from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.enh_inference import SeparateSpeech d = ModelDownloader() cfg = d.download_and_unpack(self.model_name) self.separate_speech = SeparateSpeech( train_config=cfg["train_config"], model_file=cfg["model_file"], # for segment-wise process on long speech segment_size=2.4, hop_size=0.8, normalize_segment_scale=False, show_progressbar=True, ref_channel=None, normalize_output_wav=True, device=self.device, ) def inference(self, speech_path, ref_channel=0): speech, sr = soundfile.read(speech_path) speech = speech[:, ref_channel] # speech = torch.from_numpy(speech) # assert speech.dim() == 1 enh_speech = self.separate_speech(speech[None, ...], fs=sr) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # if len(enh_speech) == 1: soundfile.write(audio_filename, enh_speech[0].squeeze(), samplerate=sr) # return enh_speech[0] # return enh_speech # else: # print("############") # audio_filename_1 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # soundfile.write(audio_filename_1, enh_speech[0].squeeze(), samplerate=sr) # audio_filename_2 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # soundfile.write(audio_filename_2, enh_speech[1].squeeze(), samplerate=sr) # audio_filename = merge_audio(audio_filename_1, audio_filename_2) return audio_filename class Speech_SS: def __init__(self, device="cuda", model_name="lichenda/wsj0_2mix_skim_noncausal"): self.model_name = model_name self.device = device print("Initializing ESPnet SS to %s" % device) self._initialize_model() def _initialize_model(self): from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.enh_inference import SeparateSpeech d = ModelDownloader() cfg = d.download_and_unpack(self.model_name) self.separate_speech = SeparateSpeech( train_config=cfg["train_config"], model_file=cfg["model_file"], # for segment-wise process on long speech segment_size=2.4, hop_size=0.8, normalize_segment_scale=False, show_progressbar=True, ref_channel=None, normalize_output_wav=True, device=self.device, ) def inference(self, speech_path): speech, sr = soundfile.read(speech_path) enh_speech = self.separate_speech(speech[None, ...], fs=sr) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") if len(enh_speech) == 1: soundfile.write(audio_filename, enh_speech[0], samplerate=sr) else: # print("############") audio_filename_1 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename_1, enh_speech[0].squeeze(), samplerate=sr) audio_filename_2 = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") soundfile.write(audio_filename_2, enh_speech[1].squeeze(), samplerate=sr) audio_filename = merge_audio(audio_filename_1, audio_filename_2) return audio_filename class ConversationBot: def __init__(self): print("Initializing AudioGPT") self.llm = OpenAI(temperature=0) self.t2i = T2I(device="cuda:1") self.i2t = ImageCaptioning(device="cuda:0") self.t2a = T2A(device="cuda:0") self.tts = TTS(device="cpu") self.t2s = T2S(device="cpu") self.i2a = I2A(device="cuda:0") self.a2t = A2T(device="cpu") self.asr = ASR(device="cuda:0") self.SE_SS_SC = Speech_Enh_SS_SC(device="cuda:0") # self.SE_SS_MC = Speech_Enh_SS_MC(device="cuda:0") self.SS = Speech_SS(device="cuda:0") self.inpaint = Inpaint(device="cuda:0") self.tts_ood = TTS_OOD(device="cpu") self.geneface = GeneFace(device="cuda:0") self.detection = SoundDetection(device="cpu") self.binaural = Binaural(device="cuda:0") self.extraction = SoundExtraction(device="cuda:0") self.TSD = TargetSoundDetection(device="cuda:0") self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output') def init_tools(self, interaction_type): if interaction_type == 'text': self.tools = [ Tool(name="Generate Image From User Input Text", func=self.t2i.inference, description="useful for when you want to generate an image from a user input text and it saved it to a file. like: generate an image of an object or something, or generate an image that includes some objects. " "The input to this tool should be a string, representing the text used to generate image. "), Tool(name="Get Photo Description", func=self.i2t.inference, description="useful for when you want to know what is inside the photo. receives image_path as input. " "The input to this tool should be a string, representing the image_path. "), Tool(name="Generate Audio From User Input Text", func=self.t2a.inference, description="useful for when you want to generate an audio from a user input text and it saved it to a file." "The input to this tool should be a string, representing the text used to generate audio."), Tool( name="Style Transfer", func= self.tts_ood.inference, description="useful for when you want to generate speech samples with styles (e.g., timbre, emotion, and prosody) derived from a reference custom voice." "Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx." "The input to this tool should be a comma seperated string of two, representing reference audio path and input text."), Tool(name="Generate Singing Voice From User Input Text, Note and Duration Sequence", func= self.t2s.inference, description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) and save it to a file." "If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence ." "If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. " "Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx." "The input to this tool should be a comma seperated string of three, representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided."), Tool(name="Synthesize Speech Given the User Input Text", func=self.tts.inference, description="useful for when you want to convert a user input text into speech audio it saved it to a file." "The input to this tool should be a string, representing the text used to be converted to speech."), # Tool(name="Speech Enhancement Or Separation In Single-Channel", func=self.SE_SS_SC.inference, # description="useful for when you want to enhance the quality of the speech signal by reducing background noise (single-channel), " # "or separate each speech from the speech mixture (single-channel), receives audio_path as input." # "The input to this tool should be a string, representing the audio_path."), Tool(name="Speech Enhancement In Single-Channel", func=self.SE_SS_SC.inference, description="useful for when you want to enhance the quality of the speech signal by reducing background noise (single-channel), receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Speech Separation In Single-Channel", func=self.SS.inference, description="useful for when you want to separate each speech from the speech mixture, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), # Tool(name="Speech Enhancement In Multi-Channel", func=self.SE_SS_MC.inference, # description="useful for when you want to enhance the quality of the speech signal by reducing background noise (multi-channel), receives audio_path as input." # "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate Audio From The Image", func=self.i2a.inference, description="useful for when you want to generate an audio based on an image." "The input to this tool should be a string, representing the image_path. "), Tool(name="Generate Text From The Audio", func=self.a2t.inference, description="useful for when you want to describe an audio in text, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Audio Inpainting", func=self.inpaint.show_mel_fn, description="useful for when you want to inpaint a mel spectrum of an audio and predict this audio, this tool will generate a mel spectrum and you can inpaint it, receives audio_path as input, " "The input to this tool should be a string, representing the audio_path."), Tool(name="Transcribe Speech", func=self.asr.inference, description="useful for when you want to know the text corresponding to a human speech, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate a talking human portrait video given a input Audio", func=self.geneface.inference, description="useful for when you want to generate a talking human portrait video given a input audio." "The input to this tool should be a string, representing the audio_path."), Tool(name="Detect The Sound Event From The Audio", func=self.detection.inference, description="useful for when you want to know what event in the audio and the sound event start or end time, this tool will generate an image of all predict events, receives audio_path as input. " "The input to this tool should be a string, representing the audio_path. "), Tool(name="Sythesize Binaural Audio From A Mono Audio Input", func=self.binaural.inference, description="useful for when you want to transfer your mono audio into binaural audio, receives audio_path as input. " "The input to this tool should be a string, representing the audio_path. "), Tool(name="Extract Sound Event From Mixture Audio Based On Language Description", func=self.extraction.inference, description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, receives audio_path and text as input. " "The input to this tool should be a comma seperated string of two, representing mixture audio path and input text."), Tool(name="Target Sound Detection", func=self.TSD.inference, description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model. receives text description and audio_path as input. " "The input to this tool should be a comma seperated string of two, representing audio path and the text description. ")] self.agent = initialize_agent( self.tools, self.llm, agent="conversational-react-description", verbose=True, memory=self.memory, return_intermediate_steps=True, agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, ) return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) else: self.tools = [ Tool(name="Generate Audio From User Input Text", func=self.t2a.inference, description="useful for when you want to generate an audio from a user input text and it saved it to a file." "The input to this tool should be a string, representing the text used to generate audio."), Tool( name="Style Transfer", func= self.tts_ood.inference, description="useful for when you want to generate speech samples with styles (e.g., timbre, emotion, and prosody) derived from a reference custom voice." "Like: Generate a speech with style transferred from this voice. The text is xxx., or speak using the voice of this audio. The text is xxx." "The input to this tool should be a comma seperated string of two, representing reference audio path and input text."), Tool(name="Generate Singing Voice From User Input Text, Note and Duration Sequence", func= self.t2s.inference, description="useful for when you want to generate a piece of singing voice (Optional: from User Input Text, Note and Duration Sequence) and save it to a file." "If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence ." "If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. " "Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx." "The input to this tool should be a comma seperated string of three, representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided."), Tool(name="Synthesize Speech Given the User Input Text", func=self.tts.inference, description="useful for when you want to convert a user input text into speech audio it saved it to a file." "The input to this tool should be a string, representing the text used to be converted to speech."), Tool(name="Generate Text From The Audio", func=self.a2t.inference, description="useful for when you want to describe an audio in text, receives audio_path as input." "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate a talking human portrait video given a input Audio", func=self.geneface.inference, description="useful for when you want to generate a talking human portrait video given a input audio." "The input to this tool should be a string, representing the audio_path."), Tool(name="Generate Binaural Audio From A Mono Audio Input", func=self.binaural.inference, description="useful for when you want to transfer your mono audio into binaural audio, receives audio_path as input. " "The input to this tool should be a string, representing the audio_path. "), Tool(name="Extract Sound Event From Mixture Audio Based On Language Description", func=self.extraction.inference, description="useful for when you extract target sound from a mixture audio, you can describe the target sound by text, receives audio_path and text as input. " "The input to this tool should be a comma seperated string of two, representing mixture audio path and input text."), Tool(name="Target Sound Detection", func=self.TSD.inference, description="useful for when you want to know when the target sound event in the audio happens. You can use language descriptions to instruct the model. receives text description and audio_path as input. " "The input to this tool should be a comma seperated string of two, representing audio path and the text description. ")] self.agent = initialize_agent( self.tools, self.llm, agent="conversational-react-description", verbose=True, memory=self.memory, return_intermediate_steps=True, agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, ) return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) def run_text(self, text, state): print("===============Running run_text =============") print("Inputs:", text, state) print("======>Previous memory:\n %s" % self.agent.memory) self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) res = self.agent({"input": text}) if res['intermediate_steps'] == []: print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) else: tool = res['intermediate_steps'][0][0].tool if tool == "Generate Image From User Input Text" or tool == "Generate Text From The Audio" or tool == "Target Sound Detection": print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Transcribe Speech": response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Detect The Sound Event From The Audio": image_filename = res['intermediate_steps'][0][1] response = res['output'] + f"![](/file={image_filename})*{image_filename}*" state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) elif tool == "Audio Inpainting": audio_filename = res['intermediate_steps'][0][0].tool_input image_filename = res['intermediate_steps'][0][1] print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False), gr.Image.update(value=image_filename,visible=True), gr.Button.update(visible=True) elif tool == "Generate a talking human portrait video given a input Audio": video_filename = res['intermediate_steps'][0][1] print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(value=video_filename,visible=True), gr.Image.update(visible=False), gr.Button.update(visible=False) print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) audio_filename = res['intermediate_steps'][0][1] state = state + [(text, response)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) def run_image_or_audio(self, file, state, txt): file_type = file.name[-3:] if file_type == "wav": print("===============Running run_audio =============") print("Inputs:", file, state) print("======>Previous memory:\n %s" % self.agent.memory) audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") # audio_load = whisper.load_audio(file.name) audio_load, sr = soundfile.read(file.name) soundfile.write(audio_filename, audio_load, samplerate = sr) description = self.a2t.inference(audio_filename) Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description) AI_prompt = "Received. " self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) #state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)] state = state + [(f"*{audio_filename}*", AI_prompt)] print("Outputs:", state) return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False) else: print("===============Running run_image =============") print("Inputs:", file, state) print("======>Previous memory:\n %s" % self.agent.memory) image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") print("======>Auto Resize Image...") img = Image.open(file.name) width, height = img.size ratio = min(512 / width, 512 / height) width_new, height_new = (round(width * ratio), round(height * ratio)) img = img.resize((width_new, height_new)) img = img.convert('RGB') img.save(image_filename, "PNG") print(f"Resize image form {width}x{height} to {width_new}x{height_new}") description = self.i2t.inference(image_filename) Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \ "rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description) AI_prompt = "Received. " self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)] print("Outputs:", state) return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False) def speech(self, speech_input, state): input_audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") text = self.asr.translate_english(speech_input) print("Inputs:", text, state) print("======>Previous memory:\n %s" % self.agent.memory) self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) res = self.agent({"input": text}) if res['intermediate_steps'] == []: print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] output_audio_filename = self.tts.inference(response) state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) else: tool = res['intermediate_steps'][0][0].tool if tool == "Generate Image From User Input Text" or tool == "Generate Text From The Audio" or tool == "Target Sound Detection": print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) output_audio_filename = self.tts.inference(res['output']) state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) elif tool == "Transcribe Speech": print("======>Current memory:\n %s" % self.agent.memory) output_audio_filename = self.tts.inference(res['output']) response = res['output'] state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) elif tool == "Detect The Sound Event From The Audio": print("======>Current memory:\n %s" % self.agent.memory) image_filename = res['intermediate_steps'][0][1] output_audio_filename = self.tts.inference(res['output']) response = res['output'] + f"![](/file={image_filename})*{image_filename}*" state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) elif tool == "Generate a talking human portrait video given a input Audio": video_filename = res['intermediate_steps'][0][1] print("======>Current memory:\n %s" % self.agent.memory) response = res['output'] output_audio_filename = self.tts.inference(res['output']) state = state + [(text, response)] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(value=video_filename,visible=True) print("======>Current memory:\n %s" % self.agent.memory) response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) audio_filename = res['intermediate_steps'][0][1] Res = "The audio file has been generated and the audio is " output_audio_filename = merge_audio(self.tts.inference(Res), audio_filename) print(output_audio_filename) state = state + [(text, response)] response = res['output'] print("Outputs:", state) return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) def inpainting(self, state, audio_filename, image_filename): print("===============Running inpainting =============") print("Inputs:", state) print("======>Previous memory:\n %s" % self.agent.memory) new_image_filename, new_audio_filename = self.inpaint.inference(audio_filename, image_filename) AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"![](/file={new_image_filename})*{new_image_filename}*" output_audio_filename = self.tts.inference(AI_prompt) self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt print("======>Current memory:\n %s" % self.agent.memory) state = state + [(f"Audio Inpainting", AI_prompt)] print("Outputs:", state) return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Video.update(visible=False), gr.Button.update(visible=False) def clear_audio(self): return gr.Audio.update(value=None, visible=False) def clear_input_audio(self): return gr.Audio.update(value=None) def clear_image(self): return gr.Image.update(value=None, visible=False) def clear_video(self): return gr.Video.update(value=None, visible=False) def clear_button(self): return gr.Button.update(visible=False) if __name__ == '__main__': bot = ConversationBot() with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo: with gr.Row(): gr.Markdown("## AudioGPT") chatbot = gr.Chatbot(elem_id="chatbot", label="AudioGPT", visible=False) state = gr.State([]) with gr.Row() as select_raws: with gr.Column(scale=0.7): interaction_type = gr.Radio(choices=['text', 'speech'], value='text', label='Interaction Type') with gr.Column(scale=0.3, min_width=0): select = gr.Button("Select") with gr.Row(visible=False) as text_input_raws: with gr.Column(scale=0.7): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False) with gr.Column(scale=0.1, min_width=0): run = gr.Button("🏃‍♂️Run") with gr.Column(scale=0.1, min_width=0): clear_txt = gr.Button("🔄Clear️") with gr.Column(scale=0.1, min_width=0): btn = gr.UploadButton("🖼️Upload", file_types=["image","audio"]) with gr.Row(): outaudio = gr.Audio(visible=False) with gr.Row(): with gr.Column(scale=0.3, min_width=0): outvideo = gr.Video(visible=False) with gr.Row(): show_mel = gr.Image(type="filepath",tool='sketch',visible=False) with gr.Row(): run_button = gr.Button("Predict Masked Place",visible=False) with gr.Row(visible=False) as speech_input_raws: with gr.Column(scale=0.7): speech_input = gr.Audio(source="microphone", type="filepath", label="Input") with gr.Column(scale=0.15, min_width=0): submit_btn = gr.Button("🏃‍♂️Submit") with gr.Column(scale=0.15, min_width=0): clear_speech = gr.Button("🔄Clear️") with gr.Row(): speech_output = gr.Audio(label="Output",visible=False) select.click(bot.init_tools, [interaction_type], [chatbot, select_raws, text_input_raws, speech_input_raws]) txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio, outvideo, show_mel, run_button]) txt.submit(lambda: "", None, txt) run.click(bot.run_text, [txt, state], [chatbot, state, outaudio, outvideo, show_mel, run_button]) run.click(lambda: "", None, txt) btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, outaudio, outvideo]) run_button.click(bot.inpainting, [state, outaudio, show_mel], [chatbot, state, show_mel, outaudio, outvideo, run_button]) clear_txt.click(bot.memory.clear) clear_txt.click(lambda: [], None, chatbot) clear_txt.click(lambda: [], None, state) clear_txt.click(lambda:None, None, txt) clear_txt.click(bot.clear_button, None, run_button) clear_txt.click(bot.clear_image, None, show_mel) clear_txt.click(bot.clear_audio, None, outaudio) clear_txt.click(bot.clear_video, None, outvideo) submit_btn.click(bot.speech, [speech_input, state], [speech_input, speech_output, state, outvideo]) clear_speech.click(bot.clear_input_audio, None, speech_input) clear_speech.click(bot.clear_audio, None, speech_output) clear_speech.click(lambda: [], None, state) clear_speech.click(bot.clear_video, None, outvideo) demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
EXA-1-master
exa/models/AudioGPT/audio-chatgpt.py
from data_gen.tts.base_preprocess import BasePreprocessor class LJPreprocess(BasePreprocessor): def meta_data(self): for l in open(f'{self.raw_data_dir}/metadata.csv').readlines(): item_name, _, txt = l.strip().split("|") wav_fn = f"{self.raw_data_dir}/wavs/{item_name}.wav" yield {'item_name': item_name, 'wav_fn': wav_fn, 'txt': txt}
EXA-1-master
exa/models/AudioGPT/NeuralSeq/egs/datasets/audio/lj/preprocess.py
import os from data_gen.tts.base_preprocess import BasePreprocessor import glob class LibrittsPreAlign(BasePreprocessor): def meta_data(self): wav_fns = sorted(glob.glob(f'{self.raw_data_dir}/*/*/*.wav')) for wav_fn in wav_fns: item_name = os.path.basename(wav_fn)[:-4] txt_fn = f'{wav_fn[:-4]}.normalized.txt' with open(txt_fn, 'r') as f: txt = f.readlines() f.close() spk = item_name.split("_")[0] # Example: # # 'item_name': '103_1241_000000_000001' # 'wav_fn': 'LibriTTS/train-clean-100/103/1241/103_1241_000000_000001.wav' # 'txt': 'matthew Cuthbert is surprised' # 'spk_name': '103' yield {'item_name': item_name, 'wav_fn': wav_fn, 'txt': txt[0], 'spk_name': spk} if __name__ == "__main__": LibrittsPreAlign().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/egs/datasets/audio/libritts/pre_align.py
import os from data_gen.tts.base_pre_align import BasePreAlign import glob class VCTKPreAlign(BasePreAlign): def meta_data(self): wav_fns = glob.glob(f'{self.raw_data_dir}/wav48/*/*.wav') for wav_fn in wav_fns: item_name = os.path.basename(wav_fn)[:-4] spk = item_name.split("_")[0] txt_fn = wav_fn.split("/") txt_fn[-1] = f'{item_name}.txt' txt_fn[-3] = f'txt' txt_fn = "/".join(txt_fn) if os.path.exists(txt_fn) and os.path.exists(wav_fn): yield item_name, wav_fn, (self.load_txt, txt_fn), spk if __name__ == "__main__": VCTKPreAlign().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/egs/datasets/audio/vctk/pre_align.py
import os from data_gen.tts.base_preprocess import BasePreprocessor import glob import re class EmoPreAlign(BasePreprocessor): def meta_data(self): spks = ['0012', '0011', '0013', '0014', '0015', '0016', '0017', '0018', '0019', '0020'] pattern = re.compile('[\t\n ]+') for spk in spks: for line in open(f"{self.raw_data_dir}/{spk}/{spk}.txt", 'r'): # 打开文件 line = re.sub(pattern, ' ', line) if line == ' ': continue split_ = line.split(' ') txt = ' '.join(split_[1: -2]) item_name = split_[0] emotion = split_[-2] wav_fn = f'{self.raw_data_dir}/{spk}/{emotion}/{item_name}.wav' yield item_name, wav_fn, txt, spk, emotion if __name__ == "__main__": EmoPreAlign().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/egs/datasets/audio/emotion/pre_align.py
import importlib from utils.hparams import set_hparams, hparams def run_task(): assert hparams['task_cls'] != '' pkg = ".".join(hparams["task_cls"].split(".")[:-1]) cls_name = hparams["task_cls"].split(".")[-1] task_cls = getattr(importlib.import_module(pkg), cls_name) task_cls.start() if __name__ == '__main__': set_hparams() run_task()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/run.py
import glob import re import subprocess from datetime import datetime import matplotlib matplotlib.use('Agg') from utils.hparams import hparams, set_hparams import random import sys import numpy as np import torch.distributed as dist from pytorch_lightning.loggers import TensorBoardLogger from utils.pl_utils import LatestModelCheckpoint, BaseTrainer, data_loader, DDP from torch import nn import torch.utils.data import utils import logging import os torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system')) log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') class BaseDataset(torch.utils.data.Dataset): def __init__(self, shuffle): super().__init__() self.hparams = hparams self.shuffle = shuffle self.sort_by_len = hparams['sort_by_len'] self.sizes = None @property def _sizes(self): return self.sizes def __getitem__(self, index): raise NotImplementedError def collater(self, samples): raise NotImplementedError def __len__(self): return len(self._sizes) def num_tokens(self, index): return self.size(index) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" size = min(self._sizes[index], hparams['max_frames']) return size def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) if self.sort_by_len: indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] # 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱). else: indices = np.arange(len(self)) return indices @property def num_workers(self): return int(os.getenv('NUM_WORKERS', hparams['ds_workers'])) class BaseTask(nn.Module): def __init__(self, *args, **kwargs): # dataset configs super(BaseTask, self).__init__(*args, **kwargs) self.current_epoch = 0 self.global_step = 0 self.loaded_optimizer_states_dict = {} self.trainer = None self.logger = None self.on_gpu = False self.use_dp = False self.use_ddp = False self.example_input_array = None self.max_tokens = hparams['max_tokens'] self.max_sentences = hparams['max_sentences'] self.max_eval_tokens = hparams['max_eval_tokens'] if self.max_eval_tokens == -1: hparams['max_eval_tokens'] = self.max_eval_tokens = self.max_tokens self.max_eval_sentences = hparams['max_eval_sentences'] if self.max_eval_sentences == -1: hparams['max_eval_sentences'] = self.max_eval_sentences = self.max_sentences self.model = None self.training_losses_meter = None ########### # Training, validation and testing ########### def build_model(self): raise NotImplementedError def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True): # This function is updated on 2021.12.13 if current_model_name is None: current_model_name = model_name utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict) def on_epoch_start(self): self.training_losses_meter = {'total_loss': utils.AvgrageMeter()} def _training_step(self, sample, batch_idx, optimizer_idx): """ :param sample: :param batch_idx: :return: total loss: torch.Tensor, loss_log: dict """ raise NotImplementedError def training_step(self, sample, batch_idx, optimizer_idx=-1): loss_ret = self._training_step(sample, batch_idx, optimizer_idx) self.opt_idx = optimizer_idx if loss_ret is None: return {'loss': None} total_loss, log_outputs = loss_ret log_outputs = utils.tensors_to_scalars(log_outputs) for k, v in log_outputs.items(): if k not in self.training_losses_meter: self.training_losses_meter[k] = utils.AvgrageMeter() if not np.isnan(v): self.training_losses_meter[k].update(v) self.training_losses_meter['total_loss'].update(total_loss.item()) try: log_outputs['lr'] = self.scheduler.get_lr() if isinstance(log_outputs['lr'], list): log_outputs['lr'] = log_outputs['lr'][0] except: pass # log_outputs['all_loss'] = total_loss.item() progress_bar_log = log_outputs tb_log = {f'tr/{k}': v for k, v in log_outputs.items()} return { 'loss': total_loss, 'progress_bar': progress_bar_log, 'log': tb_log } def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.step() optimizer.zero_grad() if self.scheduler is not None: self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) def on_epoch_end(self): loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()} print(f"\n==============\n " f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}" f"\n==============\n") def validation_step(self, sample, batch_idx): """ :param sample: :param batch_idx: :return: output: dict """ raise NotImplementedError def _validation_end(self, outputs): """ :param outputs: :return: loss_output: dict """ raise NotImplementedError def validation_end(self, outputs): loss_output = self._validation_end(outputs) print(f"\n==============\n " f"valid results: {loss_output}" f"\n==============\n") return { 'log': {f'val/{k}': v for k, v in loss_output.items()}, 'val_loss': loss_output['total_loss'] } def build_scheduler(self, optimizer): raise NotImplementedError def build_optimizer(self, model): raise NotImplementedError def configure_optimizers(self): optm = self.build_optimizer(self.model) self.scheduler = self.build_scheduler(optm) return [optm] def test_start(self): pass def test_step(self, sample, batch_idx): return self.validation_step(sample, batch_idx) def test_end(self, outputs): return self.validation_end(outputs) ########### # Running configuration ########### @classmethod def start(cls): set_hparams() os.environ['MASTER_PORT'] = str(random.randint(15000, 30000)) random.seed(hparams['seed']) np.random.seed(hparams['seed']) task = cls() work_dir = hparams['work_dir'] trainer = BaseTrainer(checkpoint_callback=LatestModelCheckpoint( filepath=work_dir, verbose=True, monitor='val_loss', mode='min', num_ckpt_keep=hparams['num_ckpt_keep'], save_best=hparams['save_best'], period=1 if hparams['save_ckpt'] else 100000 ), logger=TensorBoardLogger( save_dir=work_dir, name='lightning_logs', version='lastest' ), gradient_clip_val=hparams['clip_grad_norm'], val_check_interval=hparams['val_check_interval'], row_log_interval=hparams['log_interval'], max_updates=hparams['max_updates'], num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams[ 'validate'] else 10000, accumulate_grad_batches=hparams['accumulate_grad_batches']) if not hparams['infer']: # train t = datetime.now().strftime('%Y%m%d%H%M%S') code_dir = f'{work_dir}/codes/{t}' subprocess.check_call(f'mkdir -p "{code_dir}"', shell=True) for c in hparams['save_codes']: subprocess.check_call(f'cp -r "{c}" "{code_dir}/"', shell=True) print(f"| Copied codes to {code_dir}.") trainer.checkpoint_callback.task = task trainer.fit(task) else: trainer.test(task) def configure_ddp(self, model, device_ids): model = DDP( model, device_ids=device_ids, find_unused_parameters=True ) if dist.get_rank() != 0 and not hparams['debug']: sys.stdout = open(os.devnull, "w") sys.stderr = open(os.devnull, "w") random.seed(hparams['seed']) np.random.seed(hparams['seed']) return model def training_end(self, *args, **kwargs): return None def init_ddp_connection(self, proc_rank, world_size): set_hparams(print_hparams=False) # guarantees unique ports across jobs from same grid search default_port = 12910 # if user gave a port number, use that one instead try: default_port = os.environ['MASTER_PORT'] except Exception: os.environ['MASTER_PORT'] = str(default_port) # figure out the root node addr root_node = '127.0.0.2' root_node = self.trainer.resolve_root_node_address(root_node) os.environ['MASTER_ADDR'] = root_node dist.init_process_group('nccl', rank=proc_rank, world_size=world_size) @data_loader def train_dataloader(self): return None @data_loader def test_dataloader(self): return None @data_loader def val_dataloader(self): return None def on_load_checkpoint(self, checkpoint): pass def on_save_checkpoint(self, checkpoint): pass def on_sanity_check_start(self): pass def on_train_start(self): pass def on_train_end(self): pass def on_batch_start(self, batch): pass def on_batch_end(self): pass def on_pre_performance_check(self): pass def on_post_performance_check(self): pass def on_before_zero_grad(self, optimizer): pass def on_after_backward(self): pass def backward(self, loss, optimizer): loss.backward() def grad_norm(self, norm_type): results = {} total_norm = 0 for name, p in self.named_parameters(): if p.requires_grad: try: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm ** norm_type norm = param_norm ** (1 / norm_type) grad = round(norm.data.cpu().numpy().flatten()[0], 3) results['grad_{}_norm_{}'.format(norm_type, name)] = grad except Exception: # this param had no grad pass total_norm = total_norm ** (1. / norm_type) grad = round(total_norm.data.cpu().numpy().flatten()[0], 3) results['grad_{}_norm_total'.format(norm_type)] = grad return results
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/base_task.py
import torch import utils from modules.diff.diffusion import GaussianDiffusion from modules.diff.net import DiffNet from tasks.tts.fs2 import FastSpeech2Task from utils.hparams import hparams DIFF_DECODERS = { 'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']), } class DiffFsTask(FastSpeech2Task): def build_tts_model(self): mel_bins = hparams['audio_num_mel_bins'] self.model = GaussianDiffusion( phone_encoder=self.phone_encoder, out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), timesteps=hparams['timesteps'], loss_type=hparams['diff_loss_type'], spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], ) def run_model(self, model, sample, return_output=False, infer=False): txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] mel2ph = sample['mel2ph'] # [B, T_s] f0 = sample['f0'] uv = sample['uv'] energy = sample['energy'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') if hparams['pitch_type'] == 'cwt': cwt_spec = sample[f'cwt_spec'] f0_mean = sample['f0_mean'] f0_std = sample['f0_std'] sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer) losses = {} if 'diff_loss' in output: losses['mel'] = output['diff_loss'] self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) if hparams['use_pitch_embed']: self.add_pitch_loss(output, sample, losses) if hparams['use_energy_embed']: self.add_energy_loss(output['energy_pred'], energy, losses) if not return_output: return losses else: return losses, output def _training_step(self, sample, batch_idx, _): log_outputs = self.run_model(self.model, sample) total_loss = sum([v for v in log_outputs.values() if isinstance(v, torch.Tensor) and v.requires_grad]) log_outputs['batch_size'] = sample['txt_tokens'].size()[0] log_outputs['lr'] = self.scheduler.get_lr()[0] return total_loss, log_outputs def validation_step(self, sample, batch_idx): outputs = {} outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] outputs = utils.tensors_to_scalars(outputs) if batch_idx < hparams['num_valid_plots']: _, model_out = self.run_model(self.model, sample, return_output=True, infer=True) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out']) return outputs def build_scheduler(self, optimizer): return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5) def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): if optimizer is None: return optimizer.step() optimizer.zero_grad() if self.scheduler is not None: self.scheduler.step(self.global_step // hparams['accumulate_grad_batches'])
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/svs/task.py
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/svs/__init__.py
import torch import utils from utils.hparams import hparams from modules.diff.net import DiffNet from modules.diff.shallow_diffusion_tts import GaussianDiffusion from tasks.svs.task import DiffFsTask from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder from utils.pitch_utils import denorm_f0 from tasks.tts.fs2_utils import FastSpeechDataset DIFF_DECODERS = { 'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']), } class DiffSpeechTask(DiffFsTask): def __init__(self): super(DiffSpeechTask, self).__init__() self.dataset_cls = FastSpeechDataset self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() def build_tts_model(self): mel_bins = hparams['audio_num_mel_bins'] self.model = GaussianDiffusion( phone_encoder=self.phone_encoder, out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), timesteps=hparams['timesteps'], K_step=hparams['K_step'], loss_type=hparams['diff_loss_type'], spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], ) if hparams['fs2_ckpt'] != '': utils.load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) # self.model.fs2.decoder = None for k, v in self.model.fs2.named_parameters(): if not 'predictor' in k: v.requires_grad = False def build_optimizer(self, model): self.optimizer = optimizer = torch.optim.AdamW( filter(lambda p: p.requires_grad, model.parameters()), lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) return optimizer def run_model(self, model, sample, return_output=False, infer=False): txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] # mel2ph = sample['mel2ph'] if hparams['use_gt_dur'] else None # [B, T_s] mel2ph = sample['mel2ph'] f0 = sample['f0'] uv = sample['uv'] energy = sample['energy'] # fs2_mel = sample['fs2_mels'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') if hparams['pitch_type'] == 'cwt': cwt_spec = sample[f'cwt_spec'] f0_mean = sample['f0_mean'] f0_std = sample['f0_std'] sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer) losses = {} if 'diff_loss' in output: losses['mel'] = output['diff_loss'] self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) if hparams['use_pitch_embed']: self.add_pitch_loss(output, sample, losses) if hparams['use_energy_embed']: self.add_energy_loss(output['energy_pred'], energy, losses) if not return_output: return losses else: return losses, output def validation_step(self, sample, batch_idx): outputs = {} txt_tokens = sample['txt_tokens'] # [B, T_t] energy = sample['energy'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') mel2ph = sample['mel2ph'] f0 = sample['f0'] uv = sample['uv'] outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] outputs = utils.tensors_to_scalars(outputs) if batch_idx < hparams['num_valid_plots']: # model_out = self.model( # txt_tokens, spk_embed=spk_embed, mel2ph=None, f0=None, uv=None, energy=None, ref_mels=None, infer=True) # self.plot_mel(batch_idx, model_out['mel_out'], model_out['fs2_mel'], name=f'diffspeech_vs_fs2_{batch_idx}') model_out = self.model( txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, ref_mels=None, infer=True) gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=model_out.get('f0_denorm')) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out']) return outputs ############ # validation plots ############ def plot_wav(self, batch_idx, gt_wav, wav_out, is_mel=False, gt_f0=None, f0=None, name=None): gt_wav = gt_wav[0].cpu().numpy() wav_out = wav_out[0].cpu().numpy() gt_f0 = gt_f0[0].cpu().numpy() f0 = f0[0].cpu().numpy() if is_mel: gt_wav = self.vocoder.spec2wav(gt_wav, f0=gt_f0) wav_out = self.vocoder.spec2wav(wav_out, f0=f0) self.logger.experiment.add_audio(f'gt_{batch_idx}', gt_wav, sample_rate=hparams['audio_sample_rate'], global_step=self.global_step) self.logger.experiment.add_audio(f'wav_{batch_idx}', wav_out, sample_rate=hparams['audio_sample_rate'], global_step=self.global_step)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/svs/diffspeech_task.py
import torch import utils from utils.hparams import hparams from modules.diff.net import DiffNet from modules.diff.shallow_diffusion_tts import GaussianDiffusion, OfflineGaussianDiffusion from tasks.svs.diffspeech_task import DiffSpeechTask from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder from modules.fastspeech.pe import PitchExtractor from modules.fastspeech.fs2 import FastSpeech2 from modules.diffsinger_midi.fs2 import FastSpeech2MIDI from modules.fastspeech.tts_modules import mel2ph_to_dur from modules.diff.candidate_decoder import FFT from utils.pitch_utils import denorm_f0 from tasks.tts.fs2_utils import FastSpeechDataset from tasks.tts.fs2 import FastSpeech2Task import numpy as np import os import torch.nn.functional as F DIFF_DECODERS = { 'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']), 'fft': lambda hp: FFT( hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']), } class DiffSingerTask(DiffSpeechTask): def __init__(self): super(DiffSingerTask, self).__init__() self.dataset_cls = FastSpeechDataset self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() if hparams.get('pe_enable') is not None and hparams['pe_enable']: self.pe = PitchExtractor().cuda() utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True) self.pe.eval() def build_tts_model(self): # import torch # from tqdm import tqdm # v_min = torch.ones([80]) * 100 # v_max = torch.ones([80]) * -100 # for i, ds in enumerate(tqdm(self.dataset_cls('train'))): # v_max = torch.max(torch.max(ds['mel'].reshape(-1, 80), 0)[0], v_max) # v_min = torch.min(torch.min(ds['mel'].reshape(-1, 80), 0)[0], v_min) # if i % 100 == 0: # print(i, v_min, v_max) # print('final', v_min, v_max) mel_bins = hparams['audio_num_mel_bins'] self.model = GaussianDiffusion( phone_encoder=self.phone_encoder, out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), timesteps=hparams['timesteps'], K_step=hparams['K_step'], loss_type=hparams['diff_loss_type'], spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], ) if hparams['fs2_ckpt'] != '': utils.load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) # self.model.fs2.decoder = None for k, v in self.model.fs2.named_parameters(): v.requires_grad = False def validation_step(self, sample, batch_idx): outputs = {} txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] energy = sample['energy'] # fs2_mel = sample['fs2_mels'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') mel2ph = sample['mel2ph'] f0 = sample['f0'] uv = sample['uv'] outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] outputs = utils.tensors_to_scalars(outputs) if batch_idx < hparams['num_valid_plots']: model_out = self.model( txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, ref_mels=None, infer=True) if hparams.get('pe_enable') is not None and hparams['pe_enable']: gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] # pe predict from Pred mel else: gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) pred_f0 = model_out.get('f0_denorm') self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'], name=f'fs2mel_{batch_idx}') return outputs class ShallowDiffusionOfflineDataset(FastSpeechDataset): def __getitem__(self, index): sample = super(ShallowDiffusionOfflineDataset, self).__getitem__(index) item = self._get_item(index) if self.prefix != 'train' and hparams['fs2_ckpt'] != '': fs2_ckpt = os.path.dirname(hparams['fs2_ckpt']) item_name = item['item_name'] fs2_mel = torch.Tensor(np.load(f'{fs2_ckpt}/P_mels_npy/{item_name}.npy')) # ~M generated by FFT-singer. sample['fs2_mel'] = fs2_mel return sample def collater(self, samples): batch = super(ShallowDiffusionOfflineDataset, self).collater(samples) if self.prefix != 'train' and hparams['fs2_ckpt'] != '': batch['fs2_mels'] = utils.collate_2d([s['fs2_mel'] for s in samples], 0.0) return batch class DiffSingerOfflineTask(DiffSingerTask): def __init__(self): super(DiffSingerOfflineTask, self).__init__() self.dataset_cls = ShallowDiffusionOfflineDataset def build_tts_model(self): mel_bins = hparams['audio_num_mel_bins'] self.model = OfflineGaussianDiffusion( phone_encoder=self.phone_encoder, out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), timesteps=hparams['timesteps'], K_step=hparams['K_step'], loss_type=hparams['diff_loss_type'], spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], ) # if hparams['fs2_ckpt'] != '': # utils.load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) # self.model.fs2.decoder = None def run_model(self, model, sample, return_output=False, infer=False): txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] mel2ph = sample['mel2ph'] # [B, T_s] f0 = sample['f0'] uv = sample['uv'] energy = sample['energy'] fs2_mel = None #sample['fs2_mels'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') if hparams['pitch_type'] == 'cwt': cwt_spec = sample[f'cwt_spec'] f0_mean = sample['f0_mean'] f0_std = sample['f0_std'] sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=[target, fs2_mel], f0=f0, uv=uv, energy=energy, infer=infer) losses = {} if 'diff_loss' in output: losses['mel'] = output['diff_loss'] # self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) # if hparams['use_pitch_embed']: # self.add_pitch_loss(output, sample, losses) if hparams['use_energy_embed']: self.add_energy_loss(output['energy_pred'], energy, losses) if not return_output: return losses else: return losses, output def validation_step(self, sample, batch_idx): outputs = {} txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] energy = sample['energy'] # fs2_mel = sample['fs2_mels'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') mel2ph = sample['mel2ph'] f0 = sample['f0'] uv = sample['uv'] outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] outputs = utils.tensors_to_scalars(outputs) if batch_idx < hparams['num_valid_plots']: fs2_mel = sample['fs2_mels'] model_out = self.model( txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, ref_mels=[None, fs2_mel], infer=True) if hparams.get('pe_enable') is not None and hparams['pe_enable']: gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] # pe predict from Pred mel else: gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) pred_f0 = model_out.get('f0_denorm') self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') self.plot_mel(batch_idx, sample['mels'], fs2_mel, name=f'fs2mel_{batch_idx}') return outputs def test_step(self, sample, batch_idx): spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') txt_tokens = sample['txt_tokens'] energy = sample['energy'] if hparams['profile_infer']: pass else: mel2ph, uv, f0 = None, None, None if hparams['use_gt_dur']: mel2ph = sample['mel2ph'] if hparams['use_gt_f0']: f0 = sample['f0'] uv = sample['uv'] fs2_mel = sample['fs2_mels'] outputs = self.model( txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=[None, fs2_mel], energy=energy, infer=True) sample['outputs'] = self.model.out2mel(outputs['mel_out']) sample['mel2ph_pred'] = outputs['mel2ph'] if hparams.get('pe_enable') is not None and hparams['pe_enable']: sample['f0'] = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel sample['f0_pred'] = self.pe(sample['outputs'])['f0_denorm_pred'] # pe predict from Pred mel else: sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) sample['f0_pred'] = outputs.get('f0_denorm') return self.after_infer(sample) class MIDIDataset(FastSpeechDataset): def __getitem__(self, index): sample = super(MIDIDataset, self).__getitem__(index) item = self._get_item(index) sample['f0_midi'] = torch.FloatTensor(item['f0_midi']) sample['pitch_midi'] = torch.LongTensor(item['pitch_midi'])[:hparams['max_frames']] return sample def collater(self, samples): batch = super(MIDIDataset, self).collater(samples) batch['f0_midi'] = utils.collate_1d([s['f0_midi'] for s in samples], 0.0) batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0) # print((batch['pitch_midi'] == f0_to_coarse(batch['f0_midi'])).all()) return batch class OpencpopDataset(FastSpeechDataset): def __getitem__(self, index): sample = super(OpencpopDataset, self).__getitem__(index) item = self._get_item(index) sample['pitch_midi'] = torch.LongTensor(item['pitch_midi'])[:hparams['max_frames']] sample['midi_dur'] = torch.FloatTensor(item['midi_dur'])[:hparams['max_frames']] sample['is_slur'] = torch.LongTensor(item['is_slur'])[:hparams['max_frames']] sample['word_boundary'] = torch.LongTensor(item['word_boundary'])[:hparams['max_frames']] return sample def collater(self, samples): batch = super(OpencpopDataset, self).collater(samples) batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0) batch['midi_dur'] = utils.collate_1d([s['midi_dur'] for s in samples], 0) batch['is_slur'] = utils.collate_1d([s['is_slur'] for s in samples], 0) batch['word_boundary'] = utils.collate_1d([s['word_boundary'] for s in samples], 0) return batch class DiffSingerMIDITask(DiffSingerTask): def __init__(self): super(DiffSingerMIDITask, self).__init__() # self.dataset_cls = MIDIDataset self.dataset_cls = OpencpopDataset def run_model(self, model, sample, return_output=False, infer=False): txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] # mel2ph = sample['mel2ph'] if hparams['use_gt_dur'] else None # [B, T_s] mel2ph = sample['mel2ph'] if hparams.get('switch_midi2f0_step') is not None and self.global_step > hparams['switch_midi2f0_step']: f0 = None uv = None else: f0 = sample['f0'] uv = sample['uv'] energy = sample['energy'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') if hparams['pitch_type'] == 'cwt': cwt_spec = sample[f'cwt_spec'] f0_mean = sample['f0_mean'] f0_std = sample['f0_std'] sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer, pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) losses = {} if 'diff_loss' in output: losses['mel'] = output['diff_loss'] self.add_dur_loss(output['dur'], mel2ph, txt_tokens, sample['word_boundary'], losses=losses) if hparams['use_pitch_embed']: self.add_pitch_loss(output, sample, losses) if hparams['use_energy_embed']: self.add_energy_loss(output['energy_pred'], energy, losses) if not return_output: return losses else: return losses, output def validation_step(self, sample, batch_idx): outputs = {} txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] energy = sample['energy'] # fs2_mel = sample['fs2_mels'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') mel2ph = sample['mel2ph'] outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] outputs = utils.tensors_to_scalars(outputs) if batch_idx < hparams['num_valid_plots']: model_out = self.model( txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=None, uv=None, energy=energy, ref_mels=None, infer=True, pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) if hparams.get('pe_enable') is not None and hparams['pe_enable']: gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] # pe predict from Pred mel else: gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) pred_f0 = model_out.get('f0_denorm') self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'], name=f'fs2mel_{batch_idx}') if hparams['use_pitch_embed']: self.plot_pitch(batch_idx, sample, model_out) return outputs def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, wdb, losses=None): """ :param dur_pred: [B, T], float, log scale :param mel2ph: [B, T] :param txt_tokens: [B, T] :param losses: :return: """ B, T = txt_tokens.shape nonpadding = (txt_tokens != 0).float() dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding is_sil = torch.zeros_like(txt_tokens).bool() for p in self.sil_ph: is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) is_sil = is_sil.float() # [B, T_txt] # phone duration loss if hparams['dur_loss'] == 'mse': losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() dur_pred = (dur_pred.exp() - 1).clamp(min=0) else: raise NotImplementedError # use linear scale for sent and word duration if hparams['lambda_word_dur'] > 0: idx = F.pad(wdb.cumsum(axis=1), (1, 0))[:, :-1] # word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_(1, idx, midi_dur) # midi_dur can be implied by add gt-ph_dur word_dur_p = dur_pred.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_pred) word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_gt) wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') word_nonpadding = (word_dur_g > 0).float() wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] if hparams['lambda_sent_dur'] > 0: sent_dur_p = dur_pred.sum(-1) sent_dur_g = dur_gt.sum(-1) sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] class AuxDecoderMIDITask(FastSpeech2Task): def __init__(self): super().__init__() # self.dataset_cls = MIDIDataset self.dataset_cls = OpencpopDataset def build_tts_model(self): if hparams.get('use_midi') is not None and hparams['use_midi']: self.model = FastSpeech2MIDI(self.phone_encoder) else: self.model = FastSpeech2(self.phone_encoder) def run_model(self, model, sample, return_output=False): txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] mel2ph = sample['mel2ph'] # [B, T_s] f0 = sample['f0'] uv = sample['uv'] energy = sample['energy'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') if hparams['pitch_type'] == 'cwt': cwt_spec = sample[f'cwt_spec'] f0_mean = sample['f0_mean'] f0_std = sample['f0_std'] sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=target, f0=f0, uv=uv, energy=energy, infer=False, pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) losses = {} self.add_mel_loss(output['mel_out'], target, losses) self.add_dur_loss(output['dur'], mel2ph, txt_tokens, sample['word_boundary'], losses=losses) if hparams['use_pitch_embed']: self.add_pitch_loss(output, sample, losses) if hparams['use_energy_embed']: self.add_energy_loss(output['energy_pred'], energy, losses) if not return_output: return losses else: return losses, output def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, wdb, losses=None): """ :param dur_pred: [B, T], float, log scale :param mel2ph: [B, T] :param txt_tokens: [B, T] :param losses: :return: """ B, T = txt_tokens.shape nonpadding = (txt_tokens != 0).float() dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding is_sil = torch.zeros_like(txt_tokens).bool() for p in self.sil_ph: is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) is_sil = is_sil.float() # [B, T_txt] # phone duration loss if hparams['dur_loss'] == 'mse': losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() dur_pred = (dur_pred.exp() - 1).clamp(min=0) else: raise NotImplementedError # use linear scale for sent and word duration if hparams['lambda_word_dur'] > 0: idx = F.pad(wdb.cumsum(axis=1), (1, 0))[:, :-1] # word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_(1, idx, midi_dur) # midi_dur can be implied by add gt-ph_dur word_dur_p = dur_pred.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_pred) word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_gt) wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') word_nonpadding = (word_dur_g > 0).float() wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] if hparams['lambda_sent_dur'] > 0: sent_dur_p = dur_pred.sum(-1) sent_dur_g = dur_gt.sum(-1) sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] def validation_step(self, sample, batch_idx): outputs = {} outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] mel_out = self.model.out2mel(model_out['mel_out']) outputs = utils.tensors_to_scalars(outputs) # if sample['mels'].shape[0] == 1: # self.add_laplace_var(mel_out, sample['mels'], outputs) if batch_idx < hparams['num_valid_plots']: self.plot_mel(batch_idx, sample['mels'], mel_out) self.plot_dur(batch_idx, sample, model_out) if hparams['use_pitch_embed']: self.plot_pitch(batch_idx, sample, model_out) return outputs
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/svs/diffsinger_task.py
import os import torch import torch.nn.functional as F import torch.nn as nn import numpy as np from modules.portaspeech.portaspeech import PortaSpeech from modules.syntaspeech.multi_window_disc import Discriminator from tasks.tts.fs2 import FastSpeech2Task from utils.hparams import hparams from utils.tts_utils import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate, mel2token_to_dur from utils import num_params, tensors_to_scalars from utils.pitch_utils import denorm_f0, norm_f0 from data_gen.tts.data_gen_utils import get_pitch from utils.dtw import dtw as DTW from utils.plot import spec_to_figure from utils.text.text_encoder import build_token_encoder class PortaSpeechAdvTask(FastSpeech2Task): def __init__(self): super().__init__() data_dir = hparams['binary_data_dir'] self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json') self.build_disc_model() self.mse_loss_fn = torch.nn.MSELoss() def build_tts_model(self): ph_dict_size = len(self.token_encoder) word_dict_size = len(self.word_encoder) self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams) self.gen_params = [p for p in self.model.parameters() if p.requires_grad] self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)] self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)] self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)] self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ] self.use_bert = True if len(self.bert_params) > 0 else False def build_disc_model(self): disc_win_num = hparams['disc_win_num'] h = hparams['mel_disc_hidden_size'] self.mel_disc = Discriminator( time_lengths=[32, 64, 128][:disc_win_num], freq_length=80, hidden_size=h, kernel=(3, 3) ) self.disc_params = list(self.mel_disc.parameters()) def on_train_start(self): super().on_train_start() for n, m in self.model.named_children(): num_params(m, model_name=n) if hasattr(self.model, 'fvae'): for n, m in self.model.fvae.named_children(): num_params(m, model_name=f'fvae.{n}') def _training_step(self, sample, batch_idx, optimizer_idx): loss_output = {} loss_weights = {} disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0 if optimizer_idx == 0: ####################### # Generator # ####################### loss_output, model_out = self.run_model(sample, infer=False) self.model_out_gt = self.model_out = \ {k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)} if disc_start: mel_p = model_out['mel_out'] if hasattr(self.model, 'out2mel'): mel_p = self.model.out2mel(mel_p) o_ = self.mel_disc(mel_p) p_, pc_ = o_['y'], o_['y_c'] if p_ is not None: loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size())) loss_weights['a'] = hparams['lambda_mel_adv'] if pc_ is not None: loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size())) loss_weights['ac'] = hparams['lambda_mel_adv'] else: ####################### # Discriminator # ####################### if disc_start and self.global_step % hparams['disc_interval'] == 0: model_out = self.model_out_gt mel_g = sample['mels'] mel_p = model_out['mel_out'] o = self.mel_disc(mel_g) p, pc = o['y'], o['y_c'] o_ = self.mel_disc(mel_p) p_, pc_ = o_['y'], o_['y_c'] if p_ is not None: loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size())) loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size())) if pc_ is not None: loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size())) loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size())) total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad]) loss_output['batch_size'] = sample['txt_tokens'].size()[0] return total_loss, loss_output def run_model(self, sample, infer=False, *args, **kwargs): txt_tokens = sample['txt_tokens'] word_tokens = sample['word_tokens'] spk_embed = sample.get('spk_embed') spk_id = sample.get('spk_ids') if not infer: output = self.model(txt_tokens, word_tokens, ph2word=sample['ph2word'], mel2word=sample['mel2word'], mel2ph=sample['mel2ph'], word_len=sample['word_lengths'].max(), tgt_mels=sample['mels'], pitch=sample.get('pitch'), spk_embed=spk_embed, spk_id=spk_id, infer=False, global_step=self.global_step, graph_lst=sample['graph_lst'], etypes_lst=sample['etypes_lst'], bert_feats=sample.get("bert_feats"), cl_feats=sample.get("cl_feats") ) losses = {} losses['kl_v'] = output['kl'].detach() losses_kl = output['kl'] losses_kl = torch.clamp(losses_kl, min=hparams['kl_min']) losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl losses_kl = losses_kl * hparams['lambda_kl'] losses['kl'] = losses_kl self.add_mel_loss(output['mel_out'], sample['mels'], losses) if hparams['dur_level'] == 'word': self.add_dur_loss( output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses) self.get_attn_stats(output['attn'], sample, losses) else: super(PortaSpeechAdvTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses) return losses, output else: use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur']) output = self.model( txt_tokens, word_tokens, ph2word=sample['ph2word'], word_len=sample['word_lengths'].max(), pitch=sample.get('pitch'), mel2ph=sample['mel2ph'] if use_gt_dur else None, mel2word=sample['mel2word'] if use_gt_dur else None, tgt_mels=sample['mels'], infer=True, spk_embed=spk_embed, spk_id=spk_id, graph_lst=sample['graph_lst'], etypes_lst=sample['etypes_lst'], bert_feats=sample.get("bert_feats"), cl_feats=sample.get("cl_feats") ) return output def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None): T = word_len.max() dur_gt = mel2token_to_dur(mel2token, T).float() nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float() dur_pred = dur_pred * nonpadding dur_gt = dur_gt * nonpadding wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none') wdur = (wdur * nonpadding).sum() / nonpadding.sum() if hparams['lambda_word_dur'] > 0: losses['wdur'] = wdur * hparams['lambda_word_dur'] if hparams['lambda_sent_dur'] > 0: sent_dur_p = dur_pred.sum(-1) sent_dur_g = dur_gt.sum(-1) sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean') losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] with torch.no_grad(): # calculate word-level abs_dur_error in micro-second abs_word_dur_error = F.l1_loss(dur_pred , dur_gt, reduction='none') abs_word_dur_error = (abs_word_dur_error * nonpadding).sum() / nonpadding.sum() abs_word_dur_error = abs_word_dur_error * hparams['hop_size'] / hparams['audio_sample_rate'] * 1000 losses['abs_word_dur_error'] = abs_word_dur_error # calculate word-level abs_dur_error in second sent_dur_p = dur_pred.sum(-1) sent_dur_g = dur_gt.sum(-1) abs_sent_dur_error = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean').mean() abs_sent_dur_error = abs_sent_dur_error * hparams['hop_size'] / hparams['audio_sample_rate'] losses['abs_sent_dur_error'] = abs_sent_dur_error def validation_step(self, sample, batch_idx): outputs = {} outputs['losses'] = {} outputs['losses'], model_out = self.run_model(sample) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] outputs = tensors_to_scalars(outputs) if self.global_step % hparams['valid_infer_interval'] == 0 \ and batch_idx < hparams['num_valid_plots']: valid_results = self.save_valid_result(sample, batch_idx, model_out) wav_gt = valid_results['wav_gt'] mel_gt = valid_results['mel_gt'] wav_pred = valid_results['wav_pred'] mel_pred = valid_results['mel_pred'] f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) manhattan_distance = lambda x, y: np.abs(x - y) dist, cost, acc, path = DTW(f0_pred_, f0_gt_, manhattan_distance) outputs['losses']['f0_dtw'] = dist / len(f0_gt_) return outputs def save_valid_result(self, sample, batch_idx, model_out): sr = hparams['audio_sample_rate'] f0_gt = None mel_out = model_out['mel_out'] if sample.get('f0') is not None: f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu()) self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt) # if self.global_step > 0: wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt) self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr) # with gt duration model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True) dur_info = self.get_plot_dur_info(sample, model_out) del dur_info['dur_pred'] wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}', dur_info=dur_info, f0s=f0_gt) # with pred duration if not hparams['use_gt_dur']: model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False) dur_info = self.get_plot_dur_info(sample, model_out) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}', dur_info=dur_info, f0s=f0_gt) wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr) # gt wav mel_gt = sample['mels'][0].cpu() wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) if self.global_step <= hparams['valid_infer_interval']: self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr) # add attn plot if self.global_step > 0 and hparams['dur_level'] == 'word': self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step) return {'wav_gt': wav_gt, 'wav_pred': wav_pred, 'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()} def get_attn_stats(self, attn, sample, logging_outputs, prefix=''): # diagonal_focus_rate txt_lengths = sample['txt_lengths'].float() mel_lengths = sample['mel_lengths'].float() src_padding_mask = sample['txt_tokens'].eq(0) target_padding_mask = sample['mels'].abs().sum(-1).eq(0) src_seg_mask = sample['txt_tokens'].eq(self.seg_idx) attn_ks = txt_lengths.float() / mel_lengths.float() focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data phone_coverage_rate = get_phone_coverage_rate( attn, src_padding_mask, src_seg_mask, target_padding_mask).mean() diagonal_focus_rate, diag_mask = get_diagonal_focus_rate( attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask) logging_outputs[f'{prefix}fr'] = focus_rate.mean().data logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data def get_plot_dur_info(self, sample, model_out): if hparams['dur_level'] == 'word': T_txt = sample['word_lengths'].max() dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0] dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt txt = sample['ph_words'][0].split(" ") else: T_txt = sample['txt_tokens'].shape[1] dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0] dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy()) txt = txt.split(" ") return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt} def build_optimizer(self, model): optimizer_gen = torch.optim.AdamW( self.gen_params, lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) optimizer_disc = torch.optim.AdamW( self.disc_params, lr=hparams['disc_lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), **hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None return [optimizer_gen, optimizer_disc] def build_scheduler(self, optimizer): return [ FastSpeechTask.build_scheduler(self, optimizer[0]), # Generator Scheduler torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], # Discriminator Scheduler **hparams["discriminator_scheduler_params"]), ] def on_before_optimization(self, opt_idx): if opt_idx == 0: nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm']) if self.use_bert: nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm']) nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm']) else: nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm']) else: nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"]) def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx): if self.scheduler is not None: self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches']) self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches']) ############ # infer ############ def test_start(self): super().test_start() if hparams.get('save_attn', False): os.makedirs(f'{self.gen_dir}/attn', exist_ok=True) self.model.store_inverse_all() def test_step(self, sample, batch_idx): assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference' outputs = self.run_model(sample, infer=True) text = sample['text'][0] item_name = sample['item_name'][0] tokens = sample['txt_tokens'][0].cpu().numpy() mel_gt = sample['mels'][0].cpu().numpy() mel_pred = outputs['mel_out'][0].cpu().numpy() mel2ph = sample['mel2ph'][0].cpu().numpy() mel2ph_pred = None str_phs = self.token_encoder.decode(tokens, strip_padding=True) base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]' if text is not None: base_fn += text.replace(":", "$3A")[:80] base_fn = base_fn.replace(' ', '_') gen_dir = self.gen_dir wav_pred = self.vocoder.spec2wav(mel_pred) self.saving_result_pool.add_job(self.save_result, args=[ wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred]) if hparams['save_gt']: wav_gt = self.vocoder.spec2wav(mel_gt) self.saving_result_pool.add_job(self.save_result, args=[ wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph]) if hparams.get('save_attn', False): attn = outputs['attn'][0].cpu().numpy() np.save(f'{gen_dir}/attn/{item_name}.npy', attn) # save f0 for pitch dtw f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) np.save(f'{gen_dir}/f0/{item_name}.npy', f0_pred_) np.save(f'{gen_dir}/f0/{item_name}_gt.npy', f0_gt_) print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") return { 'item_name': item_name, 'text': text, 'ph_tokens': self.token_encoder.decode(tokens.tolist()), 'wav_fn_pred': base_fn % 'P', 'wav_fn_gt': base_fn % 'G', }
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/ps_adv.py
import filecmp import matplotlib from utils.plot import spec_to_figure matplotlib.use('Agg') from data_gen.tts.data_gen_utils import get_pitch from modules.fastspeech.tts_modules import mel2ph_to_dur from tasks.tts.dataset_utils import BaseTTSDataset from utils.tts_utils import sequence_mask from multiprocessing.pool import Pool from tasks.base_task import data_loader, BaseConcatDataset from utils.common_schedulers import RSQRTSchedule, NoneSchedule from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder import os import numpy as np from tqdm import tqdm import torch.distributed as dist from tasks.base_task import BaseTask from utils.hparams import hparams from utils.text_encoder import TokenTextEncoder import json import matplotlib.pyplot as plt import torch import torch.optim import torch.utils.data import utils from utils import audio import pandas as pd class TTSBaseTask(BaseTask): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dataset_cls = BaseTTSDataset self.max_tokens = hparams['max_tokens'] self.max_sentences = hparams['max_sentences'] self.max_valid_tokens = hparams['max_valid_tokens'] if self.max_valid_tokens == -1: hparams['max_valid_tokens'] = self.max_valid_tokens = self.max_tokens self.max_valid_sentences = hparams['max_valid_sentences'] if self.max_valid_sentences == -1: hparams['max_valid_sentences'] = self.max_valid_sentences = self.max_sentences self.vocoder = None self.phone_encoder = self.build_phone_encoder(hparams['binary_data_dir']) self.padding_idx = self.phone_encoder.pad() self.eos_idx = self.phone_encoder.eos() self.seg_idx = self.phone_encoder.seg() self.saving_result_pool = None self.saving_results_futures = None self.stats = {} @data_loader def train_dataloader(self): if hparams['train_sets'] != '': train_sets = hparams['train_sets'].split("|") # check if all train_sets have the same spk map and dictionary binary_data_dir = hparams['binary_data_dir'] file_to_cmp = ['phone_set.json'] if os.path.exists(f'{binary_data_dir}/word_set.json'): file_to_cmp.append('word_set.json') if hparams['use_spk_id']: file_to_cmp.append('spk_map.json') for f in file_to_cmp: for ds_name in train_sets: base_file = os.path.join(binary_data_dir, f) ds_file = os.path.join(ds_name, f) assert filecmp.cmp(base_file, ds_file), \ f'{f} in {ds_name} is not same with that in {binary_data_dir}.' train_dataset = BaseConcatDataset([ self.dataset_cls(prefix='train', shuffle=True, data_dir=ds_name) for ds_name in train_sets]) else: train_dataset = self.dataset_cls(prefix=hparams['train_set_name'], shuffle=True) return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences, endless=hparams['endless_ds']) @data_loader def val_dataloader(self): valid_dataset = self.dataset_cls(prefix=hparams['valid_set_name'], shuffle=False) return self.build_dataloader(valid_dataset, False, self.max_valid_tokens, self.max_valid_sentences) @data_loader def test_dataloader(self): test_dataset = self.dataset_cls(prefix=hparams['test_set_name'], shuffle=False) self.test_dl = self.build_dataloader( test_dataset, False, self.max_valid_tokens, self.max_valid_sentences, batch_by_size=False) return self.test_dl def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None, required_batch_size_multiple=-1, endless=False, batch_by_size=True): devices_cnt = torch.cuda.device_count() if devices_cnt == 0: devices_cnt = 1 if required_batch_size_multiple == -1: required_batch_size_multiple = devices_cnt def shuffle_batches(batches): np.random.shuffle(batches) return batches if max_tokens is not None: max_tokens *= devices_cnt if max_sentences is not None: max_sentences *= devices_cnt indices = dataset.ordered_indices() if batch_by_size: batch_sampler = utils.batch_by_size( indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) else: batch_sampler = [] for i in range(0, len(indices), max_sentences): batch_sampler.append(indices[i:i + max_sentences]) if shuffle: batches = shuffle_batches(list(batch_sampler)) if endless: batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))] else: batches = batch_sampler if endless: batches = [b for _ in range(1000) for b in batches] num_workers = dataset.num_workers if self.trainer.use_ddp: num_replicas = dist.get_world_size() rank = dist.get_rank() batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0] return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collater, batch_sampler=batches, num_workers=num_workers, pin_memory=False) def build_phone_encoder(self, data_dir): phone_list_file = os.path.join(data_dir, 'phone_set.json') phone_list = json.load(open(phone_list_file)) return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',') def build_scheduler(self, optimizer): if hparams['scheduler'] == 'rsqrt': return RSQRTSchedule(optimizer) else: return NoneSchedule(optimizer) def build_optimizer(self, model): self.optimizer = optimizer = torch.optim.AdamW( model.parameters(), lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) return optimizer def plot_mel(self, batch_idx, spec, spec_out, name=None): spec_cat = torch.cat([spec, spec_out], -1) name = f'mel_{batch_idx}' if name is None else name vmin = hparams['mel_vmin'] vmax = hparams['mel_vmax'] self.logger.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step) def test_start(self): self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16)) self.saving_results_futures = [] self.results_id = 0 self.gen_dir = os.path.join( hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() def after_infer(self, predictions, sil_start_frame=0): predictions = utils.unpack_dict_to_list(predictions) assert len(predictions) == 1, 'Only support batch_size=1 in inference.' prediction = predictions[0] prediction = utils.tensors_to_np(prediction) item_name = prediction.get('item_name') text = prediction.get('text') ph_tokens = prediction.get('txt_tokens') mel_gt = prediction["mels"] mel2ph_gt = prediction.get("mel2ph") mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None mel_pred = prediction["outputs"] mel2ph_pred = prediction.get("mel2ph_pred") f0_gt = prediction.get("f0") f0_pred = prediction.get("f0_pred") str_phs = None if self.phone_encoder is not None and 'txt_tokens' in prediction: str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True) if 'encdec_attn' in prediction: encdec_attn = prediction['encdec_attn'] encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)] txt_lengths = prediction.get('txt_lengths') encdec_attn = encdec_attn.T[:txt_lengths, :len(mel_gt)] else: encdec_attn = None wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) wav_pred[:sil_start_frame * hparams['hop_size']] = 0 gen_dir = self.gen_dir base_fn = f'[{self.results_id:06d}][{item_name}][%s]' # if text is not None: # base_fn += text.replace(":", "%3A")[:80] base_fn = base_fn.replace(' ', '_') if not hparams['profile_infer']: os.makedirs(gen_dir, exist_ok=True) os.makedirs(f'{gen_dir}/wavs', exist_ok=True) os.makedirs(f'{gen_dir}/plot', exist_ok=True) if hparams.get('save_mel_npy', False): os.makedirs(f'{gen_dir}/npy', exist_ok=True) if 'encdec_attn' in prediction: os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True) self.saving_results_futures.append( self.saving_result_pool.apply_async(self.save_result, args=[ wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred, encdec_attn])) if mel_gt is not None and hparams['save_gt']: wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) self.saving_results_futures.append( self.saving_result_pool.apply_async(self.save_result, args=[ wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph_gt])) if hparams['save_f0']: import matplotlib.pyplot as plt f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) fig = plt.figure() plt.plot(f0_pred_, label=r'$\hat{f_0}$') plt.plot(f0_gt_, label=r'$f_0$') plt.legend() plt.tight_layout() plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') plt.close(fig) print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") self.results_id += 1 return { 'item_name': item_name, 'text': text, 'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()), 'wav_fn_pred': base_fn % 'P', 'wav_fn_gt': base_fn % 'G', } @staticmethod def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None): audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'], norm=hparams['out_wav_norm']) fig = plt.figure(figsize=(14, 10)) spec_vmin = hparams['mel_vmin'] spec_vmax = hparams['mel_vmax'] heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) fig.colorbar(heatmap) f0, _ = get_pitch(wav_out, mel, hparams) f0 = f0 / 10 * (f0 > 0) plt.plot(f0, c='white', linewidth=1, alpha=0.6) if mel2ph is not None and str_phs is not None: decoded_txt = str_phs.split(" ") dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy() dur = [0] + list(np.cumsum(dur)) for i in range(len(dur) - 1): shift = (i % 20) + 1 plt.text(dur[i], shift, decoded_txt[i]) plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black') plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black', alpha=1, linewidth=1) plt.tight_layout() plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png') plt.close(fig) if hparams.get('save_mel_npy', False): np.save(f'{gen_dir}/npy/{base_fn}', mel) if alignment is not None: fig, ax = plt.subplots(figsize=(12, 16)) im = ax.imshow(alignment, aspect='auto', origin='lower', interpolation='none') decoded_txt = str_phs.split(" ") ax.set_yticks(np.arange(len(decoded_txt))) ax.set_yticklabels(list(decoded_txt), fontsize=6) fig.colorbar(im, ax=ax) fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png') plt.close(fig) def test_end(self, outputs): pd.DataFrame(outputs).to_csv(f'{self.gen_dir}/meta.csv') self.saving_result_pool.close() [f.get() for f in tqdm(self.saving_results_futures)] self.saving_result_pool.join() return {} ########## # utils ########## def weights_nonzero_speech(self, target): # target : B x T x mel # Assign weight 1.0 to all labels except for padding (id=0). dim = target.size(-1) return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim) def make_stop_target(self, target): # target : B x T x mel seq_mask = target.abs().sum(-1).ne(0).float() seq_length = seq_mask.sum(1) mask_r = 1 - sequence_mask(seq_length - 1, target.size(1)).float() return seq_mask, mask_r
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/tts_base.py
from multiprocessing.pool import Pool import matplotlib from utils.pl_utils import data_loader from utils.training_utils import RSQRTSchedule from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder from modules.fastspeech.pe import PitchExtractor matplotlib.use('Agg') import os import numpy as np from tqdm import tqdm import torch.distributed as dist from tasks.base_task import BaseTask from utils.hparams import hparams from utils.text_encoder import TokenTextEncoder import json import torch import torch.optim import torch.utils.data import utils class TtsTask(BaseTask): def __init__(self, *args, **kwargs): self.vocoder = None self.phone_encoder = self.build_phone_encoder(hparams['binary_data_dir']) self.padding_idx = self.phone_encoder.pad() self.eos_idx = self.phone_encoder.eos() self.seg_idx = self.phone_encoder.seg() self.saving_result_pool = None self.saving_results_futures = None self.stats = {} super().__init__(*args, **kwargs) def build_scheduler(self, optimizer): return RSQRTSchedule(optimizer) def build_optimizer(self, model): self.optimizer = optimizer = torch.optim.AdamW( model.parameters(), lr=hparams['lr']) return optimizer def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None, required_batch_size_multiple=-1, endless=False, batch_by_size=True): devices_cnt = torch.cuda.device_count() if devices_cnt == 0: devices_cnt = 1 if required_batch_size_multiple == -1: required_batch_size_multiple = devices_cnt def shuffle_batches(batches): np.random.shuffle(batches) return batches if max_tokens is not None: max_tokens *= devices_cnt if max_sentences is not None: max_sentences *= devices_cnt indices = dataset.ordered_indices() if batch_by_size: batch_sampler = utils.batch_by_size( indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) else: batch_sampler = [] for i in range(0, len(indices), max_sentences): batch_sampler.append(indices[i:i + max_sentences]) if shuffle: batches = shuffle_batches(list(batch_sampler)) if endless: batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))] else: batches = batch_sampler if endless: batches = [b for _ in range(1000) for b in batches] num_workers = dataset.num_workers if self.trainer.use_ddp: num_replicas = dist.get_world_size() rank = dist.get_rank() batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0] return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collater, batch_sampler=batches, num_workers=num_workers, pin_memory=False) def build_phone_encoder(self, data_dir): phone_list_file = os.path.join(data_dir, 'phone_set.json') phone_list = json.load(open(phone_list_file)) return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',') def build_optimizer(self, model): self.optimizer = optimizer = torch.optim.AdamW( model.parameters(), lr=hparams['lr']) return optimizer def test_start(self): self.saving_result_pool = Pool(8) self.saving_results_futures = [] self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() if hparams.get('pe_enable') is not None and hparams['pe_enable']: self.pe = PitchExtractor().cuda() utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True) self.pe.eval() def test_end(self, outputs): self.saving_result_pool.close() [f.get() for f in tqdm(self.saving_results_futures)] self.saving_result_pool.join() return {} ########## # utils ########## def weights_nonzero_speech(self, target): # target : B x T x mel # Assign weight 1.0 to all labels except for padding (id=0). dim = target.size(-1) return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim) if __name__ == '__main__': TtsTask.start()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/tts.py
from utils.cwt import get_lf0_cwt import torch.optim import torch.utils.data import importlib from utils.indexed_datasets import IndexedDataset from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse import numpy as np from tasks.base_task import BaseDataset import torch import torch.optim import torch.utils.data import utils import torch.distributions from utils.hparams import hparams from resemblyzer import VoiceEncoder import json from data_gen.tts.data_gen_utils import build_phone_encoder class BaseTTSDataset(BaseDataset): def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None): super().__init__(shuffle) self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir self.prefix = prefix self.hparams = hparams self.indexed_ds = None self.ext_mel2ph = None def load_size(): self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') if prefix == 'test': if test_items is not None: self.indexed_ds, self.sizes = test_items, test_sizes else: load_size() if hparams['num_test_samples'] > 0: self.avail_idxs = [x for x in range(hparams['num_test_samples']) \ if x < len(self.sizes)] if len(hparams['test_ids']) > 0: self.avail_idxs = hparams['test_ids'] + self.avail_idxs else: self.avail_idxs = list(range(len(self.sizes))) else: load_size() self.avail_idxs = list(range(len(self.sizes))) if hparams['min_frames'] > 0: self.avail_idxs = [ x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']] self.sizes = [self.sizes[i] for i in self.avail_idxs] def _get_item(self, index): if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: index = self.avail_idxs[index] if self.indexed_ds is None: self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') return self.indexed_ds[index] def __getitem__(self, index): hparams = self.hparams item = self._get_item(index) assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index]) max_frames = hparams['max_frames'] spec = torch.Tensor(item['mel'])[:max_frames] max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple'] spec = spec[:max_frames] phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']]) sample = { "id": index, "item_name": item['item_name'], "text": item['txt'], "txt_token": phone, "mel": spec, "mel_nonpadding": spec.abs().sum(-1) > 0, } if hparams['use_spk_embed']: sample["spk_embed"] = torch.Tensor(item['spk_embed']) if hparams['use_spk_id']: sample["spk_id"] = int(item['spk_id']) return sample def collater(self, samples): if len(samples) == 0: return {} hparams = self.hparams id = torch.LongTensor([s['id'] for s in samples]) item_names = [s['item_name'] for s in samples] text = [s['text'] for s in samples] txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0) mels = utils.collate_2d([s['mel'] for s in samples], 0.0) txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples]) mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) batch = { 'id': id, 'item_name': item_names, 'nsamples': len(samples), 'text': text, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'mels': mels, 'mel_lengths': mel_lengths, } if hparams['use_spk_embed']: spk_embed = torch.stack([s['spk_embed'] for s in samples]) batch['spk_embed'] = spk_embed if hparams['use_spk_id']: spk_ids = torch.LongTensor([s['spk_id'] for s in samples]) batch['spk_ids'] = spk_ids return batch class FastSpeechDataset(BaseTTSDataset): def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None): super().__init__(prefix, shuffle, test_items, test_sizes, data_dir) self.f0_mean, self.f0_std = hparams.get('f0_mean', None), hparams.get('f0_std', None) if prefix == 'test' and hparams['test_input_dir'] != '': self.data_dir = hparams['test_input_dir'] self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') self.indexed_ds = sorted(self.indexed_ds, key=lambda item: item['item_name']) items = {} for i in range(len(self.indexed_ds)): speaker = self.indexed_ds[i]['item_name'].split('_')[0] if speaker not in items.keys(): items[speaker] = [i] else: items[speaker].append(i) sort_item = sorted(items.values(), key=lambda item_pre_speaker: len(item_pre_speaker), reverse=True) self.avail_idxs = [n for a in sort_item for n in a][:hparams['num_test_samples']] self.indexed_ds, self.sizes = self.load_test_inputs() self.avail_idxs = [i for i in range(hparams['num_test_samples'])] if hparams['pitch_type'] == 'cwt': _, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10)) def __getitem__(self, index): sample = super(FastSpeechDataset, self).__getitem__(index) item = self._get_item(index) hparams = self.hparams max_frames = hparams['max_frames'] spec = sample['mel'] T = spec.shape[0] phone = sample['txt_token'] sample['energy'] = (spec.exp() ** 2).sum(-1).sqrt() sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] if 'mel2ph' in item else None if hparams['use_pitch_embed']: assert 'f0' in item if hparams.get('normalize_pitch', False): f0 = item["f0"] if len(f0 > 0) > 0 and f0[f0 > 0].std() > 0: f0[f0 > 0] = (f0[f0 > 0] - f0[f0 > 0].mean()) / f0[f0 > 0].std() * hparams['f0_std'] + \ hparams['f0_mean'] f0[f0 > 0] = f0[f0 > 0].clip(min=60, max=500) pitch = f0_to_coarse(f0) pitch = torch.LongTensor(pitch[:max_frames]) else: pitch = torch.LongTensor(item.get("pitch"))[:max_frames] if "pitch" in item else None f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams) uv = torch.FloatTensor(uv) f0 = torch.FloatTensor(f0) if hparams['pitch_type'] == 'cwt': cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames] f0_mean = item.get('f0_mean', item.get('cwt_mean')) f0_std = item.get('f0_std', item.get('cwt_std')) sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std}) elif hparams['pitch_type'] == 'ph': if "f0_ph" in item: f0 = torch.FloatTensor(item['f0_ph']) else: f0 = denorm_f0(f0, None, hparams) f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0) f0_phlevel_num = torch.zeros_like(phone).float().scatter_add( 0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1) f0_ph = f0_phlevel_sum / f0_phlevel_num f0, uv = norm_interp_f0(f0_ph, hparams) else: f0 = uv = torch.zeros_like(mel2ph) pitch = None sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch if hparams['use_spk_embed']: sample["spk_embed"] = torch.Tensor(item['spk_embed']) if hparams['use_spk_id']: sample["spk_id"] = item['spk_id'] return sample def collater(self, samples): if len(samples) == 0: return {} hparams = self.hparams batch = super(FastSpeechDataset, self).collater(samples) f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) pitch = utils.collate_1d([s['pitch'] for s in samples]) if samples[0]['pitch'] is not None else None uv = utils.collate_1d([s['uv'] for s in samples]) energy = utils.collate_1d([s['energy'] for s in samples], 0.0) mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \ if samples[0]['mel2ph'] is not None else None batch.update({ 'mel2ph': mel2ph, 'energy': energy, 'pitch': pitch, 'f0': f0, 'uv': uv, }) if hparams['pitch_type'] == 'cwt': cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples]) f0_mean = torch.Tensor([s['f0_mean'] for s in samples]) f0_std = torch.Tensor([s['f0_std'] for s in samples]) batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std}) return batch def load_test_inputs(self): binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json" ph_set = json.load(open(ph_set_fn, 'r')) print("| phone set: ", ph_set) phone_encoder = build_phone_encoder(hparams['binary_data_dir']) word_encoder = None voice_encoder = VoiceEncoder().cuda() encoder = [phone_encoder, word_encoder] sizes = [] items = [] for i in range(len(self.avail_idxs)): item = self._get_item(i) item2tgfn = f"{hparams['test_input_dir'].replace('binary', 'processed')}/mfa_outputs/{item['item_name']}.TextGrid" item = binarizer_cls.process_item(item['item_name'], item['ph'], item['txt'], item2tgfn, item['wav_fn'], item['spk_id'], encoder, hparams['binarization_args']) item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \ if hparams['binarization_args']['with_spk_embed'] else None # 判断是否保存embedding文件 items.append(item) sizes.append(item['len']) return items, sizes class FastSpeechWordDataset(FastSpeechDataset): def __getitem__(self, index): sample = super(FastSpeechWordDataset, self).__getitem__(index) item = self._get_item(index) max_frames = hparams['max_frames'] sample["ph_words"] = item["ph_words"] sample["word_tokens"] = torch.LongTensor(item["word_tokens"]) sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames] sample["ph2word"] = torch.LongTensor(item['ph2word'][:hparams['max_input_tokens']]) return sample def collater(self, samples): batch = super(FastSpeechWordDataset, self).collater(samples) ph_words = [s['ph_words'] for s in samples] batch['ph_words'] = ph_words word_tokens = utils.collate_1d([s['word_tokens'] for s in samples], 0) batch['word_tokens'] = word_tokens mel2word = utils.collate_1d([s['mel2word'] for s in samples], 0) batch['mel2word'] = mel2word ph2word = utils.collate_1d([s['ph2word'] for s in samples], 0) batch['ph2word'] = ph2word return batch
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/dataset_utils.py
import importlib from data_gen.tts.base_binarizer import BaseBinarizer from data_gen.tts.base_preprocess import BasePreprocessor from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls from utils.hparams import hparams def parse_dataset_configs(): max_tokens = hparams['max_tokens'] max_sentences = hparams['max_sentences'] max_valid_tokens = hparams['max_valid_tokens'] if max_valid_tokens == -1: hparams['max_valid_tokens'] = max_valid_tokens = max_tokens max_valid_sentences = hparams['max_valid_sentences'] if max_valid_sentences == -1: hparams['max_valid_sentences'] = max_valid_sentences = max_sentences return max_tokens, max_sentences, max_valid_tokens, max_valid_sentences def parse_mel_losses(): mel_losses = hparams['mel_losses'].split("|") loss_and_lambda = {} for i, l in enumerate(mel_losses): if l == '': continue if ':' in l: l, lbd = l.split(":") lbd = float(lbd) else: lbd = 1.0 loss_and_lambda[l] = lbd print("| Mel losses:", loss_and_lambda) return loss_and_lambda def load_data_preprocessor(): preprocess_cls = hparams["preprocess_cls"] pkg = ".".join(preprocess_cls.split(".")[:-1]) cls_name = preprocess_cls.split(".")[-1] preprocessor: BasePreprocessor = getattr(importlib.import_module(pkg), cls_name)() preprocess_args = {} preprocess_args.update(hparams['preprocess_args']) return preprocessor, preprocess_args def load_data_binarizer(): binarizer_cls = hparams['binarizer_cls'] pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer: BaseBinarizer = getattr(importlib.import_module(pkg), cls_name)() binarization_args = {} binarization_args.update(hparams['binarization_args']) return binarizer, binarization_args
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/tts_utils.py
from tasks.tts.fs2 import FastSpeech2Task from modules.syntaspeech.multi_window_disc import Discriminator from utils.hparams import hparams from torch import nn import torch import torch.optim import torch.utils.data import utils class FastSpeech2AdvTask(FastSpeech2Task): def build_model(self): self.build_tts_model() if hparams['load_ckpt'] != '': self.load_ckpt(hparams['load_ckpt'], strict=False) utils.print_arch(self.model, 'Generator') self.build_disc_model() if not hasattr(self, 'gen_params'): self.gen_params = list(self.model.parameters()) return self.model def build_disc_model(self): disc_win_num = hparams['disc_win_num'] h = hparams['mel_disc_hidden_size'] self.mel_disc = Discriminator( time_lengths=[32, 64, 128][:disc_win_num], freq_length=80, hidden_size=h, kernel=(3, 3) ) self.disc_params = list(self.mel_disc.parameters()) utils.print_arch(self.mel_disc, model_name='Mel Disc') def _training_step(self, sample, batch_idx, optimizer_idx): log_outputs = {} loss_weights = {} disc_start = hparams['mel_gan'] and self.global_step >= hparams["disc_start_steps"] and \ hparams['lambda_mel_adv'] > 0 if optimizer_idx == 0: ####################### # Generator # ####################### log_outputs, model_out = self.run_model(self.model, sample, return_output=True) self.model_out = {k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)} if disc_start: self.disc_cond = disc_cond = self.model_out['decoder_inp'].detach() \ if hparams['use_cond_disc'] else None if hparams['mel_loss_no_noise']: self.add_mel_loss(model_out['mel_out_nonoise'], sample['mels'], log_outputs) mel_p = model_out['mel_out'] if hasattr(self.model, 'out2mel'): mel_p = self.model.out2mel(mel_p) o_ = self.mel_disc(mel_p, disc_cond) p_, pc_ = o_['y'], o_['y_c'] if p_ is not None: log_outputs['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size())) loss_weights['a'] = hparams['lambda_mel_adv'] if pc_ is not None: log_outputs['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size())) loss_weights['ac'] = hparams['lambda_mel_adv'] else: ####################### # Discriminator # ####################### if disc_start and self.global_step % hparams['disc_interval'] == 0: if hparams['rerun_gen']: with torch.no_grad(): _, model_out = self.run_model(self.model, sample, return_output=True) else: model_out = self.model_out mel_g = sample['mels'] mel_p = model_out['mel_out'] if hasattr(self.model, 'out2mel'): mel_p = self.model.out2mel(mel_p) o = self.mel_disc(mel_g, self.disc_cond) p, pc = o['y'], o['y_c'] o_ = self.mel_disc(mel_p, self.disc_cond) p_, pc_ = o_['y'], o_['y_c'] if p_ is not None: log_outputs["r"] = self.mse_loss_fn(p, p.new_ones(p.size())) log_outputs["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size())) if pc_ is not None: log_outputs["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size())) log_outputs["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size())) if len(log_outputs) == 0: return None total_loss = sum([loss_weights.get(k, 1) * v for k, v in log_outputs.items()]) log_outputs['bs'] = sample['mels'].shape[0] return total_loss, log_outputs def configure_optimizers(self): if not hasattr(self, 'gen_params'): self.gen_params = list(self.model.parameters()) optimizer_gen = torch.optim.AdamW( self.gen_params, lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) optimizer_disc = torch.optim.AdamW( self.disc_params, lr=hparams['disc_lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), **hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None self.scheduler = self.build_scheduler({'gen': optimizer_gen, 'disc': optimizer_disc}) return [optimizer_gen, optimizer_disc] def build_scheduler(self, optimizer): return { "gen": super().build_scheduler(optimizer['gen']), "disc": torch.optim.lr_scheduler.StepLR( optimizer=optimizer["disc"], **hparams["discriminator_scheduler_params"]) if optimizer["disc"] is not None else None, } def on_before_optimization(self, opt_idx): if opt_idx == 0: nn.utils.clip_grad_norm_(self.gen_params, hparams['generator_grad_norm']) else: nn.utils.clip_grad_norm_(self.disc_params, hparams["discriminator_grad_norm"]) def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx): if optimizer_idx == 0: self.scheduler['gen'].step(self.global_step) else: self.scheduler['disc'].step(max(self.global_step - hparams["disc_start_steps"], 1))
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/fs2_adv.py
import matplotlib matplotlib.use('Agg') from utils import audio import matplotlib.pyplot as plt from data_gen.tts.data_gen_utils import get_pitch from tasks.tts.fs2_utils import FastSpeechDataset from utils.cwt import cwt2f0 from utils.pl_utils import data_loader import os from multiprocessing.pool import Pool from tqdm import tqdm from modules.fastspeech.tts_modules import mel2ph_to_dur from utils.hparams import hparams from utils.plot import spec_to_figure, dur_to_figure, f0_to_figure from utils.pitch_utils import denorm_f0 from modules.fastspeech.fs2 import FastSpeech2 from tasks.tts.tts import TtsTask import torch import torch.optim import torch.utils.data import torch.nn.functional as F import utils import torch.distributions import numpy as np from modules.commons.ssim import ssim class FastSpeech2Task(TtsTask): def __init__(self): super(FastSpeech2Task, self).__init__() self.dataset_cls = FastSpeechDataset self.mse_loss_fn = torch.nn.MSELoss() mel_losses = hparams['mel_loss'].split("|") self.loss_and_lambda = {} for i, l in enumerate(mel_losses): if l == '': continue if ':' in l: l, lbd = l.split(":") lbd = float(lbd) else: lbd = 1.0 self.loss_and_lambda[l] = lbd print("| Mel losses:", self.loss_and_lambda) self.sil_ph = self.phone_encoder.sil_phonemes() @data_loader def train_dataloader(self): train_dataset = self.dataset_cls(hparams['train_set_name'], shuffle=True) return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences, endless=hparams['endless_ds']) @data_loader def val_dataloader(self): valid_dataset = self.dataset_cls(hparams['valid_set_name'], shuffle=False) return self.build_dataloader(valid_dataset, False, self.max_eval_tokens, self.max_eval_sentences) @data_loader def test_dataloader(self): test_dataset = self.dataset_cls(hparams['test_set_name'], shuffle=False) return self.build_dataloader(test_dataset, False, self.max_eval_tokens, self.max_eval_sentences, batch_by_size=False) def build_tts_model(self): self.model = FastSpeech2(self.phone_encoder) def build_model(self): self.build_tts_model() if hparams['load_ckpt'] != '': self.load_ckpt(hparams['load_ckpt'], strict=True) utils.print_arch(self.model) return self.model def _training_step(self, sample, batch_idx, _): loss_output = self.run_model(self.model, sample) total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad]) loss_output['batch_size'] = sample['txt_tokens'].size()[0] return total_loss, loss_output def validation_step(self, sample, batch_idx): outputs = {} outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] mel_out = self.model.out2mel(model_out['mel_out']) outputs = utils.tensors_to_scalars(outputs) # if sample['mels'].shape[0] == 1: # self.add_laplace_var(mel_out, sample['mels'], outputs) if batch_idx < hparams['num_valid_plots']: self.plot_mel(batch_idx, sample['mels'], mel_out) self.plot_dur(batch_idx, sample, model_out) if hparams['use_pitch_embed']: self.plot_pitch(batch_idx, sample, model_out) return outputs def _validation_end(self, outputs): all_losses_meter = { 'total_loss': utils.AvgrageMeter(), } for output in outputs: n = output['nsamples'] for k, v in output['losses'].items(): if k not in all_losses_meter: all_losses_meter[k] = utils.AvgrageMeter() all_losses_meter[k].update(v, n) all_losses_meter['total_loss'].update(output['total_loss'], n) return {k: round(v.avg, 4) for k, v in all_losses_meter.items()} def run_model(self, model, sample, return_output=False): txt_tokens = sample['txt_tokens'] # [B, T_t] target = sample['mels'] # [B, T_s, 80] mel2ph = sample['mel2ph'] # [B, T_s] f0 = sample['f0'] uv = sample['uv'] energy = sample['energy'] spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') if hparams['pitch_type'] == 'cwt': cwt_spec = sample[f'cwt_spec'] f0_mean = sample['f0_mean'] f0_std = sample['f0_std'] sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=target, f0=f0, uv=uv, energy=energy, infer=False) losses = {} self.add_mel_loss(output['mel_out'], target, losses) self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) if hparams['use_pitch_embed']: self.add_pitch_loss(output, sample, losses) if hparams['use_energy_embed']: self.add_energy_loss(output['energy_pred'], energy, losses) if not return_output: return losses else: return losses, output ############ # losses ############ def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None): if mel_mix_loss is None: for loss_name, lbd in self.loss_and_lambda.items(): if 'l1' == loss_name: l = self.l1_loss(mel_out, target) elif 'mse' == loss_name: raise NotImplementedError elif 'ssim' == loss_name: l = self.ssim_loss(mel_out, target) elif 'gdl' == loss_name: raise NotImplementedError losses[f'{loss_name}{postfix}'] = l * lbd else: raise NotImplementedError def l1_loss(self, decoder_output, target): # decoder_output : B x T x n_mel # target : B x T x n_mel l1_loss = F.l1_loss(decoder_output, target, reduction='none') weights = self.weights_nonzero_speech(target) l1_loss = (l1_loss * weights).sum() / weights.sum() return l1_loss def ssim_loss(self, decoder_output, target, bias=6.0): # decoder_output : B x T x n_mel # target : B x T x n_mel assert decoder_output.shape == target.shape weights = self.weights_nonzero_speech(target) decoder_output = decoder_output[:, None] + bias target = target[:, None] + bias ssim_loss = 1 - ssim(decoder_output, target, size_average=False) ssim_loss = (ssim_loss * weights).sum() / weights.sum() return ssim_loss def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None): """ :param dur_pred: [B, T], float, log scale :param mel2ph: [B, T] :param txt_tokens: [B, T] :param losses: :return: """ B, T = txt_tokens.shape nonpadding = (txt_tokens != 0).float() dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding is_sil = torch.zeros_like(txt_tokens).bool() for p in self.sil_ph: is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) is_sil = is_sil.float() # [B, T_txt] # phone duration loss if hparams['dur_loss'] == 'mse': losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() dur_pred = (dur_pred.exp() - 1).clamp(min=0) elif hparams['dur_loss'] == 'mog': return NotImplementedError elif hparams['dur_loss'] == 'crf': losses['pdur'] = -self.model.dur_predictor.crf( dur_pred, dur_gt.long().clamp(min=0, max=31), mask=nonpadding > 0, reduction='mean') losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur'] # use linear scale for sent and word duration if hparams['lambda_word_dur'] > 0: word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long() word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:] word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:] wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') word_nonpadding = (word_dur_g > 0).float() wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] if hparams['lambda_sent_dur'] > 0: sent_dur_p = dur_pred.sum(-1) sent_dur_g = dur_gt.sum(-1) sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] def add_pitch_loss(self, output, sample, losses): if hparams['pitch_type'] == 'ph': nonpadding = (sample['txt_tokens'] != 0).float() pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss losses['f0'] = (pitch_loss_fn(output['pitch_pred'][:, :, 0], sample['f0'], reduction='none') * nonpadding).sum() \ / nonpadding.sum() * hparams['lambda_f0'] return mel2ph = sample['mel2ph'] # [B, T_s] f0 = sample['f0'] uv = sample['uv'] nonpadding = (mel2ph != 0).float() if hparams['pitch_type'] == 'cwt': cwt_spec = sample[f'cwt_spec'] f0_mean = sample['f0_mean'] f0_std = sample['f0_std'] cwt_pred = output['cwt'][:, :, :10] f0_mean_pred = output['f0_mean'] f0_std_pred = output['f0_std'] losses['C'] = self.cwt_loss(cwt_pred, cwt_spec) * hparams['lambda_f0'] if hparams['use_uv']: assert output['cwt'].shape[-1] == 11 uv_pred = output['cwt'][:, :, -1] losses['uv'] = (F.binary_cross_entropy_with_logits(uv_pred, uv, reduction='none') * nonpadding) \ .sum() / nonpadding.sum() * hparams['lambda_uv'] losses['f0_mean'] = F.l1_loss(f0_mean_pred, f0_mean) * hparams['lambda_f0'] losses['f0_std'] = F.l1_loss(f0_std_pred, f0_std) * hparams['lambda_f0'] if hparams['cwt_add_f0_loss']: f0_cwt_ = self.model.cwt2f0_norm(cwt_pred, f0_mean_pred, f0_std_pred, mel2ph) self.add_f0_loss(f0_cwt_[:, :, None], f0, uv, losses, nonpadding=nonpadding) elif hparams['pitch_type'] == 'frame': self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding) def add_f0_loss(self, p_pred, f0, uv, losses, nonpadding): assert p_pred[..., 0].shape == f0.shape if hparams['use_uv']: assert p_pred[..., 1].shape == uv.shape losses['uv'] = (F.binary_cross_entropy_with_logits( p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \ / nonpadding.sum() * hparams['lambda_uv'] nonpadding = nonpadding * (uv == 0).float() f0_pred = p_pred[:, :, 0] if hparams['pitch_loss'] in ['l1', 'l2']: pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss losses['f0'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \ / nonpadding.sum() * hparams['lambda_f0'] elif hparams['pitch_loss'] == 'ssim': return NotImplementedError def cwt_loss(self, cwt_p, cwt_g): if hparams['cwt_loss'] == 'l1': return F.l1_loss(cwt_p, cwt_g) if hparams['cwt_loss'] == 'l2': return F.mse_loss(cwt_p, cwt_g) if hparams['cwt_loss'] == 'ssim': return self.ssim_loss(cwt_p, cwt_g, 20) def add_energy_loss(self, energy_pred, energy, losses): nonpadding = (energy != 0).float() loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum() loss = loss * hparams['lambda_energy'] losses['e'] = loss ############ # validation plots ############ def plot_mel(self, batch_idx, spec, spec_out, name=None): spec_cat = torch.cat([spec, spec_out], -1) name = f'mel_{batch_idx}' if name is None else name vmin = hparams['mel_vmin'] vmax = hparams['mel_vmax'] self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step) def plot_dur(self, batch_idx, sample, model_out): T_txt = sample['txt_tokens'].shape[1] dur_gt = mel2ph_to_dur(sample['mel2ph'], T_txt)[0] dur_pred = self.model.dur_predictor.out2dur(model_out['dur']).float() txt = self.phone_encoder.decode(sample['txt_tokens'][0].cpu().numpy()) txt = txt.split(" ") self.logger.experiment.add_figure( f'dur_{batch_idx}', dur_to_figure(dur_gt, dur_pred, txt), self.global_step) def plot_pitch(self, batch_idx, sample, model_out): f0 = sample['f0'] if hparams['pitch_type'] == 'ph': mel2ph = sample['mel2ph'] f0 = self.expand_f0_ph(f0, mel2ph) f0_pred = self.expand_f0_ph(model_out['pitch_pred'][:, :, 0], mel2ph) self.logger.experiment.add_figure( f'f0_{batch_idx}', f0_to_figure(f0[0], None, f0_pred[0]), self.global_step) return f0 = denorm_f0(f0, sample['uv'], hparams) if hparams['pitch_type'] == 'cwt': # cwt cwt_out = model_out['cwt'] cwt_spec = cwt_out[:, :, :10] cwt = torch.cat([cwt_spec, sample['cwt_spec']], -1) self.logger.experiment.add_figure(f'cwt_{batch_idx}', spec_to_figure(cwt[0]), self.global_step) # f0 f0_pred = cwt2f0(cwt_spec, model_out['f0_mean'], model_out['f0_std'], hparams['cwt_scales']) if hparams['use_uv']: assert cwt_out.shape[-1] == 11 uv_pred = cwt_out[:, :, -1] > 0 f0_pred[uv_pred > 0] = 0 f0_cwt = denorm_f0(sample['f0_cwt'], sample['uv'], hparams) self.logger.experiment.add_figure( f'f0_{batch_idx}', f0_to_figure(f0[0], f0_cwt[0], f0_pred[0]), self.global_step) elif hparams['pitch_type'] == 'frame': # f0 uv_pred = model_out['pitch_pred'][:, :, 1] > 0 pitch_pred = denorm_f0(model_out['pitch_pred'][:, :, 0], uv_pred, hparams) self.logger.experiment.add_figure( f'f0_{batch_idx}', f0_to_figure(f0[0], None, pitch_pred[0]), self.global_step) ############ # infer ############ def test_step(self, sample, batch_idx): spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') txt_tokens = sample['txt_tokens'] mel2ph, uv, f0 = None, None, None ref_mels = None if hparams['profile_infer']: pass else: if hparams['use_gt_dur']: mel2ph = sample['mel2ph'] if hparams['use_gt_f0']: f0 = sample['f0'] uv = sample['uv'] print('Here using gt f0!!') if hparams.get('use_midi') is not None and hparams['use_midi']: outputs = self.model( txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True, pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) else: outputs = self.model( txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True) sample['outputs'] = self.model.out2mel(outputs['mel_out']) sample['mel2ph_pred'] = outputs['mel2ph'] if hparams.get('pe_enable') is not None and hparams['pe_enable']: sample['f0'] = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel sample['f0_pred'] = self.pe(sample['outputs'])['f0_denorm_pred'] # pe predict from Pred mel else: sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) sample['f0_pred'] = outputs.get('f0_denorm') return self.after_infer(sample) def after_infer(self, predictions): if self.saving_result_pool is None and not hparams['profile_infer']: self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16)) self.saving_results_futures = [] predictions = utils.unpack_dict_to_list(predictions) t = tqdm(predictions) for num_predictions, prediction in enumerate(t): for k, v in prediction.items(): if type(v) is torch.Tensor: prediction[k] = v.cpu().numpy() item_name = prediction.get('item_name') text = prediction.get('text').replace(":", "%3A")[:80] # remove paddings mel_gt = prediction["mels"] mel_gt_mask = np.abs(mel_gt).sum(-1) > 0 mel_gt = mel_gt[mel_gt_mask] mel2ph_gt = prediction.get("mel2ph") mel2ph_gt = mel2ph_gt[mel_gt_mask] if mel2ph_gt is not None else None mel_pred = prediction["outputs"] mel_pred_mask = np.abs(mel_pred).sum(-1) > 0 mel_pred = mel_pred[mel_pred_mask] mel_gt = np.clip(mel_gt, hparams['mel_vmin'], hparams['mel_vmax']) mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax']) mel2ph_pred = prediction.get("mel2ph_pred") if mel2ph_pred is not None: if len(mel2ph_pred) > len(mel_pred_mask): mel2ph_pred = mel2ph_pred[:len(mel_pred_mask)] mel2ph_pred = mel2ph_pred[mel_pred_mask] f0_gt = prediction.get("f0") f0_pred = prediction.get("f0_pred") if f0_pred is not None: f0_gt = f0_gt[mel_gt_mask] if len(f0_pred) > len(mel_pred_mask): f0_pred = f0_pred[:len(mel_pred_mask)] f0_pred = f0_pred[mel_pred_mask] str_phs = None if self.phone_encoder is not None and 'txt_tokens' in prediction: str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True) gen_dir = os.path.join(hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) if not hparams['profile_infer']: os.makedirs(gen_dir, exist_ok=True) os.makedirs(f'{gen_dir}/wavs', exist_ok=True) os.makedirs(f'{gen_dir}/plot', exist_ok=True) os.makedirs(os.path.join(hparams['work_dir'], 'P_mels_npy'), exist_ok=True) os.makedirs(os.path.join(hparams['work_dir'], 'G_mels_npy'), exist_ok=True) self.saving_results_futures.append( self.saving_result_pool.apply_async(self.save_result, args=[ wav_pred, mel_pred, 'P', item_name, text, gen_dir, str_phs, mel2ph_pred, f0_gt, f0_pred])) if mel_gt is not None and hparams['save_gt']: wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) self.saving_results_futures.append( self.saving_result_pool.apply_async(self.save_result, args=[ wav_gt, mel_gt, 'G', item_name, text, gen_dir, str_phs, mel2ph_gt, f0_gt, f0_pred])) if hparams['save_f0']: import matplotlib.pyplot as plt # f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) f0_pred_ = f0_pred f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) fig = plt.figure() plt.plot(f0_pred_, label=r'$f0_P$') plt.plot(f0_gt_, label=r'$f0_G$') if hparams.get('pe_enable') is not None and hparams['pe_enable']: # f0_midi = prediction.get("f0_midi") # f0_midi = f0_midi[mel_gt_mask] # plt.plot(f0_midi, label=r'$f0_M$') pass plt.legend() plt.tight_layout() plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') plt.close(fig) t.set_description( f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") else: if 'gen_wav_time' not in self.stats: self.stats['gen_wav_time'] = 0 self.stats['gen_wav_time'] += len(wav_pred) / hparams['audio_sample_rate'] print('gen_wav_time: ', self.stats['gen_wav_time']) return {} @staticmethod def save_result(wav_out, mel, prefix, item_name, text, gen_dir, str_phs=None, mel2ph=None, gt_f0=None, pred_f0=None): item_name = item_name.replace('/', '-') base_fn = f'[{item_name}][{prefix}]' if text is not None: base_fn += text base_fn += ('-' + hparams['exp_name']) np.save(os.path.join(hparams['work_dir'], f'{prefix}_mels_npy', item_name), mel) audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'], norm=hparams['out_wav_norm']) fig = plt.figure(figsize=(14, 10)) spec_vmin = hparams['mel_vmin'] spec_vmax = hparams['mel_vmax'] heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) fig.colorbar(heatmap) if hparams.get('pe_enable') is not None and hparams['pe_enable']: gt_f0 = (gt_f0 - 100) / (800 - 100) * 80 * (gt_f0 > 0) pred_f0 = (pred_f0 - 100) / (800 - 100) * 80 * (pred_f0 > 0) plt.plot(pred_f0, c='white', linewidth=1, alpha=0.6) plt.plot(gt_f0, c='red', linewidth=1, alpha=0.6) else: f0, _ = get_pitch(wav_out, mel, hparams) f0 = (f0 - 100) / (800 - 100) * 80 * (f0 > 0) plt.plot(f0, c='white', linewidth=1, alpha=0.6) if mel2ph is not None and str_phs is not None: decoded_txt = str_phs.split(" ") dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy() dur = [0] + list(np.cumsum(dur)) for i in range(len(dur) - 1): shift = (i % 20) + 1 plt.text(dur[i], shift, decoded_txt[i]) plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black') plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black', alpha=1, linewidth=1) plt.tight_layout() plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png', dpi=1000) plt.close(fig) ############## # utils ############## @staticmethod def expand_f0_ph(f0, mel2ph): f0 = denorm_f0(f0, None, hparams) f0 = F.pad(f0, [1, 0]) f0 = torch.gather(f0, 1, mel2ph) # [B, T_mel] return f0 if __name__ == '__main__': FastSpeech2Task.start()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/fs2.py
import torch from modules.portaspeech.portaspeech_flow import PortaSpeechFlow from tasks.tts.fs2 import FastSpeech2Task from tasks.tts.ps import PortaSpeechTask from utils.pitch_utils import denorm_f0 from utils.hparams import hparams class PortaSpeechFlowTask(PortaSpeechTask): def __init__(self): super().__init__() self.training_post_glow = False def build_tts_model(self): ph_dict_size = len(self.token_encoder) word_dict_size = len(self.word_encoder) self.model = PortaSpeechFlow(ph_dict_size, word_dict_size, hparams) def _training_step(self, sample, batch_idx, opt_idx): self.training_post_glow = self.global_step >= hparams['post_glow_training_start'] \ and hparams['use_post_flow'] if hparams['two_stage'] and \ ((opt_idx == 0 and self.training_post_glow) or (opt_idx == 1 and not self.training_post_glow)): return None loss_output, _ = self.run_model(sample) total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad]) loss_output['batch_size'] = sample['txt_tokens'].size()[0] if 'postflow' in loss_output and loss_output['postflow'] is None: return None return total_loss, loss_output def run_model(self, sample, infer=False, *args, **kwargs): if not infer: training_post_glow = self.training_post_glow spk_embed = sample.get('spk_embed') spk_id = sample.get('spk_ids') output = self.model(sample['txt_tokens'], sample['word_tokens'], ph2word=sample['ph2word'], mel2word=sample['mel2word'], mel2ph=sample['mel2ph'], word_len=sample['word_lengths'].max(), tgt_mels=sample['mels'], pitch=sample.get('pitch'), spk_embed=spk_embed, spk_id=spk_id, infer=False, forward_post_glow=training_post_glow, two_stage=hparams['two_stage'], global_step=self.global_step, bert_feats=sample.get('bert_feats')) losses = {} self.add_mel_loss(output['mel_out'], sample['mels'], losses) if (training_post_glow or not hparams['two_stage']) and hparams['use_post_flow']: losses['postflow'] = output['postflow'] losses['l1'] = losses['l1'].detach() losses['ssim'] = losses['ssim'].detach() if not training_post_glow or not hparams['two_stage'] or not self.training: losses['kl'] = output['kl'] if self.global_step < hparams['kl_start_steps']: losses['kl'] = losses['kl'].detach() else: losses['kl'] = torch.clamp(losses['kl'], min=hparams['kl_min']) losses['kl'] = losses['kl'] * hparams['lambda_kl'] if hparams['dur_level'] == 'word': self.add_dur_loss( output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses) self.get_attn_stats(output['attn'], sample, losses) else: super().add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses) return losses, output else: use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur']) forward_post_glow = self.global_step >= hparams['post_glow_training_start'] + 1000 \ and hparams['use_post_flow'] spk_embed = sample.get('spk_embed') spk_id = sample.get('spk_ids') output = self.model( sample['txt_tokens'], sample['word_tokens'], ph2word=sample['ph2word'], word_len=sample['word_lengths'].max(), pitch=sample.get('pitch'), mel2ph=sample['mel2ph'] if use_gt_dur else None, mel2word=sample['mel2word'] if hparams['profile_infer'] or hparams['use_gt_dur'] else None, infer=True, forward_post_glow=forward_post_glow, spk_embed=spk_embed, spk_id=spk_id, two_stage=hparams['two_stage'], bert_feats=sample.get('bert_feats')) return output def validation_step(self, sample, batch_idx): self.training_post_glow = self.global_step >= hparams['post_glow_training_start'] \ and hparams['use_post_flow'] return super().validation_step(sample, batch_idx) def save_valid_result(self, sample, batch_idx, model_out): super(PortaSpeechFlowTask, self).save_valid_result(sample, batch_idx, model_out) sr = hparams['audio_sample_rate'] f0_gt = None if sample.get('f0') is not None: f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu()) if self.global_step > 0: # save FVAE result if hparams['use_post_flow']: wav_pred = self.vocoder.spec2wav(model_out['mel_out_fvae'][0].cpu(), f0=f0_gt) self.logger.add_audio(f'wav_fvae_{batch_idx}', wav_pred, self.global_step, sr) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out_fvae'][0], f'mel_fvae_{batch_idx}', f0s=f0_gt) def build_optimizer(self, model): if hparams['two_stage'] and hparams['use_post_flow']: self.optimizer = torch.optim.AdamW( [p for name, p in self.model.named_parameters() if 'post_flow' not in name], lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) self.post_flow_optimizer = torch.optim.AdamW( self.model.post_flow.parameters(), lr=hparams['post_flow_lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) return [self.optimizer, self.post_flow_optimizer] else: self.optimizer = torch.optim.AdamW( self.model.parameters(), lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) return [self.optimizer] def build_scheduler(self, optimizer): return FastSpeech2Task.build_scheduler(self, optimizer[0])
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/ps_flow.py
import matplotlib matplotlib.use('Agg') import glob import importlib from utils.cwt import get_lf0_cwt import os import torch.optim import torch.utils.data from utils.indexed_datasets import IndexedDataset from utils.pitch_utils import norm_interp_f0 import numpy as np from tasks.base_task import BaseDataset import torch import torch.optim import torch.utils.data import utils import torch.distributions from utils.hparams import hparams class FastSpeechDataset(BaseDataset): def __init__(self, prefix, shuffle=False): super().__init__(shuffle) self.data_dir = hparams['binary_data_dir'] self.prefix = prefix self.hparams = hparams self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') self.indexed_ds = None # self.name2spk_id={} # pitch stats f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy' if os.path.exists(f0_stats_fn): hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn) hparams['f0_mean'] = float(hparams['f0_mean']) hparams['f0_std'] = float(hparams['f0_std']) else: hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None if prefix == 'test': if hparams['test_input_dir'] != '': self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir']) else: if hparams['num_test_samples'] > 0: self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids'] self.sizes = [self.sizes[i] for i in self.avail_idxs] if hparams['pitch_type'] == 'cwt': _, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10)) def _get_item(self, index): if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: index = self.avail_idxs[index] if self.indexed_ds is None: self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') return self.indexed_ds[index] def __getitem__(self, index): hparams = self.hparams item = self._get_item(index) max_frames = hparams['max_frames'] spec = torch.Tensor(item['mel'])[:max_frames] energy = (spec.exp() ** 2).sum(-1).sqrt() mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams) phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']]) pitch = torch.LongTensor(item.get("pitch"))[:max_frames] # print(item.keys(), item['mel'].shape, spec.shape) sample = { "id": index, "item_name": item['item_name'], "text": item['txt'], "txt_token": phone, "mel": spec, "pitch": pitch, "energy": energy, "f0": f0, "uv": uv, "mel2ph": mel2ph, "mel_nonpadding": spec.abs().sum(-1) > 0, } if self.hparams['use_spk_embed']: sample["spk_embed"] = torch.Tensor(item['spk_embed']) if self.hparams['use_spk_id']: sample["spk_id"] = item['spk_id'] # sample['spk_id'] = 0 # for key in self.name2spk_id.keys(): # if key in item['item_name']: # sample['spk_id'] = self.name2spk_id[key] # break if self.hparams['pitch_type'] == 'cwt': cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames] f0_mean = item.get('f0_mean', item.get('cwt_mean')) f0_std = item.get('f0_std', item.get('cwt_std')) sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std}) elif self.hparams['pitch_type'] == 'ph': f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0) f0_phlevel_num = torch.zeros_like(phone).float().scatter_add( 0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1) sample["f0_ph"] = f0_phlevel_sum / f0_phlevel_num return sample def collater(self, samples): if len(samples) == 0: return {} id = torch.LongTensor([s['id'] for s in samples]) item_names = [s['item_name'] for s in samples] text = [s['text'] for s in samples] txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0) f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) pitch = utils.collate_1d([s['pitch'] for s in samples]) uv = utils.collate_1d([s['uv'] for s in samples]) energy = utils.collate_1d([s['energy'] for s in samples], 0.0) mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \ if samples[0]['mel2ph'] is not None else None mels = utils.collate_2d([s['mel'] for s in samples], 0.0) txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples]) mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) batch = { 'id': id, 'item_name': item_names, 'nsamples': len(samples), 'text': text, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'mels': mels, 'mel_lengths': mel_lengths, 'mel2ph': mel2ph, 'energy': energy, 'pitch': pitch, 'f0': f0, 'uv': uv, } if self.hparams['use_spk_embed']: spk_embed = torch.stack([s['spk_embed'] for s in samples]) batch['spk_embed'] = spk_embed if self.hparams['use_spk_id']: spk_ids = torch.LongTensor([s['spk_id'] for s in samples]) batch['spk_ids'] = spk_ids if self.hparams['pitch_type'] == 'cwt': cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples]) f0_mean = torch.Tensor([s['f0_mean'] for s in samples]) f0_std = torch.Tensor([s['f0_std'] for s in samples]) batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std}) elif self.hparams['pitch_type'] == 'ph': batch['f0'] = utils.collate_1d([s['f0_ph'] for s in samples]) return batch def load_test_inputs(self, test_input_dir, spk_id=0): inp_wav_paths = glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3') sizes = [] items = [] binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) binarization_args = hparams['binarization_args'] for wav_fn in inp_wav_paths: item_name = os.path.basename(wav_fn) ph = txt = tg_fn = '' wav_fn = wav_fn encoder = None item = binarizer_cls.process_item(item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args) items.append(item) sizes.append(item['len']) return items, sizes
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/fs2_utils.py
import os import torch import torch.nn.functional as F from torch import nn from modules.tts.syntaspeech.syntaspeech import SyntaSpeech from tasks.tts.ps_adv import PortaSpeechAdvTask from utils.hparams import hparams class SyntaSpeechTask(PortaSpeechAdvTask): def build_tts_model(self): ph_dict_size = len(self.token_encoder) word_dict_size = len(self.word_encoder) self.model = SyntaSpeech(ph_dict_size, word_dict_size, hparams) self.gen_params = [p for p in self.model.parameters() if p.requires_grad] self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)] self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)] self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)] self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ] self.use_bert = True if len(self.bert_params) > 0 else False
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/synta.py
import os import torch import torch.nn.functional as F from torch import nn from modules.portaspeech.portaspeech import PortaSpeech from tasks.tts.fs2 import FastSpeech2Task from utils.tts_utils import mel2token_to_dur from utils.hparams import hparams from utils.tts_utils import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate from utils import num_params import numpy as np from utils.plot import spec_to_figure from data_gen.tts.data_gen_utils import build_token_encoder class PortaSpeechTask(FastSpeech2Task): def __init__(self): super().__init__() data_dir = hparams['binary_data_dir'] self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json') def build_tts_model(self): ph_dict_size = len(self.token_encoder) word_dict_size = len(self.word_encoder) self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams) def on_train_start(self): super().on_train_start() for n, m in self.model.named_children(): num_params(m, model_name=n) if hasattr(self.model, 'fvae'): for n, m in self.model.fvae.named_children(): num_params(m, model_name=f'fvae.{n}') def run_model(self, sample, infer=False, *args, **kwargs): txt_tokens = sample['txt_tokens'] word_tokens = sample['word_tokens'] spk_embed = sample.get('spk_embed') spk_id = sample.get('spk_ids') if not infer: output = self.model(txt_tokens, word_tokens, ph2word=sample['ph2word'], mel2word=sample['mel2word'], mel2ph=sample['mel2ph'], word_len=sample['word_lengths'].max(), tgt_mels=sample['mels'], pitch=sample.get('pitch'), spk_embed=spk_embed, spk_id=spk_id, infer=False, global_step=self.global_step) losses = {} losses['kl_v'] = output['kl'].detach() losses_kl = output['kl'] losses_kl = torch.clamp(losses_kl, min=hparams['kl_min']) losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl losses_kl = losses_kl * hparams['lambda_kl'] losses['kl'] = losses_kl self.add_mel_loss(output['mel_out'], sample['mels'], losses) if hparams['dur_level'] == 'word': self.add_dur_loss( output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses) self.get_attn_stats(output['attn'], sample, losses) else: super(PortaSpeechTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses) return losses, output else: use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur']) output = self.model( txt_tokens, word_tokens, ph2word=sample['ph2word'], word_len=sample['word_lengths'].max(), pitch=sample.get('pitch'), mel2ph=sample['mel2ph'] if use_gt_dur else None, mel2word=sample['mel2word'] if use_gt_dur else None, tgt_mels=sample['mels'], infer=True, spk_embed=spk_embed, spk_id=spk_id, ) return output def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None): T = word_len.max() dur_gt = mel2token_to_dur(mel2token, T).float() nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float() dur_pred = dur_pred * nonpadding dur_gt = dur_gt * nonpadding wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none') wdur = (wdur * nonpadding).sum() / nonpadding.sum() if hparams['lambda_word_dur'] > 0: losses['wdur'] = wdur * hparams['lambda_word_dur'] if hparams['lambda_sent_dur'] > 0: sent_dur_p = dur_pred.sum(-1) sent_dur_g = dur_gt.sum(-1) sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean') losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] def validation_step(self, sample, batch_idx): return super().validation_step(sample, batch_idx) def save_valid_result(self, sample, batch_idx, model_out): super(PortaSpeechTask, self).save_valid_result(sample, batch_idx, model_out) if self.global_step > 0 and hparams['dur_level'] == 'word': self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step) def get_attn_stats(self, attn, sample, logging_outputs, prefix=''): # diagonal_focus_rate txt_lengths = sample['txt_lengths'].float() mel_lengths = sample['mel_lengths'].float() src_padding_mask = sample['txt_tokens'].eq(0) target_padding_mask = sample['mels'].abs().sum(-1).eq(0) src_seg_mask = sample['txt_tokens'].eq(self.seg_idx) attn_ks = txt_lengths.float() / mel_lengths.float() focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data phone_coverage_rate = get_phone_coverage_rate( attn, src_padding_mask, src_seg_mask, target_padding_mask).mean() diagonal_focus_rate, diag_mask = get_diagonal_focus_rate( attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask) logging_outputs[f'{prefix}fr'] = focus_rate.mean().data logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data def get_plot_dur_info(self, sample, model_out): if hparams['dur_level'] == 'word': T_txt = sample['word_lengths'].max() dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0] dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt txt = sample['ph_words'][0].split(" ") else: T_txt = sample['txt_tokens'].shape[1] dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0] dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy()) txt = txt.split(" ") return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt} def build_optimizer(self, model): self.optimizer = torch.optim.AdamW( self.model.parameters(), lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) return self.optimizer def build_scheduler(self, optimizer): return FastSpeechTask.build_scheduler(self, optimizer) ############ # infer ############ def test_start(self): super().test_start() if hparams.get('save_attn', False): os.makedirs(f'{self.gen_dir}/attn', exist_ok=True) self.model.store_inverse_all() def test_step(self, sample, batch_idx): assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference' outputs = self.run_model(sample, infer=True) text = sample['text'][0] item_name = sample['item_name'][0] tokens = sample['txt_tokens'][0].cpu().numpy() mel_gt = sample['mels'][0].cpu().numpy() mel_pred = outputs['mel_out'][0].cpu().numpy() mel2ph = sample['mel2ph'][0].cpu().numpy() mel2ph_pred = None str_phs = self.token_encoder.decode(tokens, strip_padding=True) base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]' if text is not None: base_fn += text.replace(":", "$3A")[:80] base_fn = base_fn.replace(' ', '_') gen_dir = self.gen_dir wav_pred = self.vocoder.spec2wav(mel_pred) self.saving_result_pool.add_job(self.save_result, args=[ wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred]) if hparams['save_gt']: wav_gt = self.vocoder.spec2wav(mel_gt) self.saving_result_pool.add_job(self.save_result, args=[ wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph]) if hparams.get('save_attn', False): attn = outputs['attn'][0].cpu().numpy() np.save(f'{gen_dir}/attn/{item_name}.npy', attn) print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") return { 'item_name': item_name, 'text': text, 'ph_tokens': self.token_encoder.decode(tokens.tolist()), 'wav_fn_pred': base_fn % 'P', 'wav_fn_gt': base_fn % 'G', }
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/ps.py
import matplotlib matplotlib.use('Agg') import torch import numpy as np import os from tasks.base_task import BaseDataset from tasks.tts.fs2 import FastSpeech2Task from modules.fastspeech.pe import PitchExtractor import utils from utils.indexed_datasets import IndexedDataset from utils.hparams import hparams from utils.plot import f0_to_figure from utils.pitch_utils import norm_interp_f0, denorm_f0 class PeDataset(BaseDataset): def __init__(self, prefix, shuffle=False): super().__init__(shuffle) self.data_dir = hparams['binary_data_dir'] self.prefix = prefix self.hparams = hparams self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') self.indexed_ds = None # pitch stats f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy' if os.path.exists(f0_stats_fn): hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn) hparams['f0_mean'] = float(hparams['f0_mean']) hparams['f0_std'] = float(hparams['f0_std']) else: hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None if prefix == 'test': if hparams['num_test_samples'] > 0: self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids'] self.sizes = [self.sizes[i] for i in self.avail_idxs] def _get_item(self, index): if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: index = self.avail_idxs[index] if self.indexed_ds is None: self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') return self.indexed_ds[index] def __getitem__(self, index): hparams = self.hparams item = self._get_item(index) max_frames = hparams['max_frames'] spec = torch.Tensor(item['mel'])[:max_frames] # mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams) pitch = torch.LongTensor(item.get("pitch"))[:max_frames] # print(item.keys(), item['mel'].shape, spec.shape) sample = { "id": index, "item_name": item['item_name'], "text": item['txt'], "mel": spec, "pitch": pitch, "f0": f0, "uv": uv, # "mel2ph": mel2ph, # "mel_nonpadding": spec.abs().sum(-1) > 0, } return sample def collater(self, samples): if len(samples) == 0: return {} id = torch.LongTensor([s['id'] for s in samples]) item_names = [s['item_name'] for s in samples] text = [s['text'] for s in samples] f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) pitch = utils.collate_1d([s['pitch'] for s in samples]) uv = utils.collate_1d([s['uv'] for s in samples]) mels = utils.collate_2d([s['mel'] for s in samples], 0.0) mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) # mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \ # if samples[0]['mel2ph'] is not None else None # mel_nonpaddings = utils.collate_1d([s['mel_nonpadding'].float() for s in samples], 0.0) batch = { 'id': id, 'item_name': item_names, 'nsamples': len(samples), 'text': text, 'mels': mels, 'mel_lengths': mel_lengths, 'pitch': pitch, # 'mel2ph': mel2ph, # 'mel_nonpaddings': mel_nonpaddings, 'f0': f0, 'uv': uv, } return batch class PitchExtractionTask(FastSpeech2Task): def __init__(self): super().__init__() self.dataset_cls = PeDataset def build_tts_model(self): self.model = PitchExtractor(conv_layers=hparams['pitch_extractor_conv_layers']) # def build_scheduler(self, optimizer): # return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5) def _training_step(self, sample, batch_idx, _): loss_output = self.run_model(self.model, sample) total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad]) loss_output['batch_size'] = sample['mels'].size()[0] return total_loss, loss_output def validation_step(self, sample, batch_idx): outputs = {} outputs['losses'] = {} outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=True) outputs['total_loss'] = sum(outputs['losses'].values()) outputs['nsamples'] = sample['nsamples'] outputs = utils.tensors_to_scalars(outputs) if batch_idx < hparams['num_valid_plots']: self.plot_pitch(batch_idx, model_out, sample) return outputs def run_model(self, model, sample, return_output=False, infer=False): f0 = sample['f0'] uv = sample['uv'] output = model(sample['mels']) losses = {} self.add_pitch_loss(output, sample, losses) if not return_output: return losses else: return losses, output def plot_pitch(self, batch_idx, model_out, sample): gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) self.logger.experiment.add_figure( f'f0_{batch_idx}', f0_to_figure(gt_f0[0], None, model_out['f0_denorm_pred'][0]), self.global_step) def add_pitch_loss(self, output, sample, losses): # mel2ph = sample['mel2ph'] # [B, T_s] mel = sample['mels'] f0 = sample['f0'] uv = sample['uv'] # nonpadding = (mel2ph != 0).float() if hparams['pitch_type'] == 'frame' \ # else (sample['txt_tokens'] != 0).float() nonpadding = (mel.abs().sum(-1) > 0).float() # sample['mel_nonpaddings'] # print(nonpadding[0][-8:], nonpadding.shape) self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/tts/pe.py
import glob import importlib import os from resemblyzer import VoiceEncoder import numpy as np import torch import torch.distributed as dist from torch.utils.data import DistributedSampler import utils from tasks.base_task import BaseDataset from utils.hparams import hparams from utils.indexed_datasets import IndexedDataset from tqdm import tqdm class EndlessDistributedSampler(DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.shuffle = shuffle g = torch.Generator() g.manual_seed(self.epoch) if self.shuffle: indices = [i for _ in range(1000) for i in torch.randperm( len(self.dataset), generator=g).tolist()] else: indices = [i for _ in range(1000) for i in list(range(len(self.dataset)))] indices = indices[:len(indices) // self.num_replicas * self.num_replicas] indices = indices[self.rank::self.num_replicas] self.indices = indices def __iter__(self): return iter(self.indices) def __len__(self): return len(self.indices) class VocoderDataset(BaseDataset): def __init__(self, prefix, shuffle=False): super().__init__(shuffle) self.hparams = hparams self.prefix = prefix self.data_dir = hparams['binary_data_dir'] self.is_infer = prefix == 'test' self.batch_max_frames = 0 if self.is_infer else hparams['max_samples'] // hparams['hop_size'] self.aux_context_window = hparams['aux_context_window'] self.hop_size = hparams['hop_size'] if self.is_infer and hparams['test_input_dir'] != '': self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir']) self.avail_idxs = [i for i, _ in enumerate(self.sizes)] elif self.is_infer and hparams['test_mel_dir'] != '': self.indexed_ds, self.sizes = self.load_mel_inputs(hparams['test_mel_dir']) self.avail_idxs = [i for i, _ in enumerate(self.sizes)] else: self.indexed_ds = None self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') self.avail_idxs = [idx for idx, s in enumerate(self.sizes) if s - 2 * self.aux_context_window > self.batch_max_frames] print(f"| {len(self.sizes) - len(self.avail_idxs)} short items are skipped in {prefix} set.") self.sizes = [s for idx, s in enumerate(self.sizes) if s - 2 * self.aux_context_window > self.batch_max_frames] def _get_item(self, index): if self.indexed_ds is None: self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') item = self.indexed_ds[index] return item def __getitem__(self, index): index = self.avail_idxs[index] item = self._get_item(index) sample = { "id": index, "item_name": item['item_name'], "mel": torch.FloatTensor(item['mel']), "wav": torch.FloatTensor(item['wav'].astype(np.float32)), } if 'pitch' in item: sample['pitch'] = torch.LongTensor(item['pitch']) sample['f0'] = torch.FloatTensor(item['f0']) if hparams.get('use_spk_embed', False): sample["spk_embed"] = torch.Tensor(item['spk_embed']) if hparams.get('use_emo_embed', False): sample["emo_embed"] = torch.Tensor(item['emo_embed']) return sample def collater(self, batch): if len(batch) == 0: return {} y_batch, c_batch, p_batch, f0_batch = [], [], [], [] item_name = [] have_pitch = 'pitch' in batch[0] for idx in range(len(batch)): item_name.append(batch[idx]['item_name']) x, c = batch[idx]['wav'] if self.hparams['use_wav'] else None, batch[idx]['mel'].squeeze(0) if have_pitch: p = batch[idx]['pitch'] f0 = batch[idx]['f0'] if self.hparams['use_wav']:self._assert_ready_for_upsampling(x, c, self.hop_size, 0) if len(c) - 2 * self.aux_context_window > self.batch_max_frames: # randomly pickup with the batch_max_steps length of the part batch_max_frames = self.batch_max_frames if self.batch_max_frames != 0 else len( c) - 2 * self.aux_context_window - 1 batch_max_steps = batch_max_frames * self.hop_size interval_start = self.aux_context_window interval_end = len(c) - batch_max_frames - self.aux_context_window start_frame = np.random.randint(interval_start, interval_end) start_step = start_frame * self.hop_size if self.hparams['use_wav']:y = x[start_step: start_step + batch_max_steps] c = c[start_frame - self.aux_context_window: start_frame + self.aux_context_window + batch_max_frames] if have_pitch: p = p[start_frame - self.aux_context_window: start_frame + self.aux_context_window + batch_max_frames] f0 = f0[start_frame - self.aux_context_window: start_frame + self.aux_context_window + batch_max_frames] if self.hparams['use_wav']:self._assert_ready_for_upsampling(y, c, self.hop_size, self.aux_context_window) else: print(f"Removed short sample from batch (length={len(x)}).") continue if self.hparams['use_wav']:y_batch += [y.reshape(-1, 1)] # [(T, 1), (T, 1), ...] c_batch += [c] # [(T' C), (T' C), ...] if have_pitch: p_batch += [p] # [(T' C), (T' C), ...] f0_batch += [f0] # [(T' C), (T' C), ...] # convert each batch to tensor, asuume that each item in batch has the same length if self.hparams['use_wav']:y_batch = utils.collate_2d(y_batch, 0).transpose(2, 1) # (B, 1, T) c_batch = utils.collate_2d(c_batch, 0).transpose(2, 1) # (B, C, T') if have_pitch: p_batch = utils.collate_1d(p_batch, 0) # (B, T') f0_batch = utils.collate_1d(f0_batch, 0) # (B, T') else: p_batch, f0_batch = None, None # make input noise signal batch tensor if self.hparams['use_wav']: z_batch = torch.randn(y_batch.size()) # (B, 1, T) else: z_batch=[] return { 'z': z_batch, 'mels': c_batch, 'wavs': y_batch, 'pitches': p_batch, 'f0': f0_batch, 'item_name': item_name } @staticmethod def _assert_ready_for_upsampling(x, c, hop_size, context_window): """Assert the audio and feature lengths are correctly adjusted for upsamping.""" assert len(x) == (len(c) - 2 * context_window) * hop_size def load_test_inputs(self, test_input_dir, spk_id=0): inp_wav_paths = sorted(glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/**/*.mp3')) sizes = [] items = [] binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizer.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) binarization_args = hparams['binarization_args'] for wav_fn in inp_wav_paths: item_name = wav_fn[len(test_input_dir) + 1:].replace("/", "_") item = binarizer_cls.process_item( item_name, wav_fn, binarization_args) items.append(item) sizes.append(item['len']) return items, sizes def load_mel_inputs(self, test_input_dir, spk_id=0): inp_mel_paths = sorted(glob.glob(f'{test_input_dir}/*.npy')) sizes = [] items = [] binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizer.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) binarization_args = hparams['binarization_args'] for mel in inp_mel_paths: mel_input = np.load(mel) mel_input = torch.FloatTensor(mel_input) item_name = mel[len(test_input_dir) + 1:].replace("/", "_") item = binarizer_cls.process_mel_item(item_name, mel_input, None, binarization_args) items.append(item) sizes.append(item['len']) return items, sizes
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/vocoder/dataset_utils.py
import os import torch import torch.distributed as dist from torch.utils.data import DistributedSampler from tasks.base_task import BaseTask from tasks.base_task import data_loader from tasks.vocoder.dataset_utils import VocoderDataset, EndlessDistributedSampler from utils.hparams import hparams class VocoderBaseTask(BaseTask): def __init__(self): super(VocoderBaseTask, self).__init__() self.max_sentences = hparams['max_sentences'] self.max_valid_sentences = hparams['max_valid_sentences'] if self.max_valid_sentences == -1: hparams['max_valid_sentences'] = self.max_valid_sentences = self.max_sentences self.dataset_cls = VocoderDataset @data_loader def train_dataloader(self): train_dataset = self.dataset_cls('train', shuffle=True) return self.build_dataloader(train_dataset, True, self.max_sentences, hparams['endless_ds']) @data_loader def val_dataloader(self): valid_dataset = self.dataset_cls('valid', shuffle=False) return self.build_dataloader(valid_dataset, False, self.max_valid_sentences) @data_loader def test_dataloader(self): test_dataset = self.dataset_cls('test', shuffle=False) return self.build_dataloader(test_dataset, False, self.max_valid_sentences) def build_dataloader(self, dataset, shuffle, max_sentences, endless=False): world_size = 1 rank = 0 if dist.is_initialized(): world_size = dist.get_world_size() rank = dist.get_rank() sampler_cls = DistributedSampler if not endless else EndlessDistributedSampler train_sampler = sampler_cls( dataset=dataset, num_replicas=world_size, rank=rank, shuffle=shuffle, ) return torch.utils.data.DataLoader( dataset=dataset, shuffle=False, collate_fn=dataset.collater, batch_size=max_sentences, num_workers=dataset.num_workers, sampler=train_sampler, pin_memory=True, ) def test_start(self): self.gen_dir = os.path.join(hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') os.makedirs(self.gen_dir, exist_ok=True) def test_end(self, outputs): return {}
EXA-1-master
exa/models/AudioGPT/NeuralSeq/tasks/vocoder/vocoder_base.py
import librosa from utils.hparams import hparams import numpy as np def denoise(wav, v=0.1): spec = librosa.stft(y=wav, n_fft=hparams['fft_size'], hop_length=hparams['hop_size'], win_length=hparams['win_size'], pad_mode='constant') spec_m = np.abs(spec) spec_m = np.clip(spec_m - v, a_min=0, a_max=None) spec_a = np.angle(spec) return librosa.istft(spec_m * np.exp(1j * spec_a), hop_length=hparams['hop_size'], win_length=hparams['win_size'])
EXA-1-master
exa/models/AudioGPT/NeuralSeq/vocoders/vocoder_utils.py
import glob import re import librosa import torch import yaml from sklearn.preprocessing import StandardScaler from torch import nn from modules.parallel_wavegan.models import ParallelWaveGANGenerator from modules.parallel_wavegan.utils import read_hdf5 from utils.hparams import hparams from utils.pitch_utils import f0_to_coarse from vocoders.base_vocoder import BaseVocoder, register_vocoder import numpy as np def load_pwg_model(config_path, checkpoint_path, stats_path): # load config with open(config_path) as f: config = yaml.load(f, Loader=yaml.Loader) # setup if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") model = ParallelWaveGANGenerator(**config["generator_params"]) ckpt_dict = torch.load(checkpoint_path, map_location="cpu") if 'state_dict' not in ckpt_dict: # official vocoder model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")["model"]["generator"]) scaler = StandardScaler() if config["format"] == "hdf5": scaler.mean_ = read_hdf5(stats_path, "mean") scaler.scale_ = read_hdf5(stats_path, "scale") elif config["format"] == "npy": scaler.mean_ = np.load(stats_path)[0] scaler.scale_ = np.load(stats_path)[1] else: raise ValueError("support only hdf5 or npy format.") else: # custom PWG vocoder fake_task = nn.Module() fake_task.model_gen = model fake_task.load_state_dict(torch.load(checkpoint_path, map_location="cpu")["state_dict"], strict=False) scaler = None model.remove_weight_norm() model = model.eval().to(device) print(f"| Loaded model parameters from {checkpoint_path}.") print(f"| PWG device: {device}.") return model, scaler, config, device @register_vocoder class PWG(BaseVocoder): def __init__(self): if hparams['vocoder_ckpt'] == '': # load LJSpeech PWG pretrained model base_dir = 'wavegan_pretrained' ckpts = glob.glob(f'{base_dir}/checkpoint-*steps.pkl') ckpt = sorted(ckpts, key= lambda x: int(re.findall(f'{base_dir}/checkpoint-(\d+)steps.pkl', x)[0]))[-1] config_path = f'{base_dir}/config.yaml' print('| load PWG: ', ckpt) self.model, self.scaler, self.config, self.device = load_pwg_model( config_path=config_path, checkpoint_path=ckpt, stats_path=f'{base_dir}/stats.h5', ) else: base_dir = hparams['vocoder_ckpt'] print(base_dir) config_path = f'{base_dir}/config.yaml' ckpt = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key= lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0]))[-1] print('| load PWG: ', ckpt) self.scaler = None self.model, _, self.config, self.device = load_pwg_model( config_path=config_path, checkpoint_path=ckpt, stats_path=f'{base_dir}/stats.h5', ) def spec2wav(self, mel, **kwargs): # start generation config = self.config device = self.device pad_size = (config["generator_params"]["aux_context_window"], config["generator_params"]["aux_context_window"]) c = mel if self.scaler is not None: c = self.scaler.transform(c) with torch.no_grad(): z = torch.randn(1, 1, c.shape[0] * config["hop_size"]).to(device) c = np.pad(c, (pad_size, (0, 0)), "edge") c = torch.FloatTensor(c).unsqueeze(0).transpose(2, 1).to(device) p = kwargs.get('f0') if p is not None: p = f0_to_coarse(p) p = np.pad(p, (pad_size,), "edge") p = torch.LongTensor(p[None, :]).to(device) y = self.model(z, c, p).view(-1) wav_out = y.cpu().numpy() return wav_out @staticmethod def wav2spec(wav_fn, return_linear=False): from data_gen.tts.data_gen_utils import process_utterance res = process_utterance( wav_fn, fft_size=hparams['fft_size'], hop_size=hparams['hop_size'], win_length=hparams['win_size'], num_mels=hparams['audio_num_mel_bins'], fmin=hparams['fmin'], fmax=hparams['fmax'], sample_rate=hparams['audio_sample_rate'], loud_norm=hparams['loud_norm'], min_level_db=hparams['min_level_db'], return_linear=return_linear, vocoder='pwg', eps=float(hparams.get('wav2spec_eps', 1e-10))) if return_linear: return res[0], res[1].T, res[2].T # [T, 80], [T, n_fft] else: return res[0], res[1].T @staticmethod def wav2mfcc(wav_fn): fft_size = hparams['fft_size'] hop_size = hparams['hop_size'] win_length = hparams['win_size'] sample_rate = hparams['audio_sample_rate'] wav, _ = librosa.core.load(wav_fn, sr=sample_rate) mfcc = librosa.feature.mfcc(y=wav, sr=sample_rate, n_mfcc=13, n_fft=fft_size, hop_length=hop_size, win_length=win_length, pad_mode="constant", power=1.0) mfcc_delta = librosa.feature.delta(mfcc, order=1) mfcc_delta_delta = librosa.feature.delta(mfcc, order=2) mfcc = np.concatenate([mfcc, mfcc_delta, mfcc_delta_delta]).T return mfcc
EXA-1-master
exa/models/AudioGPT/NeuralSeq/vocoders/pwg.py
from vocoders import hifigan
EXA-1-master
exa/models/AudioGPT/NeuralSeq/vocoders/__init__.py
import glob import json import os import re import librosa import torch import utils from modules.hifigan.hifigan import HifiGanGenerator from utils.hparams import hparams, set_hparams from vocoders.base_vocoder import register_vocoder from vocoders.pwg import PWG from vocoders.vocoder_utils import denoise def load_model(config_path, checkpoint_path): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ckpt_dict = torch.load(checkpoint_path, map_location="cpu") if '.yaml' in config_path: config = set_hparams(config_path, global_hparams=False) state = ckpt_dict["state_dict"]["model_gen"] elif '.json' in config_path: config = json.load(open(config_path, 'r')) state = ckpt_dict["generator"] model = HifiGanGenerator(config) model.load_state_dict(state, strict=True) model.remove_weight_norm() model = model.eval().to(device) print(f"| Loaded model parameters from {checkpoint_path}.") print(f"| HifiGAN device: {device}.") return model, config, device total_time = 0 @register_vocoder class HifiGAN(PWG): def __init__(self): base_dir = hparams['vocoder_ckpt'] config_path = f'{base_dir}/config.yaml' if os.path.exists(config_path): ckpt = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key= lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0]))[-1] print('| load HifiGAN: ', ckpt) self.model, self.config, self.device = load_model(config_path=config_path, checkpoint_path=ckpt) else: config_path = f'{base_dir}/config.json' ckpt = f'{base_dir}/generator_v1' if os.path.exists(config_path): self.model, self.config, self.device = load_model(config_path=config_path, checkpoint_path=ckpt) def spec2wav(self, mel, **kwargs): device = self.device with torch.no_grad(): c = torch.FloatTensor(mel).unsqueeze(0).transpose(2, 1).to(device) with utils.Timer('hifigan', print_time=hparams['profile_infer']): f0 = kwargs.get('f0') if f0 is not None and hparams.get('use_nsf'): f0 = torch.FloatTensor(f0[None, :]).to(device) y = self.model(c, f0).view(-1) else: y = self.model(c).view(-1) wav_out = y.cpu().numpy() if hparams.get('vocoder_denoise_c', 0.0) > 0: wav_out = denoise(wav_out, v=hparams['vocoder_denoise_c']) return wav_out # @staticmethod # def wav2spec(wav_fn, **kwargs): # wav, _ = librosa.core.load(wav_fn, sr=hparams['audio_sample_rate']) # wav_torch = torch.FloatTensor(wav)[None, :] # mel = mel_spectrogram(wav_torch, hparams).numpy()[0] # return wav, mel.T
EXA-1-master
exa/models/AudioGPT/NeuralSeq/vocoders/hifigan.py
import importlib VOCODERS = {} def register_vocoder(cls): VOCODERS[cls.__name__.lower()] = cls VOCODERS[cls.__name__] = cls return cls def get_vocoder_cls(hparams): if hparams['vocoder'] in VOCODERS: return VOCODERS[hparams['vocoder']] else: vocoder_cls = hparams['vocoder'] pkg = ".".join(vocoder_cls.split(".")[:-1]) cls_name = vocoder_cls.split(".")[-1] vocoder_cls = getattr(importlib.import_module(pkg), cls_name) return vocoder_cls class BaseVocoder: def spec2wav(self, mel): """ :param mel: [T, 80] :return: wav: [T'] """ raise NotImplementedError @staticmethod def wav2spec(wav_fn): """ :param wav_fn: str :return: wav, mel: [T, 80] """ raise NotImplementedError
EXA-1-master
exa/models/AudioGPT/NeuralSeq/vocoders/base_vocoder.py
import warnings warnings.filterwarnings("ignore") import parselmouth import os import torch from skimage.transform import resize from utils.text_encoder import TokenTextEncoder from utils.pitch_utils import f0_to_coarse import struct import webrtcvad from scipy.ndimage.morphology import binary_dilation import librosa import numpy as np from utils import audio import pyloudnorm as pyln import re import json from collections import OrderedDict PUNCS = '!,.?;:' int16_max = (2 ** 15) - 1 def trim_long_silences(path, sr=None, return_raw_wav=False, norm=True, vad_max_silence_length=12): """ Ensures that segments without voice in the waveform remain no longer than a threshold determined by the VAD parameters in params.py. :param wav: the raw waveform as a numpy array of floats :param vad_max_silence_length: Maximum number of consecutive silent frames a segment can have. :return: the same waveform with silences trimmed away (length <= original wav length) """ ## Voice Activation Detection # Window size of the VAD. Must be either 10, 20 or 30 milliseconds. # This sets the granularity of the VAD. Should not need to be changed. sampling_rate = 16000 wav_raw, sr = librosa.core.load(path, sr=sr) if norm: meter = pyln.Meter(sr) # create BS.1770 meter loudness = meter.integrated_loudness(wav_raw) wav_raw = pyln.normalize.loudness(wav_raw, loudness, -20.0) if np.abs(wav_raw).max() > 1.0: wav_raw = wav_raw / np.abs(wav_raw).max() wav = librosa.resample(wav_raw, sr, sampling_rate, res_type='kaiser_best') vad_window_length = 30 # In milliseconds # Number of frames to average together when performing the moving average smoothing. # The larger this value, the larger the VAD variations must be to not get smoothed out. vad_moving_average_width = 8 # Compute the voice detection window size samples_per_window = (vad_window_length * sampling_rate) // 1000 # Trim the end of the audio to have a multiple of the window size wav = wav[:len(wav) - (len(wav) % samples_per_window)] # Convert the float waveform to 16-bit mono PCM pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16)) # Perform voice activation detection voice_flags = [] vad = webrtcvad.Vad(mode=3) for window_start in range(0, len(wav), samples_per_window): window_end = window_start + samples_per_window voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2], sample_rate=sampling_rate)) voice_flags = np.array(voice_flags) # Smooth the voice detection with a moving average def moving_average(array, width): array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2))) ret = np.cumsum(array_padded, dtype=float) ret[width:] = ret[width:] - ret[:-width] return ret[width - 1:] / width audio_mask = moving_average(voice_flags, vad_moving_average_width) audio_mask = np.round(audio_mask).astype(np.bool) # Dilate the voiced regions audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1)) audio_mask = np.repeat(audio_mask, samples_per_window) audio_mask = resize(audio_mask, (len(wav_raw),)) > 0 if return_raw_wav: return wav_raw, audio_mask, sr return wav_raw[audio_mask], audio_mask, sr def process_utterance(wav_path, fft_size=1024, hop_size=256, win_length=1024, window="hann", num_mels=80, fmin=80, fmax=7600, eps=1e-6, sample_rate=22050, loud_norm=False, min_level_db=-100, return_linear=False, trim_long_sil=False, vocoder='pwg'): if isinstance(wav_path, str): if trim_long_sil: wav, _, _ = trim_long_silences(wav_path, sample_rate) else: wav, _ = librosa.core.load(wav_path, sr=sample_rate) else: wav = wav_path if loud_norm: meter = pyln.Meter(sample_rate) # create BS.1770 meter loudness = meter.integrated_loudness(wav) wav = pyln.normalize.loudness(wav, loudness, -22.0) if np.abs(wav).max() > 1: wav = wav / np.abs(wav).max() # get amplitude spectrogram x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size, win_length=win_length, window=window, pad_mode="constant") spc = np.abs(x_stft) # (n_bins, T) # get mel basis fmin = 0 if fmin == -1 else fmin fmax = sample_rate / 2 if fmax == -1 else fmax mel_basis = librosa.filters.mel(sample_rate, fft_size, num_mels, fmin, fmax) mel = mel_basis @ spc if vocoder == 'pwg': mel = np.log10(np.maximum(eps, mel)) # (n_mel_bins, T) else: assert False, f'"{vocoder}" is not in ["pwg"].' l_pad, r_pad = audio.librosa_pad_lr(wav, fft_size, hop_size, 1) wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0) wav = wav[:mel.shape[1] * hop_size] if not return_linear: return wav, mel else: spc = audio.amp_to_db(spc) spc = audio.normalize(spc, {'min_level_db': min_level_db}) return wav, mel, spc def get_pitch(wav_data, mel, hparams): """ :param wav_data: [T] :param mel: [T, 80] :param hparams: :return: """ time_step = hparams['hop_size'] / hparams['audio_sample_rate'] * 1000 f0_min = 80 f0_max = 750 if hparams['hop_size'] == 128: pad_size = 4 elif hparams['hop_size'] == 256: pad_size = 2 else: assert False f0 = parselmouth.Sound(wav_data, hparams['audio_sample_rate']).to_pitch_ac( time_step=time_step / 1000, voicing_threshold=0.6, pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] lpad = pad_size * 2 rpad = len(mel) - len(f0) - lpad f0 = np.pad(f0, [[lpad, rpad]], mode='constant') # mel and f0 are extracted by 2 different libraries. we should force them to have the same length. # Attention: we find that new version of some libraries could cause ``rpad'' to be a negetive value... # Just to be sure, we recommend users to set up the same environments as them in requirements_auto.txt (by Anaconda) delta_l = len(mel) - len(f0) assert np.abs(delta_l) <= 8 if delta_l > 0: f0 = np.concatenate([f0, [f0[-1]] * delta_l], 0) f0 = f0[:len(mel)] pitch_coarse = f0_to_coarse(f0) return f0, pitch_coarse def remove_empty_lines(text): """remove empty lines""" assert (len(text) > 0) assert (isinstance(text, list)) text = [t.strip() for t in text] if "" in text: text.remove("") return text class TextGrid(object): def __init__(self, text): text = remove_empty_lines(text) self.text = text self.line_count = 0 self._get_type() self._get_time_intval() self._get_size() self.tier_list = [] self._get_item_list() def _extract_pattern(self, pattern, inc): """ Parameters ---------- pattern : regex to extract pattern inc : increment of line count after extraction Returns ------- group : extracted info """ try: group = re.match(pattern, self.text[self.line_count]).group(1) self.line_count += inc except AttributeError: raise ValueError("File format error at line %d:%s" % (self.line_count, self.text[self.line_count])) return group def _get_type(self): self.file_type = self._extract_pattern(r"File type = \"(.*)\"", 2) def _get_time_intval(self): self.xmin = self._extract_pattern(r"xmin = (.*)", 1) self.xmax = self._extract_pattern(r"xmax = (.*)", 2) def _get_size(self): self.size = int(self._extract_pattern(r"size = (.*)", 2)) def _get_item_list(self): """Only supports IntervalTier currently""" for itemIdx in range(1, self.size + 1): tier = OrderedDict() item_list = [] tier_idx = self._extract_pattern(r"item \[(.*)\]:", 1) tier_class = self._extract_pattern(r"class = \"(.*)\"", 1) if tier_class != "IntervalTier": raise NotImplementedError("Only IntervalTier class is supported currently") tier_name = self._extract_pattern(r"name = \"(.*)\"", 1) tier_xmin = self._extract_pattern(r"xmin = (.*)", 1) tier_xmax = self._extract_pattern(r"xmax = (.*)", 1) tier_size = self._extract_pattern(r"intervals: size = (.*)", 1) for i in range(int(tier_size)): item = OrderedDict() item["idx"] = self._extract_pattern(r"intervals \[(.*)\]", 1) item["xmin"] = self._extract_pattern(r"xmin = (.*)", 1) item["xmax"] = self._extract_pattern(r"xmax = (.*)", 1) item["text"] = self._extract_pattern(r"text = \"(.*)\"", 1) item_list.append(item) tier["idx"] = tier_idx tier["class"] = tier_class tier["name"] = tier_name tier["xmin"] = tier_xmin tier["xmax"] = tier_xmax tier["size"] = tier_size tier["items"] = item_list self.tier_list.append(tier) def toJson(self): _json = OrderedDict() _json["file_type"] = self.file_type _json["xmin"] = self.xmin _json["xmax"] = self.xmax _json["size"] = self.size _json["tiers"] = self.tier_list return json.dumps(_json, ensure_ascii=False, indent=2) def get_mel2ph(tg_fn, ph, mel, hparams): ph_list = ph.split(" ") with open(tg_fn, "r") as f: tg = f.readlines() tg = remove_empty_lines(tg) tg = TextGrid(tg) tg = json.loads(tg.toJson()) split = np.ones(len(ph_list) + 1, np.float) * -1 tg_idx = 0 ph_idx = 0 tg_align = [x for x in tg['tiers'][-1]['items']] tg_align_ = [] for x in tg_align: x['xmin'] = float(x['xmin']) x['xmax'] = float(x['xmax']) if x['text'] in ['sil', 'sp', '', 'SIL', 'PUNC']: x['text'] = '' if len(tg_align_) > 0 and tg_align_[-1]['text'] == '': tg_align_[-1]['xmax'] = x['xmax'] continue tg_align_.append(x) tg_align = tg_align_ tg_len = len([x for x in tg_align if x['text'] != '']) ph_len = len([x for x in ph_list if not is_sil_phoneme(x)]) assert tg_len == ph_len, (tg_len, ph_len, tg_align, ph_list, tg_fn) while tg_idx < len(tg_align) or ph_idx < len(ph_list): if tg_idx == len(tg_align) and is_sil_phoneme(ph_list[ph_idx]): split[ph_idx] = 1e8 ph_idx += 1 continue x = tg_align[tg_idx] if x['text'] == '' and ph_idx == len(ph_list): tg_idx += 1 continue assert ph_idx < len(ph_list), (tg_len, ph_len, tg_align, ph_list, tg_fn) ph = ph_list[ph_idx] if x['text'] == '' and not is_sil_phoneme(ph): assert False, (ph_list, tg_align) if x['text'] != '' and is_sil_phoneme(ph): ph_idx += 1 else: assert (x['text'] == '' and is_sil_phoneme(ph)) \ or x['text'].lower() == ph.lower() \ or x['text'].lower() == 'sil', (x['text'], ph) split[ph_idx] = x['xmin'] if ph_idx > 0 and split[ph_idx - 1] == -1 and is_sil_phoneme(ph_list[ph_idx - 1]): split[ph_idx - 1] = split[ph_idx] ph_idx += 1 tg_idx += 1 assert tg_idx == len(tg_align), (tg_idx, [x['text'] for x in tg_align]) assert ph_idx >= len(ph_list) - 1, (ph_idx, ph_list, len(ph_list), [x['text'] for x in tg_align], tg_fn) mel2ph = np.zeros([mel.shape[0]], np.int) split[0] = 0 split[-1] = 1e8 for i in range(len(split) - 1): assert split[i] != -1 and split[i] <= split[i + 1], (split[:-1],) split = [int(s * hparams['audio_sample_rate'] / hparams['hop_size'] + 0.5) for s in split] for ph_idx in range(len(ph_list)): mel2ph[split[ph_idx]:split[ph_idx + 1]] = ph_idx + 1 mel2ph_torch = torch.from_numpy(mel2ph) T_t = len(ph_list) dur = mel2ph_torch.new_zeros([T_t + 1]).scatter_add(0, mel2ph_torch, torch.ones_like(mel2ph_torch)) dur = dur[1:].numpy() return mel2ph, dur def build_phone_encoder(data_dir): phone_list_file = os.path.join(data_dir, 'phone_set.json') phone_list = json.load(open(phone_list_file)) return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',') def build_word_encoder(data_dir): word_list_file = os.path.join(data_dir, 'word_set.json') word_list = json.load(open(word_list_file)) return TokenTextEncoder(None, vocab_list=word_list, replace_oov=',') def is_sil_phoneme(p): return not p[0].isalpha() def build_token_encoder(token_list_file): token_list = json.load(open(token_list_file)) return TokenTextEncoder(None, vocab_list=token_list, replace_oov='<UNK>')
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/data_gen_utils.py
import os os.environ["OMP_NUM_THREADS"] = "1" from utils.multiprocess_utils import chunked_multiprocess_run import random import traceback import json from resemblyzer import VoiceEncoder from tqdm import tqdm from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder from utils.hparams import set_hparams, hparams import numpy as np from utils.indexed_datasets import IndexedDatasetBuilder from vocoders.base_vocoder import VOCODERS import pandas as pd class BinarizationError(Exception): pass class BaseBinarizer: def __init__(self, processed_data_dir=None): if processed_data_dir is None: processed_data_dir = hparams['processed_data_dir'] self.processed_data_dirs = processed_data_dir.split(",") self.binarization_args = hparams['binarization_args'] self.pre_align_args = hparams['pre_align_args'] self.forced_align = self.pre_align_args['forced_align'] tg_dir = None if self.forced_align == 'mfa': tg_dir = 'mfa_outputs' if self.forced_align == 'kaldi': tg_dir = 'kaldi_outputs' self.item2txt = {} self.item2ph = {} self.item2wavfn = {} self.item2tgfn = {} self.item2spk = {} for ds_id, processed_data_dir in enumerate(self.processed_data_dirs): self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str) for r_idx, r in self.meta_df.iterrows(): item_name = raw_item_name = r['item_name'] if len(self.processed_data_dirs) > 1: item_name = f'ds{ds_id}_{item_name}' self.item2txt[item_name] = r['txt'] self.item2ph[item_name] = r['ph'] self.item2wavfn[item_name] = os.path.join(hparams['raw_data_dir'], 'wavs', os.path.basename(r['wav_fn']).split('_')[1]) self.item2spk[item_name] = r.get('spk', 'SPK1') if len(self.processed_data_dirs) > 1: self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}" if tg_dir is not None: self.item2tgfn[item_name] = f"{processed_data_dir}/{tg_dir}/{raw_item_name}.TextGrid" self.item_names = sorted(list(self.item2txt.keys())) if self.binarization_args['shuffle']: random.seed(1234) random.shuffle(self.item_names) @property def train_item_names(self): return self.item_names[hparams['test_num']+hparams['valid_num']:] @property def valid_item_names(self): return self.item_names[0: hparams['test_num']+hparams['valid_num']] # @property def test_item_names(self): return self.item_names[0: hparams['test_num']] # Audios for MOS testing are in 'test_ids' def build_spk_map(self): spk_map = set() for item_name in self.item_names: spk_name = self.item2spk[item_name] spk_map.add(spk_name) spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))} assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map) return spk_map def item_name2spk_id(self, item_name): return self.spk_map[self.item2spk[item_name]] def _phone_encoder(self): ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json" ph_set = [] if hparams['reset_phone_dict'] or not os.path.exists(ph_set_fn): for processed_data_dir in self.processed_data_dirs: ph_set += [x.split(' ')[0] for x in open(f'{processed_data_dir}/dict.txt').readlines()] ph_set = sorted(set(ph_set)) json.dump(ph_set, open(ph_set_fn, 'w')) else: ph_set = json.load(open(ph_set_fn, 'r')) print("| phone set: ", ph_set) return build_phone_encoder(hparams['binary_data_dir']) def meta_data(self, prefix): if prefix == 'valid': item_names = self.valid_item_names elif prefix == 'test': item_names = self.test_item_names else: item_names = self.train_item_names for item_name in item_names: ph = self.item2ph[item_name] txt = self.item2txt[item_name] tg_fn = self.item2tgfn.get(item_name) wav_fn = self.item2wavfn[item_name] spk_id = self.item_name2spk_id(item_name) yield item_name, ph, txt, tg_fn, wav_fn, spk_id def process(self): os.makedirs(hparams['binary_data_dir'], exist_ok=True) self.spk_map = self.build_spk_map() print("| spk_map: ", self.spk_map) spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json" json.dump(self.spk_map, open(spk_map_fn, 'w')) self.phone_encoder = self._phone_encoder() self.process_data('valid') self.process_data('test') self.process_data('train') def process_data(self, prefix): data_dir = hparams['binary_data_dir'] args = [] builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}') lengths = [] f0s = [] total_sec = 0 if self.binarization_args['with_spk_embed']: voice_encoder = VoiceEncoder().cuda() meta_data = list(self.meta_data(prefix)) for m in meta_data: args.append(list(m) + [self.phone_encoder, self.binarization_args]) num_workers = int(os.getenv('N_PROC', os.cpu_count() // 3)) for f_id, (_, item) in enumerate( zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))): if item is None: continue item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \ if self.binarization_args['with_spk_embed'] else None if not self.binarization_args['with_wav'] and 'wav' in item: print("del wav") del item['wav'] builder.add_item(item) lengths.append(item['len']) total_sec += item['sec'] if item.get('f0') is not None: f0s.append(item['f0']) builder.finalize() np.save(f'{data_dir}/{prefix}_lengths.npy', lengths) if len(f0s) > 0: f0s = np.concatenate(f0s, 0) f0s = f0s[f0s != 0] np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()]) print(f"| {prefix} total duration: {total_sec:.3f}s") @classmethod def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args): if hparams['vocoder'] in VOCODERS: wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn) else: wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn) res = { 'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn, 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id } try: if binarization_args['with_f0']: cls.get_pitch(wav, mel, res) if binarization_args['with_f0cwt']: cls.get_f0cwt(res['f0'], res) if binarization_args['with_txt']: try: phone_encoded = res['phone'] = encoder.encode(ph) except: traceback.print_exc() raise BinarizationError(f"Empty phoneme") if binarization_args['with_align']: cls.get_align(tg_fn, ph, mel, phone_encoded, res) except BinarizationError as e: print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}") return None return res @staticmethod def get_align(tg_fn, ph, mel, phone_encoded, res): if tg_fn is not None and os.path.exists(tg_fn): mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams) else: raise BinarizationError(f"Align not found") if mel2ph.max() - 1 >= len(phone_encoded): raise BinarizationError( f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}") res['mel2ph'] = mel2ph res['dur'] = dur @staticmethod def get_pitch(wav, mel, res): f0, pitch_coarse = get_pitch(wav, mel, hparams) if sum(f0) == 0: raise BinarizationError("Empty f0") res['f0'] = f0 res['pitch'] = pitch_coarse @staticmethod def get_f0cwt(f0, res): from utils.cwt import get_cont_lf0, get_lf0_cwt uv, cont_lf0_lpf = get_cont_lf0(f0) logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf) cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm) if np.any(np.isnan(Wavelet_lf0)): raise BinarizationError("NaN CWT") res['cwt_spec'] = Wavelet_lf0 res['cwt_scales'] = scales res['f0_mean'] = logf0s_mean_org res['f0_std'] = logf0s_std_org if __name__ == "__main__": set_hparams() BaseBinarizer().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/base_binarizer.py
import os os.environ["OMP_NUM_THREADS"] = "1" import torch from collections import Counter from utils.text_encoder import TokenTextEncoder from data_gen.tts.emotion import inference as EmotionEncoder from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance from data_gen.tts.emotion.inference import preprocess_wav from utils.multiprocess_utils import chunked_multiprocess_run import random import traceback import json from resemblyzer import VoiceEncoder from tqdm import tqdm from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder, is_sil_phoneme from utils.hparams import hparams, set_hparams import numpy as np from utils.indexed_datasets import IndexedDatasetBuilder from vocoders.base_vocoder import get_vocoder_cls import pandas as pd class BinarizationError(Exception): pass class EmotionBinarizer: def __init__(self, processed_data_dir=None): if processed_data_dir is None: processed_data_dir = hparams['processed_data_dir'] self.processed_data_dirs = processed_data_dir.split(",") self.binarization_args = hparams['binarization_args'] self.pre_align_args = hparams['pre_align_args'] self.item2txt = {} self.item2ph = {} self.item2wavfn = {} self.item2tgfn = {} self.item2spk = {} self.item2emo = {} def load_meta_data(self): for ds_id, processed_data_dir in enumerate(self.processed_data_dirs): self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str) for r_idx, r in tqdm(self.meta_df.iterrows(), desc='Loading meta data.'): item_name = raw_item_name = r['item_name'] if len(self.processed_data_dirs) > 1: item_name = f'ds{ds_id}_{item_name}' self.item2txt[item_name] = r['txt'] self.item2ph[item_name] = r['ph'] self.item2wavfn[item_name] = r['wav_fn'] self.item2spk[item_name] = r.get('spk_name', 'SPK1') \ if self.binarization_args['with_spk_id'] else 'SPK1' if len(self.processed_data_dirs) > 1: self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}" self.item2tgfn[item_name] = f"{processed_data_dir}/mfa_outputs/{raw_item_name}.TextGrid" self.item2emo[item_name] = r.get('others', '"Neutral"') self.item_names = sorted(list(self.item2txt.keys())) if self.binarization_args['shuffle']: random.seed(1234) random.shuffle(self.item_names) @property def train_item_names(self): return self.item_names[hparams['test_num']:] @property def valid_item_names(self): return self.item_names[:hparams['test_num']] @property def test_item_names(self): return self.valid_item_names def build_spk_map(self): spk_map = set() for item_name in self.item_names: spk_name = self.item2spk[item_name] spk_map.add(spk_name) spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))} print("| #Spk: ", len(spk_map)) assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map) return spk_map def build_emo_map(self): emo_map = set() for item_name in self.item_names: emo_name = self.item2emo[item_name] emo_map.add(emo_name) emo_map = {x: i for i, x in enumerate(sorted(list(emo_map)))} print("| #Emo: ", len(emo_map)) return emo_map def item_name2spk_id(self, item_name): return self.spk_map[self.item2spk[item_name]] def item_name2emo_id(self, item_name): return self.emo_map[self.item2emo[item_name]] def _phone_encoder(self): ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json" ph_set = [] if self.binarization_args['reset_phone_dict'] or not os.path.exists(ph_set_fn): for ph_sent in self.item2ph.values(): ph_set += ph_sent.split(' ') ph_set = sorted(set(ph_set)) json.dump(ph_set, open(ph_set_fn, 'w')) print("| Build phone set: ", ph_set) else: ph_set = json.load(open(ph_set_fn, 'r')) print("| Load phone set: ", ph_set) return build_phone_encoder(hparams['binary_data_dir']) def _word_encoder(self): fn = f"{hparams['binary_data_dir']}/word_set.json" word_set = [] if self.binarization_args['reset_word_dict']: for word_sent in self.item2txt.values(): word_set += [x for x in word_sent.split(' ') if x != ''] word_set = Counter(word_set) total_words = sum(word_set.values()) word_set = word_set.most_common(hparams['word_size']) num_unk_words = total_words - sum([x[1] for x in word_set]) word_set = [x[0] for x in word_set] json.dump(word_set, open(fn, 'w')) print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words}," f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.") else: word_set = json.load(open(fn, 'r')) print("| Load word set. Size: ", len(word_set), word_set[:10]) return TokenTextEncoder(None, vocab_list=word_set, replace_oov='<UNK>') def meta_data(self, prefix): if prefix == 'valid': item_names = self.valid_item_names elif prefix == 'test': item_names = self.test_item_names else: item_names = self.train_item_names for item_name in item_names: ph = self.item2ph[item_name] txt = self.item2txt[item_name] tg_fn = self.item2tgfn.get(item_name) wav_fn = self.item2wavfn[item_name] spk_id = self.item_name2spk_id(item_name) emotion = self.item_name2emo_id(item_name) yield item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion def process(self): self.load_meta_data() os.makedirs(hparams['binary_data_dir'], exist_ok=True) self.spk_map = self.build_spk_map() print("| spk_map: ", self.spk_map) spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json" json.dump(self.spk_map, open(spk_map_fn, 'w')) self.emo_map = self.build_emo_map() print("| emo_map: ", self.emo_map) emo_map_fn = f"{hparams['binary_data_dir']}/emo_map.json" json.dump(self.emo_map, open(emo_map_fn, 'w')) self.phone_encoder = self._phone_encoder() self.word_encoder = None EmotionEncoder.load_model(hparams['emotion_encoder_path']) if self.binarization_args['with_word']: self.word_encoder = self._word_encoder() self.process_data('valid') self.process_data('test') self.process_data('train') def process_data(self, prefix): data_dir = hparams['binary_data_dir'] args = [] builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}') ph_lengths = [] mel_lengths = [] f0s = [] total_sec = 0 if self.binarization_args['with_spk_embed']: voice_encoder = VoiceEncoder().cuda() meta_data = list(self.meta_data(prefix)) for m in meta_data: args.append(list(m) + [(self.phone_encoder, self.word_encoder), self.binarization_args]) num_workers = self.num_workers for f_id, (_, item) in enumerate( zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))): if item is None: continue item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \ if self.binarization_args['with_spk_embed'] else None processed_wav = preprocess_wav(item['wav_fn']) item['emo_embed'] = Embed_utterance(processed_wav) if not self.binarization_args['with_wav'] and 'wav' in item: del item['wav'] builder.add_item(item) mel_lengths.append(item['len']) if 'ph_len' in item: ph_lengths.append(item['ph_len']) total_sec += item['sec'] if item.get('f0') is not None: f0s.append(item['f0']) builder.finalize() np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths) if len(ph_lengths) > 0: np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths) if len(f0s) > 0: f0s = np.concatenate(f0s, 0) f0s = f0s[f0s != 0] np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()]) print(f"| {prefix} total duration: {total_sec:.3f}s") @classmethod def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion, encoder, binarization_args): res = {'item_name': item_name, 'txt': txt, 'ph': ph, 'wav_fn': wav_fn, 'spk_id': spk_id, 'emotion': emotion} if binarization_args['with_linear']: wav, mel, linear_stft = get_vocoder_cls(hparams).wav2spec(wav_fn) # , return_linear=True res['linear'] = linear_stft else: wav, mel = get_vocoder_cls(hparams).wav2spec(wav_fn) wav = wav.astype(np.float16) res.update({'mel': mel, 'wav': wav, 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]}) try: if binarization_args['with_f0']: cls.get_pitch(res) if binarization_args['with_f0cwt']: cls.get_f0cwt(res) if binarization_args['with_txt']: ph_encoder, word_encoder = encoder try: res['phone'] = ph_encoder.encode(ph) res['ph_len'] = len(res['phone']) except: traceback.print_exc() raise BinarizationError(f"Empty phoneme") if binarization_args['with_align']: cls.get_align(tg_fn, res) if binarization_args['trim_eos_bos']: bos_dur = res['dur'][0] eos_dur = res['dur'][-1] res['mel'] = mel[bos_dur:-eos_dur] res['f0'] = res['f0'][bos_dur:-eos_dur] res['pitch'] = res['pitch'][bos_dur:-eos_dur] res['mel2ph'] = res['mel2ph'][bos_dur:-eos_dur] res['wav'] = wav[bos_dur * hparams['hop_size']:-eos_dur * hparams['hop_size']] res['dur'] = res['dur'][1:-1] res['len'] = res['mel'].shape[0] if binarization_args['with_word']: cls.get_word(res, word_encoder) except BinarizationError as e: print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}") return None except Exception as e: traceback.print_exc() print(f"| Skip item. item_name: {item_name}, wav_fn: {wav_fn}") return None return res @staticmethod def get_align(tg_fn, res): ph = res['ph'] mel = res['mel'] phone_encoded = res['phone'] if tg_fn is not None and os.path.exists(tg_fn): mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams) else: raise BinarizationError(f"Align not found") if mel2ph.max() - 1 >= len(phone_encoded): raise BinarizationError( f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}") res['mel2ph'] = mel2ph res['dur'] = dur @staticmethod def get_pitch(res): wav, mel = res['wav'], res['mel'] f0, pitch_coarse = get_pitch(wav, mel, hparams) if sum(f0) == 0: raise BinarizationError("Empty f0") res['f0'] = f0 res['pitch'] = pitch_coarse @staticmethod def get_f0cwt(res): from utils.cwt import get_cont_lf0, get_lf0_cwt f0 = res['f0'] uv, cont_lf0_lpf = get_cont_lf0(f0) logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf) cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm) if np.any(np.isnan(Wavelet_lf0)): raise BinarizationError("NaN CWT") res['cwt_spec'] = Wavelet_lf0 res['cwt_scales'] = scales res['f0_mean'] = logf0s_mean_org res['f0_std'] = logf0s_std_org @staticmethod def get_word(res, word_encoder): ph_split = res['ph'].split(" ") # ph side mapping to word ph_words = [] # ['<BOS>', 'N_AW1_', ',', 'AE1_Z_|', 'AO1_L_|', 'B_UH1_K_S_|', 'N_AA1_T_|', ....] ph2word = np.zeros([len(ph_split)], dtype=int) last_ph_idx_for_word = [] # [2, 11, ...] for i, ph in enumerate(ph_split): if ph == '|': last_ph_idx_for_word.append(i) elif not ph[0].isalnum(): if ph not in ['<BOS>']: last_ph_idx_for_word.append(i - 1) last_ph_idx_for_word.append(i) start_ph_idx_for_word = [0] + [i + 1 for i in last_ph_idx_for_word[:-1]] for i, (s_w, e_w) in enumerate(zip(start_ph_idx_for_word, last_ph_idx_for_word)): ph_words.append(ph_split[s_w:e_w + 1]) ph2word[s_w:e_w + 1] = i ph2word = ph2word.tolist() ph_words = ["_".join(w) for w in ph_words] # mel side mapping to word mel2word = [] dur_word = [0 for _ in range(len(ph_words))] for i, m2p in enumerate(res['mel2ph']): word_idx = ph2word[m2p - 1] mel2word.append(ph2word[m2p - 1]) dur_word[word_idx] += 1 ph2word = [x + 1 for x in ph2word] # 0预留给padding mel2word = [x + 1 for x in mel2word] # 0预留给padding res['ph_words'] = ph_words # [T_word] res['ph2word'] = ph2word # [T_ph] res['mel2word'] = mel2word # [T_mel] res['dur_word'] = dur_word # [T_word] words = [x for x in res['txt'].split(" ") if x != ''] while len(words) > 0 and is_sil_phoneme(words[0]): words = words[1:] while len(words) > 0 and is_sil_phoneme(words[-1]): words = words[:-1] words = ['<BOS>'] + words + ['<EOS>'] word_tokens = word_encoder.encode(" ".join(words)) res['words'] = words res['word_tokens'] = word_tokens assert len(words) == len(ph_words), [words, ph_words] @property def num_workers(self): return int(os.getenv('N_PROC', hparams.get('N_PROC', os.cpu_count()))) if __name__ == "__main__": set_hparams() EmotionBinarizer().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/base_binarizer_emotion.py
import os os.environ["OMP_NUM_THREADS"] = "1" from data_gen.tts.txt_processors.zh_g2pM import ALL_SHENMU from data_gen.tts.base_binarizer import BaseBinarizer, BinarizationError from data_gen.tts.data_gen_utils import get_mel2ph from utils.hparams import set_hparams, hparams import numpy as np class ZhBinarizer(BaseBinarizer): @staticmethod def get_align(tg_fn, ph, mel, phone_encoded, res): if tg_fn is not None and os.path.exists(tg_fn): _, dur = get_mel2ph(tg_fn, ph, mel, hparams) else: raise BinarizationError(f"Align not found") ph_list = ph.split(" ") assert len(dur) == len(ph_list) mel2ph = [] # 分隔符的时长分配给韵母 dur_cumsum = np.pad(np.cumsum(dur), [1, 0], mode='constant', constant_values=0) for i in range(len(dur)): p = ph_list[i] if p[0] != '<' and not p[0].isalpha(): uv_ = res['f0'][dur_cumsum[i]:dur_cumsum[i + 1]] == 0 j = 0 while j < len(uv_) and not uv_[j]: j += 1 dur[i - 1] += j dur[i] -= j if dur[i] < 100: dur[i - 1] += dur[i] dur[i] = 0 # 声母和韵母等长 for i in range(len(dur)): p = ph_list[i] if p in ALL_SHENMU: p_next = ph_list[i + 1] if not (dur[i] > 0 and p_next[0].isalpha() and p_next not in ALL_SHENMU): print(f"assert dur[i] > 0 and p_next[0].isalpha() and p_next not in ALL_SHENMU, " f"dur[i]: {dur[i]}, p: {p}, p_next: {p_next}.") continue total = dur[i + 1] + dur[i] dur[i] = total // 2 dur[i + 1] = total - dur[i] for i in range(len(dur)): mel2ph += [i + 1] * dur[i] mel2ph = np.array(mel2ph) if mel2ph.max() - 1 >= len(phone_encoded): raise BinarizationError(f"| Align does not match: {(mel2ph.max() - 1, len(phone_encoded))}") res['mel2ph'] = mel2ph res['dur'] = dur if __name__ == "__main__": set_hparams() ZhBinarizer().process()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/binarizer_zh.py
import json import os import random import re import traceback from collections import Counter from functools import partial import pandas as pd import librosa from tqdm import tqdm from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls from utils.hparams import hparams from utils.multiprocess_utils import multiprocess_run_tqdm from utils.os_utils import link_file, move_file, remove_file from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder class BasePreprocessor: def __init__(self): self.preprocess_args = hparams['preprocess_args'] txt_processor = self.preprocess_args['txt_processor'] self.txt_processor = get_txt_processor_cls(txt_processor) self.raw_data_dir = hparams['raw_data_dir'] self.processed_dir = hparams['processed_data_dir'] self.spk_map_fn = f"{self.processed_dir}/spk_map.json" def meta_data(self): """ :return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func} """ raise NotImplementedError def process(self): processed_dir = self.processed_dir wav_processed_tmp_dir = f'{processed_dir}/processed_tmp' remove_file(wav_processed_tmp_dir) os.makedirs(wav_processed_tmp_dir, exist_ok=True) wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}' remove_file(wav_processed_dir) os.makedirs(wav_processed_dir, exist_ok=True) meta_data = list(tqdm(self.meta_data(), desc='Load meta data')) item_names = [d['item_name'] for d in meta_data] assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.' # preprocess data phone_list = [] word_list = [] spk_names = set() process_item = partial(self.preprocess_first_pass, txt_processor=self.txt_processor, wav_processed_dir=wav_processed_dir, wav_processed_tmp=wav_processed_tmp_dir, preprocess_args=self.preprocess_args) items = [] args = [{ 'item_name': item_raw['item_name'], 'txt_raw': item_raw['txt'], 'wav_fn': item_raw['wav_fn'], 'txt_loader': item_raw.get('txt_loader'), 'others': item_raw.get('others', None) } for item_raw in meta_data] for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')): if item is not None: item_.update(item) item = item_ if 'txt_loader' in item: del item['txt_loader'] item['id'] = item_id item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>') item['others'] = item.get('others', None) phone_list += item['ph'].split(" ") word_list += item['word'].split(" ") spk_names.add(item['spk_name']) items.append(item) # add encoded tokens ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list) spk_map = self.build_spk_map(spk_names) args = [{ 'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'], 'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map } for item in items] for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'): items[idx].update(item_new_kv) # build mfa data if self.preprocess_args['use_mfa']: mfa_dict = set() mfa_input_dir = f'{processed_dir}/mfa_inputs' remove_file(mfa_input_dir) # group MFA inputs for better parallelism mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))] if self.preprocess_args['mfa_group_shuffle']: random.seed(hparams['seed']) random.shuffle(mfa_groups) args = [{ 'item': item, 'mfa_input_dir': mfa_input_dir, 'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir, 'preprocess_args': self.preprocess_args } for item, mfa_group in zip(items, mfa_groups)] for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm( self.build_mfa_inputs, args, desc='Build MFA data'): items[i]['wav_align_fn'] = new_wav_align_fn for w in ph_gb_word_nosil.split(" "): mfa_dict.add(f"{w} {w.replace('_', ' ')}") mfa_dict = sorted(mfa_dict) with open(f'{processed_dir}/mfa_dict.txt', 'w') as f: f.writelines([f'{l}\n' for l in mfa_dict]) with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f: f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1))) remove_file(wav_processed_tmp_dir) @classmethod def preprocess_first_pass(cls, item_name, txt_raw, txt_processor, wav_fn, wav_processed_dir, wav_processed_tmp, preprocess_args, txt_loader=None, others=None): try: if txt_loader is not None: txt_raw = txt_loader(txt_raw) ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args) wav_fn, wav_align_fn = cls.process_wav( item_name, wav_fn, hparams['processed_data_dir'], wav_processed_tmp, preprocess_args) # wav for binarization ext = os.path.splitext(wav_fn)[1] os.makedirs(wav_processed_dir, exist_ok=True) new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}" move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file move_link_func(wav_fn, new_wav_fn) return { 'txt': txt, 'txt_raw': txt_raw, 'ph': ph, 'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word, 'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn, 'others': others } except: traceback.print_exc() print(f"| Error is caught. item_name: {item_name}.") return None @staticmethod def txt_to_ph(txt_processor, txt_raw, preprocess_args): txt_struct, txt = txt_processor.process(txt_raw, preprocess_args) ph = [p for w in txt_struct for p in w[1]] ph_gb_word = ["_".join(w[1]) for w in txt_struct] words = [w[0] for w in txt_struct] # word_id=0 is reserved for padding ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))] return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word) @staticmethod def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args): processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']] processors = [k() for k in processors if k is not None] if len(processors) >= 1: sr_file = librosa.core.get_samplerate(wav_fn) output_fn_for_align = None ext = os.path.splitext(wav_fn)[1] input_fn = f"{wav_processed_tmp}/{item_name}{ext}" link_file(wav_fn, input_fn) for p in processors: outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args) if len(outputs) == 3: input_fn, sr, output_fn_for_align = outputs else: input_fn, sr = outputs if output_fn_for_align is None: return input_fn, input_fn else: return input_fn, output_fn_for_align else: return wav_fn, wav_fn def _phone_encoder(self, ph_set): ph_set_fn = f"{self.processed_dir}/phone_set.json" if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn): ph_set = sorted(set(ph_set)) json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False) print("| Build phone set: ", ph_set) else: ph_set = json.load(open(ph_set_fn, 'r')) print("| Load phone set: ", ph_set) return build_token_encoder(ph_set_fn) def _word_encoder(self, word_set): word_set_fn = f"{self.processed_dir}/word_set.json" if self.preprocess_args['reset_word_dict']: word_set = Counter(word_set) total_words = sum(word_set.values()) word_set = word_set.most_common(hparams['word_dict_size']) num_unk_words = total_words - sum([x[1] for x in word_set]) word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set] word_set = sorted(set(word_set)) json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False) print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words}," f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.") else: word_set = json.load(open(word_set_fn, 'r')) print("| Load word set. Size: ", len(word_set), word_set[:10]) return build_token_encoder(word_set_fn) @classmethod def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map): word_token = word_encoder.encode(word) ph_token = ph_encoder.encode(ph) spk_id = spk_map[spk_name] return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id} def build_spk_map(self, spk_names): spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))} assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map) print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}") json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False) return spk_map @classmethod def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args): item_name = item['item_name'] wav_align_fn = item['wav_align_fn'] ph_gb_word = item['ph_gb_word'] ext = os.path.splitext(wav_align_fn)[1] mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}' os.makedirs(mfa_input_group_dir, exist_ok=True) new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}" move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file move_link_func(wav_align_fn, new_wav_align_fn) ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)]) with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt: f_txt.write(ph_gb_word_nosil) return ph_gb_word_nosil, new_wav_align_fn def load_spk_map(self, base_dir): spk_map_fn = f"{base_dir}/spk_map.json" spk_map = json.load(open(spk_map_fn, 'r')) return spk_map def load_dict(self, base_dir): ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json') word_encoder = build_token_encoder(f'{base_dir}/word_set.json') return ph_encoder, word_encoder @property def meta_csv_filename(self): return 'metadata' @property def wav_processed_dirname(self): return 'wav_processed'
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/base_preprocess.py
import os import subprocess import librosa import numpy as np from data_gen.tts.wav_processors.base_processor import BaseWavProcessor, register_wav_processors from data_gen.tts.data_gen_utils import trim_long_silences from utils.audio import save_wav, rnnoise from utils.hparams import hparams @register_wav_processors(name='sox_to_wav') class ConvertToWavProcessor(BaseWavProcessor): @property def name(self): return 'ToWav' def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args): if input_fn[-4:] == '.wav': return input_fn, sr else: output_fn = self.output_fn(input_fn) subprocess.check_call(f'sox -v 0.95 "{input_fn}" -t wav "{output_fn}"', shell=True) return output_fn, sr @register_wav_processors(name='sox_resample') class ResampleProcessor(BaseWavProcessor): @property def name(self): return 'Resample' def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args): output_fn = self.output_fn(input_fn) sr_file = librosa.core.get_samplerate(input_fn) if sr != sr_file: subprocess.check_call(f'sox -v 0.95 "{input_fn}" -r{sr} "{output_fn}"', shell=True) y, _ = librosa.core.load(input_fn, sr=sr) y, _ = librosa.effects.trim(y) save_wav(y, output_fn, sr) return output_fn, sr else: return input_fn, sr @register_wav_processors(name='trim_sil') class TrimSILProcessor(BaseWavProcessor): @property def name(self): return 'TrimSIL' def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args): output_fn = self.output_fn(input_fn) y, _ = librosa.core.load(input_fn, sr=sr) y, _ = librosa.effects.trim(y) save_wav(y, output_fn, sr) return output_fn @register_wav_processors(name='trim_all_sil') class TrimAllSILProcessor(BaseWavProcessor): @property def name(self): return 'TrimSIL' def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args): output_fn = self.output_fn(input_fn) y, audio_mask, _ = trim_long_silences( input_fn, vad_max_silence_length=preprocess_args.get('vad_max_silence_length', 12)) save_wav(y, output_fn, sr) if preprocess_args['save_sil_mask']: os.makedirs(f'{processed_dir}/sil_mask', exist_ok=True) np.save(f'{processed_dir}/sil_mask/{item_name}.npy', audio_mask) return output_fn, sr @register_wav_processors(name='denoise') class DenoiseProcessor(BaseWavProcessor): @property def name(self): return 'Denoise' def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args): output_fn = self.output_fn(input_fn) rnnoise(input_fn, output_fn, out_sample_rate=sr) return output_fn, sr
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/wav_processors/common_processors.py
from . import base_processor from . import common_processors
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/wav_processors/__init__.py
REGISTERED_WAV_PROCESSORS = {} def register_wav_processors(name): def _f(cls): REGISTERED_WAV_PROCESSORS[name] = cls return cls return _f def get_wav_processor_cls(name): return REGISTERED_WAV_PROCESSORS.get(name, None) class BaseWavProcessor: @property def name(self): raise NotImplementedError def output_fn(self, input_fn): return f'{input_fn[:-4]}_{self.name}.wav' def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args): raise NotImplementedError
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/wav_processors/base_processor.py
from . import en
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/__init__.py
import re import jieba from pypinyin import pinyin, Style from data_gen.tts.data_gen_utils import PUNCS from data_gen.tts.txt_processors.base_text_processor import BaseTxtProcessor from utils.text_norm import NSWNormalizer class TxtProcessor(BaseTxtProcessor): table = {ord(f): ord(t) for f, t in zip( u':,。!?【】()%#@&1234567890', u':,.!?[]()%#@&1234567890')} @staticmethod def preprocess_text(text): text = text.translate(TxtProcessor.table) text = NSWNormalizer(text).normalize(remove_punc=False) text = re.sub("[\'\"()]+", "", text) text = re.sub("[-]+", " ", text) text = re.sub(f"[^ A-Za-z\u4e00-\u9fff{PUNCS}]", "", text) text = re.sub(f"([{PUNCS}])+", r"\1", text) # !! -> ! text = re.sub(f"([{PUNCS}])", r" \1 ", text) text = re.sub(rf"\s+", r"", text) text = re.sub(rf"[A-Za-z]+", r"$", text) return text @classmethod def process(cls, txt, pre_align_args): txt = cls.preprocess_text(txt) shengmu = pinyin(txt, style=Style.INITIALS) # https://blog.csdn.net/zhoulei124/article/details/89055403 yunmu_finals = pinyin(txt, style=Style.FINALS) yunmu_tone3 = pinyin(txt, style=Style.FINALS_TONE3) yunmu = [[t[0] + '5'] if t[0] == f[0] else t for f, t in zip(yunmu_finals, yunmu_tone3)] \ if pre_align_args['use_tone'] else yunmu_finals assert len(shengmu) == len(yunmu) phs = ["|"] for a, b, c in zip(shengmu, yunmu, yunmu_finals): if a[0] == c[0]: phs += [a[0], "|"] else: phs += [a[0], b[0], "|"] return phs, txt
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/zh.py
import re import unicodedata from g2p_en import G2p from g2p_en.expand import normalize_numbers from nltk import pos_tag from nltk.tokenize import TweetTokenizer from data_gen.tts.txt_processors.base_text_processor import BaseTxtProcessor, register_txt_processors from data_gen.tts.data_gen_utils import is_sil_phoneme, PUNCS class EnG2p(G2p): word_tokenize = TweetTokenizer().tokenize def __call__(self, text): # preprocessing words = EnG2p.word_tokenize(text) tokens = pos_tag(words) # tuples of (word, tag) # steps prons = [] for word, pos in tokens: if re.search("[a-z]", word) is None: pron = [word] elif word in self.homograph2features: # Check homograph pron1, pron2, pos1 = self.homograph2features[word] if pos.startswith(pos1): pron = pron1 else: pron = pron2 elif word in self.cmu: # lookup CMU dict pron = self.cmu[word][0] else: # predict for oov pron = self.predict(word) prons.extend(pron) prons.extend([" "]) return prons[:-1] @register_txt_processors('en') class TxtProcessor(BaseTxtProcessor): g2p = EnG2p() @staticmethod def preprocess_text(text): text = normalize_numbers(text) text = ''.join(char for char in unicodedata.normalize('NFD', text) if unicodedata.category(char) != 'Mn') # Strip accents text = text.lower() text = re.sub("[\'\"()]+", "", text) text = re.sub("[-]+", " ", text) text = re.sub(f"[^ a-z{PUNCS}]", "", text) text = re.sub(f" ?([{PUNCS}]) ?", r"\1", text) # !! -> ! text = re.sub(f"([{PUNCS}])+", r"\1", text) # !! -> ! text = text.replace("i.e.", "that is") text = text.replace("i.e.", "that is") text = text.replace("etc.", "etc") text = re.sub(f"([{PUNCS}])", r" \1 ", text) text = re.sub(rf"\s+", r" ", text) return text @classmethod def process(cls, txt, preprocess_args): txt = cls.preprocess_text(txt).strip() phs = cls.g2p(txt) txt_struct = [[w, []] for w in txt.split(" ")] i_word = 0 for p in phs: if p == ' ': i_word += 1 else: txt_struct[i_word][1].append(p) txt_struct = cls.postprocess(txt_struct, preprocess_args) return txt_struct, txt
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/en.py
from data_gen.tts.data_gen_utils import is_sil_phoneme REGISTERED_TEXT_PROCESSORS = {} def register_txt_processors(name): def _f(cls): REGISTERED_TEXT_PROCESSORS[name] = cls return cls return _f def get_txt_processor_cls(name): return REGISTERED_TEXT_PROCESSORS.get(name, None) class BaseTxtProcessor: @staticmethod def sp_phonemes(): return ['|'] @classmethod def process(cls, txt, preprocess_args): raise NotImplementedError @classmethod def postprocess(cls, txt_struct, preprocess_args): # remove sil phoneme in head and tail while len(txt_struct) > 0 and is_sil_phoneme(txt_struct[0][0]): txt_struct = txt_struct[1:] while len(txt_struct) > 0 and is_sil_phoneme(txt_struct[-1][0]): txt_struct = txt_struct[:-1] if preprocess_args['with_phsep']: txt_struct = cls.add_bdr(txt_struct) if preprocess_args['add_eos_bos']: txt_struct = [["<BOS>", ["<BOS>"]]] + txt_struct + [["<EOS>", ["<EOS>"]]] return txt_struct @classmethod def add_bdr(cls, txt_struct): txt_struct_ = [] for i, ts in enumerate(txt_struct): txt_struct_.append(ts) if i != len(txt_struct) - 1 and \ not is_sil_phoneme(txt_struct[i][0]) and not is_sil_phoneme(txt_struct[i + 1][0]): txt_struct_.append(['|', ['|']]) return txt_struct_
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/base_text_processor.py
import re import jieba from pypinyin import pinyin, Style from data_gen.tts.data_gen_utils import PUNCS from data_gen.tts.txt_processors import zh from g2pM import G2pM ALL_SHENMU = ['zh', 'ch', 'sh', 'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'j', 'q', 'x', 'r', 'z', 'c', 's', 'y', 'w'] ALL_YUNMU = ['a', 'ai', 'an', 'ang', 'ao', 'e', 'ei', 'en', 'eng', 'er', 'i', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'iu', 'ng', 'o', 'ong', 'ou', 'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn'] class TxtProcessor(zh.TxtProcessor): model = G2pM() @staticmethod def sp_phonemes(): return ['|', '#'] @classmethod def process(cls, txt, pre_align_args): txt = cls.preprocess_text(txt) ph_list = cls.model(txt, tone=pre_align_args['use_tone'], char_split=True) seg_list = '#'.join(jieba.cut(txt)) assert len(ph_list) == len([s for s in seg_list if s != '#']), (ph_list, seg_list) # 加入词边界'#' ph_list_ = [] seg_idx = 0 for p in ph_list: p = p.replace("u:", "v") if seg_list[seg_idx] == '#': ph_list_.append('#') seg_idx += 1 else: ph_list_.append("|") seg_idx += 1 if re.findall('[\u4e00-\u9fff]', p): if pre_align_args['use_tone']: p = pinyin(p, style=Style.TONE3, strict=True)[0][0] if p[-1] not in ['1', '2', '3', '4', '5']: p = p + '5' else: p = pinyin(p, style=Style.NORMAL, strict=True)[0][0] finished = False if len([c.isalpha() for c in p]) > 1: for shenmu in ALL_SHENMU: if p.startswith(shenmu) and not p.lstrip(shenmu).isnumeric(): ph_list_ += [shenmu, p.lstrip(shenmu)] finished = True break if not finished: ph_list_.append(p) ph_list = ph_list_ # 去除静音符号周围的词边界标记 [..., '#', ',', '#', ...] sil_phonemes = list(PUNCS) + TxtProcessor.sp_phonemes() ph_list_ = [] for i in range(0, len(ph_list), 1): if ph_list[i] != '#' or (ph_list[i - 1] not in sil_phonemes and ph_list[i + 1] not in sil_phonemes): ph_list_.append(ph_list[i]) ph_list = ph_list_ return ph_list, txt if __name__ == '__main__': phs, txt = TxtProcessor.process('他来到了,网易杭研大厦', {'use_tone': True}) print(phs)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/zh_g2pM.py
## Mel-filterbank mel_window_length = 25 # In milliseconds mel_window_step = 10 # In milliseconds mel_n_channels = 40 ## Audio sampling_rate = 16000 # Number of spectrogram frames in a partial utterance partials_n_frames = 160 # 1600 ms # Number of spectrogram frames at inference inference_n_frames = 80 # 800 ms ## Voice Activation Detection # Window size of the VAD. Must be either 10, 20 or 30 milliseconds. # This sets the granularity of the VAD. Should not need to be changed. vad_window_length = 30 # In milliseconds # Number of frames to average together when performing the moving average smoothing. # The larger this value, the larger the VAD variations must be to not get smoothed out. vad_moving_average_width = 8 # Maximum number of consecutive silent frames a segment can have. vad_max_silence_length = 6 ## Audio volume normalization audio_norm_target_dBFS = -30
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/emotion/params_data.py
## Model parameters model_hidden_size = 256 model_embedding_size = 256 model_num_layers = 3 ## Training parameters learning_rate_init = 1e-4 speakers_per_batch = 6 utterances_per_speaker = 20
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/emotion/params_model.py
from data_gen.tts.emotion.params_model import * from data_gen.tts.emotion.params_data import * from torch.nn.utils import clip_grad_norm_ from scipy.optimize import brentq from torch import nn import numpy as np import torch class EmotionEncoder(nn.Module): def __init__(self, device, loss_device): super().__init__() self.loss_device = loss_device # Network defition self.lstm = nn.LSTM(input_size=mel_n_channels, hidden_size=model_hidden_size, num_layers=model_num_layers, batch_first=True).to(device) self.linear = nn.Linear(in_features=model_hidden_size, out_features=model_embedding_size).to(device) self.relu = torch.nn.ReLU().to(device) # Cosine similarity scaling (with fixed initial parameter values) self.similarity_weight = nn.Parameter(torch.tensor([10.])).to(loss_device) self.similarity_bias = nn.Parameter(torch.tensor([-5.])).to(loss_device) # Loss self.loss_fn = nn.CrossEntropyLoss().to(loss_device) def do_gradient_ops(self): # Gradient scale self.similarity_weight.grad *= 0.01 self.similarity_bias.grad *= 0.01 # Gradient clipping clip_grad_norm_(self.parameters(), 3, norm_type=2) def forward(self, utterances, hidden_init=None): """ Computes the embeddings of a batch of utterance spectrograms. :param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape (batch_size, n_frames, n_channels) :param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers, batch_size, hidden_size). Will default to a tensor of zeros if None. :return: the embeddings as a tensor of shape (batch_size, embedding_size) """ # Pass the input through the LSTM layers and retrieve all outputs, the final hidden state # and the final cell state. out, (hidden, cell) = self.lstm(utterances, hidden_init) # We take only the hidden state of the last layer embeds_raw = self.relu(self.linear(hidden[-1])) # L2-normalize it embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) return embeds def inference(self, utterances, hidden_init=None): """ Computes the embeddings of a batch of utterance spectrograms. :param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape (batch_size, n_frames, n_channels) :param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers, batch_size, hidden_size). Will default to a tensor of zeros if None. :return: the embeddings as a tensor of shape (batch_size, embedding_size) """ # Pass the input through the LSTM layers and retrieve all outputs, the final hidden state # and the final cell state. out, (hidden, cell) = self.lstm(utterances, hidden_init) return hidden[-1]
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/emotion/model.py
from data_gen.tts.emotion.params_data import * from data_gen.tts.emotion.model import EmotionEncoder from data_gen.tts.emotion.audio import preprocess_wav # We want to expose this function from here from matplotlib import cm from data_gen.tts.emotion import audio from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch _model = None # type: EmotionEncoder _device = None # type: torch.device def load_model(weights_fpath: Path, device=None): """ Loads the model in memory. If this function is not explicitely called, it will be run on the first call to embed_frames() with the default weights file. :param weights_fpath: the path to saved model weights. :param device: either a torch device or the name of a torch device (e.g. "cpu", "cuda"). The model will be loaded and will run on this device. Outputs will however always be on the cpu. If None, will default to your GPU if it"s available, otherwise your CPU. """ # TODO: I think the slow loading of the encoder might have something to do with the device it # was saved on. Worth investigating. global _model, _device if device is None: _device = torch.device("cuda" if torch.cuda.is_available() else "cpu") elif isinstance(device, str): _device = torch.device(device) _model = EmotionEncoder(_device, torch.device("cpu")) checkpoint = torch.load(weights_fpath) _model.load_state_dict(checkpoint["model_state"]) _model.eval() print("Loaded encoder trained to step %d" % (checkpoint["step"])) def is_loaded(): return _model is not None def embed_frames_batch(frames_batch): """ Computes embeddings for a batch of mel spectrogram. :param frames_batch: a batch mel of spectrogram as a numpy array of float32 of shape (batch_size, n_frames, n_channels) :return: the embeddings as a numpy array of float32 of shape (batch_size, model_embedding_size) """ if _model is None: raise Exception("Model was not loaded. Call load_model() before inference.") frames = torch.from_numpy(frames_batch).to(_device) embed = _model.inference(frames).detach().cpu().numpy() return embed def compute_partial_slices(n_samples, partial_utterance_n_frames=partials_n_frames, min_pad_coverage=0.75, overlap=0.5): """ Computes where to split an utterance waveform and its corresponding mel spectrogram to obtain partial utterances of <partial_utterance_n_frames> each. Both the waveform and the mel spectrogram slices are returned, so as to make each partial utterance waveform correspond to its spectrogram. This function assumes that the mel spectrogram parameters used are those defined in params_data.py. The returned ranges may be indexing further than the length of the waveform. It is recommended that you pad the waveform with zeros up to wave_slices[-1].stop. :param n_samples: the number of samples in the waveform :param partial_utterance_n_frames: the number of mel spectrogram frames in each partial utterance :param min_pad_coverage: when reaching the last partial utterance, it may or may not have enough frames. If at least <min_pad_coverage> of <partial_utterance_n_frames> are present, then the last partial utterance will be considered, as if we padded the audio. Otherwise, it will be discarded, as if we trimmed the audio. If there aren't enough frames for 1 partial utterance, this parameter is ignored so that the function always returns at least 1 slice. :param overlap: by how much the partial utterance should overlap. If set to 0, the partial utterances are entirely disjoint. :return: the waveform slices and mel spectrogram slices as lists of array slices. Index respectively the waveform and the mel spectrogram with these slices to obtain the partial utterances. """ assert 0 <= overlap < 1 assert 0 < min_pad_coverage <= 1 samples_per_frame = int((sampling_rate * mel_window_step / 1000)) n_frames = int(np.ceil((n_samples + 1) / samples_per_frame)) frame_step = max(int(np.round(partial_utterance_n_frames * (1 - overlap))), 1) # Compute the slices wav_slices, mel_slices = [], [] steps = max(1, n_frames - partial_utterance_n_frames + frame_step + 1) for i in range(0, steps, frame_step): mel_range = np.array([i, i + partial_utterance_n_frames]) wav_range = mel_range * samples_per_frame mel_slices.append(slice(*mel_range)) wav_slices.append(slice(*wav_range)) # Evaluate whether extra padding is warranted or not last_wav_range = wav_slices[-1] coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start) if coverage < min_pad_coverage and len(mel_slices) > 1: mel_slices = mel_slices[:-1] wav_slices = wav_slices[:-1] return wav_slices, mel_slices def embed_utterance(wav, using_partials=True, return_partials=False, **kwargs): """ Computes an embedding for a single utterance. # TODO: handle multiple wavs to benefit from batching on GPU :param wav: a preprocessed (see audio.py) utterance waveform as a numpy array of float32 :param using_partials: if True, then the utterance is split in partial utterances of <partial_utterance_n_frames> frames and the utterance embedding is computed from their normalized average. If False, the utterance is instead computed from feeding the entire spectogram to the network. :param return_partials: if True, the partial embeddings will also be returned along with the wav slices that correspond to the partial embeddings. :param kwargs: additional arguments to compute_partial_splits() :return: the embedding as a numpy array of float32 of shape (model_embedding_size,). If <return_partials> is True, the partial utterances as a numpy array of float32 of shape (n_partials, model_embedding_size) and the wav partials as a list of slices will also be returned. If <using_partials> is simultaneously set to False, both these values will be None instead. """ # Process the entire utterance if not using partials if not using_partials: frames = audio.wav_to_mel_spectrogram(wav) embed = embed_frames_batch(frames[None, ...])[0] if return_partials: return embed, None, None return embed # Compute where to split the utterance into partials and pad if necessary wave_slices, mel_slices = compute_partial_slices(len(wav), **kwargs) max_wave_length = wave_slices[-1].stop if max_wave_length >= len(wav): wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant") # Split the utterance into partials frames = audio.wav_to_mel_spectrogram(wav) frames_batch = np.array([frames[s] for s in mel_slices]) partial_embeds = embed_frames_batch(frames_batch) # Compute the utterance embedding from the partial embeddings raw_embed = np.mean(partial_embeds, axis=0) embed = raw_embed / np.linalg.norm(raw_embed, 2) if return_partials: return embed, partial_embeds, wave_slices return embed def embed_speaker(wavs, **kwargs): raise NotImplemented() def plot_embedding_as_heatmap(embed, ax=None, title="", shape=None, color_range=(0, 0.30)): if ax is None: ax = plt.gca() if shape is None: height = int(np.sqrt(len(embed))) shape = (height, -1) embed = embed.reshape(shape) cmap = cm.get_cmap() mappable = ax.imshow(embed, cmap=cmap) cbar = plt.colorbar(mappable, ax=ax, fraction=0.046, pad=0.04) cbar.set_clim(*color_range) ax.set_xticks([]), ax.set_yticks([]) ax.set_title(title)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/emotion/inference.py
from scipy.ndimage.morphology import binary_dilation from data_gen.tts.emotion.params_data import * from pathlib import Path from typing import Optional, Union import numpy as np import webrtcvad import librosa import struct int16_max = (2 ** 15) - 1 def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray], source_sr: Optional[int] = None): """ Applies the preprocessing operations used in training the Speaker Encoder to a waveform either on disk or in memory. The waveform will be resampled to match the data hyperparameters. :param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not just .wav), either the waveform as a numpy array of floats. :param source_sr: if passing an audio waveform, the sampling rate of the waveform before preprocessing. After preprocessing, the waveform's sampling rate will match the data hyperparameters. If passing a filepath, the sampling rate will be automatically detected and this argument will be ignored. """ # Load the wav from disk if needed if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path): wav, source_sr = librosa.load(str(fpath_or_wav), sr=None) else: wav = fpath_or_wav # Resample the wav if needed if source_sr is not None and source_sr != sampling_rate: wav = librosa.resample(wav, source_sr, sampling_rate) # Apply the preprocessing: normalize volume and shorten long silences wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True) wav = trim_long_silences(wav) return wav def wav_to_mel_spectrogram(wav): """ Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform. Note: this not a log-mel spectrogram. """ frames = librosa.feature.melspectrogram( wav, sampling_rate, n_fft=int(sampling_rate * mel_window_length / 1000), hop_length=int(sampling_rate * mel_window_step / 1000), n_mels=mel_n_channels ) return frames.astype(np.float32).T def trim_long_silences(wav): """ Ensures that segments without voice in the waveform remain no longer than a threshold determined by the VAD parameters in params.py. :param wav: the raw waveform as a numpy array of floats :return: the same waveform with silences trimmed away (length <= original wav length) """ # Compute the voice detection window size samples_per_window = (vad_window_length * sampling_rate) // 1000 # Trim the end of the audio to have a multiple of the window size wav = wav[:len(wav) - (len(wav) % samples_per_window)] # Convert the float waveform to 16-bit mono PCM pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16)) # Perform voice activation detection voice_flags = [] vad = webrtcvad.Vad(mode=3) for window_start in range(0, len(wav), samples_per_window): window_end = window_start + samples_per_window voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2], sample_rate=sampling_rate)) voice_flags = np.array(voice_flags) # Smooth the voice detection with a moving average def moving_average(array, width): array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2))) ret = np.cumsum(array_padded, dtype=float) ret[width:] = ret[width:] - ret[:-width] return ret[width - 1:] / width audio_mask = moving_average(voice_flags, vad_moving_average_width) audio_mask = np.round(audio_mask).astype(np.bool) # Dilate the voiced regions audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1)) audio_mask = np.repeat(audio_mask, samples_per_window) return wav[audio_mask == True] def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False): if increase_only and decrease_only: raise ValueError("Both increase only and decrease only are set") dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2)) if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only): return wav return wav * (10 ** (dBFS_change / 20))
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/emotion/audio.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Run inference for pre-processed data with a trained model. """ import logging import math import numpy, math, pdb, sys, random import time, os, itertools, shutil, importlib import argparse import os import sys import glob from sklearn import metrics import soundfile as sf #import sentencepiece as spm import torch import inference as encoder import torch.nn as nn import torch.nn.functional as F from pathlib import Path logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) from resemblyzer import VoiceEncoder, preprocess_wav def tuneThresholdfromScore(scores, labels, target_fa, target_fr=None): fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1) fnr = 1 - tpr fnr = fnr * 100 fpr = fpr * 100 tunedThreshold = []; if target_fr: for tfr in target_fr: idx = numpy.nanargmin(numpy.absolute((tfr - fnr))) tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]); for tfa in target_fa: idx = numpy.nanargmin(numpy.absolute((tfa - fpr))) # numpy.where(fpr<=tfa)[0][-1] tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]); idxE = numpy.nanargmin(numpy.absolute((fnr - fpr))) eer = max(fpr[idxE], fnr[idxE]) return (tunedThreshold, eer, fpr, fnr); def loadWAV(filename, max_frames, evalmode=True, num_eval=10): # Maximum audio length max_audio = max_frames * 160 + 240 # Read wav file and convert to torch tensor audio,sample_rate = sf.read(filename) feats_v0 = torch.from_numpy(audio).float() audiosize = audio.shape[0] if audiosize <= max_audio: shortage = math.floor((max_audio - audiosize + 1) / 2) audio = numpy.pad(audio, (shortage, shortage), 'constant', constant_values=0) audiosize = audio.shape[0] if evalmode: startframe = numpy.linspace(0, audiosize - max_audio, num=num_eval) else: startframe = numpy.array([numpy.int64(random.random() * (audiosize - max_audio))]) feats = [] if evalmode and max_frames == 0: feats.append(audio) else: for asf in startframe: feats.append(audio[int(asf):int(asf) + max_audio]) feat = numpy.stack(feats, axis=0) feat = torch.FloatTensor(feat) return feat; def evaluateFromList(listfilename, print_interval=100, test_path='', multi=False): lines = [] files = [] feats = {} tstart = time.time() ## Read all lines with open(listfilename) as listfile: while True: line = listfile.readline(); if (not line): break; data = line.split(); ## Append random label if missing if len(data) == 2: data = [random.randint(0,1)] + data files.append(data[1]) files.append(data[2]) lines.append(line) setfiles = list(set(files)) setfiles.sort() ## Save all features to file for idx, file in enumerate(setfiles): # preprocessed_wav = encoder.preprocess_wav(os.path.join(test_path,file)) # embed = encoder.embed_utterance(preprocessed_wav) processed_wav = preprocess_wav(os.path.join(test_path,file)) embed = voice_encoder.embed_utterance(processed_wav) torch.cuda.empty_cache() ref_feat = torch.from_numpy(embed).unsqueeze(0) feats[file] = ref_feat telapsed = time.time() - tstart if idx % print_interval == 0: sys.stdout.write("\rReading %d of %d: %.2f Hz, embedding size %d"%(idx,len(setfiles),idx/telapsed,ref_feat.size()[1])); print('') all_scores = []; all_labels = []; all_trials = []; tstart = time.time() ## Read files and compute all scores for idx, line in enumerate(lines): data = line.split(); ## Append random label if missing if len(data) == 2: data = [random.randint(0,1)] + data ref_feat = feats[data[1]] com_feat = feats[data[2]] ref_feat = ref_feat.cuda() com_feat = com_feat.cuda() # normalize feats ref_feat = F.normalize(ref_feat, p=2, dim=1) com_feat = F.normalize(com_feat, p=2, dim=1) dist = F.pairwise_distance(ref_feat.unsqueeze(-1), com_feat.unsqueeze(-1)).detach().cpu().numpy(); score = -1 * numpy.mean(dist); all_scores.append(score); all_labels.append(int(data[0])); all_trials.append(data[1]+" "+data[2]) if idx % print_interval == 0: telapsed = time.time() - tstart sys.stdout.write("\rComputing %d of %d: %.2f Hz"%(idx,len(lines),idx/telapsed)); sys.stdout.flush(); print('\n') return (all_scores, all_labels, all_trials); if __name__ == '__main__': parser = argparse.ArgumentParser("baseline") parser.add_argument("--data_root", type=str, help="", required=True) parser.add_argument("--list", type=str, help="", required=True) parser.add_argument("--model_dir", type=str, help="model parameters for AudioEncoder", required=True) args = parser.parse_args() # Load the models one by one. print("Preparing the encoder...") # encoder.load_model(Path(args.model_dir)) print("Insert the wav file name...") voice_encoder = VoiceEncoder().cuda() sc, lab, trials = evaluateFromList(args.list, print_interval=100, test_path=args.data_root) result = tuneThresholdfromScore(sc, lab, [1, 0.1]); print('EER %2.4f'%result[1])
EXA-1-master
exa/models/AudioGPT/NeuralSeq/data_gen/tts/emotion/test_emotion.py
import os import subprocess def link_file(from_file, to_file): subprocess.check_call( f'ln -s "`realpath --relative-to="{os.path.dirname(to_file)}" "{from_file}"`" "{to_file}"', shell=True) def move_file(from_file, to_file): subprocess.check_call(f'mv "{from_file}" "{to_file}"', shell=True) def copy_file(from_file, to_file): subprocess.check_call(f'cp -r "{from_file}" "{to_file}"', shell=True) def remove_file(*fns): for f in fns: subprocess.check_call(f'rm -rf "{f}"', shell=True)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/os_utils.py
import matplotlib.pyplot as plt import numpy as np import torch LINE_COLORS = ['w', 'r', 'y', 'cyan', 'm', 'b', 'lime'] def spec_to_figure(spec, vmin=None, vmax=None): if isinstance(spec, torch.Tensor): spec = spec.cpu().numpy() fig = plt.figure(figsize=(12, 6)) plt.pcolor(spec.T, vmin=vmin, vmax=vmax) return fig def spec_f0_to_figure(spec, f0s, figsize=None): max_y = spec.shape[1] if isinstance(spec, torch.Tensor): spec = spec.detach().cpu().numpy() f0s = {k: f0.detach().cpu().numpy() for k, f0 in f0s.items()} f0s = {k: f0 / 10 for k, f0 in f0s.items()} fig = plt.figure(figsize=(12, 6) if figsize is None else figsize) plt.pcolor(spec.T) for i, (k, f0) in enumerate(f0s.items()): plt.plot(f0.clip(0, max_y), label=k, c=LINE_COLORS[i], linewidth=1, alpha=0.8) plt.legend() return fig def dur_to_figure(dur_gt, dur_pred, txt): dur_gt = dur_gt.long().cpu().numpy() dur_pred = dur_pred.long().cpu().numpy() dur_gt = np.cumsum(dur_gt) dur_pred = np.cumsum(dur_pred) fig = plt.figure(figsize=(12, 6)) for i in range(len(dur_gt)): shift = (i % 8) + 1 plt.text(dur_gt[i], shift, txt[i]) plt.text(dur_pred[i], 10 + shift, txt[i]) plt.vlines(dur_gt[i], 0, 10, colors='b') # blue is gt plt.vlines(dur_pred[i], 10, 20, colors='r') # red is pred return fig def f0_to_figure(f0_gt, f0_cwt=None, f0_pred=None): fig = plt.figure() f0_gt = f0_gt.cpu().numpy() plt.plot(f0_gt, color='r', label='gt') if f0_cwt is not None: f0_cwt = f0_cwt.cpu().numpy() plt.plot(f0_cwt, color='b', label='cwt') if f0_pred is not None: f0_pred = f0_pred.cpu().numpy() plt.plot(f0_pred, color='green', label='pred') plt.legend() return fig
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/plot.py
import argparse import os import yaml global_print_hparams = True hparams = {} class Args: def __init__(self, **kwargs): for k, v in kwargs.items(): self.__setattr__(k, v) def override_config(old_config: dict, new_config: dict): for k, v in new_config.items(): if isinstance(v, dict) and k in old_config: override_config(old_config[k], new_config[k]) else: old_config[k] = v def set_hparams(config='', exp_name='', hparams_str='', print_hparams=True, global_hparams=True): if config == '' and exp_name == '': parser = argparse.ArgumentParser(description='') parser.add_argument('--config', type=str, default='', help='location of the data corpus') parser.add_argument('--exp_name', type=str, default='', help='exp_name') parser.add_argument('-hp', '--hparams', type=str, default='', help='location of the data corpus') parser.add_argument('--infer', action='store_true', help='infer') parser.add_argument('--validate', action='store_true', help='validate') parser.add_argument('--reset', action='store_true', help='reset hparams') parser.add_argument('--remove', action='store_true', help='remove old ckpt') parser.add_argument('--debug', action='store_true', help='debug') args, unknown = parser.parse_known_args() print("| Unknow hparams: ", unknown) else: args = Args(config=config, exp_name=exp_name, hparams=hparams_str, infer=False, validate=False, reset=False, debug=False, remove=False) global hparams assert args.config != '' or args.exp_name != '' if args.config != '': assert os.path.exists(args.config) config_chains = [] loaded_config = set() def load_config(config_fn): # deep first inheritance and avoid the second visit of one node if not os.path.exists(config_fn): return {} with open(config_fn) as f: hparams_ = yaml.safe_load(f) loaded_config.add(config_fn) if 'base_config' in hparams_: ret_hparams = {} if not isinstance(hparams_['base_config'], list): hparams_['base_config'] = [hparams_['base_config']] for c in hparams_['base_config']: if c.startswith('.'): c = f'{os.path.dirname(config_fn)}/{c}' c = os.path.normpath(c) if c not in loaded_config: override_config(ret_hparams, load_config(c)) override_config(ret_hparams, hparams_) else: ret_hparams = hparams_ config_chains.append(config_fn) return ret_hparams saved_hparams = {} args_work_dir = '' if args.exp_name != '': args_work_dir = f'{args.exp_name}' # modified ckpt_config_path = f'{args_work_dir}/config.yaml' if os.path.exists(ckpt_config_path): with open(ckpt_config_path) as f: saved_hparams_ = yaml.safe_load(f) if saved_hparams_ is not None: saved_hparams.update(saved_hparams_) hparams_ = {} if args.config != '': hparams_.update(load_config(args.config)) if not args.reset: hparams_.update(saved_hparams) hparams_['work_dir'] = args_work_dir # Support config overriding in command line. Support list type config overriding. # Examples: --hparams="a=1,b.c=2,d=[1 1 1]" if args.hparams != "": for new_hparam in args.hparams.split(","): k, v = new_hparam.split("=") v = v.strip("\'\" ") config_node = hparams_ for k_ in k.split(".")[:-1]: config_node = config_node[k_] k = k.split(".")[-1] if v in ['True', 'False'] or type(config_node[k]) in [bool, list, dict]: if type(config_node[k]) == list: v = v.replace(" ", ",") config_node[k] = eval(v) else: config_node[k] = type(config_node[k])(v) if args_work_dir != '' and args.remove: answer = input("REMOVE old checkpoint? Y/N [Default: N]: ") if answer.lower() == "y": remove_file(args_work_dir) if args_work_dir != '' and (not os.path.exists(ckpt_config_path) or args.reset) and not args.infer: os.makedirs(hparams_['work_dir'], exist_ok=True) with open(ckpt_config_path, 'w') as f: yaml.safe_dump(hparams_, f) hparams_['infer'] = args.infer hparams_['debug'] = args.debug hparams_['validate'] = args.validate hparams_['exp_name'] = args.exp_name global global_print_hparams if global_hparams: hparams.clear() hparams.update(hparams_) if print_hparams and global_print_hparams and global_hparams: print('| Hparams chains: ', config_chains) print('| Hparams: ') for i, (k, v) in enumerate(sorted(hparams_.items())): print(f"\033[;33;m{k}\033[0m: {v}, ", end="\n" if i % 5 == 4 else "") print("") global_print_hparams = False return hparams_
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/hparams.py
import librosa import numpy as np from pycwt import wavelet from scipy.interpolate import interp1d def load_wav(wav_file, sr): wav, _ = librosa.load(wav_file, sr=sr, mono=True) return wav def convert_continuos_f0(f0): '''CONVERT F0 TO CONTINUOUS F0 Args: f0 (ndarray): original f0 sequence with the shape (T) Return: (ndarray): continuous f0 with the shape (T) ''' # get uv information as binary f0 = np.copy(f0) uv = np.float32(f0 != 0) # get start and end of f0 if (f0 == 0).all(): print("| all of the f0 values are 0.") return uv, f0 start_f0 = f0[f0 != 0][0] end_f0 = f0[f0 != 0][-1] # padding start and end of f0 sequence start_idx = np.where(f0 == start_f0)[0][0] end_idx = np.where(f0 == end_f0)[0][-1] f0[:start_idx] = start_f0 f0[end_idx:] = end_f0 # get non-zero frame index nz_frames = np.where(f0 != 0)[0] # perform linear interpolation f = interp1d(nz_frames, f0[nz_frames]) cont_f0 = f(np.arange(0, f0.shape[0])) return uv, cont_f0 def get_cont_lf0(f0, frame_period=5.0): uv, cont_f0_lpf = convert_continuos_f0(f0) # cont_f0_lpf = low_pass_filter(cont_f0_lpf, int(1.0 / (frame_period * 0.001)), cutoff=20) cont_lf0_lpf = np.log(cont_f0_lpf) return uv, cont_lf0_lpf def get_lf0_cwt(lf0): ''' input: signal of shape (N) output: Wavelet_lf0 of shape(10, N), scales of shape(10) ''' mother = wavelet.MexicanHat() dt = 0.005 dj = 1 s0 = dt * 2 J = 9 Wavelet_lf0, scales, _, _, _, _ = wavelet.cwt(np.squeeze(lf0), dt, dj, s0, J, mother) # Wavelet.shape => (J + 1, len(lf0)) Wavelet_lf0 = np.real(Wavelet_lf0).T return Wavelet_lf0, scales def norm_scale(Wavelet_lf0): Wavelet_lf0_norm = np.zeros((Wavelet_lf0.shape[0], Wavelet_lf0.shape[1])) mean = Wavelet_lf0.mean(0)[None, :] std = Wavelet_lf0.std(0)[None, :] Wavelet_lf0_norm = (Wavelet_lf0 - mean) / std return Wavelet_lf0_norm, mean, std def normalize_cwt_lf0(f0, mean, std): uv, cont_lf0_lpf = get_cont_lf0(f0) cont_lf0_norm = (cont_lf0_lpf - mean) / std Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_norm) Wavelet_lf0_norm, _, _ = norm_scale(Wavelet_lf0) return Wavelet_lf0_norm def get_lf0_cwt_norm(f0s, mean, std): uvs = list() cont_lf0_lpfs = list() cont_lf0_lpf_norms = list() Wavelet_lf0s = list() Wavelet_lf0s_norm = list() scaless = list() means = list() stds = list() for f0 in f0s: uv, cont_lf0_lpf = get_cont_lf0(f0) cont_lf0_lpf_norm = (cont_lf0_lpf - mean) / std Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm) # [560,10] Wavelet_lf0_norm, mean_scale, std_scale = norm_scale(Wavelet_lf0) # [560,10],[1,10],[1,10] Wavelet_lf0s_norm.append(Wavelet_lf0_norm) uvs.append(uv) cont_lf0_lpfs.append(cont_lf0_lpf) cont_lf0_lpf_norms.append(cont_lf0_lpf_norm) Wavelet_lf0s.append(Wavelet_lf0) scaless.append(scales) means.append(mean_scale) stds.append(std_scale) return Wavelet_lf0s_norm, scaless, means, stds def inverse_cwt_torch(Wavelet_lf0, scales): import torch b = ((torch.arange(0, len(scales)).float().to(Wavelet_lf0.device)[None, None, :] + 1 + 2.5) ** (-2.5)) lf0_rec = Wavelet_lf0 * b lf0_rec_sum = lf0_rec.sum(-1) lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdim=True)) / lf0_rec_sum.std(-1, keepdim=True) return lf0_rec_sum def inverse_cwt(Wavelet_lf0, scales): b = ((np.arange(0, len(scales))[None, None, :] + 1 + 2.5) ** (-2.5)) lf0_rec = Wavelet_lf0 * b lf0_rec_sum = lf0_rec.sum(-1) lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdims=True)) / lf0_rec_sum.std(-1, keepdims=True) return lf0_rec_sum def cwt2f0(cwt_spec, mean, std, cwt_scales): assert len(mean.shape) == 1 and len(std.shape) == 1 and len(cwt_spec.shape) == 3 import torch if isinstance(cwt_spec, torch.Tensor): f0 = inverse_cwt_torch(cwt_spec, cwt_scales) f0 = f0 * std[:, None] + mean[:, None] f0 = f0.exp() # [B, T] else: f0 = inverse_cwt(cwt_spec, cwt_scales) f0 = f0 * std[:, None] + mean[:, None] f0 = np.exp(f0) # [B, T] return f0
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/cwt.py
import matplotlib from torch.nn import DataParallel from torch.nn.parallel import DistributedDataParallel matplotlib.use('Agg') import glob import itertools import subprocess import threading import traceback from pytorch_lightning.callbacks import GradientAccumulationScheduler from pytorch_lightning.callbacks import ModelCheckpoint from functools import wraps from torch.cuda._utils import _get_device_index import numpy as np import torch.optim import torch.utils.data import copy import logging import os import re import sys import torch import torch.distributed as dist import torch.multiprocessing as mp import tqdm from torch.optim.optimizer import Optimizer def get_a_var(obj): # pragma: no cover if isinstance(obj, torch.Tensor): return obj if isinstance(obj, list) or isinstance(obj, tuple): for result in map(get_a_var, obj): if isinstance(result, torch.Tensor): return result if isinstance(obj, dict): for result in map(get_a_var, obj.items()): if isinstance(result, torch.Tensor): return result return None def data_loader(fn): """ Decorator to make any fx with this use the lazy property :param fn: :return: """ wraps(fn) attr_name = '_lazy_' + fn.__name__ def _get_data_loader(self): try: value = getattr(self, attr_name) except AttributeError: try: value = fn(self) # Lazy evaluation, done only once. if ( value is not None and not isinstance(value, list) and fn.__name__ in ['test_dataloader', 'val_dataloader'] ): value = [value] except AttributeError as e: # Guard against AttributeError suppression. (Issue #142) traceback.print_exc() error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e) raise RuntimeError(error) from e setattr(self, attr_name, value) # Memoize evaluation. return value return _get_data_loader def parallel_apply(modules, inputs, kwargs_tup=None, devices=None): # pragma: no cover r"""Applies each `module` in :attr:`modules` in parallel on arguments contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword) on each of :attr:`devices`. Args: modules (Module): modules to be parallelized inputs (tensor): inputs to the modules devices (list of int or torch.device): CUDA devices :attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and :attr:`devices` (if given) should all have same length. Moreover, each element of :attr:`inputs` can either be a single object as the only argument to a module, or a collection of positional arguments. """ assert len(modules) == len(inputs) if kwargs_tup is not None: assert len(modules) == len(kwargs_tup) else: kwargs_tup = ({},) * len(modules) if devices is not None: assert len(modules) == len(devices) else: devices = [None] * len(modules) devices = list(map(lambda x: _get_device_index(x, True), devices)) lock = threading.Lock() results = {} grad_enabled = torch.is_grad_enabled() def _worker(i, module, input, kwargs, device=None): torch.set_grad_enabled(grad_enabled) if device is None: device = get_a_var(input).get_device() try: with torch.cuda.device(device): # this also avoids accidental slicing of `input` if it is a Tensor if not isinstance(input, (list, tuple)): input = (input,) # --------------- # CHANGE if module.training: output = module.training_step(*input, **kwargs) elif module.testing: output = module.test_step(*input, **kwargs) else: output = module.validation_step(*input, **kwargs) # --------------- with lock: results[i] = output except Exception as e: with lock: results[i] = e # make sure each module knows what training state it's in... # fixes weird bug where copies are out of sync root_m = modules[0] for m in modules[1:]: m.training = root_m.training m.testing = root_m.testing if len(modules) > 1: threads = [threading.Thread(target=_worker, args=(i, module, input, kwargs, device)) for i, (module, input, kwargs, device) in enumerate(zip(modules, inputs, kwargs_tup, devices))] for thread in threads: thread.start() for thread in threads: thread.join() else: _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0]) outputs = [] for i in range(len(inputs)): output = results[i] if isinstance(output, Exception): raise output outputs.append(output) return outputs def _find_tensors(obj): # pragma: no cover r""" Recursively find all tensors contained in the specified object. """ if isinstance(obj, torch.Tensor): return [obj] if isinstance(obj, (list, tuple)): return itertools.chain(*map(_find_tensors, obj)) if isinstance(obj, dict): return itertools.chain(*map(_find_tensors, obj.values())) return [] class DDP(DistributedDataParallel): """ Override the forward call in lightning so it goes to training and validation step respectively """ def parallel_apply(self, replicas, inputs, kwargs): return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) def forward(self, *inputs, **kwargs): # pragma: no cover self._sync_params() if self.device_ids: inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) if len(self.device_ids) == 1: # -------------- # LIGHTNING MOD # -------------- # normal # output = self.module(*inputs[0], **kwargs[0]) # lightning if self.module.training: output = self.module.training_step(*inputs[0], **kwargs[0]) elif self.module.testing: output = self.module.test_step(*inputs[0], **kwargs[0]) else: output = self.module.validation_step(*inputs[0], **kwargs[0]) else: outputs = self.parallel_apply(self._module_copies[:len(inputs)], inputs, kwargs) output = self.gather(outputs, self.output_device) else: # normal output = self.module(*inputs, **kwargs) if torch.is_grad_enabled(): # We'll return the output object verbatim since it is a freeform # object. We need to find any tensors in this object, though, # because we need to figure out which parameters were used during # this forward pass, to ensure we short circuit reduction for any # unused parameters. Only if `find_unused_parameters` is set. if self.find_unused_parameters: self.reducer.prepare_for_backward(list(_find_tensors(output))) else: self.reducer.prepare_for_backward([]) return output class DP(DataParallel): """ Override the forward call in lightning so it goes to training and validation step respectively """ def forward(self, *inputs, **kwargs): if not self.device_ids: return self.module(*inputs, **kwargs) for t in itertools.chain(self.module.parameters(), self.module.buffers()): if t.device != self.src_device_obj: raise RuntimeError("module must have its parameters and buffers " "on device {} (device_ids[0]) but found one of " "them on device: {}".format(self.src_device_obj, t.device)) inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) if len(self.device_ids) == 1: # lightning if self.module.training: return self.module.training_step(*inputs[0], **kwargs[0]) elif self.module.testing: return self.module.test_step(*inputs[0], **kwargs[0]) else: return self.module.validation_step(*inputs[0], **kwargs[0]) replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) outputs = self.parallel_apply(replicas, inputs, kwargs) return self.gather(outputs, self.output_device) def parallel_apply(self, replicas, inputs, kwargs): return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) class GradientAccumulationScheduler: def __init__(self, scheduling: dict): if scheduling == {}: # empty dict error raise TypeError("Empty dict cannot be interpreted correct") for key in scheduling.keys(): if not isinstance(key, int) or not isinstance(scheduling[key], int): raise TypeError("All epoches and accumulation factor must be integers") minimal_epoch = min(scheduling.keys()) if minimal_epoch < 1: msg = f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct" raise IndexError(msg) elif minimal_epoch != 1: # if user didnt define first epoch accumulation factor scheduling.update({1: 1}) self.scheduling = scheduling self.epochs = sorted(scheduling.keys()) def on_epoch_begin(self, epoch, trainer): epoch += 1 # indexing epochs from 1 for i in reversed(range(len(self.epochs))): if epoch >= self.epochs[i]: trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i]) break class LatestModelCheckpoint(ModelCheckpoint): def __init__(self, filepath, monitor='val_loss', verbose=0, num_ckpt_keep=5, save_weights_only=False, mode='auto', period=1, prefix='model', save_best=True): super(ModelCheckpoint, self).__init__() self.monitor = monitor self.verbose = verbose self.filepath = filepath os.makedirs(filepath, exist_ok=True) self.num_ckpt_keep = num_ckpt_keep self.save_best = save_best self.save_weights_only = save_weights_only self.period = period self.epochs_since_last_check = 0 self.prefix = prefix self.best_k_models = {} # {filename: monitor} self.kth_best_model = '' self.save_top_k = 1 self.task = None if mode == 'min': self.monitor_op = np.less self.best = np.Inf self.mode = 'min' elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf self.mode = 'max' else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf self.mode = 'max' else: self.monitor_op = np.less self.best = np.Inf self.mode = 'min' if os.path.exists(f'{self.filepath}/best_valid.npy'): self.best = np.load(f'{self.filepath}/best_valid.npy')[0] def get_all_ckpts(self): return sorted(glob.glob(f'{self.filepath}/{self.prefix}_ckpt_steps_*.ckpt'), key=lambda x: -int(re.findall('.*steps\_(\d+)\.ckpt', x)[0])) def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epochs_since_last_check += 1 best_filepath = f'{self.filepath}/{self.prefix}_ckpt_best.pt' if self.epochs_since_last_check >= self.period: self.epochs_since_last_check = 0 filepath = f'{self.filepath}/{self.prefix}_ckpt_steps_{self.task.global_step}.ckpt' if self.verbose > 0: logging.info(f'Epoch {epoch:05d}@{self.task.global_step}: saving model to {filepath}') self._save_model(filepath) for old_ckpt in self.get_all_ckpts()[self.num_ckpt_keep:]: subprocess.check_call(f'rm -rf "{old_ckpt}"', shell=True) if self.verbose > 0: logging.info(f'Delete ckpt: {os.path.basename(old_ckpt)}') current = logs.get(self.monitor) if current is not None and self.save_best: if self.monitor_op(current, self.best): self.best = current if self.verbose > 0: logging.info( f'Epoch {epoch:05d}@{self.task.global_step}: {self.monitor} reached' f' {current:0.5f} (best {self.best:0.5f}), saving model to' f' {best_filepath} as top 1') self._save_model(best_filepath) np.save(f'{self.filepath}/best_valid.npy', [self.best]) class BaseTrainer: def __init__( self, logger=True, checkpoint_callback=True, default_save_path=None, gradient_clip_val=0, process_position=0, gpus=-1, log_gpu_memory=None, show_progress_bar=True, track_grad_norm=-1, check_val_every_n_epoch=1, accumulate_grad_batches=1, max_updates=1000, min_epochs=1, val_check_interval=1.0, log_save_interval=100, row_log_interval=10, print_nan_grads=False, weights_summary='full', num_sanity_val_steps=5, resume_from_checkpoint=None, ): self.log_gpu_memory = log_gpu_memory self.gradient_clip_val = gradient_clip_val self.check_val_every_n_epoch = check_val_every_n_epoch self.track_grad_norm = track_grad_norm self.on_gpu = True if (gpus and torch.cuda.is_available()) else False self.process_position = process_position self.weights_summary = weights_summary self.max_updates = max_updates self.min_epochs = min_epochs self.num_sanity_val_steps = num_sanity_val_steps self.print_nan_grads = print_nan_grads self.resume_from_checkpoint = resume_from_checkpoint self.default_save_path = default_save_path # training bookeeping self.total_batch_idx = 0 self.running_loss = [] self.avg_loss = 0 self.batch_idx = 0 self.tqdm_metrics = {} self.callback_metrics = {} self.num_val_batches = 0 self.num_training_batches = 0 self.num_test_batches = 0 self.get_train_dataloader = None self.get_test_dataloaders = None self.get_val_dataloaders = None self.is_iterable_train_dataloader = False # training state self.model = None self.testing = False self.disable_validation = False self.lr_schedulers = [] self.optimizers = None self.global_step = 0 self.current_epoch = 0 self.total_batches = 0 # configure checkpoint callback self.checkpoint_callback = checkpoint_callback self.checkpoint_callback.save_function = self.save_checkpoint self.weights_save_path = self.checkpoint_callback.filepath # accumulated grads self.configure_accumulated_gradients(accumulate_grad_batches) # allow int, string and gpu list self.data_parallel_device_ids = [ int(x) for x in os.environ.get("CUDA_VISIBLE_DEVICES", "").split(",") if x != ''] if len(self.data_parallel_device_ids) == 0: self.root_gpu = None self.on_gpu = False else: self.root_gpu = self.data_parallel_device_ids[0] self.on_gpu = True # distributed backend choice self.use_ddp = False self.use_dp = False self.single_gpu = False self.distributed_backend = 'ddp' if self.num_gpus > 0 else 'dp' self.set_distributed_mode(self.distributed_backend) self.proc_rank = 0 self.world_size = 1 self.node_rank = 0 # can't init progress bar here because starting a new process # means the progress_bar won't survive pickling self.show_progress_bar = show_progress_bar # logging self.log_save_interval = log_save_interval self.val_check_interval = val_check_interval self.logger = logger self.logger.rank = 0 self.row_log_interval = row_log_interval @property def num_gpus(self): gpus = self.data_parallel_device_ids if gpus is None: return 0 else: return len(gpus) @property def data_parallel(self): return self.use_dp or self.use_ddp def get_model(self): is_dp_module = isinstance(self.model, (DDP, DP)) model = self.model.module if is_dp_module else self.model return model # ----------------------------- # MODEL TRAINING # ----------------------------- def fit(self, model): if self.use_ddp: mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model,)) else: model.model = model.build_model() if not self.testing: self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers()) if self.use_dp: model.cuda(self.root_gpu) model = DP(model, device_ids=self.data_parallel_device_ids) elif self.single_gpu: model.cuda(self.root_gpu) self.run_pretrain_routine(model) return 1 def init_optimizers(self, optimizers): # single optimizer if isinstance(optimizers, Optimizer): return [optimizers], [] # two lists elif len(optimizers) == 2 and isinstance(optimizers[0], list): optimizers, lr_schedulers = optimizers return optimizers, lr_schedulers # single list or tuple elif isinstance(optimizers, list) or isinstance(optimizers, tuple): return optimizers, [] def run_pretrain_routine(self, model): """Sanity check a few things before starting actual training. :param model: """ ref_model = model if self.data_parallel: ref_model = model.module # give model convenience properties ref_model.trainer = self # set local properties on the model self.copy_trainer_model_properties(ref_model) # link up experiment object if self.logger is not None: ref_model.logger = self.logger self.logger.save() if self.use_ddp: dist.barrier() # set up checkpoint callback # self.configure_checkpoint_callback() # transfer data loaders from model self.get_dataloaders(ref_model) # track model now. # if cluster resets state, the model will update with the saved weights self.model = model # restore training and model before hpc call self.restore_weights(model) # when testing requested only run test and return if self.testing: self.run_evaluation(test=True) return # check if we should run validation during training self.disable_validation = self.num_val_batches == 0 # run tiny validation (if validation defined) # to make sure program won't crash during val ref_model.on_sanity_check_start() ref_model.on_train_start() if not self.disable_validation and self.num_sanity_val_steps > 0: # init progress bars for validation sanity check pbar = tqdm.tqdm(desc='Validation sanity check', total=self.num_sanity_val_steps * len(self.get_val_dataloaders()), leave=False, position=2 * self.process_position, disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch') self.main_progress_bar = pbar # dummy validation progress bar self.val_progress_bar = tqdm.tqdm(disable=True) self.evaluate(model, self.get_val_dataloaders(), self.num_sanity_val_steps, self.testing) # close progress bars self.main_progress_bar.close() self.val_progress_bar.close() # init progress bar pbar = tqdm.tqdm(leave=True, position=2 * self.process_position, disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch', file=sys.stdout) self.main_progress_bar = pbar # clear cache before training if self.on_gpu: torch.cuda.empty_cache() # CORE TRAINING LOOP self.train() def test(self, model): self.testing = True self.fit(model) @property def training_tqdm_dict(self): tqdm_dict = { 'step': '{}'.format(self.global_step), } tqdm_dict.update(self.tqdm_metrics) return tqdm_dict # -------------------- # restore ckpt # -------------------- def restore_weights(self, model): """ To restore weights we have two cases. First, attempt to restore hpc weights. If successful, don't restore other weights. Otherwise, try to restore actual weights :param model: :return: """ # clear cache before restore if self.on_gpu: torch.cuda.empty_cache() if self.resume_from_checkpoint is not None: self.restore(self.resume_from_checkpoint, on_gpu=self.on_gpu) else: # restore weights if same exp version self.restore_state_if_checkpoint_exists(model) # wait for all models to restore weights if self.use_ddp: # wait for all processes to catch up dist.barrier() # clear cache after restore if self.on_gpu: torch.cuda.empty_cache() def restore_state_if_checkpoint_exists(self, model): did_restore = False # do nothing if there's not dir or callback no_ckpt_callback = (self.checkpoint_callback is None) or (not self.checkpoint_callback) if no_ckpt_callback or not os.path.exists(self.checkpoint_callback.filepath): return did_restore # restore trainer state and model if there is a weight for this experiment last_steps = -1 last_ckpt_name = None # find last epoch checkpoints = os.listdir(self.checkpoint_callback.filepath) for name in checkpoints: if '.ckpt' in name and not name.endswith('part'): if 'steps_' in name: steps = name.split('steps_')[1] steps = int(re.sub('[^0-9]', '', steps)) if steps > last_steps: last_steps = steps last_ckpt_name = name # restore last checkpoint if last_ckpt_name is not None: last_ckpt_path = os.path.join(self.checkpoint_callback.filepath, last_ckpt_name) self.restore(last_ckpt_path, self.on_gpu) logging.info(f'model and trainer restored from checkpoint: {last_ckpt_path}') did_restore = True return did_restore def restore(self, checkpoint_path, on_gpu): checkpoint = torch.load(checkpoint_path, map_location='cpu') # load model state model = self.get_model() # load the state_dict on the model automatically model.load_state_dict(checkpoint['state_dict'], strict=False) if on_gpu: model.cuda(self.root_gpu) # load training state (affects trainer only) self.restore_training_state(checkpoint) model.global_step = self.global_step del checkpoint try: if dist.is_initialized() and dist.get_rank() > 0: return except Exception as e: print(e) return def restore_training_state(self, checkpoint): """ Restore trainer state. Model will get its change to update :param checkpoint: :return: """ if self.checkpoint_callback is not None and self.checkpoint_callback is not False: self.checkpoint_callback.best = checkpoint['checkpoint_callback_best'] self.global_step = checkpoint['global_step'] self.current_epoch = checkpoint['epoch'] if self.testing: return # restore the optimizers optimizer_states = checkpoint['optimizer_states'] for optimizer, opt_state in zip(self.optimizers, optimizer_states): if optimizer is None: return optimizer.load_state_dict(opt_state) # move optimizer to GPU 1 weight at a time # avoids OOM if self.root_gpu is not None: for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.cuda(self.root_gpu) # restore the lr schedulers lr_schedulers = checkpoint['lr_schedulers'] for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers): scheduler.load_state_dict(lrs_state) # -------------------- # MODEL SAVE CHECKPOINT # -------------------- def _atomic_save(self, checkpoint, filepath): """Saves a checkpoint atomically, avoiding the creation of incomplete checkpoints. This will create a temporary checkpoint with a suffix of ``.part``, then copy it to the final location once saving is finished. Args: checkpoint (object): The object to save. Built to be used with the ``dump_checkpoint`` method, but can deal with anything which ``torch.save`` accepts. filepath (str|pathlib.Path): The path to which the checkpoint will be saved. This points to the file that the checkpoint will be stored in. """ tmp_path = str(filepath) + ".part" torch.save(checkpoint, tmp_path) os.replace(tmp_path, filepath) def save_checkpoint(self, filepath): checkpoint = self.dump_checkpoint() self._atomic_save(checkpoint, filepath) def dump_checkpoint(self): checkpoint = { 'epoch': self.current_epoch, 'global_step': self.global_step } if self.checkpoint_callback is not None and self.checkpoint_callback is not False: checkpoint['checkpoint_callback_best'] = self.checkpoint_callback.best # save optimizers optimizer_states = [] for i, optimizer in enumerate(self.optimizers): if optimizer is not None: optimizer_states.append(optimizer.state_dict()) checkpoint['optimizer_states'] = optimizer_states # save lr schedulers lr_schedulers = [] for i, scheduler in enumerate(self.lr_schedulers): lr_schedulers.append(scheduler.state_dict()) checkpoint['lr_schedulers'] = lr_schedulers # add the hparams and state_dict from the model model = self.get_model() checkpoint['state_dict'] = model.state_dict() # give the model a chance to add a few things model.on_save_checkpoint(checkpoint) return checkpoint def copy_trainer_model_properties(self, model): if isinstance(model, DP): ref_model = model.module elif isinstance(model, DDP): ref_model = model.module else: ref_model = model for m in [model, ref_model]: m.trainer = self m.on_gpu = self.on_gpu m.use_dp = self.use_dp m.use_ddp = self.use_ddp m.testing = self.testing m.single_gpu = self.single_gpu def transfer_batch_to_gpu(self, batch, gpu_id): # base case: object can be directly moved using `cuda` or `to` if callable(getattr(batch, 'cuda', None)): return batch.cuda(gpu_id, non_blocking=True) elif callable(getattr(batch, 'to', None)): return batch.to(torch.device('cuda', gpu_id), non_blocking=True) # when list elif isinstance(batch, list): for i, x in enumerate(batch): batch[i] = self.transfer_batch_to_gpu(x, gpu_id) return batch # when tuple elif isinstance(batch, tuple): batch = list(batch) for i, x in enumerate(batch): batch[i] = self.transfer_batch_to_gpu(x, gpu_id) return tuple(batch) # when dict elif isinstance(batch, dict): for k, v in batch.items(): batch[k] = self.transfer_batch_to_gpu(v, gpu_id) return batch # nothing matches, return the value as is without transform return batch def set_distributed_mode(self, distributed_backend): # skip for CPU if self.num_gpus == 0: return # single GPU case # in single gpu case we allow ddp so we can train on multiple # nodes, 1 gpu per node elif self.num_gpus == 1: self.single_gpu = True self.use_dp = False self.use_ddp = False self.root_gpu = 0 self.data_parallel_device_ids = [0] else: if distributed_backend is not None: self.use_dp = distributed_backend == 'dp' self.use_ddp = distributed_backend == 'ddp' elif distributed_backend is None: self.use_dp = True self.use_ddp = False logging.info(f'gpu available: {torch.cuda.is_available()}, used: {self.on_gpu}') def ddp_train(self, gpu_idx, model): """ Entry point into a DP thread :param gpu_idx: :param model: :param cluster_obj: :return: """ # otherwise default to node rank 0 self.node_rank = 0 # show progressbar only on progress_rank 0 self.show_progress_bar = self.show_progress_bar and self.node_rank == 0 and gpu_idx == 0 # determine which process we are and world size if self.use_ddp: self.proc_rank = self.node_rank * self.num_gpus + gpu_idx self.world_size = self.num_gpus # let the exp know the rank to avoid overwriting logs if self.logger is not None: self.logger.rank = self.proc_rank # set up server using proc 0's ip address # try to init for 20 times at max in case ports are taken # where to store ip_table model.trainer = self model.init_ddp_connection(self.proc_rank, self.world_size) # CHOOSE OPTIMIZER # allow for lr schedulers as well model.model = model.build_model() if not self.testing: self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers()) # MODEL # copy model to each gpu if self.distributed_backend == 'ddp': torch.cuda.set_device(gpu_idx) model.cuda(gpu_idx) # set model properties before going into wrapper self.copy_trainer_model_properties(model) # override root GPU self.root_gpu = gpu_idx if self.distributed_backend == 'ddp': device_ids = [gpu_idx] else: device_ids = None # allow user to configure ddp model = model.configure_ddp(model, device_ids) # continue training routine self.run_pretrain_routine(model) def resolve_root_node_address(self, root_node): if '[' in root_node: name = root_node.split('[')[0] number = root_node.split(',')[0] if '-' in number: number = number.split('-')[0] number = re.sub('[^0-9]', '', number) root_node = name + number return root_node def log_metrics(self, metrics, grad_norm_dic, step=None): """Logs the metric dict passed in. :param metrics: :param grad_norm_dic: """ # added metrics by Lightning for convenience metrics['epoch'] = self.current_epoch # add norms metrics.update(grad_norm_dic) # turn all tensors to scalars scalar_metrics = self.metrics_to_scalars(metrics) step = step if step is not None else self.global_step # log actual metrics if self.proc_rank == 0 and self.logger is not None: self.logger.log_metrics(scalar_metrics, step=step) self.logger.save() def add_tqdm_metrics(self, metrics): for k, v in metrics.items(): if type(v) is torch.Tensor: v = v.item() self.tqdm_metrics[k] = v def metrics_to_scalars(self, metrics): new_metrics = {} for k, v in metrics.items(): if isinstance(v, torch.Tensor): v = v.item() if type(v) is dict: v = self.metrics_to_scalars(v) new_metrics[k] = v return new_metrics def process_output(self, output, train=False): """Reduces output according to the training mode. Separates loss from logging and tqdm metrics :param output: :return: """ # --------------- # EXTRACT CALLBACK KEYS # --------------- # all keys not progress_bar or log are candidates for callbacks callback_metrics = {} for k, v in output.items(): if k not in ['progress_bar', 'log', 'hiddens']: callback_metrics[k] = v if train and self.use_dp: num_gpus = self.num_gpus callback_metrics = self.reduce_distributed_output(callback_metrics, num_gpus) for k, v in callback_metrics.items(): if isinstance(v, torch.Tensor): callback_metrics[k] = v.item() # --------------- # EXTRACT PROGRESS BAR KEYS # --------------- try: progress_output = output['progress_bar'] # reduce progress metrics for tqdm when using dp if train and self.use_dp: num_gpus = self.num_gpus progress_output = self.reduce_distributed_output(progress_output, num_gpus) progress_bar_metrics = progress_output except Exception: progress_bar_metrics = {} # --------------- # EXTRACT LOGGING KEYS # --------------- # extract metrics to log to experiment try: log_output = output['log'] # reduce progress metrics for tqdm when using dp if train and self.use_dp: num_gpus = self.num_gpus log_output = self.reduce_distributed_output(log_output, num_gpus) log_metrics = log_output except Exception: log_metrics = {} # --------------- # EXTRACT LOSS # --------------- # if output dict doesn't have the keyword loss # then assume the output=loss if scalar loss = None if train: try: loss = output['loss'] except Exception: if type(output) is torch.Tensor: loss = output else: raise RuntimeError( 'No `loss` value in the dictionary returned from `model.training_step()`.' ) # when using dp need to reduce the loss if self.use_dp: loss = self.reduce_distributed_output(loss, self.num_gpus) # --------------- # EXTRACT HIDDEN # --------------- hiddens = output.get('hiddens') # use every metric passed in as a candidate for callback callback_metrics.update(progress_bar_metrics) callback_metrics.update(log_metrics) # convert tensors to numpy for k, v in callback_metrics.items(): if isinstance(v, torch.Tensor): callback_metrics[k] = v.item() return loss, progress_bar_metrics, log_metrics, callback_metrics, hiddens def reduce_distributed_output(self, output, num_gpus): if num_gpus <= 1: return output # when using DP, we get one output per gpu # average outputs and return if type(output) is torch.Tensor: return output.mean() for k, v in output.items(): # recurse on nested dics if isinstance(output[k], dict): output[k] = self.reduce_distributed_output(output[k], num_gpus) # do nothing when there's a scalar elif isinstance(output[k], torch.Tensor) and output[k].dim() == 0: pass # reduce only metrics that have the same number of gpus elif output[k].size(0) == num_gpus: reduced = torch.mean(output[k]) output[k] = reduced return output def clip_gradients(self): if self.gradient_clip_val > 0: model = self.get_model() torch.nn.utils.clip_grad_norm_(model.parameters(), self.gradient_clip_val) def print_nan_gradients(self): model = self.get_model() for param in model.parameters(): if (param.grad is not None) and torch.isnan(param.grad.float()).any(): logging.info(param, param.grad) def configure_accumulated_gradients(self, accumulate_grad_batches): self.accumulate_grad_batches = None if isinstance(accumulate_grad_batches, dict): self.accumulation_scheduler = GradientAccumulationScheduler(accumulate_grad_batches) elif isinstance(accumulate_grad_batches, int): schedule = {1: accumulate_grad_batches} self.accumulation_scheduler = GradientAccumulationScheduler(schedule) else: raise TypeError("Gradient accumulation supports only int and dict types") def get_dataloaders(self, model): if not self.testing: self.init_train_dataloader(model) self.init_val_dataloader(model) else: self.init_test_dataloader(model) if self.use_ddp: dist.barrier() if not self.testing: self.get_train_dataloader() self.get_val_dataloaders() else: self.get_test_dataloaders() def init_train_dataloader(self, model): self.fisrt_epoch = True self.get_train_dataloader = model.train_dataloader if isinstance(self.get_train_dataloader(), torch.utils.data.DataLoader): self.num_training_batches = len(self.get_train_dataloader()) self.num_training_batches = int(self.num_training_batches) else: self.num_training_batches = float('inf') self.is_iterable_train_dataloader = True if isinstance(self.val_check_interval, int): self.val_check_batch = self.val_check_interval else: self._percent_range_check('val_check_interval') self.val_check_batch = int(self.num_training_batches * self.val_check_interval) self.val_check_batch = max(1, self.val_check_batch) def init_val_dataloader(self, model): self.get_val_dataloaders = model.val_dataloader self.num_val_batches = 0 if self.get_val_dataloaders() is not None: if isinstance(self.get_val_dataloaders()[0], torch.utils.data.DataLoader): self.num_val_batches = sum(len(dataloader) for dataloader in self.get_val_dataloaders()) self.num_val_batches = int(self.num_val_batches) else: self.num_val_batches = float('inf') def init_test_dataloader(self, model): self.get_test_dataloaders = model.test_dataloader if self.get_test_dataloaders() is not None: if isinstance(self.get_test_dataloaders()[0], torch.utils.data.DataLoader): self.num_test_batches = sum(len(dataloader) for dataloader in self.get_test_dataloaders()) self.num_test_batches = int(self.num_test_batches) else: self.num_test_batches = float('inf') def evaluate(self, model, dataloaders, max_batches, test=False): """Run evaluation code. :param model: PT model :param dataloaders: list of PT dataloaders :param max_batches: Scalar :param test: boolean :return: """ # enable eval mode model.zero_grad() model.eval() # copy properties for forward overrides self.copy_trainer_model_properties(model) # disable gradients to save memory torch.set_grad_enabled(False) if test: self.get_model().test_start() # bookkeeping outputs = [] # run training for dataloader_idx, dataloader in enumerate(dataloaders): dl_outputs = [] for batch_idx, batch in enumerate(dataloader): if batch is None: # pragma: no cover continue # stop short when on fast_dev_run (sets max_batch=1) if batch_idx >= max_batches: break # ----------------- # RUN EVALUATION STEP # ----------------- output = self.evaluation_forward(model, batch, batch_idx, dataloader_idx, test) # track outputs for collation dl_outputs.append(output) # batch done if test: self.test_progress_bar.update(1) else: self.val_progress_bar.update(1) outputs.append(dl_outputs) # with a single dataloader don't pass an array if len(dataloaders) == 1: outputs = outputs[0] # give model a chance to do something with the outputs (and method defined) model = self.get_model() if test: eval_results_ = model.test_end(outputs) else: eval_results_ = model.validation_end(outputs) eval_results = eval_results_ # enable train mode again model.train() # enable gradients to save memory torch.set_grad_enabled(True) return eval_results def run_evaluation(self, test=False): # when testing make sure user defined a test step model = self.get_model() model.on_pre_performance_check() # select dataloaders if test: dataloaders = self.get_test_dataloaders() max_batches = self.num_test_batches else: # val dataloaders = self.get_val_dataloaders() max_batches = self.num_val_batches # init validation or test progress bar # main progress bar will already be closed when testing so initial position is free position = 2 * self.process_position + (not test) desc = 'Testing' if test else 'Validating' pbar = tqdm.tqdm(desc=desc, total=max_batches, leave=test, position=position, disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch', file=sys.stdout) setattr(self, f'{"test" if test else "val"}_progress_bar', pbar) # run evaluation eval_results = self.evaluate(self.model, dataloaders, max_batches, test) if eval_results is not None: _, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output( eval_results) # add metrics to prog bar self.add_tqdm_metrics(prog_bar_metrics) # log metrics self.log_metrics(log_metrics, {}) # track metrics for callbacks self.callback_metrics.update(callback_metrics) # hook model.on_post_performance_check() # add model specific metrics tqdm_metrics = self.training_tqdm_dict if not test: self.main_progress_bar.set_postfix(**tqdm_metrics) # close progress bar if test: self.test_progress_bar.close() else: self.val_progress_bar.close() # model checkpointing if self.proc_rank == 0 and self.checkpoint_callback is not None and not test: self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch, logs=self.callback_metrics) def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test=False): # make dataloader_idx arg in validation_step optional args = [batch, batch_idx] if test and len(self.get_test_dataloaders()) > 1: args.append(dataloader_idx) elif not test and len(self.get_val_dataloaders()) > 1: args.append(dataloader_idx) # handle DP, DDP forward if self.use_ddp or self.use_dp: output = model(*args) return output # single GPU if self.single_gpu: # for single GPU put inputs on gpu manually root_gpu = 0 if isinstance(self.data_parallel_device_ids, list): root_gpu = self.data_parallel_device_ids[0] batch = self.transfer_batch_to_gpu(batch, root_gpu) args[0] = batch # CPU if test: output = model.test_step(*args) else: output = model.validation_step(*args) return output def train(self): model = self.get_model() # run all epochs for epoch in range(self.current_epoch, 1000000): # set seed for distributed sampler (enables shuffling for each epoch) if self.use_ddp and hasattr(self.get_train_dataloader().sampler, 'set_epoch'): self.get_train_dataloader().sampler.set_epoch(epoch) # get model model = self.get_model() # update training progress in trainer and model model.current_epoch = epoch self.current_epoch = epoch total_val_batches = 0 if not self.disable_validation: # val can be checked multiple times in epoch is_val_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0 val_checks_per_epoch = self.num_training_batches // self.val_check_batch val_checks_per_epoch = val_checks_per_epoch if is_val_epoch else 0 total_val_batches = self.num_val_batches * val_checks_per_epoch # total batches includes multiple val checks self.total_batches = self.num_training_batches + total_val_batches self.batch_loss_value = 0 # accumulated grads if self.is_iterable_train_dataloader: # for iterable train loader, the progress bar never ends num_iterations = None else: num_iterations = self.total_batches # reset progress bar # .reset() doesn't work on disabled progress bar so we should check desc = f'Epoch {epoch + 1}' if not self.is_iterable_train_dataloader else '' self.main_progress_bar.set_description(desc) # changing gradient according accumulation_scheduler self.accumulation_scheduler.on_epoch_begin(epoch, self) # ----------------- # RUN TNG EPOCH # ----------------- self.run_training_epoch() # update LR schedulers if self.lr_schedulers is not None: for lr_scheduler in self.lr_schedulers: lr_scheduler.step(epoch=self.current_epoch) self.main_progress_bar.close() model.on_train_end() if self.logger is not None: self.logger.finalize("success") def run_training_epoch(self): # before epoch hook if self.is_function_implemented('on_epoch_start'): model = self.get_model() model.on_epoch_start() # run epoch for batch_idx, batch in enumerate(self.get_train_dataloader()): # stop epoch if we limited the number of training batches if batch_idx >= self.num_training_batches: break self.batch_idx = batch_idx model = self.get_model() model.global_step = self.global_step # --------------- # RUN TRAIN STEP # --------------- output = self.run_training_batch(batch, batch_idx) batch_result, grad_norm_dic, batch_step_metrics = output # when returning -1 from train_step, we end epoch early early_stop_epoch = batch_result == -1 # --------------- # RUN VAL STEP # --------------- should_check_val = ( not self.disable_validation and self.global_step % self.val_check_batch == 0 and not self.fisrt_epoch) self.fisrt_epoch = False if should_check_val: self.run_evaluation(test=self.testing) # when logs should be saved should_save_log = (batch_idx + 1) % self.log_save_interval == 0 or early_stop_epoch if should_save_log: if self.proc_rank == 0 and self.logger is not None: self.logger.save() # when metrics should be logged should_log_metrics = batch_idx % self.row_log_interval == 0 or early_stop_epoch if should_log_metrics: # logs user requested information to logger self.log_metrics(batch_step_metrics, grad_norm_dic) self.global_step += 1 self.total_batch_idx += 1 # end epoch early # stop when the flag is changed or we've gone past the amount # requested in the batches if early_stop_epoch: break if self.global_step > self.max_updates: print("| Training end..") exit() # epoch end hook if self.is_function_implemented('on_epoch_end'): model = self.get_model() model.on_epoch_end() def run_training_batch(self, batch, batch_idx): # track grad norms grad_norm_dic = {} # track all metrics for callbacks all_callback_metrics = [] # track metrics to log all_log_metrics = [] if batch is None: return 0, grad_norm_dic, {} # hook if self.is_function_implemented('on_batch_start'): model_ref = self.get_model() response = model_ref.on_batch_start(batch) if response == -1: return -1, grad_norm_dic, {} splits = [batch] self.hiddens = None for split_idx, split_batch in enumerate(splits): self.split_idx = split_idx # call training_step once per optimizer for opt_idx, optimizer in enumerate(self.optimizers): if optimizer is None: continue # make sure only the gradients of the current optimizer's paramaters are calculated # in the training step to prevent dangling gradients in multiple-optimizer setup. if len(self.optimizers) > 1: for param in self.get_model().parameters(): param.requires_grad = False for group in optimizer.param_groups: for param in group['params']: param.requires_grad = True # wrap the forward step in a closure so second order methods work def optimizer_closure(): # forward pass output = self.training_forward( split_batch, batch_idx, opt_idx, self.hiddens) closure_loss = output[0] progress_bar_metrics = output[1] log_metrics = output[2] callback_metrics = output[3] self.hiddens = output[4] if closure_loss is None: return None # accumulate loss # (if accumulate_grad_batches = 1 no effect) closure_loss = closure_loss / self.accumulate_grad_batches # backward pass model_ref = self.get_model() if closure_loss.requires_grad: model_ref.backward(closure_loss, optimizer) # track metrics for callbacks all_callback_metrics.append(callback_metrics) # track progress bar metrics self.add_tqdm_metrics(progress_bar_metrics) all_log_metrics.append(log_metrics) # insert after step hook if self.is_function_implemented('on_after_backward'): model_ref = self.get_model() model_ref.on_after_backward() return closure_loss # calculate loss loss = optimizer_closure() if loss is None: continue # nan grads if self.print_nan_grads: self.print_nan_gradients() # track total loss for logging (avoid mem leaks) self.batch_loss_value += loss.item() # gradient update with accumulated gradients if (self.batch_idx + 1) % self.accumulate_grad_batches == 0: # track gradient norms when requested if batch_idx % self.row_log_interval == 0: if self.track_grad_norm > 0: model = self.get_model() grad_norm_dic = model.grad_norm( self.track_grad_norm) # clip gradients self.clip_gradients() # calls .step(), .zero_grad() # override function to modify this behavior model = self.get_model() model.optimizer_step(self.current_epoch, batch_idx, optimizer, opt_idx) # calculate running loss for display self.running_loss.append(self.batch_loss_value) self.batch_loss_value = 0 self.avg_loss = np.mean(self.running_loss[-100:]) # activate batch end hook if self.is_function_implemented('on_batch_end'): model = self.get_model() model.on_batch_end() # update progress bar self.main_progress_bar.update(1) self.main_progress_bar.set_postfix(**self.training_tqdm_dict) # collapse all metrics into one dict all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()} # track all metrics for callbacks self.callback_metrics.update({k: v for d in all_callback_metrics for k, v in d.items()}) return 0, grad_norm_dic, all_log_metrics def training_forward(self, batch, batch_idx, opt_idx, hiddens): """ Handle forward for each training case (distributed, single gpu, etc...) :param batch: :param batch_idx: :return: """ # --------------- # FORWARD # --------------- # enable not needing to add opt_idx to training_step args = [batch, batch_idx, opt_idx] # distributed forward if self.use_ddp or self.use_dp: output = self.model(*args) # single GPU forward elif self.single_gpu: gpu_id = 0 if isinstance(self.data_parallel_device_ids, list): gpu_id = self.data_parallel_device_ids[0] batch = self.transfer_batch_to_gpu(copy.copy(batch), gpu_id) args[0] = batch output = self.model.training_step(*args) # CPU forward else: output = self.model.training_step(*args) # allow any mode to define training_end model_ref = self.get_model() output_ = model_ref.training_end(output) if output_ is not None: output = output_ # format and reduce outputs accordingly output = self.process_output(output, train=True) return output # --------------- # Utils # --------------- def is_function_implemented(self, f_name): model = self.get_model() f_op = getattr(model, f_name, None) return callable(f_op) def _percent_range_check(self, name): value = getattr(self, name) msg = f"`{name}` must lie in the range [0.0, 1.0], but got {value:.3f}." if name == "val_check_interval": msg += " If you want to disable validation set `val_percent_check` to 0.0 instead." if not 0. <= value <= 1.: raise ValueError(msg)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/pl_utils.py
import glob import logging import re import time from collections import defaultdict import os import sys import shutil import types import numpy as np import torch import torch.nn.functional as F import torch.distributed as dist from torch import nn def tensors_to_scalars(metrics): new_metrics = {} for k, v in metrics.items(): if isinstance(v, torch.Tensor): v = v.item() if type(v) is dict: v = tensors_to_scalars(v) new_metrics[k] = v return new_metrics class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt def collate_1d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None, shift_id=1): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) if max_len is None else max_len res = values[0].new(len(values), size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if shift_right: dst[1:] = src[:-1] dst[0] = shift_id else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) return res def collate_2d(values, pad_idx=0, left_pad=False, shift_right=False, max_len=None): """Convert a list of 2d tensors into a padded 3d tensor.""" size = max(v.size(0) for v in values) if max_len is None else max_len res = values[0].new(len(values), size, values[0].shape[1]).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() if shift_right: dst[1:] = src[:-1] else: dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)]) return res def _is_batch_full(batch, num_tokens, max_tokens, max_sentences): if len(batch) == 0: return 0 if len(batch) == max_sentences: return 1 if num_tokens > max_tokens: return 1 return 0 def batch_by_size( indices, num_tokens_fn, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, distributed=False ): """ Yield mini-batches of indices bucketed by size. Batches may contain sequences of different lengths. Args: indices (List[int]): ordered list of dataset indices num_tokens_fn (callable): function that returns the number of tokens at a given index max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). """ max_tokens = max_tokens if max_tokens is not None else sys.maxsize max_sentences = max_sentences if max_sentences is not None else sys.maxsize bsz_mult = required_batch_size_multiple if isinstance(indices, types.GeneratorType): indices = np.fromiter(indices, dtype=np.int64, count=-1) sample_len = 0 sample_lens = [] batch = [] batches = [] for i in range(len(indices)): idx = indices[i] num_tokens = num_tokens_fn(idx) sample_lens.append(num_tokens) sample_len = max(sample_len, num_tokens) assert sample_len <= max_tokens, ( "sentence at index {} of size {} exceeds max_tokens " "limit of {}!".format(idx, sample_len, max_tokens) ) num_tokens = (len(batch) + 1) * sample_len if _is_batch_full(batch, num_tokens, max_tokens, max_sentences): mod_len = max( bsz_mult * (len(batch) // bsz_mult), len(batch) % bsz_mult, ) batches.append(batch[:mod_len]) batch = batch[mod_len:] sample_lens = sample_lens[mod_len:] sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 batch.append(idx) if len(batch) > 0: batches.append(batch) return batches def make_positions(tensor, padding_idx): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return ( torch.cumsum(mask, dim=1).type_as(mask) * mask ).long() + padding_idx def softmax(x, dim): return F.softmax(x, dim=dim, dtype=torch.float32) def unpack_dict_to_list(samples): samples_ = [] bsz = samples.get('outputs').size(0) for i in range(bsz): res = {} for k, v in samples.items(): try: res[k] = v[i] except: pass samples_.append(res) return samples_ def load_ckpt(cur_model, ckpt_base_dir, prefix_in_ckpt='model', force=True, strict=True): if os.path.isfile(ckpt_base_dir): base_dir = os.path.dirname(ckpt_base_dir) checkpoint_path = [ckpt_base_dir] else: base_dir = ckpt_base_dir checkpoint_path = sorted(glob.glob(f'{base_dir}/model_ckpt_steps_*.ckpt'), key= lambda x: int(re.findall(f'{base_dir}/model_ckpt_steps_(\d+).ckpt', x)[0])) if len(checkpoint_path) > 0: checkpoint_path = checkpoint_path[-1] state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"] state_dict = {k[len(prefix_in_ckpt) + 1:]: v for k, v in state_dict.items() if k.startswith(f'{prefix_in_ckpt}.')} if not strict: cur_model_state_dict = cur_model.state_dict() unmatched_keys = [] for key, param in state_dict.items(): if key in cur_model_state_dict: new_param = cur_model_state_dict[key] if new_param.shape != param.shape: unmatched_keys.append(key) print("| Unmatched keys: ", key, new_param.shape, param.shape) for key in unmatched_keys: del state_dict[key] cur_model.load_state_dict(state_dict, strict=strict) print(f"| load '{prefix_in_ckpt}' from '{checkpoint_path}'.") else: e_msg = f"| ckpt not found in {base_dir}." if force: assert False, e_msg else: print(e_msg) def remove_padding(x, padding_idx=0): if x is None: return None assert len(x.shape) in [1, 2] if len(x.shape) == 2: # [T, H] return x[np.abs(x).sum(-1) != padding_idx] elif len(x.shape) == 1: # [T] return x[x != padding_idx] class Timer: timer_map = {} def __init__(self, name, print_time=False): if name not in Timer.timer_map: Timer.timer_map[name] = 0 self.name = name self.print_time = print_time def __enter__(self): self.t = time.time() def __exit__(self, exc_type, exc_val, exc_tb): Timer.timer_map[self.name] += time.time() - self.t if self.print_time: print(self.name, Timer.timer_map[self.name]) def print_arch(model, model_name='model'): print(f"| {model_name} Arch: ", model) num_params(model, model_name=model_name) def num_params(model, print_out=True, model_name="model"): parameters = filter(lambda p: p.requires_grad, model.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 if print_out: print(f'| {model_name} Trainable Parameters: %.3fM' % parameters) return parameters
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/__init__.py
from collections import defaultdict import torch import torch.nn.functional as F def make_positions(tensor, padding_idx): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return ( torch.cumsum(mask, dim=1).type_as(mask) * mask ).long() + padding_idx def softmax(x, dim): return F.softmax(x, dim=dim, dtype=torch.float32) def sequence_mask(lengths, maxlen, dtype=torch.bool): if maxlen is None: maxlen = lengths.max() mask = ~(torch.ones((len(lengths), maxlen)).to(lengths.device).cumsum(dim=1).t() > lengths).t() mask.type(dtype) return mask INCREMENTAL_STATE_INSTANCE_ID = defaultdict(lambda: 0) def _get_full_incremental_state_key(module_instance, key): module_name = module_instance.__class__.__name__ # assign a unique ID to each module instance, so that incremental state is # not shared across module instances if not hasattr(module_instance, '_instance_id'): INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1 module_instance._instance_id = INCREMENTAL_STATE_INSTANCE_ID[module_name] return '{}.{}.{}'.format(module_name, module_instance._instance_id, key) def get_incremental_state(module, incremental_state, key): """Helper for getting incremental state for an nn.Module.""" full_key = _get_full_incremental_state_key(module, key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state(module, incremental_state, key, value): """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = _get_full_incremental_state_key(module, key) incremental_state[full_key] = value def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float('-inf')).type_as(t) def fill_with_neg_inf2(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(-1e8).type_as(t) def get_focus_rate(attn, src_padding_mask=None, tgt_padding_mask=None): ''' attn: bs x L_t x L_s ''' if src_padding_mask is not None: attn = attn * (1 - src_padding_mask.float())[:, None, :] if tgt_padding_mask is not None: attn = attn * (1 - tgt_padding_mask.float())[:, :, None] focus_rate = attn.max(-1).values.sum(-1) focus_rate = focus_rate / attn.sum(-1).sum(-1) return focus_rate def get_phone_coverage_rate(attn, src_padding_mask=None, src_seg_mask=None, tgt_padding_mask=None): ''' attn: bs x L_t x L_s ''' src_mask = attn.new(attn.size(0), attn.size(-1)).bool().fill_(False) if src_padding_mask is not None: src_mask |= src_padding_mask if src_seg_mask is not None: src_mask |= src_seg_mask attn = attn * (1 - src_mask.float())[:, None, :] if tgt_padding_mask is not None: attn = attn * (1 - tgt_padding_mask.float())[:, :, None] phone_coverage_rate = attn.max(1).values.sum(-1) # phone_coverage_rate = phone_coverage_rate / attn.sum(-1).sum(-1) phone_coverage_rate = phone_coverage_rate / (1 - src_mask.float()).sum(-1) return phone_coverage_rate def get_diagonal_focus_rate(attn, attn_ks, target_len, src_padding_mask=None, tgt_padding_mask=None, band_mask_factor=5, band_width=50): ''' attn: bx x L_t x L_s attn_ks: shape: tensor with shape [batch_size], input_lens/output_lens diagonal: y=k*x (k=attn_ks, x:output, y:input) 1 0 0 0 1 0 0 0 1 y>=k*(x-width) and y<=k*(x+width):1 else:0 ''' # width = min(target_len/band_mask_factor, 50) width1 = target_len / band_mask_factor width2 = target_len.new(target_len.size()).fill_(band_width) width = torch.where(width1 < width2, width1, width2).float() base = torch.ones(attn.size()).to(attn.device) zero = torch.zeros(attn.size()).to(attn.device) x = torch.arange(0, attn.size(1)).to(attn.device)[None, :, None].float() * base y = torch.arange(0, attn.size(2)).to(attn.device)[None, None, :].float() * base cond = (y - attn_ks[:, None, None] * x) cond1 = cond + attn_ks[:, None, None] * width[:, None, None] cond2 = cond - attn_ks[:, None, None] * width[:, None, None] mask1 = torch.where(cond1 < 0, zero, base) mask2 = torch.where(cond2 > 0, zero, base) mask = mask1 * mask2 if src_padding_mask is not None: attn = attn * (1 - src_padding_mask.float())[:, None, :] if tgt_padding_mask is not None: attn = attn * (1 - tgt_padding_mask.float())[:, :, None] diagonal_attn = attn * mask diagonal_focus_rate = diagonal_attn.sum(-1).sum(-1) / attn.sum(-1).sum(-1) return diagonal_focus_rate, mask def select_attn(attn_logits, type='best'): """ :param attn_logits: [n_layers, B, n_head, T_sp, T_txt] :return: """ encdec_attn = torch.stack(attn_logits, 0).transpose(1, 2) # [n_layers * n_head, B, T_sp, T_txt] encdec_attn = (encdec_attn.reshape([-1, *encdec_attn.shape[2:]])).softmax(-1) if type == 'best': indices = encdec_attn.max(-1).values.sum(-1).argmax(0) encdec_attn = encdec_attn.gather( 0, indices[None, :, None, None].repeat(1, 1, encdec_attn.size(-2), encdec_attn.size(-1)))[0] return encdec_attn elif type == 'mean': return encdec_attn.mean(0) def make_pad_mask(lengths, xs=None, length_dim=-1): """Make mask tensor containing indices of padded part. Args: lengths (LongTensor or List): Batch of lengths (B,). xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor. length_dim (int, optional): Dimension indicator of the above tensor. See the example. Returns: Tensor: Mask tensor containing indices of padded part. dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (including 1.2) Examples: With only lengths. >>> lengths = [5, 3, 2] >>> make_non_pad_mask(lengths) masks = [[0, 0, 0, 0 ,0], [0, 0, 0, 1, 1], [0, 0, 1, 1, 1]] With the reference tensor. >>> xs = torch.zeros((3, 2, 4)) >>> make_pad_mask(lengths, xs) tensor([[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 1], [0, 0, 0, 1]], [[0, 0, 1, 1], [0, 0, 1, 1]]], dtype=torch.uint8) >>> xs = torch.zeros((3, 2, 6)) >>> make_pad_mask(lengths, xs) tensor([[[0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1]], [[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], [[0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8) With the reference tensor and dimension indicator. >>> xs = torch.zeros((3, 6, 6)) >>> make_pad_mask(lengths, xs, 1) tensor([[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1]], [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]], [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]]], dtype=torch.uint8) >>> make_pad_mask(lengths, xs, 2) tensor([[[0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1]], [[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]], [[0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8) """ if length_dim == 0: raise ValueError("length_dim cannot be 0: {}".format(length_dim)) if not isinstance(lengths, list): lengths = lengths.tolist() bs = int(len(lengths)) if xs is None: maxlen = int(max(lengths)) else: maxlen = xs.size(length_dim) seq_range = torch.arange(0, maxlen, dtype=torch.int64) seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen) seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1) mask = seq_range_expand >= seq_length_expand if xs is not None: assert xs.size(0) == bs, (xs.size(0), bs) if length_dim < 0: length_dim = xs.dim() + length_dim # ind = (:, None, ..., None, :, , None, ..., None) ind = tuple( slice(None) if i in (0, length_dim) else None for i in range(xs.dim()) ) mask = mask[ind].expand_as(xs).to(xs.device) return mask def make_non_pad_mask(lengths, xs=None, length_dim=-1): """Make mask tensor containing indices of non-padded part. Args: lengths (LongTensor or List): Batch of lengths (B,). xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor. length_dim (int, optional): Dimension indicator of the above tensor. See the example. Returns: ByteTensor: mask tensor containing indices of padded part. dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (including 1.2) Examples: With only lengths. >>> lengths = [5, 3, 2] >>> make_non_pad_mask(lengths) masks = [[1, 1, 1, 1 ,1], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0]] With the reference tensor. >>> xs = torch.zeros((3, 2, 4)) >>> make_non_pad_mask(lengths, xs) tensor([[[1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 0], [1, 1, 1, 0]], [[1, 1, 0, 0], [1, 1, 0, 0]]], dtype=torch.uint8) >>> xs = torch.zeros((3, 2, 6)) >>> make_non_pad_mask(lengths, xs) tensor([[[1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0]], [[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]], [[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8) With the reference tensor and dimension indicator. >>> xs = torch.zeros((3, 6, 6)) >>> make_non_pad_mask(lengths, xs, 1) tensor([[[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0]], [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]], dtype=torch.uint8) >>> make_non_pad_mask(lengths, xs, 2) tensor([[[1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0]], [[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]], [[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8) """ return ~make_pad_mask(lengths, xs, length_dim) def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len).to(lengths.device) mask = (ids < lengths.unsqueeze(1)).bool() return mask def group_hidden_by_segs(h, seg_ids, max_len): """ :param h: [B, T, H] :param seg_ids: [B, T] :return: h_ph: [B, T_ph, H] """ B, T, H = h.shape h_gby_segs = h.new_zeros([B, max_len + 1, H]).scatter_add_(1, seg_ids[:, :, None].repeat([1, 1, H]), h) all_ones = h.new_ones(h.shape[:2]) cnt_gby_segs = h.new_zeros([B, max_len + 1]).scatter_add_(1, seg_ids, all_ones).contiguous() h_gby_segs = h_gby_segs[:, 1:] cnt_gby_segs = cnt_gby_segs[:, 1:] h_gby_segs = h_gby_segs / torch.clamp(cnt_gby_segs[:, :, None], min=1) return h_gby_segs, cnt_gby_segs def mel2token_to_dur(mel2token, T_txt=None, max_dur=None): is_torch = isinstance(mel2token, torch.Tensor) has_batch_dim = True if not is_torch: mel2token = torch.LongTensor(mel2token) if T_txt is None: T_txt = mel2token.max() if len(mel2token.shape) == 1: mel2token = mel2token[None, ...] has_batch_dim = False B, _ = mel2token.shape dur = mel2token.new_zeros(B, T_txt + 1).scatter_add(1, mel2token, torch.ones_like(mel2token)) dur = dur[:, 1:] if max_dur is not None: dur = dur.clamp(max=max_dur) if not is_torch: dur = dur.numpy() if not has_batch_dim: dur = dur[0] return dur def expand_word2ph(word_encoding, ph2word): word_encoding = F.pad(word_encoding,[0,0,1,0]) ph2word_ = ph2word[:, :, None].repeat([1, 1, word_encoding.shape[-1]]) out = torch.gather(word_encoding, 1, ph2word_) # [B, T, H] return out
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/tts_utils.py
# coding=utf-8 # Authors: # 2019.5 Zhiyang Zhou (https://github.com/Joee1995/chn_text_norm.git) # 2019.9 Jiayu DU # # requirements: # - python 3.X # notes: python 2.X WILL fail or produce misleading results import sys, os, argparse, codecs, string, re # ================================================================================ # # basic constant # ================================================================================ # CHINESE_DIGIS = u'零一二三四五六七八九' BIG_CHINESE_DIGIS_SIMPLIFIED = u'零壹贰叁肆伍陆柒捌玖' BIG_CHINESE_DIGIS_TRADITIONAL = u'零壹貳參肆伍陸柒捌玖' SMALLER_BIG_CHINESE_UNITS_SIMPLIFIED = u'十百千万' SMALLER_BIG_CHINESE_UNITS_TRADITIONAL = u'拾佰仟萬' LARGER_CHINESE_NUMERING_UNITS_SIMPLIFIED = u'亿兆京垓秭穰沟涧正载' LARGER_CHINESE_NUMERING_UNITS_TRADITIONAL = u'億兆京垓秭穰溝澗正載' SMALLER_CHINESE_NUMERING_UNITS_SIMPLIFIED = u'十百千万' SMALLER_CHINESE_NUMERING_UNITS_TRADITIONAL = u'拾佰仟萬' ZERO_ALT = u'〇' ONE_ALT = u'幺' TWO_ALTS = [u'两', u'兩'] POSITIVE = [u'正', u'正'] NEGATIVE = [u'负', u'負'] POINT = [u'点', u'點'] # PLUS = [u'加', u'加'] # SIL = [u'杠', u'槓'] # 中文数字系统类型 NUMBERING_TYPES = ['low', 'mid', 'high'] CURRENCY_NAMES = '(人民币|美元|日元|英镑|欧元|马克|法郎|加拿大元|澳元|港币|先令|芬兰马克|爱尔兰镑|' \ '里拉|荷兰盾|埃斯库多|比塞塔|印尼盾|林吉特|新西兰元|比索|卢布|新加坡元|韩元|泰铢)' CURRENCY_UNITS = '((亿|千万|百万|万|千|百)|(亿|千万|百万|万|千|百|)元|(亿|千万|百万|万|千|百|)块|角|毛|分)' COM_QUANTIFIERS = '(匹|张|座|回|场|尾|条|个|首|阙|阵|网|炮|顶|丘|棵|只|支|袭|辆|挑|担|颗|壳|窠|曲|墙|群|腔|' \ '砣|座|客|贯|扎|捆|刀|令|打|手|罗|坡|山|岭|江|溪|钟|队|单|双|对|出|口|头|脚|板|跳|枝|件|贴|' \ '针|线|管|名|位|身|堂|课|本|页|家|户|层|丝|毫|厘|分|钱|两|斤|担|铢|石|钧|锱|忽|(千|毫|微)克|' \ '毫|厘|分|寸|尺|丈|里|寻|常|铺|程|(千|分|厘|毫|微)米|撮|勺|合|升|斗|石|盘|碗|碟|叠|桶|笼|盆|' \ '盒|杯|钟|斛|锅|簋|篮|盘|桶|罐|瓶|壶|卮|盏|箩|箱|煲|啖|袋|钵|年|月|日|季|刻|时|周|天|秒|分|旬|' \ '纪|岁|世|更|夜|春|夏|秋|冬|代|伏|辈|丸|泡|粒|颗|幢|堆|条|根|支|道|面|片|张|颗|块)' # punctuation information are based on Zhon project (https://github.com/tsroten/zhon.git) CHINESE_PUNC_STOP = '!?。。' CHINESE_PUNC_NON_STOP = '"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏' CHINESE_PUNC_LIST = CHINESE_PUNC_STOP + CHINESE_PUNC_NON_STOP # ================================================================================ # # basic class # ================================================================================ # class ChineseChar(object): """ 中文字符 每个字符对应简体和繁体, e.g. 简体 = '负', 繁体 = '負' 转换时可转换为简体或繁体 """ def __init__(self, simplified, traditional): self.simplified = simplified self.traditional = traditional # self.__repr__ = self.__str__ def __str__(self): return self.simplified or self.traditional or None def __repr__(self): return self.__str__() class ChineseNumberUnit(ChineseChar): """ 中文数字/数位字符 每个字符除繁简体外还有一个额外的大写字符 e.g. '陆' 和 '陸' """ def __init__(self, power, simplified, traditional, big_s, big_t): super(ChineseNumberUnit, self).__init__(simplified, traditional) self.power = power self.big_s = big_s self.big_t = big_t def __str__(self): return '10^{}'.format(self.power) @classmethod def create(cls, index, value, numbering_type=NUMBERING_TYPES[1], small_unit=False): if small_unit: return ChineseNumberUnit(power=index + 1, simplified=value[0], traditional=value[1], big_s=value[1], big_t=value[1]) elif numbering_type == NUMBERING_TYPES[0]: return ChineseNumberUnit(power=index + 8, simplified=value[0], traditional=value[1], big_s=value[0], big_t=value[1]) elif numbering_type == NUMBERING_TYPES[1]: return ChineseNumberUnit(power=(index + 2) * 4, simplified=value[0], traditional=value[1], big_s=value[0], big_t=value[1]) elif numbering_type == NUMBERING_TYPES[2]: return ChineseNumberUnit(power=pow(2, index + 3), simplified=value[0], traditional=value[1], big_s=value[0], big_t=value[1]) else: raise ValueError( 'Counting type should be in {0} ({1} provided).'.format(NUMBERING_TYPES, numbering_type)) class ChineseNumberDigit(ChineseChar): """ 中文数字字符 """ def __init__(self, value, simplified, traditional, big_s, big_t, alt_s=None, alt_t=None): super(ChineseNumberDigit, self).__init__(simplified, traditional) self.value = value self.big_s = big_s self.big_t = big_t self.alt_s = alt_s self.alt_t = alt_t def __str__(self): return str(self.value) @classmethod def create(cls, i, v): return ChineseNumberDigit(i, v[0], v[1], v[2], v[3]) class ChineseMath(ChineseChar): """ 中文数位字符 """ def __init__(self, simplified, traditional, symbol, expression=None): super(ChineseMath, self).__init__(simplified, traditional) self.symbol = symbol self.expression = expression self.big_s = simplified self.big_t = traditional CC, CNU, CND, CM = ChineseChar, ChineseNumberUnit, ChineseNumberDigit, ChineseMath class NumberSystem(object): """ 中文数字系统 """ pass class MathSymbol(object): """ 用于中文数字系统的数学符号 (繁/简体), e.g. positive = ['正', '正'] negative = ['负', '負'] point = ['点', '點'] """ def __init__(self, positive, negative, point): self.positive = positive self.negative = negative self.point = point def __iter__(self): for v in self.__dict__.values(): yield v # class OtherSymbol(object): # """ # 其他符号 # """ # # def __init__(self, sil): # self.sil = sil # # def __iter__(self): # for v in self.__dict__.values(): # yield v # ================================================================================ # # basic utils # ================================================================================ # def create_system(numbering_type=NUMBERING_TYPES[1]): """ 根据数字系统类型返回创建相应的数字系统,默认为 mid NUMBERING_TYPES = ['low', 'mid', 'high']: 中文数字系统类型 low: '兆' = '亿' * '十' = $10^{9}$, '京' = '兆' * '十', etc. mid: '兆' = '亿' * '万' = $10^{12}$, '京' = '兆' * '万', etc. high: '兆' = '亿' * '亿' = $10^{16}$, '京' = '兆' * '兆', etc. 返回对应的数字系统 """ # chinese number units of '亿' and larger all_larger_units = zip( LARGER_CHINESE_NUMERING_UNITS_SIMPLIFIED, LARGER_CHINESE_NUMERING_UNITS_TRADITIONAL) larger_units = [CNU.create(i, v, numbering_type, False) for i, v in enumerate(all_larger_units)] # chinese number units of '十, 百, 千, 万' all_smaller_units = zip( SMALLER_CHINESE_NUMERING_UNITS_SIMPLIFIED, SMALLER_CHINESE_NUMERING_UNITS_TRADITIONAL) smaller_units = [CNU.create(i, v, small_unit=True) for i, v in enumerate(all_smaller_units)] # digis chinese_digis = zip(CHINESE_DIGIS, CHINESE_DIGIS, BIG_CHINESE_DIGIS_SIMPLIFIED, BIG_CHINESE_DIGIS_TRADITIONAL) digits = [CND.create(i, v) for i, v in enumerate(chinese_digis)] digits[0].alt_s, digits[0].alt_t = ZERO_ALT, ZERO_ALT digits[1].alt_s, digits[1].alt_t = ONE_ALT, ONE_ALT digits[2].alt_s, digits[2].alt_t = TWO_ALTS[0], TWO_ALTS[1] # symbols positive_cn = CM(POSITIVE[0], POSITIVE[1], '+', lambda x: x) negative_cn = CM(NEGATIVE[0], NEGATIVE[1], '-', lambda x: -x) point_cn = CM(POINT[0], POINT[1], '.', lambda x, y: float(str(x) + '.' + str(y))) # sil_cn = CM(SIL[0], SIL[1], '-', lambda x, y: float(str(x) + '-' + str(y))) system = NumberSystem() system.units = smaller_units + larger_units system.digits = digits system.math = MathSymbol(positive_cn, negative_cn, point_cn) # system.symbols = OtherSymbol(sil_cn) return system def chn2num(chinese_string, numbering_type=NUMBERING_TYPES[1]): def get_symbol(char, system): for u in system.units: if char in [u.traditional, u.simplified, u.big_s, u.big_t]: return u for d in system.digits: if char in [d.traditional, d.simplified, d.big_s, d.big_t, d.alt_s, d.alt_t]: return d for m in system.math: if char in [m.traditional, m.simplified]: return m def string2symbols(chinese_string, system): int_string, dec_string = chinese_string, '' for p in [system.math.point.simplified, system.math.point.traditional]: if p in chinese_string: int_string, dec_string = chinese_string.split(p) break return [get_symbol(c, system) for c in int_string], \ [get_symbol(c, system) for c in dec_string] def correct_symbols(integer_symbols, system): """ 一百八 to 一百八十 一亿一千三百万 to 一亿 一千万 三百万 """ if integer_symbols and isinstance(integer_symbols[0], CNU): if integer_symbols[0].power == 1: integer_symbols = [system.digits[1]] + integer_symbols if len(integer_symbols) > 1: if isinstance(integer_symbols[-1], CND) and isinstance(integer_symbols[-2], CNU): integer_symbols.append( CNU(integer_symbols[-2].power - 1, None, None, None, None)) result = [] unit_count = 0 for s in integer_symbols: if isinstance(s, CND): result.append(s) unit_count = 0 elif isinstance(s, CNU): current_unit = CNU(s.power, None, None, None, None) unit_count += 1 if unit_count == 1: result.append(current_unit) elif unit_count > 1: for i in range(len(result)): if isinstance(result[-i - 1], CNU) and result[-i - 1].power < current_unit.power: result[-i - 1] = CNU(result[-i - 1].power + current_unit.power, None, None, None, None) return result def compute_value(integer_symbols): """ Compute the value. When current unit is larger than previous unit, current unit * all previous units will be used as all previous units. e.g. '两千万' = 2000 * 10000 not 2000 + 10000 """ value = [0] last_power = 0 for s in integer_symbols: if isinstance(s, CND): value[-1] = s.value elif isinstance(s, CNU): value[-1] *= pow(10, s.power) if s.power > last_power: value[:-1] = list(map(lambda v: v * pow(10, s.power), value[:-1])) last_power = s.power value.append(0) return sum(value) system = create_system(numbering_type) int_part, dec_part = string2symbols(chinese_string, system) int_part = correct_symbols(int_part, system) int_str = str(compute_value(int_part)) dec_str = ''.join([str(d.value) for d in dec_part]) if dec_part: return '{0}.{1}'.format(int_str, dec_str) else: return int_str def num2chn(number_string, numbering_type=NUMBERING_TYPES[1], big=False, traditional=False, alt_zero=False, alt_one=False, alt_two=True, use_zeros=True, use_units=True): def get_value(value_string, use_zeros=True): striped_string = value_string.lstrip('0') # record nothing if all zeros if not striped_string: return [] # record one digits elif len(striped_string) == 1: if use_zeros and len(value_string) != len(striped_string): return [system.digits[0], system.digits[int(striped_string)]] else: return [system.digits[int(striped_string)]] # recursively record multiple digits else: result_unit = next(u for u in reversed( system.units) if u.power < len(striped_string)) result_string = value_string[:-result_unit.power] return get_value(result_string) + [result_unit] + get_value(striped_string[-result_unit.power:]) system = create_system(numbering_type) int_dec = number_string.split('.') if len(int_dec) == 1: int_string = int_dec[0] dec_string = "" elif len(int_dec) == 2: int_string = int_dec[0] dec_string = int_dec[1] else: raise ValueError( "invalid input num string with more than one dot: {}".format(number_string)) if use_units and len(int_string) > 1: result_symbols = get_value(int_string) else: result_symbols = [system.digits[int(c)] for c in int_string] dec_symbols = [system.digits[int(c)] for c in dec_string] if dec_string: result_symbols += [system.math.point] + dec_symbols if alt_two: liang = CND(2, system.digits[2].alt_s, system.digits[2].alt_t, system.digits[2].big_s, system.digits[2].big_t) for i, v in enumerate(result_symbols): if isinstance(v, CND) and v.value == 2: next_symbol = result_symbols[i + 1] if i < len(result_symbols) - 1 else None previous_symbol = result_symbols[i - 1] if i > 0 else None if isinstance(next_symbol, CNU) and isinstance(previous_symbol, (CNU, type(None))): if next_symbol.power != 1 and ((previous_symbol is None) or (previous_symbol.power != 1)): result_symbols[i] = liang # if big is True, '两' will not be used and `alt_two` has no impact on output if big: attr_name = 'big_' if traditional: attr_name += 't' else: attr_name += 's' else: if traditional: attr_name = 'traditional' else: attr_name = 'simplified' result = ''.join([getattr(s, attr_name) for s in result_symbols]) # if not use_zeros: # result = result.strip(getattr(system.digits[0], attr_name)) if alt_zero: result = result.replace( getattr(system.digits[0], attr_name), system.digits[0].alt_s) if alt_one: result = result.replace( getattr(system.digits[1], attr_name), system.digits[1].alt_s) for i, p in enumerate(POINT): if result.startswith(p): return CHINESE_DIGIS[0] + result # ^10, 11, .., 19 if len(result) >= 2 and result[1] in [SMALLER_CHINESE_NUMERING_UNITS_SIMPLIFIED[0], SMALLER_CHINESE_NUMERING_UNITS_TRADITIONAL[0]] and \ result[0] in [CHINESE_DIGIS[1], BIG_CHINESE_DIGIS_SIMPLIFIED[1], BIG_CHINESE_DIGIS_TRADITIONAL[1]]: result = result[1:] return result # ================================================================================ # # different types of rewriters # ================================================================================ # class Cardinal: """ CARDINAL类 """ def __init__(self, cardinal=None, chntext=None): self.cardinal = cardinal self.chntext = chntext def chntext2cardinal(self): return chn2num(self.chntext) def cardinal2chntext(self): return num2chn(self.cardinal) class Digit: """ DIGIT类 """ def __init__(self, digit=None, chntext=None): self.digit = digit self.chntext = chntext # def chntext2digit(self): # return chn2num(self.chntext) def digit2chntext(self): return num2chn(self.digit, alt_two=False, use_units=False) class TelePhone: """ TELEPHONE类 """ def __init__(self, telephone=None, raw_chntext=None, chntext=None): self.telephone = telephone self.raw_chntext = raw_chntext self.chntext = chntext # def chntext2telephone(self): # sil_parts = self.raw_chntext.split('<SIL>') # self.telephone = '-'.join([ # str(chn2num(p)) for p in sil_parts # ]) # return self.telephone def telephone2chntext(self, fixed=False): if fixed: sil_parts = self.telephone.split('-') self.raw_chntext = '<SIL>'.join([ num2chn(part, alt_two=False, use_units=False) for part in sil_parts ]) self.chntext = self.raw_chntext.replace('<SIL>', '') else: sp_parts = self.telephone.strip('+').split() self.raw_chntext = '<SP>'.join([ num2chn(part, alt_two=False, use_units=False) for part in sp_parts ]) self.chntext = self.raw_chntext.replace('<SP>', '') return self.chntext class Fraction: """ FRACTION类 """ def __init__(self, fraction=None, chntext=None): self.fraction = fraction self.chntext = chntext def chntext2fraction(self): denominator, numerator = self.chntext.split('分之') return chn2num(numerator) + '/' + chn2num(denominator) def fraction2chntext(self): numerator, denominator = self.fraction.split('/') return num2chn(denominator) + '分之' + num2chn(numerator) class Date: """ DATE类 """ def __init__(self, date=None, chntext=None): self.date = date self.chntext = chntext # def chntext2date(self): # chntext = self.chntext # try: # year, other = chntext.strip().split('年', maxsplit=1) # year = Digit(chntext=year).digit2chntext() + '年' # except ValueError: # other = chntext # year = '' # if other: # try: # month, day = other.strip().split('月', maxsplit=1) # month = Cardinal(chntext=month).chntext2cardinal() + '月' # except ValueError: # day = chntext # month = '' # if day: # day = Cardinal(chntext=day[:-1]).chntext2cardinal() + day[-1] # else: # month = '' # day = '' # date = year + month + day # self.date = date # return self.date def date2chntext(self): date = self.date try: year, other = date.strip().split('年', 1) year = Digit(digit=year).digit2chntext() + '年' except ValueError: other = date year = '' if other: try: month, day = other.strip().split('月', 1) month = Cardinal(cardinal=month).cardinal2chntext() + '月' except ValueError: day = date month = '' if day: day = Cardinal(cardinal=day[:-1]).cardinal2chntext() + day[-1] else: month = '' day = '' chntext = year + month + day self.chntext = chntext return self.chntext class Money: """ MONEY类 """ def __init__(self, money=None, chntext=None): self.money = money self.chntext = chntext # def chntext2money(self): # return self.money def money2chntext(self): money = self.money pattern = re.compile(r'(\d+(\.\d+)?)') matchers = pattern.findall(money) if matchers: for matcher in matchers: money = money.replace(matcher[0], Cardinal(cardinal=matcher[0]).cardinal2chntext()) self.chntext = money return self.chntext class Percentage: """ PERCENTAGE类 """ def __init__(self, percentage=None, chntext=None): self.percentage = percentage self.chntext = chntext def chntext2percentage(self): return chn2num(self.chntext.strip().strip('百分之')) + '%' def percentage2chntext(self): return '百分之' + num2chn(self.percentage.strip().strip('%')) # ================================================================================ # # NSW Normalizer # ================================================================================ # class NSWNormalizer: def __init__(self, raw_text): self.raw_text = '^' + raw_text + '$' self.norm_text = '' def _particular(self): text = self.norm_text pattern = re.compile(r"(([a-zA-Z]+)二([a-zA-Z]+))") matchers = pattern.findall(text) if matchers: # print('particular') for matcher in matchers: text = text.replace(matcher[0], matcher[1] + '2' + matcher[2], 1) self.norm_text = text return self.norm_text def normalize(self, remove_punc=True): text = self.raw_text # 规范化日期 pattern = re.compile(r"\D+((([089]\d|(19|20)\d{2})年)?(\d{1,2}月(\d{1,2}[日号])?)?)") matchers = pattern.findall(text) if matchers: # print('date') for matcher in matchers: text = text.replace(matcher[0], Date(date=matcher[0]).date2chntext(), 1) # 规范化金钱 pattern = re.compile(r"\D+((\d+(\.\d+)?)[多余几]?" + CURRENCY_UNITS + r"(\d" + CURRENCY_UNITS + r"?)?)") matchers = pattern.findall(text) if matchers: # print('money') for matcher in matchers: text = text.replace(matcher[0], Money(money=matcher[0]).money2chntext(), 1) # 规范化固话/手机号码 # 手机 # http://www.jihaoba.com/news/show/13680 # 移动:139、138、137、136、135、134、159、158、157、150、151、152、188、187、182、183、184、178、198 # 联通:130、131、132、156、155、186、185、176 # 电信:133、153、189、180、181、177 pattern = re.compile(r"\D((\+?86 ?)?1([38]\d|5[0-35-9]|7[678]|9[89])\d{8})\D") matchers = pattern.findall(text) if matchers: # print('telephone') for matcher in matchers: text = text.replace(matcher[0], TelePhone(telephone=matcher[0]).telephone2chntext(), 1) # 固话 pattern = re.compile(r"\D((0(10|2[1-3]|[3-9]\d{2})-?)?[1-9]\d{6,7})\D") matchers = pattern.findall(text) if matchers: # print('fixed telephone') for matcher in matchers: text = text.replace(matcher[0], TelePhone(telephone=matcher[0]).telephone2chntext(fixed=True), 1) # 规范化分数 pattern = re.compile(r"(\d+/\d+)") matchers = pattern.findall(text) if matchers: # print('fraction') for matcher in matchers: text = text.replace(matcher, Fraction(fraction=matcher).fraction2chntext(), 1) # 规范化百分数 text = text.replace('%', '%') pattern = re.compile(r"(\d+(\.\d+)?%)") matchers = pattern.findall(text) if matchers: # print('percentage') for matcher in matchers: text = text.replace(matcher[0], Percentage(percentage=matcher[0]).percentage2chntext(), 1) # 规范化纯数+量词 pattern = re.compile(r"(\d+(\.\d+)?)[多余几]?" + COM_QUANTIFIERS) matchers = pattern.findall(text) if matchers: # print('cardinal+quantifier') for matcher in matchers: text = text.replace(matcher[0], Cardinal(cardinal=matcher[0]).cardinal2chntext(), 1) # 规范化数字编号 pattern = re.compile(r"(\d{4,32})") matchers = pattern.findall(text) if matchers: # print('digit') for matcher in matchers: text = text.replace(matcher, Digit(digit=matcher).digit2chntext(), 1) # 规范化纯数 pattern = re.compile(r"(\d+(\.\d+)?)") matchers = pattern.findall(text) if matchers: # print('cardinal') for matcher in matchers: text = text.replace(matcher[0], Cardinal(cardinal=matcher[0]).cardinal2chntext(), 1) self.norm_text = text self._particular() text = self.norm_text.lstrip('^').rstrip('$') if remove_punc: # Punctuations removal old_chars = CHINESE_PUNC_LIST + string.punctuation # includes all CN and EN punctuations new_chars = ' ' * len(old_chars) del_chars = '' text = text.translate(str.maketrans(old_chars, new_chars, del_chars)) return text def nsw_test_case(raw_text): print('I:' + raw_text) print('O:' + NSWNormalizer(raw_text).normalize()) print('') def nsw_test(): nsw_test_case('固话:0595-23865596或23880880。') nsw_test_case('固话:0595-23865596或23880880。') nsw_test_case('手机:+86 19859213959或15659451527。') nsw_test_case('分数:32477/76391。') nsw_test_case('百分数:80.03%。') nsw_test_case('编号:31520181154418。') nsw_test_case('纯数:2983.07克或12345.60米。') nsw_test_case('日期:1999年2月20日或09年3月15号。') nsw_test_case('金钱:12块5,34.5元,20.1万') nsw_test_case('特殊:O2O或B2C。') nsw_test_case('3456万吨') nsw_test_case('2938个') nsw_test_case('938') nsw_test_case('今天吃了115个小笼包231个馒头') nsw_test_case('有62%的概率') if __name__ == '__main__': # nsw_test() p = argparse.ArgumentParser() p.add_argument('ifile', help='input filename, assume utf-8 encoding') p.add_argument('ofile', help='output filename') p.add_argument('--to_upper', action='store_true', help='convert to upper case') p.add_argument('--to_lower', action='store_true', help='convert to lower case') p.add_argument('--has_key', action='store_true', help="input text has Kaldi's key as first field.") p.add_argument('--log_interval', type=int, default=10000, help='log interval in number of processed lines') args = p.parse_args() ifile = codecs.open(args.ifile, 'r', 'utf8') ofile = codecs.open(args.ofile, 'w+', 'utf8') n = 0 for l in ifile: key = '' text = '' if args.has_key: cols = l.split(maxsplit=1) key = cols[0] if len(cols) == 2: text = cols[1] else: text = '' else: text = l # cases if args.to_upper and args.to_lower: sys.stderr.write('text norm: to_upper OR to_lower?') exit(1) if args.to_upper: text = text.upper() if args.to_lower: text = text.lower() # NSW(Non-Standard-Word) normalization text = NSWNormalizer(text).normalize() # if args.has_key: ofile.write(key + '\t' + text) else: ofile.write(text) n += 1 if n % args.log_interval == 0: sys.stderr.write("text norm: {} lines done.\n".format(n)) sys.stderr.write("text norm: {} lines done in total.\n".format(n)) ifile.close() ofile.close()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/text_norm.py
import glob import logging import os import re import torch def get_last_checkpoint(work_dir, steps=None): checkpoint = None last_ckpt_path = None ckpt_paths = get_all_ckpts(work_dir, steps) if len(ckpt_paths) > 0: last_ckpt_path = ckpt_paths[0] checkpoint = torch.load(last_ckpt_path, map_location='cpu') logging.info(f'load module from checkpoint: {last_ckpt_path}') return checkpoint, last_ckpt_path def get_all_ckpts(work_dir, steps=None): if steps is None: ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_*.ckpt' else: ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_{steps}.ckpt' return sorted(glob.glob(ckpt_path_pattern), key=lambda x: -int(re.findall('.*steps\_(\d+)\.ckpt', x)[0])) def load_ckpt(cur_model, ckpt_base_dir, model_name='model', force=True, strict=True): if os.path.isfile(ckpt_base_dir): base_dir = os.path.dirname(ckpt_base_dir) ckpt_path = ckpt_base_dir checkpoint = torch.load(ckpt_base_dir, map_location='cpu') else: base_dir = ckpt_base_dir checkpoint, ckpt_path = get_last_checkpoint(ckpt_base_dir) if checkpoint is not None: state_dict = checkpoint["state_dict"] if len([k for k in state_dict.keys() if '.' in k]) > 0: state_dict = {k[len(model_name) + 1:]: v for k, v in state_dict.items() if k.startswith(f'{model_name}.')} else: if '.' not in model_name: state_dict = state_dict[model_name] else: base_model_name = model_name.split('.')[0] rest_model_name = model_name[len(base_model_name) + 1:] state_dict = { k[len(rest_model_name) + 1:]: v for k, v in state_dict[base_model_name].items() if k.startswith(f'{rest_model_name}.')} if not strict: cur_model_state_dict = cur_model.state_dict() unmatched_keys = [] for key, param in state_dict.items(): if key in cur_model_state_dict: new_param = cur_model_state_dict[key] if new_param.shape != param.shape: unmatched_keys.append(key) print("| Unmatched keys: ", key, new_param.shape, param.shape) for key in unmatched_keys: del state_dict[key] cur_model.load_state_dict(state_dict, strict=strict) print(f"| load '{model_name}' from '{ckpt_path}'.") else: e_msg = f"| ckpt not found in {base_dir}." if force: assert False, e_msg else: print(e_msg)
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/ckpt_utils.py
import re import six from six.moves import range # pylint: disable=redefined-builtin PAD = "<pad>" EOS = "<EOS>" UNK = "<UNK>" SEG = "|" RESERVED_TOKENS = [PAD, EOS, UNK] NUM_RESERVED_TOKENS = len(RESERVED_TOKENS) PAD_ID = RESERVED_TOKENS.index(PAD) # Normally 0 EOS_ID = RESERVED_TOKENS.index(EOS) # Normally 1 UNK_ID = RESERVED_TOKENS.index(UNK) # Normally 2 if six.PY2: RESERVED_TOKENS_BYTES = RESERVED_TOKENS else: RESERVED_TOKENS_BYTES = [bytes(PAD, "ascii"), bytes(EOS, "ascii")] # Regular expression for unescaping token strings. # '\u' is converted to '_' # '\\' is converted to '\' # '\213;' is converted to unichr(213) _UNESCAPE_REGEX = re.compile(r"\\u|\\\\|\\([0-9]+);") _ESCAPE_CHARS = set(u"\\_u;0123456789") def strip_ids(ids, ids_to_strip): """Strip ids_to_strip from the end ids.""" ids = list(ids) while ids and ids[-1] in ids_to_strip: ids.pop() return ids class TextEncoder(object): """Base class for converting from ints to/from human readable strings.""" def __init__(self, num_reserved_ids=NUM_RESERVED_TOKENS): self._num_reserved_ids = num_reserved_ids @property def num_reserved_ids(self): return self._num_reserved_ids def encode(self, s): """Transform a human-readable string into a sequence of int ids. The ids should be in the range [num_reserved_ids, vocab_size). Ids [0, num_reserved_ids) are reserved. EOS is not appended. Args: s: human-readable string to be converted. Returns: ids: list of integers """ return [int(w) + self._num_reserved_ids for w in s.split()] def decode(self, ids, strip_extraneous=False): """Transform a sequence of int ids into a human-readable string. EOS is not expected in ids. Args: ids: list of integers to be converted. strip_extraneous: bool, whether to strip off extraneous tokens (EOS and PAD). Returns: s: human-readable string. """ if strip_extraneous: ids = strip_ids(ids, list(range(self._num_reserved_ids or 0))) return " ".join(self.decode_list(ids)) def decode_list(self, ids): """Transform a sequence of int ids into a their string versions. This method supports transforming individual input/output ids to their string versions so that sequence to/from text conversions can be visualized in a human readable format. Args: ids: list of integers to be converted. Returns: strs: list of human-readable string. """ decoded_ids = [] for id_ in ids: if 0 <= id_ < self._num_reserved_ids: decoded_ids.append(RESERVED_TOKENS[int(id_)]) else: decoded_ids.append(id_ - self._num_reserved_ids) return [str(d) for d in decoded_ids] @property def vocab_size(self): raise NotImplementedError() class ByteTextEncoder(TextEncoder): """Encodes each byte to an id. For 8-bit strings only.""" def encode(self, s): numres = self._num_reserved_ids if six.PY2: if isinstance(s, unicode): s = s.encode("utf-8") return [ord(c) + numres for c in s] # Python3: explicitly convert to UTF-8 return [c + numres for c in s.encode("utf-8")] def decode(self, ids, strip_extraneous=False): if strip_extraneous: ids = strip_ids(ids, list(range(self._num_reserved_ids or 0))) numres = self._num_reserved_ids decoded_ids = [] int2byte = six.int2byte for id_ in ids: if 0 <= id_ < numres: decoded_ids.append(RESERVED_TOKENS_BYTES[int(id_)]) else: decoded_ids.append(int2byte(id_ - numres)) if six.PY2: return "".join(decoded_ids) # Python3: join byte arrays and then decode string return b"".join(decoded_ids).decode("utf-8", "replace") def decode_list(self, ids): numres = self._num_reserved_ids decoded_ids = [] int2byte = six.int2byte for id_ in ids: if 0 <= id_ < numres: decoded_ids.append(RESERVED_TOKENS_BYTES[int(id_)]) else: decoded_ids.append(int2byte(id_ - numres)) # Python3: join byte arrays and then decode string return decoded_ids @property def vocab_size(self): return 2**8 + self._num_reserved_ids class ByteTextEncoderWithEos(ByteTextEncoder): """Encodes each byte to an id and appends the EOS token.""" def encode(self, s): return super(ByteTextEncoderWithEos, self).encode(s) + [EOS_ID] class TokenTextEncoder(TextEncoder): """Encoder based on a user-supplied vocabulary (file or list).""" def __init__(self, vocab_filename, reverse=False, vocab_list=None, replace_oov=None, num_reserved_ids=NUM_RESERVED_TOKENS): """Initialize from a file or list, one token per line. Handling of reserved tokens works as follows: - When initializing from a list, we add reserved tokens to the vocab. - When initializing from a file, we do not add reserved tokens to the vocab. - When saving vocab files, we save reserved tokens to the file. Args: vocab_filename: If not None, the full filename to read vocab from. If this is not None, then vocab_list should be None. reverse: Boolean indicating if tokens should be reversed during encoding and decoding. vocab_list: If not None, a list of elements of the vocabulary. If this is not None, then vocab_filename should be None. replace_oov: If not None, every out-of-vocabulary token seen when encoding will be replaced by this string (which must be in vocab). num_reserved_ids: Number of IDs to save for reserved tokens like <EOS>. """ super(TokenTextEncoder, self).__init__(num_reserved_ids=num_reserved_ids) self._reverse = reverse self._replace_oov = replace_oov if vocab_filename: self._init_vocab_from_file(vocab_filename) else: assert vocab_list is not None self._init_vocab_from_list(vocab_list) self.pad_index = self._token_to_id[PAD] self.eos_index = self._token_to_id[EOS] self.unk_index = self._token_to_id[UNK] self.seg_index = self._token_to_id[SEG] if SEG in self._token_to_id else self.eos_index def encode(self, s): """Converts a space-separated string of tokens to a list of ids.""" sentence = s tokens = sentence.strip().split() if self._replace_oov is not None: tokens = [t if t in self._token_to_id else self._replace_oov for t in tokens] ret = [self._token_to_id[tok] for tok in tokens] return ret[::-1] if self._reverse else ret def decode(self, ids, strip_eos=False, strip_padding=False): if strip_padding and self.pad() in list(ids): pad_pos = list(ids).index(self.pad()) ids = ids[:pad_pos] if strip_eos and self.eos() in list(ids): eos_pos = list(ids).index(self.eos()) ids = ids[:eos_pos] return " ".join(self.decode_list(ids)) def decode_list(self, ids): seq = reversed(ids) if self._reverse else ids return [self._safe_id_to_token(i) for i in seq] @property def vocab_size(self): return len(self._id_to_token) def __len__(self): return self.vocab_size def _safe_id_to_token(self, idx): return self._id_to_token.get(idx, "ID_%d" % idx) def _init_vocab_from_file(self, filename): """Load vocab from a file. Args: filename: The file to load vocabulary from. """ with open(filename) as f: tokens = [token.strip() for token in f.readlines()] def token_gen(): for token in tokens: yield token self._init_vocab(token_gen(), add_reserved_tokens=False) def _init_vocab_from_list(self, vocab_list): """Initialize tokens from a list of tokens. It is ok if reserved tokens appear in the vocab list. They will be removed. The set of tokens in vocab_list should be unique. Args: vocab_list: A list of tokens. """ def token_gen(): for token in vocab_list: if token not in RESERVED_TOKENS: yield token self._init_vocab(token_gen()) def _init_vocab(self, token_generator, add_reserved_tokens=True): """Initialize vocabulary with tokens from token_generator.""" self._id_to_token = {} non_reserved_start_index = 0 if add_reserved_tokens: self._id_to_token.update(enumerate(RESERVED_TOKENS)) non_reserved_start_index = len(RESERVED_TOKENS) self._id_to_token.update( enumerate(token_generator, start=non_reserved_start_index)) # _token_to_id is the reverse of _id_to_token self._token_to_id = dict((v, k) for k, v in six.iteritems(self._id_to_token)) def pad(self): return self.pad_index def eos(self): return self.eos_index def unk(self): return self.unk_index def seg(self): return self.seg_index def store_to_file(self, filename): """Write vocab file to disk. Vocab files have one token per line. The file ends in a newline. Reserved tokens are written to the vocab file as well. Args: filename: Full path of the file to store the vocab to. """ with open(filename, "w") as f: for i in range(len(self._id_to_token)): f.write(self._id_to_token[i] + "\n") def sil_phonemes(self): return [p for p in self._id_to_token.values() if not p[0].isalpha()]
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/text_encoder.py
from utils.hparams import hparams class RSQRTSchedule(object): def __init__(self, optimizer): super().__init__() self.optimizer = optimizer self.constant_lr = hparams['lr'] self.warmup_updates = hparams['warmup_updates'] self.hidden_size = hparams['hidden_size'] self.lr = hparams['lr'] for param_group in optimizer.param_groups: param_group['lr'] = self.lr self.step(0) def step(self, num_updates): constant_lr = self.constant_lr warmup = min(num_updates / self.warmup_updates, 1.0) rsqrt_decay = max(self.warmup_updates, num_updates) ** -0.5 rsqrt_hidden = self.hidden_size ** -0.5 self.lr = max(constant_lr * warmup * rsqrt_decay * rsqrt_hidden, 1e-7) for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr return self.lr def get_lr(self): return self.optimizer.param_groups[0]['lr']
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/training_utils.py
######### # world ########## import librosa import numpy as np import torch gamma = 0 mcepInput = 3 # 0 for dB, 3 for magnitude alpha = 0.45 en_floor = 10 ** (-80 / 20) FFT_SIZE = 2048 f0_bin = 256 f0_max = 1100.0 f0_min = 50.0 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) def f0_to_coarse(f0): is_torch = isinstance(f0, torch.Tensor) f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) return f0_coarse def norm_f0(f0, uv, hparams): is_torch = isinstance(f0, torch.Tensor) if hparams['pitch_norm'] == 'standard': f0 = (f0 - hparams['f0_mean']) / hparams['f0_std'] if hparams['pitch_norm'] == 'log': f0 = torch.log2(f0) if is_torch else np.log2(f0) if uv is not None and hparams['use_uv']: f0[uv > 0] = 0 return f0 def norm_interp_f0(f0, hparams): is_torch = isinstance(f0, torch.Tensor) if is_torch: device = f0.device f0 = f0.data.cpu().numpy() uv = f0 == 0 f0 = norm_f0(f0, uv, hparams) if sum(uv) == len(f0): f0[uv] = 0 elif sum(uv) > 0: f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) uv = torch.FloatTensor(uv) f0 = torch.FloatTensor(f0) if is_torch: f0 = f0.to(device) return f0, uv def denorm_f0(f0, uv, hparams, pitch_padding=None, min=None, max=None): if hparams['pitch_norm'] == 'standard': f0 = f0 * hparams['f0_std'] + hparams['f0_mean'] if hparams['pitch_norm'] == 'log': f0 = 2 ** f0 if min is not None: f0 = f0.clamp(min=min) if max is not None: f0 = f0.clamp(max=max) if uv is not None and hparams['use_uv']: f0[uv > 0] = 0 if pitch_padding is not None: f0[pitch_padding] = 0 return f0
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/pitch_utils.py
import pickle from copy import deepcopy import numpy as np class IndexedDataset: def __init__(self, path, num_cache=1): super().__init__() self.path = path self.data_file = None self.data_offsets = np.load(f"{path}.idx", allow_pickle=True).item()['offsets'] self.data_file = open(f"{path}.data", 'rb', buffering=-1) self.cache = [] self.num_cache = num_cache def check_index(self, i): if i < 0 or i >= len(self.data_offsets) - 1: raise IndexError('index out of range') def __del__(self): if self.data_file: self.data_file.close() def __getitem__(self, i): self.check_index(i) if self.num_cache > 0: for c in self.cache: if c[0] == i: return c[1] self.data_file.seek(self.data_offsets[i]) b = self.data_file.read(self.data_offsets[i + 1] - self.data_offsets[i]) item = pickle.loads(b) if self.num_cache > 0: self.cache = [(i, deepcopy(item))] + self.cache[:-1] return item def __len__(self): return len(self.data_offsets) - 1 class IndexedDatasetBuilder: def __init__(self, path): self.path = path self.out_file = open(f"{path}.data", 'wb') self.byte_offsets = [0] def add_item(self, item): s = pickle.dumps(item) bytes = self.out_file.write(s) self.byte_offsets.append(self.byte_offsets[-1] + bytes) def finalize(self): self.out_file.close() np.save(open(f"{self.path}.idx", 'wb'), {'offsets': self.byte_offsets}) if __name__ == "__main__": import random from tqdm import tqdm ds_path = '/tmp/indexed_ds_example' size = 100 items = [{"a": np.random.normal(size=[10000, 10]), "b": np.random.normal(size=[10000, 10])} for i in range(size)] builder = IndexedDatasetBuilder(ds_path) for i in tqdm(range(size)): builder.add_item(items[i]) builder.finalize() ds = IndexedDataset(ds_path) for i in tqdm(range(10000)): idx = random.randint(0, size - 1) assert (ds[idx]['a'] == items[idx]['a']).all()
EXA-1-master
exa/models/AudioGPT/NeuralSeq/utils/indexed_datasets.py