python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import os import sys from argparse import ArgumentParser from getpass import getpass from typing import List, Union from requests.exceptions import HTTPError from transformers.commands import BaseTransformersCLICommand from transformers.hf_api import HfApi, HfFolder UPLOAD_MAX_FILES = 15 class UserCommands(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): login_parser = parser.add_parser("login", help="Log in using the same credentials as on huggingface.co") login_parser.set_defaults(func=lambda args: LoginCommand(args)) whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.") whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args)) logout_parser = parser.add_parser("logout", help="Log out") logout_parser.set_defaults(func=lambda args: LogoutCommand(args)) # s3 s3_parser = parser.add_parser("s3", help="{ls, rm} Commands to interact with the files you upload on S3.") s3_subparsers = s3_parser.add_subparsers(help="s3 related commands") ls_parser = s3_subparsers.add_parser("ls") ls_parser.set_defaults(func=lambda args: ListObjsCommand(args)) rm_parser = s3_subparsers.add_parser("rm") rm_parser.add_argument("filename", type=str, help="individual object filename to delete from S3.") rm_parser.set_defaults(func=lambda args: DeleteObjCommand(args)) # upload upload_parser = parser.add_parser("upload") upload_parser.add_argument("path", type=str, help="Local path of the folder or individual file to upload.") upload_parser.add_argument( "--filename", type=str, default=None, help="Optional: override individual object filename on S3." ) upload_parser.set_defaults(func=lambda args: UploadCommand(args)) class ANSI: """ Helper for en.wikipedia.org/wiki/ANSI_escape_code """ _bold = "\u001b[1m" _reset = "\u001b[0m" @classmethod def bold(cls, s): return "{}{}{}".format(cls._bold, s, cls._reset) class BaseUserCommand: def __init__(self, args): self.args = args self._api = HfApi() class LoginCommand(BaseUserCommand): def run(self): print( """ _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_| _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_| """ ) username = input("Username: ") password = getpass() try: token = self._api.login(username, password) except HTTPError as e: # probably invalid credentials, display error message. print(e) exit(1) HfFolder.save_token(token) print("Login successful") print("Your token:", token, "\n") print("Your token has been saved to", HfFolder.path_token) class WhoamiCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit() try: user = self._api.whoami(token) print(user) except HTTPError as e: print(e) class LogoutCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit() HfFolder.delete_token() self._api.logout(token) print("Successfully logged out.") class ListObjsCommand(BaseUserCommand): def tabulate(self, rows: List[List[Union[str, int]]], headers: List[str]) -> str: """ Inspired by: stackoverflow.com/a/8356620/593036 stackoverflow.com/questions/9535954/printing-lists-as-tabular-data """ col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)] row_format = ("{{:{}}} " * len(headers)).format(*col_widths) lines = [] lines.append(row_format.format(*headers)) lines.append(row_format.format(*["-" * w for w in col_widths])) for row in rows: lines.append(row_format.format(*row)) return "\n".join(lines) def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: objs = self._api.list_objs(token) except HTTPError as e: print(e) exit(1) if len(objs) == 0: print("No shared file yet") exit() rows = [[obj.filename, obj.LastModified, obj.ETag, obj.Size] for obj in objs] print(self.tabulate(rows, headers=["Filename", "LastModified", "ETag", "Size"])) class DeleteObjCommand(BaseUserCommand): def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) try: self._api.delete_obj(token, filename=self.args.filename) except HTTPError as e: print(e) exit(1) print("Done") class UploadCommand(BaseUserCommand): def walk_dir(self, rel_path): """ Recursively list all files in a folder. """ entries: List[os.DirEntry] = list(os.scandir(rel_path)) files = [(os.path.join(os.getcwd(), f.path), f.path) for f in entries if f.is_file()] # (filepath, filename) for f in entries: if f.is_dir(): files += self.walk_dir(f.path) return files def run(self): token = HfFolder.get_token() if token is None: print("Not logged in") exit(1) local_path = os.path.abspath(self.args.path) if os.path.isdir(local_path): if self.args.filename is not None: raise ValueError("Cannot specify a filename override when uploading a folder.") rel_path = os.path.basename(local_path) files = self.walk_dir(rel_path) elif os.path.isfile(local_path): filename = self.args.filename if self.args.filename is not None else os.path.basename(local_path) files = [(local_path, filename)] else: raise ValueError("Not a valid file or directory: {}".format(local_path)) if sys.platform == "win32": files = [(filepath, filename.replace(os.sep, "/")) for filepath, filename in files] if len(files) > UPLOAD_MAX_FILES: print( "About to upload {} files to S3. This is probably wrong. Please filter files before uploading.".format( ANSI.bold(len(files)) ) ) exit(1) for filepath, filename in files: print("About to upload file {} to S3 under filename {}".format(ANSI.bold(filepath), ANSI.bold(filename))) choice = input("Proceed? [Y/n] ").lower() if not (choice == "" or choice == "y" or choice == "yes"): print("Abort") exit() print(ANSI.bold("Uploading... This might take a while if files are large")) for filepath, filename in files: access_url = self._api.presign_and_upload(token=token, filename=filename, filepath=filepath) print("Your file now lives at:") print(access_url)
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/user.py
import logging from argparse import ArgumentParser from transformers.commands import BaseTransformersCLICommand from transformers.pipelines import SUPPORTED_TASKS, Pipeline, PipelineDataFormat, pipeline logger = logging.getLogger(__name__) # pylint: disable=invalid-name def try_infer_format_from_ext(path: str): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(ext): return ext raise Exception( "Unable to determine file format from file extension {}. " "Please provide the format through --format {}".format(path, PipelineDataFormat.SUPPORTED_FORMATS) ) def run_command_factory(args): nlp = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) format = try_infer_format_from_ext(args.input) if args.format == "infer" else args.format reader = PipelineDataFormat.from_str( format=format, output_path=args.output, input_path=args.input, column=args.column if args.column else nlp.default_input_names, overwrite=args.overwrite, ) return RunCommand(nlp, reader) class RunCommand(BaseTransformersCLICommand): def __init__(self, nlp: Pipeline, reader: PipelineDataFormat): self._nlp = nlp self._reader = reader @staticmethod def register_subcommand(parser: ArgumentParser): run_parser = parser.add_parser("run", help="Run a pipeline through the CLI") run_parser.add_argument("--task", choices=SUPPORTED_TASKS.keys(), help="Task to run") run_parser.add_argument("--input", type=str, help="Path to the file to use for inference") run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.") run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.") run_parser.add_argument("--config", type=str, help="Name or path to the model's config to instantiate.") run_parser.add_argument( "--tokenizer", type=str, help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column", type=str, help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)", ) run_parser.add_argument( "--format", type=str, default="infer", choices=PipelineDataFormat.SUPPORTED_FORMATS, help="Input format to read from", ) run_parser.add_argument( "--device", type=int, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file.") run_parser.set_defaults(func=run_command_factory) def run(self): nlp, outputs = self._nlp, [] for entry in self._reader: output = nlp(**entry) if self._reader.is_multi_columns else nlp(entry) if isinstance(output, dict): outputs.append(output) else: outputs += output # Saving data if self._nlp.binary_output: binary_path = self._reader.save_binary(outputs) logger.warning("Current pipeline requires output to be in binary format, saving at {}".format(binary_path)) else: self._reader.save(outputs)
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/run.py
import platform from argparse import ArgumentParser from transformers import __version__ as version from transformers import is_tf_available, is_torch_available from transformers.commands import BaseTransformersCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env") download_parser.set_defaults(func=info_command_factory) def run(self): pt_version = "not installed" pt_cuda_available = "NA" if is_torch_available(): import torch pt_version = torch.__version__ pt_cuda_available = torch.cuda.is_available() tf_version = "not installed" tf_cuda_available = "NA" if is_tf_available(): import tensorflow as tf tf_version = tf.__version__ try: # deprecated in v2.1 tf_cuda_available = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool tf_cuda_available = bool(tf.config.list_physical_devices("GPU")) info = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": "{} ({})".format(pt_version, pt_cuda_available), "Tensorflow version (GPU?)": "{} ({})".format(tf_version, tf_cuda_available), "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join(["- {}: {}".format(prop, val) for prop, val in d.items()]) + "\n"
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/env.py
import logging from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from transformers import Pipeline from transformers.commands import BaseTransformersCLICommand from transformers.pipelines import SUPPORTED_TASKS, pipeline try: from uvicorn import run from fastapi import FastAPI, HTTPException, Body from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse _serve_dependencies_installed = True except (ImportError, AttributeError): BaseModel = object def Body(*x, **y): pass _serve_dependencies_installed = False logger = logging.getLogger("transformers-cli/serving") def serve_command_factory(args: Namespace): """ Factory function used to instantiate serving server from provided command line arguments. :return: ServeCommand """ nlp = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(nlp, args.host, args.port, args.workers) class ServeModelInfoResult(BaseModel): """ Expose model information """ infos: dict class ServeTokenizeResult(BaseModel): """ Tokenize result model """ tokens: List[str] tokens_ids: Optional[List[int]] class ServeDeTokenizeResult(BaseModel): """ DeTokenize result model """ text: str class ServeForwardResult(BaseModel): """ Forward result model """ output: Any class ServeCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli :param parser: Root parser to register command-specific arguments :return: """ serve_parser = parser.add_parser( "serve", help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task", type=str, choices=SUPPORTED_TASKS.keys(), help="The task to run the pipeline on" ) serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.") serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.") serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers") serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.") serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.") serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.") serve_parser.add_argument( "--device", type=int, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) serve_parser.set_defaults(func=serve_command_factory) def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int): self._pipeline = pipeline self.host = host self.port = port self.workers = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and unicorn. " 'Please install transformers with [serving]: pip install "transformers[serving]".' "Or install FastAPI and unicorn separately." ) else: logger.info("Serving model over {}:{}".format(host, port)) self._app = FastAPI( routes=[ APIRoute( "/", self.model_info, response_model=ServeModelInfoResult, response_class=JSONResponse, methods=["GET"], ), APIRoute( "/tokenize", self.tokenize, response_model=ServeTokenizeResult, response_class=JSONResponse, methods=["POST"], ), APIRoute( "/detokenize", self.detokenize, response_model=ServeDeTokenizeResult, response_class=JSONResponse, methods=["POST"], ), APIRoute( "/forward", self.forward, response_model=ServeForwardResult, response_class=JSONResponse, methods=["POST"], ), ], timeout=600, ) def run(self): run(self._app, host=self.host, port=self.port, workers=self.workers) def model_info(self): return ServeModelInfoResult(infos=vars(self._pipeline.model.config)) def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)): """ Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer mapping. """ try: tokens_txt = self._pipeline.tokenizer.tokenize(text_input) if return_ids: tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt) return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids) else: return ServeTokenizeResult(tokens=tokens_txt) except Exception as e: raise HTTPException(status_code=500, detail={"model": "", "error": str(e)}) def detokenize( self, tokens_ids: List[int] = Body(None, embed=True), skip_special_tokens: bool = Body(False, embed=True), cleanup_tokenization_spaces: bool = Body(True, embed=True), ): """ Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids - **skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**: Flag indicating to remove all leading/trailing spaces and intermediate ones. """ try: decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces) return ServeDeTokenizeResult(model="", text=decoded_str) except Exception as e: raise HTTPException(status_code=500, detail={"model": "", "error": str(e)}) async def forward(self, inputs=Body(None, embed=True)): """ **inputs**: **attention_mask**: **tokens_type_ids**: """ # Check we don't have empty string if len(inputs) == 0: return ServeForwardResult(output=[], attention=[]) try: # Forward through the model output = self._pipeline(inputs) return ServeForwardResult(output=output) except Exception as e: raise HTTPException(500, {"error": str(e)})
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/serving.py
from argparse import ArgumentParser from transformers.commands import BaseTransformersCLICommand def download_command_factory(args): return DownloadCommand(args.model, args.cache_dir, args.force) class DownloadCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("download") download_parser.add_argument( "--cache-dir", type=str, default=None, help="Path to location to store the models" ) download_parser.add_argument( "--force", action="store_true", help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument("model", type=str, help="Name of the model to download") download_parser.set_defaults(func=download_command_factory) def __init__(self, model: str, cache: str, force: bool): self._model = model self._cache = cache self._force = force def run(self): from transformers import AutoModel, AutoTokenizer AutoModel.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force) AutoTokenizer.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force)
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/download.py
from argparse import ArgumentParser, Namespace from logging import getLogger from transformers.commands import BaseTransformersCLICommand def convert_command_factory(args: Namespace): """ Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. :return: ServeCommand """ return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name ) class ConvertCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli :param parser: Root parser to register command-specific arguments :return: """ train_parser = parser.add_parser( "convert", help="CLI tool to run convert model from original " "author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.") train_parser.add_argument( "--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch savd model output." ) train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name", type=str, default=None, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=convert_command_factory) def __init__( self, model_type: str, tf_checkpoint: str, pytorch_dump_output: str, config: str, finetuning_task_name: str, *args ): self._logger = getLogger("transformers-cli/converting") self._logger.info("Loading model {}".format(model_type)) self._model_type = model_type self._tf_checkpoint = tf_checkpoint self._pytorch_dump_output = pytorch_dump_output self._config = config self._finetuning_task_name = finetuning_task_name def run(self): if self._model_type == "bert": try: from transformers.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "gpt": from transformers.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from transformers.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) if "ckpt" in self._tf_checkpoint.lower(): TF_CHECKPOINT = self._tf_checkpoint TF_DATASET_FILE = "" else: TF_DATASET_FILE = self._tf_checkpoint TF_CHECKPOINT = "" convert_transfo_xl_checkpoint_to_pytorch( TF_CHECKPOINT, self._config, self._pytorch_dump_output, TF_DATASET_FILE ) elif self._model_type == "gpt2": try: from transformers.convert_gpt2_original_tf_checkpoint_to_pytorch import ( convert_gpt2_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) elif self._model_type == "xlnet": try: from transformers.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: msg = ( "transformers can only be used from the commandline to convert TensorFlow models in PyTorch, " "In that case, it requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise ImportError(msg) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from transformers.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) else: raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, transfo_xl, xlnet, xlm]")
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/convert.py
from abc import ABC, abstractmethod from argparse import ArgumentParser class BaseTransformersCLICommand(ABC): @staticmethod @abstractmethod def register_subcommand(parser: ArgumentParser): raise NotImplementedError() @abstractmethod def run(self): raise NotImplementedError()
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/__init__.py
import os from argparse import ArgumentParser, Namespace from logging import getLogger from transformers import SingleSentenceClassificationProcessor as Processor from transformers import TextClassificationPipeline, is_tf_available, is_torch_available from transformers.commands import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters USE_XLA = False USE_AMP = False def train_command_factory(args: Namespace): """ Factory function used to instantiate serving server from provided command line arguments. :return: ServeCommand """ return TrainCommand(args) class TrainCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli :param parser: Root parser to register command-specific arguments :return: """ train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.") train_parser.add_argument( "--train_data", type=str, required=True, help="path to train (and optionally evaluation) dataset as a csv with " "tab separated labels and sentences.", ) train_parser.add_argument( "--column_label", type=int, default=0, help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text", type=int, default=1, help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id", type=int, default=2, help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.") train_parser.add_argument( "--validation_split", type=float, default=0.1, help="if validation dataset is not provided, fraction of train dataset " "to use as validation dataset.", ) train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.") train_parser.add_argument( "--task", type=str, default="text_classification", help="Task to train the model on." ) train_parser.add_argument( "--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.") train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.") train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.") train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.") train_parser.set_defaults(func=train_command_factory) def __init__(self, args: Namespace): self.logger = getLogger("transformers-cli/training") self.framework = "tf" if is_tf_available() else "torch" os.makedirs(args.output, exist_ok=True) assert os.path.isdir(args.output) self.output = args.output self.column_label = args.column_label self.column_text = args.column_text self.column_id = args.column_id self.logger.info("Loading {} pipeline for {}".format(args.task, args.model)) if args.task == "text_classification": self.pipeline = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info("Loading dataset from {}".format(args.train_data)) self.train_dataset = Processor.create_from_csv( args.train_data, column_label=args.column_label, column_text=args.column_text, column_id=args.column_id, skip_first_row=args.skip_first_row, ) self.valid_dataset = None if args.validation_data: self.logger.info("Loading validation dataset from {}".format(args.validation_data)) self.valid_dataset = Processor.create_from_csv( args.validation_data, column_label=args.column_label, column_text=args.column_text, column_id=args.column_id, skip_first_row=args.skip_first_row, ) self.validation_split = args.validation_split self.train_batch_size = args.train_batch_size self.valid_batch_size = args.valid_batch_size self.learning_rate = args.learning_rate self.adam_epsilon = args.adam_epsilon def run(self): if self.framework == "tf": return self.run_tf() return self.run_torch() def run_torch(self): raise NotImplementedError def run_tf(self): self.pipeline.fit( self.train_dataset, validation_data=self.valid_dataset, validation_split=self.validation_split, learning_rate=self.learning_rate, adam_epsilon=self.adam_epsilon, train_batch_size=self.train_batch_size, valid_batch_size=self.valid_batch_size, ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/commands/train.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. from .metrics import is_sklearn_available from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, xglue_convert_examples_to_features, xglue_convert_examples_to_vat_features, xglue_output_modes, xglue_processors, xglue_tasks_num_labels, xtreme_convert_examples_to_features, xtreme_output_modes, xtreme_processors, xtreme_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, ) if is_sklearn_available(): from .metrics import glue_compute_metrics, xnli_compute_metrics, xglue_compute_metrics, xtreme_compute_metrics
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/__init__.py
# coding=utf-8 # Based on the SQuAD evaluation script from: # https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py """ Official evaluation script for v1.1 of the SQuAD dataset. """ from __future__ import print_function from collections import Counter import string import re import argparse import json import sys def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return (normalize_answer(prediction) == normalize_answer(ground_truth)) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: total += 1 if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + \ ' will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] exact_match += metric_max_over_ground_truths( exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths( f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} def evaluate_with_path(dataset_file, prediction_file): with open(dataset_file) as dataset_file_reader: dataset_json = json.load(dataset_file_reader) dataset = dataset_json['data'] with open(prediction_file) as prediction_file_reader: predictions = json.load(prediction_file_reader) return evaluate(dataset, predictions) if __name__ == '__main__': expected_version = '1.1' parser = argparse.ArgumentParser( description='Evaluation for SQuAD ' + expected_version) parser.add_argument('dataset_file', help='Dataset file') parser.add_argument('prediction_file', help='Prediction File') args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if (dataset_json['version'] != expected_version): print('Evaluation expects v-' + expected_version + ', but got dataset with v-' + dataset_json['version'], file=sys.stderr) dataset = dataset_json['data'] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/metrics/evaluate_squad.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Official evaluation script for the MLQA dataset. """ from __future__ import print_function from collections import Counter import string import re import argparse import json import sys import unicodedata PUNCT = {chr(i) for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith('P')}.union(string.punctuation) WHITESPACE_LANGS = ['en', 'es', 'hi', 'vi', 'de', 'ar'] MIXED_SEGMENTATION_LANGS = ['zh'] def whitespace_tokenize(text): return text.split() def mixed_segmentation(text): segs_out = [] temp_str = "" for char in text: if re.search(r'[\u4e00-\u9fa5]', char) or char in PUNCT: if temp_str != "": ss = whitespace_tokenize(temp_str) segs_out.extend(ss) temp_str = "" segs_out.append(char) else: temp_str += char if temp_str != "": ss = whitespace_tokenize(temp_str) segs_out.extend(ss) return segs_out def normalize_answer(s, lang): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text, lang): if lang == 'en': return re.sub(r'\b(a|an|the)\b', ' ', text) elif lang == 'es': return re.sub(r'\b(un|una|unos|unas|el|la|los|las)\b', ' ', text) elif lang == 'hi': return text # Hindi does not have formal articles elif lang == 'vi': return re.sub(r'\b(của|là|cái|chiếc|những)\b', ' ', text) elif lang == 'de': return re.sub(r'\b(ein|eine|einen|einem|eines|einer|der|die|das|den|dem|des)\b', ' ', text) elif lang == 'ar': return re.sub('\sال^|ال', ' ', text) elif lang == 'zh': return text # Chinese does not have formal articles else: raise Exception('Unknown Language {}'.format(lang)) def white_space_fix(text, lang): if lang in WHITESPACE_LANGS: tokens = whitespace_tokenize(text) elif lang in MIXED_SEGMENTATION_LANGS: tokens = mixed_segmentation(text) else: raise Exception('Unknown Language {}'.format(lang)) return ' '.join([t for t in tokens if t.strip() != '']) def remove_punc(text): return ''.join(ch for ch in text if ch not in PUNCT) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)), lang), lang) def f1_score(prediction, ground_truth, lang): prediction_tokens = normalize_answer(prediction, lang).split() ground_truth_tokens = normalize_answer(ground_truth, lang).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth, lang): return (normalize_answer(prediction, lang) == normalize_answer(ground_truth, lang)) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths, lang): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth, lang) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions, lang): f1 = exact_match = total = 0 for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: total += 1 if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + \ ' will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] exact_match += metric_max_over_ground_truths( exact_match_score, prediction, ground_truths, lang) f1 += metric_max_over_ground_truths( f1_score, prediction, ground_truths, lang) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} def evaluate_with_path(dataset_file, prediction_file, answer_language): with open(dataset_file) as dataset_file_reader: dataset_json = json.load(dataset_file_reader) dataset = dataset_json['data'] with open(prediction_file) as prediction_file_reader: predictions = json.load(prediction_file_reader) return evaluate(dataset, predictions, answer_language) if __name__ == '__main__': expected_version = '1.0' parser = argparse.ArgumentParser( description='Evaluation for MLQA ' + expected_version) parser.add_argument('dataset_file', help='Dataset file') parser.add_argument('prediction_file', help='Prediction File') parser.add_argument('answer_language', help='Language code of answer language') args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if (str(dataset_json['version']) != expected_version): print('Evaluation expects v-' + expected_version + ', but got dataset with v-' + dataset_json['version'], file=sys.stderr) dataset = dataset_json['data'] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions, args.answer_language)))
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/metrics/mlqa_evaluation_v1.py
# coding=utf-8 # Based on the MLQA evaluation script from: # https://github.com/facebookresearch/MLQA/blob/master/mlqa_evaluation_v1.py # Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Official evaluation script for the MLQA dataset. """ from __future__ import print_function from collections import Counter import string import re import argparse import json import sys import unicodedata PUNCT = {chr(i) for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith('P')}.union( string.punctuation) WHITESPACE_LANGS = ['en', 'es', 'hi', 'vi', 'de', 'ar'] MIXED_SEGMENTATION_LANGS = ['zh'] def whitespace_tokenize(text): return text.split() def mixed_segmentation(text): segs_out = [] temp_str = "" for char in text: if re.search(r'[\u4e00-\u9fa5]', char) or char in PUNCT: if temp_str != "": ss = whitespace_tokenize(temp_str) segs_out.extend(ss) temp_str = "" segs_out.append(char) else: temp_str += char if temp_str != "": ss = whitespace_tokenize(temp_str) segs_out.extend(ss) return segs_out def normalize_answer(s, lang): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text, lang): if lang == 'en': return re.sub(r'\b(a|an|the)\b', ' ', text) elif lang == 'es': return re.sub(r'\b(un|una|unos|unas|el|la|los|las)\b', ' ', text) elif lang == 'hi': return text # Hindi does not have formal articles elif lang == 'vi': return re.sub(r'\b(của|là|cái|chiếc|những)\b', ' ', text) elif lang == 'de': return re.sub(r'\b(ein|eine|einen|einem|eines|einer|der|die|das|den|dem|des)\b', ' ', text) elif lang == 'ar': return re.sub('\sال^|ال', ' ', text) elif lang == 'zh': return text # Chinese does not have formal articles else: raise Exception('Unknown Language {}'.format(lang)) def white_space_fix(text, lang): if lang in WHITESPACE_LANGS: tokens = whitespace_tokenize(text) elif lang in MIXED_SEGMENTATION_LANGS: tokens = mixed_segmentation(text) else: raise Exception('Unknown Language {}'.format(lang)) return ' '.join([t for t in tokens if t.strip() != '']) def remove_punc(text): return ''.join(ch for ch in text if ch not in PUNCT) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)), lang), lang) def f1_score(prediction, ground_truth, lang): prediction_tokens = normalize_answer(prediction, lang).split() ground_truth_tokens = normalize_answer(ground_truth, lang).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth, lang): return (normalize_answer(prediction, lang) == normalize_answer(ground_truth, lang)) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths, lang): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth, lang) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions, lang): f1 = exact_match = total = 0 for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: total += 1 if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + \ ' will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] exact_match += metric_max_over_ground_truths( exact_match_score, prediction, ground_truths, lang) f1 += metric_max_over_ground_truths( f1_score, prediction, ground_truths, lang) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} def evaluate_with_path(dataset_file, prediction_file, answer_language): with open(dataset_file) as dataset_file_reader: dataset_json = json.load(dataset_file_reader) dataset = dataset_json['data'] with open(prediction_file) as prediction_file_reader: predictions = json.load(prediction_file_reader) return evaluate(dataset, predictions, answer_language) if __name__ == '__main__': expected_version = '1.0' parser = argparse.ArgumentParser( description='Evaluation for MLQA ' + expected_version) parser.add_argument('dataset_file', help='Dataset file') parser.add_argument('prediction_file', help='Prediction File') parser.add_argument('answer_language', help='Language code of answer language') args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if (str(dataset_json['version']) != expected_version): print('Evaluation expects v-' + expected_version + ', but got dataset with v-' + dataset_json['version'], file=sys.stderr) dataset = dataset_json['data'] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions, args.answer_language)))
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/metrics/evaluate_mlqa.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from scipy.stats import pearsonr, spearmanr from sklearn.metrics import matthews_corrcoef, f1_score, average_precision_score, ndcg_score, roc_auc_score import numpy as np _has_sklearn = True except (AttributeError, ImportError): _has_sklearn = False def is_sklearn_available(): return _has_sklearn if _has_sklearn: def simple_accuracy(preds, labels): return (preds == labels).mean() def simple_ndcg(preds, labels, guids): ndcgs = [] query2content = {} for guid, pred, label in zip(guids, preds, labels): query = guid.split("_")[0] if not query in query2content: query2content[query] = [[int(pred)], [int(label)]] else: query2content[query][0].append(int(pred)) query2content[query][1].append(int(label)) for key in query2content.keys(): if len(query2content[key][1]) < 2 or len(query2content[key][0]) < 2: continue ndcgs.append(ndcg_score(np.asarray([query2content[key][1]]), np.asarray([query2content[key][0]]))) return {"ndcg" : np.array(ndcgs).mean()} def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) return { "acc": acc, "f1": f1, "acc_and_f1": (acc + f1) / 2, } def acc_and_auc(preds, labels): # auc of pr curve is equal to average precision acc = simple_accuracy(preds, labels) auc = average_precision_score(labels, preds) return { "acc": acc, "auc": auc, "acc_and_auc": (acc + auc) / 2, } def acc_and_roc_auc(preds, labels): # auc of pr curve is equal to average precision acc = simple_accuracy(preds, labels) roc_auc = roc_auc_score(labels, preds) return { "acc": acc, "roc_auc": roc_auc, "acc_and_roc_auc": (acc + roc_auc) / 2, } def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def xglue_compute_metrics(task_name, preds, labels, guids): assert len(preds) == len(labels) if task_name == "xnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "pawsx": return acc_and_auc(preds, labels) elif task_name == "qam": return acc_and_auc(preds, labels) elif task_name == "ads": return acc_and_roc_auc(preds, labels) elif task_name == "rel": return simple_ndcg(preds, labels, guids) elif task_name == "news": return {"acc": simple_accuracy(preds, labels)} else: raise KeyError(task_name) def xtreme_compute_metrics(task_name, preds, labels, guids): assert len(preds) == len(labels) if task_name == "xnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "pawsx": return acc_and_auc(preds, labels) else: raise KeyError(task_name) def glue_compute_metrics(task_name, preds, labels): assert len(preds) == len(labels) if task_name == "cola": return {"mcc": matthews_corrcoef(labels, preds)} elif task_name == "sst-2": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mrpc": return acc_and_f1(preds, labels) elif task_name == "sts-b": return pearson_and_spearman(preds, labels) elif task_name == "qqp": return acc_and_f1(preds, labels) elif task_name == "mnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mnli-mm": return {"acc": simple_accuracy(preds, labels)} elif task_name == "qnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "rte": return {"acc": simple_accuracy(preds, labels)} elif task_name == "wnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "hans": return {"acc": simple_accuracy(preds, labels)} else: raise KeyError(task_name) def xnli_compute_metrics(task_name, preds, labels): assert len(preds) == len(labels) if task_name == "xnli": return {"acc": simple_accuracy(preds, labels)} else: raise KeyError(task_name)
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/metrics/__init__.py
""" Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0 In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted probability that a question is unanswerable. """ import collections import json import logging import math import re import string from transformers.tokenization_bert import BasicTokenizer logger = logging.getLogger(__name__) def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def get_raw_scores(examples, preds): """ Computes the exact and f1 scores from the examples and the model predictions """ exact_scores = {} f1_scores = {} for example in examples: qas_id = example.qas_id gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [""] if qas_id not in preds: print("Missing prediction for %s" % qas_id) continue prediction = preds[qas_id] exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers) f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers) return exact_scores, f1_scores def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): if not qid_list: total = len(exact_scores) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(f1_scores.values()) / total), ("total", total), ] ) else: total = len(qid_list) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), ("total", total), ] ) def merge_eval(main_eval, new_eval, prefix): for k in new_eval: main_eval["%s_%s" % (prefix, k)] = new_eval[k] def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] has_ans_score, has_ans_cnt = 0, 0 for qid in qid_list: if not qid_to_has_ans[qid]: continue has_ans_cnt += 1 if qid not in scores: continue has_ans_score += scores[qid] return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh main_eval["has_ans_exact"] = has_ans_exact main_eval["has_ans_f1"] = has_ans_f1 def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for _, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) main_eval["best_exact"] = best_exact main_eval["best_exact_thresh"] = exact_thresh main_eval["best_f1"] = best_f1 main_eval["best_f1_thresh"] = f1_thresh def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0): qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples} has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer] no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer] if no_answer_probs is None: no_answer_probs = {k: 0.0 for k in preds} exact, f1 = get_raw_scores(examples, preds) exact_threshold = apply_no_ans_threshold( exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold ) f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold) evaluation = make_eval_dict(exact_threshold, f1_threshold) if has_answer_qids: has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids) merge_eval(evaluation, has_ans_eval, "HasAns") if no_answer_qids: no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids) merge_eval(evaluation, no_ans_eval, "NoAns") if no_answer_probs: find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer) return evaluation def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heuristic between # `pred_text` and `orig_text` to get a character-to-character alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logger.info("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logger.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position : (orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions_logits( all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, verbose_logging, version_2_with_negative, null_score_diff_threshold, tokenizer, map_to_origin=True, ): """Write final predictions to the json file and log-odds of null if needed.""" logger.info("Writing predictions to: %s" % (output_prediction_file)) logger.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"] ) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min null score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index], ) ) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit, ) ) prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"] ) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = tokenizer.convert_tokens_to_string(tok_tokens) # tok_text = " ".join(tok_tokens) # # # De-tokenize WordPieces that have been split off. # tok_text = tok_text.replace(" ##", "") # tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if not map_to_origin: final_text = tok_text if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if len(nbest) == 1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions def compute_predictions_log_probs( all_examples, all_features, all_results, n_best_size, max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, start_n_top, end_n_top, version_2_with_negative, tokenizer, verbose_logging, ): """ XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of null if needed. Requires utils_squad_evaluate.py """ _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"] ) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_log_prob", "end_log_prob"] ) logger.info("Writing predictions to: %s", output_prediction_file) # logger.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] cur_null_score = result.cls_logits # if we could have irrelevant answers, get the min score of irrelevant score_null = min(score_null, cur_null_score) for i in range(start_n_top): for j in range(end_n_top): start_log_prob = result.start_logits[i] start_index = result.start_top_index[i] j_index = i * end_n_top + j end_log_prob = result.end_logits[j_index] end_index = result.end_top_index[j_index] # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= feature.paragraph_len - 1: continue if end_index >= feature.paragraph_len - 1: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_log_prob=start_log_prob, end_log_prob=end_log_prob, ) ) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True ) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] # XLNet un-tokenizer # Let's keep it simple for now and see if we need all this later. # # tok_start_to_orig_index = feature.tok_start_to_orig_index # tok_end_to_orig_index = feature.tok_end_to_orig_index # start_orig_pos = tok_start_to_orig_index[pred.start_index] # end_orig_pos = tok_end_to_orig_index[pred.end_index] # paragraph_text = example.paragraph_text # final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip() # Previously used Bert untokenizer tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] tok_text = tokenizer.convert_tokens_to_string(tok_tokens) # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) if hasattr(tokenizer, "do_lower_case"): do_lower_case = tokenizer.do_lower_case else: do_lower_case = tokenizer.do_lowercase_and_remove_accent final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob) ) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_log_prob + entry.end_log_prob) if not best_non_null_entry: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_log_prob"] = entry.start_log_prob output["end_log_prob"] = entry.end_log_prob nbest_json.append(output) assert len(nbest_json) >= 1 assert best_non_null_entry is not None score_diff = score_null scores_diff_json[example.qas_id] = score_diff # note(zhiliny): always predict best_non_null_entry # and the evaluation script will search for the best threshold all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/metrics/squad_metrics.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XNLI utils (dataset loading and evaluation) """ import logging import os from .utils import DataProcessor, InputExample logger = logging.getLogger(__name__) class XnliProcessor(DataProcessor): """Processor for the XNLI dataset. Adapted from https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_train_examples(self, data_dir): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "XNLI-MT-1.0/multinli/multinli.train.{}.tsv".format(lg))) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % ("train", i) text_a = line[0] text_b = line[1] label = "contradiction" if line[2] == "contradictory" else line[2] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_test_examples(self, data_dir): """See base class.""" lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv")) examples = [] for (i, line) in enumerate(lines): if i == 0: continue language = line[0] if language != self.language: continue guid = "%s-%s" % ("test", i) text_a = line[6] text_b = line[7] label = line[1] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] xnli_processors = { "xnli": XnliProcessor, } xnli_output_modes = { "xnli": "classification", } xnli_tasks_num_labels = { "xnli": 3, }
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/processors/xnli.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. from .xglue import xglue_convert_examples_to_features, xglue_output_modes, xglue_processors, xglue_tasks_num_labels from .xtreme import xtreme_convert_examples_to_features, xtreme_output_modes, xtreme_processors, xtreme_tasks_num_labels from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels from .xglue import xglue_convert_examples_to_vat_features
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/processors/__init__.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE processors and helpers """ import logging import os import random from ...file_utils import is_tf_available from .utils import DataProcessor, InputExample, InputFeatures if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) def xtreme_convert_examples_to_features( examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True, word_dropout_rate=0.0, ): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if is_tf_available() and isinstance(examples, tf.data.Dataset): is_tf_dataset = True if task is not None: processor = xtreme_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = xtreme_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): len_examples = 0 if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) len_examples = tf.data.experimental.cardinality(examples) else: len_examples = len(examples) if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len_examples)) inputs = tokenizer.encode_plus(example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, word_dropout_rate=word_dropout_rate,) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format( len(attention_mask), max_length ) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format( len(token_type_ids), max_length ) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("text a: %s" % (example.text_a)) logger.info("text b: %s" % (example.text_b)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label, guid=example.guid ) ) if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) return tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([]), ), ) return features class PawsxProcessor(DataProcessor): """Processor for the PAWS-X data set (XTREME version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train-en.tsv")), "train") def get_translate_train_examples(self, data_dir): lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "translate-train/en-{}-translated.tsv".format(lg))) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % ("translate", i) text_a = line[0] text_b = line[1] label = line[-1] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_valid_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev-{}.tsv".format(self.language))), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "test-{}.tsv".format(self.language))), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[0] text_b = line[1] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_translate_train_dict(self, data_dir, tgt2src_dict, tgt2src_cnt): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "translate-train/en-{}-translated.tsv".format(lg))) dict = {} cnt = {} for (i, line) in enumerate(lines): text_a = line[0].strip() text_b = line[1].strip() translated_text_a = line[2].strip() translated_text_b = line[3].strip() assert isinstance(text_a, str) and isinstance(text_b, str) and \ isinstance(translated_text_a, str) and isinstance(translated_text_b, str) if text_a not in cnt: cnt[text_a] = 0 cnt[text_a] += 1 if text_b not in cnt: cnt[text_b] = 0 cnt[text_b] += 1 if text_a not in dict or random.random() <= 1.0 / cnt[text_a]: dict[text_a] = translated_text_a if text_b not in dict or random.random() <= 1.0 / cnt[text_b]: dict[text_b] = translated_text_b if translated_text_a not in tgt2src_cnt: tgt2src_cnt[translated_text_a] = 0 tgt2src_cnt[translated_text_a] += 1 if translated_text_b not in tgt2src_cnt: tgt2src_cnt[translated_text_b] = 0 tgt2src_cnt[translated_text_b] += 1 if translated_text_a not in tgt2src_dict or random.random() <= 1.0 / tgt2src_cnt[translated_text_a]: tgt2src_dict[translated_text_a] = text_a if translated_text_b not in tgt2src_dict or random.random() <= 1.0 / tgt2src_cnt[translated_text_b]: tgt2src_dict[translated_text_b] = text_b return dict class XnliProcessor(DataProcessor): """Processor for the XNLI data set (XTREME version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "train-{}.tsv".format(lg))) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % ("train", i) text_a = line[0] text_b = line[1] label = "contradiction" if line[2] == "contradictory" else line[2] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_translate_train_examples(self, data_dir): lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "translate-train/en-{}-translated.tsv".format(lg))) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % ("train", i) text_a = line[0] text_b = line[1] label = "contradiction" if line[4] == "contradictory" else line[2] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_translate_train_dict(self, data_dir, tgt2src_dict, tgt2src_cnt): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "translate-train/en-{}-translated.tsv".format(lg))) dict = {} cnt = {} for (i, line) in enumerate(lines): text_a = line[0].strip() text_b = line[1].strip() translated_text_a = line[2].strip() translated_text_b = line[3].strip() assert isinstance(text_a, str) and isinstance(text_b, str) and \ isinstance(translated_text_a, str) and isinstance(translated_text_b, str) if text_a not in cnt: cnt[text_a] = 0 cnt[text_a] += 1 if text_b not in cnt: cnt[text_b] = 0 cnt[text_b] += 1 if text_a not in dict or random.random() <= 1.0 / cnt[text_a]: dict[text_a] = translated_text_a if text_b not in dict or random.random() <= 1.0 / cnt[text_b]: dict[text_b] = translated_text_b if translated_text_a not in tgt2src_cnt: tgt2src_cnt[translated_text_a] = 0 tgt2src_cnt[translated_text_a] += 1 if translated_text_b not in tgt2src_cnt: tgt2src_cnt[translated_text_b] = 0 tgt2src_cnt[translated_text_b] += 1 if translated_text_a not in tgt2src_dict or random.random() <= 1.0 / tgt2src_cnt[translated_text_a]: tgt2src_dict[translated_text_a] = text_a if translated_text_b not in tgt2src_dict or random.random() <= 1.0 / tgt2src_cnt[translated_text_b]: tgt2src_dict[translated_text_b] = text_b return dict def get_valid_examples(self, data_dir): """See base class.""" return self.get_test_valid_examples(data_dir, "dev") def get_test_examples(self, data_dir): return self.get_test_valid_examples(data_dir, "test") def get_test_valid_examples(self, data_dir, split): assert split in ["test", "dev"] lines = self._read_tsv(os.path.join(data_dir, "{}-{}.tsv".format(split, self.language))) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (split, i) text_a = line[0] text_b = line[1] label = line[2] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] xtreme_tasks_num_labels = { "xnli": 3, "pawsx": 2, } xtreme_processors = { "xnli": XnliProcessor, "pawsx": PawsxProcessor, } xtreme_output_modes = { "xnli": "classification", "pawsx": "classification", }
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/processors/xtreme.py
import json import logging import os from functools import partial from multiprocessing import Pool, cpu_count import numpy as np from tqdm import tqdm from ...file_utils import is_tf_available, is_torch_available from ...tokenization_bert import whitespace_tokenize from .utils import DataProcessor from ..metrics.squad_metrics import compute_f1 if is_torch_available(): import torch from torch.utils.data import TensorDataset if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" tok_answer_text = tokenizer.convert_tokens_to_string(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = tokenizer.convert_tokens_to_string(doc_tokens[new_start:(new_end + 1)]) if text_span.strip() == tok_answer_text.strip(): return (new_start, new_end) max_f1 = 0 max_start = -1 max_end = -1 for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = tokenizer.convert_tokens_to_string(doc_tokens[new_start:(new_end + 1)]) cur_f1 = compute_f1(tok_answer_text.strip(), text_span.strip()) if cur_f1 > max_f1: max_f1 = cur_f1 max_start = new_start max_end = new_end if max_start == -1 and max_end == -1: max_start = input_start max_end = input_end return (max_start, max_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def _new_check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # if len(doc_spans) == 1: # return True best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span["start"] + doc_span["length"] - 1 if position < doc_span["start"]: continue if position > end: continue num_left_context = position - doc_span["start"] num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"] if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def _is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False def squad_convert_example_to_features(example, max_seq_length, doc_stride, max_query_length, is_training): features = [] if is_training and not example.is_impossible: # Get start and end position start_position = example.start_position end_position = example.end_position # If the answer cannot be found in the text, then skip this example. actual_text = " ".join(example.doc_tokens[start_position: (end_position + 1)]) cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) return [] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text ) spans = [] truncated_query = tokenizer.encode(example.question_text, add_special_tokens=False, max_length=max_query_length) sequence_added_tokens = ( tokenizer.max_len - tokenizer.max_len_single_sentence + 1 if "roberta" in str(type(tokenizer)) or "camembert" in str(type(tokenizer)) else tokenizer.max_len - tokenizer.max_len_single_sentence ) sequence_pair_added_tokens = tokenizer.max_len - tokenizer.max_len_sentences_pair span_doc_tokens = all_doc_tokens while len(spans) * doc_stride < len(all_doc_tokens): encoded_dict = tokenizer.encode_plus( truncated_query if tokenizer.padding_side == "right" else span_doc_tokens, span_doc_tokens if tokenizer.padding_side == "right" else truncated_query, max_length=max_seq_length, return_overflowing_tokens=True, pad_to_max_length=True, stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens, truncation_strategy="only_second" if tokenizer.padding_side == "right" else "only_first", ) paragraph_len = min( len(all_doc_tokens) - len(spans) * doc_stride, max_seq_length - len(truncated_query) - sequence_pair_added_tokens, ) if tokenizer.pad_token_id in encoded_dict["input_ids"]: if tokenizer.padding_side == "right": non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)] else: last_padding_id_position = ( len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index( tokenizer.pad_token_id) ) non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1:] else: non_padded_ids = encoded_dict["input_ids"] tokens = tokenizer.convert_ids_to_tokens(non_padded_ids) token_to_orig_map = {} for i in range(paragraph_len): index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i] encoded_dict["paragraph_len"] = paragraph_len encoded_dict["tokens"] = tokens encoded_dict["token_to_orig_map"] = token_to_orig_map encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens encoded_dict["token_is_max_context"] = {} encoded_dict["start"] = len(spans) * doc_stride encoded_dict["length"] = paragraph_len spans.append(encoded_dict) if "overflowing_tokens" not in encoded_dict: break span_doc_tokens = encoded_dict["overflowing_tokens"] for doc_span_index in range(len(spans)): for j in range(spans[doc_span_index]["paragraph_len"]): is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j) index = ( j if tokenizer.padding_side == "left" else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j ) spans[doc_span_index]["token_is_max_context"][index] = is_max_context for span in spans: # Identify the position of the CLS token cls_index = span["input_ids"].index(tokenizer.cls_token_id) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # Original TF implem also keep the classification token (set to 0) (not sure why...) p_mask = np.array(span["token_type_ids"]) p_mask = np.minimum(p_mask, 1) if tokenizer.padding_side == "right": # Limit positive values to one p_mask = 1 - p_mask p_mask[np.where(np.array(span["input_ids"]) == tokenizer.sep_token_id)[0]] = 1 # Set the CLS index to '0' p_mask[cls_index] = 0 span_is_impossible = example.is_impossible start_position = 0 end_position = 0 if is_training and not span_is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = span["start"] doc_end = span["start"] + span["length"] - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = cls_index end_position = cls_index span_is_impossible = True else: if tokenizer.padding_side == "left": doc_offset = 0 else: doc_offset = len(truncated_query) + sequence_added_tokens start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset features.append( SquadFeatures( span["input_ids"], span["attention_mask"], span["token_type_ids"], cls_index, p_mask.tolist(), example_index=0, # Can not set unique_id and example_index here. They will be set after multiple processing. unique_id=0, paragraph_len=span["paragraph_len"], token_is_max_context=span["token_is_max_context"], tokens=span["tokens"], token_to_orig_map=span["token_to_orig_map"], start_position=start_position, end_position=end_position, is_impossible=span_is_impossible, ) ) return features def squad_convert_example_to_features_init(tokenizer_for_convert): global tokenizer tokenizer = tokenizer_for_convert def squad_convert_examples_to_features( examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, return_dataset=False, threads=1 ): """ Converts a list of examples into a list of features that can be directly given as input to a model. It is model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs. Args: examples: list of :class:`~transformers.data.processors.squad.SquadExample` tokenizer: an instance of a child of :class:`~transformers.PreTrainedTokenizer` max_seq_length: The maximum sequence length of the inputs. doc_stride: The stride used when the context is too large and is split across several features. max_query_length: The maximum length of the query. is_training: whether to create features for model evaluation or model training. return_dataset: Default False. Either 'pt' or 'tf'. if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset threads: multiple processing threadsa-smi Returns: list of :class:`~transformers.data.processors.squad.SquadFeatures` Example:: processor = SquadV2Processor() examples = processor.get_dev_examples(data_dir) features = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, ) """ # Defining helper methods features = [] threads = min(threads, cpu_count()) with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p: annotate_ = partial( squad_convert_example_to_features, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=is_training, ) features = list( tqdm( p.imap(annotate_, examples, chunksize=32), total=len(examples), desc="convert squad examples to features", ) ) new_features = [] unique_id = 1000000000 example_index = 0 for example_features in tqdm(features, total=len(features), desc="add example index and unique id"): if not example_features: continue for example_feature in example_features: example_feature.example_index = example_index example_feature.unique_id = unique_id new_features.append(example_feature) unique_id += 1 example_index += 1 features = new_features del new_features if return_dataset == "pt": if not is_torch_available(): raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.") # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long) all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float) all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float) if not is_training: all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_masks, all_token_type_ids, all_example_index, all_cls_index, all_p_mask ) else: all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_masks, all_token_type_ids, all_start_positions, all_end_positions, all_cls_index, all_p_mask, all_is_impossible, ) return features, dataset elif return_dataset == "tf": if not is_tf_available(): raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.") def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, { "start_position": ex.start_position, "end_position": ex.end_position, "cls_index": ex.cls_index, "p_mask": ex.p_mask, "is_impossible": ex.is_impossible, }, ) return tf.data.Dataset.from_generator( gen, ( {"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, { "start_position": tf.int64, "end_position": tf.int64, "cls_index": tf.int64, "p_mask": tf.int32, "is_impossible": tf.int32, }, ), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, { "start_position": tf.TensorShape([]), "end_position": tf.TensorShape([]), "cls_index": tf.TensorShape([]), "p_mask": tf.TensorShape([None]), "is_impossible": tf.TensorShape([]), }, ), ) return features class SquadProcessor(DataProcessor): """ Processor for the SQuAD data set. Overriden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and version 2.0 of SQuAD, respectively. """ train_file = None dev_file = None def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False): if not evaluate: answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8") answer_start = tensor_dict["answers"]["answer_start"][0].numpy() answers = [] else: answers = [ {"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")} for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"]) ] answer = None answer_start = None return SquadExample( qas_id=tensor_dict["id"].numpy().decode("utf-8"), question_text=tensor_dict["question"].numpy().decode("utf-8"), context_text=tensor_dict["context"].numpy().decode("utf-8"), answer_text=answer, start_position_character=answer_start, title=tensor_dict["title"].numpy().decode("utf-8"), answers=answers, ) def get_examples_from_dataset(self, dataset, evaluate=False): """ Creates a list of :class:`~transformers.data.processors.squad.SquadExample` using a TFDS dataset. Args: dataset: The tfds dataset loaded from `tensorflow_datasets.load("squad")` evaluate: boolean specifying if in evaluation mode or in training mode Returns: List of SquadExample Examples:: import tensorflow_datasets as tfds dataset = tfds.load("squad") training_examples = get_examples_from_dataset(dataset, evaluate=False) evaluation_examples = get_examples_from_dataset(dataset, evaluate=True) """ if evaluate: dataset = dataset["validation"] else: dataset = dataset["train"] examples = [] for tensor_dict in tqdm(dataset): examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate)) return examples def get_train_examples(self, data_dir, filename=None): """ Returns the training examples from the data directory. Args: data_dir: Directory containing the data files used for training and evaluating. filename: None by default, specify this if the training file has a different name than the original one which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively. """ if data_dir is None: data_dir = "" if self.train_file is None: raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") with open( os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8" ) as reader: input_data = json.load(reader)["data"] return self._create_examples(input_data, "train") def get_dev_examples(self, data_dir, filename=None): """ Returns the evaluation example from the data directory. Args: data_dir: Directory containing the data files used for training and evaluating. filename: None by default, specify this if the evaluation file has a different name than the original one which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively. """ if data_dir is None: data_dir = "" if self.dev_file is None: raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") with open( os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8" ) as reader: input_data = json.load(reader)["data"] return self._create_examples(input_data, "dev") def _create_examples(self, input_data, set_type): is_training = set_type == "train" examples = [] for entry in tqdm(input_data): # print(entry.keys()) if "title" in entry: title = entry["title"] else: title = "no_title" for paragraph in entry["paragraphs"]: context_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position_character = None answer_text = None answers = [] if "is_impossible" in qa: is_impossible = qa["is_impossible"] else: is_impossible = False if not is_impossible: if is_training: answer = qa["answers"][0] answer_text = answer["text"] start_position_character = answer["answer_start"] else: answers = qa["answers"] example = SquadExample( qas_id=qas_id, question_text=question_text, context_text=context_text, answer_text=answer_text, start_position_character=start_position_character, title=title, is_impossible=is_impossible, answers=answers, ) examples.append(example) return examples class SquadV1Processor(SquadProcessor): train_file = "train-v1.1.json" dev_file = "dev-v1.1.json" def get_dataset_path(self, data_dir, split, language): assert split == "dev" return os.path.join(data_dir, self.dev_file) class SquadV2Processor(SquadProcessor): train_file = "train-v2.0.json" dev_file = "dev-v2.0.json" class MLQAProcessor(SquadProcessor): train_file = "squad1.1/train-v1.1.json" dev_file = "squad1.1/dev-v1.1.json" def get_dataset_path(self, data_dir, split, language): if split == "train": return os.path.join(data_dir, self.train_file) else: return os.path.join(data_dir, "MLQA_V1", split, "{0}-context-{1}-question-{1}.json".format(split, language)) def get_dev_examples_by_language(self, data_dir, language): return self.get_dev_examples(data_dir, "MLQA_V1/dev/dev-context-{0}-question-{0}.json".format(language)) def get_test_examples_by_language(self, data_dir, language): return self.get_dev_examples(data_dir, "MLQA_V1/test/test-context-{0}-question-{0}.json".format(language)) class XQuADProcessor(SquadProcessor): train_file = "squad1.1/train-v1.1.json" dev_file = "squad1.1/dev-v1.1.json" def get_dataset_path(self, data_dir, split, language): if split == "train": return os.path.join(data_dir, self.train_file) else: return os.path.join(data_dir, "xquad.{0}.json".format(language)) def get_dev_examples_by_language(self, data_dir, language): return self.get_dev_examples(data_dir, "xquad.{0}.json".format(language)) def get_test_examples_by_language(self, data_dir, language): return self.get_dev_examples(data_dir, "xquad.{0}.json".format(language)) class TyDiQAProcessor(SquadProcessor): train_file = "tydiqa-goldp-v1.1-train/tydiqa.en.train.json" dev_file = "tydiqa-goldp-v1.1-dev/tydiqa.en.dev.json" def get_dataset_path(self, data_dir, split, language): if split == "train": return os.path.join(data_dir, self.train_file) else: return os.path.join(data_dir, "tydiqa-goldp-v1.1-dev/tydiqa.{}.dev.json".format(language)) def get_dev_examples_by_language(self, data_dir, language): return self.get_dev_examples(data_dir, "tydiqa-goldp-v1.1-dev/tydiqa.{}.dev.json".format(language)) def get_test_examples_by_language(self, data_dir, language): return self.get_dev_examples(data_dir, "tydiqa-goldp-v1.1-dev/tydiqa.{}.dev.json".format(language)) class SquadExample(object): """ A single training/test example for the Squad dataset, as loaded from disk. Args: qas_id: The example's unique identifier question_text: The question string context_text: The context string answer_text: The answer string start_position_character: The character position of the start of the answer title: The title of the example answers: None by default, this is used during evaluation. Holds answers as well as their start positions. is_impossible: False by default, set to True if the example has no possible answer. """ def __init__( self, qas_id, question_text, context_text, answer_text, start_position_character, title, answers=[], is_impossible=False, ): self.qas_id = qas_id self.question_text = question_text self.context_text = context_text self.answer_text = answer_text self.title = title self.is_impossible = is_impossible self.answers = answers self.start_position, self.end_position = 0, 0 doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True # Split on whitespace so that different tokens may be attributed to their original position. for c in self.context_text: if _is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) self.doc_tokens = doc_tokens self.char_to_word_offset = char_to_word_offset # Start and end positions only has a value during evaluation. if start_position_character is not None and not is_impossible: self.start_position = char_to_word_offset[start_position_character] self.end_position = char_to_word_offset[ min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1) ] class SquadFeatures(object): """ Single squad example features to be fed to a model. Those features are model-specific and can be crafted from :class:`~transformers.data.processors.squad.SquadExample` using the :method:`~transformers.data.processors.squad.squad_convert_examples_to_features` method. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. token_type_ids: Segment token indices to indicate first and second portions of the inputs. cls_index: the index of the CLS token. p_mask: Mask identifying tokens that can be answers vs. tokens that cannot. Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer example_index: the index of the example unique_id: The unique Feature identifier paragraph_len: The length of the context token_is_max_context: List of booleans identifying which tokens have their maximum context in this feature object. If a token does not have their maximum context in this feature object, it means that another feature object has more information related to that token and should be prioritized over this feature for that token. tokens: list of tokens corresponding to the input ids token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer. start_position: start of the answer token index end_position: end of the answer token index """ def __init__( self, input_ids, attention_mask, token_type_ids, cls_index, p_mask, example_index, unique_id, paragraph_len, token_is_max_context, tokens, token_to_orig_map, start_position, end_position, is_impossible, ): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.cls_index = cls_index self.p_mask = p_mask self.example_index = example_index self.unique_id = unique_id self.paragraph_len = paragraph_len self.token_is_max_context = token_is_max_context self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible class SquadResult(object): """ Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset. Args: unique_id: The unique identifier corresponding to that example. start_logits: The logits corresponding to the start of the answer end_logits: The logits corresponding to the end of the answer """ def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None): self.start_logits = start_logits self.end_logits = end_logits self.unique_id = unique_id if start_top_index: self.start_top_index = start_top_index self.end_top_index = end_top_index self.cls_logits = cls_logits
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/processors/squad.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE processors and helpers """ import logging import os from ...file_utils import is_tf_available from .utils import DataProcessor, InputExample, InputFeatures if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) def glue_convert_examples_to_features( examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if is_tf_available() and isinstance(examples, tf.data.Dataset): is_tf_dataset = True if task is not None: processor = glue_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = glue_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): len_examples = 0 if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) len_examples = tf.data.experimental.cardinality(examples) else: len_examples = len(examples) if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len_examples)) inputs = tokenizer.encode_plus(example.text_a, example.text_b, add_special_tokens=True, max_length=max_length,) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format( len(attention_mask), max_length ) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format( len(token_type_ids), max_length ) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label ) ) if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) return tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([]), ), ) return features class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["premise"].numpy().decode("utf-8"), tensor_dict["hypothesis"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[7] text_b = line[8] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["question1"].numpy().decode("utf-8"), tensor_dict["question2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["question"].numpy().decode("utf-8"), tensor_dict["sentence"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples glue_tasks_num_labels = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } glue_processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor, } glue_output_modes = { "cola": "classification", "mnli": "classification", "mnli-mm": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification", }
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/processors/glue.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import csv import json import logging import sys from ...file_utils import is_tf_available, is_torch_available csv.field_size_limit(sys.maxsize) logger = logging.getLogger(__name__) class InputExample(object): """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ def __init__(self, guid, text_a, text_b=None, label=None): self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class InputFeatures(object): """ A single set of features of data. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. token_type_ids: Segment token indices to indicate first and second portions of the inputs. label: Label corresponding to the input """ def __init__(self, input_ids, attention_mask=None, token_type_ids=None, label=None, guid=None): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.label = label self.guid = guid def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_example_from_tensor_dict(self, tensor_dict): """Gets an example from a dict with tensorflow tensors Args: tensor_dict: Keys and values should match the corresponding Glue tensorflow_dataset examples. """ raise NotImplementedError() def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() def tfds_map(self, example): """Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts examples to the correct format.""" if len(self.get_labels()) > 1: example.label = self.get_labels()[int(example.label)] return example @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8-sig") as f: return list(csv.reader(f, delimiter="\t", quotechar=quotechar)) class SingleSentenceClassificationProcessor(DataProcessor): """ Generic processor for a single sentence classification data set.""" def __init__(self, labels=None, examples=None, mode="classification", verbose=False): self.labels = [] if labels is None else labels self.examples = [] if examples is None else examples self.mode = mode self.verbose = verbose def __len__(self): return len(self.examples) def __getitem__(self, idx): if isinstance(idx, slice): return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx]) return self.examples[idx] @classmethod def create_from_csv( cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs ): processor = cls(**kwargs) processor.add_examples_from_csv( file_name, split_name=split_name, column_label=column_label, column_text=column_text, column_id=column_id, skip_first_row=skip_first_row, overwrite_labels=True, overwrite_examples=True, ) return processor @classmethod def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs): processor = cls(**kwargs) processor.add_examples(texts_or_text_and_labels, labels=labels) return processor def add_examples_from_csv( self, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, overwrite_labels=False, overwrite_examples=False, ): lines = self._read_tsv(file_name) if skip_first_row: lines = lines[1:] texts = [] labels = [] ids = [] for (i, line) in enumerate(lines): texts.append(line[column_text]) labels.append(line[column_label]) if column_id is not None: ids.append(line[column_id]) else: guid = "%s-%s" % (split_name, i) if split_name else "%s" % i ids.append(guid) return self.add_examples( texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples ) def add_examples( self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False ): assert labels is None or len(texts_or_text_and_labels) == len(labels) assert ids is None or len(texts_or_text_and_labels) == len(ids) if ids is None: ids = [None] * len(texts_or_text_and_labels) if labels is None: labels = [None] * len(texts_or_text_and_labels) examples = [] added_labels = set() for (text_or_text_and_label, label, guid) in zip(texts_or_text_and_labels, labels, ids): if isinstance(text_or_text_and_label, (tuple, list)) and label is None: text, label = text_or_text_and_label else: text = text_or_text_and_label added_labels.add(label) examples.append(InputExample(guid=guid, text_a=text, text_b=None, label=label)) # Update examples if overwrite_examples: self.examples = examples else: self.examples.extend(examples) # Update labels if overwrite_labels: self.labels = list(added_labels) else: self.labels = list(set(self.labels).union(added_labels)) return self.examples def get_features( self, tokenizer, max_length=None, pad_on_left=False, pad_token=0, mask_padding_with_zero=True, return_tensors=None, ): """ Convert examples in a list of ``InputFeatures`` Args: tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ if max_length is None: max_length = tokenizer.max_len label_map = {label: i for i, label in enumerate(self.labels)} all_input_ids = [] for (ex_index, example) in enumerate(self.examples): if ex_index % 10000 == 0: logger.info("Tokenizing example %d", ex_index) input_ids = tokenizer.encode( example.text_a, add_special_tokens=True, max_length=min(max_length, tokenizer.max_len), ) all_input_ids.append(input_ids) batch_length = max(len(input_ids) for input_ids in all_input_ids) features = [] for (ex_index, (input_ids, example)) in enumerate(zip(all_input_ids, self.examples)): if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len(self.examples))) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = batch_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) assert len(input_ids) == batch_length, "Error with input length {} vs {}".format( len(input_ids), batch_length ) assert len(attention_mask) == batch_length, "Error with input length {} vs {}".format( len(attention_mask), batch_length ) if self.mode == "classification": label = label_map[example.label] elif self.mode == "regression": label = float(example.label) else: raise ValueError(self.mode) if ex_index < 5 and self.verbose: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label)) if return_tensors is None: return features elif return_tensors == "tf": if not is_tf_available(): raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported") import tensorflow as tf def gen(): for ex in features: yield ({"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label) dataset = tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64), ({"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([])), ) return dataset elif return_tensors == "pt": if not is_torch_available(): raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported") import torch from torch.utils.data import TensorDataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) if self.mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif self.mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels) return dataset else: raise ValueError("return_tensors should be one of 'tf' or 'pt'")
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/processors/utils.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE processors and helpers """ import logging import os import random from ...file_utils import is_tf_available from .utils import DataProcessor, InputExample, InputFeatures if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) def xglue_convert_examples_to_vat_features( examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True, nbest_size=-1, alpha=0.2, ): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if is_tf_available() and isinstance(examples, tf.data.Dataset): is_tf_dataset = True if task is not None: processor = xglue_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = xglue_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): len_examples = 0 if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) len_examples = tf.data.experimental.cardinality(examples) else: len_examples = len(examples) if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len_examples)) inputs = tokenizer.encode_plus(example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, nbest_size=nbest_size, alpha=alpha) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format( len(attention_mask), max_length ) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format( len(token_type_ids), max_length ) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("text a: %s" % (example.text_a)) logger.info("text b: %s" % (example.text_b)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label, guid=example.guid ) ) if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) return tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([]), ), ) return features def xglue_convert_examples_to_features( examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if is_tf_available() and isinstance(examples, tf.data.Dataset): is_tf_dataset = True if task is not None: processor = xglue_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = xglue_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): len_examples = 0 if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) len_examples = tf.data.experimental.cardinality(examples) else: len_examples = len(examples) if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len_examples)) inputs = tokenizer.encode_plus(example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format( len(attention_mask), max_length ) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format( len(token_type_ids), max_length ) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("text a: %s" % (example.text_a)) logger.info("text b: %s" % (example.text_b)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label, guid=example.guid ) ) if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) return tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([]), ), ) return features class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["premise"].numpy().decode("utf-8"), tensor_dict["hypothesis"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] label = line[1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[7] text_b = line[8] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["question1"].numpy().decode("utf-8"), tensor_dict["question2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["question"].numpy().decode("utf-8"), tensor_dict["sentence"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WprProcessor(DataProcessor): """Processor for the PAWS-X data set (XGLUE version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "xglue.wpr." + self.train_language + ".train")), "train") def get_valid_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "xglue.wpr." + self.language + ".dev")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "xglue.wpr." + self.language + ".test")), "test") def get_labels(self): """See base class.""" return ["0", "1", "2", "3", "4"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, line[0] + "_" + str(i)) text_a = line[0] text_b = line[1] + " " + line[2] label = line[-1] if set_type == "test": examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label="0")) else: examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QamProcessor(DataProcessor): """Processor for the Qam data set (XGLUE version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "xglue.qam.{0}.train".format(self.train_language))), "train") def get_valid_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "xglue.qam.{0}.dev".format(self.train_language))), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "xglue.qam.{0}.test".format(self.language))), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, str(i)) text_a = line[0] text_b = line[1] label = line[-1] if set_type == "test": examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label="0")) else: examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QadsmProcessor(DataProcessor): """Processor for the Ads data set (XGLUE version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language if self.train_language is None: self.train_language = self.language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "xglue.qadsm." + self.train_language + ".train")), "train") def get_valid_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "xglue.qadsm." + self.language + ".dev")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "xglue.qadsm." + self.language + ".test")), "test") def get_labels(self): """See base class.""" return ["Bad", "Good"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, str(i)) text_a = line[0] text_b = line[1] + " " + line[2] label = line[-1] if set_type == "test": examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label="Bad")) else: examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class NcProcessor(DataProcessor): """Processor for the News data set (XGLUE version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "xglue.nc." + self.train_language + ".train")), "train") def get_valid_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "xglue.nc." + self.language + ".dev")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "xglue.nc." + self.language + ".test")), "test") def get_labels(self): """See base class.""" return ['foodanddrink', 'sports', 'news', 'entertainment', 'health', 'video', 'finance', 'travel', 'lifestyle', 'autos'] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, str(i)) text_a = line[0] text_b = line[1] label = line[-1] if set_type == "test": examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label="news")) else: examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class PawsxProcessor(DataProcessor): """Processor for the PAWS-X data set (XGLUE version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence1"].numpy().decode("utf-8"), tensor_dict["sentence2"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "en/train.tsv")), "train") def get_translate_train_examples(self, data_dir): lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "translate-train/en-{}-translated.tsv".format(lg))) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % ("train", i) text_a = line[2] text_b = line[3] label = line[-1] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_valid_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, self.language + "/dev_2k.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, self.language + "/test_2k.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class XnliProcessor(DataProcessor): """Processor for the XNLI data set (XGLUE version).""" def __init__(self, language, train_language=None): self.language = language self.train_language = train_language def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), None, str(tensor_dict["label"].numpy()), ) def get_train_examples(self, data_dir): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "multinli.train.{}.tsv".format(lg))) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % ("train", i) text_a = line[0] text_b = line[1] label = "contradiction" if line[2] == "contradictory" else line[2] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_translate_train_examples(self, data_dir): lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "translate-train/en-{}-translated.tsv".format(lg))) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % ("train", i) text_a = line[2] text_b = line[3] label = "contradiction" if line[4] == "contradictory" else line[4] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_translate_train_dict(self, data_dir): """See base class.""" lg = self.language if self.train_language is None else self.train_language lines = self._read_tsv(os.path.join(data_dir, "translate-train/en-{}-translated.tsv".format(lg))) dict = {} cnt = {} for (i, line) in enumerate(lines): text_a = line[0].strip() text_b = line[1].strip() translated_text_a = line[2].strip() translated_text_b = line[3].strip() assert isinstance(text_a, str) and isinstance(text_b, str) and \ isinstance(translated_text_a, str) and isinstance(translated_text_b, str) if text_a not in cnt: cnt[text_a] = 0 cnt[text_a] += 1 if text_b not in cnt: cnt[text_b] = 0 cnt[text_b] += 1 if text_a not in dict or random.random() <= 1.0 / cnt[text_a]: dict[text_a] = translated_text_a if text_b not in dict or random.random() <= 1.0 / cnt[text_b]: dict[text_b] = translated_text_b return dict def get_valid_examples(self, data_dir): """See base class.""" return self.get_test_valid_examples(data_dir, "valid") def get_test_examples(self, data_dir): return self.get_test_valid_examples(data_dir, "test") def get_test_valid_examples(self, data_dir, split): assert split in ["test", "valid"] file_name = "test" if split == "test" else "dev" lines = self._read_tsv(os.path.join(data_dir, "xnli.{0}.tsv".format(file_name))) examples = [] for (i, line) in enumerate(lines): if i == 0: continue language = line[0] if language != self.language: continue guid = "%s-%s" % (split, i) text_a = line[6] text_b = line[7] label = line[1] assert isinstance(text_a, str) and isinstance(text_b, str) and isinstance(label, str) examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] xglue_tasks_num_labels = { "xnli": 3, "pawsx": 2, "qam": 2, "ads": 2, "news": 10, "rel": 4, "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } xglue_processors = { "xnli": XnliProcessor, "pawsx": PawsxProcessor, "qam": QamProcessor, "ads": QadsmProcessor, "news": NcProcessor, "rel": WprProcessor, "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor, } xglue_output_modes = { "xnli": "classification", "pawsx": "classification", "qam": "classification", "ads": "classification", "news": "classification", "rel": "classification", "cola": "classification", "mnli": "classification", "mnli-mm": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification", }
EXA-1-master
exa/models/unilm-master/xtune/src/transformers/data/processors/xglue.py
"""I/O""" def _lines_gen_from_single_file(filename): with open(filename) as fp: for line in fp: yield line.strip() def lines_gen(*filenames): for ret in zip(*map(_lines_gen_from_single_file, filenames)): yield ret
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/io.py
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/__init__.py
import logging import torch from transformers.modeling_bert import (BertConfig, BertEncoder, BertIntermediate, BertLayer, BertModel, BertOutput, BertSelfAttention, BertSelfOutput) from transformers.modeling_roberta import (RobertaEmbeddings, RobertaForMaskedLM, RobertaForSequenceClassification, RobertaModel) logger = logging.getLogger(__name__) def convert_cxlm_to_transformers(ckpt_path): ckpt = torch.load(ckpt_path, map_location="cpu") args = ckpt["args"] config = BertConfig( vocab_size_or_config_json_file=250002, hidden_size=args.encoder_embed_dim, num_hidden_layers=args.encoder_layers, num_attention_heads=args.encoder_attention_heads, intermediate_size=args.encoder_ffn_embed_dim, max_position_embeddings=args.max_positions + 2, type_vocab_size=1, layer_norm_eps=1e-5, # PyTorch default used in fairseq ) print("Our BERT config:", config) stat_dict = ckpt["model"] new_stat_dict = {} model = RobertaForMaskedLM(config) model.eval() sent_enc = "model_fast.decoder.sentence_encoder" new_stat_dict["roberta.embeddings.word_embeddings.weight"] = stat_dict[sent_enc + ".embed_tokens.weight"] new_stat_dict["roberta.embeddings.position_embeddings.weight"] = stat_dict[sent_enc + ".embed_positions.weight"] new_stat_dict["roberta.embeddings.token_type_embeddings.weight"] = torch.zeros_like(model.roberta.embeddings.token_type_embeddings.weight) new_stat_dict["roberta.embeddings.LayerNorm.weight"] = stat_dict[sent_enc +".emb_layer_norm.weight"] new_stat_dict["roberta.embeddings.LayerNorm.bias"] = stat_dict[sent_enc + ".emb_layer_norm.bias"] for i in range(config.num_hidden_layers): # Encoder: start of layer # layer: BertLayer = model.roberta.encoder.layer[i] layer = "roberta.encoder.layer.%d" % i roberta_layer = sent_enc + (".layers.%d" % i) ### self attention # self_attn: BertSelfAttention = layer.attention.self self_attn = layer + ".attention.self" assert( stat_dict[roberta_layer+".self_attn.k_proj.weight"].data.shape == \ stat_dict[roberta_layer+".self_attn.q_proj.weight"].data.shape == \ stat_dict[roberta_layer+".self_attn.v_proj.weight"].data.shape == \ torch.Size((config.hidden_size, config.hidden_size)) ) new_stat_dict[self_attn+".query.weight"] = stat_dict[roberta_layer+".self_attn.q_proj.weight"] new_stat_dict[self_attn+".query.bias"] = stat_dict[roberta_layer+".self_attn.q_proj.bias"] new_stat_dict[self_attn+".key.weight"] = stat_dict[roberta_layer+".self_attn.k_proj.weight"] new_stat_dict[self_attn+".key.bias"] = stat_dict[roberta_layer+".self_attn.k_proj.bias"] new_stat_dict[self_attn+".value.weight"] = stat_dict[roberta_layer+".self_attn.v_proj.weight"] new_stat_dict[self_attn+".value.bias"] = stat_dict[roberta_layer+".self_attn.v_proj.bias"] ### self-attention output # self_output: BertSelfOutput = layer.attention.output self_output = layer + ".attention.output" assert( model.roberta.encoder.layer[i].attention.output.dense.weight.shape == stat_dict[roberta_layer+".self_attn.out_proj.weight"].shape ) new_stat_dict[self_output+".dense.weight"] = stat_dict[roberta_layer+".self_attn.out_proj.weight"] new_stat_dict[self_output+".dense.bias"] = stat_dict[roberta_layer+".self_attn.out_proj.bias"] new_stat_dict[self_output+".LayerNorm.weight"] = stat_dict[roberta_layer+".self_attn_layer_norm.weight"] new_stat_dict[self_output+".LayerNorm.bias"] = stat_dict[roberta_layer+".self_attn_layer_norm.bias"] ### intermediate # intermediate: BertIntermediate = layer.intermediate intermediate = layer + ".intermediate" assert( model.roberta.encoder.layer[i].intermediate.dense.weight.shape == stat_dict[roberta_layer+".fc1.weight"].shape ) #TODO new_stat_dict[intermediate+".dense.weight"] = stat_dict[roberta_layer+".fc1.weight"] new_stat_dict[intermediate+".dense.bias"] = stat_dict[roberta_layer+".fc1.bias"] ### output # bert_output: BertOutput = layer.output bert_output = layer + ".output" assert( model.roberta.encoder.layer[i].output.dense.weight.shape == stat_dict[roberta_layer+".fc2.weight"].shape ) new_stat_dict[bert_output+".dense.weight"] = stat_dict[roberta_layer+".fc2.weight"] new_stat_dict[bert_output+".dense.bias"] = stat_dict[roberta_layer+".fc2.bias"] new_stat_dict[bert_output+".LayerNorm.weight"] = stat_dict[roberta_layer+".final_layer_norm.weight"] new_stat_dict[bert_output+".LayerNorm.bias"] = stat_dict[roberta_layer+".final_layer_norm.bias"] #### end of layer new_stat_dict["lm_head.dense.weight"] = stat_dict["model_fast.decoder.lm_head.dense.weight"] new_stat_dict["lm_head.dense.bias"] = stat_dict["model_fast.decoder.lm_head.dense.bias"] new_stat_dict["lm_head.layer_norm.weight"] = stat_dict["model_fast.decoder.lm_head.layer_norm.weight"] new_stat_dict["lm_head.layer_norm.bias"] = stat_dict["model_fast.decoder.lm_head.layer_norm.bias"] new_stat_dict["lm_head.decoder.weight"] = stat_dict["model_fast.decoder.lm_head.weight"] new_stat_dict["lm_head.bias"] = stat_dict["model_fast.decoder.lm_head.bias"] new_stat_dict["roberta.pooler.dense.weight"] = model.roberta.pooler.dense.weight new_stat_dict["roberta.pooler.dense.bias"] = model.roberta.pooler.dense.bias if "proj_matrix_fast" in stat_dict: new_stat_dict["proj_matrix_fast"] = stat_dict["proj_matrix_fast"] # model.load_state_dict(new_stat_dict) return new_stat_dict def convert_roberta_to_transformers(ckpt_path): ckpt = torch.load(ckpt_path, map_location="cpu") args = ckpt["args"] config = BertConfig( vocab_size_or_config_json_file=250002, hidden_size=args.encoder_embed_dim, num_hidden_layers=args.encoder_layers, num_attention_heads=args.encoder_attention_heads, intermediate_size=args.encoder_ffn_embed_dim, max_position_embeddings=args.max_positions + 2, type_vocab_size=1, layer_norm_eps=1e-5, # PyTorch default used in fairseq ) print("Our BERT config:", config) stat_dict = ckpt["model"] new_stat_dict = {} model = RobertaForMaskedLM(config) model.eval() sent_enc = "decoder.sentence_encoder" new_stat_dict["roberta.embeddings.word_embeddings.weight"] = stat_dict[sent_enc + ".embed_tokens.weight"] new_stat_dict["roberta.embeddings.position_embeddings.weight"] = stat_dict[sent_enc + ".embed_positions.weight"] new_stat_dict["roberta.embeddings.token_type_embeddings.weight"] = torch.zeros_like(model.roberta.embeddings.token_type_embeddings.weight) new_stat_dict["roberta.embeddings.LayerNorm.weight"] = stat_dict[sent_enc +".emb_layer_norm.weight"] new_stat_dict["roberta.embeddings.LayerNorm.bias"] = stat_dict[sent_enc + ".emb_layer_norm.bias"] for i in range(config.num_hidden_layers): # Encoder: start of layer # layer: BertLayer = model.roberta.encoder.layer[i] layer = "roberta.encoder.layer.%d" % i roberta_layer = sent_enc + (".layers.%d" % i) ### self attention # self_attn: BertSelfAttention = layer.attention.self self_attn = layer + ".attention.self" assert( stat_dict[roberta_layer+".self_attn.k_proj.weight"].data.shape == \ stat_dict[roberta_layer+".self_attn.q_proj.weight"].data.shape == \ stat_dict[roberta_layer+".self_attn.v_proj.weight"].data.shape == \ torch.Size((config.hidden_size, config.hidden_size)) ) new_stat_dict[self_attn+".query.weight"] = stat_dict[roberta_layer+".self_attn.q_proj.weight"] new_stat_dict[self_attn+".query.bias"] = stat_dict[roberta_layer+".self_attn.q_proj.bias"] new_stat_dict[self_attn+".key.weight"] = stat_dict[roberta_layer+".self_attn.k_proj.weight"] new_stat_dict[self_attn+".key.bias"] = stat_dict[roberta_layer+".self_attn.k_proj.bias"] new_stat_dict[self_attn+".value.weight"] = stat_dict[roberta_layer+".self_attn.v_proj.weight"] new_stat_dict[self_attn+".value.bias"] = stat_dict[roberta_layer+".self_attn.v_proj.bias"] ### self-attention output # self_output: BertSelfOutput = layer.attention.output self_output = layer + ".attention.output" assert( model.roberta.encoder.layer[i].attention.output.dense.weight.shape == stat_dict[roberta_layer+".self_attn.out_proj.weight"].shape ) new_stat_dict[self_output+".dense.weight"] = stat_dict[roberta_layer+".self_attn.out_proj.weight"] new_stat_dict[self_output+".dense.bias"] = stat_dict[roberta_layer+".self_attn.out_proj.bias"] new_stat_dict[self_output+".LayerNorm.weight"] = stat_dict[roberta_layer+".self_attn_layer_norm.weight"] new_stat_dict[self_output+".LayerNorm.bias"] = stat_dict[roberta_layer+".self_attn_layer_norm.bias"] ### intermediate # intermediate: BertIntermediate = layer.intermediate intermediate = layer + ".intermediate" assert( model.roberta.encoder.layer[i].intermediate.dense.weight.shape == stat_dict[roberta_layer+".fc1.weight"].shape ) #TODO new_stat_dict[intermediate+".dense.weight"] = stat_dict[roberta_layer+".fc1.weight"] new_stat_dict[intermediate+".dense.bias"] = stat_dict[roberta_layer+".fc1.bias"] ### output # bert_output: BertOutput = layer.output bert_output = layer + ".output" assert( model.roberta.encoder.layer[i].output.dense.weight.shape == stat_dict[roberta_layer+".fc2.weight"].shape ) new_stat_dict[bert_output+".dense.weight"] = stat_dict[roberta_layer+".fc2.weight"] new_stat_dict[bert_output+".dense.bias"] = stat_dict[roberta_layer+".fc2.bias"] new_stat_dict[bert_output+".LayerNorm.weight"] = stat_dict[roberta_layer+".final_layer_norm.weight"] new_stat_dict[bert_output+".LayerNorm.bias"] = stat_dict[roberta_layer+".final_layer_norm.bias"] #### end of layer new_stat_dict["lm_head.dense.weight"] = stat_dict["decoder.lm_head.dense.weight"] new_stat_dict["lm_head.dense.bias"] = stat_dict["decoder.lm_head.dense.bias"] new_stat_dict["lm_head.layer_norm.weight"] = stat_dict["decoder.lm_head.layer_norm.weight"] new_stat_dict["lm_head.layer_norm.bias"] = stat_dict["decoder.lm_head.layer_norm.bias"] new_stat_dict["lm_head.decoder.weight"] = stat_dict["decoder.lm_head.weight"] new_stat_dict["lm_head.bias"] = stat_dict["decoder.lm_head.bias"] new_stat_dict["roberta.pooler.dense.weight"] = model.roberta.pooler.dense.weight new_stat_dict["roberta.pooler.dense.bias"] = model.roberta.pooler.dense.bias return new_stat_dict if __name__ == "__main__": sd = convert_cxlm_to_transformers("/home/v-zechi/data/unilm/zechi/exp/cxlm_exp/dump-g16-lr2e-4/checkpoint_1_10000.pt") print(sd.keys())
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/tools/convert.py
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/tools/__init__.py
import logging import numpy as np import os import torch import random from torch.autograd import Variable from torch.utils.data import DataLoader, TensorDataset try: from apex import amp except ImportError: pass from src.pequod.trainer import (Trainer, XClassificationTrainer, XQATrainer, SelfTrainer) from transformers import AdamW, ConstantLRSchedule, WarmupLinearSchedule logger = logging.getLogger(__name__) class BaseTrainer(Trainer): def __init__(self, args, model, tokenizer): super().__init__(args, model, tokenizer) self.optimizer = None self.scheduler = None self.global_steps = 0 self.all_shard_fn = {} def init_optimizer(self, model, lr, t_total, fixed=None): args = self.args no_decay = ['bias', 'LayerNorm.weight'] if fixed is None: fixed = [] optimizer_grouped_parameters = [ {"params": [p for n, p in model.named_parameters() if not any( nd in n for nd in no_decay) and not any(f in n for f in fixed) ], "weight_decay": args.weight_decay}, {"params": [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay) and not any(f in n for f in fixed) ], "weight_decay": 0.0}] # TODO calculate t_total optimizer = AdamW( optimizer_grouped_parameters, lr=lr, eps=args.adam_epsilon) if args.scheduler == "linear": warmup_steps = t_total * args.warmup_ratio if args.warmup_steps == -1 else args.warmup_steps logger.info("Setting scheduler, warmups=%d, lr=%.7f, total_updates=%d" % ( warmup_steps, lr, t_total)) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps, t_total=t_total) elif args.scheduler == "constant": logger.info("Setting scheduler, ConstantLRSchedule") scheduler = ConstantLRSchedule(optimizer) else: raise ValueError return optimizer_grouped_parameters, optimizer, scheduler def optim_step(self, **kwargs): args = self.args # self.model.zero_grad() if args.fp16: # with amp.scale_loss(loss, self.optimizer) as scaled_loss: # scaled_loss.backward() torch.nn.utils.clip_grad_norm_( amp.master_params(self.optimizer), args.max_grad_norm) else: # loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), args.max_grad_norm) self.optimizer.step() self.scheduler.step() self.model.zero_grad() def backward_step(self, loss, **kwargs): args = self.args if args.accumulate_steps > 1: loss = loss / args.accumulate_steps if args.fp16: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() def step(self, *args, **kwargs): algo = kwargs.pop("algo", self.args.algo) if algo is None: algo = self.args.algo step_func_names = ["%s_step" % s for s in algo.split(",")] return getattr(self, random.choice(step_func_names))(*args, **kwargs) def base_step(self, batches, is_qa=False, **kwargs): tot_loss = 0.0 for step_batches in batches: batch = step_batches[0] batch_dict = self._parse_batch(batch) loss = self.model(**batch_dict)[0] self.backward_step(loss) tot_loss += loss.item() self.optim_step() return tot_loss / len(batches) def train_full_epoch(self, train_ds_keys, epoch_id, is_qa=False, algo=None): if train_ds_keys == "": return logger.info("***** Training epoch %d - train_ds_keys: %s *****" % ( epoch_id, str(train_ds_keys))) args = self.args n_instances = 0 data_loaders = [] if isinstance(train_ds_keys, str): train_ds_keys = train_ds_keys.split(";") for ds_key_str in train_ds_keys: data_loaders.append(self.get_dataloader_from_str(ds_key_str, epoch_id)) if self.optimizer is None: _, self.optimizer, self.scheduler = self.init_optimizer( self.model, args.learning_rate, len(data_loaders[0]) * args.num_train_epochs // args.accumulate_steps) if args.fp16: self.model, self.optimizer = amp.initialize( self.model, self.optimizer, opt_level=args.fp16_opt_level) model = self.model model.train() losses = [] step = 0 step_func_dict = {"batches": [], "is_qa": is_qa, "epoch_id": epoch_id} # for step, batches in enumerate(zip(*data_loaders)): for batches in zip(*data_loaders): # step_func_dict = {"batches": batches, "is_qa": is_qa, "epoch_id": epoch_id} step_func_dict["batches"].append(batches) if len(step_func_dict["batches"]) == args.accumulate_steps: loss = self.step(**step_func_dict, algo=algo) losses.append(loss) step_func_dict["batches"] = [] else: continue n_instances += args.train_batch_size * args.accumulate_steps self.global_steps += 1 step += 1 if step % args.logging_steps == 0: cur_lr = self.scheduler.get_lr()[0] logger.info( "Epoch %d - step %7d - global step %d - lr %.8f - n instances %7d - loss: %.4f " % ( epoch_id, step, self.global_steps, cur_lr, n_instances, sum(losses) / len(losses))) losses = [] def _parse_ds_key(self, ds_key_str): assert isinstance(ds_key_str, str) args, kwargs = [], {} for s in ds_key_str.split(","): if ":" in s: k, v = s.split(":") kwargs[k] = v else: args.append(s) return args, kwargs def get_mixed_dataloader(self, *dataloaders): iters = [iter(d) for d in dataloaders] len_dl = len(iters) finish = [False] * len_dl cnt = 0 while cnt < len_dl: idx = random.randint(0, len_dl - 1) if finish[idx]: continue try: yield next(iters[idx]) except StopIteration: finish[idx] = True cnt += 1 def get_all_shard_fn(self, *args, cache_filename=None): if args in self.all_shard_fn: return self.all_shard_fn[args] all_shard_fn = [] shard_id = 0 while True: fn = cache_filename + "." + str(shard_id) if not os.path.exists(fn): break all_shard_fn.append(fn) shard_id += 1 logger.info("%d shards found." % len(all_shard_fn)) np.random.shuffle(all_shard_fn) self.all_shard_fn[args] = all_shard_fn return all_shard_fn def get_sharded_dataloader(self, *args, **kwargs): logger.info("Getting dataloader - args: %s" % str(args)) split, lang, epoch_id = args cache_key = self.get_cache_key() cache_filename = os.path.join( self.args.data_dir, "cached_%s_%s_%s" % (split, lang, cache_key)) all_shard_fn = self.get_all_shard_fn( split, lang, cache_filename=cache_filename) fn = all_shard_fn[epoch_id % len(all_shard_fn)] logger.info("Loading dataset from %s" % str(fn)) tensor_dict = torch.load(fn) tensors = [] for _, t in tensor_dict.items(): tensors.append(t.long()) dataset = TensorDataset(*tensors) sampler = self.get_sampler(dataset, *args, **kwargs) dataloader = DataLoader(dataset, sampler=sampler, batch_size=self.args.train_batch_size) return dataloader def get_dataloader_from_str(self, ds_key_str, epoch_id): if ds_key_str.startswith("mix("): # example: mix(train,en,cut:200|train,zh,cut:20) assert ds_key_str[-1] == ")" ds_key_str = ds_key_str[4:-1] dataloaders = [] for dks in ds_key_str.split("|"): dataloaders.append(self.get_dataloader_from_str(dks, epoch_id)) return self.get_mixed_dataloader(*dataloaders) ds_key_args, ds_key_kwargs = self._parse_ds_key(ds_key_str) sharded_dataloader = ds_key_kwargs.pop("sharded_dataloader", "") if sharded_dataloader == "True": return self.get_sharded_dataloader(*ds_key_args, epoch_id, **ds_key_kwargs) return self.get_dataloader(*ds_key_args, **ds_key_kwargs) def get_model_class(proto_train_class=None, is_qa=False): class ProtoXClassificationTrainer(XClassificationTrainer, proto_train_class): def __init__(self, args, model, tokenizer): proto_train_class.__init__(self, args, model, tokenizer) # _, self.optimizer, self.scheduler = self.init_optimizer( # model, args.learning_rate) def train_full_epoch(self, train_ds_keys, epoch_id, algo=None): proto_train_class.train_full_epoch( self, train_ds_keys, epoch_id, is_qa=False, algo=algo) def before_loop(self): # args = self.args # if args.labeling_unlabeled_data: # assert args.semi_split != "" # for lang in args.test_langs.split(","): # logger.info("Labeling lang: %s" % lang) # self.labeling_dataset(self.model, (args.semi_split, lang)) pass def init_optimizer(self, *args, **kwargs): return proto_train_class.init_optimizer(self, *args, **kwargs) class ProtoXQATrainer(XQATrainer, proto_train_class): def __init__(self, args, model, tokenizer): proto_train_class.__init__(self, args, model, tokenizer) # _, self.optimizer, self.scheduler = self.init_optimizer( # model, args.learning_rate) self.example_feature_cache = {} def train_full_epoch(self, train_ds_keys, epoch_id, algo=None): proto_train_class.train_full_epoch( self, train_ds_keys, epoch_id, is_qa=True, algo=algo) def init_optimizer(self, *args, **kwargs): return proto_train_class.init_optimizer(self, *args, **kwargs) return ProtoXQATrainer if is_qa else ProtoXClassificationTrainer
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/training/xtrainer.py
import re import sys import os import random import torch import pickle import logging import numpy as np # from transformers import (WEIGHTS_NAME, # BertConfig, BertForSequenceClassification, BertTokenizer, # RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer, # RobertaModel, BertModel, XLMModel, # XLMConfig, XLMForSequenceClassification, XLMTokenizer, # XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer, # DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer, # BertForQuestionAnswering) # # from src.pequod.model.roberta import RobertaForQuestionAnswering from transformers import XLMRobertaConfig, XLMRobertaForRetrieval, XLMRobertaTokenizer # ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \ # for conf in (BertConfig, XLNetConfig, XLMConfig, # RobertaConfig, DistilBertConfig)), ()) ALL_MODELS = [] # # Model classes for classification # MODEL_CLASSES = { # 'bert': (BertConfig, BertForSequenceClassification, BertTokenizer), # 'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer), # 'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer), # 'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer), # 'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), # "xlmr": (RobertaConfig, RobertaForSequenceClassification, XLMRTokenizer) # } # # QA_MODELS = { # "bert": BertForQuestionAnswering, # "roberta": RobertaForQuestionAnswering, # "xlmr": RobertaForQuestionAnswering, # } BERT_CLASSES = { "xlmr": (XLMRobertaConfig, XLMRobertaForRetrieval, XLMRobertaTokenizer), } def to_cuda(tup): return tuple(t.cuda() for t in tup) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) #TODO multi gpu support # if args.n_gpu > 0: # torch.cuda.manual_seed_all(args.seed) def init_exp(args): # dump parameters set_dump_path(args) pickle.dump(args, open(os.path.join(args.dump_path, 'params.pkl'), 'wb')) # get running command command = ["python", sys.argv[0]] for x in sys.argv[1:]: if x.startswith('--'): assert '"' not in x and "'" not in x command.append(x) else: assert "'" not in x if re.match('^[a-zA-Z0-9_]+$', x): command.append("%s" % x) else: command.append("'%s'" % x) command = ' '.join(command) args.command = command + ' --exp_id "%s"' % args.exp_id # check experiment name assert len(args.exp_name.strip()) > 0 logging.basicConfig( format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) logger.info("\n".join( "%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))) logger.info("The experiment will be stored in %s\n" % args.dump_path) logger.info("Running command: %s" % command) logger.info("") def set_dump_path(args, output_dir=None, exp_name=None): if output_dir is None: output_dir = args.output_dir if exp_name is None: exp_name = args.exp_name chars = 'abcdefghijklmnopqrstuvwxyz0123456789' while True: exp_id = ''.join(random.choice(chars) for _ in range(10)) if not os.path.isdir(os.path.join(output_dir, exp_name, exp_id)): break args.exp_id = exp_id dump_path = os.path.join(output_dir, exp_name, exp_id) os.makedirs(dump_path) args.dump_path = dump_path
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/training/__init__.py
import os import json import logging import random import torch import numpy as np try: from apex import amp except ImportError: pass from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset, SubsetRandomSampler, Subset, ConcatDataset) #from transformers import AdamW, ConstantLRSchedule, WarmupLinearSchedule from transformers import AdamW, get_constant_schedule, get_linear_schedule_with_warmup from src.pequod.training import to_cuda, set_seed from src.pequod.eval import (eval_classification, eval_qa, score_dict_to_string, score_dicts_to_latex) from src.pequod.data import xdoc, xqa from src.pequod.data.sampler import SubSampler logger = logging.getLogger(__name__) class Trainer(object): def __init__(self, args, model, tokenizer): self.args = args self.datasets = {} self.dataloaders = {} self.iter_cache = {} self.best_scores = {} self.model = model self.tokenizer = tokenizer def run(self): raise NotImplementedError def _parse_batch(self, batch, **kwargs): _batch = to_cuda(batch) # _batch = batch ret = {"input_ids": _batch[0], "attention_mask": _batch[1], "token_type_ids": _batch[2] if self.args.model_type == "bert" else None, "labels": _batch[3]} ret.update(**kwargs) return ret def train_epoch(self, split, lang, epoch_id): raise NotImplementedError def before_loop(self): return def train_full_epoch(self, split, lang, epoch_id): raise NotImplementedError def eval_epoch(self, split, lang, epoch_id): raise NotImplementedError def load_and_cache_examples(self, *args, **kwargs): raise NotImplementedError def save(self, name, epoch=0): path = os.path.join(self.args.dump_path, "%s.pth" % name) logger.info("Saving %s to %s ..." % (name, path)) data = { "epoch":epoch, "model":self.model.state_dict(), "params": {k: v for k, v in self.args.__dict__.items()}} torch.save(data, path) def get_dataset_deprecated(self, *args, **kwargs): logger.warning("cut_args is deprecated, please use train_ds_keys.") if args in self.datasets: return self.datasets[args] dataset = self.load_and_cache_examples(*args, **kwargs) cut_split, cut_num = self.args.cut_args.split(",") cut_num = int(cut_num) if cut_num != -1 and cut_num < len(dataset) and cut_split == args[0]: # cut_indices = random.sample(range(len(dataset)), cut_num) cut_indices = [i for i in range(cut_num)] # dataset = Subset(dataset, cut_indices) dataset = TensorDataset( *tuple(tensor[cut_indices] for tensor in dataset.tensors)) self.datasets[args] = dataset return dataset def get_cache_key(self): cache_key = "%s-%s" % (self.args.model_key, self.args.model_type) return cache_key def get_dataset(self, *args, **kwargs): if args in self.datasets: return self.datasets[args] dataset = self.load_and_cache_examples(*args, **kwargs) cut_num = int(kwargs.pop("cut", "-1")) if cut_num != -1 and cut_num < len(dataset): cut_indices = [i for i in range(cut_num)] dataset = TensorDataset( *tuple(tensor[cut_indices] for tensor in dataset.tensors)) self.datasets[args] = dataset return dataset def get_sampler(self, data_source, *args, **kwargs): shuffle = kwargs.get("shuffle", args[0] == "train") num_samples = kwargs.get("num_samples", None) if num_samples is not None: num_samples = int(num_samples) sampler = SubSampler(data_source, num_samples) else: sampler = RandomSampler(data_source) if shuffle else SequentialSampler(data_source) return sampler def get_dataloader(self, *args, **kwargs): logger.info("Getting dataloader - args: %s" % str(args)) if args in self.dataloaders: return self.dataloaders[args] dataset = kwargs["dataset"] if "dataset" in kwargs \ else self.get_dataset(*args, **kwargs) sampler = self.get_sampler(dataset, *args, **kwargs) dataloader = DataLoader(dataset, sampler=sampler, batch_size=self.args.train_batch_size) self.dataloaders[args] = dataloader return dataloader def next_batch(self, *args, **kwargs): if args not in self.iter_cache: self.iter_cache[args] = iter(self.get_dataloader(*args, **kwargs)) try: ret = next(self.iter_cache[args]) except StopIteration: self.iter_cache[args] = iter(self.get_dataloader(*args, **kwargs)) ret = next(self.iter_cache[args]) return ret def set_dataset(self, dataset, args): self.datasets[args] = dataset if args in self.dataloaders: self.dataloaders.pop(args) if args in self.iter_cache: self.iter_cache.pop(args) def copy_label(self, trg_key, src_key): src_ds = self.get_dataset(*src_key) trg_ds = self.get_dataset(*trg_key) new_trg_ds = TensorDataset(*(trg_ds.tensors[:-1]) + (src_ds.tensors[-1],)) self.set_dataset(new_trg_ds, trg_key) class SelfTrainer(Trainer): def __init__(self, args, model=None, tokenizer=None): super().__init__(args, model, tokenizer) def labeling_dataset(self, model, ds_key): logger.info("Labeling dataset %s" % str(ds_key)) model.eval() dataset:TensorDataset = self.get_dataset(*ds_key) # NOTE all_labels must be the last preds = None for batch in self.get_dataloader(*ds_key, shuffle=False): with torch.no_grad(): batch_dict = self._parse_batch(batch, labels=None) outputs = model(**batch_dict) logits = outputs[0] pred = logits.detach().cpu().numpy() preds = pred if preds is None else np.append(preds, pred, axis=0) new_labels = np.argmax(preds, axis=1) new_labels = torch.tensor(new_labels, dtype=torch.long) self.set_dataset( TensorDataset(*(dataset.tensors[:-1] + (new_labels, ))), ds_key) return preds def update_concat_dataset_cache(self, ds_keys, preds_list, key_prefix="concat"): """ if preds_list[i] is None, then the ith dataset won't be cut by confidence. """ assert len(ds_keys) == len(preds_list) assert all(ds_key[1:] == ds_keys[0][1:] for ds_key in ds_keys) new_split = "-".join((key_prefix,) + tuple(ds_key[0] for ds_key in ds_keys)) logger.info("Concating %d dataset %s ..." % (len(ds_keys), new_split)) new_ds_key = (new_split, ) + ds_keys[0][1:] datasets = [] for ds_key, preds in zip(ds_keys, preds_list): dataset = self.get_dataset(*ds_key) if preds is None: datasets.append(dataset) continue new_labels = dataset.tensors[-1] confident_indices = [] for i in range(len(new_labels)): if preds[i,new_labels[i]] >= self.args.confidence_threshold: confident_indices.append(i) logger.info( "Labeled %d confident examples out of %d examples for dataset %s" % ( len(confident_indices), len(new_labels), str(ds_key))) if len(confident_indices) > 0: datasets.append(Subset(dataset, confident_indices)) self.set_dataset(ConcatDataset(datasets), new_ds_key) # self.datasets[new_ds_key] = ConcatDataset(datasets) logger.info("Construct new dataset %s with %d examples" % ( str(new_ds_key), len(self.datasets[new_ds_key]))) return new_ds_key class DistillTrainer(Trainer): def __init__(self, args, model=None, tokenizer=None): super().__init__(args, model, tokenizer) def labeling_dataset(self, model, ds_key): logger.info("Labeling dataset %s" % str(ds_key)) model.eval() dataset:TensorDataset = self.get_dataset(*ds_key) preds = None for batch in self.get_dataloader(*ds_key, shuffle=False): with torch.no_grad(): batch_dict = self._parse_batch(batch, labels=None) outputs = model(**batch_dict) logits = outputs[0] pred = logits.detach().cpu().numpy() preds = pred if preds is None else np.append(preds, pred, axis=0) preds = torch.from_numpy(preds) self.set_dataset( TensorDataset(*(dataset.tensors[:-1] + (preds, ))), ds_key) def update_concat_dataset_cache(self, ds_keys, key_prefix="concat"): assert all(ds_key[1:] == ds_keys[0][1:] for ds_key in ds_keys) new_split = "-".join((key_prefix,) + tuple(ds_key[0] for ds_key in ds_keys)) logger.info("Concating %d dataset %s ..." % (len(ds_keys), new_split)) new_ds_key = (new_split, ) + ds_keys[0][1:] new_ds = ConcatDataset([self.get_dataset(*ds_key) for ds_key in ds_keys]) self.set_dataset(new_ds, new_ds_key) logger.info("Construct new dataset %s with %d examples" % ( str(new_ds_key), len(new_ds))) return new_ds_key class XClassificationTrainer(Trainer): def __init__(self, args, model, tokenizer): super().__init__(args, model, tokenizer) _, self.optimizer, self.scheduler = self.init_optimizer( model, args.learning_rate) self.example_feature_cache = {} self.no_improve_cnt = 0 def init_optimizer(self, model, lr): args = self.args no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {"params": [p for n, p in model.named_parameters() if not any( nd in n for nd in no_decay)], "weight_decay": args.weight_decay}, {"params": [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay)], "weight_decay": 0.0}] # TODO calculate t_total optimizer = AdamW( optimizer_grouped_parameters, lr=lr, eps=args.adam_epsilon) # scheduler = WarmupLinearSchedule( # optimizer, warmup_steps=args.warmup_steps, t_total=t_total) scheduler = get_constant_schedule(optimizer) return optimizer_grouped_parameters, optimizer, scheduler def run(self): args = self.args set_seed(args) if self.optimizer is not None and args.fp16: self.model, self.optimizer = amp.initialize( self.model, self.optimizer, opt_level=args.fp16_opt_level) test_langs = args.test_langs.split(",") assert args.dev_mode in ["train_lang", "test_lang", "avg"] if args.dev_mode == "train_lang": assert args.train_lang in test_langs train_lang_index = test_langs.index(args.train_lang) logger.info("***** Running Trainer *****") logger.info("***** Before Trainer Loop *****") self.before_loop() def _eval(update_no_improve_cnt=False): score_tups = [] should_save = False for lang in test_langs: dev_score_dict = self.eval_epoch( split="dev", lang=lang, epoch_id=epoch_id) test_score_dict = self.eval_epoch( split="test", lang=lang, epoch_id=epoch_id) score_tup = (dev_score_dict, test_score_dict) score_tups.append(score_tup) logger.info("Eval epoch %d - lang - %s score - dev: %s - test: %s" % ( epoch_id, lang, score_dict_to_string(dev_score_dict), score_dict_to_string(test_score_dict))) dev_scores, test_scores = [], [] if args.dev_mode == "test_lang": # select best results w.r.t. the res on test-lang dev sets. for lang, score_tup in zip(test_langs, score_tups): if lang not in self.best_scores: if lang == test_langs[-1]: should_save = True self.best_scores[lang] = score_tup elif self.best_scores[lang][0][args.dev_criterion] < \ score_tup[0][args.dev_criterion]: if lang == test_langs[-1]: should_save = True self.best_scores[lang] = score_tup dev_scores.append(self.best_scores[lang][0]) test_scores.append(self.best_scores[lang][1]) elif args.dev_mode == "train_lang": # select best results w.r.t. the res on train-lang dev sets. if (args.train_lang not in self.best_scores) or self.best_scores[ args.train_lang][0][args.dev_criterion] < \ score_tups[train_lang_index][0][args.dev_criterion]: should_save = True for lang, score_tup in zip(test_langs, score_tups): self.best_scores[lang] = score_tup dev_scores.append(self.best_scores[lang][0]) test_scores.append(self.best_scores[lang][1]) if update_no_improve_cnt: self.no_improve_cnt = 0 logger.info("New best results!") else: for lang in test_langs: dev_scores.append(self.best_scores[lang][0]) test_scores.append(self.best_scores[lang][1]) if update_no_improve_cnt: self.no_improve_cnt += 1 logger.info("Results not improved, no_improve_cnt:%d" % self.no_improve_cnt) elif args.dev_mode == "avg": # select best results by the best sum scores avg_key = "_avg" sum_dev_scores = sum_test_scores = 0 for score_tup in score_tups: sum_dev_scores += score_tup[0][args.dev_criterion] sum_test_scores += score_tup[1][args.dev_criterion] if (avg_key not in self.best_scores) or self.best_scores[avg_key] < sum_dev_scores: should_save = True self.best_scores[avg_key] = sum_dev_scores for lang, score_tup in zip(test_langs, score_tups): self.best_scores[lang] = score_tup dev_scores.append(self.best_scores[lang][0]) test_scores.append(self.best_scores[lang][1]) logger.info("New best results! Dev avg: %.2f Test avg: %.2f" % ( sum_dev_scores/len(test_langs), sum_test_scores/len(test_langs), )) if update_no_improve_cnt: self.no_improve_cnt = 0 else: for lang in test_langs: dev_scores.append(self.best_scores[lang][0]) test_scores.append(self.best_scores[lang][1]) if update_no_improve_cnt: self.no_improve_cnt += 1 logger.info("Results not improved, no_improve_cnt:%d" % self.no_improve_cnt) logger.info("Eval epoch %d - langs %s - dev scores - %s" % ( epoch_id, " & ".join(test_langs), score_dicts_to_latex(dev_scores))) logger.info("Eval epoch %d - langs %s - test scores - %s" % ( epoch_id, " & ".join(test_langs), score_dicts_to_latex(test_scores))) with open(os.path.join(args.exp_results_dir, args.exp_name), "w") as fp: json.dump(self.best_scores, fp) fp.flush() if should_save and args.save: save_to = os.path.join(args.dump_path, "best-%s-%s" % ( args.dev_criterion, args.model_type)) logger.info("Epoch %d, saving best model to %s" % ( epoch_id, save_to)) torch.save(self.model.state_dict(), save_to) logger.info("***** Start Trainer Loop *****") for epoch_id in range(args.num_train_epochs): self.train_full_epoch(args.train_ds_keys, epoch_id=epoch_id, algo=args.algo) _eval(update_no_improve_cnt=args.stopping_threshold>0) if args.stopping_threshold > 0 and self.no_improve_cnt >= args.stopping_threshold: logger.info("***** Early stop *****") break if args.add_train_ds_keys != "": logger.info("***** Additional Trainer Loop *****") state_dict_path = os.path.join(args.dump_path, "best-%s-%s" % ( args.dev_criterion, args.model_type)) logger.info("Reloading model parameters from %s ..." % state_dict_path) state_dict = torch.load(state_dict_path, map_location="cpu") self.model.load_state_dict(state_dict) self.model.cuda() num_additional_train_epochs = getattr( args, "num_additional_train_epochs", args.num_train_epochs) for epoch_id in range(num_additional_train_epochs): self.train_full_epoch( args.add_train_ds_keys, epoch_id=epoch_id, algo=args.add_algo) _eval() def train_full_epoch(self, train_ds_keys, epoch_id, algo=None): raise NotImplementedError def train_full_epoch_deprecated(self, split, lang, epoch_id): logger.info("***** Training epoch %d - lang: %s *****" % (epoch_id, lang)) args = self.args model = self.model model.train() losses = [] n_instances = 0 for step, batch in enumerate(self.get_dataloader(split, lang)): feed_dict = self._parse_batch(batch) outputs = model(**feed_dict) loss = outputs[0] model.zero_grad() if args.fp16: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_( amp.master_params(self.optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) self.optimizer.step() self.scheduler.step() losses.append(loss) n_instances += args.train_batch_size if step % args.logging_steps == 0: logger.info( "Epoch %d - n instances %7d - loss: %.4f " % ( epoch_id, n_instances, sum(losses) / len(losses))) losses = [] def eval_epoch(self, split, lang, epoch_id): logger.info("***** Evaluating epoch %d - split: %s - lang: %s*****" % ( epoch_id, split, lang)) def _get_batch_iter(): for batch in self.get_dataloader(split, lang, shuffle=False): yield self._parse_batch(batch) return eval_classification(self.model, _get_batch_iter()) def load_and_cache_examples(self, split, lang, **kwargs): processor = xdoc.get_processor_class(self.args.dataset_name)() cache_key = self.get_cache_key() return xdoc.load_and_cache_examples( self.args, processor, split, lang, self.tokenizer, cache_key) class XQATrainer(XClassificationTrainer): def __init__(self, args, model, tokenizer): super().__init__(args, model, tokenizer) def init_optimizer(self, model, lr): args = self.args no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {"params": [p for n, p in model.named_parameters() if not any( nd in n for nd in no_decay)], "weight_decay": args.weight_decay}, {"params": [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay)], "weight_decay": 0.0}] optimizer = AdamW( optimizer_grouped_parameters, lr=lr, eps=args.adam_epsilon) dataloader = self.get_dataloader("train", args.train_lang) t_total = len(dataloader) * args.num_train_epochs scheduler = get_linear_schedule_with_warmup( optimizer, warmup_steps=args.warmup_steps, t_total=t_total) return optimizer_grouped_parameters, optimizer, scheduler def _parse_batch(self, batch, training=True, **kwargs): _batch = to_cuda(batch) # _batch = batch if training: ret = {"input_ids": _batch[0], "attention_mask": _batch[1], "token_type_ids": _batch[2] if self.args.model_type == "bert" else None, 'start_positions': _batch[3], 'end_positions': _batch[4]} else: ret = {"input_ids": _batch[0], "attention_mask": _batch[1], "token_type_ids": _batch[2] if self.args.model_type == "bert" else None} ret.update(**kwargs) return ret def eval_epoch(self, split, lang, epoch_id): args = self.args logger.info("***** Evaluating epoch %d - split: %s - lang: %s*****" % ( epoch_id, split, lang)) dataset, examples, features = self.get_eval_data(split, lang) def _get_batch_iter(): for batch in self.get_dataloader( split, lang, shuffle=False, dataset=dataset): example_indices = batch[3] yield self._parse_batch(batch, training=False), example_indices return eval_qa(self.model, _get_batch_iter(), **{ "all_examples": examples, "all_features": features, "predict_file": os.path.join(args.data_dir, "%s-%s.json" % (split, lang)), "output_dir": args.dump_path, "n_best_size": args.n_best_size, "max_answer_length": args.max_answer_length, "do_lower_case": args.do_lower_case, "verbose_logging": args.verbose_logging, "version_2_with_negative": args.version_2_with_negative, "null_score_diff_threshold": args.null_score_diff_threshold}) def load_and_cache_examples(self, split, lang, **kwargs): evaluate = kwargs.pop("evaluate", False) cache_key = "%s-%s" % (self.args.model_key, self.args.model_type) dataset, _, _ = xqa.load_and_cache_examples( self.args, split, lang, self.tokenizer, cache_key, evaluate=evaluate) return dataset def get_eval_data(self, split, lang): ds_key = (split, lang) if ds_key in self.example_feature_cache: return self.example_feature_cache[ds_key] cache_key = "%s-%s" % (self.args.model_key, self.args.model_type) dataset, examples, features = xqa.load_and_cache_examples( self.args, split, lang, self.tokenizer, cache_key, evaluate=True) self.example_feature_cache[ds_key] = (dataset, examples, features) return dataset, examples, features
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/training/trainer.py
from collections import defaultdict import torch from torch.optim.optimizer import Optimizer class LookaheadWrapper(Optimizer): r"""Implements a Lookahead wrapper around a given optimizer """ def __init__(self, optimizer, la_steps, la_alpha=0.5): self.optimizer = optimizer self._la_step = 0 # counter for inner optimizer self.la_alpha = la_alpha self._total_la_steps = la_steps self.state = defaultdict(dict) # Cache the current optimizer parameters for group in optimizer.param_groups: for p in group['params']: param_state = self.state[p] param_state['cached_params'] = torch.zeros_like(p.data) param_state['cached_params'].copy_(p.data) def __getstate__(self): return self.optimizer.__getstate__() def __setstate__(self, state): self.optimizer.__setstate__(state) def zero_grad(self): self.optimizer.zero_grad() def state_dict(self): return self.optimizer.state_dict() def load_state_dict(self, state_dict): self.optimizer.load_state_dict(state_dict) @property def param_groups(self): return self.optimizer.param_groups def step(self, closure=None): """Performs a single Lookahead optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = self.optimizer.step(closure) self._la_step += 1 if self._la_step >= self._total_la_steps: self._la_step = 0 # Lookahead and cache the current optimizer parameters for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] p.data.mul_(self.la_alpha).add_(1 - self.la_alpha, param_state['cached_params']) param_state['cached_params'].copy_(p.data) return loss
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/optim/la.py
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/optim/__init__.py
from collections import defaultdict import torch from torch.optim.optimizer import Optimizer class Lookahead0Wrapper(Optimizer): r"""Implements a Lookahead wrapper around a given optimizer """ def __init__(self, optimizer, la_steps, la_alpha=0.5): self.optimizer = optimizer self._la_step = 0 # counter for inner optimizer self.la_alpha = la_alpha self._total_la_steps = la_steps self.state = defaultdict(dict) # Cache the current optimizer parameters for group in optimizer.param_groups: for p in group['params']: param_state = self.state[p] param_state['cached_params'] = torch.zeros_like(p.data) param_state['cached_params'].copy_(p.data) def __getstate__(self): return self.optimizer.__getstate__() def __setstate__(self, state): self.optimizer.__setstate__(state) def zero_grad(self): self.optimizer.zero_grad() def state_dict(self): return self.optimizer.state_dict() def load_state_dict(self, state_dict): self.optimizer.load_state_dict(state_dict) @property def param_groups(self): return self.optimizer.param_groups def step(self, closure=None): """Performs a single Lookahead optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = self.optimizer.step(closure) self._la_step += 1 if self._la_step >= self._total_la_steps: self._la_step = 0 # Lookahead and cache the current optimizer parameters for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] p.data.mul_(self.la_alpha).add_(1 - self.la_alpha, param_state['cached_params']) # param_state['cached_params'].copy_(p.data) return loss
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/optim/la0.py
import torch from torch import nn from torch.nn import CrossEntropyLoss from transformers.modeling_bert import BertPreTrainedModel, BertForQuestionAnswering from transformers.modeling_roberta import RobertaModel class RobertaForQuestionAnswering(BertPreTrainedModel): base_model_prefix = "roberta" def __init__(self, config): BertPreTrainedModel.__init__(self, config) self.num_labels = config.num_labels self.roberta = RobertaModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) BertPreTrainedModel.init_weights(self) def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, start_positions=None, end_positions=None, **kwargs): outputs = self.roberta(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, **kwargs) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = (start_logits, end_logits,) + outputs[2:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/model/roberta.py
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/model/__init__.py
import os import numpy as np import torch import inspect from src.pequod.data.utils_squad import RawResult, write_predictions from src.pequod.data.utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad def to_list(tensor): return tensor.detach().cpu().tolist() def score_dict_to_string(score_dict): return " ".join([("%s:%.2f" % (k, v)) for k, v in score_dict.items()]) def score_dicts_to_latex(score_dicts): keys = [k for k in score_dicts[0]] return "\n".join([""] + [( " & ".join([key] + [("%.2f" % (sd[key])) for sd in score_dicts]) ) for key in keys]) def eval_classification(model, batch_dict_iter): model.eval() preds, labels = None, None for batch_dict in batch_dict_iter: label_id = batch_dict["labels"].detach().cpu().numpy() batch_dict.pop("labels") with torch.no_grad(): logits = model(**batch_dict)[0] pred = logits.detach().cpu().numpy() if preds is None: preds, labels = pred, label_id else: preds = np.append(preds, pred, axis=0) labels = np.append(labels, label_id) preds = np.argmax(preds, axis=1) result = (preds == labels).mean() return {"acc": result*100.0} def eval_qa(model, batch_dict_iter, prefix="", **kwargs): features = kwargs["all_features"] output_dir = kwargs["output_dir"] model.eval() all_results = [] for batch_dict, example_indices in batch_dict_iter: with torch.no_grad(): outputs = model(**batch_dict) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = int(eval_feature.unique_id) result = RawResult(unique_id = unique_id, start_logits = to_list(outputs[0][i]), end_logits = to_list(outputs[1][i])) all_results.append(result) output_prediction_file = os.path.join( output_dir, "predictions_{}.json".format(prefix)) output_nbest_file = os.path.join( output_dir, "nbest_predictions_{}.json".format(prefix)) if kwargs["version_2_with_negative"]: output_null_log_odds_file = os.path.join( output_dir, "null_odds_{}.json".format(prefix)) else: output_null_log_odds_file = None wrt_pred_kwargs = { "all_results": all_results, "output_prediction_file": output_prediction_file, "output_nbest_file": output_nbest_file, "output_null_log_odds_file": output_null_log_odds_file} for key in inspect.getfullargspec(write_predictions).args: if key not in wrt_pred_kwargs: wrt_pred_kwargs[key] = kwargs[key] write_predictions(**wrt_pred_kwargs) # Evaluate with the official SQuAD script evaluate_options = EVAL_OPTS( data_file=kwargs["predict_file"], pred_file=output_prediction_file, na_prob_file=output_null_log_odds_file, out_file="/dev/null") results = evaluate_on_squad(evaluate_options) return results
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/eval/__init__.py
import faiss import json import logging import numpy as np import os import torch from src.pequod.data.xretrieval import load_and_cache_examples from src.pequod.eval.evaluator import Evaluator from src.pequod.eval.utils_retrieve import mine_bitext, bucc_eval logger = logging.getLogger(__name__) def load_embeddings(embed_file, num_sentences=None): logger.info(' loading from {}'.format(embed_file)) embeds = np.load(embed_file) return embeds class BuccEvaluator(Evaluator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model_langs = ["share_lang", "order"] self.proj_matrix_fast = kwargs.get("proj_matrix_fast", None) if self.proj_matrix_fast is not None: logger.info("proj_matrix_fast:" + str(self.proj_matrix_fast.size())) self.proj_matrix_fast = self.proj_matrix_fast[0].float().cuda() self.res = {} def get_mean_emb(self, layer_outputs, pool_mask): embs = (layer_outputs * pool_mask.unsqueeze(2).float()).sum(dim=1) / \ pool_mask.sum(dim=1).view(-1, 1).float() return embs def get_cxlm_emb(self, layer_outputs): if self.proj_matrix_fast is None: raise ValueError ret = torch.mm(layer_outputs[:,0,:], self.proj_matrix_fast) # ret = layer_outputs[:,0,:] return ret def get_cls_emb(self, layer_outputs): return layer_outputs[:,0,:] def bt_norm(self, x): m = x.mean(0, keepdim=True) v = x.var(0, unbiased=True, keepdim=True) return (x-m) / torch.sqrt(v+1e-5) def get_embeddings(self, batch, outputs, emb_type=None, is_bt_norm=False): if emb_type is None: emb_type = self.args.emb_type last_layer_outputs, first_token_outputs, all_layer_outputs = outputs if emb_type == "mean": ret = self.get_mean_emb(all_layer_outputs[self.args.mean_layer_id], batch["attention_mask"]) elif emb_type == "cls": ret = self.get_cls_emb(all_layer_outputs[-1]) elif emb_type == "cxlm": ret = self.get_cxlm_emb(all_layer_outputs[self.args.mean_layer_id]) #TODO else: raise ValueError if is_bt_norm: ret = self.bt_norm(ret) ret = ret.cpu().numpy().astype(np.float32) # ret = None del last_layer_outputs, first_token_outputs, all_layer_outputs torch.cuda.empty_cache() return ret def run(self): args = self.args self.model.eval() best_threshold = None SL, TL = args.src_language, args.tgt_language for split in ['test']: # for split in ['dev', 'test']: prefix = f'{SL}-{TL}.{split}' if args.extract_embeds: for lang in [SL, TL]: file = os.path.join(args.output_dir, f'{prefix}.{lang}.npy') if os.path.exists(file): continue langpair = f'{SL}-{TL}.{split}' dl1 = self.get_dataloader(langpair, lang) all_emb1 = [] for batch1 in dl1: batch1 = self._parse_batch(batch1, has_label=False) #forward with torch.no_grad(): outputs1 = self.model(**batch1) all_emb1.append(self.get_embeddings(batch1, outputs1, is_bt_norm=args.bt_norm)) all_emb1 = np.concatenate(all_emb1) file = os.path.join(args.output_dir, f'{prefix}.{lang}.npy') logger.info('save embed {} to file {}'.format(all_emb1.shape, file)) np.save(file, all_emb1) if args.mine_bitext: threshold = None cand2score_file = os.path.join(args.output_dir, 'candidates.tsv') x = load_embeddings(os.path.join(args.output_dir, f'{prefix}.{SL}.npy')) y = load_embeddings(os.path.join(args.output_dir, f'{prefix}.{TL}.npy')) x_text_file = os.path.join(args.data_dir, f'{prefix}.{SL}.txt') y_text_file = os.path.join(args.data_dir, f'{prefix}.{TL}.txt') x_id_file = os.path.join(args.data_dir, f'{prefix}.{SL}.id') y_id_file = os.path.join(args.data_dir, f'{prefix}.{TL}.id') mine_bitext(x, y, x_text_file, y_text_file, cand2score_file, dist=args.dist, use_shift_embeds=args.use_shift_embeds) gold_file = os.path.join(args.data_dir, f'{prefix}.gold') if os.path.exists(gold_file): predict_file = os.path.join(args.output_dir, f'test-{SL}.tsv') results = bucc_eval(cand2score_file, gold_file, x_text_file, y_text_file, x_id_file, y_id_file, predict_file, threshold) with open(os.path.join(args.output_dir, 'final.txt'), 'w', encoding='utf-8') as f: f.write(json.dumps(results)) best_threshold = results['best-threshold'] logger.info('--Candidates: {}'.format(cand2score_file)) logger.info(' '.join('{}={:.4f}'.format(k,v) for k,v in results.items())) # if args.layer_ensemble: # threshold = None # prefix = 'mean_l2' # layers = args.ens_layers.split(',') # # cand2score_file = os.path.join(args.output_dir, 'candidates.tsv') # # x = load_embeddings(os.path.join(args.output_dir, f'{prefix}.{SL}.npy')) # y = load_embeddings(os.path.join(args.output_dir, f'{prefix}.{TL}.npy')) # # x_text_file = os.path.join(args.data_dir, f'{prefix}.{SL}.txt') # y_text_file = os.path.join(args.data_dir, f'{prefix}.{TL}.txt') # x_id_file = os.path.join(args.data_dir, f'{prefix}.{SL}.id') # y_id_file = os.path.join(args.data_dir, f'{prefix}.{TL}.id') # # mine_bitext(x, y, x_text_file, y_text_file, cand2score_file, dist=args.dist, use_shift_embeds=args.use_shift_embeds) # gold_file = os.path.join(args.data_dir, f'{prefix}.gold') # if os.path.exists(gold_file): # predict_file = os.path.join(args.output_dir, f'test-{SL}.tsv') # results = bucc_eval(cand2score_file, gold_file, x_text_file, y_text_file, x_id_file, y_id_file, predict_file, threshold) # # with open(os.path.join(args.output_dir, 'final.txt'), 'w', encoding='utf-8') as f: # f.write(json.dumps(results)) # # best_threshold = results['best-threshold'] # logger.info('--Candidates: {}'.format(cand2score_file)) # logger.info(' '.join('{}={:.4f}'.format(k,v) for k,v in results.items())) # output retrieval results # with open(os.path.join(args.output_dir, 'test-{0}.tsv'.format(lang1)), 'w', encoding='utf-8') as writer: # for i, pred in enumerate(predictions): # writer.write(str(pred[0]) + '\n') def load_and_cache_examples(self, langpair, lang, **kwargs): args = self.args cache_key = "%s-%s" % (args.model_key, args.model_type) return load_and_cache_examples( args=args, langpair=langpair, lang=lang, tokenizer=self.tokenizer, key=cache_key, prefix=args.data_prefix, )
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/eval/bretrieval.py
import faiss import json import logging import numpy as np import os import torch from src.pequod.data.xretrieval import load_and_cache_examples from src.pequod.eval.evaluator import Evaluator logger = logging.getLogger(__name__) def similarity_search(x, y, dim, normalize=False, dist='L2'): top_k = 10 num = x.shape[0] if dist == 'cosine': idx = faiss.IndexFlatIP(dim) else: idx = faiss.IndexFlatL2(dim) if normalize: faiss.normalize_L2(x) faiss.normalize_L2(y) idx.add(x) scores, prediction = idx.search(y, top_k) return prediction, scores class TatoebaEvaluator(Evaluator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model_langs = ["share_lang", "order"] self.proj_matrix_fast = kwargs.get("proj_matrix_fast", None) if self.proj_matrix_fast is not None: logger.info("proj_matrix_fast:" + str(self.proj_matrix_fast.size())) self.proj_matrix_fast = self.proj_matrix_fast[0].float().cuda() self.res = {} def get_mean_emb(self, layer_outputs, pool_mask): embs = (layer_outputs * pool_mask.unsqueeze(2).float()).sum(dim=1) / \ pool_mask.sum(dim=1).view(-1, 1).float() return embs def get_cxlm_emb(self, layer_outputs): if self.proj_matrix_fast is None: raise ValueError ret = torch.mm(layer_outputs[:,0,:], self.proj_matrix_fast) # ret = layer_outputs[:,0,:] return ret def get_cls_emb(self, layer_outputs): return layer_outputs[:,0,:] def bt_norm(self, x): m = x.mean(0, keepdim=True) v = x.var(0, unbiased=True, keepdim=True) return (x-m) / torch.sqrt(v+1e-5) def get_embeddings(self, batch, outputs, emb_type=None, is_bt_norm=False): if emb_type is None: emb_type = self.args.emb_type last_layer_outputs, first_token_outputs, all_layer_outputs = outputs if emb_type == "mean": ret = self.get_mean_emb(all_layer_outputs[self.args.mean_layer_id], batch["attention_mask"]) elif emb_type == "cls": ret = self.get_cls_emb(all_layer_outputs[-1]) elif emb_type == "cxlm": ret = self.get_cxlm_emb(all_layer_outputs[self.args.mean_layer_id]) #TODO else: raise ValueError if is_bt_norm: ret = self.bt_norm(ret) ret = ret.cpu().numpy().astype(np.float32) # ret = None del last_layer_outputs, first_token_outputs, all_layer_outputs torch.cuda.empty_cache() return ret def run(self): args = self.args self.model.eval() if args.data_prefix == "tatoeba": langs = ["ara", "bul", "deu", "ell", "spa", "fra", "hin", "rus", "swh", "tha", "tur", "urd", "vie", "cmn"] langpairs = ["%s-eng" % lang for lang in langs] elif args.data_prefix == "cxlm": langpairs = "ar-en bg-en de-en el-en en-es en-fr en-hi en-ru en-sw en-th en-tr en-ur en-vi en-zh".split() elif args.data_prefix == "debug": langpairs = ["ar-en" ] elif args.data_prefix == "tat15plus": args.data_prefix = "tatoeba" l15 = set(["ara", "bul", "deu", "ell", "spa", "fra", "hin", "rus", "swh", "tha", "tur", "urd", "vie", "cmn"]) ld = {'ara':'ar', 'heb':'he', 'vie':'vi', 'ind':'id', 'jav':'jv', 'tgl':'tl', 'eus':'eu', 'mal':'ml', 'tel':'te', 'afr':'af', 'nld':'nl', 'deu':'de', 'ell':'el', 'ben':'bn', 'hin':'hi', 'mar':'mr', 'urd':'ur', 'tam':'ta', 'fra':'fr', 'ita':'it', 'por':'pt', 'spa':'es', 'bul':'bg', 'rus':'ru', 'jpn':'ja', 'kat':'ka', 'kor':'ko', 'tha':'th', 'swh':'sw', 'cmn':'zh', 'kaz':'kk', 'tur':'tr', 'est':'et', 'fin':'fi', 'hun':'hu', 'pes':'fa'} langs_str = 'ar he vi id jv tl eu ml ta te af nl de el bn hi mr ur fa fr it pt es bg ru ja ka ko th sw zh kk tr et fi hu' #langs_str = 'hi mr ur fa fr it pt es bg ru ja ka ko th sw zh kk tr et fi hu' #langs_str = 'ar he' #langs_str = 'ara heb' langs = langs_str.split(' ') #for l in ld: # if l in l15: continue # langs.append(l) # langs = ["afr", "jpn", "kor", "kaz", "est", "fin", "hun", "pes"] langpairs = ["%s-en" % lang for lang in langs] else: raise ValueError for langpair in langpairs: lang1, lang2 = langpair.split("-") logger.info("Eval langpair: %s" % langpair) dl1 = self.get_dataloader(langpair, lang1) dl2 = self.get_dataloader(langpair, lang2) all_emb1 = [] all_emb2 = [] for batch1, batch2 in zip(dl1, dl2): batch1 = self._parse_batch(batch1, has_label=False) batch2 = self._parse_batch(batch2, has_label=False) #forward with torch.no_grad(): outputs1 = self.model(**batch1) all_emb1.append(self.get_embeddings(batch1, outputs1, is_bt_norm=args.bt_norm)) outputs2 = self.model(**batch2) all_emb2.append(self.get_embeddings(batch2, outputs2, is_bt_norm=args.bt_norm)) all_emb1 = np.concatenate(all_emb1) all_emb2 = np.concatenate(all_emb2) emb_sz = all_emb1.shape[-1] if args.reverse_eval: all_emb1, all_emb2 = all_emb2, all_emb1 predictions, scores = similarity_search( all_emb1, all_emb2, emb_sz, normalize=self.args.normalize, dist=self.args.dist) correct = tot = 0 # output retrieval results with open(os.path.join(args.output_dir, 'test-{0}.tsv'.format(lang1)), 'w', encoding='utf-8') as writer: for i, pred in enumerate(predictions): writer.write(str(pred[0]) + '\n') with open(os.path.join(args.output_dir, 'test-{0}-scores.tsv'.format(lang1)), 'w', encoding='utf-8') as writer: for pred, score in zip(predictions, scores): writer.write(' '.join([str(p) for p in pred]) + '\t' + ' '.join([str(s) for s in score]) + '\n') for i, pred in enumerate(predictions): if i == pred[0]: correct += 1 tot += 1 logger.info("langpair:%s acc:%.2f" % (langpair, 100*correct/tot)) self.res[langpair] = 100*correct/tot #output_fn = os.path.join(args.exp_results_dir, args.exp_name) #if args.reverse_eval: output_fn += "-rev" #with open(output_fn, "w") as fp: # json.dump(self.res, fp) def load_and_cache_examples(self, langpair, lang, **kwargs): args = self.args cache_key = "%s-%s" % (args.model_key, args.model_type) return load_and_cache_examples( args=args, langpair=langpair, lang=lang, tokenizer=self.tokenizer, key=cache_key, prefix=args.data_prefix, )
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/eval/xretrieval.py
# coding=utf-8 # This repository is modified based on the LASER repository. # https://github.com/facebookresearch/LASER # Copyright The LASER Team Authors, and The XTREME Benchmark Authors. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for retrieval tasks.""" import os import sys import faiss import tempfile import numpy as np def knn(x, y, k, use_gpu, dist='cosine'): return knnGPU(x, y, k) if use_gpu else knnCPU(x, y, k, dist) def knnGPU(x, y, k, mem=5*1024*1024*1024): dim = x.shape[1] batch_size = mem // (dim*4) sim = np.zeros((x.shape[0], k), dtype=np.float32) ind = np.zeros((x.shape[0], k), dtype=np.int64) for xfrom in range(0, x.shape[0], batch_size): xto = min(xfrom + batch_size, x.shape[0]) bsims, binds = [], [] for yfrom in range(0, y.shape[0], batch_size): yto = min(yfrom + batch_size, y.shape[0]) print('{}-{} -> {}-{}'.format(xfrom, xto, yfrom, yto)) idx = faiss.IndexFlatIP(dim) idx = faiss.index_cpu_to_all_gpus(idx) idx.add(y[yfrom:yto]) bsim, bind = idx.search(x[xfrom:xto], min(k, yto-yfrom)) bsims.append(bsim) binds.append(bind + yfrom) del idx bsims = np.concatenate(bsims, axis=1) binds = np.concatenate(binds, axis=1) aux = np.argsort(-bsims, axis=1) for i in range(xfrom, xto): for j in range(k): sim[i, j] = bsims[i-xfrom, aux[i-xfrom, j]] ind[i, j] = binds[i-xfrom, aux[i-xfrom, j]] return sim, ind def knnCPU(x, y, k, dist='cosine'): # x: query, y: database dim = x.shape[1] if dist == 'cosine': idx = faiss.IndexFlatIP(dim) else: idx = faiss.IndexFlatL2(dim) idx.add(y) sim, ind = idx.search(x, k) if dist != 'cosine': sim = 1 / (1 + sim) return sim, ind def score(x, y, fwd_mean, bwd_mean, margin, dist='cosine'): if dist == 'cosine': return margin(x.dot(y), (fwd_mean + bwd_mean) / 2) else: l2 = ((x - y) ** 2).sum() sim = 1 / (1 + l2) return margin(sim, (fwd_mean + bwd_mean) / 2) def score_candidates(x, y, candidate_inds, fwd_mean, bwd_mean, margin, dist='cosine'): print(' - scoring {:d} candidates using {}'.format(x.shape[0], dist)) scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = candidate_inds[i, j] scores[i, j] = score(x[i], y[k], fwd_mean[i], bwd_mean[k], margin, dist) return scores def text_load_unify(fname, encoding, unify=True): print(' - loading texts {:s}: '.format(fname), end='') fin = open(fname, encoding=encoding, errors='surrogateescape') inds = [] sents = [] sent2ind = {} n = 0 nu = 0 for line in fin: new_ind = len(sent2ind) inds.append(sent2ind.setdefault(line, new_ind)) if unify: if inds[-1] == new_ind: sents.append(line[:-1]) nu += 1 else: sents.append(line[:-1]) nu += 1 n += 1 print('{:d} lines, {:d} unique'.format(n, nu)) del sent2ind return inds, sents def unique_embeddings(emb, ind): aux = {j: i for i, j in enumerate(ind)} print(' - unify embeddings: {:d} -> {:d}'.format(len(emb), len(aux))) return emb[[aux[i] for i in range(len(aux))]] def shift_embeddings(x, y): print(' - shift embeddings') delta = x.mean(axis=0) - y.mean(axis=0) x2y = x - delta y2x = y + delta return x2y, y2x def mine_bitext(x, y, src_text_file, trg_text_file, output_file, mode='mine', retrieval='max', margin='ratio', threshold=0, neighborhood=4, use_gpu=False, encoding='utf-8', dist='cosine', use_shift_embeds=False): src_inds, src_sents = text_load_unify(src_text_file, encoding, True) trg_inds, trg_sents = text_load_unify(trg_text_file, encoding, True) x = unique_embeddings(x, src_inds) y = unique_embeddings(y, trg_inds) if dist == 'cosine': faiss.normalize_L2(x) faiss.normalize_L2(y) if use_shift_embeds: x2y, y2x = shift_embeddings(x, y) # calculate knn in both directions if retrieval is not 'bwd': print(' - perform {:d}-nn source against target, dist={}'.format(neighborhood, dist)) if use_shift_embeds: # project x to y space, and search k-nn ys for each x x2y_sim, x2y_ind = knn(x2y, y, min(y.shape[0], neighborhood), use_gpu, dist) x2y_mean = x2y_sim.mean(axis=1) else: x2y_sim, x2y_ind = knn(x, y, min(y.shape[0], neighborhood), use_gpu, dist) x2y_mean = x2y_sim.mean(axis=1) if retrieval is not 'fwd': print(' - perform {:d}-nn target against source, dist={}'.format(neighborhood, dist)) if use_shift_embeds: y2x_sim, y2x_ind = knn(y2x, x, min(x.shape[0], neighborhood), use_gpu, dist) y2x_mean = y2x_sim.mean(axis=1) else: y2x_sim, y2x_ind = knn(y, x, min(x.shape[0], neighborhood), use_gpu, dist) y2x_mean = y2x_sim.mean(axis=1) # margin function if margin == 'absolute': margin = lambda a, b: a elif margin == 'distance': margin = lambda a, b: a - b else: # margin == 'ratio': margin = lambda a, b: a / b fout = open(output_file, mode='w', encoding=encoding, errors='surrogateescape') if mode == 'search': print(' - Searching for closest sentences in target') print(' - writing alignments to {:s}'.format(output_file)) scores = score_candidates(x, y, x2y_ind, x2y_mean, y2x_mean, margin) best = x2y_ind[np.arange(x.shape[0]), scores.argmax(axis=1)] nbex = x.shape[0] ref = np.linspace(0, nbex-1, nbex).astype(int) # [0, nbex) err = nbex - np.equal(best.reshape(nbex), ref).astype(int).sum() print(' - errors: {:d}={:.2f}%'.format(err, 100*err/nbex)) for i in src_inds: print(trg_sents[best[i]], file=fout) elif mode == 'score': for i, j in zip(src_inds, trg_inds): s = score(x[i], y[j], x2y_mean[i], y2x_mean[j], margin) print(s, src_sents[i], trg_sents[j], sep='\t', file=fout) elif mode == 'mine': print(' - mining for parallel data') if use_shift_embeds: fwd_scores = score_candidates(x2y, y, x2y_ind, x2y_mean, y2x_mean, margin) bwd_scores = score_candidates(y2x, x, y2x_ind, y2x_mean, x2y_mean, margin) else: fwd_scores = score_candidates(x, y, x2y_ind, x2y_mean, y2x_mean, margin) bwd_scores = score_candidates(y, x, y2x_ind, y2x_mean, x2y_mean, margin) fwd_best = x2y_ind[np.arange(x.shape[0]), fwd_scores.argmax(axis=1)] bwd_best = y2x_ind[np.arange(y.shape[0]), bwd_scores.argmax(axis=1)] print(' - writing alignments to {:s}'.format(output_file)) if threshold > 0: print(' - with threshold of {:f}'.format(threshold)) if retrieval == 'fwd': for i, j in enumerate(fwd_best): print(fwd_scores[i].max(), src_sents[i], trg_sents[j], sep='\t', file=fout) if retrieval == 'bwd': for j, i in enumerate(bwd_best): print(bwd_scores[j].max(), src_sents[i], trg_sents[j], sep='\t', file=fout) if retrieval == 'intersect': for i, j in enumerate(fwd_best): if bwd_best[j] == i: print(fwd_scores[i].max(), src_sents[i], trg_sents[j], sep='\t', file=fout) if retrieval == 'max': indices = np.stack((np.concatenate((np.arange(x.shape[0]), bwd_best)), np.concatenate((fwd_best, np.arange(y.shape[0])))), axis=1) scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1))) seen_src, seen_trg = set(), set() for i in np.argsort(-scores): src_ind, trg_ind = indices[i] if not src_ind in seen_src and not trg_ind in seen_trg: seen_src.add(src_ind) seen_trg.add(trg_ind) if scores[i] > threshold: print(scores[i], src_sents[src_ind], trg_sents[trg_ind], sep='\t', file=fout) fout.close() def bucc_optimize(candidate2score, gold): items = sorted(candidate2score.items(), key=lambda x: -x[1]) ngold = len(gold) nextract = ncorrect = 0 threshold = 0 best_f1 = 0 for i in range(len(items)): nextract += 1 if '\t'.join(items[i][0]) in gold: ncorrect += 1 if ncorrect > 0: precision = ncorrect / nextract recall = ncorrect / ngold f1 = 2 * precision * recall / (precision + recall) if f1 > best_f1: best_f1 = f1 threshold = (items[i][1] + items[i + 1][1]) / 2 return threshold def bucc_extract(cand2score, th, fname): if fname: of = open(fname, 'w', encoding='utf-8') bitexts = [] for (src, trg), score in cand2score.items(): if score >= th: bitexts.append(src + '\t' + trg) if fname: of.write(src + '\t' + trg + '\n') if fname: of.close() return bitexts def read_sent2id(text_file, id_file, encoding='utf-8'): repeated = set() sent2id = {} with open(id_file, encoding=encoding, errors='surrogateescape') as f: ids = [l.strip() for l in f] with open(text_file, encoding=encoding, errors='surrogateescape') as f: sentences = [l.strip() for l in f] for id, sent in zip(ids, sentences): if sent in sent2id: repeated.add(sent) else: sent2id[sent] = id for sent in repeated: del sent2id[sent] return sent2id def read_candidate2score(candidates_file, src_text_file, trg_text_file, src_id_file, trg_id_file, encoding='utf-8'): print(' - reading sentences {}'.format(candidates_file)) src_sent2id = read_sent2id(src_text_file, src_id_file, encoding) trg_sent2id = read_sent2id(trg_text_file, trg_id_file, encoding) print(' - reading candidates {}'.format(candidates_file)) candidate2score = {} with open(candidates_file, encoding=encoding, errors='surrogateescape') as f: for line in f: score, src, trg = line.split('\t') score = float(score) src = src.strip() trg = trg.strip() if src in src_sent2id and trg in trg_sent2id: src_id = src_sent2id[src] trg_id = trg_sent2id[trg] score = max(score, candidate2score.get((src_id, trg_id), score)) candidate2score[(src_id, trg_id)] = score return candidate2score def bucc_eval(candidates_file, gold_file, src_file, trg_file, src_id_file, trg_id_file, predict_file, threshold=None, encoding='utf-8'): candidate2score = read_candidate2score(candidates_file, src_file, trg_file, src_id_file, trg_id_file, encoding) if threshold is not None and gold_file is None: print(' - using threshold {}'.format(threshold)) else: print(' - optimizing threshold on gold alignments {}'.format(gold_file)) gold = {line.strip() for line in open(gold_file)} threshold = bucc_optimize(candidate2score, gold) bitexts = bucc_extract(candidate2score, threshold, predict_file) if gold_file is not None: ncorrect = len(gold.intersection(bitexts)) if ncorrect > 0: precision = ncorrect / len(bitexts) recall = ncorrect / len(gold) f1 = 2*precision*recall / (precision + recall) else: precision = recall = f1 = 0 print(' - best threshold={:f}: precision={:.2f}, recall={:.2f}, F1={:.2f}' .format(threshold, 100*precision, 100*recall, 100*f1)) return {'best-threshold': threshold, 'precision': 100*precision, 'recall': 100*recall, 'F1': 100*f1} else: return None def similarity_search(x, y, dim, normalize=False): num = x.shape[0] idx = faiss.IndexFlatL2(dim) if normalize: faiss.normalize_L2(x) faiss.normalize_L2(y) idx.add(x) scores, prediction = idx.search(y, 1) return prediction
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/eval/utils_retrieve.py
import logging import torch from torch.utils.data import DataLoader from src.pequod.training.trainer import to_cuda logger = logging.getLogger(__name__) class Evaluator(object): def __init__(self, args, model, tokenizer, **kwargs): self.args = args self.datasets = {} self.model = model self.tokenizer = tokenizer def _parse_batch(self, batch, has_label=True, **kwargs): _batch = to_cuda(batch) # _batch = batch ret = {"input_ids": _batch[0], "attention_mask": _batch[1], "token_type_ids": _batch[2] if self.args.model_type == "bert" else None,} if has_label: ret["labels"] = _batch[3] ret.update(**kwargs) return ret def run(self): raise NotImplementedError def get_dataset(self, *args, **kwargs): if args in self.datasets: return self.datasets[args] dataset = self.load_and_cache_examples(*args, **kwargs) self.datasets[args] = dataset return dataset def load_and_cache_examples(self, *args, **kwargs): raise NotImplementedError def get_dataloader(self, *args, **kwargs): logger.info("Getting dataloader - args: %s" % str(args)) dataset = kwargs.pop("dataset", self.get_dataset(*args, **kwargs)) dataloader = DataLoader(dataset, batch_size=self.args.eval_batch_size) return dataloader
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/eval/evaluator.py
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/text/__init__.py
import os import logging import sentencepiece as spm from transformers.tokenization_utils import PreTrainedTokenizer logger = logging.getLogger(__name__) class XLMRTokenizer(PreTrainedTokenizer): def __init__(self, bpe_file, dict_file, **kwargs): super(XLMRTokenizer, self).__init__( bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sep_token="</s>", cls_token="<s>", **kwargs) self.max_len_single_sentence = self.max_len - 2 self.max_len_sentences_pair = self.max_len - 4 self.sp = spm.SentencePieceProcessor() self.sp.Load(bpe_file) self.encoder = {} self.decoder = [] for token in [self.bos_token, self.pad_token, self.eos_token, self.unk_token]: self._add_token(token) with open(dict_file, encoding="utf-8") as fp: for line in fp: # NOTE DO NOT USE .split() tokens_cnt = line.rstrip().split(" ") try: assert len(tokens_cnt) >= 2, line except AssertionError: logger.error( "tokenizer line %s asserterror, replaced as <unk-%d>" % ( line, len(self.decoder))) exit(0) self._add_token(" ".join(tokens_cnt[:-1])) def _add_token(self, token): idx = len(self.encoder) self.encoder[token] = idx self.decoder.append(token) def _tokenize(self, text): return self.sp.EncodeAsPieces(text) def _convert_id_to_token(self, index): return self.decoder[index] def _convert_token_to_id(self, token): return self.encoder.get(token, self.encoder.get(self.unk_token)) def convert_tokens_to_string(self, tokens): return "".join(tokens).replace('\u2581', ' ').strip() @classmethod def from_pretrained(cls, model_path, **kwargs): bpe_file = os.path.join(model_path, "sentencepiece.bpe.model") dict_file = os.path.join(model_path, "dict.txt") tokenizer = cls(bpe_file, dict_file) return tokenizer def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): if already_has_special_tokens: if token_ids_1 is not None: raise ValueError("You should not supply a second sequence if the provided sequence of ids is already formated with special tokens for the model.") return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(sep + token_ids_1 + sep) * [1] if __name__ == "__main__": tokenizer = XLMRTokenizer.from_pretrained("/home/v-zechi/data/unilm/zechi/exp/bert_data/xlmr-large") for text in ["Hello world!", "你好,世界", "नमस्ते दुनिया", "مرحبا بالعالم", "Bonjour le monde"]: print(tokenizer.tokenize(text)) print(tokenizer.encode_plus(text, text, add_special_tokens=True))
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/text/tokenization_sentencepiece.py
"""Loading examples and features for CLS and MLDoc""" import logging import os import torch from transformers.data.processors.utils import (DataProcessor, InputExample, InputFeatures) from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) logger = logging.getLogger(__name__) def get_processor_class(dataset_name): if dataset_name == "MLDoc": return MLDocProcessor elif dataset_name == "CLS": return CLSProcessor elif dataset_name == "XNLI": return XNLIProcesser elif dataset_name == "TriXNLI": return TriXNLIProcesser else: raise ValueError def xdoc_convert_examples_to_features( processor, examples, tokenizer, max_length, label_list, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True): if label_list is None: label_list = processor.get_labels() label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d" % ex_index) inputs = tokenizer.encode_plus( example.text_a, example.text_b, add_special_tokens=True, max_length=max_length) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) padding_length = max_length - len(input_ids) input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) label = label_map[example.label] if ex_index < 3: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append(InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label)) return features def load_and_cache_examples(args, processor, split, lang, tokenizer, key=""): cache_filename = os.path.join( args.data_dir, "cached_%s_%s_%s" % (split, lang, key)) if os.path.exists(cache_filename) and not args.overwrite_cache: logger.info("Loading features from cached file %s" % cache_filename) features = torch.load(cache_filename) else: logger.info("Creating features from dataset file at %s" % args.data_dir) label_list = processor.get_labels() examples = processor.get_examples(args.data_dir, split, lang) logger.info("%d Examples loaded" % len(examples)) features = xdoc_convert_examples_to_features( processor, examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, pad_token_segment_id=0, pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0]) logger.info("Saving features to cache file %s" % cache_filename) torch.save(features, cache_filename) all_input_ids = torch.tensor( [f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor( [f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor( [f.token_type_ids for f in features], dtype=torch.long) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset class XDocProcessor(DataProcessor): """Processor for the MLDoc dataset.""" def get_example_from_tensor_dict(self, tensor_dict): return InputExample( tensor_dict["idx"].numpy(), tensor_dict["sentence"].numpy().decode("utf-8"), str(tensor_dict["label"].numpy())) def get_examples(self, data_dir, split, lang): filename = "%s-%s.tsv" % (split, lang) logger.info("LOOKING AT %s" % os.path.join(data_dir, filename)) return self._create_examples( self._read_tsv(os.path.join(data_dir, filename)), filename) def _create_examples(self, lines, set_type): examples = [] for i, line in enumerate(lines): guid = "%s-%s" % (set_type, i) try: label, text_a = line[0], line[1] except IndexError: logger.warn("IndexError while decomposing line %s" % str(line)) logger.warn("Line ignored... Loop continued...") continue examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class MLDocProcessor(XDocProcessor): def get_labels(self): return ["ECAT", "CCAT", "GCAT", "MCAT"] class CLSProcessor(XDocProcessor): def get_labels(self): return ["0", "1"] class XNLIProcesser(XDocProcessor): """data format: a pair: (label, text)""" def get_labels(self): return ["neutral", "entailment", "contradiction"] class TriXNLIProcesser(XNLIProcesser): """data format: a 3-tuple: (label, text-a, text-b)""" def _create_examples(self, lines, set_type): examples = [] for i, line in enumerate(lines): guid = "%s-%s" % (set_type, i) label, text_a, text_b = line[0], line[1], line[2] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/xdoc.py
import os import logging import torch from torch.utils.data import TensorDataset from src.pequod.data.utils_squad import (read_squad_examples, convert_examples_to_features) logger = logging.getLogger(__name__) def load_and_cache_examples(args, split, lang, tokenizer, key="", evaluate=False): cache_filename = os.path.join( args.data_dir, "cached_%s_%s_%s" % (split, lang, key)) input_file = os.path.join(args.data_dir, "%s-%s.json" % (split, lang)) if os.path.exists(cache_filename): logger.info("Loading features from cached file %s", cache_filename) features = torch.load(cache_filename) if evaluate: examples = read_squad_examples(input_file=input_file, is_training=not evaluate, version_2_with_negative=args.version_2_with_negative) else: examples = None else: logger.info("Creating features from dataset file at %s", input_file) examples = read_squad_examples(input_file=input_file, is_training=not evaluate, version_2_with_negative=args.version_2_with_negative) features = convert_examples_to_features(examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token) logger.info("Saving features into cached file %s", cache_filename) torch.save(features, cache_filename) # Convert to Tensors and build dataset all_input_ids = torch.tensor( [f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in features], dtype=torch.long) all_cls_index = torch.tensor( [f.cls_index for f in features], dtype=torch.long) all_p_mask = torch.tensor( [f.p_mask for f in features], dtype=torch.float) if evaluate: all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index, all_cls_index, all_p_mask) else: all_start_positions = torch.tensor( [f.start_position for f in features], dtype=torch.long) all_end_positions = torch.tensor( [f.end_position for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_cls_index, all_p_mask) return dataset, examples, features
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/xqa.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Load SQuAD dataset. """ from __future__ import absolute_import, division, print_function import json import logging import math import collections from io import open from transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize # Required by XLNet evaluation method to compute optimal threshold (see write_predictions_extended() method) from src.pequod.data.utils_squad_evaluate import find_all_best_thresh_v2, make_qid_to_has_ans, get_raw_scores logger = logging.getLogger(__name__) class SquadExample(object): """ A single training/test example for the Squad dataset. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=None): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (self.qas_id) s += ", question_text: %s" % ( self.question_text) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.end_position: s += ", end_position: %d" % (self.end_position) if self.is_impossible: s += ", is_impossible: %r" % (self.is_impossible) return s class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, cls_index, p_mask, paragraph_len, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.cls_index = cls_index self.p_mask = p_mask self.paragraph_len = paragraph_len self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def read_squad_examples(input_file, is_training, version_2_with_negative): """Read a SQuAD json file into a list of SquadExample.""" with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, cls_token_at_end=False, cls_token='[CLS]', sep_token='[SEP]', pad_token=0, sequence_a_segment_id=0, sequence_b_segment_id=1, cls_token_segment_id=0, pad_token_segment_id=0, mask_padding_with_zero=True): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 # cnt_pos, cnt_neg = 0, 0 # max_N, max_M = 1024, 1024 # f = np.zeros((max_N, max_M), dtype=np.float32) features = [] for (example_index, example) in enumerate(examples): # if example_index % 100 == 0: # logger.info('Converting %s/%s pos %s neg %s', example_index, len(examples), cnt_pos, cnt_neg) query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # Original TF implem also keep the classification token (set to 0) (not sure why...) p_mask = [] # CLS token at the beginning if not cls_token_at_end: tokens.append(cls_token) segment_ids.append(cls_token_segment_id) p_mask.append(0) cls_index = 0 # Query for token in query_tokens: tokens.append(token) segment_ids.append(sequence_a_segment_id) p_mask.append(1) # SEP token tokens.append(sep_token) segment_ids.append(sequence_a_segment_id) p_mask.append(1) # Paragraph for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(sequence_b_segment_id) p_mask.append(0) paragraph_len = doc_span.length # SEP token tokens.append(sep_token) segment_ids.append(sequence_b_segment_id) p_mask.append(1) # CLS token at the end if cls_token_at_end: tokens.append(cls_token) segment_ids.append(cls_token_segment_id) p_mask.append(0) cls_index = len(tokens) - 1 # Index of classification token input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(pad_token) input_mask.append(0 if mask_padding_with_zero else 1) segment_ids.append(pad_token_segment_id) p_mask.append(1) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length span_is_impossible = example.is_impossible start_position = None end_position = None if is_training and not span_is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 span_is_impossible = True else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and span_is_impossible: start_position = cls_index end_position = cls_index if example_index < 2: logger.info("*** Example ***") logger.info("unique_id: %s" % (unique_id)) logger.info("example_index: %s" % (example_index)) logger.info("doc_span_index: %s" % (doc_span_index)) logger.info("tokens: %s" % " ".join(tokens)) logger.info("token_to_orig_map: %s" % " ".join([ "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()])) logger.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in token_is_max_context.items() ])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and span_is_impossible: logger.info("impossible example") if is_training and not span_is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) logger.info("start_position: %d" % (start_position)) logger.info("end_position: %d" % (end_position)) logger.info( "answer: %s" % (answer_text)) features.append( InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, cls_index=cls_index, p_mask=p_mask, paragraph_len=paragraph_len, start_position=start_position, end_position=end_position, is_impossible=span_is_impossible)) unique_id += 1 return features def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, verbose_logging, version_2_with_negative, null_score_diff_threshold): """Write final predictions to the json file and log-odds of null if needed.""" logger.info("Writing predictions to: %s" % (output_prediction_file)) logger.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min null score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if len(nbest)==1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions # For XLNet (and XLM which uses the same head) RawResultExtended = collections.namedtuple("RawResultExtended", ["unique_id", "start_top_log_probs", "start_top_index", "end_top_log_probs", "end_top_index", "cls_logits"]) def write_predictions_extended(all_examples, all_features, all_results, n_best_size, max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, orig_data_file, start_n_top, end_n_top, version_2_with_negative, tokenizer, verbose_logging): """ XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of null if needed. Requires utils_squad_evaluate.py """ _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"]) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_log_prob", "end_log_prob"]) logger.info("Writing predictions to: %s", output_prediction_file) # logger.info("Writing nbest to: %s" % (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] cur_null_score = result.cls_logits # if we could have irrelevant answers, get the min score of irrelevant score_null = min(score_null, cur_null_score) for i in range(start_n_top): for j in range(end_n_top): start_log_prob = result.start_top_log_probs[i] start_index = result.start_top_index[i] j_index = i * end_n_top + j end_log_prob = result.end_top_log_probs[j_index] end_index = result.end_top_index[j_index] # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= feature.paragraph_len - 1: continue if end_index >= feature.paragraph_len - 1: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_log_prob=start_log_prob, end_log_prob=end_log_prob)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] # XLNet un-tokenizer # Let's keep it simple for now and see if we need all this later. # # tok_start_to_orig_index = feature.tok_start_to_orig_index # tok_end_to_orig_index = feature.tok_end_to_orig_index # start_orig_pos = tok_start_to_orig_index[pred.start_index] # end_orig_pos = tok_end_to_orig_index[pred.end_index] # paragraph_text = example.paragraph_text # final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip() # Previously used Bert untokenizer tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = tokenizer.convert_tokens_to_string(tok_tokens) # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, tokenizer.do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_log_prob + entry.end_log_prob) if not best_non_null_entry: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_log_prob"] = entry.start_log_prob output["end_log_prob"] = entry.end_log_prob nbest_json.append(output) assert len(nbest_json) >= 1 assert best_non_null_entry is not None score_diff = score_null scores_diff_json[example.qas_id] = score_diff # note(zhiliny): always predict best_non_null_entry # and the evaluation script will search for the best threshold all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with open(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") with open(orig_data_file, "r", encoding='utf-8') as reader: orig_data = json.load(reader)["data"] qid_to_has_ans = make_qid_to_has_ans(orig_data) has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(orig_data, all_predictions) out_eval = {} find_all_best_thresh_v2(out_eval, all_predictions, exact_raw, f1_raw, scores_diff_json, qid_to_has_ans) return out_eval def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heuristic between # `pred_text` and `orig_text` to get a character-to-character alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logger.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logger.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/utils_squad.py
import logging from transformers.data.processors.utils import InputFeatures logger = logging.getLogger(__name__) def convert_examples_to_features( processor, examples, tokenizer, max_length, label_list, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True): if label_list is None: label_list = processor.get_labels() label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d" % ex_index) inputs = tokenizer.encode_plus( example.text_a, example.text_b, add_special_tokens=True, max_length=max_length) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) padding_length = max_length - len(input_ids) input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) label = label_map[example.label] if ex_index < 3: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append(InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label)) return features
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/__init__.py
""" Official evaluation script for SQuAD version 2.0. Modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0 In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted probability that a question is unanswerable. """ import argparse import collections import json import numpy as np import os import re import string import sys class EVAL_OPTS(): def __init__(self, data_file, pred_file, out_file="", na_prob_file="na_prob.json", na_prob_thresh=1.0, out_image_dir=None, verbose=False): self.data_file = data_file self.pred_file = pred_file self.out_file = out_file self.na_prob_file = na_prob_file self.na_prob_thresh = na_prob_thresh self.out_image_dir = out_image_dir self.verbose = verbose OPTS = None def parse_args(): parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.') parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.') parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.') parser.add_argument('--out-file', '-o', metavar='eval.json', help='Write accuracy metrics to file (default is stdout).') parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json', help='Model estimates of probability of no answer.') parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0, help='Predict "" if no-answer probability exceeds this (default = 1.0).') parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None, help='Save precision-recall curves to directory.') parser.add_argument('--verbose', '-v', action='store_true') if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def make_qid_to_has_ans(dataset): qid_to_has_ans = {} for article in dataset: for p in article['paragraphs']: for qa in p['qas']: qid_to_has_ans[qa['id']] = bool(qa['answers']) return qid_to_has_ans def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def get_raw_scores(dataset, preds): exact_scores = {} f1_scores = {} for article in dataset: for p in article['paragraphs']: for qa in p['qas']: qid = qa['id'] gold_answers = [a['text'] for a in qa['answers'] if normalize_answer(a['text'])] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [''] if qid not in preds: print('Missing prediction for %s' % qid) continue a_pred = preds[qid] # Take max over all gold answers exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) return exact_scores, f1_scores def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): if not qid_list: total = len(exact_scores) return collections.OrderedDict([ ('exact', 100.0 * sum(exact_scores.values()) / total), ('f1', 100.0 * sum(f1_scores.values()) / total), ('total', total), ]) else: total = len(qid_list) return collections.OrderedDict([ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total), ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total), ('total', total), ]) def merge_eval(main_eval, new_eval, prefix): for k in new_eval: main_eval['%s_%s' % (prefix, k)] = new_eval[k] def plot_pr_curve(precisions, recalls, out_image, title): plt.step(recalls, precisions, color='b', alpha=0.2, where='post') plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(title) plt.savefig(out_image) plt.clf() def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans, out_image=None, title=None): qid_list = sorted(na_probs, key=lambda k: na_probs[k]) true_pos = 0.0 cur_p = 1.0 cur_r = 0.0 precisions = [1.0] recalls = [0.0] avg_prec = 0.0 for i, qid in enumerate(qid_list): if qid_to_has_ans[qid]: true_pos += scores[qid] cur_p = true_pos / float(i+1) cur_r = true_pos / float(num_true_pos) if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(cur_p) recalls.append(cur_r) if out_image: plot_pr_curve(precisions, recalls, out_image, title) return {'ap': 100.0 * avg_prec} def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, out_image_dir): if out_image_dir and not os.path.exists(out_image_dir): os.makedirs(out_image_dir) num_true_pos = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return pr_exact = make_precision_recall_eval( exact_raw, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, 'pr_exact.png'), title='Precision-Recall curve for Exact Match score') pr_f1 = make_precision_recall_eval( f1_raw, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, 'pr_f1.png'), title='Precision-Recall curve for F1 score') oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()} pr_oracle = make_precision_recall_eval( oracle_scores, na_probs, num_true_pos, qid_to_has_ans, out_image=os.path.join(out_image_dir, 'pr_oracle.png'), title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)') merge_eval(main_eval, pr_exact, 'pr_exact') merge_eval(main_eval, pr_f1, 'pr_f1') merge_eval(main_eval, pr_oracle, 'pr_oracle') def histogram_na_prob(na_probs, qid_list, image_dir, name): if not qid_list: return x = [na_probs[k] for k in qid_list] weights = np.ones_like(x) / float(len(x)) plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0)) plt.xlabel('Model probability of no-answer') plt.ylabel('Proportion of dataset') plt.title('Histogram of no-answer probability: %s' % name) plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name)) plt.clf() def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans): num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: diff = scores[qid] else: if preds[qid]: diff = -1 else: diff = 0 cur_score += diff if cur_score > best_score: best_score = cur_score best_thresh = na_probs[qid] has_ans_score, has_ans_cnt = 0, 0 for qid in qid_list: if not qid_to_has_ans[qid]: continue has_ans_cnt += 1 if qid not in scores: continue has_ans_score += scores[qid] return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) main_eval['best_exact'] = best_exact main_eval['best_exact_thresh'] = exact_thresh main_eval['best_f1'] = best_f1 main_eval['best_f1_thresh'] = f1_thresh def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans) best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans) main_eval['best_exact'] = best_exact main_eval['best_exact_thresh'] = exact_thresh main_eval['best_f1'] = best_f1 main_eval['best_f1_thresh'] = f1_thresh main_eval['has_ans_exact'] = has_ans_exact main_eval['has_ans_f1'] = has_ans_f1 def main(OPTS): with open(OPTS.data_file) as f: dataset_json = json.load(f) dataset = dataset_json['data'] with open(OPTS.pred_file) as f: preds = json.load(f) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: na_probs = json.load(f) else: na_probs = {k: 0.0 for k in preds} qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, preds) exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh) f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh) out_eval = make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, 'HasAns') if no_ans_qids: no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, 'NoAns') if OPTS.na_prob_file: find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, OPTS.out_image_dir) histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns') histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns') if OPTS.out_file: with open(OPTS.out_file, 'w') as f: json.dump(out_eval, f) else: print(json.dumps(out_eval, indent=2)) return out_eval if __name__ == '__main__': OPTS = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main(OPTS)
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/utils_squad_evaluate.py
"""Load examples from BUCC""" import logging import os import torch from transformers.data.processors.utils import ( DataProcessor, InputExample, InputFeatures) from torch.utils.data import ( DataLoader, RandomSampler, SequentialSampler, TensorDataset) logger = logging.getLogger(__name__) def load_and_cache_examples(args, langpair, lang, tokenizer, key="", prefix="tatoeba"): cache_dir = os.path.join(args.data_dir, "pequod_cache") os.makedirs(cache_dir, exist_ok=True) cache_filename = os.path.join( cache_dir, "cached_%s_%s_%s" % (langpair, lang, key)) if os.path.exists(cache_filename) and not args.overwrite_cache: logger.info("Loading features from cached file %s" % cache_filename) features = torch.load(cache_filename) else: processer = TatoebaProcesser() logger.info("Creating features from dataset file at %s" % args.data_dir) examples = processer.get_examples(args.data_dir, langpair, lang, prefix) features = TatoebaProcesser.convert_examples_to_features( examples, tokenizer, args.max_seq_length, 0, pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],) #logger.info("Saving features to cache file %s" % cache_filename) #torch.save(features, cache_filename) all_input_ids = torch.tensor( [f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor( [f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor( [f.token_type_ids for f in features], dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_mask, all_token_type_ids) return dataset class TatoebaProcesser(DataProcessor): @classmethod def convert_examples_to_features(cls, examples, tokenizer, max_length, pad_token_segment_id, pad_token, mask_padding_with_zero=True): features = [] for ex_index, example in enumerate(examples): inputs = tokenizer.encode_plus( example.text_a, None, add_special_tokens=True, max_length=max_length, ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) padding_length = max_length - len(input_ids) input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) if ex_index < 3: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) features.append(InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=None, )) return features def get_examples(self, data_dir, langpair, lang, prefix="tatoeba"): examples = [] if prefix == "bucc": fn = os.path.join(data_dir, "%s.%s.txt" % (langpair, lang)) else: fn = os.path.join(data_dir, "%s.%s" % (langpair, lang)) #fn = os.path.join(data_dir, "%s.%s.%s" % (prefix, langpair, lang)) with open(fn, encoding='utf-8') as fp: for i, line in enumerate(fp): line = line.strip() examples.append(InputExample( guid="%s-%s-%d" % (langpair, lang, i), text_a=line, )) return examples
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/xretrieval.py
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/dataloader.py
"""Loading examples and features for WiLI-2018 dataset""" import logging import os import torch from transformers.data.processors.utils import (DataProcessor, InputExample, InputFeatures) from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from src.data import convert_examples_to_features from src.io import lines_gen logger = logging.getLogger(__name__) _alias2lang = {} _lang2id = {} _langs = [] def get_alias2lang(data_dir): if len(_alias2lang) > 0: return _alias2lang, _lang2id, _langs for line, in lines_gen(os.path.join(data_dir, "labels-new")): value = None for alias in line.split(";"): alias = alias.strip() if alias == "": continue if value is None: value = alias _alias2lang[alias] = value _langs.append(value) for i, lang in enumerate(_langs): _lang2id[lang] = i return _alias2lang, _lang2id, _langs def load_and_cache_examples(args, data_dir, split, run_lang2id, tokenizer, key=""): cache_filename = os.path.join( data_dir, "cached_%s_%s" % (split, key)) if os.path.exists(cache_filename) and not args.overwrite_cache: logger.info("Loading features from cached file %s" % cache_filename) features = torch.load(cache_filename) else: processor = WiliProcessor() logger.info("Creating features from dataset file at %s" % data_dir) label_list = processor.get_labels(data_dir) examples = processor.get_examples(data_dir, split) logger.info("%d Examples loaded" % len(examples)) features = convert_examples_to_features( processor, examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, pad_token_segment_id=0, pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0]) logger.info("Saving features to cache file %s" % cache_filename) torch.save(features, cache_filename) # Cut dataset to test langs alias2lang, lang2id, _ = get_alias2lang(data_dir) test_lang_ids = {lang2id[alias2lang[lang]] for lang in run_lang2id.keys()} wili_id2run_langid = { lang2id[alias2lang[lang]]:val for lang, val in run_lang2id.items()} all_input_ids, all_attention_mask = [], [] all_token_type_ids, all_labels = [], [] for f in features: if f.label not in test_lang_ids: continue all_input_ids.append(f.input_ids) all_attention_mask.append(f.attention_mask) all_token_type_ids.append(f.token_type_ids) all_labels.append(wili_id2run_langid[f.label]) all_input_ids = torch.tensor(all_input_ids, dtype=torch.long) all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long) all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long) all_labels = torch.tensor(all_labels, dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset class WiliProcessor(DataProcessor): def get_examples(self, data_dir, split): examples = [] filename_x = os.path.join(data_dir, "x_%s.txt" % split) filename_y = os.path.join(data_dir, "y_%s.txt" % split) for i, (line_x, line_y) in enumerate(lines_gen(filename_x, filename_y)): guid = "%s-%s" % (split, i) examples.append( InputExample(guid=guid, text_a=line_x, text_b=None, label=line_y)) return examples def get_labels(self, data_dir): _, _, langs = get_alias2lang(data_dir) return langs
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/wili.py
import torch from torch.utils.data.sampler import Sampler class SubSampler(Sampler): def __init__(self, data_source, num_samples): self.data_source = data_source self.num_samples = num_samples def __len__(self): return self.num_samples def __iter__(self): n = len(self.data_source) if self.num_samples <= n: return iter(torch.randperm(n).tolist()[:self.num_samples]) return iter(torch.randint(high=n, size=(self.num_samples,), dtype=torch.int64).tolist())
EXA-1-master
exa/models/unilm-master/xtune/src/pequod/data/sampler.py
import ast import logging import os import os.path as op import sys from argparse import Namespace import numpy as np import torch from fairseq import checkpoint_utils, options, tasks, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import progress_bar from omegaconf import DictConfig # define function for plot prob and att_ws def _plot_and_save(array, figname, figsize=(6, 4), dpi=150): import matplotlib.pyplot as plt shape = array.shape if len(shape) == 1: # for eos probability plt.figure(figsize=figsize, dpi=dpi) plt.plot(array) plt.xlabel("Frame") plt.ylabel("Probability") plt.ylim([0, 1]) elif len(shape) == 2: # for tacotron 2 attention weights, whose shape is (out_length, in_length) plt.figure(figsize=figsize, dpi=dpi) plt.imshow(array, aspect="auto") elif len(shape) == 4: # for transformer attention weights, # whose shape is (#leyers, #heads, out_length, in_length) plt.figure(figsize=(figsize[0] * shape[0], figsize[1] * shape[1]), dpi=dpi) for idx1, xs in enumerate(array): for idx2, x in enumerate(xs, 1): plt.subplot(shape[0], shape[1], idx1 * shape[1] + idx2) plt.imshow(x, aspect="auto") plt.xlabel("Input") plt.ylabel("Output") else: raise NotImplementedError("Support only from 1D to 4D array.") plt.tight_layout() if not op.exists(op.dirname(figname)): # NOTE: exist_ok = True is needed for parallel process decoding os.makedirs(op.dirname(figname), exist_ok=True) plt.savefig(figname) plt.close() # define function to calculate focus rate # (see section 3.3 in https://arxiv.org/abs/1905.09263) def _calculate_focus_rete(att_ws): if att_ws is None: # fastspeech case -> None return 1.0 elif len(att_ws.shape) == 2: # tacotron 2 case -> (L, T) return float(att_ws.max(dim=-1)[0].mean()) elif len(att_ws.shape) == 4: # transformer case -> (#layers, #heads, L, T) return float(att_ws.max(dim=-1)[0].mean(dim=-1).max()) else: raise ValueError("att_ws should be 2 or 4 dimensional tensor.") def main(cfg: DictConfig): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) assert cfg.common_eval.path is not None, "--path required for generation!" assert ( cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw" ), "--replace-unk requires a raw text dataset (--dataset-impl=raw)" if cfg.common_eval.results_path is not None: os.makedirs(cfg.common_eval.results_path, exist_ok=True) return _main(cfg, sys.stdout) def _main(cfg: DictConfig, output_file): logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=output_file, ) logger = logging.getLogger("speecht5.generate_speech") utils.import_user_module(cfg.common) assert cfg.dataset.batch_size == 1, "only support batch size 1" logger.info(cfg) # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) use_cuda = torch.cuda.is_available() and not cfg.common.cpu if not use_cuda: logger.info("generate speech on cpu") # build task task = tasks.setup_task(cfg.task) # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) overrides = ast.literal_eval(cfg.common_eval.model_overrides) models, saved_cfg = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), arg_overrides=overrides, task=task, suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, ) logger.info(saved_cfg) # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task) # optimize ensemble for generation for model in models: if model is None: continue if cfg.common.fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(cfg.dataset.gen_subset), max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=None, ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, seed=cfg.common.seed, num_shards=cfg.distributed_training.distributed_world_size, shard_id=cfg.distributed_training.distributed_rank, num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) for i, sample in enumerate(progress): if "net_input" not in sample: continue sample = utils.move_to_cuda(sample) if use_cuda else sample outs, _, attn = task.generate_speech( models, sample["net_input"], ) focus_rate = _calculate_focus_rete(attn) outs = outs.cpu().numpy() audio_name = op.basename(sample['name'][0]) np.save(op.join(cfg.common_eval.results_path, audio_name.replace(".wav", "-feats.npy")), outs) logging.info( "{} (size: {}->{} ({}), focus rate: {:.3f})".format( sample['name'][0], sample['src_lengths'][0].item(), outs.shape[0], sample['dec_target_lengths'][0].item(), focus_rate ) ) if i < 6 and attn is not None: import shutil demo_dir = op.join(op.dirname(cfg.common_eval.results_path), "demo") audio_dir = op.join(demo_dir, "audio") os.makedirs(audio_dir, exist_ok=True) shutil.copy(op.join(task.dataset(cfg.dataset.gen_subset).audio_root, sample['tgt_name'][0] if "tgt_name" in sample else sample['name'][0]), op.join(audio_dir, audio_name)) att_dir = op.join(demo_dir, "att_ws") _plot_and_save(attn.cpu().numpy(), op.join(att_dir, f"{audio_name}_att_ws.png")) spec_dir = op.join(demo_dir, "spec") _plot_and_save(outs.T, op.join(spec_dir, f"{audio_name}_gen.png")) _plot_and_save(sample["target"][0].cpu().numpy().T, op.join(spec_dir, f"{audio_name}_ori.png")) def cli_main(): parser = options.get_generation_parser() args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/speecht5/scripts/generate_speech.py
from . import data, tasks, criterions, models # noqa
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/__init__.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import math from typing import Dict, List, Optional import sys import torch import torch.nn as nn from fairseq import search, utils from fairseq.data import data_utils from fairseq.models import FairseqIncrementalDecoder from torch import Tensor from fairseq.ngram_repeat_block import NGramRepeatBlock from espnet.nets.ctc_prefix_score import CTCPrefixScore import numpy CTC_SCORING_RATIO = 7.0 class SequenceGenerator(nn.Module): def __init__( self, models, tgt_dict, beam_size=1, max_len_a=0, max_len_b=200, max_len=0, min_len=1, normalize_scores=True, len_penalty=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, search_strategy=None, eos=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, ctc_weight=0.0, ): """Generates translations of a given source sentence. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length max_len (int, optional): the maximum length of the generated output (not including end-of-sentence) min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) """ super().__init__() if isinstance(models, EnsembleModel): self.model = models else: self.model = EnsembleModel(models) self.tgt_dict = tgt_dict self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() if eos is None else eos self.blank = self.tgt_dict.index("<ctc_blank>") self.mask = self.tgt_dict.index("<mask>") self.mask_idxs = [] if self.tgt_dict.index("<mask>0") != self.unk: count = 0 while self.tgt_dict.index("<mask>" + str(count)) != self.unk: self.mask_idxs.append(self.tgt_dict.index("<mask>" + str(count))) count += 1 self.mask_idxs = torch.tensor(self.mask_idxs) self.symbols_to_strip_from_output = ( symbols_to_strip_from_output.union({self.eos}) if symbols_to_strip_from_output is not None else {self.eos} ) self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.max_len = max_len or self.model.max_decoder_positions() self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.temperature = temperature self.match_source_len = match_source_len if no_repeat_ngram_size > 0: self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size) else: self.repeat_ngram_blocker = None assert temperature > 0, "--temperature must be greater than 0" self.search = ( search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy ) # We only need to set src_lengths in LengthConstrainedBeamSearch. # As a module attribute, setting it would break in multithread # settings when the model is shared. self.should_set_src_lengths = ( hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths ) self.model.eval() self.lm_model = lm_model self.lm_weight = lm_weight self.ctc_weight = ctc_weight if self.lm_model is not None: self.lm_model.eval() def cuda(self): self.model.cuda() return self @torch.no_grad() def forward( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """Generate a batch of translations. Args: sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, prefix_tokens, bos_token=bos_token) # TODO(myleott): unused, deprecate after pytorch-translate migration def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None): """Iterate over a batched dataset and yield individual translations. Args: cuda (bool, optional): use GPU for generation timer (StopwatchMeter, optional): time generations """ for sample in data_itr: s = utils.move_to_cuda(sample) if cuda else sample if "net_input" not in s: continue input = s["net_input"] # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in input.items() if k != "prev_output_tokens" } if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate(encoder_input) if timer is not None: timer.stop(sum(len(h[0]["tokens"]) for h in hypos)) for i, id in enumerate(s["id"].data): # remove padding src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad) ref = ( utils.strip_pad(s["target"].data[i, :], self.pad) if s["target"] is not None else None ) yield id, src, ref, hypos[i] @torch.no_grad() def generate(self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs): """Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens constraints (torch.LongTensor, optional): force decoder to include the list of constraints bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) net_input = sample["net_input"] if "src_tokens" in net_input: src_tokens = net_input["src_tokens"] # length of the source text being the character length except EndOfSentence and pad src_lengths = ( (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) ) elif "source" in net_input: src_tokens = net_input["source"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) elif "features" in net_input: src_tokens = net_input["features"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) else: raise Exception("expected src_tokens or source in net input. input keys: " + str(net_input.keys())) # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, beam_size) max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), self.max_len - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # compute the encoder output for each beam encoder_outs = self.model.forward_encoder(net_input) # Get CTC lprobs and prep ctc_scorer if self.ctc_weight > 0: ctc_lprobs = self.model.models[0].get_normalized_probs_for_ctc( encoder_outs[0], log_probs=True ).contiguous().transpose(0, 1) # (B, T, C) from the encoder hyp = {} ctc_prefix_score = CTCPrefixScore(ctc_lprobs[0].detach().cpu().numpy(), self.blank, self.eos, numpy) hyp["ctc_state_prev"] = ctc_prefix_score.initial_state() hyp["ctc_score_prev"] = 0.0 ctc_beam = min(ctc_lprobs.shape[-1] - self.mask_idxs.size(-1), int(beam_size * CTC_SCORING_RATIO)) ctc_hyps = {str(self.eos): hyp} # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step # a boolean array indicating if the sentence at the index is finished or not finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None ctc_state = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) lprobs, avg_attn_scores = self.model.forward_decoder( tokens[:, : step + 1], encoder_outs, incremental_states, self.temperature, ) if self.ctc_weight > 0 and step != 0: # lprobs[:, self.blank] = -math.inf # never select blank ctc_lprobs = lprobs.clone() ctc_lprobs[:, self.blank] = -math.inf # never select blank if self.mask != self.unk: ctc_lprobs[:, self.mask] = -math.inf # never select mask if self.mask_idxs.size(0) != 0: ctc_lprobs[:, self.mask_idxs] = -math.inf # never select mask local_best_scores, local_best_ids = torch.topk(ctc_lprobs, ctc_beam, dim=-1) for b in range(tokens.size(0)): hyp_key = " ".join(str(x) for x in tokens[b, : step + 1].tolist()) ctc_scores, ctc_states = ctc_prefix_score( tokens[b, : step + 1].cpu(), local_best_ids[b].cpu(), ctc_hyps[hyp_key]["ctc_state_prev"] ) lprobs[b] = lprobs[b] lprobs[b, local_best_ids[b]] = (1 - self.ctc_weight) * (lprobs[b, local_best_ids[b]]) + self.ctc_weight * torch.from_numpy( ctc_scores - ctc_hyps[hyp_key]["ctc_score_prev"] ).to(device="cuda") for j in range(len(local_best_ids[b])): ctc_hyps[hyp_key + " " + str(local_best_ids[b][j].item())] = {} ctc_hyps[hyp_key + " " + str(local_best_ids[b][j].item())]["ctc_score_prev"] = ctc_scores[j] ctc_hyps[hyp_key + " " + str(local_best_ids[b][j].item())]["ctc_state_prev"] = ctc_states[j] # local_ctc_scores, ctc_state = ctc_scorer( # tokens[:, : step + 1], ctc_state, part_ids # ) # lprobs += local_ctc_scores * self.ctc_weight elif self.ctc_weight > 0 and step == 0: ctc_lprobs = lprobs.clone() ctc_lprobs[:, self.blank] = -math.inf # never select blank if self.mask != self.unk: ctc_lprobs[:, self.mask] = -math.inf # never select mask if self.mask_idxs.size(0) != 0: ctc_lprobs[:, self.mask_idxs] = -math.inf # never select mask local_best_scores, local_best_ids = torch.topk(ctc_lprobs, ctc_beam, dim=-1) for b in range(tokens.size(0)): hyp_key = " ".join(str(x) for x in tokens[b, : step + 1].tolist()) ctc_scores, ctc_states = ctc_prefix_score( tokens[b, : step + 1].cpu(), local_best_ids[b].cpu(), ctc_hyps[hyp_key]["ctc_state_prev"] ) lprobs[b] = lprobs[b] lprobs[b, local_best_ids[b]] = (1 - self.ctc_weight) * (lprobs[b, local_best_ids[b]]) + self.ctc_weight * torch.from_numpy( ctc_scores - ctc_hyps[hyp_key]["ctc_score_prev"] ).to(device="cuda") for j in range(len(local_best_ids[b])): if b == 0: ctc_hyps[hyp_key + " " + str(local_best_ids[b][j].item())] = {} ctc_hyps[hyp_key + " " + str(local_best_ids[b][j].item())]["ctc_score_prev"] = ctc_scores[j] ctc_hyps[hyp_key + " " + str(local_best_ids[b][j].item())]["ctc_state_prev"] = ctc_states[j] if self.lm_model is not None: lm_out = self.lm_model(tokens[:, : step + 1]) probs = self.lm_model.get_normalized_probs( lm_out, log_probs=True, sample=None ) probs = probs[:, -1, :] * self.lm_weight lprobs[:, :probs.size(1)] += probs # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): lprobs, tokens, scores = self._prefix_tokens( step, lprobs, scores, tokens, prefix_tokens, beam_size ) elif step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty lprobs[:, self.blank] = -math.inf # never select blank if self.mask != self.unk: lprobs[:, self.mask] = -math.inf # never select mask if self.mask_idxs.size(0) != 0: lprobs[:, self.mask_idxs] = -math.inf # never select mask # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # if self.ctc_weight > 0: # accum_best_id = torch.gather(cand_indices, dim=1, index=active_hypos) # ctc_state = ctc_scorer.index_select_state( # ctc_state, accum_best_id # ) # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized def _prefix_tokens( self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int ): """Handle prefix tokens""" prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.min(prefix_lprobs) - 1 lprobs[prefix_mask] = lprobs[prefix_mask].scatter( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[ :, 0, 1 : step + 1 ] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() # copy tokens, scores and lprobs from the first beam to all beams tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return lprobs, tokens, scores def replicate_first_beam(self, tensor, mask, beam_size: int): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) def finalize_hypos( self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[str, Tensor]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int, ): """Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. A sentence is finalized when {beam_size} finished items have been collected for it. Returns number of sentences (not beam items) being finalized. These will be removed from the batch and not processed further. Args: bbsz_idx (Tensor): """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors. # tokens is (batch * beam, max_len). So the index_select # gets the newly EOS rows, then selects cols 1..{step + 2} tokens_clone = tokens.index_select(0, bbsz_idx)[ :, 1 : step + 2 ] # skip the first index, which is EOS tokens_clone[:, step] = self.eos attn_clone = ( attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2] if attn is not None else None ) # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: eos_scores /= (step + 1) ** self.len_penalty # cum_unfin records which sentences in the batch are finished. # It helps match indexing between (a) the original sentences # in the batch and (b) the current, possibly-reduced set of # sentences. cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) cum_fin_tensor = torch.tensor(cum_unfin, dtype=torch.int).to(bbsz_idx) unfin_idx = bbsz_idx // beam_size sent = unfin_idx + torch.index_select(cum_fin_tensor, 0, unfin_idx) # Create a set of "{sent}{unfin_idx}", where # "unfin_idx" is the index in the current (possibly reduced) # list of sentences, and "sent" is the index in the original, # unreduced batch # For every finished beam item # sentence index in the current (possibly reduced) batch seen = (sent << 32) + unfin_idx unique_seen: List[int] = torch.unique(seen).tolist() if self.match_source_len: condition = step > torch.index_select(src_lengths, 0, unfin_idx) eos_scores = torch.where(condition, torch.tensor(-math.inf), eos_scores) sent_list: List[int] = sent.tolist() for i in range(bbsz_idx.size()[0]): # An input sentence (among those in a batch) is finished when # beam_size hypotheses have been collected for it if len(finalized[sent_list[i]]) < beam_size: if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent_list[i]].append( { "tokens": tokens_clone[i], "score": eos_scores[i], "attention": hypo_attn, # src_len x tgt_len "alignment": torch.empty(0), "positional_scores": pos_scores[i], } ) newly_finished: List[int] = [] for unique_s in unique_seen: # check termination conditions for this sentence unique_sent: int = unique_s >> 32 unique_unfin_idx: int = unique_s - (unique_sent << 32) if not finished[unique_sent] and self.is_finished( step, unique_unfin_idx, max_len, len(finalized[unique_sent]), beam_size ): finished[unique_sent] = True newly_finished.append(unique_unfin_idx) return newly_finished def is_finished( self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int, ): """ Check whether decoding for a sentence is finished, which occurs when the list of finalized sentences has reached the beam size, or when we reach the maximum length. """ assert finalized_sent_len <= beam_size if finalized_sent_len == beam_size or step == max_len: return True return False class EnsembleModel(nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models_size = len(models) # method '__len__' is not supported in ModuleList for torch script self.single_model = models[0] self.models = nn.ModuleList(models) self.has_incremental: bool = False if all( hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder) for m in models ): self.has_incremental = True def forward(self): pass def has_encoder(self): return hasattr(self.single_model, "encoder") def is_t5_structure(self): t5_structure = hasattr(self.single_model, "text_encoder_prenet") and hasattr(self.single_model, "speech_encoder_prenet") or \ hasattr(self.single_model, "encoder_prenet") and hasattr(self.single_model, "encoder_prenet") return t5_structure def has_incremental_states(self): return self.has_incremental def max_decoder_positions(self): return min([m.max_decoder_positions() for m in self.models if hasattr(m, "max_decoder_positions")] + [sys.maxsize]) @torch.jit.export def forward_encoder(self, net_input: Dict[str, Tensor]): if not self.has_encoder(): return None elif self.is_t5_structure(): return [model.forward_encoder_torchscript(net_input) for model in self.models] else: return [model.encoder.forward_torchscript(net_input) for model in self.models] @torch.jit.export def forward_decoder( self, tokens, encoder_outs: List[Dict[str, List[Tensor]]], incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], temperature: float = 1.0, ): log_probs = [] avg_attn: Optional[Tensor] = None encoder_out: Optional[Dict[str, List[Tensor]]] = None for i, model in enumerate(self.models): if self.has_encoder(): encoder_out = encoder_outs[i] # decode each model if self.has_incremental_states(): if self.is_t5_structure: decoder_out = model.forward_decoder( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i] ) else: decoder_out = model.decoder.forward( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i], ) else: if hasattr(model, "decoder"): decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out) else: decoder_out = model.forward(tokens) attn: Optional[Tensor] = None decoder_len = len(decoder_out) if decoder_len > 1 and decoder_out[1] is not None: if isinstance(decoder_out[1], Tensor): attn = decoder_out[1] else: attn_holder = decoder_out[1]["attn"] if isinstance(attn_holder, Tensor): attn = attn_holder elif attn_holder is not None: attn = attn_holder[0] if attn is not None: attn = attn[:, -1, :] decoder_out_tuple = ( decoder_out[0][:, -1:, :].div_(temperature), None if decoder_len <= 1 else decoder_out[1], ) probs = model.get_normalized_probs( decoder_out_tuple, log_probs=True, sample=None ) probs = probs[:, -1, :] if self.models_size == 1: return probs, attn log_probs.append(probs) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log( self.models_size ) if avg_attn is not None: avg_attn.div_(self.models_size) return avg_probs, avg_attn @torch.jit.export def reorder_encoder_out( self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order ): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ new_outs: List[Dict[str, List[Tensor]]] = [] if not self.has_encoder(): return new_outs for i, model in enumerate(self.models): assert encoder_outs is not None new_outs.append( model.encoder.reorder_encoder_out(encoder_outs[i], new_order) ) return new_outs @torch.jit.export def reorder_incremental_state( self, incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order, ): if not self.has_incremental_states(): return for i, model in enumerate(self.models): model.decoder.reorder_incremental_state_scripting( incremental_states[i], new_order ) class SequenceGeneratorWithAlignment(SequenceGenerator): def __init__( self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs ): """Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments. """ super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target if print_alignment == "hard": self.extract_alignment = utils.extract_hard_alignment elif print_alignment == "soft": self.extract_alignment = utils.extract_soft_alignment @torch.no_grad() def generate(self, models, sample, **kwargs): finalized = super()._generate(sample, **kwargs) src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] beam_size = self.beam_size ( src_tokens, src_lengths, prev_output_tokens, tgt_tokens, ) = self._prepare_batch_for_alignment(sample, finalized) if any(getattr(m, "full_context_alignment", False) for m in self.model.models): attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens) else: attn = [ finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0) for i in range(bsz * beam_size) ] if src_tokens.device != "cpu": src_tokens = src_tokens.to("cpu") tgt_tokens = tgt_tokens.to("cpu") attn = [i.to("cpu") for i in attn] # Process the attn matrix to extract hard alignments. for i in range(bsz * beam_size): alignment = self.extract_alignment( attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos ) finalized[i // beam_size][i % beam_size]["alignment"] = alignment return finalized def _prepare_batch_for_alignment(self, sample, hypothesis): src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] src_tokens = ( src_tokens[:, None, :] .expand(-1, self.beam_size, -1) .contiguous() .view(bsz * self.beam_size, -1) ) src_lengths = sample["net_input"]["src_lengths"] src_lengths = ( src_lengths[:, None] .expand(-1, self.beam_size) .contiguous() .view(bsz * self.beam_size) ) prev_output_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=True, ) tgt_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=False, ) return src_tokens, src_lengths, prev_output_tokens, tgt_tokens class EnsembleModelWithAlignment(EnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) def forward_align(self, src_tokens, src_lengths, prev_output_tokens): avg_attn = None for model in self.models: decoder_out = model(src_tokens, src_lengths, prev_output_tokens) attn = decoder_out[1]["attn"][0] if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(self.models) > 1: avg_attn.div_(len(self.models)) return avg_attn
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/sequence_generator.py
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/tasks/__init__.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import logging import os.path as op from argparse import Namespace from collections import OrderedDict import torch from fairseq.data import ( Dictionary, encoders, PrependTokenDataset, AppendTokenDataset, data_utils, StripTokenDataset, TokenBlockDataset, ) from fairseq.data.encoders.utils import get_whole_word_mask from fairseq import utils from speecht5.data.multitask_dataset import MultitaskDataset from speecht5.data.speech_to_text_dataset import SpeechToTextDataset from speecht5.data.text_to_speech_dataset import TextToSpeechDataset from speecht5.data.speech_to_speech_dataset import SpeechToSpeechDataset from speecht5.data.speech_dataset import SpeechPretrainDataset from speecht5.data.text_dataset import TextPretrainDataset from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.tasks import LegacyFairseqTask, register_task from fairseq.tasks.hubert_pretraining import LabelEncoder logger = logging.getLogger(__name__) TASK_NAME = ["s2t", "t2s", "s2s", "s2c", "pretrain"] @register_task("speecht5") class SpeechT5Task(LegacyFairseqTask): @staticmethod def add_args(parser): parser.add_argument("data", help="manifest root path") parser.add_argument( "--config-yaml", type=str, default="config.yaml", help="Configuration YAML filename (under manifest root)", ) parser.add_argument( "--max-speech-sample-size", default=None, type=int, metavar="N", help="max speech sample size", ) parser.add_argument( "--min-speech-sample-size", default=None, type=int, metavar="N", help="min speech sample size", ) parser.add_argument( "--max-speech-positions", default=4000, type=int, metavar="N", help="max number of tokens in the source sequence", ) parser.add_argument( "--max-text-positions", default=450, type=int, metavar="N", help="max number of tokens in the target sequence", ) parser.add_argument( '--t5-task', choices=TASK_NAME, help='task for training' ) parser.add_argument( "--bpe-tokenizer", type=str, default=None, help="bpe tokenizer for s2t", ) # Speaker Identification (SID) parser.add_argument( "--finetune-from-modules", default=None, # choices=[ # "encoder-decoder", "encoder", "decoder", # "speech_encoder_prenet-encoder-decoder-text_decoder_prenet-text_decoder_postnet", # ASR, T5 SID # "speech_encoder_prenet-encoder-decoder-text_decoder_prenet-speaker_decoder_postnet", # SID # "speech_encoder_prenet-encoder-decoder-speech_decoder_prenet-speech_decoder_postnet", # VC, SE # "text_encoder_prenet-encoder-decoder-speech_decoder_prenet-speech_decoder_postnet", # TTS # ], help="If set, using part modules of finetune model.", ) parser.add_argument( "--finetune-out-of-modules", default=None, # choices=[ # "speaker_decoder_postnet", # SID # "speech_decoder_postnet", # SE with reduction factor 1 # ], help="If set, remove part modules of finetune model.", ) # BART parser.add_argument( "--shorten-method", default="none", choices=["none", "truncate", "random_crop"], help="if not none, shorten sequences that exceed --tokens-per-sample", ) parser.add_argument( "--shorten-data-split-list", default="", help="comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)', ) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments" " per sample for dataset", ) parser.add_argument( "--sample-break-mode", default="eos", type=str, help="mode for breaking sentence", ) parser.add_argument( "--mask", default=0.3, type=float, help="fraction of words/subwords that will be masked", ) parser.add_argument( "--mask-random", default=0.1, type=float, help="instead of using [MASK], use random token this often", ) parser.add_argument( "--insert", default=0.0, type=float, help="insert this percentage of additional random tokens", ) parser.add_argument( "--permute", default=0.0, type=float, help="take this proportion of subwords and permute them", ) parser.add_argument( "--rotate", default=0.0, type=float, help="rotate this proportion of inputs", ) parser.add_argument( "--poisson-lambda", default=3.5, type=float, help="randomly shuffle sentences for this proportion of inputs", ) parser.add_argument( "--permute-sentences", default=0.0, type=float, help="shuffle this proportion of sentences in all inputs", ) parser.add_argument( "--mask-length", default="span-poisson", type=str, choices=["subword", "word", "span-poisson"], help="mask length to choose", ) parser.add_argument( "--replace-length", default=1, type=int, help="when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)", ) parser.add_argument( "--iid-noise-target", action="store_true", help="whether to use t5 form target", ) # Hubert parser.add_argument( "--hubert-labels", nargs="*", type=str, default=['km'], help="extension of the label files to load, frame-level labels for pre-training, and sequence-level label for fine-tuning", ) parser.add_argument( "--hubert-label-dir", type=str, default=None, help="if set, looks for labels in this directory instead", ) parser.add_argument( "--sample-rate", default=100, type=float, help="target sample rate. audio files will be up/down sampled to this rate", ) parser.add_argument( "--label-rates", default=-1, type=float, help="if set, looks for labels in this directory instead", ) parser.add_argument( "--normalize", action="store_true", help="if set, normalizes input to have 0 mean and unit variance", ) parser.add_argument( "--enable-padding", action="store_true", help="pad shorter samples instead of cropping", ) parser.add_argument( "--pad-audio", action="store_true", help="pad audio to the longest one in the batch if true", ) parser.add_argument( "--random-crop", action="store_true", help="always crop from the beginning if false", ) parser.add_argument( "--single-target", action="store_true", help="if set, AddTargetDatasets outputs same keys " "as AddTargetDataset", ) parser.add_argument( "--batch-ratio", default=None, type=str, help="ratio of bach size for each dataset", ) parser.add_argument( "--sample-ratios", default=None, type=str, help="ratio of sample for each dataset", ) parser.add_argument( "--ctc-weight", type=float, default=0.0, help="ctc weight for inference", ) def __init__(self, args, dicts, config): super().__init__(args) self.dicts = dicts self.config = config self.t5_task = args.t5_task # Used for filter size if self.t5_task in ['s2t', 't2s', 's2s']: self.max_pos = [self.args.max_speech_positions * 256] elif self.t5_task == 'pretrain': self.max_pos = [self.args.max_speech_positions * 256, self.args.max_text_positions] self.mask_idx = self.dicts["text"].add_symbol("<mask>") # add blank token for ctc # if args.ctc_weight > 0: self.blank_symbol_idx = self.dicts["text"].add_symbol("<ctc_blank>") self.blank_symbol = "<ctc_blank>" # add mask token if hasattr(args, "iid_noise_target") and args.iid_noise_target: self.uni_mask_idxs = [] for i in range(600): self.uni_mask_idxs.append(self.dicts["text"].add_symbol("<mask>" + str(i))) self.uni_mask_idxs = torch.tensor(self.uni_mask_idxs) self.seed = args.seed @classmethod def setup_task(cls, args, **kwargs): # load dictionaries and config dicts = OrderedDict() if args.t5_task == 'pretrain' and not hasattr(args, "shuffle_instance"): args.shuffle_instance = False # Prepare config config = None logger.info('No config file for ' + args.t5_task) if args.t5_task == "pretrain": dicts["hubert"] = [Dictionary.load(f"{args.hubert_label_dir}/dict.{label}.txt") for label in args.hubert_labels] dicts["text"] = Dictionary.load(op.join(args.data, "dict.txt")) else: if config is None: dicts["text"] = Dictionary.load(op.join(args.data, "dict.txt")) else: dicts["text"] = Dictionary.load(op.join(args.data, config.vocab_filename)) return cls(args, dicts, config) def build_criterion(self, args): from fairseq import criterions return criterions.build_criterion(args, self) def load_dataset(self, split, epoch=1, combine=False, **kwargs): sample_ratios = [] if self.t5_task == "s2t": ## For speech to text task bpe_tokenizer = self.build_bpe(self.args) manifest = f"{self.args.data}/{split}.tsv" procs = [LabelEncoder(self.dicts["text"])] paths = [f"{self.args.hubert_label_dir}/{split}.txt"] self.datasets[split] = SpeechToTextDataset( manifest, sample_rate=self.args.sample_rate, label_paths=paths, label_processors=procs, max_keep_sample_size=self.max_pos[0] if self.args.max_speech_sample_size is None else self.args.max_speech_sample_size, min_keep_sample_size=self.args.min_speech_sample_size, normalize=self.args.normalize, store_labels=False, tgt_dict=self.dicts["text"], tokenizer=bpe_tokenizer, ) elif self.t5_task == "t2s": ## For text to speech task from fairseq.data import ConcatDataset bpe_tokenizer = self.build_bpe(self.args) procs = [LabelEncoder(self.dicts["text"])] t2s_datasets = [ TextToSpeechDataset( manifest_path=f"{self.args.data}/{name}.tsv", sample_rate=self.args.sample_rate, label_paths=[f"{self.args.hubert_label_dir}/{name}.txt"], label_processors=procs, max_keep_sample_size=self.max_pos[0], normalize=self.args.normalize, store_labels=False, src_dict=self.dicts["text"], tokenizer=bpe_tokenizer, reduction_factor=self.args.reduction_factor, ) for name in split.split(",") ] self.datasets[split] = ConcatDataset(t2s_datasets) if len(t2s_datasets) > 1 else t2s_datasets[0] elif self.t5_task == "s2s": manifest = f"{self.args.data}/{split}.tsv" self.datasets[split] = SpeechToSpeechDataset( manifest_path=manifest, sample_rate=self.args.sample_rate, max_keep_sample_size=self.max_pos[0] if self.args.max_speech_sample_size is None else self.args.max_speech_sample_size, min_keep_sample_size=self.args.min_speech_sample_size, normalize=self.args.normalize, reduction_factor=self.args.reduction_factor, ) elif self.t5_task == "pretrain": is_train_split = ("train" in split) pretrain_datasets = [] speech_split, text_split = split.split('|') ## Speech pre-train manifest = f"{self.args.data}/{speech_split}.tsv" dicts = self.dicts["hubert"] pad_list = [dict.pad() for dict in dicts] eos_list = [dict.eos() for dict in dicts] procs = [LabelEncoder(dict) for dict in dicts] paths = [ f"{self.args.hubert_label_dir}/{speech_split}.{l}" for l in self.args.hubert_labels ] # hubert v1: pad_audio=True, random_crop=False; self.args.dec_weight = getattr(self.args, "dec_weight", 1.0) pretrain_datasets.append( SpeechPretrainDataset( manifest, sample_rate=self.args.sample_rate, label_paths=paths, label_rates=self.args.label_rates, pad_list=pad_list, eos_list=eos_list, label_processors=procs, max_keep_sample_size=None, min_keep_sample_size=32000, max_sample_size=self.args.max_speech_sample_size, pad_audio=self.args.pad_audio, normalize=self.args.normalize, store_labels=False, random_crop=self.args.random_crop, single_target=self.args.single_target, reduction_factor=self.args.reduction_factor, ) ) sample_ratios.append(sum([pretrain_datasets[0].size(i) for i in range(len(pretrain_datasets[0]))])) ## Text pre-train paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = op.join(data_path, text_split) bart_dataset = data_utils.load_indexed_dataset( split_path, self.dicts["text"], self.args.dataset_impl, combine=combine, ) if bart_dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(text_split, split_path) ) bart_dataset = StripTokenDataset(bart_dataset, self.dicts["text"].eos()) bart_dataset = maybe_shorten_dataset( bart_dataset, text_split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) # create continuous blocks of tokens bart_dataset = TokenBlockDataset( bart_dataset, bart_dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> and one for </s> pad=self.dicts["text"].pad(), eos=self.dicts["text"].eos(), break_mode=self.args.sample_break_mode, document_sep_len=0, ) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) bart_dataset = PrependTokenDataset(bart_dataset, self.dicts["text"].bos()) bart_dataset = AppendTokenDataset(bart_dataset, self.dicts["text"].eos()) mask_whole_words = ( get_whole_word_mask(self.args, self.dicts["text"]) if self.args.mask_length != "subword" else None ) self.args.bert_weight = getattr(self.args, "bert_weight", 0.0) pretrain_datasets.append( TextPretrainDataset( bart_dataset, bart_dataset.sizes, self.dicts["text"], self.mask_idx, mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args, iid_noise_target=self.args.iid_noise_target, uni_mask_idxs=self.uni_mask_idxs if self.args.iid_noise_target else None, ) ) sample_ratios.append(sum(pretrain_datasets[1].sizes)) logger.info( "Task: {0}, Loaded {1} samples of denoising_dataset".format( 'bart', len(pretrain_datasets[1]), ) ) logger.info('token ratio is ' + str(sample_ratios)) if self.args.batch_ratio is not None: batch_ratio = eval(self.args.batch_ratio) assert len(batch_ratio) == len(sample_ratios) sample_ratios = [sample_ratios[i] / batch_ratio[i] for i in range(len(sample_ratios))] else: batch_ratio = None max_size = max(sample_ratios) sample_ratios = [max_size / r for r in sample_ratios] if hasattr(self.args, "sample_ratios") and self.args.sample_ratios is not None: sample_ratios = eval(self.args.sample_ratios) if is_train_split: self.datasets[split] = MultitaskDataset( pretrain_datasets, sample_ratios, batch_ratio ) else: self.datasets[split] = MultitaskDataset( pretrain_datasets, batch_ratio=batch_ratio ) def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): model.train() model.set_num_updates(update_num) # Junyi: not use sample_size, but normalize the loss locally agg_loss, agg_sample_size, agg_logging_output = 0.0, 1.0, {} agg_logging_output['sample_size'] = 1 def forward_backward(model, samples, weight=1.0): nonlocal agg_loss, agg_logging_output if samples is None or len(samples) == 0: return loss, sample_size, logging_output = criterion(model, samples) if ignore_grad: loss *= 0 else: loss *= weight loss = loss / sample_size optimizer.backward(loss) agg_loss += loss.detach().item() # # TODO make summing of the sample sizes configurable for k in logging_output: if k == 'ntokens' or k == 'nsentences': if k not in agg_logging_output: agg_logging_output[k] = 0 agg_logging_output[k] += logging_output[k] # continue # agg_logging_output[k] += logging_output[k] # agg_logging_output[task_name] += logging_output[k] agg_logging_output[samples['task_name']] = logging_output forward_backward(model, sample) agg_logging_output["loss"] = agg_loss return agg_loss, agg_sample_size, agg_logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): from collections import defaultdict agg_loss, agg_sample_size, agg_logging_output = 0.0, 1.0, defaultdict(float) agg_logging_output['sample_size'] = 1 loss, sample_size, logging_output = criterion(model, sample) loss = loss / sample_size # agg_loss += loss.data.item() if isinstance(loss, torch.Tensor) else loss agg_loss += loss.item() if isinstance(loss, torch.Tensor) else loss agg_logging_output[sample['task_name']] = logging_output agg_logging_output["loss"] = agg_loss return agg_loss, agg_sample_size, agg_logging_output @property def target_dictionary(self): return self.dicts["text"] @property def source_dictionary(self): return None def build_model(self, args): try: args.input_feat_per_channel = self.config.input_feat_per_channel args.input_channels = self.config.input_channels except Exception as e: args.input_feat_per_channel = 80 args.input_channels = 1 logger.info(f"Cannot set input_feat_per_channel, input_channels, since: ") logger.warn(e) logger.info(f"Set to: {args.input_feat_per_channel} and {args.input_channels}") args.speech_odim = args.input_feat_per_channel * args.input_channels args.label_rates = self.args.label_rates args.sample_rate = self.args.sample_rate self.args.reduction_factor = args.reduction_factor return super(SpeechT5Task, self).build_model(args) def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, ): from speecht5.sequence_generator import SequenceGenerator extra_gen_cls_kwargs = { "ctc_weight": self.args.ctc_weight, **extra_gen_cls_kwargs } return super().build_generator( models, args, seq_gen_cls=SequenceGenerator, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) def build_tokenizer(self, args): if self.config is None: logger.info(f"pre-tokenizer: None") return encoders.build_tokenizer(Namespace(**{"tokenizer": None})) else: logger.info(f"pre-tokenizer: {self.config.pre_tokenizer}") return encoders.build_tokenizer(Namespace(**self.config.pre_tokenizer)) def build_bpe(self, args): if self.config is not None: logger.info(f"tokenizer: {self.config.bpe_tokenizer}") return encoders.build_bpe(Namespace(**self.config.bpe_tokenizer)) else: logger.info(f"tokenizer: {self.args.bpe_tokenizer}") return encoders.build_bpe(Namespace(**{"bpe": "sentencepiece", "sentencepiece_model": self.args.bpe_tokenizer})) def generate_speech(self, models, net_input, **kwargs): with torch.no_grad(): encoder_input = { k: v for k, v in net_input.items() if k != "prev_output_tokens" and k != "task_name" } encoder_input.update(kwargs) return models[0].generate_speech(**encoder_input) def inference_t2s( self, models, sample ): with torch.no_grad(): xs = sample['net_input']['src_tokens'] spkemb = sample['net_input']['spkembs'] return models[0].inference(xs, spkemb) def inference_s2s( self, models, sample, force_equal_length=False ): with torch.no_grad(): x = sample['net_input']['src_tokens'] xlen = sample['net_input']['src_lengths'] spkemb = sample['net_input']['spkembs'] prev_output_tokens = sample['net_input']['prev_output_tokens'] padding_mask = sample['net_input']['padding_mask'] tgt_lengths = sample['net_input']['tgt_lengths'] return models[0].inference_s2s(x, xlen, spkemb, prev_output_tokens, tgt_lengths, force_equal_length=force_equal_length, padding_mask=padding_mask) def inference_s2c( self, models, sample ): with torch.no_grad(): x = sample['net_input']['src_tokens'] xlen = sample['net_input']['src_lengths'] prev_output_tokens = sample['net_input']['prev_output_tokens'] padding_mask = sample['net_input']['padding_mask'] assert prev_output_tokens.size(1) == 1, prev_output_tokens.size() return models[0].inference_s2c(x, xlen, prev_output_tokens, padding_mask=padding_mask) def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False ): """ Filter examples that are too large Args: indices (np.array): original array of sample indices dataset (~fairseq.data.FairseqDataset): dataset to batch max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). Returns: np.array: array of filtered sample indices """ indices, ignored = dataset.filter_indices_by_size( indices, self.max_pos ) return indices
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/tasks/speecht5.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- from fairseq.models import ( register_model_architecture, ) from fairseq.models.transformer_lm import base_lm_architecture @register_model_architecture(model_name="transformer_lm", arch_name="transformer_lm_t5") def transformer_lm_t5(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1280) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 6144) args.decoder_layers = getattr(args, "decoder_layers", 20) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args)
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/t5_transformer_lm.py
from .speecht5 import * # noqa from .t5_transformer_lm import * # noqa
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/__init__.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import logging from ast import literal_eval from typing import Dict, List, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from .modules.text_encoder_prenet import TextEncoderPrenet from .modules.text_decoder_prenet import TextDecoderPrenet from .modules.text_decoder_postnet import TextDecoderPostnet from .modules.speech_encoder_prenet import SpeechEncoderPrenet from .modules.speech_encoder_postnet import SpeechEncoderPostnet from .modules.speech_decoder_prenet import SpeechDecoderPrenet from .modules.speech_decoder_postnet import SpeechDecoderPostnet from .modules.speaker_decoder_postnet import SpeakerDecoderPostnet from .modules.encoder import TransformerEncoder from .modules.decoder import TransformerDecoder from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.models.transformer import Embedding from fairseq.modules import ( GumbelVectorQuantizer, ) from torch import Tensor logger = logging.getLogger(__name__) DEFAULT_MAX_TEXT_POSITIONS = 450 DEFAULT_MAX_SPEECH_POSITIONS = 4000 @register_model("t5_transformer") class T5TransformerModel(FairseqEncoderDecoderModel): """Adapted Transformer model (https://arxiv.org/abs/1706.03762) for speech-to-text tasks. The Transformer encoder/decoder remains the same. A trainable input subsampler is prepended to the Transformer encoder to project inputs into the encoder dimension as well as downsample input sequence for computational efficiency.""" def __init__( self, args, encoder, decoder, text_encoder_prenet, speech_encoder_prenet, text_decoder_prenet, speech_decoder_prenet, text_decoder_postnet, speech_decoder_postnet, speaker_decoder_postnet, speech_encoder_postnet, ): super().__init__(encoder, decoder) self.encoder = encoder self.decoder = decoder self.text_encoder_prenet = text_encoder_prenet self.speech_encoder_prenet = speech_encoder_prenet self.text_decoder_prenet = text_decoder_prenet self.speech_decoder_prenet = speech_decoder_prenet self.text_decoder_postnet = text_decoder_postnet self.speech_decoder_postnet = speech_decoder_postnet self.speaker_decoder_postnet = speaker_decoder_postnet self.hubert_layer = speech_encoder_postnet self.reduction_factor = args.reduction_factor self.spk_embed_dim = args.spk_embed_dim # define projection layer self.spk_embed_integration_type = args.spk_embed_integration_type if self.spk_embed_dim is not None and self.spk_embed_integration_type != 'pre': if self.spk_embed_integration_type == "add": self.projection = torch.nn.Linear(self.spk_embed_dim, args.decoder_embed_dim) else: self.projection = torch.nn.Linear( args.decoder_embed_dim + self.spk_embed_dim, args.decoder_embed_dim ) self.use_codebook = args.use_codebook self.codebook_prob = getattr(args, "codebook_prob", 0.5) # args.codebook_prob if self.use_codebook: vq_dim = args.latent_dim if args.latent_dim > 0 else args.encoder_embed_dim self.quantizer = GumbelVectorQuantizer( dim=args.encoder_embed_dim, num_vars=args.latent_vars, temp=args.latent_temp, groups=args.latent_groups, combine_groups=False, vq_dim=vq_dim, time_first=True, weight_proj_depth=args.quantizer_depth, weight_proj_factor=args.quantizer_factor, ) self.num_updates = 0 # # Follow BERT's random weight initialization (for BART) if args.bert_init: self.apply(init_bert_params) self.args = args self.prune_modules(args.modules_filter) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # Transformer parser.add_argument( "--activation-fn", type=str, choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--activation-dropout", "--relu-dropout", type=float, metavar="D", help="dropout probability after activation in FFN.", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--decoder-normalize-before", action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads", ) parser.add_argument( "--reduction-factor", type=int, help="reduction factor for decoder", ) parser.add_argument( "--spk-embed-dim", type=int, help="speaker embedding dimension", ) parser.add_argument( "--layernorm-embedding", action="store_true", help="add layernorm to embedding", ) parser.add_argument( "--load-pretrained-encoder-from", type=str, metavar="STR", help="model to take encoder weights from (for initialization)", ) parser.add_argument( '--freeze-encoder-updates', type=int, help='number of steps to freeze encoder before finetune' ) parser.add_argument( '--freeze-decoder-updates', type=int, help='number of steps to freeze decoder before finetune' ) parser.add_argument( '--no-freeze-encoder-layer', type=str, help='which encoder layer not freeze during finetune' ) parser.add_argument( "--share-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--share-ctc-embed", action="store_true", help="share ctc embed and decoder embed", ) parser.add_argument( "--encoder-sliding-window-attn", default=None, type=int, help="If not None but a even number, set sliding window attention to encoder's attn_mask, e.g., 4, 10, and 20", ) # Convolutional subsampler parser.add_argument( "--encoder-speech-prenet", default="conv", type=str, choices=["conv", "linear"], help="The type of encoder speech prenet, e.g., conv or linear." ) parser.add_argument( "--conv-kernel-sizes", default="5,5", type=str, help="The layer of convolution of encoder speech prenet." ) parser.add_argument( "--conv-channels", default=1024, type=int, help="The channels of encoder speech prenet." ) parser.add_argument( "--subsample-stride", default="2,2", type=str, help="The subsample stride for conv1dsubsample." ) parser.add_argument( "--spk-embed-integration-type", type=str, choices=["pre", "add"], help="speaker embedding integration type" ) parser.add_argument( "--dprenet-dropout-rate", default=0.5, type=float, help="The dropout rate of decoder speech prenet." ) ## SE parser.add_argument( "--se-predict", default=None, choices=["masking", "target", "delta"], help="If set, source speech inputs decoder to predict the masking/target/delta of corresponding inputs." + "masking is [0, 1], target is predicted output, delta is difference between inputs and outputs", ) parser.add_argument( "--se-decoder-input", type=str, default="previous_target", choices=["previous_target", "source"], ) ## SID parser.add_argument( "--modules-filter", default=None, type=str, help="Remove unused modules for, e.g., SID.", ) parser.add_argument( "--sid-pad-prenet", action="store_true", help="If set, the size of text dictionary is as small as for <pad> token.", ) parser.add_argument( "--encoder-attn-branch", type=str, default="identity,full", help="encoder attention branch sliding window, e.g., 'identity,0,2,4,full'", ) parser.add_argument( "--encoder-block-branch", type=str, help="average the output of encoder, e.g., '4,5,6'", ) parser.add_argument( "--sid-encoder-cls", default=None, choices=["encoder"], help="If set, add cls vector to the encoder input, e.g., constant vector.", ) parser.add_argument( "--sid-shuffle-encoder-input", action="store_true", help="If set, shuffle encoder input in time.", ) parser.add_argument( "--sid-decoder-speaker", action="store_true", help="If set, apply speaker decoder as transformer decoder.", ) parser.add_argument( "--sid-decoder-attn-dim", default=128, type=int, help="Attention dimension in attensive statistics pooling of speaker decoder.", ) parser.add_argument( "--sid-t5-postnet", action="store_true", help="If set, apply TextDecoderPostnet as speaker classification.", ) parser.add_argument( "--sid-embed-dim", default=128, type=int, help="Embedding dimension in speaker postnet for speaker identification if embed postnet.", ) parser.add_argument( "--sid-pooling-layer", default="decoder", type=str, choices=["decoder-las", "decoder", "encoder", "encoder-cls", "encoder-speaker"], help="The output of decoder or encoder uses as SID pooling layer over temporal dimension.", ) parser.add_argument( "--sid-no-pooling-bn", action="store_true", help="If set, not attention batchnorm.", ) parser.add_argument( "--sid-no-embed-postnet", action="store_true", help="If set, no layer between decoder output and classification layer.", ) parser.add_argument( "--sid-normalize-postnet", action="store_true", help="If set, normalize input and weight in postnet/classifier.", ) parser.add_argument( "--sid-softmax-type", default="softmax", choices=["softmax", "amsoftmax", "aamsoftmax"], help="If using amsoftmax or aamsoftmax, the target should be given.", ) parser.add_argument( "--softmax-scale", default=1.0, type=float, help="Scale for AMSoftmax or AAMSoftmax.", ) parser.add_argument( "--softmax-margin", default=0.0, type=float, help="Margin for AMSoftmax or AAMSoftmax.", ) parser.add_argument( "--softmax-easy-margin", action="store_true", help="Enable easy margin for AAMSoftmax.", ) parser.add_argument( "--encoder-layerdrop", type=float, metavar="D", help="LayerDrop probability for encoder", ) parser.add_argument( "--decoder-layerdrop", type=float, metavar="D", help="LayerDrop probability for decoder", ) ## Hubert parser.add_argument( '--feature-grad-mult', type=float, help='multiply feature extractor var grads by this' ) parser.add_argument( '--logit-temp', type=float, help='temperature to divide logits by' ) parser.add_argument( '--final-dim', type=int, help="project final representations and targets to this many " "dimensions. set to encoder_embed_dim is <= 0" ) # mask parser.add_argument( '--hubert-mask-length', type=int, help='mask length' ) parser.add_argument( '--mask-prob', type=float, help='probability of replacing a token with mask' ) parser.add_argument( "--mask-selection", choices=["static", "uniform", "normal", "poisson"], help="how to choose mask length", ) parser.add_argument( '--mask-other', type=float, help="secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" ) parser.add_argument( '--mask-min-space', type=int, help='min space between spans (if no overlap is enabled)' ) # channel masking parser.add_argument( '--mask-channel-length', type=int, help='length of the mask for features (channels)' ) parser.add_argument( '--mask-channel-prob', type=float, help="probability of replacing a feature with 0" ) parser.add_argument( "--mask-channel-selection", choices=["static", "uniform", "normal", "poisson"], help="how to choose mask length for channel masking", ) parser.add_argument( '--mask-channel-other', type=float, help="secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" ) parser.add_argument( '--mask-channel-min-space', type=int, help='min space between spans (if no overlap is enabled)' ) # abs positional embeddings parser.add_argument( '--conv-pos', type=int, help='number of filters for convolutional positional embeddings' ) parser.add_argument( '--conv-pos-groups', type=int, help='number of groups for convolutional positional embedding' ) # codebook related parser.add_argument( "--use-codebook", action="store_true", help="whether to use codebook", ) parser.add_argument( "--codebook-prob", type=float, help="probability to use codebook", ) parser.add_argument( "--latent-vars", type=int, help="number of latent variables V in each group of the codebook", ) parser.add_argument( "--latent-groups", type=int, help="number of groups G of latent variables in the codebook", ) parser.add_argument( "--latent-dim", type=int, help="if > 0, uses this dimensionality for latent variables. " "otherwise uses final_dim / latent_groups", ) parser.add_argument( "--latent-temp", type=literal_eval, help="temperature for latent variable sampling. " "can be tuple of 3 values (start, end, decay)", ) parser.add_argument( "--quantizer-depth", type=int, help="number of quantizer layers", ) parser.add_argument( "--quantizer-factor", type=int, help="number of quantizer layers", ) parser.add_argument( "--get-code-distribution", action='store_true', help="whether to get the code distribution (for test)", ) # relative pos enc parser.add_argument( "--relative-position-embedding", action='store_true', help="whether to use relative position embedding", ) parser.add_argument( "--num-buckets", type=int, default=320, help="num of buckets for relative position embedding", ) parser.add_argument( "--max-distance", type=int, default=1280, help="max distance for relative position embedding", ) parser.add_argument( "--encoder-max-relative-position", type=int, help="max distance for relative position embedding in encoder", ) parser.add_argument( "--decoder-max-relative-position", type=int, help="max distance for relative position embedding in decoder", ) # hubert feature extractor parser.add_argument( "--conv-feature-layers", type=str, help= "string describing convolutional feature extraction " "layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]", ) parser.add_argument( "--conv-bias", action='store_true', help="include bias in conv encoder", ) parser.add_argument( "--extractor-mode", choices=["default", "layer_norm"], help="mode for feature extractor. default has a single group " "norm with d groups in the first conv block, whereas layer_norm " "has layer norms in every block (meant to use with normalize=True)" ) # others parser.add_argument( "--bert-init", action='store_true', help="initilize as bert", ) parser.add_argument( "--unb-enc-layer", type=int, default=-1, help="which layer's output is used as the input of decoder", ) # Encoder, Decoder @classmethod def build_encoder(cls, args, dictionary=None, embed_tokens=None): return TransformerEncoder(args, dictionary, embed_tokens) @classmethod def build_decoder(cls, args): return TransformerDecoder(args) # Encoder Prenet @classmethod def build_text_encoder_prenet(cls, embed_tokens, args): return TextEncoderPrenet(embed_tokens, args) @classmethod def build_speech_encoder_prenet(cls, args): return SpeechEncoderPrenet(args) # Decoder Prenet @classmethod def build_text_decoder_prenet(cls, embed_tokens, args): return TextDecoderPrenet(embed_tokens, args) @classmethod def build_speech_decoder_prenet(cls, odim, args): return SpeechDecoderPrenet(odim, args) # Decoder Postnet @classmethod def build_text_decoder_postnet(cls, embed_tokens, dictionary, args): return TextDecoderPostnet(embed_tokens, dictionary, args) @classmethod def build_speaker_decoder_postnet(cls, embed_dim, class_num, args): return SpeakerDecoderPostnet(embed_dim, class_num, args) @classmethod def build_speech_decoder_postnet(cls, odim, args): return SpeechDecoderPostnet(odim, args) @classmethod def build_speech_encoder_postnet(cls, dictionaries, args): return SpeechEncoderPostnet(dictionaries, args) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) def build_embedding(dictionary, embed_dim, max_num_embeddings=None): num_embeddings = len(dictionary) if max_num_embeddings is not None and isinstance(max_num_embeddings, int): num_embeddings = min(num_embeddings, max_num_embeddings) padding_idx = dictionary.pad() return Embedding(num_embeddings, embed_dim, padding_idx) if hasattr(args, "sid_pad_prenet") and args.sid_pad_prenet: max_num_embeddings = 3 # <pad> at index 2 else: max_num_embeddings = None text_decoder_embed_tokens = build_embedding( task.dicts["text"], args.decoder_embed_dim, max_num_embeddings ) if args.share_input_output_embed: text_encoder_embed_tokens = text_decoder_embed_tokens else: text_encoder_embed_tokens = build_embedding( task.dicts["text"], args.encoder_embed_dim ) speech_odim = args.speech_odim if "text" in task.dicts: encoder = cls.build_encoder(args, task.dicts["text"], text_encoder_embed_tokens) else: encoder = cls.build_encoder(args) decoder = cls.build_decoder(args) text_encoder_prenet = cls.build_text_encoder_prenet(text_encoder_embed_tokens, args) speech_encoder_prenet = cls.build_speech_encoder_prenet(args) text_decoder_prenet = cls.build_text_decoder_prenet(text_decoder_embed_tokens, args) if getattr(args, "sid_pooling_layer", None) == "decoder-las": speech_decoder_prenet = cls.build_speech_encoder_prenet(args) else: speech_decoder_prenet = cls.build_speech_decoder_prenet(speech_odim, args) text_decoder_postnet = cls.build_text_decoder_postnet(text_decoder_embed_tokens, task.dicts['text'], args) speech_decoder_postnet = cls.build_speech_decoder_postnet(speech_odim, args) if getattr(args, "sid_t5_postnet", False): speaker_decoder_postnet = None else: if task.t5_task == "s2c": speaker_decoder_postnet = cls.build_speaker_decoder_postnet(args.sid_embed_dim, len(task.dicts['text']), args) else: speaker_decoder_postnet = None if "hubert" in task.dicts: speech_encoder_postnet = cls.build_speech_encoder_postnet(task.dicts['hubert'], args) else: speech_encoder_postnet = None return cls( args, encoder, decoder, text_encoder_prenet, speech_encoder_prenet, text_decoder_prenet, speech_decoder_prenet, text_decoder_postnet, speech_decoder_postnet, speaker_decoder_postnet, speech_encoder_postnet, ) def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample) lprobs.batch_first = True return lprobs def get_normalized_probs_for_ctc(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out_for_ctc"][0] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def get_logits(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] logits_list = [x.float() for x in logits_list if x is not None] return logits_list def get_targets(self, sample, net_output, is_masked=True): if "logit_m_list" in net_output: logits_list = self.get_logits(net_output, is_masked) targets_list = [ x.new_zeros(x.size(0), dtype=torch.long) for x in logits_list ] return targets_list else: return sample["target"] def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") if "prob_perplexity" in net_output: extra_losses.append( (net_output["num_vars"] - net_output["prob_perplexity"]) / net_output["num_vars"] ) names.append("prob_perplexity") return extra_losses, names def forward(self, source=None, src_tokens=None, src_lengths=None, prev_output_tokens=None, tgt_lengths=None, spkembs=None, target_list=None, task_name=None, padding_mask=None, only_hubert=False, only_ctc=False, feature_only=False, tgt_enc_layer=None, mask=True): """ The forward method inherited from the base class has a **kwargs argument in its input, which is not supported in torchscript. This method overwrites the forward method definition without **kwargs. """ assert source is not None or src_tokens is not None # padding_mask is not none only when input is waveform if source is None and padding_mask is None and not feature_only: input_type = 'text' else: input_type = 'speech' if prev_output_tokens is not None and len(prev_output_tokens.size()) == 2: output_type = 'text' codebook_out = {} else: output_type = 'speech' if task_name is not None and task_name == "s2c": if target_list is not None and target_list.size(1) == 1 and not getattr(self.args, "sid_t5_postnet", False): sid_target = F.one_hot(target_list.squeeze(1), num_classes=self.speaker_decoder_postnet.class_num) else: sid_target = None target_list = None # Encoder Prenet if input_type == 'text': encoder_input, encoder_padding_mask = self.text_encoder_prenet(src_tokens) else: if target_list is not None: encoder_input, encoder_padding_mask = self.speech_encoder_prenet(source, require_feat_pen=True, target_list=target_list, padding_mask=padding_mask, mask=mask) encoder_input, features_pen, mask_indices, target_list = encoder_input else: encoder_input, encoder_padding_mask = self.speech_encoder_prenet(source, padding_mask=padding_mask, mask=self.training) # shuffle a batch of inputs of encoder if self.training and hasattr(self.args, "sid_shuffle_encoder_input") and getattr(self.args, "sid_shuffle_encoder_input", False): shuffle_index = torch.randperm(encoder_padding_mask.size(1), device=encoder_padding_mask.device) encoder_input = torch.index_select(encoder_input, 1, shuffle_index) encoder_padding_mask = torch.index_select(encoder_padding_mask, 1, shuffle_index) if getattr(self.args, "sid_encoder_cls", None) == "encoder": prev_output_tokens = torch.zeros_like(prev_output_tokens) encoder_input, encoder_padding_mask = self._integrate_with_speaker_cls(prev_output_tokens, encoder_input, encoder_padding_mask) # Encoder: T x B x C encoder_output = self.encoder(encoder_input, encoder_padding_mask, tgt_layer=tgt_enc_layer) if task_name is not None and task_name == 'speech_pretrain' and feature_only: return encoder_output["encoder_out"][0].transpose(0, 1) if task_name is not None and task_name == 's2c': if self.args.sid_pooling_layer == "encoder": return self.speaker_decoder_postnet(encoder_output["encoder_out"][0].transpose(0, 1).mean(1), sid_target), None elif self.args.sid_pooling_layer == "encoder-cls": return self.speaker_decoder_postnet(encoder_output["encoder_out"][0].transpose(0, 1)[:,0], sid_target), None elif self.args.sid_pooling_layer == "encoder-speaker" or getattr(self.args, "sid_decoder_speaker", False): return self.speaker_decoder_postnet(encoder_output["encoder_out"][0].transpose(0, 1), sid_target), None if target_list is not None: hubert_results = self.hubert_layer( encoder_output["encoder_out"][0].transpose(0, 1), encoder_padding_mask, mask_indices, target_list ) hubert_results['features_pen'] = features_pen if "decoder_input" in encoder_output and encoder_output["decoder_input"][0] is not None: # Change the encoder output to decoder input once set unb-enc-layer encoder_output["encoder_out"] = encoder_output["decoder_input"] if self.use_codebook: q = self.quantizer(encoder_output["encoder_out"][0].transpose(0, 1)) # q["x"]: B x T x C # Sample indexs according to the codebook prob random_idx = torch.randperm(q["x"].size(1))[:int(q["x"].size(1) * self.codebook_prob)] # Make weight for q q_w = q["x"].new_zeros(q["x"].size(1)) q_w[random_idx] = 1.0 # Combine quantized codes and encoder output encoder_output["encoder_out"][0] = ( q_w.view(-1, 1) * q["x"] + (- q_w + 1).view(-1, 1) * encoder_output["encoder_out"][0].transpose(0, 1) ).transpose(0, 1) # encoder_output["encoder_out"][0] = q["x"].transpose(0, 1) if output_type == 'speech': hubert_results["prob_perplexity"] = q["prob_perplexity"] hubert_results["code_perplexity"] = q["code_perplexity"] hubert_results["num_vars"] = q["num_vars"] hubert_results["temp"] = q["temp"] elif output_type == 'text': codebook_out["prob_perplexity"] = q["prob_perplexity"] codebook_out["code_perplexity"] = q["code_perplexity"] codebook_out["num_vars"] = q["num_vars"] codebook_out["temp"] = q["temp"] if only_hubert and target_list is not None: return hubert_results, None if only_ctc and task_name is not None and task_name == "s2t": return None, encoder_output elif not self.training and prev_output_tokens is None and task_name == "s2t" and task_name is not None: return encoder_output # Decoder Prenet if output_type == 'text': # _ is the incremental state prev_output_tokens, tgt_mask, _ = self.text_decoder_prenet(prev_output_tokens) if task_name is not None and task_name == 's2c': prev_output_tokens = torch.zeros_like(prev_output_tokens) else: # integrate speaker embedding if self.spk_embed_integration_type == "pre" and self.spk_embed_dim is not None: # Decoder Prenet prev_output_tokens, tgt_mask = self.speech_decoder_prenet(prev_output_tokens, tgt_lengths, spkembs) else: if self.spk_embed_dim is not None: encoder_output["encoder_out"] = [self._integrate_with_spk_embed( encoder_output["encoder_out"][0].transpose(0, 1), spkembs ).transpose(0, 1)] prev_output_tokens, tgt_mask = self.speech_decoder_prenet(prev_output_tokens, tgt_lengths) # BART Sequence Classification: cat <pad> + feature before decoder if task_name is not None and task_name == 's2c' and self.args.sid_pooling_layer == "decoder-las": decoder_feat_input, decoder_feat_mask = self.speech_decoder_prenet(src_tokens, src_lengths) prev_output_tokens, tgt_mask = self._integrate_with_speaker_cls((prev_output_tokens, tgt_mask), decoder_feat_input, decoder_feat_mask, cls_first=False) # SE predict masking to corresponding inputs and source speech replaces the prev_output_tokens as the input of decoder if task_name is not None and task_name == "s2s" and getattr(self.args, "se_decoder_input", "previous_target") == "source": prev_output_tokens, tgt_mask = self.speech_decoder_prenet(src_tokens, src_lengths) # Decoder decoder_output, extra = self.decoder(prev_output_tokens, tgt_mask, encoder_output, full_context_alignment=getattr(self.args, "decoder_full_context_alignment", False), alignment_layer=(-1 if target_list is None and output_type == 'speech' else None)) # Decoder Postnet if task_name is not None and task_name == 's2c': if not getattr(self.args, "sid_t5_postnet", False): if self.args.sid_pooling_layer == "decoder": return self.speaker_decoder_postnet(decoder_output.mean(1), sid_target), None elif self.args.sid_pooling_layer == "decoder-las": indices = (tgt_mask.eq(False).float().sum(1) - 1.0).type(torch.int64) indices = indices.unsqueeze(1).unsqueeze(2).expand(-1, -1, decoder_output.size(2)) return self.speaker_decoder_postnet(decoder_output.gather(1, indices), sid_target), None else: return (self.text_decoder_postnet(decoder_output), None), encoder_output # SE predict: masking, target, delta. Ensure reduction factor 1 if task_name is not None and task_name == 's2s' and getattr(self.args, "se_predict", None) is not None: assert self.reduction_factor == 1, f"{self.reduction_factor} != 1" before_outs, after_outs, logits = self.speech_decoder_postnet(decoder_output) se_predict = getattr(self.args, "se_predict") if se_predict == "masking": before_outs = torch.sigmoid(before_outs) * src_tokens after_outs = torch.sigmoid(after_outs) * src_tokens return before_outs, after_outs, logits, extra['attn'][0] elif se_predict == "target": return before_outs, after_outs, logits, extra['attn'][0] elif se_predict == "delta": before_outs = before_outs - src_tokens after_outs = after_outs - src_tokens return before_outs, after_outs, logits, extra['attn'][0] else: raise ValueError(f"{se_predict} not in [masking, target, delta]") if task_name is not None and task_name == 's2t': #return self.text_decoder_postnet(decoder_output), None return (self.text_decoder_postnet(decoder_output), None), encoder_output if output_type == 'text': return (self.text_decoder_postnet(decoder_output), None), codebook_out, encoder_output else: if target_list is not None: return hubert_results, (self.speech_decoder_postnet(decoder_output) + (extra['attn'][0],)) else: return self.speech_decoder_postnet(decoder_output) + (extra['attn'][0],) def _integrate_with_speaker_cls(self, pad_input, encoder_input, encoder_padding_mask=None, cls_first=True): """ encoder_input: [B, T, C] encoder_padding_mask: [B, T] """ if hasattr(self, "text_decoder_prenet"): if isinstance(pad_input, tuple): repeat_cls_vector, repeat_cls_mask = pad_input else: repeat_cls_vector, repeat_cls_mask, _ = self.text_decoder_prenet(pad_input) if encoder_padding_mask is not None: bsz = encoder_input.size(0) tsz = encoder_input.size(1) encoder_padding_mask = encoder_input.new_zeros((bsz, tsz)) == 1.0 if repeat_cls_mask is None: mask_size = (encoder_padding_mask.size(0), 1) mask_type = encoder_padding_mask.dtype repeat_cls_mask = encoder_padding_mask.new_zeros(mask_size) == 1.0 ret_encoder_padding_mask = torch.cat([repeat_cls_mask, encoder_padding_mask], dim=1) if cls_first: ret_encoder_input = torch.cat([repeat_cls_vector, encoder_input], dim=1) else: ret_encoder_input = torch.cat([encoder_input, encoder_input[:,-1:,:]], dim=1) mask_size = (encoder_padding_mask.size(0), 1) mask_type = encoder_padding_mask.dtype repeat_cls_mask_ = encoder_padding_mask.new_ones(mask_size) == 1.0 encoder_padding_mask_ = torch.cat([encoder_padding_mask, repeat_cls_mask_], dim=1) indices = encoder_padding_mask.eq(False).float().sum(1).type(torch.int64).unsqueeze(1) indices_mask = torch.zeros_like(ret_encoder_padding_mask).scatter(1, indices, 1.0) ret_encoder_input = ret_encoder_input * (1.0 - encoder_padding_mask_.type(ret_encoder_input.dtype).unsqueeze(2)) \ + repeat_cls_vector * indices_mask.type(repeat_cls_vector.dtype).unsqueeze(2) return ret_encoder_input, ret_encoder_padding_mask def _integrate_with_spk_embed(self, hs, spembs): """Integrate speaker embedding with hidden states. Args: hs (Tensor): Batch of hidden state sequences (B, Tmax, adim). spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim). Returns: Tensor: Batch of integrated hidden state sequences (B, Tmax, adim) """ if self.spk_embed_integration_type == "add": # apply projection and then add to hidden states spembs = self.projection(F.normalize(spembs)) hs = hs + spembs.unsqueeze(1) elif self.spk_embed_integration_type == "concat": # concat hidden states with spk embeds and then apply projection spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1) hs = self.projection(torch.cat([hs, spembs], dim=-1)) else: raise NotImplementedError("support only add or concat.") return hs def load_state_dict( self, state_dict, strict=True, model_cfg=None, args=None, ): """NOT STRICT Copies parameters and buffers from *state_dict* into this module and its descendants. Overrides the method in :class:`nn.Module`. Compared with that method this additionally "upgrades" *state_dicts* from old checkpoints. """ # self.prune_modules(model_cfg.modules_filter) model_dict_size = self.text_decoder_postnet.output_projection.out_features ckpt_dict_size = state_dict["text_decoder_postnet.output_projection.weight"].size(0) if model_dict_size != ckpt_dict_size: # reset dictionary-related modules, such as embedding table and encoder ctc embed logger.warn(f"not equal dictionary between model and checkpoint: {model_dict_size} vs {ckpt_dict_size}") logger.info(f"reset model dictionary with size of {model_dict_size}") removed_keys = [ key for key in state_dict.keys() if any( key.startswith(previ) for previ in [ "encoder.proj", "text_encoder_prenet", "text_decoder_prenet", "text_decoder_postnet" ] ) ] for key in removed_keys: state_dict.pop(key, None) logger.info(f"removed loaded checkpoint: {key}") for m in self._modules.keys(): m_state_dict = { key.replace(f"{m}.", ""): value for key, value in state_dict.items() if key.startswith(f"{m}.") } if hasattr(self, m): self._modules[m].load_state_dict(m_state_dict, False) return self def prune_modules(self, modules_filter=None): """Prune unused modules for specific tasks.""" if modules_filter is None: return elif modules_filter == "s2c": if hasattr(self, "text_encoder_prenet"): del self.text_encoder_prenet if hasattr(self, "speech_decoder_prenet") and getattr(self.args, "sid_pooling_layer", None) != "decoder-las": del self.speech_decoder_prenet if hasattr(self, "speech_decoder_postnet"): del self.speech_decoder_postnet if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet if hasattr(self.encoder, "proj"): self.encoder.proj = None if hasattr(self, "projection"): del self.projection if hasattr(self, "quantizer"): del self.quantizer if getattr(self.args, "sid_pooling_layer", "decoder").startswith("encoder") or getattr(self.args, "sid_decoder_speaker", False): if hasattr(self.decoder, "dropout_module"): del self.decoder.dropout_module if hasattr(self.decoder, "layers"): del self.decoder.layers if hasattr(self.decoder, "layer_norm"): del self.decoder.layer_norm if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet elif modules_filter == "s2s": if hasattr(self, "speaker_decoder_postnet"): del self.speaker_decoder_postnet if hasattr(self, "text_encoder_prenet"): del self.text_encoder_prenet if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet if hasattr(self.encoder, "proj"): self.encoder.proj = None if hasattr(self, "projection"): del self.projection if hasattr(self, "quantizer"): del self.quantizer elif modules_filter == "t2s": if hasattr(self, "speaker_decoder_postnet"): del self.speaker_decoder_postnet if hasattr(self, "speech_encoder_prenet"): del self.speech_encoder_prenet if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet if hasattr(self.encoder, "proj"): self.encoder.proj = None if hasattr(self, "projection"): del self.projection if hasattr(self, "quantizer"): del self.quantizer elif modules_filter == "s3prl": # remain the encoder and the pre/post net if hasattr(self.decoder, "dropout_module"): del self.decoder.dropout_module if hasattr(self.decoder, "layers"): del self.decoder.layers if hasattr(self.decoder, "layer_norm"): del self.decoder.layer_norm if hasattr(self, "speaker_decoder_postnet"): del self.speaker_decoder_postnet if hasattr(self, "text_decoder_prenet"): del self.text_decoder_prenet if hasattr(self, "text_decoder_postnet"): del self.text_decoder_postnet if hasattr(self, "speech_decoder_prenet"): del self.speech_decoder_prenet if hasattr(self, "speech_decoder_postnet"): del self.speech_decoder_postnet if hasattr(self, "speech_encoder_postnet"): del self.speech_encoder_postnet if hasattr(self.encoder, "proj"): self.encoder.proj = None if hasattr(self, "projection"): del self.projection if hasattr(self, "quantizer"): del self.quantizer def forward_encoder_torchscript(self, net_input: Dict[str, Tensor]): """A TorchScript-compatible version of forward. Encoders which use additional arguments may want to override this method for TorchScript compatibility. """ if torch.jit.is_scripting(): return self.forward_encoder( source=net_input["source"], padding_mask=net_input["padding_mask"] ) else: return self.forward_encoder_non_torchscript(net_input) @torch.jit.unused def forward_encoder_non_torchscript(self, net_input: Dict[str, Tensor]): encoder_input = { k: v for k, v in net_input.items() if k != "prev_output_tokens" and k != "task_name" } return self.forward_encoder(**encoder_input) def forward_encoder(self, source, padding_mask=None): # Encoder Prenet encoder_input, encoder_padding_mask = self.speech_encoder_prenet(source, padding_mask=padding_mask, mask=False) # Encoder encoder_output = self.encoder(encoder_input, encoder_padding_mask) return encoder_output def forward_text_encoder(self, src_tokens): # Text Encoder Prenet encoder_input, encoder_padding_mask = self.text_encoder_prenet(src_tokens) # Encoder encoder_output = self.encoder(encoder_input, encoder_padding_mask) return encoder_output def forward_decoder(self, tokens, encoder_out, incremental_state): # Decoder Prenet prev_output_tokens, tgt_mask, incremental_state = self.text_decoder_prenet(tokens, incremental_state) # Decoder decoder_output, extra = self.decoder( prev_output_tokens, tgt_mask, encoder_out=encoder_out, incremental_state=incremental_state, ) # Decoder Postnet return self.text_decoder_postnet(decoder_output), extra def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def generate_speech(self, source=None, src_tokens=None, spkembs=None, **kwargs): assert source is not None or src_tokens is not None threshold = kwargs.get("threshold", 0.5) minlenratio = kwargs.get("threshold", 0.0) if source is None: assert src_tokens.size(0) == 1 encoder_out = self.forward_text_encoder(src_tokens) maxlenratio = kwargs.get("threshold", 20.0) else: assert source.size(0) == 1 encoder_out = self.forward_encoder(source, padding_mask=kwargs["padding_mask"]) maxlenratio = kwargs.get("threshold", 10.0) if spkembs is not None and self.spk_embed_integration_type != "pre": encoder_out["encoder_out"] = [self._integrate_with_spk_embed( encoder_out["encoder_out"][0].transpose(0, 1), spkembs ).transpose(0, 1)] spkembs = None maxlen = int(encoder_out["encoder_out"][0].size(0) * maxlenratio / self.reduction_factor) minlen = int(encoder_out["encoder_out"][0].size(0) * minlenratio / self.reduction_factor) idx = 0 ys = encoder_out["encoder_out"][0].new_zeros(1, 1, self.speech_decoder_postnet.odim) outs, probs = [], [] # forward decoder step-by-step if isinstance(self.decoder, FairseqIncrementalDecoder): incremental_states = {} else: incremental_states = None attns = [] while True: # update index idx += 1 # calculate output and stop prob at idx-th step decoder_in, _ = self.speech_decoder_prenet(ys, spkembs=spkembs) z, extra = self.decoder(decoder_in[:,-1:], None, encoder_out, incremental_states, alignment_layer=-1) outs += [self.speech_decoder_postnet.feat_out(z[0, -1]).view(self.reduction_factor, self.speech_decoder_postnet.odim)] # [(r, odim), ...] probs += [torch.sigmoid(self.speech_decoder_postnet.prob_out(z[0, -1]))] # [(r), ...] # update next inputs ys = torch.cat((ys, outs[-1][-1].view(1, 1, self.speech_decoder_postnet.odim)), dim=1) # (1, idx + 1, odim) attns.append(torch.stack([att_l[0] for att_l in extra['attn'][0]], dim=0)) # check whether to finish generation if int(sum(probs[-1] >= threshold)) > 0 or idx >= maxlen: # check mininum length if idx < minlen: continue outs = (torch.cat(outs, dim=0).unsqueeze(0).transpose(1, 2)) # (L, odim) -> (1, L, odim) -> (1, odim, L) if self.speech_decoder_postnet.postnet is not None: outs = outs + self.speech_decoder_postnet.postnet(outs) # (1, odim, L) outs = outs.transpose(2, 1).squeeze(0) # (L, odim) probs = torch.cat(probs, dim=0) attn = torch.cat(attns, dim=2) break if outs.size(0) == maxlen: logging.warning("output length reaches maximum length") return outs, probs, attn @register_model_architecture(model_name="t5_transformer", arch_name="t5_transformer") def base_architecture(args): # Transformer args.bert_init = getattr(args, "bert_init", False) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 768 * 4) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", args.dropout) args.activation_dropout = getattr(args, "activation_dropout", args.dropout) args.activation_fn = getattr(args, "activation_fn", "gelu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.max_text_positions = getattr(args, "max_text_positions", DEFAULT_MAX_TEXT_POSITIONS) args.max_speech_positions = getattr(args, "max_speech_positions", DEFAULT_MAX_SPEECH_POSITIONS) # Espnet related, including prenet, postnet args.eprenet_conv_layers = getattr(args, "eprenet_conv_layers", 0) args.eprenet_conv_filts = getattr(args, "eprenet_conv_filts", 0) args.eprenet_conv_chans = getattr(args, "eprenet_conv_chans", 0) args.use_batch_norm = getattr(args, "use_batch_norm", True) args.eprenet_dropout_rate = getattr(args, "eprenet_dropout_rate", 0.0) args.enc_use_scaled_pos_enc = getattr(args, "enc_use_scaled_pos_enc", True) args.dec_use_scaled_pos_enc = getattr(args, "dec_use_scaled_pos_enc", True) args.postnet_layers = getattr(args, "postnet_layers", 5) args.postnet_chans = getattr(args, "postnet_chans", 256) args.postnet_filts = getattr(args, "postnet_filts", 5) args.postnet_dropout_rate = getattr(args, "postnet_dropout_rate", 0.5) args.dprenet_dropout_rate = getattr(args, "dprenet_dropout_rate", 0.5) args.dprenet_layers = getattr(args, "dprenet_layers", 2) args.dprenet_units = getattr(args, "dprenet_units", 256) args.initial_encoder_alpha = getattr(args, "initial_encoder_alpha", 1.0) args.initial_decoder_alpha = getattr(args, "initial_decoder_alpha", 1.0) args.spk_embed_integration_type = getattr(args, "spk_embed_integration_type", "pre") args.spk_embed_dim = getattr(args, "spk_embed_dim", 512) args.encoder_reduction_factor = getattr(args, "encoder_reduction_factor", 1) args.reduction_factor = getattr(args, "reduction_factor", 2) args.transformer_enc_positional_dropout_rate = getattr(args, "transformer_enc_positional_dropout_rate", 0.1) args.transformer_dec_positional_dropout_rate = getattr(args, "transformer_dec_positional_dropout_rate", 0.1) args.layer_norm_eps = getattr(args, "layer_norm_eps", 1e-5) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) # Convolutional subsampler args.encoder_speech_prenet = getattr(args, "encoder_speech_prenet", "conv") args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "5,5") args.conv_channels = getattr(args, "conv_channels", 1024) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.share_input_output_embed = getattr(args, "share_input_output_embed", False) args.share_ctc_embed = getattr(args, "share_ctc_embed", False) args.freeze_encoder_updates = getattr(args, "freeze_encoder_updates", 0) args.freeze_decoder_updates = getattr(args, "freeze_decoder_updates", 0) args.no_freeze_encoder_layer = getattr(args, "no_freeze_encoder_layer", None) ## sid args.sid_embed_dim = getattr(args, "sid_embed_dim", 128) args.sid_pooling_layer = getattr(args, "sid_pooling_layer", "decoder") args.softmax_scale = getattr(args, "softmax_scale", 1) args.softmax_margin = getattr(args, "softmax_margin", 0) args.softmax_easy_margin = getattr(args, "softmax_easy_margin", False) args.modules_filter = getattr(args, "modules_filter", None) ## Hubert args.conv_pos = getattr(args, "conv_pos", 128) args.conv_pos_groups = getattr(args, "conv_pos_groups", 16) args.target_glu = getattr(args, "target_glu", False) args.logit_temp = getattr(args, "logit_temp", 0.1) args.final_dim = getattr(args, "final_dim", 256) args.untie_final_proj = getattr(args, "untie_final_proj", True) args.feature_grad_mult = getattr(args, "feature_grad_mult", 0.1) args.use_sent_enc_layer = getattr(args, "use_sent_enc_layer", True) # hubert feature extractor args.extractor_mode = getattr(args, "extractor_mode", "default") args.conv_feature_layers = getattr(args, "conv_feature_layers", "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2") args.conv_bias = getattr(args, "conv_bias", False) # mask args.hubert_mask_length = getattr(args, "hubert_mask_length", 10) args.mask_prob = getattr(args, "mask_prob", 0.0) args.mask_selection = getattr(args, "mask_selection", "static") args.mask_other = getattr(args, "mask_other", 0) args.no_mask_overlap = getattr(args, "no_mask_overlap", False) args.mask_min_space = getattr(args, "mask_min_space", 1) # channel mask args.mask_channel_length = getattr(args, "mask_channel_length", 10) args.mask_channel_prob = getattr(args, "mask_channel_prob", 0.0) args.mask_channel_selection = getattr(args, "mask_channel_selection", "static") args.mask_channel_other = getattr(args, "mask_channel_other", 0) args.no_mask_channel_overlap = getattr(args, "no_mask_channel_overlap", False) args.mask_channel_min_space = getattr(args, "mask_channel_min_space", 1) # loss computation args.skip_masked = getattr(args, "skip_masked", False) args.skip_nomask = getattr(args, "skip_nomask", False) # conv Pos args.use_conv_pos = getattr(args, "use_conv_pos", False) args.use_sinc_pos = getattr(args, "use_sinc_pos", False) # codebook args.use_codebook = getattr(args, "use_codebook", False) args.latent_vars = getattr(args, "latent_vars", 100) args.latent_groups = getattr(args, "latent_groups", 2) args.latent_dim = getattr(args, "latent_dim", 0) args.latent_temp = getattr(args, "latent_temp", (2, 0.5, 0.999995)) args.quantizer_depth = getattr(args, "quantizer_depth", 1) args.quantizer_factor = getattr(args, "quantizer_factor", 3) args.codebook_prob = getattr(args, "codebook_prob", 0.5) # Relative pos embed args.relative_position_embedding = getattr(args, "relative_position_embedding", False) args.num_buckets = getattr(args, "num_buckets", 320) args.max_distance = getattr(args, "max_distance", 1280) args.encoder_max_relative_position = getattr(args, "encoder_max_relative_position", 160) args.decoder_max_relative_position = getattr(args, "decoder_max_relative_position", 160) @register_model_architecture("t5_transformer", "t5_transformer_base") def t5_transformer_base(args): args.use_conv_pos = getattr(args, "use_conv_pos", True) args.use_sinc_pos = getattr(args, "use_sinc_pos", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.layer_norm_first = getattr(args, "layer_norm_first", False) args.relative_position_embedding = getattr(args, "relative_position_embedding", True) args.dropout = getattr(args, "dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.05) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.05) args.mask_prob = getattr(args, "mask_prob", 0.80) base_architecture(args) @register_model_architecture("t5_transformer", "t5_transformer_large") def t5_transformer_large(args): args.use_conv_pos = getattr(args, "use_conv_pos", True) args.use_sinc_pos = getattr(args, "use_sinc_pos", True) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.layer_norm_first = getattr(args, "layer_norm_first", True) args.relative_position_embedding = getattr(args, "relative_position_embedding", True) args.dropout = getattr(args, "dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_layers = getattr(args, "encoder_layers", 24) args.decoder_layers = getattr(args, "decoder_layers", 6) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.feature_grad_mult = getattr(args, "feature_grad_mult", 1.0) args.extractor_mode = getattr(args, "extractor_mode", "layer_norm") args.final_dim = getattr(args, "final_dim", 768) args.mask_prob = getattr(args, "mask_prob", 0.80) base_architecture(args) @register_model_architecture("t5_transformer", "t5_transformer_base_asr") def t5_transformer_base_asr(args): args.use_conv_pos = getattr(args, "use_conv_pos", True) args.use_sinc_pos = getattr(args, "use_sinc_pos", True) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.layer_norm_first = getattr(args, "layer_norm_first", False) args.relative_position_embedding = getattr(args, "relative_position_embedding", True) args.dropout = getattr(args, "dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.feature_grad_mult = getattr(args, "feature_grad_mult", 0.0) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.1) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.1) args.mask_prob = getattr(args, "mask_prob", 0.75) args.mask_selection = getattr(args, "mask_selection", "static") args.mask_channel_length = getattr(args, "mask_channel_length", 64) args.mask_channel_prob = getattr(args, "mask_channel_prob", 0.5) args.mask_channel_selection = getattr(args, "mask_channel_selection", "static") args.max_text_positions = getattr(args, "max_text_positions", 600) base_architecture(args)
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/speecht5.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- from typing import Any, Dict, List, Optional import torch import torch.nn as nn from fairseq import utils from fairseq.distributed import fsdp_wrap from fairseq.models import ( FairseqIncrementalDecoder, ) from fairseq.modules import ( FairseqDropout, LayerDropModuleList, LayerNorm, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from torch import Tensor from .encoder import RelativePositionalEncoding from .transformer_layer import TransformerDecoderLayer DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, ): self.args = args super().__init__(None) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.decoder_layerdrop = args.decoder_layerdrop # self.max_s_positions = args.max_target_positions export = getattr(args, "export", False) self.cross_self_attention = getattr(args, "cross_self_attention", False) if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(args, no_encoder_attn) for _ in range(args.decoder_layers) ] ) self.num_layers = len(self.layers) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(args.decoder_embed_dim, eps=args.layer_norm_eps, export=export) else: self.layer_norm = None if args.relative_position_embedding: self.pos_emb = RelativePositionalEncoding(args.encoder_embed_dim//args.encoder_attention_heads, args.decoder_max_relative_position) def build_decoder_layer(self, args, no_encoder_attn=False): layer = TransformerDecoderLayer(args, no_encoder_attn=no_encoder_attn, has_relative_attention_bias=args.relative_position_embedding) checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward( self, prev_output_tokens, tgt_mask, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention, should be of size T x B x C incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, tgt_mask, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) return x, extra def extract_features( self, prev_output_tokens, tgt_mask, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): return self.extract_features_scriptable( prev_output_tokens, tgt_mask, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens, tgt_mask, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ bs = prev_output_tokens.size(0) if alignment_layer is None: alignment_layer = self.num_layers - 1 enc: Optional[Tensor] = None padding_mask: Optional[Tensor] = None if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: enc = encoder_out["encoder_out"][0] assert ( enc.size()[1] == bs ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}" if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: padding_mask = encoder_out["encoder_padding_mask"][0] # B x T x C -> T x B x C x = prev_output_tokens.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or tgt_mask is not None: self_attn_padding_mask = tgt_mask ## relative position embedding if self.args.relative_position_embedding: x_len = x.shape[0] pos_seq = torch.arange(0, x_len).long().to(x.device) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_k, pos_v = self.pos_emb(pos_seq) else: pos_k = None # decoder layers attn_list = [] attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, _ = layer( x, enc, padding_mask, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer or alignment_layer == -1)), need_head_weights=bool((idx == alignment_layer or alignment_layer == -1)), pos_bias=pos_k, ) inner_states.append(x) if layer_attn is not None and (idx == alignment_layer or alignment_layer == -1): attn = layer_attn.float().to(x) attn_list.append(attn.transpose(0, 1)) if attn is not None and len(attn_list) == 1: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": [attn if len(attn_list) <= 1 else attn_list], "inner_states": inner_states} # def max_positions(self): # """Maximum output length supported by the decoder.""" # return self.max_target_positions def buffered_future_mask(self, tensor): dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim], device=tensor.device)), 1, ) else: self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" def _apply(m): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) self.apply(_apply)
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/decoder.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import math from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import Tensor, nn from torch.nn import Parameter @with_incremental_state class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, has_relative_attention_bias=False, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.has_relative_attention_bias = has_relative_attention_bias self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) self.k_proj = quant_noise( nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) self.out_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, position_bias: Optional[Tensor] = None ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True is_tpu = query.device.type == "xla" tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if ( not self.onnx_trace and not is_tpu # don't use PyTorch version on TPUs and incremental_state is None and not static_kv # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() and not self.has_relative_attention_bias ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) if position_bias is not None and self.has_relative_attention_bias: ## first order ## position_bias: [241, 241, 64] #print ("attn_weights: ", attn_weights.size()) # [492, 241, 241] reshape_q = q.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0,1) #[241, 492, 64] #print ("reshape_q: ", reshape_q.size()) B = torch.matmul(reshape_q, position_bias.transpose(-2, -1)) #print ("B: ", B.size()) ## [241, 492, 241] #B = B.transpose(0, 1).view(bsz, self.num_heads, position_bias.size(0), position_bias.size(1)) B = B.transpose(0, 1).view(bsz*self.num_heads, position_bias.size(0), position_bias.size(1)) #print ("B 2: ", B.size()) attn_weights += B else: position_bias = None assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not is_tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: if src_len > prev_key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask.float() elif key_padding_mask is not None: if src_len > key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = key_padding_mask.float() else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/multihead_attention.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import torch.nn as nn import math import torch import torch.nn.functional as F class AngularMargin(nn.Module): """ An implementation of Angular Margin (AM) proposed in the following paper: '''Margin Matters: Towards More Discriminative Deep Neural Network Embeddings for Speaker Recognition''' (https://arxiv.org/abs/1906.07317) Arguments --------- margin : float The margin for cosine similiarity scale : float The scale for cosine similiarity Return --------- predictions : torch.Tensor Example ------- >>> pred = AngularMargin() >>> outputs = torch.tensor([ [1., -1.], [-1., 1.], [0.9, 0.1], [0.1, 0.9] ]) >>> targets = torch.tensor([ [1., 0.], [0., 1.], [ 1., 0.], [0., 1.] ]) >>> predictions = pred(outputs, targets) >>> predictions[:,0] > predictions[:,1] tensor([ True, False, True, False]) """ def __init__(self, margin=0.0, scale=1.0): super(AngularMargin, self).__init__() self.margin = margin self.scale = scale def forward(self, outputs, targets): """Compute AM between two tensors Arguments --------- outputs : torch.Tensor The outputs of shape [N, C], cosine similarity is required. targets : torch.Tensor The targets of shape [N, C], where the margin is applied for. Return --------- predictions : torch.Tensor """ outputs = outputs - self.margin * targets return self.scale * outputs class AdditiveAngularMargin(AngularMargin): """ An implementation of Additive Angular Margin (AAM) proposed in the following paper: '''Margin Matters: Towards More Discriminative Deep Neural Network Embeddings for Speaker Recognition''' (https://arxiv.org/abs/1906.07317) Arguments --------- margin : float The margin for cosine similiarity, usually 0.2. scale: float The scale for cosine similiarity, usually 30. Returns ------- predictions : torch.Tensor Tensor. Example ------- >>> outputs = torch.tensor([ [1., -1.], [-1., 1.], [0.9, 0.1], [0.1, 0.9] ]) >>> targets = torch.tensor([ [1., 0.], [0., 1.], [ 1., 0.], [0., 1.] ]) >>> pred = AdditiveAngularMargin() >>> predictions = pred(outputs, targets) >>> predictions[:,0] > predictions[:,1] tensor([ True, False, True, False]) """ def __init__(self, margin=0.0, scale=1.0, easy_margin=False): super(AdditiveAngularMargin, self).__init__(margin, scale) self.easy_margin = easy_margin self.cos_m = math.cos(self.margin) self.sin_m = math.sin(self.margin) self.th = math.cos(math.pi - self.margin) self.mm = math.sin(math.pi - self.margin) * self.margin def forward(self, outputs, targets): """ Compute AAM between two tensors Arguments --------- outputs : torch.Tensor The outputs of shape [N, C], cosine similarity is required. targets : torch.Tensor The targets of shape [N, C], where the margin is applied for. Return --------- predictions : torch.Tensor """ cosine = outputs.float() sine = torch.sqrt((1.0 - torch.pow(cosine, 2)).clamp(0, 1)) phi = cosine * self.cos_m - sine * self.sin_m # cos(theta + m) if self.easy_margin: phi = torch.where(cosine > 0, phi, cosine) else: phi = torch.where(cosine > self.th, phi, cosine - self.mm) outputs = (targets * phi) + ((1.0 - targets) * cosine) return self.scale * outputs class SpeakerDecoderPostnet(nn.Module): """Speaker Identification Postnet. Arguments --------- embed_dim : int The size of embedding. class_num: int The number of classes. args : Namespace Return --------- embed : torch.Tensor output : torch.Tensor """ def __init__(self, embed_dim, class_num, args): super(SpeakerDecoderPostnet, self).__init__() self.embed_dim = embed_dim self.class_num = class_num self.no_pooling_bn = getattr(args, "sid_no_pooling_bn", False) self.no_embed_postnet = getattr(args, "sid_no_embed_postnet", False) self.normalize_postnet = getattr(args, "sid_normalize_postnet", False) self.softmax_head = getattr(args, "sid_softmax_type", "softmax") if not self.no_pooling_bn: self.bn_pooling = nn.BatchNorm1d(args.decoder_output_dim) else: self.bn_pooling = None if not self.no_embed_postnet: self.output_embedding = nn.Linear(args.decoder_output_dim, embed_dim, bias=False) self.bn_embedding = nn.BatchNorm1d(embed_dim) else: self.output_embedding = None self.bn_embedding = None self.embed_dim = args.decoder_output_dim self.output_projection = nn.Linear(self.embed_dim, class_num, bias=False) if self.softmax_head == "amsoftmax": self.output_layer = AngularMargin(args.softmax_margin, args.softmax_scale) elif self.softmax_head == "aamsoftmax": self.output_layer = AdditiveAngularMargin(args.softmax_margin, args.softmax_scale, args.softmax_easy_margin) else: self.output_layer = None if self.output_embedding is not None: nn.init.normal_(self.output_embedding.weight, mean=0, std=embed_dim ** -0.5) nn.init.normal_(self.output_projection.weight, mean=0, std=class_num ** -0.5) def forward(self, x, target=None): """ Parameters ---------- x : torch.Tensor of shape [batch, channel] or [batch, time, channel] target : torch.Tensor of shape [batch, channel] """ if self.bn_pooling is not None: x = self.bn_pooling(x) if self.output_embedding is not None and self.bn_embedding is not None: embed = self.bn_embedding(self.output_embedding(x)) else: embed = x if self.output_layer is not None or self.normalize_postnet: x_norm = F.normalize(embed, p=2, dim=1) w_norm = F.normalize(self.output_projection.weight, p=2, dim=1) # [out_dim, in_dim] output = F.linear(x_norm, w_norm) if self.training and target is not None and self.output_layer is not None: output = self.output_layer(output, target) else: output = self.output_projection(embed) return output, embed
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/speaker_decoder_postnet.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import logging import torch.nn as nn import torch logger = logging.getLogger(__name__) class SpeechEncoderPostnet(nn.Module): """ Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__(self, dictionaries, args): super(SpeechEncoderPostnet, self).__init__() # modules below are not needed during fine-tuning self.target_glu = args.target_glu self.skip_masked = args.skip_masked self.skip_nomask = args.skip_nomask self.logit_temp = args.logit_temp final_dim = ( args.final_dim if args.final_dim > 0 else args.encoder_embed_dim ) if any([d is None for d in dictionaries]): logger.info( "cannot find dictionary. assume will be used for fine-tuning" ) else: self.num_classes = [len(d) for d in dictionaries] self.label_embs_concat = nn.Parameter( torch.FloatTensor(sum(self.num_classes), final_dim) ) nn.init.uniform_(self.label_embs_concat) self.untie_final_proj = args.untie_final_proj if self.untie_final_proj: self.final_proj = nn.Linear( args.encoder_embed_dim, final_dim * len(dictionaries) ) else: self.final_proj = nn.Linear(args.encoder_embed_dim, final_dim) def compute_nce(self, x, pos, negs): neg_is_pos = (pos == negs).all(-1) pos = pos.unsqueeze(0) targets = torch.cat([pos, negs], dim=0) logits = torch.cosine_similarity( x.float(), targets.float(), dim=-1 ).type_as(x) logits /= self.logit_temp if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") logits = logits.transpose(0, 1) # (num_x, num_cls+1) return logits def forward(self, x, padding_mask, mask_indices, target_list): def compute_pred(proj_x, target, label_embs): # compute logits for the i-th label set y = torch.index_select(label_embs, 0, target.long()) negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1) if self.target_glu: y = self.target_glu(y) negs = self.target_glu(negs) # proj_x: (S, D) # y: (S, D) # negs: (Neg, S, D) return self.compute_nce(proj_x, y, negs) label_embs_list = self.label_embs_concat.split(self.num_classes, 0) if not self.skip_masked: masked_indices = torch.logical_and(~padding_mask, mask_indices) proj_x_m = self.final_proj(x[masked_indices]) if self.untie_final_proj: proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1) else: proj_x_m_list = [proj_x_m for _ in range(len(target_list))] logit_m_list = [ compute_pred(proj_x_m, t[masked_indices], label_embs_list[i]) for i, (proj_x_m, t) in enumerate( zip(proj_x_m_list, target_list) ) ] else: logit_m_list = [None for _ in target_list] if not self.skip_nomask: nomask_indices = torch.logical_and(~padding_mask, ~mask_indices) proj_x_u = self.final_proj(x[nomask_indices]) if self.untie_final_proj: proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1) else: proj_x_u_list = [proj_x_u for _ in range(len(target_list))] logit_u_list = [ compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i]) for i, (proj_x_u, t) in enumerate( zip(proj_x_u_list, target_list) ) ] else: logit_u_list = [None for _ in target_list] result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, } return result
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/speech_encoder_postnet.py
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/__init__.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- from typing import Dict, List, Optional import torch import torch.nn as nn import contextlib from fairseq import utils from fairseq.modules import LayerNorm from .multihead_attention import MultiheadAttention from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import Tensor class TransformerSentenceEncoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, has_relative_attention_bias: bool = False, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, has_relative_attention_bias=has_relative_attention_bias, ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) if has_relative_attention_bias: self.norm_k = LayerNorm(self.embedding_dim//num_attention_heads) def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, att_args=None, pos_bias=None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) if pos_bias is not None: pos_bias = self.norm_k(pos_bias) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, position_bias=pos_bias, ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, position_bias=pos_bias, ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, attn class TransformerDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, has_relative_attention_bias=False ): super().__init__() self.embed_dim = args.decoder_embed_dim self.num_updates = 0 self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.freeze_decoder_updates = getattr(args, "freeze_decoder_updates", 0) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before export = getattr(args, "export", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False self.has_relative_attention_bias = has_relative_attention_bias if self.has_relative_attention_bias: self.norm_k = LayerNorm(self.embed_dim//args.decoder_attention_heads) def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_self_attention( self, embed_dim, args, add_bias_kv=False, add_zero_attn=False ): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, #has_relative_attention_bias=args.has_relative_attention_bias, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def prepare_for_onnx_export_(self): self.onnx_trace = True def residual_connection(self, x, residual): return residual + x def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, pos_bias=None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ ft = self.freeze_decoder_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): if need_head_weights: need_attn = True residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if pos_bias is not None: pos_bias = self.norm_k(pos_bias) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, position_bias=pos_bias, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) with torch.no_grad() if not ft else contextlib.ExitStack(): residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None def make_generation_fast_(self, need_attn: bool = False, **kwargs): self.need_attn = need_attn def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.num_updates = num_updates
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/transformer_layer.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- from typing import Dict, List import numpy as np import torch import torch.nn as nn import contextlib from fairseq import utils from fairseq.models import ( FairseqEncoder, ) from fairseq.modules import ( FairseqDropout, LayerNorm, TransformerEncoderLayer, ) from torch import Tensor from .transformer_layer import TransformerSentenceEncoderLayer DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m class RelativePositionalEncoding(torch.nn.Module): def __init__(self, d_model, maxlen=1000, embed_v=False): super(RelativePositionalEncoding, self).__init__() self.d_model = d_model self.maxlen = maxlen self.pe_k = torch.nn.Embedding(2*maxlen, d_model) if embed_v: self.pe_v = torch.nn.Embedding(2*maxlen, d_model) self.embed_v = embed_v def forward(self, pos_seq): pos_seq[pos_seq < -self.maxlen] = -self.maxlen pos_seq[pos_seq >= self.maxlen] = self.maxlen - 1 pos_seq = pos_seq + self.maxlen if self.embed_v: return self.pe_k(pos_seq), self.pe_v(pos_seq) else: return self.pe_k(pos_seq), None class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, tgt_dict=None, embed_tokens=None): self.args = args super().__init__(None) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.encoder_layerdrop = args.encoder_layerdrop self.freeze_encoder_updates = args.freeze_encoder_updates if args.no_freeze_encoder_layer is not None: self.no_freeze_encoder_layer = eval(args.no_freeze_encoder_layer) else: self.no_freeze_encoder_layer = None self.num_updates = 0 export = getattr(args, "export", False) self.layers = nn.ModuleList([]) self.layers.extend( [self.build_encoder_layer(args) for i in range(args.encoder_layers)] ) self.num_layers = len(self.layers) self.use_sent_enc_layer = args.use_sent_enc_layer self.unb_enc_layer = getattr(args, "unb_enc_layer", -1) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(args.encoder_embed_dim, eps=args.layer_norm_eps, export=export) if args.share_ctc_embed and embed_tokens is not None: self.proj = nn.Linear( embed_tokens.weight.shape[1], embed_tokens.weight.shape[0], bias=False, ) self.proj.weight = embed_tokens.weight elif tgt_dict is not None: self.proj = Linear(args.encoder_embed_dim, len(tgt_dict)) else: self.proj = None if args.relative_position_embedding: self.pos_emb = RelativePositionalEncoding(args.encoder_embed_dim//args.encoder_attention_heads, args.encoder_max_relative_position) def build_encoder_layer(self, args): if args.use_sent_enc_layer: layer = TransformerSentenceEncoderLayer( embedding_dim=args.encoder_embed_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, has_relative_attention_bias=args.relative_position_embedding, ) else: layer = TransformerEncoderLayer(args) return layer def forward( self, encoder_in, encoder_padding_mask, return_all_hiddens: bool = False, tgt_layer=None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ if self.no_freeze_encoder_layer is None: ft = self.freeze_encoder_updates <= self.num_updates else: ft = True with torch.no_grad() if not ft else contextlib.ExitStack(): encoder_out = self.forward_scriptable( encoder_in, encoder_padding_mask, return_all_hiddens, tgt_layer=tgt_layer, ) # CTC and bert if self.proj: x_for_ctc = self.proj(self.dropout_module(encoder_out["encoder_out"][0])) else: x_for_ctc = None encoder_out["encoder_out_for_ctc"] = [x_for_ctc] # T x B x C return encoder_out # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, encoder_in, encoder_padding_mask, return_all_hiddens: bool = False, tgt_layer=None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ if self.no_freeze_encoder_layer is not None: ft = self.freeze_encoder_updates <= self.num_updates else: ft = True with torch.no_grad() if not ft else contextlib.ExitStack(): # compute padding mask if not self.use_sent_enc_layer: has_pads = encoder_in.device.type == "xla" or encoder_padding_mask.any() if not self.layer_norm_first: encoder_in = self.layer_norm(encoder_in) encoder_in = self.dropout_module(encoder_in) # B x T x C -> T x B x C x = encoder_in.transpose(0, 1) encoder_states = [] if return_all_hiddens: encoder_states.append(x) ## relative position embedding if self.args.relative_position_embedding: x_len = x.shape[0] pos_seq = torch.arange(0, x_len).long().to(x.device) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_k, pos_v = self.pos_emb(pos_seq) else: pos_k = None # encoder layers r = None d = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() with torch.no_grad() if (not ft) and i not in self.no_freeze_encoder_layer else contextlib.ExitStack(): if not self.training or (dropout_probability > self.encoder_layerdrop) or i == self.unb_enc_layer: if self.use_sent_enc_layer: x, _ = layer(x, self_attn_padding_mask=encoder_padding_mask, self_attn_mask=None, need_weights=False, pos_bias=pos_k) # x, _ = layer(x, self_attn_padding_mask=encoder_padding_mask, need_weights=False, pos_bias=pos_k) else: x = layer(x, encoder_padding_mask=encoder_padding_mask if has_pads else None, attn_mask=None) # x = layer(x, encoder_padding_mask=encoder_padding_mask if has_pads else None) if i == self.unb_enc_layer: d = x if i == tgt_layer: r = x break if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) with torch.no_grad() if not ft else contextlib.ExitStack(): # Finally T x B x C if self.layer_norm_first: x = self.layer_norm(x.transpose(0, 1)).transpose(0, 1) if r is not None: x = r # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "decoder_input": [d], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_out_for_ctc"]) == 0: new_x_for_ctc = [] else: new_x_for_ctc = [encoder_out["encoder_out_for_ctc"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["decoder_input"]) == 0 or encoder_out["decoder_input"][0] is None: new_decoder_input = [] else: new_decoder_input = [ encoder_out["decoder_input"][0].index_select(0, new_order) ] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "encoder_out_for_ctc": new_x_for_ctc, # T x B x C "decoder_input": new_decoder_input, } # def max_positions(self): # """Maximum input length supported by the encoder.""" # return self.max_source_positions def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" # if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): # weights_key = "{}.embed_positions.weights".format(name) # if weights_key in state_dict: # print("deleting {0}".format(weights_key)) # del state_dict[weights_key] # state_dict[ # "{}.embed_positions._float_tensor".format(name) # ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms if not isinstance(self.layers[i], TransformerSentenceEncoderLayer): self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/encoder.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import torch.nn as nn import torch import contextlib from fairseq import utils from fairseq.modules import ( AdaptiveSoftmax, ) class TextDecoderPostnet(nn.Module): """ Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__(self, embed_tokens, dictionary, args, output_projection=None,): super(TextDecoderPostnet, self).__init__() self.output_embed_dim = args.decoder_output_dim self.output_projection = output_projection self.adaptive_softmax = None self.share_input_output_embed = args.share_input_output_embed if self.output_projection is None: self.build_output_projection(args, dictionary, embed_tokens) self.freeze_decoder_updates = args.freeze_decoder_updates self.num_updates = 0 def output_layer(self, features): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary return self.output_projection(features) else: return features def build_output_projection(self, args, dictionary, embed_tokens): if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif self.share_input_output_embed: self.output_projection = nn.Linear( embed_tokens.weight.shape[1], embed_tokens.weight.shape[0], bias=False, ) self.output_projection.weight = embed_tokens.weight else: self.output_projection = nn.Linear( self.output_embed_dim, len(dictionary), bias=False ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5 ) # num_base_layers = getattr(args, "base_layers", 0) # for i in range(num_base_layers): # self.layers.insert( # ((i + 1) * args.decoder_layers) // (num_base_layers + 1), # BaseLayer(args), # ) def forward(self, x): ft = self.freeze_decoder_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): return self._forward(x) def _forward(self, x): # embed positions x = self.output_layer(x) return x def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.num_updates = num_updates
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/text_decoder_postnet.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import logging import math import torch import contextlib from typing import List, Tuple import torch.nn as nn from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.data.data_utils import compute_mask_indices from fairseq.modules import ( PositionalEmbedding, Fp32GroupNorm, FairseqDropout, SamePad, GradMultiply, LayerNorm, Fp32LayerNorm, TransposeLast, ) import numpy as np logger = logging.getLogger(__name__) class LinearLayer(nn.Module): def __init__(self, idim, odom, dropout=0): super(LinearLayer, self).__init__() self.linear = nn.Sequential( nn.Linear(idim, odom), nn.LayerNorm(odom), nn.Dropout(dropout), nn.ReLU(), ) def get_out_seq_lens_tensor(self, in_seq_lens_tensor): out = in_seq_lens_tensor.clone() return out def forward(self, src_tokens, src_lengths): """ src_tokens: [B, T, C] src_lengths: [B] """ x = self.linear(src_tokens) x = x.transpose(0, 1).contiguous() # -> T x B x C return x, src_lengths class SpeechEncoderPrenet(nn.Module): """ Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__(self, args): super(SpeechEncoderPrenet, self).__init__() self.dropout_module = FairseqDropout( p=args.dropout, module_name=self.__class__.__name__ ) self.embed_scale = math.sqrt(args.encoder_embed_dim) if args.no_scale_embedding: self.embed_scale = 1.0 self.padding_idx = 1 self.freeze_encoder_updates = args.freeze_encoder_updates self.num_updates = 0 assert args.encoder_speech_prenet in ["conv", "linear"], args.encoder_speech_prenet feature_enc_layers = eval(args.conv_feature_layers) # noqa self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=args.extractor_mode, conv_bias=args.conv_bias, ) feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers]) self.feat2tar_ratio = ( args.label_rates * feature_ds_rate / args.sample_rate ) self.post_extract_proj = ( nn.Linear(self.embed, args.encoder_embed_dim) if self.embed != args.encoder_embed_dim else None ) self.use_conv_pos = args.use_conv_pos self.use_sinc_pos = args.use_sinc_pos self.use_abs_pos = getattr(args, "use_abs_pos", False) self.feature_grad_mult = args.feature_grad_mult if self.use_conv_pos: self.layer_norm = LayerNorm(self.embed) self.pos_conv = nn.Conv1d( args.encoder_embed_dim, args.encoder_embed_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * args.encoder_embed_dim)) nn.init.normal_(self.pos_conv.weight, mean=0, std=std) nn.init.constant_(self.pos_conv.bias, 0) self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) assert not (self.use_sinc_pos and self.use_abs_pos), f"sinc pos: {self.use_sinc_pos} abs pos: {self.use_abs_pos}" if self.use_sinc_pos: self.embed_positions = PositionalEmbedding( args.max_speech_positions, args.encoder_embed_dim, self.padding_idx ) if self.use_abs_pos: self.embed_positions = PositionalEmbedding( args.max_speech_positions, args.encoder_embed_dim, self.padding_idx, learned=True ) # Hubert self.mask_prob = args.mask_prob self.mask_selection = args.mask_selection self.mask_other = args.mask_other self.hubert_mask_length = args.hubert_mask_length self.no_mask_overlap = args.no_mask_overlap self.mask_min_space = args.mask_min_space self.mask_channel_prob = args.mask_channel_prob self.mask_channel_selection = args.mask_channel_selection self.mask_channel_other = args.mask_channel_other self.mask_channel_length = args.mask_channel_length self.no_mask_channel_overlap = args.no_mask_channel_overlap self.mask_channel_min_space = args.mask_channel_min_space self.mask_emb = nn.Parameter( torch.FloatTensor(args.encoder_embed_dim).uniform_() ) def forward(self, src_tokens, require_feat_pen=False, target_list=None, padding_mask=None, mask=True): ft = self.freeze_encoder_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): return self._forward(src_tokens, require_feat_pen, target_list, padding_mask, mask) def _forward(self, src_tokens, require_feat_pen=False, target_list=None, padding_mask=None, mask=True): if self.feature_grad_mult > 0: x = self.feature_extractor(src_tokens) x = x.transpose(1, 2).transpose(0, 1) # [length, batch, hidden_size] if self.feature_grad_mult != 1.0: x = GradMultiply.apply(x, self.feature_grad_mult) else: with torch.no_grad(): x = self.feature_extractor(src_tokens) x = x.transpose(1, 2).transpose(0, 1) # [length, batch, hidden_size] x = x.transpose(0, 1) # [batch, length, hidden_size] encoder_padding_mask = padding_mask x = x.transpose(1, 2) # [batch, hidden_size, length] if target_list is not None: x, target_list = self.forward_targets(x, target_list) features_pen = x.float().pow(2).mean() x = x.transpose(1, 2) # [batch, length, hidden_size] x = self.layer_norm(x) encoder_padding_mask = self.forward_padding_mask(x, encoder_padding_mask) if self.post_extract_proj is not None: x = self.post_extract_proj(x) x = self.dropout_module(x) if mask: x, mask_indices = self.apply_hubert_mask( x, encoder_padding_mask ) else: x = x mask_indices = None if self.use_conv_pos: positions = self.pos_conv(x.transpose(1, 2)) positions = positions.transpose(1, 2) #else: # positions = self.embed_positions(encoder_padding_mask) x = x + positions if self.use_sinc_pos: positions = self.embed_positions(encoder_padding_mask) x = x + positions # x = self.dropout_module(x) if require_feat_pen: return (x, features_pen, mask_indices, target_list), encoder_padding_mask else: # For consistence with encoder return x, encoder_padding_mask def forward_targets( self, features: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_list = [t[:, target_inds.long()] for t in target_list] return features, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view( padding_mask.size(0), features.size(1), -1 ) padding_mask = padding_mask.all(-1) return padding_mask def get_src_lengths(self, src_lengths): return self.feature_extractor.get_out_seq_lens_tensor(src_lengths) def apply_hubert_mask(self, x, padding_mask): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.hubert_mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.num_updates = num_updates class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers: List[Tuple[int, int, int]], dropout: float = 0.0, mode: str = "default", conv_bias: bool = False, ): super().__init__() assert mode in {"default", "layer_norm"} def block( n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False, ): def make_conv(): conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) nn.init.kaiming_normal_(conv.weight) return conv assert ( is_layer_norm and is_group_norm ) == False, "layer norm and group norm are exclusive" if is_layer_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=True), TransposeLast(), ), nn.GELU(), ) elif is_group_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), Fp32GroupNorm(dim, dim, affine=True), nn.GELU(), ) else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) in_d = 1 self.conv_layers = nn.ModuleList() self.conv_layers_infos = conv_layers for i, cl in enumerate(conv_layers): assert len(cl) == 3, "invalid conv definition: " + str(cl) (dim, k, stride) = cl self.conv_layers.append( block( in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias, ) ) in_d = dim def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: x = conv(x) return x def get_out_seq_lens_nonmask_after_a_layer(self, in_seq_lens_tensor, i): """Returns the out_seq_lens_nonmask 0/1 tensor after a layer. Args: in_seq_lens_tensor (LongTensor): length Returns: LongTensor: length """ out_lengths = in_seq_lens_tensor.clone() out_lengths = ((out_lengths.float() - (self.conv_layers_infos[i][1] - 1) - 1) / self.conv_layers_infos[i][-1] + 1).floor().long() out_nonmask = (~lengths_to_padding_mask(out_lengths)).float() return out_nonmask, out_lengths def get_out_seq_lens_tensor(self, in_seq_lens_tensor): out = in_seq_lens_tensor.clone() for i in range(len(self.conv_layers)): out = ((out.float() - (self.conv_layers_infos[i][1] - 1) - 1) / self.conv_layers_infos[i][-1] + 1).floor().long() return out
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/speech_encoder_prenet.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import contextlib import torch import torch.nn as nn from espnet.nets.pytorch_backend.tacotron2.decoder import Postnet class SpeechDecoderPostnet(nn.Module): """ Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__( self, odim, args, ): super(SpeechDecoderPostnet, self).__init__() # define decoder postnet # define final projection self.feat_out = torch.nn.Linear(args.decoder_embed_dim, odim * args.reduction_factor) self.prob_out = torch.nn.Linear(args.decoder_embed_dim, args.reduction_factor) # define postnet self.postnet = ( None if args.postnet_layers == 0 else Postnet( idim=0, odim=odim, n_layers=args.postnet_layers, n_chans=args.postnet_chans, n_filts=args.postnet_filts, use_batch_norm=args.use_batch_norm, dropout_rate=args.postnet_dropout_rate, ) ) self.odim = odim self.num_updates = 0 self.freeze_decoder_updates = args.freeze_decoder_updates def forward(self, zs): ft = self.freeze_decoder_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): # (B, Lmax//r, odim * r) -> (B, Lmax//r * r, odim) before_outs = self.feat_out(zs).view(zs.size(0), -1, self.odim) # (B, Lmax//r, r) -> (B, Lmax//r * r) logits = self.prob_out(zs).view(zs.size(0), -1) # postnet -> (B, Lmax//r * r, odim) if self.postnet is None: after_outs = before_outs else: after_outs = before_outs + self.postnet( before_outs.transpose(1, 2) ).transpose(1, 2) return before_outs, after_outs, logits def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.num_updates = num_updates
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/speech_decoder_postnet.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import contextlib import torch import torch.nn as nn import torch.nn.functional as F from espnet.nets.pytorch_backend.tacotron2.decoder import Prenet as TacotronDecoderPrenet from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask class SpeechDecoderPrenet(nn.Module): """ Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__( self, odim, args, ): super(SpeechDecoderPrenet, self).__init__() # define decoder prenet if args.dprenet_layers != 0: # decoder prenet decoder_input_layer = torch.nn.Sequential( TacotronDecoderPrenet( idim=odim, n_layers=args.dprenet_layers, n_units=args.dprenet_units, dropout_rate=args.dprenet_dropout_rate, ), torch.nn.Linear(args.dprenet_units, args.decoder_embed_dim), ) else: decoder_input_layer = "linear" pos_enc_class = ( ScaledPositionalEncoding if args.dec_use_scaled_pos_enc else PositionalEncoding ) if decoder_input_layer == "linear": self.decoder_prenet = torch.nn.Sequential( torch.nn.Linear(odim, args.decoder_embed_dim), torch.nn.LayerNorm(args.decoder_embed_dim), torch.nn.Dropout(args.transformer_dec_dropout_rate), torch.nn.ReLU(), pos_enc_class(args.decoder_embed_dim, args.transformer_dec_positional_dropout_rate), ) elif isinstance(decoder_input_layer, torch.nn.Module): self.decoder_prenet = torch.nn.Sequential( decoder_input_layer, pos_enc_class(args.decoder_embed_dim, args.transformer_dec_positional_dropout_rate, max_len=args.max_speech_positions) ) if args.spk_embed_integration_type == 'pre': self.spkembs_layer = torch.nn.Sequential( torch.nn.Linear(args.spk_embed_dim + args.decoder_embed_dim, args.decoder_embed_dim), torch.nn.ReLU() ) self.num_updates = 0 self.freeze_decoder_updates = args.freeze_decoder_updates def forward(self, prev_output_tokens, tgt_lengths_in=None, spkembs=None): ft = self.freeze_decoder_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): prev_output_tokens = self.decoder_prenet(prev_output_tokens) if spkembs is not None: spkembs = F.normalize(spkembs).unsqueeze(1).expand(-1, prev_output_tokens.size(1), -1) prev_output_tokens = self.spkembs_layer(torch.cat([prev_output_tokens, spkembs], dim=-1)) if tgt_lengths_in is not None: tgt_frames_mask = ~(self._source_mask(tgt_lengths_in).squeeze(1)) else: tgt_frames_mask = None return prev_output_tokens, tgt_frames_mask def _source_mask(self, ilens): """Make masks for self-attention. Args: ilens (LongTensor or List): Batch of lengths (B,). Returns: Tensor: Mask tensor for self-attention. dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (including 1.2) Examples: >>> ilens = [5, 3] >>> self._source_mask(ilens) tensor([[[1, 1, 1, 1, 1], [[1, 1, 1, 0, 0]]], dtype=torch.uint8) """ x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device) return x_masks.unsqueeze(-2) def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.num_updates = num_updates
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/speech_decoder_prenet.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import math import torch.nn as nn import torch import contextlib from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from fairseq.models.transformer import Linear, LayerNorm from fairseq.modules import ( PositionalEmbedding, FairseqDropout, ) class TextDecoderPrenet(nn.Module): """ Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__(self, embed_tokens, args): super(TextDecoderPrenet, self).__init__() self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.decoder_layerdrop = args.decoder_layerdrop self.num_updates = 0 input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.output_embed_dim = args.decoder_output_dim self.padding_idx = embed_tokens.padding_idx self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( args.max_text_positions, embed_dim, self.padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) export = getattr(args, "export", False) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim, export=export) else: self.layernorm_embedding = None self.freeze_decoder_updates = args.freeze_decoder_updates def forward(self, prev_output_tokens, incremental_state=None): ft = self.freeze_decoder_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): return self._forward(prev_output_tokens, incremental_state) def _forward(self, prev_output_tokens, incremental_state=None): if prev_output_tokens.eq(self.padding_idx).any(): x_mask = prev_output_tokens.eq(self.padding_idx) else: x_mask = None # embed positions positions = None if self.embed_positions is not None: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, x_mask, incremental_state def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self.num_updates = num_updates
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/text_decoder_prenet.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import torch.nn as nn from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding class TextEncoderPrenet(nn.Module): """ Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__( self, embed_tokens, args, ): super(TextEncoderPrenet, self).__init__() self.padding_idx = embed_tokens.padding_idx # define encoder prenet # get positional encoding class pos_enc_class = ( ScaledPositionalEncoding if args.enc_use_scaled_pos_enc else PositionalEncoding ) self.encoder_prenet = nn.Sequential( embed_tokens, pos_enc_class(args.encoder_embed_dim, args.transformer_enc_positional_dropout_rate, max_len=args.max_text_positions), ) def forward(self, src_tokens): return self.encoder_prenet(src_tokens), src_tokens.eq(self.padding_idx)
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/models/modules/text_encoder_prenet.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import logging import os from typing import Any, List, Optional import librosa import numpy as np import torch import torch.nn.functional as F from fairseq.data.fairseq_dataset import FairseqDataset logger = logging.getLogger(__name__) def _collate_frames( frames: List[torch.Tensor], is_audio_input: bool = False ): """ Convert a list of 2D frames into a padded 3D tensor Args: frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is length of i-th frame and f_dim is static dimension of features Returns: 3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i] """ max_len = max(frame.size(0) for frame in frames) if is_audio_input: out = frames[0].new_zeros((len(frames), max_len)) else: out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1))) for i, v in enumerate(frames): out[i, : v.size(0)] = v return out def load_audio(manifest_path, max_keep, min_keep): """manifest tsv: src_wav, src_nframe, tgt_wav, tgt_nframe, tgt_spkemb""" n_long, n_short = 0, 0 src_names, tgt_names, inds, sizes, tgt_sizes, spk_embeds = [], [], [], [], [], [] with open(manifest_path) as f: root = f.readline().strip() for ind, line in enumerate(f): items = line.strip().split("\t") assert len(items) >= 2, line sz = int(items[1]) if min_keep is not None and sz < min_keep: n_short += 1 elif max_keep is not None and sz > max_keep: n_long += 1 else: src_names.append(items[0]) tgt_names.append(items[2]) tgt_sizes.append(items[3]) spk_embeds.append(items[4]) inds.append(ind) sizes.append(sz) tot = ind + 1 logger.info( ( f"max_keep={max_keep}, min_keep={min_keep}, " f"loaded {len(src_names)}, skipped {n_short} short and {n_long} long, " f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" ) ) return root, src_names, inds, tot, sizes, tgt_names, tgt_sizes, spk_embeds def logmelfilterbank( audio, sampling_rate, fft_size=1024, hop_size=256, win_length=None, window="hann", num_mels=80, fmin=80, fmax=7600, eps=1e-10, ): """Compute log-Mel filterbank feature. (https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py) Args: audio (ndarray): Audio signal (T,). sampling_rate (int): Sampling rate. fft_size (int): FFT size. hop_size (int): Hop size. win_length (int): Window length. If set to None, it will be the same as fft_size. window (str): Window function type. num_mels (int): Number of mel basis. fmin (int): Minimum frequency in mel basis calculation. fmax (int): Maximum frequency in mel basis calculation. eps (float): Epsilon value to avoid inf in log calculation. Returns: ndarray: Log Mel filterbank feature (#frames, num_mels). """ # get amplitude spectrogram x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size, win_length=win_length, window=window, pad_mode="reflect") spc = np.abs(x_stft).T # (#frames, #bins) # get mel basis fmin = 0 if fmin is None else fmin fmax = sampling_rate / 2 if fmax is None else fmax mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax) return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T))) class SpeechToSpeechDataset(FairseqDataset): def __init__( self, manifest_path: str, sample_rate: float, max_keep_sample_size: Optional[int] = None, min_keep_sample_size: Optional[int] = None, shuffle: bool = True, normalize: bool = False, reduction_factor: int = 1, ): self.audio_root, self.audio_names, inds, tot, self.wav_sizes, self.tgt_audios, self.tgt_sizes, self.tgt_spkembs = load_audio( manifest_path, max_keep_sample_size, min_keep_sample_size ) self.sample_rate = sample_rate self.shuffle = shuffle self.normalize = normalize self.reduction_factor = reduction_factor logger.info( f"reduction_factor={reduction_factor}, normalize={normalize}" ) def get_audio(self, index): import soundfile as sf wav_fbank = [] for name in [self.audio_names[index], self.tgt_audios[index]]: wav_path = os.path.join(self.audio_root, name) wav, cur_sample_rate = sf.read(wav_path) wav = torch.from_numpy(wav).float() fbank = logmelfilterbank( wav.view(-1).cpu().numpy(), 16000 ) fbank = torch.from_numpy(fbank).float() wav = self.postprocess(wav, cur_sample_rate) wav_fbank.append(wav) wav_fbank.append(fbank) src_wav, src_fbank, tgt_wav, tgt_fbank = wav_fbank return src_wav, src_fbank, tgt_wav, tgt_fbank def __getitem__(self, index): src_wav, src_fbank, tgt_wav, tgt_fbank = self.get_audio(index) spkembs = np.load(os.path.join(self.audio_root, self.tgt_spkembs[index])) spkembs = torch.from_numpy(spkembs).float() name = self.audio_names[index].replace("/", ".").replace(".wav", "") + "-" + self.tgt_audios[index].replace("/", ".").replace(".wav", "") + ".wav" return {"id": index, "source": src_wav, "target": tgt_fbank, "spkembs": spkembs, "audio_name": name, "tgt_name": self.tgt_audios[index]} def __len__(self): return len(self.wav_sizes) def collater(self, samples): samples = [s for s in samples if s["source"] is not None] if len(samples) == 0: return {} audios = [s["source"] for s in samples] audio_sizes = [len(s) for s in audios] audio_size = max(audio_sizes) collated_audios, padding_mask = self.collater_audio( audios, audio_size ) fbanks = [s["target"] for s in samples] fbank_sizes = [len(s) for s in fbanks] collated_fbanks = _collate_frames(fbanks) collated_fbanks_size = torch.tensor(fbank_sizes, dtype=torch.long) # thin out frames for reduction factor (B, Lmax, odim) -> (B, Lmax//r, odim) if self.reduction_factor > 1: collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor] collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size]) else: collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size prev_output_tokens = torch.cat( [collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1 ) # make labels for stop prediction labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1)) for i, l in enumerate(fbank_sizes): labels[i, l - 1 :] = 1.0 spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True) net_input = { "source": collated_audios, "padding_mask": padding_mask, "prev_output_tokens": prev_output_tokens, "tgt_lengths": collated_fbanks_size_in, "spkembs": spkembs, "task_name": "s2s", } batch = { "id": torch.LongTensor([s["id"] for s in samples]), "name": [s["audio_name"] for s in samples], "tgt_name": [s["tgt_name"] for s in samples], "net_input": net_input, "labels": labels, "dec_target": collated_fbanks, "dec_target_lengths": collated_fbanks_size, "src_lengths": torch.LongTensor(audio_sizes), "task_name": "s2s", "ntokens": sum(audio_sizes), "target": collated_fbanks, } return batch def collater_audio(self, audios, audio_size): collated_audios = audios[0].new_zeros(len(audios), audio_size) padding_mask = ( torch.BoolTensor(collated_audios.shape).fill_(False) ) for i, audio in enumerate(audios): diff = len(audio) - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) padding_mask[i, diff:] = True else: raise Exception("Diff should not be larger than 0") return collated_audios, padding_mask def num_tokens(self, index): return self.wav_sizes[index] def size(self, index): return self.wav_sizes[index], self.tgt_sizes[index] @property def sizes(self): return np.array(self.wav_sizes) @property def can_reuse_epoch_itr_across_epochs(self): """No cache dataset if dataset is large-scale. Cache dataset for small dataset.""" return True def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.wav_sizes) return np.lexsort(order)[::-1] def postprocess(self, wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != self.sample_rate: raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") if self.normalize: with torch.no_grad(): wav = F.layer_norm(wav, wav.shape) return wav
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/data/speech_to_speech_dataset.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import bisect import logging import numpy as np from torch.utils.data.dataloader import default_collate from fairseq.data import data_utils from fairseq.data.fairseq_dataset import FairseqDataset logger = logging.getLogger(__name__) class MultitaskDataset(FairseqDataset): @staticmethod def cumsum(sequence): r, s = [], 0 for e in sequence: curr_len = len(e) r.append(curr_len + s) s += curr_len return r def __init__(self, datasets, sample_ratios=1, batch_ratio=None): super(MultitaskDataset, self).__init__() assert len(datasets) > 0, "datasets should not be an empty iterable" self.datasets = list(datasets) if isinstance(sample_ratios, int): sample_ratios = [sample_ratios] * len(self.datasets) if batch_ratio is not None: logger.info('batch ratio is ' + str(batch_ratio)) self.batch_ratio = batch_ratio else: self.batch_ratio = None else: logger.info('set sample ratio to ' + str(sample_ratios)) if batch_ratio is not None: logger.info('batch ratio is ' + str(batch_ratio)) self.batch_ratio = batch_ratio else: self.batch_ratio = None self.sample_ratios = sample_ratios self._ordered_indices = None self._update_size() def __len__(self): return self.cumulative_sizes[-1] def __getitem__(self, idx): dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx) sample = self.datasets[dataset_idx][sample_idx] if isinstance(sample, dict): sample["dataset_idx"] = dataset_idx else: sample = sample + (dataset_idx,) return sample def _update_size(self): self.cumulative_sizes = self.cumsum(self.datasets) self.real_sizes = [len(d) for d in self.datasets] def _get_dataset_and_sample_index(self, idx: int): dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) if dataset_idx == 0: sample_idx = idx else: sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] sample_idx = sample_idx % self.real_sizes[dataset_idx] return dataset_idx, sample_idx def collater(self, samples, **extra_args): # For now only supports datasets with same underlying collater implementations if samples is not None and len(samples) > 0: if isinstance(samples[0], dict): dataset_idx = samples[0]["dataset_idx"] else: dataset_idx = samples[0][-1] samples = [sample[:-1] for sample in samples] else: dataset_idx = 0 if hasattr(self.datasets[dataset_idx], "collater"): return self.datasets[dataset_idx].collater(samples, **extra_args) else: return default_collate(samples, **extra_args) def size(self, idx: int): """ Return an example's size as a float or tuple. """ dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx) return self.datasets[dataset_idx].size(sample_idx) def num_tokens(self, index: int): return np.max(self.size(index)) def attr(self, attr: str, index: int): dataset_idx = bisect.bisect_right(self.cumulative_sizes, index) return getattr(self.datasets[dataset_idx], attr, None) @property def sizes(self): _dataset_sizes = [] for ds in self.datasets: if isinstance(ds.sizes, np.ndarray): _dataset_sizes.append(ds.sizes) else: # Only support underlying dataset with single size array. assert isinstance(ds.sizes, list) _dataset_sizes.append(ds.sizes[0]) return np.concatenate(_dataset_sizes) @property def supports_prefetch(self): return all(d.supports_prefetch for d in self.datasets) def ordered_indices(self): # ordered_indices = [] # for i, dataset in enumerate(self.datasets): # indice = dataset.ordered_indices() # ordered_indices.append(indice) if self._ordered_indices is None: # Call the underlying dataset's ordered_indices() here, so that we # get the same random ordering as we would have from using the # underlying sub-datasets directly. self._ordered_indices = [ dataset.ordered_indices() for dataset in self.datasets ] return np.arange(len(self)) def prefetch(self, indices): frm = 0 for to, ds in zip(self.cumulative_sizes, self.datasets): real_size = len(ds) if getattr(ds, "supports_prefetch", False): ds.prefetch([(i - frm) % real_size for i in indices if frm <= i < to]) frm = to def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): if not hasattr(self, "max_tokens"): self.max_tokens = max_tokens if not hasattr(self, "max_sentences"): self.max_sentences = max_sentences if not hasattr(self, "required_batch_size_multiple"): self.required_batch_size_multiple = required_batch_size_multiple batch_samplers = [] for i, dataset in enumerate(self.datasets): batch_sampler = dataset.batch_by_size( self._ordered_indices[i], max_tokens=max_tokens if self.batch_ratio is None else max_tokens * self.batch_ratio[i], max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) if i > 0: for batch in batch_sampler: batch += self.cumulative_sizes[i - 1] if self.sample_ratios[i] != 1.0: batch_sampler = np.array(batch_sampler) batch_sampler = np.random.choice(batch_sampler, int(len(batch_sampler) * self.sample_ratios[i])) batch_sampler = list(batch_sampler) logger.info('Adjust batch by ratio ' + str(self.sample_ratios[i]) + ' and the number of batch is ' + str(int(len(batch_sampler))) + ' for dataset ' + str(i)) batch_samplers.extend(batch_sampler) return batch_samplers def filter_indices_by_size(self, indices, max_positions): """ Filter each sub-dataset independently, then update the round robin to work on the filtered sub-datasets. """ if not hasattr(self, "max_positions"): self.max_positions = max_positions ignored_some = False for i in range(len(self.datasets)): # ignored = [] self._ordered_indices[i], ignored = self.datasets[i].filter_indices_by_size( self._ordered_indices[i], self.max_positions[i] ) if len(ignored) > 0: ignored_some = True logger.warning( f"{len(ignored)} samples from {i} have invalid sizes and will be skipped, " f"max_positions={self.max_positions[i]}, first few sample ids={ignored[:10]}" ) logger.info('update dataset size') self._update_size() # Since we are modifying in place the _ordered_indices, # it's not possible anymore to return valid ignored indices. # Hopefully the extra debug information print above should be enough to debug. # Ideally we would receive ignore_invalid_inputs so that we could have # a proper error message. return (np.arange(len(self)), [0] if ignored_some else []) @property def can_reuse_epoch_itr_across_epochs(self): return all(d.can_reuse_epoch_itr_across_epochs for d in self.datasets) def set_epoch(self, epoch): super().set_epoch(epoch) for ds in self.datasets: if hasattr(ds, "set_epoch"): ds.set_epoch(epoch) def shuffle_batches(self, batches, seed): logger.info("shuffle batches") new_batches_fromlist = [] new_batches_notlist = [] new_batches = [] with data_utils.numpy_seed(seed): np.random.shuffle(batches) for batch in batches: if isinstance(batch, list): # np.random.shuffle(batch) new_batches_fromlist.append(batch) else: new_batches_notlist.append(batch) logger.info("Get " + str(len(new_batches_fromlist)) + " chunk from speech sides") logger.info("Get " + str(sum([len(batch_list) for batch_list in new_batches_fromlist])) + " batches from speech sides") logger.info("Get " + str(len(new_batches_notlist)) + " batches from text sides") if len(new_batches_fromlist) == 0: return new_batches_notlist st_ratio = int(len(new_batches_notlist) / len(new_batches_fromlist)) logger.info("Get st_ratio " + str(st_ratio)) last_idx = 0 for i in range(len(new_batches_fromlist)): if i == len(new_batches_fromlist) - 1: new_batches_fromlist[i].extend(new_batches_notlist[last_idx:]) else: new_batches_fromlist[i].extend(new_batches_notlist[last_idx : last_idx + st_ratio]) np.random.shuffle(new_batches_fromlist[i]) new_batches.extend(new_batches_fromlist[i]) last_idx = last_idx + st_ratio logger.info("Finish shuffle") return new_batches def reset_batch_sampler(self): logger.info("reset batch sampler") self._ordered_indices = [ self.datasets[i].ordered_indices() for i in range(len(self.datasets)) ] self.filter_indices_by_size(None, None) batch_samplers = self.batch_by_size( None, self.max_tokens, self.max_sentences, self.required_batch_size_multiple ) return batch_samplers
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/data/multitask_dataset.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import itertools import logging import os import sys from typing import Any, List, Optional, Union import numpy as np import torch import torch.nn.functional as F import librosa from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform from fairseq.data import data_utils from fairseq.data.fairseq_dataset import FairseqDataset logger = logging.getLogger(__name__) def _collate_frames( frames: List[torch.Tensor], is_audio_input: bool = False ): """ Convert a list of 2D frames into a padded 3D tensor Args: frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is length of i-th frame and f_dim is static dimension of features Returns: 3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i] """ max_len = max(frame.size(0) for frame in frames) if is_audio_input: out = frames[0].new_zeros((len(frames), max_len)) else: out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1))) for i, v in enumerate(frames): out[i, : v.size(0)] = v return out def add_first_frame_and_remove_last_frame(ys): ys_in = torch.cat( [ys.new_zeros((ys.shape[0], 1, ys.shape[2])), ys[:, :-1]], dim=1 ) return ys_in def load_audio(manifest_path, max_keep, min_keep): n_long, n_short = 0, 0 names, inds, sizes, spk_embeds = [], [], [], [] with open(manifest_path) as f: root = f.readline().strip() for ind, line in enumerate(f): items = line.strip().split("\t") assert len(items) == 3, line sz = int(items[1]) if min_keep is not None and sz < min_keep: n_short += 1 elif max_keep is not None and sz > max_keep: n_long += 1 else: names.append(items[0]) spk_embeds.append(items[2]) inds.append(ind) sizes.append(sz) tot = ind + 1 logger.info( ( f"max_keep={max_keep}, min_keep={min_keep}, " f"loaded {len(names)}, skipped {n_short} short and {n_long} long, " f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" ) ) return root, names, inds, tot, sizes, spk_embeds def load_label(label_path, inds, tot): with open(label_path) as f: labels = [line.rstrip() for line in f] assert ( len(labels) == tot ), f"number of labels does not match ({len(labels)} != {tot})" labels = [labels[i] for i in inds] return labels def load_label_offset(label_path, inds, tot): with open(label_path) as f: code_lengths = [len(line.encode("utf-8")) for line in f] assert ( len(code_lengths) == tot ), f"number of labels does not match ({len(code_lengths)} != {tot})" offsets = list(itertools.accumulate([0] + code_lengths)) offsets = [(offsets[i], offsets[i + 1]) for i in inds] return offsets def verify_label_lengths( audio_sizes, audio_rate, label_path, label_rate, inds, tot, tol=0.1, # tolerance in seconds ): if label_rate < 0: logger.info(f"{label_path} is sequence label. skipped") return with open(label_path) as f: lengths = [len(line.rstrip().split()) for line in f] assert len(lengths) == tot lengths = [lengths[i] for i in inds] num_invalid = 0 for i, ind in enumerate(inds): dur_from_audio = audio_sizes[i] / audio_rate dur_from_label = lengths[i] / label_rate if abs(dur_from_audio - dur_from_label) > tol: logger.warning( ( f"audio and label duration differ too much " f"(|{dur_from_audio} - {dur_from_label}| > {tol}) " f"in line {ind+1} of {label_path}. Check if `label_rate` " f"is correctly set (currently {label_rate}). " f"num. of samples = {audio_sizes[i]}; " f"label length = {lengths[i]}" ) ) num_invalid += 1 if num_invalid > 0: logger.warning( f"total {num_invalid} (audio, label) pairs with mismatched lengths" ) def logmelfilterbank( audio, sampling_rate, fft_size=1024, hop_size=256, win_length=None, window="hann", num_mels=80, fmin=80, fmax=7600, eps=1e-10, ): """Compute log-Mel filterbank feature. (https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py) Args: audio (ndarray): Audio signal (T,). sampling_rate (int): Sampling rate. fft_size (int): FFT size. hop_size (int): Hop size. win_length (int): Window length. If set to None, it will be the same as fft_size. window (str): Window function type. num_mels (int): Number of mel basis. fmin (int): Minimum frequency in mel basis calculation. fmax (int): Maximum frequency in mel basis calculation. eps (float): Epsilon value to avoid inf in log calculation. Returns: ndarray: Log Mel filterbank feature (#frames, num_mels). """ # get amplitude spectrogram x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size, win_length=win_length, window=window, pad_mode="reflect") spc = np.abs(x_stft).T # (#frames, #bins) # get mel basis fmin = 0 if fmin is None else fmin fmax = sampling_rate / 2 if fmax is None else fmax mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax) return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T))) class SpeechPretrainDataset(FairseqDataset): def __init__( self, manifest_path: str, sample_rate: float, label_paths: List[str], label_rates: Union[List[float], float], # -1 for sequence labels pad_list: List[str], eos_list: List[str], label_processors: Optional[List[Any]] = None, max_keep_sample_size: Optional[int] = None, min_keep_sample_size: Optional[int] = None, max_sample_size: Optional[int] = None, shuffle: bool = True, pad_audio: bool = False, normalize: bool = False, store_labels: bool = True, random_crop: bool = False, single_target: bool = False, reduction_factor: int = 1, ): self.audio_root, self.audio_names, inds, tot, self.sizes, self.spk_embeds = load_audio( manifest_path, max_keep_sample_size, min_keep_sample_size ) self.sample_rate = sample_rate self.shuffle = shuffle self.random_crop = random_crop self.num_labels = len(label_paths) self.pad_list = pad_list self.eos_list = eos_list self.label_processors = label_processors self.single_target = single_target self.label_rates = ( [label_rates for _ in range(len(label_paths))] if isinstance(label_rates, float) else label_rates ) self.store_labels = store_labels if store_labels: self.label_list = [load_label(p, inds, tot) for p in label_paths] else: self.label_paths = label_paths self.label_offsets_list = [ load_label_offset(p, inds, tot) for p in label_paths ] assert label_processors is None or len(label_processors) == self.num_labels for label_path, label_rate in zip(label_paths, self.label_rates): verify_label_lengths( self.sizes, sample_rate, label_path, label_rate, inds, tot ) self.max_sample_size = ( max_sample_size if max_sample_size is not None else sys.maxsize ) self.pad_audio = pad_audio self.normalize = normalize self.reduction_factor = reduction_factor logger.info( f"pad_audio={pad_audio}, random_crop={random_crop}, reduction_factor={reduction_factor}, " f"normalize={normalize}, max_sample_size={self.max_sample_size}" ) def get_audio(self, index): import soundfile as sf wav_path = os.path.join(self.audio_root, self.audio_names[index]) wav, cur_sample_rate = sf.read(wav_path) wav = torch.from_numpy(wav).float() fbank = logmelfilterbank( wav.view(-1).cpu().numpy(), 16000 ) fbank = torch.from_numpy(fbank).float() wav = self.postprocess(wav, cur_sample_rate) return wav, fbank def get_label(self, index, label_idx): if self.store_labels: label = self.label_list[label_idx][index] else: with open(self.label_paths[label_idx]) as f: offset_s, offset_e = self.label_offsets_list[label_idx][index] f.seek(offset_s) label = f.read(offset_e - offset_s) if self.label_processors is not None: label = self.label_processors[label_idx](label) return label def get_labels(self, index): return [self.get_label(index, i) for i in range(self.num_labels)] def __getitem__(self, index): wav, fbank = self.get_audio(index) labels = self.get_labels(index) spkembs = get_features_or_waveform( os.path.join(self.audio_root, self.spk_embeds[index]) ) spkembs = torch.from_numpy(spkembs).float() return {"id": index, "source": wav, "target": fbank, "label_list": labels, 'spkembs': spkembs} def __len__(self): return len(self.sizes) def crop_to_max_size(self, wav, target_size): size = len(wav) diff = size - target_size if diff <= 0: return wav, 0 start, end = 0, target_size if self.random_crop: start = np.random.randint(0, diff + 1) end = size - diff + start return wav[start:end], start def collater(self, samples): # target = max(sizes) -> random_crop not used # target = max_sample_size -> random_crop used for long samples = [s for s in samples if s["source"] is not None] if len(samples) == 0: return {} audios = [s["source"] for s in samples] audio_sizes = [len(s) for s in audios] fbanks = [s["target"] for s in samples] fbank_sizes = [len(s) for s in fbanks] if self.pad_audio: audio_size = min(max(audio_sizes), self.max_sample_size) else: audio_size = min(min(audio_sizes), self.max_sample_size) collated_audios, padding_mask, audio_starts = self.collater_audio( audios, audio_size ) collated_fbanks = [] collated_audios_size = [] for i in range(len(fbanks)): fbank_start = int(audio_starts[i] / (audio_sizes[i] / fbank_sizes[i])) fbank_size = int(audio_size / (audio_sizes[i] / fbank_sizes[i])) fbank_end = min(fbank_start + fbank_size, fbank_sizes[i]) collated_fbanks.append(fbanks[i][fbank_start : fbank_end]) collated_audios_size.append(audio_size) collated_fbanks_size = [len(s) for s in collated_fbanks] collated_fbanks = _collate_frames(collated_fbanks) collated_fbanks_size = torch.tensor(collated_fbanks_size, dtype=torch.long) # thin out frames for reduction factor (B, Lmax, odim) -> (B, Lmax//r, odim) if self.reduction_factor > 1: collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor] collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size]) else: collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size prev_output_tokens = torch.cat( [collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1 ) # make labels for stop prediction labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1)) for i, l in enumerate(fbank_sizes): labels[i, l - 1 :] = 1.0 spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True) targets_by_label = [ [s["label_list"][i] for s in samples] for i in range(self.num_labels) ] targets_list, lengths_list, ntokens_list = self.collater_label( targets_by_label, audio_size, audio_starts ) net_input = { "source": collated_audios, "padding_mask": padding_mask, "prev_output_tokens": prev_output_tokens, "spkembs": spkembs, "tgt_lengths": collated_fbanks_size_in, } batch = { "id": torch.LongTensor([s["id"] for s in samples]), "net_input": net_input, "labels": labels, "dec_target": collated_fbanks, "dec_target_lengths": collated_fbanks_size, "src_lengths": collated_audios_size, "task_name": 'speech_pretrain', } if self.single_target: batch["target_lengths"] = lengths_list[0] batch["ntokens"] = ntokens_list[0] batch["target"] = targets_list[0] else: batch["target_lengths_list"] = lengths_list batch["ntokens_list"] = ntokens_list batch["target_list"] = targets_list return batch def collater_audio(self, audios, audio_size): collated_audios = audios[0].new_zeros(len(audios), audio_size) padding_mask = ( torch.BoolTensor(collated_audios.shape).fill_(False) # if self.pad_audio else None ) audio_starts = [0 for _ in audios] for i, audio in enumerate(audios): diff = len(audio) - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: assert self.pad_audio collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) padding_mask[i, diff:] = True else: collated_audios[i], audio_starts[i] = self.crop_to_max_size( audio, audio_size ) return collated_audios, padding_mask, audio_starts def collater_frm_label(self, targets, audio_size, audio_starts, label_rate, pad): assert label_rate > 0 s2f = label_rate / self.sample_rate frm_starts = [int(round(s * s2f)) for s in audio_starts] frm_size = int(round(audio_size * s2f)) if not self.pad_audio: rem_size = [len(t) - s for t, s in zip(targets, frm_starts)] frm_size = min(frm_size, *rem_size) targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)] logger.debug(f"audio_starts={audio_starts}") logger.debug(f"frame_starts={frm_starts}") logger.debug(f"frame_size={frm_size}") lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) return targets, lengths, ntokens def collater_seq_label(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) return targets, lengths, ntokens def collater_label(self, targets_by_label, audio_size, audio_starts): targets_list, lengths_list, ntokens_list = [], [], [] itr = zip(targets_by_label, self.label_rates, self.pad_list) for targets, label_rate, pad in itr: if label_rate == -1.0: targets, lengths, ntokens = self.collater_seq_label(targets, pad) else: targets, lengths, ntokens = self.collater_frm_label( targets, audio_size, audio_starts, label_rate, pad ) targets_list.append(targets) lengths_list.append(lengths) ntokens_list.append(ntokens) return targets_list, lengths_list, ntokens_list def num_tokens(self, index): return self.size(index) def size(self, index): if self.pad_audio: return self.sizes[index] return min(self.sizes[index], self.max_sample_size) def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order)[::-1] def postprocess(self, wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != self.sample_rate: raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") if self.normalize: with torch.no_grad(): wav = F.layer_norm(wav, wav.shape) return wav
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/data/speech_dataset.py
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/data/__init__.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import math import numpy as np import torch from fairseq.data import FairseqDataset, data_utils def collate( samples, pad_idx, eos_idx, vocab, left_pad_source=False, left_pad_target=False, input_feeding=True, pad_to_length=None, ): assert input_feeding if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx=None, # use eos_idx of each sample instead of vocab.eos() left_pad=left_pad, move_eos_to_beginning=move_eos_to_beginning, pad_to_length=pad_to_length, ) id = torch.LongTensor([s["id"] for s in samples]) src_tokens = merge( "source", left_pad=left_pad_source, pad_to_length=pad_to_length["source"] if pad_to_length is not None else None, ) # sort by descending source length src_lengths = torch.LongTensor([s["source"].numel() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge( "target", left_pad=left_pad_target, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) target = target.index_select(0, sort_order) ntokens = sum(len(s["target"]) for s in samples) if input_feeding: # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( "target", left_pad=left_pad_target, move_eos_to_beginning=True, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) else: ntokens = sum(len(s["source"]) for s in samples) batch = { "id": id, "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, "target": target, "nsentences": samples[0]["source"].size(0), "sort_order": sort_order, "task_name": 'text_pretrain', } if prev_output_tokens is not None: batch["net_input"]["prev_output_tokens"] = prev_output_tokens return batch class TextPretrainDataset(FairseqDataset): """ A wrapper around TokenBlockDataset for BART dataset. Args: dataset (TokenBlockDataset): dataset to wrap sizes (List[int]): sentence lengths vocab (~fairseq.data.Dictionary): vocabulary mask_idx (int): dictionary index used for masked token mask_whole_words: only mask whole words. This should be a byte mask over vocab indices, indicating whether it is the beginning of a word. We will extend any mask to encompass the whole word. shuffle (bool, optional): shuffle the elements before batching. Default: ``True`` seed: Seed for random number generator for reproducibility. args: argparse arguments. """ def __init__( self, dataset, sizes, vocab, mask_idx, mask_whole_words, shuffle, seed, args, eos=None, item_transform_func=None, iid_noise_target=False, uni_mask_idxs=None, ): self.dataset = dataset self.sizes = sizes self.vocab = vocab self.shuffle = shuffle self.seed = seed if iid_noise_target: assert isinstance(uni_mask_idxs, torch.Tensor), "if use iid_noise_target, the uni_mask_idxs must be a tensor which contain the mask indexs" self.iid_noise_target = iid_noise_target self.uni_mask_idxs = uni_mask_idxs self.mask_idx = mask_idx self.mask_whole_word = mask_whole_words self.mask_ratio = args.mask self.random_ratio = args.mask_random self.insert_ratio = args.insert self.rotate_ratio = args.rotate self.permute_sentence_ratio = args.permute_sentences self.eos = eos if eos is not None else vocab.eos() self.item_transform_func = item_transform_func if args.bpe != "gpt2": self.full_stop_index = self.vocab.eos() else: assert args.bpe == "gpt2" self.full_stop_index = self.vocab.index("13") self.replace_length = args.replace_length if self.replace_length not in [-1, 0, 1]: raise ValueError(f"invalid arg: replace_length={self.replace_length}") if args.mask_length not in ["subword", "word", "span-poisson"]: raise ValueError(f"invalid arg: mask-length={args.mask_length}") if args.mask_length == "subword" and args.replace_length not in [0, 1]: raise ValueError(f"if using subwords, use replace-length=1 or 0") self.mask_span_distribution = None if args.mask_length == "span-poisson": _lambda = args.poisson_lambda lambda_to_the_k = 1 e_to_the_minus_lambda = math.exp(-_lambda) k_factorial = 1 ps = [] for k in range(0, 128): ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial) lambda_to_the_k *= _lambda k_factorial *= k + 1 if ps[-1] < 0.0000001: break ps = torch.FloatTensor(ps) self.mask_span_distribution = torch.distributions.Categorical(ps) self.epoch = 0 @property def can_reuse_epoch_itr_across_epochs(self): return True # only the noise changes, not item sizes def set_epoch(self, epoch, **unused): self.epoch = epoch def __getitem__(self, index): with data_utils.numpy_seed(self.seed, self.epoch, index): tokens = self.dataset[index] assert tokens[-1] == self.eos source, target = tokens, tokens.clone() if self.permute_sentence_ratio > 0.0: source = self.permute_sentences(source, self.permute_sentence_ratio) if self.mask_ratio > 0: source, new_target = self.add_whole_word_mask(source, self.mask_ratio) if new_target is not None: target = new_target if self.insert_ratio > 0: source = self.add_insertion_noise(source, self.insert_ratio) if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio: source = self.add_rolling_noise(source) # there can additional changes to make: if self.item_transform_func is not None: source, target = self.item_transform_func(source, target) assert (source >= 0).all() assert (source[1:-1] >= 1).all() assert (source <= len(self.vocab)).all() assert source[0] == self.vocab.bos() assert source[-1] == self.eos return { "id": index, "source": source, "target": target, } def __len__(self): return len(self.dataset) def permute_sentences(self, source, p=1.0): full_stops = source == self.full_stop_index # Pretend it ends with a full stop so last span is a sentence full_stops[-2] = 1 # Tokens that are full stops, where the previous token is not sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2 result = source.clone() num_sentences = sentence_ends.size(0) num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0) substitutions = torch.randperm(num_sentences)[:num_to_permute] ordering = torch.arange(0, num_sentences) ordering[substitutions] = substitutions[torch.randperm(num_to_permute)] # Ignore <bos> at start index = 1 for i in ordering: sentence = source[(sentence_ends[i - 1] if i > 0 else 1) : sentence_ends[i]] result[index : index + sentence.size(0)] = sentence index += sentence.size(0) return result def word_starts(self, source): if self.mask_whole_word is not None: is_word_start = self.mask_whole_word.gather(0, source) else: is_word_start = torch.ones(source.size()) is_word_start[0] = 0 is_word_start[-1] = 0 return is_word_start def add_whole_word_mask(self, source, p): source_ori = source.clone() is_word_start = self.word_starts(source) num_to_mask = int(math.ceil(is_word_start.float().sum() * p)) num_inserts = 0 if num_to_mask == 0: return source if self.mask_span_distribution is not None: lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,)) # Make sure we have enough to mask cum_length = torch.cumsum(lengths, 0) while cum_length[-1] < num_to_mask: lengths = torch.cat( [ lengths, self.mask_span_distribution.sample(sample_shape=(num_to_mask,)), ], dim=0, ) cum_length = torch.cumsum(lengths, 0) # Trim to masking budget i = 0 while cum_length[i] < num_to_mask: i += 1 lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1]) num_to_mask = i + 1 lengths = lengths[:num_to_mask] # Handle 0-length mask (inserts) separately lengths = lengths[lengths > 0] num_inserts = num_to_mask - lengths.size(0) num_to_mask -= num_inserts if num_to_mask == 0: return self.add_insertion_noise(source, num_inserts / source.size(0)) assert (lengths > 0).all() else: lengths = torch.ones((num_to_mask,)).long() assert is_word_start[-1] == 0 word_starts = is_word_start.nonzero(as_tuple=False) indices = word_starts[ torch.randperm(word_starts.size(0))[:num_to_mask] ].squeeze(1) mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio source_length = source.size(0) assert source_length - 1 not in indices to_keep = torch.ones(source_length, dtype=torch.bool) is_word_start[ -1 ] = 255 # acts as a long length, so spans don't go over the end of doc if self.replace_length == 0: to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) if self.mask_span_distribution is not None: assert len(lengths.size()) == 1 assert lengths.size() == indices.size() lengths -= 1 while indices.size(0) > 0: assert lengths.size() == indices.size() lengths -= is_word_start[indices + 1].long() uncompleted = lengths >= 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] lengths = lengths[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) else: # A bit faster when all lengths are 1 while indices.size(0) > 0: uncompleted = is_word_start[indices + 1] == 0 indices = indices[uncompleted] + 1 mask_random = mask_random[uncompleted] if self.replace_length != -1: # delete token to_keep[indices] = 0 else: # keep index, but replace it with [MASK] source[indices] = self.mask_idx source[indices[mask_random]] = torch.randint( 1, len(self.vocab), size=(mask_random.sum(),) ) assert source_length - 1 not in indices if not self.iid_noise_target: source = source[to_keep] target = None else: ## Prepare source source_mask_idx = (source == self.mask_idx).nonzero().view(-1) source[source_mask_idx] = self.uni_mask_idxs[:source_mask_idx.size(0)] source = source[to_keep] ## Prepare target to_keep[source_mask_idx] = 0 # source_mask_idx: from [a, b, c, ...] to [a, b + 1, c + 2, ...] source_mask_idx = source_mask_idx + torch.arange(source_mask_idx.size(0)) # target: source_length + mask_length target = source_ori.new_zeros(source_mask_idx.size(0) + source_ori.size(0)) # target: [0, 0, 0, X, 0, 0, Y, ....] target[source_mask_idx] = self.uni_mask_idxs[:source_mask_idx.size(0)] target_to_keep = to_keep.new_zeros(source_mask_idx.size(0) + source_ori.size(0)) # Copy original value to target and target_to_keep target_to_keep[target == 0] = to_keep target_to_keep[-1] = 0 target[target == 0] = source_ori target = target[~target_to_keep] if num_inserts > 0: source = self.add_insertion_noise(source, num_inserts / source.size(0)) return source, target def add_permuted_noise(self, tokens, p): num_words = len(tokens) num_to_permute = math.ceil(((num_words * 2) * p) / 2.0) substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1 tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]] return tokens def add_rolling_noise(self, tokens): offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1) tokens = torch.cat( (tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]), dim=0, ) return tokens def add_insertion_noise(self, tokens, p): if p == 0.0: return tokens num_tokens = len(tokens) n = int(math.ceil(num_tokens * p)) noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1 noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool) noise_mask[noise_indices] = 1 result = torch.LongTensor(n + len(tokens)).fill_(-1) num_random = int(math.ceil(n * self.random_ratio)) result[noise_indices[num_random:]] = self.mask_idx result[noise_indices[:num_random]] = torch.randint( low=1, high=len(self.vocab), size=(num_random,) ) result[~noise_mask] = tokens assert (result >= 0).all() return result def collater(self, samples, pad_to_length=None): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch of data """ return collate( samples, self.vocab.pad(), self.eos, self.vocab, pad_to_length=pad_to_length ) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return self.sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return self.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) else: indices = np.arange(len(self)) return indices[np.argsort(self.sizes[indices], kind="mergesort")] def prefetch(self, indices): self.src.prefetch(indices) self.tgt.prefetch(indices) @property def supports_prefetch(self): return ( hasattr(self.src, "supports_prefetch") and self.src.supports_prefetch and hasattr(self.tgt, "supports_prefetch") and self.tgt.supports_prefetch )
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/data/text_dataset.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import itertools import logging import os from typing import Any, List, Optional import numpy as np import torch import torch.nn.functional as F from fairseq.data import data_utils, Dictionary from fairseq.data.fairseq_dataset import FairseqDataset logger = logging.getLogger(__name__) def load_audio(manifest_path, max_keep, min_keep): n_long, n_short = 0, 0 names, inds, sizes = [], [], [] with open(manifest_path) as f: root = f.readline().strip() for ind, line in enumerate(f): items = line.strip().split("\t") assert len(items) >= 2, line sz = int(items[1]) if min_keep is not None and sz < min_keep: n_short += 1 elif max_keep is not None and sz > max_keep: n_long += 1 else: names.append(items[0]) inds.append(ind) sizes.append(sz) tot = ind + 1 logger.info( ( f"max_keep={max_keep}, min_keep={min_keep}, " f"loaded {len(names)}, skipped {n_short} short and {n_long} long, " f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" ) ) return root, names, inds, tot, sizes def load_label(label_path, inds, tot): with open(label_path) as f: labels = [line.rstrip() for line in f] assert ( len(labels) == tot ), f"number of labels does not match ({len(labels)} != {tot})" labels = [labels[i] for i in inds] return labels def load_label_offset(label_path, inds, tot): with open(label_path) as f: code_lengths = [len(line.encode("utf-8")) for line in f] assert ( len(code_lengths) == tot ), f"number of labels does not match ({len(code_lengths)} != {tot})" offsets = list(itertools.accumulate([0] + code_lengths)) offsets = [(offsets[i], offsets[i + 1]) for i in inds] return offsets class SpeechToTextDataset(FairseqDataset): def __init__( self, manifest_path: str, sample_rate: float, label_paths: List[str], label_processors: Optional[List[Any]] = None, max_keep_sample_size: Optional[int] = None, min_keep_sample_size: Optional[int] = None, shuffle: bool = True, normalize: bool = False, store_labels: bool = True, tgt_dict: Optional[Dictionary] = None, tokenizer = None, ): self.audio_root, self.audio_names, inds, tot, self.wav_sizes = load_audio( manifest_path, max_keep_sample_size, min_keep_sample_size ) self.sample_rate = sample_rate self.shuffle = shuffle self.tgt_dict = tgt_dict self.tokenizer = tokenizer self.num_labels = len(label_paths) self.label_processors = label_processors self.store_labels = store_labels if store_labels: self.label_list = [load_label(p, inds, tot) for p in label_paths] else: self.label_paths = label_paths self.label_offsets_list = [ load_label_offset(p, inds, tot) for p in label_paths ] assert label_processors is None or len(label_processors) == self.num_labels self.normalize = normalize logger.info( f"normalize={normalize}" ) def get_audio(self, index): import soundfile as sf wav_path = os.path.join(self.audio_root, self.audio_names[index]) wav, cur_sample_rate = sf.read(wav_path) wav = torch.from_numpy(wav).float() wav = self.postprocess(wav, cur_sample_rate) return wav def get_label(self, index, label_idx): if self.store_labels: label = self.label_list[label_idx][index] else: with open(self.label_paths[label_idx]) as f: offset_s, offset_e = self.label_offsets_list[label_idx][index] f.seek(offset_s) label = f.read(offset_e - offset_s) if self.tokenizer is not None: label = self.tokenizer.encode(label) if self.label_processors is not None: label = self.label_processors[label_idx](label) return label def get_labels(self, index): return [self.get_label(index, i) for i in range(self.num_labels)] def __getitem__(self, index): wav = self.get_audio(index) labels = self.get_labels(index) return {"id": index, "source": wav, "label_list": labels} def __len__(self): return len(self.wav_sizes) def collater(self, samples): samples = [s for s in samples if s["source"] is not None] if len(samples) == 0: return {} audios = [s["source"] for s in samples] audio_sizes = [len(s) for s in audios] audio_size = max(audio_sizes) collated_audios, padding_mask = self.collater_audio( audios, audio_size ) targets_by_label = [ [s["label_list"][i] for s in samples] for i in range(self.num_labels) ] targets_list, lengths_list, ntokens_list = self.collater_label(targets_by_label) decoder_label = [ torch.cat((targets_list[0][i, :lengths_list[0][i]], torch.tensor([self.tgt_dict.eos()])), 0).long() for i in range(targets_list[0].size(0)) ] decoder_target = data_utils.collate_tokens( decoder_label, self.tgt_dict.pad(), self.tgt_dict.eos(), left_pad=False, move_eos_to_beginning=False, ) decoder_target_lengths = torch.tensor( [x.size(0) for x in decoder_label], dtype=torch.long ) prev_output_tokens = data_utils.collate_tokens( decoder_label, self.tgt_dict.pad(), self.tgt_dict.eos(), left_pad=False, move_eos_to_beginning=True, ) net_input = { "source": collated_audios, "padding_mask": padding_mask, "prev_output_tokens": prev_output_tokens, "task_name": "s2t", } batch = { "id": torch.LongTensor([s["id"] for s in samples]), "net_input": net_input, "target": decoder_target, "target_lengths": decoder_target_lengths, "task_name": "s2t", "ntokens": ntokens_list[0] } return batch def collater_audio(self, audios, audio_size): collated_audios = audios[0].new_zeros(len(audios), audio_size) padding_mask = ( torch.BoolTensor(collated_audios.shape).fill_(False) ) for i, audio in enumerate(audios): diff = len(audio) - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) padding_mask[i, diff:] = True else: raise Exception("Diff should not be larger than 0") return collated_audios, padding_mask def collater_seq_label(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) return targets, lengths, ntokens def collater_label(self, targets_by_label): targets_list, lengths_list, ntokens_list = [], [], [] itr = zip(targets_by_label, [self.tgt_dict.pad()]) for targets, pad in itr: targets, lengths, ntokens = self.collater_seq_label(targets, pad) targets_list.append(targets) lengths_list.append(lengths) ntokens_list.append(ntokens) return targets_list, lengths_list, ntokens_list def num_tokens(self, index): return self.size(index) def size(self, index): return self.wav_sizes[index] @property def sizes(self): return np.array(self.wav_sizes) def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.wav_sizes) return np.lexsort(order)[::-1] def postprocess(self, wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != self.sample_rate: raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") if self.normalize: with torch.no_grad(): wav = F.layer_norm(wav, wav.shape) return wav
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/data/speech_to_text_dataset.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import itertools import logging import os from typing import Any, List, Optional import numpy as np import torch import torch.nn.functional as F import librosa from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform from fairseq.data import data_utils, Dictionary from fairseq.data.fairseq_dataset import FairseqDataset logger = logging.getLogger(__name__) def _collate_frames( frames: List[torch.Tensor], is_audio_input: bool = False ): """ Convert a list of 2D frames into a padded 3D tensor Args: frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is length of i-th frame and f_dim is static dimension of features Returns: 3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i] """ max_len = max(frame.size(0) for frame in frames) if is_audio_input: out = frames[0].new_zeros((len(frames), max_len)) else: out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1))) for i, v in enumerate(frames): out[i, : v.size(0)] = v return out def load_audio(manifest_path, max_keep, min_keep): n_long, n_short = 0, 0 names, inds, sizes, spk_embeds = [], [], [], [] with open(manifest_path) as f: root = f.readline().strip() for ind, line in enumerate(f): items = line.strip().split("\t") assert len(items) == 3, line sz = int(items[1]) if min_keep is not None and sz < min_keep: n_short += 1 elif max_keep is not None and sz > max_keep: n_long += 1 else: names.append(items[0]) spk_embeds.append(items[2]) inds.append(ind) sizes.append(sz) tot = ind + 1 logger.info( ( f"max_keep={max_keep}, min_keep={min_keep}, " f"loaded {len(names)}, skipped {n_short} short and {n_long} long, " f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" ) ) return root, names, inds, tot, sizes, spk_embeds def load_label(label_path, inds, tot): with open(label_path) as f: labels = [line.rstrip() for line in f] assert ( len(labels) == tot ), f"number of labels does not match ({len(labels)} != {tot})" labels = [labels[i] for i in inds] return labels def load_label_offset(label_path, inds, tot): with open(label_path) as f: code_lengths = [len(line.encode("utf-8")) for line in f] assert ( len(code_lengths) == tot ), f"number of labels does not match ({len(code_lengths)} != {tot})" offsets = list(itertools.accumulate([0] + code_lengths)) offsets = [(offsets[i], offsets[i + 1]) for i in inds] return offsets def logmelfilterbank( audio, sampling_rate, fft_size=1024, hop_size=256, win_length=None, window="hann", num_mels=80, fmin=80, fmax=7600, eps=1e-10, ): """Compute log-Mel filterbank feature. (https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/bin/preprocess.py) Args: audio (ndarray): Audio signal (T,). sampling_rate (int): Sampling rate. fft_size (int): FFT size. hop_size (int): Hop size. win_length (int): Window length. If set to None, it will be the same as fft_size. window (str): Window function type. num_mels (int): Number of mel basis. fmin (int): Minimum frequency in mel basis calculation. fmax (int): Maximum frequency in mel basis calculation. eps (float): Epsilon value to avoid inf in log calculation. Returns: ndarray: Log Mel filterbank feature (#frames, num_mels). """ # get amplitude spectrogram x_stft = librosa.stft(audio, n_fft=fft_size, hop_length=hop_size, win_length=win_length, window=window, pad_mode="reflect") spc = np.abs(x_stft).T # (#frames, #bins) # get mel basis fmin = 0 if fmin is None else fmin fmax = sampling_rate / 2 if fmax is None else fmax mel_basis = librosa.filters.mel(sr=sampling_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax) return np.log10(np.maximum(eps, np.dot(spc, mel_basis.T))) class TextToSpeechDataset(FairseqDataset): def __init__( self, manifest_path: str, sample_rate: float, label_paths: List[str], label_processors: Optional[List[Any]] = None, max_keep_sample_size: Optional[int] = None, min_keep_sample_size: Optional[int] = None, shuffle: bool = True, normalize: bool = False, store_labels: bool = True, src_dict: Optional[Dictionary] = None, tokenizer = None, reduction_factor: int = 1, ): self.audio_root, self.audio_names, inds, tot, self.wav_sizes, self.spk_embeds = load_audio( manifest_path, max_keep_sample_size, min_keep_sample_size ) self.sample_rate = sample_rate self.shuffle = shuffle self.src_dict = src_dict self.tokenizer = tokenizer self.num_labels = len(label_paths) self.label_processors = label_processors self.store_labels = store_labels if store_labels: self.label_list = [load_label(p, inds, tot) for p in label_paths] else: self.label_paths = label_paths self.label_offsets_list = [ load_label_offset(p, inds, tot) for p in label_paths ] assert label_processors is None or len(label_processors) == self.num_labels self.normalize = normalize self.reduction_factor = reduction_factor logger.info( f"reduction_factor={reduction_factor}, normalize={normalize}" ) def get_audio(self, index): import soundfile as sf wav_path = os.path.join(self.audio_root, self.audio_names[index]) wav, cur_sample_rate = sf.read(wav_path) wav = torch.from_numpy(wav).float() fbank = logmelfilterbank( wav.view(-1).cpu().numpy(), 16000 ) fbank = torch.from_numpy(fbank).float() wav = self.postprocess(wav, cur_sample_rate) return wav, fbank def get_label(self, index, label_idx): if self.store_labels: label = self.label_list[label_idx][index] else: with open(self.label_paths[label_idx]) as f: offset_s, offset_e = self.label_offsets_list[label_idx][index] f.seek(offset_s) label = f.read(offset_e - offset_s) if self.tokenizer is not None: label = self.tokenizer.encode(label) if self.label_processors is not None: label = self.label_processors[label_idx](label) return label def get_labels(self, index): return [self.get_label(index, i) for i in range(self.num_labels)] def __getitem__(self, index): wav, fbank = self.get_audio(index) labels = self.get_labels(index) spkembs = get_features_or_waveform( os.path.join(self.audio_root, self.spk_embeds[index]) ) spkembs = torch.from_numpy(spkembs).float() return {"id": index, "source": labels, "target": fbank, "spkembs": spkembs, "audio_name": self.audio_names[index]} def __len__(self): return len(self.wav_sizes) def collater(self, samples): samples = [s for s in samples if s["source"] is not None] if len(samples) == 0: return {} fbanks = [s["target"] for s in samples] fbank_sizes = [len(s) for s in fbanks] collated_fbanks = _collate_frames(fbanks) collated_fbanks_size = torch.tensor(fbank_sizes, dtype=torch.long) # thin out frames for reduction factor (B, Lmax, odim) -> (B, Lmax//r, odim) if self.reduction_factor > 1: collated_fbanks_in = collated_fbanks[:, self.reduction_factor - 1 :: self.reduction_factor] collated_fbanks_size_in = collated_fbanks_size.new([torch.div(olen, self.reduction_factor, rounding_mode='floor') for olen in collated_fbanks_size]) else: collated_fbanks_in, collated_fbanks_size_in = collated_fbanks, collated_fbanks_size prev_output_tokens = torch.cat( [collated_fbanks_in.new_zeros((collated_fbanks_in.shape[0], 1, collated_fbanks_in.shape[2])), collated_fbanks_in[:, :-1]], dim=1 ) # make labels for stop prediction labels = collated_fbanks.new_zeros(collated_fbanks.size(0), collated_fbanks.size(1)) for i, l in enumerate(fbank_sizes): labels[i, l - 1 :] = 1.0 spkembs = _collate_frames([s["spkembs"] for s in samples], is_audio_input=True) sources_by_label = [ [s["source"][i] for s in samples] for i in range(self.num_labels) ] sources_list, lengths_list, ntokens_list = self.collater_label(sources_by_label) net_input = { "src_tokens": sources_list[0], "src_lengths": lengths_list[0], "prev_output_tokens": prev_output_tokens, "tgt_lengths": collated_fbanks_size_in, "spkembs": spkembs, "task_name": "t2s", } batch = { "id": torch.LongTensor([s["id"] for s in samples]), "name": [s["audio_name"] for s in samples], "net_input": net_input, "labels": labels, "dec_target": collated_fbanks, "dec_target_lengths": collated_fbanks_size, "src_lengths": lengths_list[0], "task_name": "t2s", "ntokens": ntokens_list[0], "target": collated_fbanks, } return batch def collater_seq_label(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) return targets, lengths, ntokens def collater_label(self, targets_by_label): targets_list, lengths_list, ntokens_list = [], [], [] itr = zip(targets_by_label, [self.src_dict.pad()]) for targets, pad in itr: targets, lengths, ntokens = self.collater_seq_label(targets, pad) targets_list.append(targets) lengths_list.append(lengths) ntokens_list.append(ntokens) return targets_list, lengths_list, ntokens_list def num_tokens(self, index): return self.size(index) def size(self, index): return self.wav_sizes[index] @property def sizes(self): return np.array(self.wav_sizes) def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.wav_sizes) return np.lexsort(order)[::-1] def postprocess(self, wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != self.sample_rate: raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") if self.normalize: with torch.no_grad(): wav = F.layer_norm(wav, wav.shape) return wav
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/data/text_to_speech_dataset.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import math from argparse import Namespace from dataclasses import dataclass, field from omegaconf import II from typing import Optional import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from fairseq.data.data_utils import post_process from fairseq.tasks import FairseqTask from fairseq.logging.meters import safe_round import logging logger = logging.getLogger(__name__) @dataclass class SpeechtoTextLossConfig(FairseqDataclass): zero_infinity: bool = field( default=False, metadata={"help": "zero inf loss when source length <= target length"}, ) sentence_avg: bool = II("optimization.sentence_avg") post_process: Optional[str] = field( default="sentencepiece", metadata={ "help": "how to post process predictions into words. can be letter, " "wordpiece, BPE symbols, etc. " "See fairseq.data.data_utils.post_process() for full list of options" }, ) wer_kenlm_model: Optional[str] = field( default=None, metadata={ "help": "if this is provided, use kenlm to compute wer (along with other wer_* args)" }, ) wer_lexicon: Optional[str] = field( default=None, metadata={"help": "lexicon to use with wer_kenlm_model"}, ) wer_lm_weight: float = field( default=2.0, metadata={"help": "lm weight to use with wer_kenlm_model"}, ) wer_word_score: float = field( default=-1.0, metadata={"help": "lm word score to use with wer_kenlm_model"}, ) wer_args: Optional[str] = field( default=None, metadata={ "help": "DEPRECATED: tuple of (wer_kenlm_model, wer_lexicon, wer_lm_weight, wer_word_score)" }, ) label_smoothing: float = field( default=0.0, metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, ) report_accuracy: bool = field( default=False, metadata={"help": "report accuracy metric"}, ) ignore_prefix_size: int = field( default=0, metadata={"help": "Ignore first N tokens"}, ) #: bool = II("optimization.sentence_avg") ce_weight: float = field( default=1.0, metadata={"help": "loss weight for cross entropy"}, ) ctc_weight: float = field( default=0.0, metadata={"help": "loss weiehgt for ctc in ASR"}, ) def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True): if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) if reduce: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / (lprobs.size(-1) - 1) loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss return loss, nll_loss class SpeechtoTextLoss(FairseqCriterion): def __init__( self, cfg: SpeechtoTextLossConfig, task: FairseqTask, sentence_avg=True, label_smoothing=0.1, ignore_prefix_size=0, report_accuracy=False, ce_weight=1.0, ctc_weight=0.0, ): super().__init__(task) self.blank_idx = ( task.target_dictionary.index(task.blank_symbol) if hasattr(task, "blank_symbol") else 0 ) #print ("self.blank_idx: ", self.blank_idx) self.pad_idx = task.target_dictionary.pad() self.eos_idx = task.target_dictionary.eos() self.post_process = cfg.post_process self.ce_weight = ce_weight self.ctc_weight = ctc_weight ## for ce self.sentence_avg = sentence_avg self.eps = label_smoothing self.ignore_prefix_size = ignore_prefix_size self.report_accuracy = report_accuracy if cfg.wer_args is not None: ( cfg.wer_kenlm_model, cfg.wer_lexicon, cfg.wer_lm_weight, cfg.wer_word_score, ) = eval(cfg.wer_args) if cfg.wer_kenlm_model is not None: from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder dec_args = Namespace() dec_args.nbest = 1 dec_args.criterion = "ctc" dec_args.kenlm_model = cfg.wer_kenlm_model dec_args.lexicon = cfg.wer_lexicon dec_args.beam = 50 dec_args.beam_size_token = min(50, len(task.target_dictionary)) dec_args.beam_threshold = min(50, len(task.target_dictionary)) dec_args.lm_weight = cfg.wer_lm_weight dec_args.word_score = cfg.wer_word_score dec_args.unk_weight = -math.inf dec_args.sil_weight = 0 self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary) else: self.w2l_decoder = None self.zero_infinity = cfg.zero_infinity #self.sentence_avg = cfg.sentence_avg if self.ce_weight > 0 and self.ctc_weight > 0: logger.info("Using cross entropy loss and CTC loss for ASR") elif self.ce_weight > 0: logger.info("Only using CE loss") elif self.ctc_weight > 0: logger.info("Only using CTC loss for ASR") else: logger.info("ERROR") def forward(self, model, sample, reduce=True): if self.ce_weight == 0 and self.ctc_weight > 0: sample["only_ctc"] = True net_output_decoder, net_output = model(**sample["net_input"]) if self.ce_weight > 0: loss_ce, nll_loss_ce = self.compute_loss(model, net_output_decoder, sample, reduce=reduce) #print ("loss_ce: ", loss_ce) else: nll_loss_ce = None if self.ctc_weight > 0: loss_ctc, lprobs, input_lengths = self.compute_loss_ctc(model, net_output, sample) if self.ce_weight > 0 and self.ctc_weight > 0: loss = self.ce_weight * loss_ce + self.ctc_weight * loss_ctc elif self.ce_weight > 0: loss = loss_ce elif self.ctc_weight > 0: loss = loss_ctc else: logger.info("ERROR: must ce_weight > 0 or ctc_weight > 0") ntokens = ( sample["ntokens"] if "ntokens" in sample else sample["target_lengths"].sum().item() ) sample_size = sample["target"].size(0) if self.sentence_avg else ntokens logging_output = { "loss": loss.item(), "ce_loss": loss_ce.item() if self.ce_weight > 0 else 0, "ctc_loss": loss_ctc.item() if self.ctc_weight > 0 else 0, "nll_loss": nll_loss_ce.item() if nll_loss_ce is not None else 0, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if self.ce_weight > 0 and self.report_accuracy: n_correct, total = self.compute_accuracy(model, net_output_decoder, sample) logging_output["n_correct"] = utils.item(n_correct.item()) logging_output["total"] = utils.item(total.data) if self.ctc_weight > 0 and not model.training: import editdistance with torch.no_grad(): lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu() c_err = 0 c_len = 0 w_errs = 0 w_len = 0 wv_errs = 0 for lp, t, inp_l in zip( lprobs_t, sample["target_label"] if "target_label" in sample else sample["target"], input_lengths, ): lp = lp[:inp_l].unsqueeze(0) decoded = None if self.w2l_decoder is not None: decoded = self.w2l_decoder.decode(lp) if len(decoded) < 1: decoded = None else: decoded = decoded[0] if len(decoded) < 1: decoded = None else: decoded = decoded[0] p = (t != self.task.target_dictionary.pad()) & ( t != self.task.target_dictionary.eos() ) targ = t[p] targ_units = self.task.target_dictionary.string(targ) targ_units_arr = targ.tolist() toks = lp.argmax(dim=-1).unique_consecutive() pred_units_arr = toks[toks != self.blank_idx].tolist() c_err += editdistance.eval(pred_units_arr, targ_units_arr) c_len += len(targ_units_arr) targ_words = post_process(targ_units, self.post_process).split() pred_units = self.task.target_dictionary.string(pred_units_arr) pred_words_raw = post_process(pred_units, self.post_process).split() if decoded is not None and "words" in decoded: pred_words = decoded["words"] w_errs += editdistance.eval(pred_words, targ_words) wv_errs += editdistance.eval(pred_words_raw, targ_words) else: dist = editdistance.eval(pred_words_raw, targ_words) w_errs += dist wv_errs += dist w_len += len(targ_words) logging_output["wv_errors"] = wv_errs logging_output["w_errors"] = w_errs logging_output["w_total"] = w_len logging_output["c_errors"] = c_err logging_output["c_total"] = c_len return loss, sample_size, logging_output def compute_loss_ctc(self, model, net_output, sample): lprobs = model.get_normalized_probs_for_ctc( net_output, log_probs=True ).contiguous() # (T, B, C) from the encoder if net_output["encoder_padding_mask"] is not None: non_padding_mask = ~net_output["encoder_padding_mask"][0] input_lengths = non_padding_mask.long().sum(-1) else: input_lengths = lprobs.new_full( (lprobs.size(1),), lprobs.size(0), dtype=torch.long ) pad_mask = (sample["target"] != self.pad_idx) & ( sample["target"] != self.eos_idx ) targets_flat = sample["target"].masked_select(pad_mask) if "target_lengths" in sample: target_lengths = sample["target_lengths"] else: target_lengths = pad_mask.sum(-1) ##processing target_lengths = target_lengths - 1 with torch.backends.cudnn.flags(enabled=False): loss_ctc = F.ctc_loss( lprobs, targets_flat, input_lengths, target_lengths, blank=self.blank_idx, reduction="sum", zero_infinity=self.zero_infinity, ) return loss_ctc, lprobs, input_lengths ## for ce def get_lprobs_and_target(self, model, net_output, sample): lprobs = model.get_normalized_probs(net_output, log_probs=True) target = model.get_targets(sample, net_output) if self.ignore_prefix_size > 0: if getattr(lprobs, "batch_first", False): lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() target = target[:, self.ignore_prefix_size :].contiguous() else: lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous() target = target[self.ignore_prefix_size :, :].contiguous() return lprobs.view(-1, lprobs.size(-1)), target.view(-1) def compute_loss(self, model, net_output, sample, reduce=True): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) loss, nll_loss = label_smoothed_nll_loss( lprobs, target, self.eps, ignore_index=self.padding_idx, reduce=reduce, ) return loss, nll_loss def compute_accuracy(self, model, net_output, sample): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) mask = target.ne(self.padding_idx) n_correct = torch.sum( lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) ) total = torch.sum(mask) return n_correct, total @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) ce_loss_sum = sum(log.get("ce_loss", 0) for log in logging_outputs) ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in logging_outputs) ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs)) nsentences = utils.item( sum(log.get("nsentences", 0) for log in logging_outputs) ) sample_size = utils.item( sum(log.get("sample_size", 0) for log in logging_outputs) ) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "ctc_loss", ctc_loss_sum / sample_size / math.log(2), ntokens, 2, round=3 ) metrics.log_scalar( "ce_loss", ce_loss_sum / ntokens, ntokens, 2, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, 2, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg, 2) ) total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) if total > 0: metrics.log_scalar("total", total) n_correct = utils.item( sum(log.get("n_correct", 0) for log in logging_outputs) ) metrics.log_scalar("n_correct", n_correct) metrics.log_derived( "accuracy", lambda meters: round( meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 ) if meters["total"].sum > 0 else float("nan"), 2 ) metrics.log_scalar("ntokens", ntokens) metrics.log_scalar("nsentences", nsentences) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) c_errors = sum(log.get("c_errors", 0) for log in logging_outputs) metrics.log_scalar("_c_errors", c_errors) c_total = sum(log.get("c_total", 0) for log in logging_outputs) metrics.log_scalar("_c_total", c_total) w_errors = sum(log.get("w_errors", 0) for log in logging_outputs) metrics.log_scalar("_w_errors", w_errors) wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs) metrics.log_scalar("_wv_errors", wv_errors) w_total = sum(log.get("w_total", 0) for log in logging_outputs) metrics.log_scalar("_w_total", w_total) if c_total > 0: metrics.log_derived( "uer", lambda meters: safe_round( meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3 ) if meters["_c_total"].sum > 0 else float("nan"), ) if w_total > 0: metrics.log_derived( "wer", lambda meters: safe_round( meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3 ) if meters["_w_total"].sum > 0 else float("nan"), ) metrics.log_derived( "raw_wer", lambda meters: safe_round( meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3 ) if meters["_w_total"].sum > 0 else float("nan"), ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/criterions/speech_to_text_loss.py
import importlib import os for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): criterion_name = file[: file.find(".py")] importlib.import_module( "speecht5.criterions." + criterion_name )
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/criterions/__init__.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import re from dataclasses import dataclass import math from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from speecht5.criterions.text_to_speech_loss import TexttoSpeechLoss from speecht5.criterions.text_pretrain_criterion import TextPretrainCriterion, TextPretrainCriterionConfig from fairseq.criterions.label_smoothed_cross_entropy import LabelSmoothedCrossEntropyCriterionConfig from speecht5.criterions.speech_pretrain_criterion import SpeechPretrainCriterion, SpeechPretrainCriterionConfig from speecht5.criterions.speech_to_text_loss import SpeechtoTextLoss, SpeechtoTextLossConfig from fairseq.logging.meters import safe_round @dataclass class SpeechT5CriterionConfig( LabelSmoothedCrossEntropyCriterionConfig, TextPretrainCriterionConfig, SpeechPretrainCriterionConfig, SpeechtoTextLossConfig ): pass @register_criterion( "speecht5", dataclass=SpeechT5CriterionConfig ) class SpeechT5Criterion(FairseqCriterion): def __init__( self, task, sentence_avg, label_smoothing, pred_masked_weight, pred_nomask_weight, loss_weights=None, log_keys=None, ignore_prefix_size=0, report_accuracy=False, use_masking=True, use_weighted_masking=False, loss_type="L1", bce_pos_weight=5.0, bce_loss_lambda=1.0, use_guided_attn_loss=False, num_heads_applied_guided_attn=2, ce_weight=1.0, ctc_weight=0.0, hubert_weight=1.0, dec_weight=1.0, bart_weight=1.0, ): super().__init__(task) self.speech_criterion = TexttoSpeechLoss( task, sentence_avg, use_masking, use_weighted_masking, loss_type, bce_pos_weight, bce_loss_lambda, use_guided_attn_loss, num_heads_applied_guided_attn=num_heads_applied_guided_attn, ) self.text_criterion = SpeechtoTextLoss( SpeechtoTextLossConfig, task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy, ce_weight, ctc_weight ) self.text_pretrain_criterion = TextPretrainCriterion( task, sentence_avg, bart_weight, loss_weights, ) self.speech_pretrain_criterion = SpeechPretrainCriterion( task, sentence_avg, pred_masked_weight, pred_nomask_weight, loss_weights, log_keys, use_masking, use_weighted_masking, loss_type, bce_pos_weight, hubert_weight, dec_weight ) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ task_name = sample['task_name'] if task_name == 's2t' or task_name == 's2c': return self.text_criterion(model, sample, reduce) elif task_name == 't2s' or task_name == 's2s': return self.speech_criterion(model, sample) elif task_name == 'text_pretrain': return self.text_pretrain_criterion(model, sample, reduce) elif task_name == 'speech_pretrain': return self.speech_pretrain_criterion(model, sample, reduce) @classmethod def reduce_metrics(cls, logging_outputs): """Aggregate logging outputs from data parallel training.""" logging_outputs_dict = {} for logging_output in logging_outputs: for task_name in logging_output: if task_name not in ['s2t', 't2s', 's2c', 's2s', 'text_pretrain', 'speech_pretrain']: continue if task_name not in logging_outputs_dict: logging_outputs_dict[task_name] = [] logging_outputs_dict[task_name].append(logging_output[task_name]) for task_name in logging_outputs_dict: if task_name == 's2t': # LabelSmoothedCrossEntropyCriterion.reduce_metrics([logging_output['s2t'] for logging_output in logging_outputs]) s2t_logging_output = logging_outputs_dict[task_name] # s2t_sum = sum(log.get("ce_loss", 0) for log in logging_outputs) loss_sum = sum(log.get("loss", 0) for log in s2t_logging_output) nll_loss_sum = sum(log.get("nll_loss", 0) for log in s2t_logging_output) ntokens = sum(log.get("ntokens", 0) for log in s2t_logging_output) ce_loss_sum = sum(log.get("ce_loss", 0) for log in s2t_logging_output) ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in s2t_logging_output) sample_size = max(1, sum(log.get("sample_size", 0) for log in s2t_logging_output)) metrics.log_scalar( "s2t_loss", loss_sum / sample_size / math.log(2), sample_size, 1, round=3 ) metrics.log_scalar( "s2t_nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, 2, round=3 ) metrics.log_derived( "s2t_ppl", lambda meters: utils.get_perplexity(meters["s2t_nll_loss"].avg, 2) ) metrics.log_scalar( "ctc_loss", ctc_loss_sum / sample_size / math.log(2), ntokens, 2, round=3 ) metrics.log_scalar( "ce_loss", ce_loss_sum / ntokens, ntokens, 2, round=3 ) total = utils.item(sum(log.get("total", 0) for log in s2t_logging_output)) if total > 0: metrics.log_scalar("s2t_total", total) n_correct = utils.item( sum(log.get("n_correct", 0) for log in s2t_logging_output) ) metrics.log_scalar("s2t_n_correct", n_correct) metrics.log_derived( "s2t_accuracy", lambda meters: round( meters["s2t_n_correct"].sum * 100.0 / meters["s2t_total"].sum, 3 ) if meters["s2t_total"].sum > 0 else float("nan"), 2 ) c_errors = sum(log.get("c_errors", 0) for log in s2t_logging_output) metrics.log_scalar("_c_errors", c_errors) c_total = sum(log.get("c_total", 0) for log in s2t_logging_output) metrics.log_scalar("_c_total", c_total) w_errors = sum(log.get("w_errors", 0) for log in s2t_logging_output) metrics.log_scalar("_w_errors", w_errors) wv_errors = sum(log.get("wv_errors", 0) for log in s2t_logging_output) metrics.log_scalar("_wv_errors", wv_errors) w_total = sum(log.get("w_total", 0) for log in s2t_logging_output) metrics.log_scalar("_w_total", w_total) if c_total > 0: metrics.log_derived( "uer", lambda meters: safe_round( meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3 ) if meters["_c_total"].sum > 0 else float("nan"), ) if w_total > 0: metrics.log_derived( "wer", lambda meters: safe_round( meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3 ) if meters["_w_total"].sum > 0 else float("nan"), ) metrics.log_derived( "raw_wer", lambda meters: safe_round( meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3 ) if meters["_w_total"].sum > 0 else float("nan"), ) if task_name == 't2s': # TTSLossCriterion.reduce_metrics([logging_output['t2s'] for logging_output in logging_outputs]) # t2s_sum = sum(log.get("speech_loss", 0) for log in logging_outputs) t2s_logging_output = logging_outputs_dict[task_name] loss_sum = sum(log.get("loss", 0) for log in t2s_logging_output) l1_loss_sum = sum(log.get("l1_loss", 0) for log in t2s_logging_output) l2_loss_sum = sum(log.get("l2_loss", 0) for log in t2s_logging_output) bce_loss_sum = sum(log.get("bce_loss", 0) for log in t2s_logging_output) sample_size = max(1, sum(log.get("sample_size", 0) for log in t2s_logging_output)) metrics.log_scalar( "t2s_loss", loss_sum / sample_size, sample_size, 1, round=5 ) encoder_alpha_sum = sum(log.get("encoder_alpha", 0) for log in t2s_logging_output) decoder_alpha_sum = sum(log.get("decoder_alpha", 0) for log in t2s_logging_output) ngpu = sum(log.get("ngpu", 0) for log in t2s_logging_output) metrics.log_scalar( "t2s_l1_loss", l1_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "t2s_l2_loss", l2_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "t2s_bce_loss", bce_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "t2s_encoder_alpha", encoder_alpha_sum / sample_size, sample_size, round=5 ) metrics.log_scalar( "t2s_decoder_alpha", decoder_alpha_sum / sample_size, sample_size, round=5 ) if "enc_dec_attn_loss" in t2s_logging_output[0]: enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in t2s_logging_output) metrics.log_scalar( "t2s_enc_dec_attn_loss", enc_dec_attn_loss_sum / sample_size, sample_size, round=8 ) if task_name == 's2c': s2c_logging_output = logging_outputs_dict[task_name] loss_sum = sum(log.get("loss", 0) for log in s2c_logging_output) nll_loss_sum = sum(log.get("nll_loss", 0) for log in s2c_logging_output) ntokens = sum(log.get("ntokens", 0) for log in s2c_logging_output) sample_size = max(1, sum(log.get("sample_size", 0) for log in s2c_logging_output)) metrics.log_scalar( "s2c_loss", loss_sum / sample_size / math.log(2), sample_size, 1, round=3 ) metrics.log_scalar( "s2c_nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, 2, round=3 ) total = utils.item(sum(log.get("total", 0) for log in s2c_logging_output)) if total > 0: metrics.log_scalar("s2c_total", total) n_correct = utils.item(sum(log.get("n_correct", 0) for log in s2c_logging_output)) metrics.log_scalar("s2c_n_correct", n_correct) metrics.log_derived( "s2c_accuracy", lambda meters: round( meters["s2c_n_correct"].sum * 100.0 / meters["s2c_total"].sum, 3 ) if meters["s2c_total"].sum > 0 else float("nan"), 2 ) if task_name == 's2s': s2s_logging_output = logging_outputs_dict[task_name] loss_sum = sum(log.get("loss", 0) for log in s2s_logging_output) l1_loss_sum = sum(log.get("l1_loss", 0) for log in s2s_logging_output) l2_loss_sum = sum(log.get("l2_loss", 0) for log in s2s_logging_output) bce_loss_sum = sum(log.get("bce_loss", 0) for log in s2s_logging_output) sample_size = max(1, sum(log.get("sample_size", 0) for log in s2s_logging_output)) metrics.log_scalar( "s2s_loss", loss_sum / sample_size, sample_size, 1, round=5 ) encoder_alpha_sum = sum(log.get("encoder_alpha", 0) for log in s2s_logging_output) decoder_alpha_sum = sum(log.get("decoder_alpha", 0) for log in s2s_logging_output) ngpu = sum(log.get("ngpu", 0) for log in s2s_logging_output) metrics.log_scalar( "s2s_l1_loss", l1_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "s2s_l2_loss", l2_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "s2s_bce_loss", bce_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "s2s_decoder_alpha", decoder_alpha_sum / sample_size, sample_size, round=5 ) if "enc_dec_attn_loss" in s2s_logging_output[0]: enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in s2s_logging_output) metrics.log_scalar( "s2s_enc_dec_attn_loss", enc_dec_attn_loss_sum / sample_size, sample_size, round=8 ) if task_name == 'text_pretrain': bart_logging_output = logging_outputs_dict[task_name] loss_sum = sum(log.get("loss", 0) for log in bart_logging_output) ntokens = sum(log.get("ntokens", 0) for log in bart_logging_output) sample_size = max(1, sum(log.get("sample_size", 0) for log in bart_logging_output)) bart_loss_sum = sum(log.get("bart_loss", 0) for log in bart_logging_output) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "text_loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "bart_loss", bart_loss_sum / sample_size / math.log(2), ntokens, 2, round=3 ) if sample_size != ntokens: metrics.log_scalar( "bart_nll_loss", bart_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "bart_ppl", lambda meters: utils.get_perplexity(meters["bart_nll_loss"].avg) ) else: metrics.log_derived( "bart_ppl", lambda meters: utils.get_perplexity(meters["bart_loss"].avg) ) metrics.log_scalar("bart_wpb", ntokens, priority=180, round=1) val_prob_perplexity = 0 val_code_perplexity = 0 sample_size_pp = 0 count_log_cp = 0 for log in bart_logging_output: if "loss_prob_perplexity" in log: val_prob_perplexity = val_prob_perplexity + log["loss_prob_perplexity"] sample_size_pp = sample_size_pp + log["sample_size"] if "code_perplexity" in log: val_code_perplexity = val_code_perplexity + log["code_perplexity"] count_log_cp = count_log_cp + 1 if val_prob_perplexity > 0: metrics.log_scalar("text_loss_prob_perplexity", val_prob_perplexity / sample_size_pp / math.log(2), round=3) if val_code_perplexity > 0: metrics.log_scalar("text_code_perplexity", val_code_perplexity / count_log_cp, round=3) if task_name == 'speech_pretrain': hubert_logging_output = logging_outputs_dict[task_name] loss_sum = sum(log.get("loss", 0) for log in hubert_logging_output) ntokens = sum(log.get("ntokens", 0) for log in hubert_logging_output) sample_size = max(1, sum(log.get("sample_size", 0) for log in hubert_logging_output)) dec_loss_sum = sum(log.get("dec_loss", 0) for log in hubert_logging_output) l1_loss_sum = sum(log.get("l1_loss", 0) for log in hubert_logging_output) l2_loss_sum = sum(log.get("l2_loss", 0) for log in hubert_logging_output) bce_loss_sum = sum(log.get("bce_loss", 0) for log in hubert_logging_output) ngpu = sum(log.get("ngpu", 0) for log in hubert_logging_output) metrics.log_scalar("hubert_loss", loss_sum / sample_size / math.log(2), sample_size, round=3) if sample_size != ntokens: metrics.log_scalar("hubert_nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3) metrics.log_derived("hubert_ppl", lambda meters: utils.get_perplexity(meters["hubert_nll_loss"].avg)) else: metrics.log_derived("hubert_ppl", lambda meters: utils.get_perplexity(meters["hubert_loss"].avg)) counts = {} for lk in hubert_logging_output[0].keys(): if lk.startswith("count_"): val = sum(log[lk] for log in hubert_logging_output) metrics.log_scalar("hubert_" + lk, val) counts[lk] = val for lk in hubert_logging_output[0].keys(): if lk.startswith("loss_") and lk != 'loss_prob_perplexity': val = sum(log[lk] for log in hubert_logging_output) metrics.log_scalar("hubert_" + lk, val / sample_size / math.log(2), round=3) elif lk.startswith("correct_"): val = sum(log[lk] for log in hubert_logging_output) metrics.log_scalar("hubert_" + lk, val / counts[re.sub("correct", "count", lk)]) # elif lk == 'code_perplexity': # val = sum(log[lk] for log in hubert_logging_output) # metrics.log_scalar("hubert_" + lk, val / len(hubert_logging_output), round=3) val_prob_perplexity = 0 val_code_perplexity = 0 sample_size_pp = 0 count_log_cp = 0 for log in hubert_logging_output: if "loss_prob_perplexity" in log: val_prob_perplexity = val_prob_perplexity + log["loss_prob_perplexity"] sample_size_pp = sample_size_pp + log["sample_size"] if "code_perplexity" in log: val_code_perplexity = val_code_perplexity + log["code_perplexity"] count_log_cp = count_log_cp + 1 if val_prob_perplexity > 0: metrics.log_scalar("hubert_loss_prob_perplexity", val_prob_perplexity / sample_size_pp / math.log(2), round=3) if val_code_perplexity > 0: metrics.log_scalar("hubert_code_perplexity", val_code_perplexity / count_log_cp, round=3) metrics.log_scalar( "hubert_dec_loss", dec_loss_sum / ngpu, sample_size, 2, round=5 ) metrics.log_scalar( "hubert_l1_loss", l1_loss_sum / ngpu, sample_size, 2, round=5 ) metrics.log_scalar( "hubert_l2_loss", l2_loss_sum / ngpu, sample_size, 2, round=5 ) metrics.log_scalar( "hubert_bce_loss", bce_loss_sum / ngpu, sample_size, 2, round=5 ) if "enc_dec_attn_loss" in hubert_logging_output[0]: enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in hubert_logging_output) metrics.log_scalar( "hubert_enc_dec_attn_loss", enc_dec_attn_loss_sum / ngpu, sample_size, round=8 ) metrics.log_scalar("hubert_wpb", ntokens, priority=180, round=1) loss = sum(log.get("loss", 0) for log in logging_outputs) sample_size = max(1, sum(log.get("sample_size", 0) for log in logging_outputs)) metrics.log_scalar( "loss", loss / sample_size, sample_size, 1, round=5 ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return False
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/criterions/speecht5_criterion.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import math from dataclasses import dataclass, field from typing import List, Optional import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from omegaconf import II @dataclass class TextPretrainCriterionConfig(FairseqDataclass): sentence_avg: bool = II("optimization.sentence_avg") loss_weights: Optional[List[float]] = field( default_factory=lambda: [0.1,], metadata={"help": "weights for additional loss terms (not first one)"}, ) bart_weight: float = field( default=1.0, metadata={"help": "loss weight for cross entropy"}, ) class TextPretrainCriterion(FairseqCriterion): def __init__(self, task, sentence_avg, bart_weight, loss_weights=None): super().__init__(task) self.sentence_avg = sentence_avg self.loss_weights = loss_weights self.bart_weight = bart_weight def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output, codebook_out, encoder_output = model(**sample["net_input"]) bart_loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) loss = self.bart_weight * bart_loss logging_output = { "loss": loss.item(), "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "bart_loss": bart_loss.item(), "sample_size": sample_size, } if "prob_perplexity" in codebook_out: assert hasattr(model, "get_extra_losses") extra_losses, names = model.get_extra_losses(codebook_out) if torch.is_tensor(extra_losses): extra_losses = [extra_losses] names = [names] if len(self.loss_weights) == 1 and len(extra_losses) != 1: self.loss_weights = [self.loss_weights[0]] * len(extra_losses) if len(self.loss_weights) > len(extra_losses): modified_loss_weight = self.loss_weights[len(extra_losses):] else: modified_loss_weight = self.loss_weights # assert len(extra_losses) == len(self.loss_weights), f"{len(extra_losses)}, {len(self.loss_weights)}" for p, n, coef in zip(extra_losses, names, modified_loss_weight): # print(n + str(coef)) if coef != 0 and p is not None: p = coef * p.float() * sample_size loss += p logging_output[f"loss_{n}"] = p.item() if 'loss_prob_perplexity' in logging_output: logging_output['code_perplexity'] = codebook_out['code_perplexity'].item() return loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output).view(-1) loss = F.nll_loss( lprobs, target, ignore_index=self.padding_idx, reduction="sum" if reduce else "none", ) return loss, loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) bart_loss_sum = sum(log.get("bart_loss", 0) for log in logging_outputs) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "bart_loss", bart_loss_sum / sample_size / math.log(2), ntokens, 2, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", bart_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["bart_loss"].avg) ) if "loss_prob_perplexity" in logging_outputs[0].keys(): val = sum(log["loss_prob_perplexity"] for log in logging_outputs) metrics.log_scalar("loss_prob_perplexity", val / sample_size / math.log(2), round=3) if "code_perplexity" in logging_outputs[0].keys(): val = sum(log["code_perplexity"] for log in logging_outputs) metrics.log_scalar("code_perplexity", val / len(logging_outputs), round=3) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/criterions/text_pretrain_criterion.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- from dataclasses import dataclass, field import torch from fairseq import metrics, utils from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass from speecht5.models.modules.speech_encoder_prenet import SpeechEncoderPrenet from espnet.nets.pytorch_backend.e2e_tts_tacotron2 import GuidedAttentionLoss from omegaconf import II from typing import Any @dataclass class TexttoSpeechLossConfig(FairseqDataclass): use_masking: bool = field( default=True, metadata={"help": "Whether to use masking in calculation of loss"}, ) use_weighted_masking: bool = field( default=False, metadata={"help": "Whether to use weighted masking in calculation of loss"}, ) loss_type: str = field( default="L1", metadata={"help": "How to calc loss"}, ) bce_pos_weight: float = field( default=5.0, metadata={"help": "Positive sample weight in BCE calculation (only for use-masking=True)"}, ) bce_loss_lambda: float = field( default=1.0, metadata={"help": "Lambda in bce loss"}, ) use_guided_attn_loss: bool = field( default=False, metadata={"help": "Whether to use guided attention loss"}, ) guided_attn_loss_sigma: float = field( default=0.4, metadata={"help": "Sigma in guided attention loss"}, ) guided_attn_loss_lambda: float = field( default=10.0, metadata={"help": "Lambda in guided attention loss"}, ) num_layers_applied_guided_attn: int = field( default=2, metadata={"help": "Number of layers to be applied guided attention loss, if set -1, all of the layers will be applied."}, ) num_heads_applied_guided_attn: int = field( default=2, metadata={"help": "Number of heads in each layer to be applied guided attention loss, if set -1, all of the heads will be applied."}, ) modules_applied_guided_attn: Any = field( default=("encoder-decoder",), metadata={"help": "Module name list to be applied guided attention loss"}, ) sentence_avg: bool = II("optimization.sentence_avg") class TexttoSpeechLoss(FairseqCriterion): def __init__( self, task, sentence_avg, use_masking=True, use_weighted_masking=False, loss_type="L1", bce_pos_weight=5.0, bce_loss_lambda=1.0, use_guided_attn_loss=False, guided_attn_loss_sigma=0.4, guided_attn_loss_lambda=1.0, num_layers_applied_guided_attn=2, num_heads_applied_guided_attn=2, modules_applied_guided_attn=["encoder-decoder"], ): super().__init__(task) self.sentence_avg = sentence_avg self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking self.loss_type = loss_type self.bce_pos_weight = bce_pos_weight self.bce_loss_lambda = bce_loss_lambda self.use_guided_attn_loss = use_guided_attn_loss self.guided_attn_loss_sigma = guided_attn_loss_sigma self.guided_attn_loss_lambda = guided_attn_loss_lambda # define loss function self.criterion = Tacotron2Loss( use_masking=use_masking, use_weighted_masking=use_weighted_masking, bce_pos_weight=bce_pos_weight, ) if self.use_guided_attn_loss: self.num_layers_applied_guided_attn = num_layers_applied_guided_attn self.num_heads_applied_guided_attn = num_heads_applied_guided_attn self.modules_applied_guided_attn = modules_applied_guided_attn if self.use_guided_attn_loss: self.attn_criterion = GuidedMultiHeadAttentionLoss( sigma=guided_attn_loss_sigma, alpha=guided_attn_loss_lambda, ) def forward(self, model, sample): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) loss, l1_loss, l2_loss, bce_loss, enc_dec_attn_loss = self.compute_loss(model, net_output, sample) # sample_size = ( # sample["target"].size(0) if self.sentence_avg else sample["nframes"] # ) sample_size = 1 logging_output = { "loss": loss.item(), "l1_loss": l1_loss.item(), "l2_loss": l2_loss.item(), "bce_loss": bce_loss.item(), "sample_size": 1, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), } if enc_dec_attn_loss is not None: logging_output['enc_dec_attn_loss'] = enc_dec_attn_loss.item() if hasattr(model, 'text_encoder_prenet'): logging_output["encoder_alpha"] = model.text_encoder_prenet.encoder_prenet[-1].alpha.item() logging_output["decoder_alpha"] = model.speech_decoder_prenet.decoder_prenet[-1].alpha.item() elif hasattr(model, "speech_encoder_prenet"): logging_output["decoder_alpha"] = model.speech_decoder_prenet.decoder_prenet[-1].alpha.item() else: if 'task' not in sample: logging_output["encoder_alpha"] = model.encoder_prenet.encoder_prenet[-1].alpha.item() logging_output["decoder_alpha"] = model.decoder_prenet.decoder_prenet[-1].alpha.item() return loss, sample_size, logging_output def compute_loss(self, model, net_output, sample): before_outs, after_outs, logits, attn = net_output labels = sample["labels"] ys = sample["dec_target"] olens = sample["dec_target_lengths"] ilens = sample["src_lengths"] # modifiy mod part of groundtruth if model.reduction_factor > 1: olens_in = olens.new([torch.div(olen, model.reduction_factor, rounding_mode='floor') for olen in olens]) olens = olens.new([olen - olen % model.reduction_factor for olen in olens]) max_olen = max(olens) ys = ys[:, :max_olen] labels = labels[:, :max_olen] labels = torch.scatter(labels, 1, (olens - 1).unsqueeze(1), 1.0) # make sure at least one frame has 1 # labels[:, -1] = 1.0 else: olens_in = olens # caluculate loss values l1_loss, l2_loss, bce_loss = self.criterion( after_outs, before_outs, logits, ys, labels, olens ) # l1_loss = l1_loss / ys.size(2) # l2_loss = l2_loss / ys.size(2) if self.loss_type == "L1": loss = l1_loss + self.bce_loss_lambda * bce_loss if self.bce_loss_lambda > 0.0 else l1_loss elif self.loss_type == "L2": loss = l2_loss + self.bce_loss_lambda * bce_loss if self.bce_loss_lambda > 0.0 else l2_loss elif self.loss_type == "L1+L2": loss = l1_loss + l2_loss + self.bce_loss_lambda * bce_loss if self.bce_loss_lambda > 0.0 else l1_loss + l2_loss else: raise ValueError("unknown --loss-type " + self.loss_type) # calculate guided attention loss enc_dec_attn_loss = None if self.use_guided_attn_loss: # calculate the input lengths of encoder, which is determined by encoder prenet if hasattr(model, 'encoder_reduction_factor') and model.encoder_reduction_factor > 1: ilens_in = ilens.new([ilen // model.encoder_reduction_factor for ilen in ilens]) else: ilens_in = ilens # work for speech to speech model's input if "task_name" in sample and sample["task_name"] == "s2s": m = None if hasattr(model, 'encoder_prenet'): m = model.encoder_prenet elif hasattr(model, 'speech_encoder_prenet'): m = model.speech_encoder_prenet if m is not None and isinstance(m, SpeechEncoderPrenet): ilens_in = m.get_src_lengths(ilens_in) # calculate for encoder-decoder if "encoder-decoder" in self.modules_applied_guided_attn: attn = [att_l[:, : self.num_heads_applied_guided_attn] for att_l in attn] att_ws = torch.cat(attn, dim=1) # (B, H*L, T_out, T_in) enc_dec_attn_loss = self.attn_criterion(att_ws, ilens_in, olens_in) loss = loss + enc_dec_attn_loss return loss, l1_loss, l2_loss, bce_loss, enc_dec_attn_loss @classmethod def reduce_metrics(cls, logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) l1_loss_sum = sum(log.get("l1_loss", 0) for log in logging_outputs) l2_loss_sum = sum(log.get("l2_loss", 0) for log in logging_outputs) bce_loss_sum = sum(log.get("bce_loss", 0) for log in logging_outputs) sample_size = max(1, sum(log.get("sample_size", 0) for log in logging_outputs)) metrics.log_scalar( "loss", loss_sum / sample_size, sample_size, 1, round=5 ) encoder_alpha_sum = sum(log.get("encoder_alpha", 0) for log in logging_outputs) decoder_alpha_sum = sum(log.get("decoder_alpha", 0) for log in logging_outputs) ngpu = sum(log.get("ngpu", 0) for log in logging_outputs) metrics.log_scalar( "l1_loss", l1_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "l2_loss", l2_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "bce_loss", bce_loss_sum / sample_size, sample_size, 2, round=5 ) metrics.log_scalar( "encoder_alpha", encoder_alpha_sum / sample_size, sample_size, round=5 ) metrics.log_scalar( "decoder_alpha", decoder_alpha_sum / sample_size, sample_size, round=5 ) if "enc_dec_attn_loss" in logging_outputs[0]: enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in logging_outputs) metrics.log_scalar( "enc_dec_attn_loss", enc_dec_attn_loss_sum / sample_size, sample_size, round=8 ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True class Tacotron2Loss(torch.nn.Module): """Loss function module for Tacotron2.""" def __init__( self, use_masking=True, use_weighted_masking=False, bce_pos_weight=20.0 ): """Initialize Tactoron2 loss module. Args: use_masking (bool): Whether to apply masking for padded part in loss calculation. use_weighted_masking (bool): Whether to apply weighted masking in loss calculation. bce_pos_weight (float): Weight of positive sample of stop token. """ super(Tacotron2Loss, self).__init__() assert (use_masking != use_weighted_masking) or not use_masking self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking # define criterions # reduction = "none" if self.use_weighted_masking else "sum" reduction = "none" if self.use_weighted_masking else "mean" self.l1_criterion = torch.nn.L1Loss(reduction=reduction) self.mse_criterion = torch.nn.MSELoss(reduction=reduction) self.bce_criterion = torch.nn.BCEWithLogitsLoss( reduction=reduction, pos_weight=torch.tensor(bce_pos_weight) ) # NOTE(kan-bayashi): register pre hook function for the compatibility self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook) def forward(self, after_outs, before_outs, logits, ys, labels, olens): """Calculate forward propagation. Args: after_outs (Tensor): Batch of outputs after postnets (B, Lmax, odim). before_outs (Tensor): Batch of outputs before postnets (B, Lmax, odim). logits (Tensor): Batch of stop logits (B, Lmax). ys (Tensor): Batch of padded target features (B, Lmax, odim). labels (LongTensor): Batch of the sequences of stop token labels (B, Lmax). olens (LongTensor): Batch of the lengths of each target (B,). Returns: Tensor: L1 loss value. Tensor: Mean square error loss value. Tensor: Binary cross entropy loss value. """ # make mask and apply it if self.use_masking: masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device) ys = ys.masked_select(masks) after_outs = after_outs.masked_select(masks) before_outs = before_outs.masked_select(masks) labels = labels.masked_select(masks[:, :, 0]) logits = logits.masked_select(masks[:, :, 0]) # calculate loss l1_loss = self.l1_criterion(after_outs, ys) + self.l1_criterion(before_outs, ys) mse_loss = self.mse_criterion(after_outs, ys) + self.mse_criterion( before_outs, ys ) bce_loss = self.bce_criterion(logits, labels) # make weighted mask and apply it if self.use_weighted_masking: masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device) weights = masks.float() / masks.sum(dim=1, keepdim=True).float() out_weights = weights.div(ys.size(0) * ys.size(2)) logit_weights = weights.div(ys.size(0)) # apply weight l1_loss = l1_loss.mul(out_weights).masked_select(masks).sum() mse_loss = mse_loss.mul(out_weights).masked_select(masks).sum() bce_loss = ( bce_loss.mul(logit_weights.squeeze(-1)) .masked_select(masks.squeeze(-1)) .sum() ) return l1_loss, mse_loss, bce_loss def _load_state_dict_pre_hook( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): """Apply pre hook fucntion before loading state dict. From v.0.6.1 `bce_criterion.pos_weight` param is registered as a parameter but old models do not include it and as a result, it causes missing key error when loading old model parameter. This function solve the issue by adding param in state dict before loading as a pre hook function of the `load_state_dict` method. """ key = prefix + "bce_criterion.pos_weight" if key not in state_dict: state_dict[key] = self.bce_criterion.pos_weight class GuidedMultiHeadAttentionLoss(GuidedAttentionLoss): """Guided attention loss function module for multi head attention. Args: sigma (float, optional): Standard deviation to control how close attention to a diagonal. alpha (float, optional): Scaling coefficient (lambda). reset_always (bool, optional): Whether to always reset masks. """ def forward(self, att_ws, ilens, olens): """Calculate forward propagation. Args: att_ws (Tensor): Batch of multi head attention weights (B, H, T_max_out, T_max_in). ilens (LongTensor): Batch of input lenghts (B,). olens (LongTensor): Batch of output lenghts (B,). Returns: Tensor: Guided attention loss value. """ if self.guided_attn_masks is None: self.guided_attn_masks = ( self._make_guided_attention_masks(ilens, olens) .to(att_ws.device) .unsqueeze(1) ) if self.masks is None: self.masks = self._make_masks(ilens, olens).to(att_ws.device).unsqueeze(1) losses = self.guided_attn_masks * att_ws loss = torch.mean(losses.masked_select(self.masks)) if self.reset_always: self._reset_masks() return self.alpha * loss def _make_guided_attention_masks(self, ilens, olens): n_batches = len(ilens) max_ilen = max(ilens) max_olen = max(olens) guided_attn_masks = torch.zeros((n_batches, max_olen, max_ilen), device=olens.device) for idx, (ilen, olen) in enumerate(zip(ilens, olens)): guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask( ilen, olen, self.sigma ) return guided_attn_masks @staticmethod def _make_guided_attention_mask(ilen, olen, sigma): grid_x, grid_y = torch.meshgrid(torch.arange(olen, device=olen.device), torch.arange(ilen, device=olen.device)) grid_x, grid_y = grid_x.float(), grid_y.float() return 1.0 - torch.exp( -((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma**2)) ) @staticmethod def _make_masks(ilens, olens): in_masks = make_non_pad_mask(ilens).to(ilens.device) # (B, T_in) out_masks = make_non_pad_mask(olens).to(olens.device) # (B, T_out) return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2) # (B, T_out, T_in)
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/criterions/text_to_speech_loss.py
# -------------------------------------------------------- # SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing (https://arxiv.org/abs/2110.07205) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechT5 # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq and espnet code bases # https://github.com/pytorch/fairseq; https://github.com/espnet/espnet # -------------------------------------------------------- import math import re from dataclasses import dataclass, field from typing import List, Optional import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion from speecht5.criterions.text_to_speech_loss import TexttoSpeechLoss, TexttoSpeechLossConfig @dataclass class SpeechPretrainCriterionConfig(TexttoSpeechLossConfig): pred_masked_weight: float = field( default=1.0, metadata={"help": "weight for predictive loss for masked frames"}, ) pred_nomask_weight: float = field( default=0.0, metadata={"help": "weight for predictive loss for unmasked frames"}, ) loss_weights: Optional[List[float]] = field( default_factory=lambda: [10,], metadata={"help": "weights for additional loss terms (not first one)"}, ) log_keys: List[str] = field( default_factory=lambda: [], metadata={"help": "output keys to log"}, ) hubert_weight: float = field( default=1.0, metadata={"help": "weight of hubert loss"}, ) dec_weight: float = field( default=1.0, metadata={"help": "weight of decoder loss"}, ) class SpeechPretrainCriterion(FairseqCriterion): def __init__( self, task, sentence_avg, pred_masked_weight, pred_nomask_weight, loss_weights=None, log_keys=None, use_masking=True, use_weighted_masking=False, loss_type="L1", bce_pos_weight=5.0, hubert_weight=1.0, dec_weight=1.0, ): super().__init__(task) self.pred_masked_weight = pred_masked_weight self.pred_nomask_weight = pred_nomask_weight self.loss_weights = loss_weights self.log_keys = [] if log_keys is None else log_keys self.hubert_weight = hubert_weight self.dec_weight = dec_weight self.speech_criterion = TexttoSpeechLoss( task, sentence_avg, use_masking, use_weighted_masking, loss_type, bce_pos_weight, ) def forward(self, model, sample, reduce=True, log_pred=False): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ if self.dec_weight == 0: sample["net_input"]["only_hubert"] = True net_output, net_output_dec = model(target_list=sample["target_list"], **sample["net_input"]) loss = 0. sample_size = 0 logging_output = {} reduction = "sum" if reduce else "none" loss_m_list = [] logp_m_list = model.get_logits(net_output, True) targ_m_list = model.get_targets(None, net_output, True) assert self.pred_masked_weight == 0 or len(logp_m_list) > 0 for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)): loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction) loss_m_list.append(loss_m) logging_output[f"loss_m_{i}"] = loss_m.detach().item() if self.pred_masked_weight > 0: loss += self.pred_masked_weight * sum(loss_m_list) sample_size += targ_m_list[0].numel() loss_u_list = [] logp_u_list = model.get_logits(net_output, False) targ_u_list = model.get_targets(None, net_output, False) assert self.pred_nomask_weight == 0 or len(logp_u_list) > 0 for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)): loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction) loss_u_list.append(loss_u) logging_output[f"loss_u_{i}"] = loss_u.detach().item() if self.pred_nomask_weight > 0: loss += self.pred_nomask_weight * sum(loss_u_list) sample_size += targ_u_list[0].numel() if self.loss_weights is not None: assert hasattr(model, "get_extra_losses") extra_losses, names = model.get_extra_losses(net_output) if torch.is_tensor(extra_losses): extra_losses = [extra_losses] names = [names] if len(self.loss_weights) == 1 and len(extra_losses) != 1: self.loss_weights = [self.loss_weights[0]] * len(extra_losses) if len(self.loss_weights) > len(extra_losses): modified_loss_weight = self.loss_weights[:len(extra_losses)] else: modified_loss_weight = self.loss_weights # assert len(extra_losses) == len(self.loss_weights), f"{len(extra_losses)}, {len(self.loss_weights)}" for p, n, coef in zip(extra_losses, names, modified_loss_weight): # print(n + str(coef)) if coef != 0 and p is not None: p = coef * p.float() * sample_size loss += p logging_output[f"loss_{n}"] = p.detach().item() logging_output = { "ntokens": sample_size, "nsentences": sample["id"].numel(), "sample_size": sample_size, "ngpu": 1, **logging_output, } if 'loss_prob_perplexity' in logging_output: logging_output['code_perplexity'] = net_output['code_perplexity'].detach().item() for lk in self.log_keys: if lk in net_output: logging_output[lk] = float((net_output[lk].item())) def compute_correct(logits): if logits.numel() == 0: return 0, 0 else: assert logits.dim() > 1, logits.shape max = logits.argmax(-1) == 0 min = logits.argmin(-1) == 0 both = max & min corr = max.long().sum().item() - both.long().sum().item() count = max.numel() return corr, count with torch.no_grad(): for i, logp_m in enumerate(logp_m_list): corr_m, count_m = compute_correct(logp_m) logging_output[f"correct_m_{i}"] = corr_m logging_output[f"count_m_{i}"] = count_m for i, logp_u in enumerate(logp_u_list): corr_u, count_u = compute_correct(logp_u) logging_output[f"correct_u_{i}"] = corr_u logging_output[f"count_u_{i}"] = count_u if self.dec_weight == 0.0: logging_output["loss"] = loss.item() if reduce else loss return loss, sample_size, logging_output # ## dec loss dec_loss, l1_loss, l2_loss, bce_loss, enc_dec_attn_loss = self.speech_criterion.compute_loss(model, net_output_dec, sample) # Log tts loss logging_output['dec_loss'] = dec_loss.item() logging_output['l1_loss'] = l1_loss.item() logging_output['l2_loss'] = l2_loss.item() logging_output['bce_loss'] = bce_loss.item() if enc_dec_attn_loss is not None: logging_output['enc_dec_attn_loss'] = enc_dec_attn_loss.item() loss = self.hubert_weight * loss + self.dec_weight * sample_size * dec_loss logging_output["loss"] = loss.item() if reduce else loss return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training (copied from normal cross entropy).""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) dec_loss_sum = sum(log.get("dec_loss", 0) for log in logging_outputs) l1_loss_sum = sum(log.get("l1_loss", 0) for log in logging_outputs) l2_loss_sum = sum(log.get("l2_loss", 0) for log in logging_outputs) bce_loss_sum = sum(log.get("bce_loss", 0) for log in logging_outputs) ngpu = sum(log.get("ngpu", 0) for log in logging_outputs) metrics.log_scalar("loss", loss_sum / sample_size / math.log(2), sample_size, round=3) if sample_size != ntokens: metrics.log_scalar("nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3) metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)) else: metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)) counts = {} for lk in logging_outputs[0].keys(): if lk.startswith("count_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val) counts[lk] = val for lk in logging_outputs[0].keys(): if lk.startswith("loss_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val / sample_size / math.log(2), round=3) elif lk.startswith("correct_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)]) elif lk == 'code_perplexity': val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val / len(logging_outputs), round=3) metrics.log_scalar( "dec_loss", dec_loss_sum / ngpu, sample_size, 2, round=5 ) metrics.log_scalar( "l1_loss", l1_loss_sum / ngpu, sample_size, 2, round=5 ) metrics.log_scalar( "l2_loss", l2_loss_sum / ngpu, sample_size, 2, round=5 ) metrics.log_scalar( "bce_loss", bce_loss_sum / ngpu, sample_size, 2, round=5 ) if "enc_dec_attn_loss" in logging_outputs[0]: enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in logging_outputs) metrics.log_scalar( "enc_dec_attn_loss", enc_dec_attn_loss_sum / ngpu, sample_size, round=8 ) @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" raise NotImplementedError() @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return False
EXA-1-master
exa/models/unilm-master/speecht5/speecht5/criterions/speech_pretrain_criterion.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import copy import logging from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from modules import ( compute_mask_indices, LayerNorm, ConvFeatureExtractionModel, GradMultiply, TransformerEncoder, TransformerEncoderBase, ) # from fairseq.models.transformer import TransformerConfig logger = logging.getLogger(__name__) class DictConfig: def __init__(self, cfg=None): if cfg is not None: self.update(cfg) def update(self, cfg: dict): self.__dict__.update(cfg) class TransformerConfig: def __init__(self, cfg=None): if cfg is not None: self.update(cfg) def update(self, cfg: dict): if 'encoder' in cfg: self.encoder = DictConfig(cfg['encoder']) del cfg['encoder'] if 'quant_noise' in cfg: self.quant_noise = DictConfig(cfg['quant_noise']) del cfg['quant_noise'] if 'decoder' in cfg: del cfg['decoder'] self.__dict__.update(cfg) class SpeechLMConfig: def __init__(self, cfg=None): self.label_rate: int = 50 self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True) self.encoder_layers: int = 12 # num encoder layers in the transformer self.encoder_embed_dim: int = 768 # encoder embedding dimension self.encoder_embed_dim: int = 768 # encoder embedding dimension self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN self.encoder_attention_heads: int = 12 # num encoder attention heads self.activation_fn: str = "gelu" # activation function to use self.layer_type: str = "transformer" # layer type in encoder # dropouts self.dropout: float = 0.1 # dropout probability for the transformer self.attention_dropout: float = 0.1 # dropout probability for attention weights self.activation_dropout: float = 0.0 # dropout probability after activation in FFN self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr) self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr) self.final_dim: int = 256 # project final representations and targets to this many dimensions self.layer_norm_first: bool = False # apply layernorm first in the transformer self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...] self.conv_bias: bool = False # include bias in conv encoder self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this # masking self.mask_length: int = 10 # mask length self.mask_prob: float = 0.65 # probability of replacing a token with mask self.mask_selection: str = "static" # how to choose mask length self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh self.no_mask_overlap: bool = False # whether to allow masks to overlap self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled) # channel masking self.mask_channel_length: int = 10 # length of the mask for features (channels) self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0 self.mask_channel_selection: str = "static" # how to choose mask length for channel masking self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled) # positional embeddings self.conv_pos: int = 128 # number of filters for convolutional positional embeddings self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding # loss computation self.skip_masked: bool = False # skip computing losses over masked frames self.skip_nomask: bool = False # skip computing losses over unmasked frames self.checkpoint_activations: bool = False # recompute activations and save memory for extra compute # FP16 optimization self.required_seq_len_multiple: int = 2 # pad the input to encoder such that the sequence length is divisible by multiple # Custom self.use_rel_pos_enc: bool = False # whether to use relative positional encoding self.scaling_for_att: float = 1.0 # scaling for attention weights to prevent overflow issue (for large model) # unit encoder-decoder self.add_unit_encoder: bool = False # add unit encoder # embedding mixing self.mix_with_unit: bool = True # mix with the unit embeddings self.use_pred_unit: bool = False # use the embeddings of predicted units self.l2_embedding: bool = False # compute l2 loss between unit embedding and unit hidden state if cfg is not None: self.update(cfg) def update(self, cfg: dict): model_cfg = copy.deepcopy(cfg) self.text_transformer = TransformerConfig(model_cfg['text_transformer']) del model_cfg['text_transformer'] self.__dict__.update(model_cfg) class SpeechLM(nn.Module): def __init__( self, cfg: SpeechLMConfig, ) -> None: super().__init__() self.cfg = cfg feature_enc_layers = eval(cfg.conv_feature_layers) # noqa self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) sample_rate = 16000 feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers]) self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / sample_rate self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.logit_temp = cfg.logit_temp self.skip_masked = cfg.skip_masked self.skip_nomask = cfg.skip_nomask self.final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim self.final_proj_list = nn.ModuleList([ nn.Linear(cfg.encoder_embed_dim, self.final_dim) for _ in range(2) ]) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) ### build unit encoder: self.mask_u2t = cfg.mask_u2t self.compute_mum = cfg.compute_mum self.add_text_ctc = cfg.add_text_ctc self.text_ctc_conv_kernel = cfg.text_ctc_conv_kernel self.padding_idx = 1 self.add_unit_encoder = cfg.add_unit_encoder self.mix_with_unit = cfg.mix_with_unit self.use_pred_unit = cfg.use_pred_unit self.l2_embedding = cfg.l2_embedding if self.add_unit_encoder: self.unit_embed_tokens = None ### build unit encoder self.unit_encoder = TransformerEncoderBase( cfg.text_transformer, dictionary=None, embed_tokens=self.unit_embed_tokens, use_rel_pos_enc=cfg.use_rel_pos_enc, scaling_for_att=cfg.scaling_for_att, ) ### build unit2text decoder, not available for now self.add_decoder = cfg.add_decoder def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions.""" super().upgrade_state_dict_named(state_dict, name) return state_dict def apply_mask(self, x, padding_mask, target_list): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def forward_features(self, source: torch.Tensor) -> torch.Tensor: if self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(source) return features def forward_targets( self, features: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_inds += np.random.choice(int(self.feat2tar_ratio)) target_list = [t[:, target_inds.long()] for t in target_list] return features, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) padding_mask = padding_mask.all(-1) return padding_mask def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample) lprobs.batch_first = True return lprobs def downsample_ctc_padding_mask(self, padding_mask): """ padding_mask: (B, T) """ stride = self.text_ctc_conv_kernel // 2 return padding_mask[:, ::stride] def compute_pred(self, proj_x, label_embs): if self.target_glu: label_embs = self.target_glu(label_embs) x = F.normalize(proj_x.float(), dim=-1) # (S, D) label_embs = F.normalize(label_embs.float(), dim=-1) # (C, D) logits = torch.matmul(x, label_embs.T).type_as(proj_x) # (S, C) logits /= self.logit_temp return logits def compute_hubert_logits(self, x, target, proj, label_embs, padding_mask, mask_indices): if not self.skip_masked: masked_indices = torch.logical_and(~padding_mask, mask_indices) proj_x_m = proj(x[masked_indices]) logit_m_list = [(self.compute_pred(proj_x_m, label_embs), target[masked_indices])] else: logit_m_list = [None] if not self.skip_nomask: nomask_indices = torch.logical_and(~padding_mask, ~mask_indices) proj_x_u = proj(x[nomask_indices]) logit_u_list = [(self.compute_pred(proj_x_u, label_embs), target[nomask_indices])] else: logit_u_list = [None] return logit_m_list, logit_u_list def convert_embeddings(self, x, padding_mask, target=None, mask_indices=None, mix_with_unit=False, use_pred_unit=False, l2_embedding=False, remask=False ): """ 1. Mix with units if needed (default: True) 2. Prepare for unit_encoder inputs Inputs: x, (B, T, D) Return: src_tokens, (B, T) soft_embeddings, (B, T, D) l2_loss, a loss """ soft_embeddings = self.final_proj_list[0](x) if x.size(-1) == self.final_dim else x if padding_mask is None: padding_mask = soft_embeddings.new_zeros(soft_embeddings.size(0), soft_embeddings.size(1), dtype=torch.long) if use_pred_unit: src_tokens = self.compute_pred(self.final_proj_list[0](x), self.label_embs_list[0]).argmax(dim=-1) src_tokens[padding_mask] = self.padding_idx elif target is not None: src_tokens = target else: src_tokens = padding_mask.long() if l2_embedding | mix_with_unit: unit_embeddings = self.unit_embed_tokens(src_tokens) # (B, T, D) l2_loss = 0 if l2_embedding: if mask_indices is not None: l2_loss = (soft_embeddings - unit_embeddings)[mask_indices].float().pow(2).mean(dim=-1) scale = unit_embeddings[mask_indices].float().pow(2).sum(dim=-1) else: l2_loss = (soft_embeddings - unit_embeddings).float().pow(2).mean(dim=-1) scale = unit_embeddings.float().pow(2).sum(dim=-1) l2_loss = (l2_loss / scale).mean() if mix_with_unit: B, T, D = x.shape selected_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob / 2, self.mask_length // 2, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) selected_indices = torch.from_numpy(selected_indices).to(x.device) if mask_indices is not None: if remask: remask_indices = torch.logical_and(selected_indices, mask_indices) soft_embeddings[remask_indices] = self.mask_emb swap_indices = torch.logical_and(selected_indices, ~mask_indices) else: swap_indices = selected_indices soft_embeddings[swap_indices] = unit_embeddings[swap_indices] soft_embeddings = soft_embeddings * (1 - padding_mask.unsqueeze(-1).type_as(x)) return src_tokens, soft_embeddings, l2_loss def forward( self, source: torch.Tensor = None, src_tokens: torch.Tensor = None, src_lengths: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: assert source is not None or src_tokens is not None if source is not None: return self.forward_speech( source=source, target_list=target_list, padding_mask=padding_mask, mask=mask, features_only=features_only, output_layer=output_layer, ) else: return self.forward_text( src_tokens=src_tokens, src_lengths=src_lengths, mask=self.mask_u2t, output_layer=output_layer, ) def forward_speech( self, source: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: """output layer is 1-based""" features = self.forward_features(source) if target_list is not None: features, target_list = self.forward_targets(features, target_list) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) if mask: x, mask_indices = self.apply_mask(features, padding_mask, target_list) else: x = features mask_indices = None # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, layer_results = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1, ) if features_only: return {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} logit_m_list, logit_u_list = self.compute_hubert_logits( x, target_list[0], self.final_proj_list[0], self.label_embs_list[0], padding_mask, mask_indices, ) result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, "features_pen": features_pen, } if self.add_unit_encoder: src_tokens, x_emb, l2_loss = self.convert_embeddings( x, padding_mask, target_list[0], mask_indices=mask_indices, mix_with_unit=self.mix_with_unit, use_pred_unit=self.use_pred_unit, l2_embedding=self.l2_embedding, ) encoder_out = self.unit_encoder(src_tokens, token_embeddings=x_emb) result['encoder_out'] = encoder_out['encoder_out'] # [(T, B, D)] result['encoder_padding_mask'] = encoder_out['encoder_padding_mask'] # [(B, T)] if self.l2_embedding: result['embedding_l2_loss'] = l2_loss code_logit_m_list, code_logit_u_list = self.compute_hubert_logits( encoder_out['encoder_out'][0].transpose(0, 1), target_list[-1], self.final_proj_list[-1], self.label_embs_list[-1], padding_mask, mask_indices, ) result['logit_m_list'] += code_logit_m_list result['logit_u_list'] += code_logit_u_list return result def forward_text( self, src_tokens: torch.Tensor = None, src_lengths: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, mask: bool = True, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: assert self.add_unit_encoder, f"Can not forward unit-text branch without unit_encoder!" padding_mask = src_tokens == self.padding_idx unit_embeddings = self.unit_embed_tokens(src_tokens) if mask: unit_embeddings, mask_indices = self.apply_mask(unit_embeddings, padding_mask, [src_tokens]) else: ### If already applied mask on src_tokens, then the target_list should contains many padding_idx mask_indices = target_list[-1] != self.padding_idx unit_embeddings[mask_indices] = self.mask_emb encoder_out = self.unit_encoder( src_tokens, token_embeddings=unit_embeddings, return_all_hiddens=output_layer is not None, ) result = {} result["encoder_out"] = encoder_out["encoder_out"] result["encoder_states"] = encoder_out["encoder_states"] result["padding_mask"] = padding_mask if self.compute_mum: code_logit_m_list, code_logit_u_list = self.compute_hubert_logits( encoder_out["encoder_out"].transpose(0, 1), target_list[-1], self.final_proj_list[-1], self.label_embs_list[-1], padding_mask, mask_indices, ) result["logit_m_list"] = code_logit_m_list result["logit_u_list"] = code_logit_u_list if self.add_text_ctc: result["encoder_out_ctc"] = [self.unit_encoder_ctc_head(x) for x in encoder_out['encoder_out']] result["encoder_padding_mask"] = [ self.downsample_ctc_padding_mask(padding_mask) for padding_mask in encoder_out['encoder_padding_mask'] ] return result def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ret_layer_results: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """Extract features for only speech input""" with torch.no_grad(): res = self.forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) # {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} x = res["x"] # B x T x D padding_mask = res["padding_mask"] if self.add_unit_encoder and (output_layer is None or output_layer > self.cfg.encoder_layers): src_tokens, x, _ = self.convert_embeddings( x, padding_mask, mix_with_unit=False, use_pred_unit=False, ) return_all_hiddens=output_layer is not None and output_layer > self.cfg.encoder_layers encoder_out = self.unit_encoder( src_tokens, token_embeddings=x, return_all_hiddens=return_all_hiddens, ) res["x"] = encoder_out['encoder_out'][0].transpose(0, 1) # (B, T, D) if return_all_hiddens: res["layer_results"] += encoder_out['encoder_states'][1:1+output_layer-len(res["layer_results"])] feature = res["features"] if ret_conv else res["x"] if ret_layer_results: feature = (feature, res["layer_results"]) return feature, padding_mask def get_logits(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] logits_list = [x[0].float() for x in logits_list if x is not None] return logits_list def get_targets(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] targets_list = [x[1].long() for x in logits_list if x is not None] return targets_list def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") if "embedding_l2_loss" in net_output: extra_losses.append(net_output["embedding_l2_loss"]) names.append("embedding_l2_loss") return extra_losses, names def remove_pretraining_modules(self, step2=False): self.target_glu = None
EXA-1-master
exa/models/unilm-master/speechlm/SpeechLM.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- """ We just merge all the required modules and functions into one python file. It is for easily use the pre-trained model to extract features. """ import math import numpy as np import logging import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter from torch import Tensor from typing import Any, Dict, List, Tuple, Callable, Optional logger = logging.getLogger(__name__) # rewrite name for backward compatibility in `make_generation_fast_` def module_name_fordropout(module_name: str) -> str: if module_name == "TransformerEncoderBase": return "TransformerEncoder" else: return module_name def utils_make_positions(tensor, padding_idx: int, onnx_trace: bool = False): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx def utils_item(tensor): # tpu-comment: making this a no-op for xla devices. if torch.is_tensor(tensor) and tensor.device.type == "xla": return tensor.detach() if hasattr(tensor, "item"): return tensor.item() if hasattr(tensor, "__getitem__"): return tensor[0] return tensor def fsdp_wrap(module, min_num_params: Optional[int] = None, **kwargs): """ Helper to wrap layers/modules in FSDP. This falls back to a no-op if fairscale is not available. Args: module (nn.Module): module to (maybe) wrap min_num_params (int, Optional): minimum number of layer params to wrap """ try: from fairscale.nn import wrap if min_num_params is not None: num_params = sum(p.numel() for p in module.parameters()) if num_params >= min_num_params: return wrap(module, **kwargs) else: return module else: return wrap(module, **kwargs) except ImportError: return module def quant_noise(module, p, block_size): """ Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product Quantization as described in "Training with Quantization Noise for Extreme Model Compression" Args: - module: nn.Module - p: amount of Quantization Noise - block_size: size of the blocks for subsequent quantization with iPQ Remarks: - Module weights must have the right sizes wrt the block size - Only Linear, Embedding and Conv2d modules are supported for the moment - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping blocks """ # if no quantization noise, don't register hook if p <= 0: return module # supported modules assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) # test whether module.weight has the right sizes wrt block_size is_conv = module.weight.ndim == 4 # 2D matrix if not is_conv: assert ( module.weight.size(1) % block_size == 0 ), "Input features must be a multiple of block sizes" # 4D matrix else: # 1x1 convolutions if module.kernel_size == (1, 1): assert ( module.in_channels % block_size == 0 ), "Input channels must be a multiple of block sizes" # regular convolutions else: k = module.kernel_size[0] * module.kernel_size[1] assert k % block_size == 0, "Kernel size must be a multiple of block size" def _forward_pre_hook(mod, input): # no noise for evaluation if mod.training: if not is_conv: # gather weight and sizes weight = mod.weight in_features = weight.size(1) out_features = weight.size(0) # split weight matrix into blocks and randomly drop selected blocks mask = torch.zeros( in_features // block_size * out_features, device=weight.device ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) else: # gather weight and sizes weight = mod.weight in_channels = mod.in_channels out_channels = mod.out_channels # split weight matrix into blocks and randomly drop selected blocks if mod.kernel_size == (1, 1): mask = torch.zeros( int(in_channels // block_size * out_channels), device=weight.device, ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) else: mask = torch.zeros( weight.size(0), weight.size(1), device=weight.device ) mask.bernoulli_(p) mask = ( mask.unsqueeze(2) .unsqueeze(3) .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) ) # scale weights and apply mask mask = mask.to( torch.bool ) # x.bool() is not currently supported in TorchScript s = 1 / (1 - p) mod.weight.data = s * weight.masked_fill(mask, 0) module.register_forward_pre_hook(_forward_pre_hook) return module def relu_squared(x: torch.Tensor): return F.relu(x).pow(2) def gelu(x: torch.Tensor) -> torch.Tensor: return torch.nn.functional.gelu(x.float()).type_as(x) def gelu_accurate(x): if not hasattr(gelu_accurate, "_a"): gelu_accurate._a = math.sqrt(2 / math.pi) return ( 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) ) def get_activation_fn(activation: str) -> Callable: """Returns the activation function corresponding to `activation`""" if activation == "relu": return F.relu elif activation == "relu_squared": return relu_squared elif activation == "gelu": return gelu elif activation == "gelu_fast": logger.warn( "--activation-fn=gelu_fast has been renamed to gelu_accurate" ) return gelu_accurate elif activation == "gelu_accurate": return gelu_accurate elif activation == "tanh": return torch.tanh elif activation == "linear": return lambda x: x elif activation == "swish": return torch.nn.SiLU else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, require_same_masks: bool = True, mask_dropout: float = 0.0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample mask_dropout: randomly dropout this percentage of masks in each example """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len and require_same_masks: mask_idc = np.random.choice(mask_idc, min_len, replace=False) if mask_dropout > 0: num_holes = np.rint(len(mask_idc) * mask_dropout).astype(int) mask_idc = np.random.choice( mask_idc, len(mask_idc) - num_holes, replace=False ) mask[i, mask_idc] = True return mask def init_bert_params(module): """ Initialize the weights specific to the BERT Model. This overrides the default initializations depending on the specified arguments. 1. If normal_init_linear_weights is set then weights of linear layer will be initialized using the normal distribution and bais will be set to the specified value. 2. If normal_init_embed_weights is set then weights of embedding layer will be initialized using the normal distribution. 3. If normal_init_proj_weights is set then weights of in_project_weight for MultiHeadAttention initialized using the normal distribution (to be validated). """ def normal_(data): # with FSDP, module params will be on CUDA, so we cast them back to CPU # so that the RNG is consistent with and without FSDP data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) if isinstance(module, nn.Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): normal_(module.q_proj.weight.data) normal_(module.k_proj.weight.data) normal_(module.v_proj.weight.data) def pad_to_multiple(x, multiple, dim=-1, value=0): # Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41 if x is None: return None, 0 tsz = x.size(dim) m = tsz / multiple remainder = math.ceil(m) * multiple - tsz if m.is_integer(): return x, 0 pad_offset = (0,) * (-1 - dim) * 2 return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder def is_xla_tensor(tensor): return torch.is_tensor(tensor) and tensor.device.type == "xla" def index_put(tensor, indices, value): if is_xla_tensor(tensor): for _ in range(indices.dim(), tensor.dim()): indices = indices.unsqueeze(-1) if indices.size(-1) < tensor.size(-1): indices = indices.expand_as(tensor) tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices) else: tensor[indices] = value return tensor def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, ): if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): if torch.jit.is_scripting() or torch.jit.is_tracing(): export = True if not export and torch.cuda.is_available() and has_fused_layernorm: return FusedLayerNorm(normalized_shape, eps, elementwise_affine) return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) class TransformerEncoderBase(nn.Module): """ Transformer encoder consisting of *cfg.encoder.layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary: deprecated(None) embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, cfg, dictionary, embed_tokens, use_rel_pos_enc=False, scaling_for_att=1.0): self.cfg = cfg super().__init__() self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( cfg.dropout, module_name=module_name_fordropout(self.__class__.__name__) ) self.encoder_layerdrop = cfg.encoder.layerdrop embed_dim = embed_tokens.embedding_dim if embed_tokens is not None else cfg.encoder.embed_dim self.padding_idx = embed_tokens.padding_idx if embed_tokens is not None else 1 self.max_source_positions = cfg.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( cfg.max_source_positions, embed_dim, self.padding_idx, learned=cfg.encoder.learned_pos, ) if not cfg.no_token_positional_embeddings else None ) if cfg.layernorm_embedding: self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export) else: self.layernorm_embedding = None if not cfg.adaptive_input and cfg.quant_noise.pq > 0: self.quant_noise = quant_noise( nn.Linear(embed_dim, embed_dim, bias=False), cfg.quant_noise.pq, cfg.quant_noise.pq_block_size, ) else: self.quant_noise = None if self.encoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.encoder_layerdrop) else: self.layers = nn.ModuleList([]) self.use_rel_pos_enc = use_rel_pos_enc self.scaling_for_att = scaling_for_att self.layers.extend( [self.build_encoder_layer(cfg) for i in range(cfg.encoder.layers)] ) self.num_layers = len(self.layers) if cfg.encoder.normalize_before: self.layer_norm = LayerNorm(embed_dim, export=cfg.export) else: self.layer_norm = None if self.use_rel_pos_enc: self.pos_emb = RelativePositionalEncoding(embed_dim // cfg.encoder.attention_heads, 160) def build_encoder_layer(self, cfg): layer = TransformerEncoderLayerBase(cfg, has_relative_attention_bias=self.use_rel_pos_enc, scaling_for_att=self.scaling_for_att) checkpoint = cfg.checkpoint_activations if checkpoint: raise ValueError("We don't support checkpoint_activations for now! Please set cfg.checkpoint_activations=False.") min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) if self.quant_noise is not None: x = self.quant_noise(x) return x, embed def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, uniformity_layers: Optional[List[int]] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ return self.forward_scriptable( src_tokens, src_lengths, return_all_hiddens, token_embeddings, uniformity_layers ) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, uniformity_layers: Optional[List[int]] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any() x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # account for padding while computing the representation if has_pads: x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) if self.use_rel_pos_enc: x_len = x.shape[0] pos_seq = torch.arange(0, x_len).long().to(x.device) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_k, pos_v = self.pos_emb(pos_seq) else: pos_k = None encoder_states = [] uniformity_hiddens = [] if return_all_hiddens: encoder_states.append(x) if uniformity_layers is not None and 0 in uniformity_layers: x = F.normalize(x.float(), dim=-1).type_as(x) uniformity_hiddens.append(x) # encoder layers for i, layer in enumerate(self.layers): x = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None, pos_bias=pos_k, ) if uniformity_layers is not None and i+1 in uniformity_layers: x = F.normalize(x.float(), dim=-1).type_as(x) uniformity_hiddens.append(x) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. src_lengths = ( src_tokens.ne(self.padding_idx) .sum(dim=1, dtype=torch.int32) .reshape(-1, 1) .contiguous() ) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "uniformity_hiddens": uniformity_hiddens, # List[T x B x C] "src_tokens": [], "src_lengths": [src_lengths], } def forward_torchscript(self, net_input: Dict[str, Tensor]): """A TorchScript-compatible version of forward. Encoders which use additional arguments may want to override this method for TorchScript compatibility. """ if torch.jit.is_scripting(): return self.forward( src_tokens=net_input["src_tokens"], src_lengths=net_input["src_lengths"], ) else: return self.forward_non_torchscript(net_input) @torch.jit.unused def forward_non_torchscript(self, net_input: Dict[str, Tensor]): encoder_input = { k: v for k, v in net_input.items() if k != "prev_output_tokens" } return self.forward(**encoder_input) @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils_item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" def _apply(m): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) self.apply(_apply) class TransformerEncoderLayerBase(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *cfg.encoder.normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, cfg, has_relative_attention_bias=False, scaling_for_att=1.0): super().__init__() self.cfg = cfg self.embed_dim = cfg.encoder.embed_dim self.quant_noise = cfg.quant_noise.pq self.quant_noise_block_size = cfg.quant_noise.pq_block_size self.self_attn = self.build_self_attention(self.embed_dim, cfg, has_relative_attention_bias=has_relative_attention_bias, scaling_for_att=scaling_for_att) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export) self.dropout_module = FairseqDropout( cfg.dropout, module_name=self.__class__.__name__ ) self.activation_fn = get_activation_fn(activation=cfg.activation_fn) activation_dropout_p = cfg.activation_dropout if activation_dropout_p == 0: # for backwards compatibility with models that use cfg.relu_dropout activation_dropout_p = cfg.relu_dropout or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = cfg.encoder.normalize_before self.fc1 = self.build_fc1( self.embed_dim, cfg.encoder.ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( cfg.encoder.ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim, export=cfg.export) if has_relative_attention_bias: self.norm_k = LayerNorm(self.embed_dim // cfg.encoder.attention_heads) def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise( nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size ) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise( nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size ) def build_self_attention(self, embed_dim, cfg, has_relative_attention_bias=False, scaling_for_att=1.0): return MultiheadAttention( embed_dim, cfg.encoder.attention_heads, dropout=cfg.attention_dropout, self_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, has_relative_attention_bias=has_relative_attention_bias, scaling_for_att=scaling_for_att, ) def residual_connection(self, x, residual): return residual + x def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward( self, x, encoder_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor] = None, pos_bias=None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, seq_len)` where padding elements are indicated by ``1``. attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`, where `tgt_len` is the length of output and `src_len` is the length of input, though here both are equal to `seq_len`. `attn_mask[tgt_i, src_j] = 1` means that when calculating the embedding for `tgt_i`, we exclude (mask out) `src_j`. This is useful for strided self-attention. Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ # anything in original attn_mask = 1, becomes -1e8 # anything in original attn_mask = 0, becomes 0 # Note that we cannot use -inf here, because at some edge cases, # the attention weight (before softmax) for some padded element in query # will become -inf, which results in NaN in model parameters if attn_mask is not None: attn_mask = attn_mask.masked_fill( attn_mask.to(torch.bool), -1e8 if x.dtype == torch.float32 else -1e4 ) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if pos_bias is not None: pos_bias = self.norm_k(pos_bias) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=False, attn_mask=attn_mask, position_bias=pos_bias, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x class TransformerEncoder(nn.Module): """ wav2vec-style transformer encoder. """ def __init__(self, args): super().__init__() self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.required_seq_len_multiple = args.required_seq_len_multiple self.pos_conv = nn.Conv1d( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) nn.init.normal_(self.pos_conv.weight, mean=0, std=std) nn.init.constant_(self.pos_conv.bias, 0) self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) layers = [] self.use_rel_pos_enc = getattr(args, "use_rel_pos_enc", False) for _ in range(args.encoder_layers): layer = TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, has_relative_attention_bias=self.use_rel_pos_enc, scaling_for_att=getattr(args, "scaling_for_att", 1.0) ) if args.checkpoint_activations: raise ValueError("We don't support checkpoint_activations for now! Please set checkpoint_activations=False.") layers.append(layer) self.layers = nn.ModuleList(layers) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop if self.use_rel_pos_enc: self.pos_emb = RelativePositionalEncoding(args.encoder_embed_dim // args.encoder_attention_heads, 160) self.apply(init_bert_params) def forward(self, x, padding_mask=None, layer=None, conv_pos=True): x, layer_results = self.extract_features(x, padding_mask, layer, conv_pos) if self.layer_norm_first and (layer is None or layer >= len(self.layers) - 1): x = self.layer_norm(x) return x, layer_results def extract_features(self, x, padding_mask=None, tgt_layer=None, conv_pos=True): if padding_mask is not None: x = index_put(x, padding_mask, 0) if conv_pos: x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x = x + x_conv if not self.layer_norm_first: x = self.layer_norm(x) # pad to the sequence length dimension x, pad_length = pad_to_multiple( x, self.required_seq_len_multiple, dim=-2, value=0 ) if pad_length > 0 and padding_mask is None: padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) padding_mask[:, -pad_length:] = True else: padding_mask, _ = pad_to_multiple( padding_mask, self.required_seq_len_multiple, dim=-1, value=True ) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) if self.use_rel_pos_enc: x_len = x.shape[0] pos_seq = torch.arange(0, x_len).long().to(x.device) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_k, pos_v = self.pos_emb(pos_seq) else: pos_k = None layer_results = [] r = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_k) if tgt_layer is not None: # unpad if needed if pad_length > 0: layer_results.append( x[:-pad_length] # ( # x[:-pad_length], # z[:, :-pad_length, :-pad_length] # if z is not None # else z, # ) ) else: # layer_results.append((x, z)) layer_results.append(x) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C x = x.transpose(0, 1) # undo paddding if pad_length > 0: x = x[:, :-pad_length] return x, layer_results def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict class TransformerSentenceEncoderLayer(nn.Module): """ wav2vec-style transformer layer """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, has_relative_attention_bias: bool = False, scaling_for_att: float = 1.0, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_fn = get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, has_relative_attention_bias=has_relative_attention_bias, scaling_for_att=scaling_for_att ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) if has_relative_attention_bias: self.norm_k = LayerNorm(self.embedding_dim//num_attention_heads) def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, att_args=None, pos_bias=None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) if pos_bias is not None: pos_bias = self.norm_k(pos_bias) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, position_bias=pos_bias, ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, position_bias=pos_bias, ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, attn class FairseqDropout(nn.Module): def __init__(self, p, module_name=None): super().__init__() self.p = p self.module_name = module_name self.apply_during_inference = False def forward(self, x, inplace: bool = False): if self.p > 0 and (self.training or self.apply_during_inference): return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x def make_generation_fast_( self, name: str, retain_dropout: bool = False, retain_dropout_modules: Optional[List[str]] = None, **kwargs ): if retain_dropout: if retain_dropout_modules is not None and self.module_name is None: logger.warning( "Cannot enable dropout during inference for module {} " "because module_name was not set".format(name) ) elif ( retain_dropout_modules is None # if None, apply to all modules or self.module_name in retain_dropout_modules ): logger.info( "Enabling dropout during inference for module: {}".format(name) ) self.apply_during_inference = True else: logger.info("Disabling dropout for module: {}".format(name)) class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): super().__init__(num_embeddings, embedding_dim, padding_idx) self.onnx_trace = False if self.padding_idx is not None: self.max_positions = self.num_embeddings - self.padding_idx - 1 else: self.max_positions = self.num_embeddings def forward( self, input: Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, positions: Optional[Tensor] = None, ): """Input is expected to be of size [bsz x seqlen].""" assert (positions is None) or ( self.padding_idx is None ), "If positions is pre-computed then padding_idx should not be set." if positions is None: if incremental_state is not None: # positions is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX positions = torch.zeros( (1, 1), device=input.device, dtype=input.dtype ).fill_(int(self.padding_idx + input.size(1))) else: positions = utils_make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) positions = torch.clamp(positions, max=self.padding_idx + self.max_positions) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx if padding_idx is not None else 0 self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx ) self.onnx_trace = False self.register_buffer("_float_tensor", torch.FloatTensor(1)) self.max_positions = int(1e5) def prepare_for_onnx_export_(self): self.onnx_trace = True @staticmethod def get_embedding( num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None ): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze( 1 ) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view( num_embeddings, -1 ) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward( self, input, incremental_state: Optional[Any] = None, timestep: Optional[Tensor] = None, positions: Optional[Any] = None, ): """Input is expected to be of size [bsz x seqlen].""" bspair = torch.onnx.operators.shape_as_tensor(input) bsz, seq_len = bspair[0], bspair[1] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len if self.onnx_trace: return ( self.weights.index_select(index=self.padding_idx + pos, dim=0) .unsqueeze(1) .repeat(bsz, 1, 1) ) return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = utils_make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) if self.onnx_trace: flat_embeddings = self.weights.detach().index_select(0, positions.view(-1)) embedding_shape = torch.cat( (bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long)) ) embeddings = torch.onnx.operators.reshape_from_tensor_shape( flat_embeddings, embedding_shape ) return embeddings return ( self.weights.index_select(0, positions.view(-1)) .view(bsz, seq_len, -1) .detach() ) try: from apex.normalization import FusedLayerNorm as _FusedLayerNorm has_fused_layernorm = True class FusedLayerNorm(_FusedLayerNorm): @torch.jit.unused def forward(self, x): if not x.is_cuda: return super().forward(x) else: with torch.cuda.device(x.device): return super().forward(x) except ImportError: has_fused_layernorm = False class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input) class LayerDropModuleList(nn.ModuleList): """ A LayerDrop implementation based on :class:`torch.nn.ModuleList`. We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During evaluation we always iterate over all layers. Usage:: layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3]) for layer in layers: # this might iterate over layers 1 and 3 x = layer(x) for layer in layers: # this might iterate over all layers x = layer(x) for layer in layers: # this might not iterate over any layers x = layer(x) Args: p (float): probability of dropping out each layer modules (iterable, optional): an iterable of modules to add """ def __init__(self, p, modules=None): super().__init__(modules) self.p = p def __iter__(self): dropout_probs = torch.empty(len(self)).uniform_() for i, m in enumerate(super().__iter__()): if not self.training or (dropout_probs[i] > self.p): yield m class RelativePositionalEncoding(torch.nn.Module): def __init__(self, d_model, maxlen=1000, embed_v=False): super(RelativePositionalEncoding, self).__init__() self.d_model = d_model self.maxlen = maxlen self.pe_k = torch.nn.Embedding(2*maxlen, d_model) if embed_v: self.pe_v = torch.nn.Embedding(2*maxlen, d_model) self.embed_v = embed_v def forward(self, pos_seq, incremental_state=None): pos_seq[pos_seq < -self.maxlen] = -self.maxlen pos_seq[pos_seq >= self.maxlen] = self.maxlen - 1 pos_seq = pos_seq + self.maxlen if incremental_state is not None: pos_seq = pos_seq[-1:] if self.embed_v: return self.pe_k(pos_seq), self.pe_v(pos_seq) else: return self.pe_k(pos_seq), None class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, has_relative_attention_bias=False, scaling_for_att=1.0 ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.has_relative_attention_bias = has_relative_attention_bias self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.scaling_for_att = scaling_for_att self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) self.k_proj = quant_noise( nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) self.out_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, position_bias: Optional[Tensor] = None ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True is_tpu = query.device.type == "xla" tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if ( not self.onnx_trace and not is_tpu # don't use PyTorch version on TPUs and incremental_state is None and not static_kv # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() and not self.has_relative_attention_bias ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q *= (1 / self.scaling_for_att) if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) if position_bias is not None: ## first order ## position_bias: [241, 241, 64] #print ("attn_weights: ", attn_weights.size()) # [492, 241, 241] reshape_q = q.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0,1) #[241, 492, 64] #print ("reshape_q: ", reshape_q.size()) B = torch.matmul(reshape_q, position_bias.transpose(-2, -1)) #print ("B: ", B.size()) ## [241, 492, 241] #B = B.transpose(0, 1).view(bsz, self.num_heads, position_bias.size(0), position_bias.size(1)) B = B.transpose(0, 1).view(bsz*self.num_heads, position_bias.size(0), position_bias.size(1)) #print ("B 2: ", B.size()) attn_weights += B attn_weights *= self.scaling_for_att assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not is_tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if self.scaling_for_att > 1.0: attn_weights = attn_weights - attn_weights.detach().max(dim=-1, keepdim=True)[0] if before_softmax: return attn_weights, v attn_weights_float = softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: if src_len > prev_key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask.float() elif key_padding_mask is not None: if src_len > key_padding_mask.size(1): filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = key_padding_mask.float() else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers: List[Tuple[int, int, int]], dropout: float = 0.0, mode: str = "default", conv_bias: bool = False, ): super().__init__() assert mode in {"default", "layer_norm"} def block( n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False, ): def make_conv(): conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) nn.init.kaiming_normal_(conv.weight) return conv assert ( is_layer_norm and is_group_norm ) == False, "layer norm and group norm are exclusive" if is_layer_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=True), TransposeLast(), ), nn.GELU(), ) elif is_group_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), Fp32GroupNorm(dim, dim, affine=True), nn.GELU(), ) else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) in_d = 1 self.conv_layers = nn.ModuleList() for i, cl in enumerate(conv_layers): assert len(cl) == 3, "invalid conv definition: " + str(cl) (dim, k, stride) = cl self.conv_layers.append( block( in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias, ) ) in_d = dim def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: x = conv(x) return x class TransposeLast(nn.Module): def __init__(self, deconstruct_idx=None): super().__init__() self.deconstruct_idx = deconstruct_idx def forward(self, x): if self.deconstruct_idx is not None: x = x[self.deconstruct_idx] return x.transpose(-2, -1) class Fp32GroupNorm(nn.GroupNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.group_norm( input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input) class GradMultiply(torch.autograd.Function): @staticmethod def forward(ctx, x, scale): ctx.scale = scale res = x.new(x) return res @staticmethod def backward(ctx, grad): return grad * ctx.scale, None class Rotate3D(nn.Module): """ (T, B, D) --> (B, D, T) --> (D, T, B) --> (T, B, D) """ def __init__(self): super().__init__() def forward(self, x): return x.permute(1, 2, 0) class SamePad(nn.Module): def __init__(self, kernel_size, causal=False): super().__init__() if causal: self.remove = kernel_size - 1 else: self.remove = 1 if kernel_size % 2 == 0 else 0 def forward(self, x): if self.remove > 0: x = x[:, :, : -self.remove] return x
EXA-1-master
exa/models/unilm-master/speechlm/modules.py
from . import data, tasks, criterions, models
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/__init__.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- """ Modified form: https://github.com/facebookresearch/fairseq/blob/272c4c5197250997148fb12c0db6306035f166a4/fairseq/sequence_generator.py """ import torch import numpy as np from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig from fairseq.speech_generator import SpeechGenerator class NonAutoregressiveUnitGenerator(SpeechGenerator): @torch.no_grad() def generate(self, model, sample, has_targ=False, **kwargs): model.eval() bsz, max_src_len = sample["net_input"]["src_tokens"].size() n_frames_per_step = model.encoder.n_frames_per_step out_dim = model.encoder.out_dim raw_dim = out_dim // n_frames_per_step logit, logit_post, out_lens, log_dur_out, _, _ = model( src_tokens=sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], speaker=sample["speaker"], durations=sample["durations"], pitches=sample["pitches"], energies=sample["energies"], ) if logit_post is not None: logit = logit_post logit = logit.view(bsz, -1, raw_dim) pred = logit.argmax(dim=-1) ## get duration prediction src_tokens = sample["net_input"]["src_tokens"] src_lengths = sample["net_input"]["src_lengths"] padding_mask = src_tokens.eq(model.encoder.padding_idx) d_factor = 1.0 ## set by model dur_out = torch.clamp( torch.round((torch.exp(log_dur_out) - 1) * d_factor).long(), min=0 ) dur_out.masked_fill_(padding_mask, 0) x = src_tokens.unsqueeze(-1) x, src_out_lens = model.encoder.var_adaptor.length_regulator(x, dur_out) fa_src_tokens = x.view(bsz, -1) finalized = [ { "unit": pred[b, :l], "fa_src": fa_src_tokens[b, :l], "duration": dur_out[b, :L], } for b, l, L in zip(range(bsz), out_lens, src_lengths) ] return finalized
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/unit_generator.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- """ Modified form: https://github.com/facebookresearch/fairseq/blob/272c4c5197250997148fb12c0db6306035f166a4/examples/speech_recognition/new/infer.py 1. add "utils.import_user_module(cfg.common)" so that usr-dir can be loaded """ import ast import hashlib import logging import os import shutil import sys from dataclasses import dataclass, field, is_dataclass from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union import editdistance import torch import torch.distributed as dist import examples from examples.speech_recognition.new.decoders.decoder_config import ( DecoderConfig, FlashlightDecoderConfig, ) from examples.speech_recognition.new.decoders.decoder import Decoder from fairseq import checkpoint_utils, distributed_utils, progress_bar, tasks, utils from fairseq.data.data_utils import post_process from fairseq.dataclass.configs import ( CheckpointConfig, CommonConfig, CommonEvalConfig, DatasetConfig, DistributedTrainingConfig, FairseqDataclass, ) from fairseq.logging.meters import StopwatchMeter, TimeMeter from fairseq.logging.progress_bar import BaseProgressBar from fairseq.models.fairseq_model import FairseqModel from omegaconf import OmegaConf import hydra from hydra.core.config_store import ConfigStore logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) config_path = Path(examples.speech_recognition.new.__path__[0]).resolve() / "conf" @dataclass class DecodingConfig(DecoderConfig, FlashlightDecoderConfig): unique_wer_file: bool = field( default=False, metadata={"help": "If set, use a unique file for storing WER"}, ) results_path: Optional[str] = field( default=None, metadata={ "help": "If set, write hypothesis and reference sentences into this directory" }, ) @dataclass class InferConfig(FairseqDataclass): task: Any = None decoding: DecodingConfig = DecodingConfig() common: CommonConfig = CommonConfig() common_eval: CommonEvalConfig = CommonEvalConfig() checkpoint: CheckpointConfig = CheckpointConfig() distributed_training: DistributedTrainingConfig = DistributedTrainingConfig() dataset: DatasetConfig = DatasetConfig() is_ax: bool = field( default=False, metadata={ "help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume" }, ) def reset_logging(): root = logging.getLogger() for handler in root.handlers: root.removeHandler(handler) root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper()) handler = logging.StreamHandler(sys.stdout) handler.setFormatter( logging.Formatter( fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) ) root.addHandler(handler) class InferenceProcessor: cfg: InferConfig def __init__(self, cfg: InferConfig) -> None: self.cfg = cfg self.task = tasks.setup_task(cfg.task) models, saved_cfg = self.load_model_ensemble() self.models = models self.saved_cfg = saved_cfg self.tgt_dict = self.task.target_dictionary self.task.load_dataset( self.cfg.dataset.gen_subset, task_cfg=saved_cfg.task, ) self.generator = Decoder(cfg.decoding, self.tgt_dict) self.gen_timer = StopwatchMeter() self.wps_meter = TimeMeter() self.num_sentences = 0 self.total_errors = 0 self.total_length = 0 self.hypo_words_file = None self.hypo_units_file = None self.ref_words_file = None self.ref_units_file = None self.progress_bar = self.build_progress_bar() def __enter__(self) -> "InferenceProcessor": if self.cfg.decoding.results_path is not None: self.hypo_words_file = self.get_res_file("hypo.word") self.hypo_units_file = self.get_res_file("hypo.units") self.ref_words_file = self.get_res_file("ref.word") self.ref_units_file = self.get_res_file("ref.units") return self def __exit__(self, *exc) -> bool: if self.cfg.decoding.results_path is not None: self.hypo_words_file.close() self.hypo_units_file.close() self.ref_words_file.close() self.ref_units_file.close() return False def __iter__(self) -> Any: for sample in self.progress_bar: if not self.cfg.common.cpu: sample = utils.move_to_cuda(sample) # Happens on the last batch. if "net_input" not in sample: continue yield sample def log(self, *args, **kwargs): self.progress_bar.log(*args, **kwargs) def print(self, *args, **kwargs): self.progress_bar.print(*args, **kwargs) def get_res_file(self, fname: str) -> None: fname = os.path.join(self.cfg.decoding.results_path, fname) if self.data_parallel_world_size > 1: fname = f"{fname}.{self.data_parallel_rank}" return open(fname, "w", buffering=1) def merge_shards(self) -> None: """Merges all shard files into shard 0, then removes shard suffix.""" shard_id = self.data_parallel_rank num_shards = self.data_parallel_world_size if self.data_parallel_world_size > 1: def merge_shards_with_root(fname: str) -> None: fname = os.path.join(self.cfg.decoding.results_path, fname) logger.info("Merging %s on shard %d", fname, shard_id) base_fpath = Path(f"{fname}.0") with open(base_fpath, "a") as out_file: for s in range(1, num_shards): shard_fpath = Path(f"{fname}.{s}") with open(shard_fpath, "r") as in_file: for line in in_file: out_file.write(line) shard_fpath.unlink() shutil.move(f"{fname}.0", fname) dist.barrier() # ensure all shards finished writing if shard_id == (0 % num_shards): merge_shards_with_root("hypo.word") if shard_id == (1 % num_shards): merge_shards_with_root("hypo.units") if shard_id == (2 % num_shards): merge_shards_with_root("ref.word") if shard_id == (3 % num_shards): merge_shards_with_root("ref.units") dist.barrier() def optimize_model(self, model: FairseqModel) -> None: model.make_generation_fast_() if self.cfg.common.fp16: model.half() if not self.cfg.common.cpu: model.cuda() def load_model_ensemble(self) -> Tuple[List[FairseqModel], FairseqDataclass]: arg_overrides = ast.literal_eval(self.cfg.common_eval.model_overrides) models, saved_cfg = checkpoint_utils.load_model_ensemble( utils.split_paths(self.cfg.common_eval.path, separator="\\"), arg_overrides=arg_overrides, task=self.task, suffix=self.cfg.checkpoint.checkpoint_suffix, strict=(self.cfg.checkpoint.checkpoint_shard_count == 1), num_shards=self.cfg.checkpoint.checkpoint_shard_count, ) for model in models: self.optimize_model(model) return models, saved_cfg def get_dataset_itr(self, disable_iterator_cache: bool = False) -> None: return self.task.get_batch_iterator( dataset=self.task.dataset(self.cfg.dataset.gen_subset), max_tokens=self.cfg.dataset.max_tokens, max_sentences=self.cfg.dataset.batch_size, max_positions=(sys.maxsize, sys.maxsize), ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple, seed=self.cfg.common.seed, num_shards=self.data_parallel_world_size, shard_id=self.data_parallel_rank, num_workers=self.cfg.dataset.num_workers, data_buffer_size=self.cfg.dataset.data_buffer_size, disable_iterator_cache=disable_iterator_cache, ).next_epoch_itr(shuffle=False) def build_progress_bar( self, epoch: Optional[int] = None, prefix: Optional[str] = None, default_log_format: str = "tqdm", ) -> BaseProgressBar: return progress_bar.progress_bar( iterator=self.get_dataset_itr(), log_format=self.cfg.common.log_format, log_interval=self.cfg.common.log_interval, epoch=epoch, prefix=prefix, tensorboard_logdir=self.cfg.common.tensorboard_logdir, default_log_format=default_log_format, ) @property def data_parallel_world_size(self): if self.cfg.distributed_training.distributed_world_size == 1: return 1 return distributed_utils.get_data_parallel_world_size() @property def data_parallel_rank(self): if self.cfg.distributed_training.distributed_world_size == 1: return 0 return distributed_utils.get_data_parallel_rank() def process_sentence( self, sample: Dict[str, Any], hypo: Dict[str, Any], sid: int, batch_id: int, ) -> Tuple[int, int]: speaker = None # Speaker can't be parsed from dataset. if "target_label" in sample: toks = sample["target_label"] else: toks = sample["target"] toks = toks[batch_id, :] # Processes hypothesis. hyp_pieces = self.tgt_dict.string(hypo["tokens"].int().cpu()) if "words" in hypo: hyp_words = " ".join(hypo["words"]) else: hyp_words = post_process(hyp_pieces, self.cfg.common_eval.post_process) # Processes target. target_tokens = utils.strip_pad(toks, self.tgt_dict.pad()) tgt_pieces = self.tgt_dict.string(target_tokens.int().cpu()) tgt_words = post_process(tgt_pieces, self.cfg.common_eval.post_process) if self.cfg.decoding.results_path is not None: print(f"{hyp_pieces} ({speaker}-{sid})", file=self.hypo_units_file) print(f"{hyp_words} ({speaker}-{sid})", file=self.hypo_words_file) print(f"{tgt_pieces} ({speaker}-{sid})", file=self.ref_units_file) print(f"{tgt_words} ({speaker}-{sid})", file=self.ref_words_file) if not self.cfg.common_eval.quiet: logger.info(f"HYPO: {hyp_words}") logger.info(f"REF: {tgt_words}") logger.info("---------------------") hyp_words, tgt_words = hyp_words.split(), tgt_words.split() return editdistance.eval(hyp_words, tgt_words), len(tgt_words) def process_sample(self, sample: Dict[str, Any]) -> None: self.gen_timer.start() hypos = self.task.inference_step( generator=self.generator, models=self.models, sample=sample, ) num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) self.gen_timer.stop(num_generated_tokens) self.wps_meter.update(num_generated_tokens) for batch_id, sample_id in enumerate(sample["id"].tolist()): errs, length = self.process_sentence( sample=sample, sid=sample_id, batch_id=batch_id, hypo=hypos[batch_id][0], ) self.total_errors += errs self.total_length += length self.log({"wps": round(self.wps_meter.avg)}) if "nsentences" in sample: self.num_sentences += sample["nsentences"] else: self.num_sentences += sample["id"].numel() def log_generation_time(self) -> None: logger.info( "Processed %d sentences (%d tokens) in %.1fs %.2f " "sentences per second, %.2f tokens per second)", self.num_sentences, self.gen_timer.n, self.gen_timer.sum, self.num_sentences / (self.gen_timer.sum + 1e-6), 1.0 / (self.gen_timer.avg + 1e-6), ) def parse_wer(wer_file: Path) -> float: with open(wer_file, "r") as f: return float(f.readline().strip().split(" ")[1]) def get_wer_file(cfg: InferConfig) -> Path: """Hashes the decoding parameters to a unique file ID.""" base_path = "wer" if cfg.decoding.results_path is not None: base_path = os.path.join(cfg.decoding.results_path, base_path) if cfg.decoding.unique_wer_file: yaml_str = OmegaConf.to_yaml(cfg.decoding) fid = int(hashlib.md5(yaml_str.encode("utf-8")).hexdigest(), 16) return Path(f"{base_path}.{fid % 1000000}") else: return Path(base_path) def main(cfg: InferConfig) -> float: """Entry point for main processing logic. Args: cfg: The inferance configuration to use. wer: Optional shared memory pointer for returning the WER. If not None, the final WER value will be written here instead of being returned. Returns: The final WER if `wer` is None, otherwise None. """ utils.import_user_module(cfg.common) yaml_str, wer_file = OmegaConf.to_yaml(cfg.decoding), get_wer_file(cfg) # Validates the provided configuration. if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: cfg.dataset.max_tokens = 4000000 if not cfg.common.cpu and not torch.cuda.is_available(): raise ValueError("CUDA not found; set `cpu=True` to run without CUDA") logger.info(cfg.common_eval.path) with InferenceProcessor(cfg) as processor: for sample in processor: processor.process_sample(sample) processor.log_generation_time() if cfg.decoding.results_path is not None: processor.merge_shards() errs_t, leng_t = processor.total_errors, processor.total_length if cfg.common.cpu: logger.warning("Merging WER requires CUDA.") elif processor.data_parallel_world_size > 1: stats = torch.LongTensor([errs_t, leng_t]).cuda() dist.all_reduce(stats, op=dist.ReduceOp.SUM) errs_t, leng_t = stats[0].item(), stats[1].item() wer = errs_t * 100.0 / leng_t if distributed_utils.is_master(cfg.distributed_training): with open(wer_file, "w") as f: f.write( ( f"WER: {wer}\n" f"err / num_ref_words = {errs_t} / {leng_t}\n\n" f"{yaml_str}" ) ) return wer @hydra.main(config_path=config_path, config_name="infer") def hydra_main(cfg: InferConfig) -> Union[float, Tuple[float, Optional[float]]]: container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True) cfg = OmegaConf.create(container) OmegaConf.set_struct(cfg, True) if cfg.common.reset_logging: reset_logging() utils.import_user_module(cfg.common) # logger.info("Config:\n%s", OmegaConf.to_yaml(cfg)) wer = float("inf") try: if cfg.common.profile: with torch.cuda.profiler.profile(): with torch.autograd.profiler.emit_nvtx(): distributed_utils.call_main(cfg, main) else: distributed_utils.call_main(cfg, main) wer = parse_wer(get_wer_file(cfg)) except BaseException as e: # pylint: disable=broad-except if not cfg.common.suppress_crashes: raise else: logger.error("Crashed! %s", str(e)) logger.info("Word error rate: %.4f", wer) if cfg.is_ax: return wer, None return wer def cli_main() -> None: try: from hydra._internal.utils import ( get_args, ) # pylint: disable=import-outside-toplevel cfg_name = get_args().config_name or "infer" except ImportError: logger.warning("Failed to get config name from hydra args") cfg_name = "infer" cs = ConfigStore.instance() cs.store(name=cfg_name, node=InferConfig) for k in InferConfig.__dataclass_fields__: if is_dataclass(InferConfig.__dataclass_fields__[k].type): v = InferConfig.__dataclass_fields__[k].default cs.store(name=k, node=v) hydra_main() # pylint: disable=no-value-for-parameter if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/infer.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- """ Modified form: https://github.com/facebookresearch/fairseq/blob/272c4c5197250997148fb12c0db6306035f166a4/fairseq_cli/generate.py """ import ast import logging import math import os import sys from argparse import Namespace from itertools import chain import numpy as np import torch from omegaconf import DictConfig from fairseq import checkpoint_utils, options, scoring, tasks, utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import progress_bar from fairseq.logging.meters import StopwatchMeter, TimeMeter def main(cfg: DictConfig): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) assert cfg.common_eval.path is not None, "--path required for generation!" assert ( not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam ), "--sampling requires --nbest to be equal to --beam" assert ( cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw" ), "--replace-unk requires a raw text dataset (--dataset-impl=raw)" if cfg.common_eval.results_path is not None: os.makedirs(cfg.common_eval.results_path, exist_ok=True) output_path = os.path.join( cfg.common_eval.results_path, "generate-{}.txt".format(cfg.dataset.gen_subset), ) with open(output_path, "w", buffering=1, encoding="utf-8") as h: return _main(cfg, h) else: return _main(cfg, sys.stdout) def get_symbols_to_strip_from_output(generator): if hasattr(generator, "symbols_to_strip_from_output"): return generator.symbols_to_strip_from_output else: return {generator.eos} def _main(cfg: DictConfig, output_file): logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=output_file, ) logger = logging.getLogger("fairseq_cli.generate") utils.import_user_module(cfg.common) if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: cfg.dataset.max_tokens = 12000 logger.info(cfg) # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) use_cuda = torch.cuda.is_available() and not cfg.common.cpu # Load dataset splits task = tasks.setup_task(cfg.task) # Set dictionaries try: src_dict = getattr(task, "source_dictionary", None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary overrides = ast.literal_eval(cfg.common_eval.model_overrides) # Load ensemble logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, saved_cfg = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), arg_overrides=overrides, task=task, suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, ) # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task) if cfg.generation.lm_path is not None: overrides["data"] = cfg.task.data try: lms, _ = checkpoint_utils.load_model_ensemble( [cfg.generation.lm_path], arg_overrides=overrides, task=None ) except: logger.warning( f"Failed to load language model! Please make sure that the language model dict is the same " f"as target dict and is located in the data dir ({cfg.task.data})" ) raise assert len(lms) == 1 else: lms = [None] # Optimize ensemble for generation for model in chain(models, lms): if model is None: continue if cfg.common.fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) def _fp_convert_sample(sample): def apply_half(t): if t.dtype is torch.float32: return t.to(dtype=torch.half) return t def apply_bfloat16(t): if t.dtype is torch.float32: return t.to(dtype=torch.bfloat16) return t if cfg.common.fp16: sample = utils.apply_to_sample(apply_half, sample) if cfg.common.bf16: sample = utils.apply_to_sample(apply_bfloat16, sample) return sample # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(cfg.generation.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(cfg.dataset.gen_subset), max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models] ), ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, seed=cfg.common.seed, num_shards=cfg.distributed_training.distributed_world_size, shard_id=cfg.distributed_training.distributed_rank, num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) # Initialize generator gen_timer = StopwatchMeter() extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight} generator = task.build_generator( models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) # Handle tokenization and BPE tokenizer = task.build_tokenizer(cfg.tokenizer) bpe = task.build_bpe(cfg.bpe) def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x scorer = scoring.build_scorer(cfg.scoring, None) num_sentences = 0 has_target = True wps_meter = TimeMeter() for sample in progress: sample = utils.move_to_cuda(sample) if use_cuda else sample sample = _fp_convert_sample(sample) if "net_input" not in sample: continue prefix_tokens = None if cfg.generation.prefix_size > 0: prefix_tokens = sample["target"][:, : cfg.generation.prefix_size] constraints = None if "constraints" in sample: constraints = sample["constraints"] gen_timer.start() hypos = task.inference_step( generator, models[0], sample, prefix_tokens=prefix_tokens, constraints=constraints, ) num_generated_tokens = sum(len(h["unit"]) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample["id"].tolist()): has_target = sample["target"] is not None # Remove padding if "src_tokens" in sample["net_input"]: src_tokens = utils.strip_pad( sample["net_input"]["src_tokens"][i, :], tgt_dict.pad() ).cpu() else: src_tokens = None target_tokens = None if has_target: target_tokens = ( utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).cpu() ) # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text( sample_id ) target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text( sample_id ) else: if src_dict is not None: src_str = src_dict.string(src_tokens, cfg.common_eval.post_process) else: src_str = "" if has_target: target_str = " ".join(map(str, target_tokens.numpy().tolist())) src_str = decode_fn(src_str) if not cfg.common_eval.quiet: if src_dict is not None: print("S-{}\t{}".format(sample_id, src_str), file=output_file) if has_target: print("T-{}\t{}".format(sample_id, target_str), file=output_file) # Process top predictions j = 0 hypo = hypos[i] hypo_tokens = hypo["unit"].int().cpu() hypo_str = " ".join(map(str, hypo_tokens.numpy().tolist())) alignment = None detok_hypo_str = hypo_str # add duration prediction hypo_duration = " ".join(map(str, hypo["duration"].int().cpu().numpy().tolist())) hypo_fa_src_str = src_dict.string(hypo["fa_src"].cpu().numpy(), cfg.common_eval.post_process) # hypo_fa_src_str = " ".join(map(str, hypo["fa_src"].int().cpu().numpy() - 4)) if not cfg.common_eval.quiet: # score = hypo["score"] / math.log(2) # convert to base 2 score = 0.00 # original hypothesis (after tokenization and BPE) # print( # "H-{}\t{}\t{}".format(sample_id, score, hypo_str), # file=output_file, # ) # detokenized hypothesis print( "D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str), file=output_file, ) # duration prediction print( "L-{}\t{}\t{}".format(sample_id, score, hypo_duration), file=output_file, ) # force-aligned upsampled src-tokens print( "U-{}\t{}\t{}".format(sample_id, score, hypo_fa_src_str), file=output_file, ) # print( # "P-{}\t{}".format( # sample_id, # " ".join( # map( # lambda x: "{:.4f}".format(x), # # convert from base e to base 2 # hypo["positional_scores"] # .div_(math.log(2)) # .tolist(), # ) # ), # ), # file=output_file, # ) if cfg.generation.print_alignment == "hard": print( "A-{}\t{}".format( sample_id, " ".join( [ "{}-{}".format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment ] ), ), file=output_file, ) if cfg.generation.print_alignment == "soft": print( "A-{}\t{}".format( sample_id, " ".join( [",".join(src_probs) for src_probs in alignment] ), ), file=output_file, ) # Score only the top hypothesis if has_target and j == 0: if hasattr(scorer, "add_string"): scorer.add_string(target_str, detok_hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) progress.log({"wps": round(wps_meter.avg)}) num_sentences += ( sample["nsentences"] if "nsentences" in sample else sample["id"].numel() ) logger.info("NOTE: hypothesis and token scores are output in base 2") logger.info( "Translated {:,} sentences ({:,} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1.0 / gen_timer.avg, ) ) if has_target: if cfg.bpe and not cfg.generation.sacrebleu: if cfg.common_eval.post_process: logger.warning( "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization" ) else: logger.warning( "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization" ) # use print to be consistent with other main outputs: S-, H-, T-, D- and so on print( "Generate {} with beam={}: {}".format( cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string() ), file=output_file, ) return scorer def cli_main(): parser = options.get_generation_parser() # TODO: replace this workaround with refactoring of `AudioPretraining` parser.add_argument( "--arch", "-a", metavar="ARCH", default="wav2vec2", help="Model architecture. For constructing tasks that rely on " "model args (e.g. `AudioPretraining`)", ) args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/generate_unit.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import logging import os import sys from typing import Dict, List, Optional, Tuple from pathlib import Path import numpy as np from argparse import Namespace from collections import OrderedDict import torch from dataclasses import dataclass, field from fairseq.data import ( Dictionary, encoders, data_utils, StripTokenDataset, PrependTokenDataset, AppendTokenDataset, DenoisingDataset, ConcatDataset, FairseqDataset, iterators, ResamplingDataset, MaskTokensDataset, LanguagePairDataset, ) from fairseq.data.audio.speech_to_text_joint_dataset import S2TJointDataConfig from fairseq.data.shorten_dataset import maybe_shorten_dataset # from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.dataclass.configs import FairseqDataclass from fairseq.tasks import register_task from fairseq.tasks.fairseq_task import FairseqTask from fairseq.dataclass.constants import ChoiceEnum from omegaconf import MISSING from speechlm.data.multimodal_corpus_dataset import MultiCorpusDataset from speechlm.data.load_langpair_dataset import load_langpair_dataset from speechlm.data.language_trible_dataset import LanguageTripleDataset, load_langtriple_dataset from speechlm.data.hubert_dataset import HubertDataset logger = logging.getLogger(__name__) TOKENIZER_CHOICES = ChoiceEnum(["sentencepiece", "hubert_letters", "none"]) def _lang_token(lang: str): return "<lang:{}>".format(lang) def _lang_token_index(dic: Dictionary, lang: str): """Return language token index.""" idx = dic.index(_lang_token(lang)) assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang) return idx class LabelEncoder(object): def __init__(self, dictionary: Dictionary) -> None: self.dictionary = dictionary def __call__(self, label: str) -> List[str]: return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False, ) ### wrap the initial get_whole_word_mask which needs bpe_tokenizer, ### here we just assume words are splited by "|" or "<SIL>" def get_whole_word_mask(args, dictionary): def is_beginning_of_word(i): if i < dictionary.nspecial: # special elements are always considered beginnings return True tok = dictionary[i] if tok.startswith("madeupword"): return True elif tok in ["<unk>", "<s>", "</s>", "<pad>", "|", "<eps>"]: return True else: return False mask_whole_words = torch.ByteTensor( list(map(is_beginning_of_word, range(len(dictionary)))) ) return mask_whole_words def get_repeative_start(tokens): """ tokens: torch.Tensor with repeative tokens """ length = len(tokens) rep_start_id = tokens[:-1] != tokens[1:] return torch.cat([torch.tensor([True]), rep_start_id]) @dataclass class TextPretrainingConfig(FairseqDataclass): ### added for joint pretraining text_data: Optional[str] = field( default=None, metadata={ "help": "if set, path to text data directory", }, ) seed: Optional[int] = field( default=1, metadata={ "help": "for ordered_indices in MulticorpusDataset", }, ) tokens_per_sample: Optional[int] = field( default=512, metadata={ "help": "max number of total tokens over all segments per sample for dataset", }, ) tokens_per_sample_tgt: Optional[int] = field( default=512, metadata={ "help": "max number of total tokens over all segments per target sample for dataset", }, ) sample_break_mode: Optional[str] = field( default="eos", metadata={ "help": "mode for breaking sentence", }, ) mask: Optional[float] = field( default=0.3, metadata={ "help": "fraction of words/subwords that will be masked", }, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) mask_random: Optional[float] = field( default=0.1, metadata={ "help": "instead of using [MASK], use random token this often", }, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=True, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_repeative_tokens: bool = field( default=True, metadata={"help": "mask repeative_tokens; if mask_whole_words=False"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: Optional[str] = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed tokens_per_sample", "choices": "none/truncate/random_crop" }, ) shorten_data_split_list: Optional[str] = field( default="", metadata={ "help": "comma_separated list of dataset splits to apply shortening to, e.g., train,valid (default: all dataset splits)", }, ) ### below hypra-parameters is used in bart insert: Optional[float] = field( default=0.0, metadata={ "help": "insert this percentage of additional random tokens", }, ) permute: Optional[float] = field( default=0.0, metadata={ "help": "take this proportion of subwords and permute them", }, ) rotate: Optional[float] = field( default=0.0, metadata={ "help": "rotate this proportion of inputs", }, ) poisson_lambda: Optional[float] = field( default=3.5, metadata={ "help": "randomly shuffle sentences for this proportion of inputs", }, ) permute_sentences: Optional[float] = field( default=0.0, metadata={ "help": "shuffle this proportion of sentences in all inputs", }, ) mask_length: Optional[str] = field( default="span-poisson", metadata={ "help": "mask length to choose", "choice": "subword/word/span-poisson" }, ) replace_length: Optional[int] = field( default=1, metadata={ "help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)", }, ) shuffle_instance: Optional[bool] = field( default=False, metadata={"help": "shuffle instance"}, ) max_source_positions: Optional[int] = field( default=1024, metadata={"help": "max number of tokens in the source sequence"}, ) max_target_positions: Optional[int] = field( default=1024, metadata={"help": "max number of tokens in the target sequence"}, ) bpe: Optional[str] = field( default="", metadata={ "help": "will wrapped by the text_data_config yaml", }, ) data_config: Optional[str] = field( default=None, metadata={ "help": "a config yaml specify the bpe model of text data", }, ) text_maxtokens_ratio: Optional[float] = field( default=1.0, metadata={ "help": "for text, max_tokens = max_tokens * text_maxtokens_ratio / 320 ", }, ) prepend_tgt_lang_tag: bool = field( default=False, metadata={"help": "prepend tgt_lang_tag to replace <eos>"}, ) mask_text_ratio: Optional[float] = field( default=0.0, metadata={ "help": "mask_text_ratio, for paired data", }, ) truncate_mono_source: bool = field( default=True, metadata={"help": "truncate mono source-side examples that exceed max-positions"}, ) @dataclass class JointPretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={"help": "path to speech data directory"} ) fine_tuning: bool = field( default=False, metadata={"help": "set to true if fine-tuning Hubert"} ) labels: List[str] = field( default_factory=lambda: ["ltr"], metadata={ "help": ( "extension of the label files to load, frame-level labels for" " pre-training, and sequence-level label for fine-tuning" ) }, ) label_dir: Optional[str] = field( default=None, metadata={ "help": "if set, looks for labels in this directory instead", }, ) label_rate: int = field( default=-1, metadata={"help": "label frame rate. -1 for sequence label"}, ) sample_rate: int = field( default=16_000, metadata={ "help": "target sample rate. audio files will be up/down " "sampled to this rate" }, ) normalize: bool = field( default=False, metadata={ "help": "if set, normalizes input to have 0 mean and unit variance" }, ) enable_padding: bool = field( default=False, metadata={"help": "pad shorter samples instead of cropping"}, ) max_keep_size: Optional[int] = field( default=None, metadata={"help": "exclude sample longer than this"}, ) max_sample_size: Optional[int] = field( default=None, metadata={"help": "max sample size to crop to for batching"}, ) min_sample_size: Optional[int] = field( default=None, metadata={"help": "min sample size to crop to for batching"}, ) single_target: Optional[bool] = field( default=False, metadata={ "help": "if set, AddTargetDatasets outputs same keys " "as AddTargetDataset" }, ) random_crop: Optional[bool] = field( default=True, metadata={"help": "always crop from the beginning if false"}, ) pad_audio: Optional[bool] = field( default=False, metadata={"help": "pad audio to the longest one in the batch if true"}, ) store_labels: Optional[bool] = field( default=True, metadata={"help": "store spm labels in memory, should be true when fine-tune with bpe"}, ) add_decoder_target: bool = field( default=False, metadata={"help": "contral the model architecture, if set True, load reduced unit as target"}, ) split_modality_batch: bool = field( default=False, metadata={"help": "whether create all samples of different modalities in a batch"}, ) speech_tgt_lang: str = field( default="", metadata={"help": "prepend <tgt-id> to prev_output_tokens to replace <eos>, only used for decoder"}, ) speech_sampling_alpha: float = field( default=0.2, metadata={ "help": "Hyper-parameter alpha = 1/T for temperature-based speech resampling." "(alpha = 1 for no resampling)" }, ) text_sampling_alpha: float = field( default=0.2, metadata={ "help": "Hyper-parameter alpha = 1/T for temperature-based text resampling." "(alpha = 1 for no resampling)" }, ) hubert_tokenizer: Optional[TOKENIZER_CHOICES] = field( default="none", metadata={"help": "which tokenizer for processing text"}, ) sp_path: Optional[str] = field( default=None, metadata={"help": "sentencepiece model path if using bpe tokenizer"}, ) text_cfg: TextPretrainingConfig = TextPretrainingConfig() @register_task("joint_sc2t_pretraining", dataclass=JointPretrainingConfig) class Jsc2tPretrainingTask(FairseqTask): cfg: JointPretrainingConfig def __init__( self, cfg: JointPretrainingConfig, ) -> None: super().__init__(cfg) logger.info(f"current directory is {os.getcwd()}") logger.info(f"JSTPretrainingTask Config {cfg}") self.cfg = cfg self.fine_tuning = cfg.fine_tuning self.blank_symbol = "<s>" self.state.add_factory("hubert_tokenizer", self.build_tokenizer) if self.cfg.text_cfg.text_data is not None and os.path.exists(self.cfg.text_cfg.text_data): self.state.add_factory("text_dictionary", self.load_text_dictionary) self.state.add_factory("text_src_dictionary", self.load_text_src_dictionary) if cfg.fine_tuning: self.state.add_factory("target_dictionary", self.load_dictionaries) else: self.state.add_factory("dictionaries", self.load_dictionaries) if cfg.text_cfg.data_config is not None: self.text_data_cfg = S2TJointDataConfig(Path(f"{cfg.text_cfg.text_data}/{cfg.text_cfg.data_config}")) self.cfg.text_cfg.bpe = self.text_data_cfg.bpe_tokenizer["bpe"] else: self.text_data_cfg = None @property def source_dictionary(self) -> Optional[Dictionary]: return None @property def target_dictionary(self) -> Optional[Dictionary]: return self.state.target_dictionary @property def dictionaries(self) -> List[Dictionary]: return self.state.dictionaries @property def text_dictionary(self) -> Optional[Dictionary]: return self.state.text_dictionary @property def text_src_dictionary(self) -> Optional[Dictionary]: return self.state.text_src_dictionary @property def hubert_tokenizer(self): return self.state.hubert_tokenizer def load_dictionaries(self): label_dir = self.cfg.data if self.cfg.label_dir is None else self.cfg.label_dir dictionaries = [Dictionary.load(f"{label_dir}/dict.{label}.txt") for label in self.cfg.labels] if not self.cfg.fine_tuning: for dictionary in dictionaries: dictionary.add_symbol("<mask>") return dictionaries[0] if self.cfg.fine_tuning else dictionaries def load_text_dictionary(self): tgt_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.vocab_filename if self.text_data_cfg is not None else 'dict.txt'}" if not os.path.isfile(tgt_dict_path): raise FileNotFoundError(f"Dict not found: {tgt_dict_path}") text_dictionary = Dictionary.load(tgt_dict_path) self.mask_idx = text_dictionary.add_symbol("<mask>") return text_dictionary def load_text_src_dictionary(self): src_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.src_vocab_filename if self.text_data_cfg is not None else 'dict.txt'}" if not os.path.isfile(src_dict_path): raise FileNotFoundError(f"Dict not found: {src_dict_path}") src_text_dictionary = Dictionary.load(src_dict_path) self.mask_idx = src_text_dictionary.add_symbol("<mask>") return src_text_dictionary @classmethod def setup_task( cls, cfg: JointPretrainingConfig, **kwargs ) -> "Jsc2tPretrainingTask": return cls(cfg) def get_label_dir(self) -> str: if self.cfg.label_dir is None: return self.cfg.data return self.cfg.label_dir def load_paired_dataset(self, text_split, truncate_source=False): text_split, lp = text_split.rsplit('.', 1) # e.g. "libritext.ltr-ltr" if len(lp.split("-")) == 2: src, tgt = lp.split("-") if src == tgt: logger.warn(f"| trying to load monolingual dataset {text_split}.{lp}, please check your task is right.") paired_dataset = self.load_char_bart_dataset(f"{text_split}.{lp}.{tgt}") return paired_dataset paired_dataset = load_langpair_dataset( self.cfg.text_cfg.text_data, text_split, src, self.text_src_dictionary, tgt, self.text_dictionary, combine=True, dataset_impl=None, upsample_primary=1, left_pad_source=False, left_pad_target=False, max_source_positions=self.cfg.text_cfg.tokens_per_sample, max_target_positions=self.cfg.text_cfg.tokens_per_sample, truncate_source=truncate_source, prepend_bos=False, load_alignments=False, append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False, lang_format="<lang:{}>" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]", input_feeding=self.cfg.add_decoder_target, ) if self.cfg.text_cfg.mask_text_ratio > 0: # add mask self.mask_idx = self.text_src_dictionary.index("<mask>") mask_whole_words = None if self.cfg.text_cfg.mask_whole_words: mask_whole_words = get_whole_word_mask(self.cfg.text_cfg, self.text_src_dictionary) elif self.cfg.text_cfg.mask_repeative_tokens: mask_whole_words = get_repeative_start src_dataset, src_unmasked_dataset = MaskTokensDataset.apply_mask( paired_dataset.src, self.text_src_dictionary, pad_idx=self.text_src_dictionary.pad(), mask_idx=self.mask_idx, seed=self.cfg.text_cfg.seed, mask_prob=self.cfg.text_cfg.mask_text_ratio, leave_unmasked_prob=self.cfg.text_cfg.leave_unmasked_prob, random_token_prob=self.cfg.text_cfg.mask_random, freq_weighted_replacement=self.cfg.text_cfg.freq_weighted_replacement, mask_whole_words=mask_whole_words, mask_multiple_length=self.cfg.text_cfg.mask_multiple_length, mask_stdev=self.cfg.text_cfg.mask_stdev, ) tgt_dataset = paired_dataset.tgt if paired_dataset.tgt is not None else src_unmasked_dataset paired_dataset = LanguageTripleDataset( src_dataset, src_dataset.sizes, self.text_src_dictionary, src_unmasked_dataset, src_unmasked_dataset.sizes, self.text_src_dictionary, tgt_dataset, tgt_dataset.sizes, self.text_dictionary, left_pad_source=False, left_pad_target=False, align_dataset=None, eos=None, num_buckets=0, shuffle=True, pad_to_multiple=1, ) else: src, ref, tgt = lp.split("-") paired_dataset = load_langtriple_dataset( self.cfg.text_cfg.text_data, text_split, src, self.text_src_dictionary, ref, self.dictionaries[-1], tgt, self.text_dictionary, combine=True, dataset_impl=None, upsample_primary=1, left_pad_source=False, left_pad_target=False, max_source_positions=self.cfg.text_cfg.tokens_per_sample, max_target_positions=self.cfg.text_cfg.tokens_per_sample, truncate_source=truncate_source, prepend_bos=False, load_alignments=False, append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False, lang_format="<lang:{}>" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]", ) return paired_dataset def load_dataset(self, split: str, epoch=1, **kwargs) -> None: """ Create Wav dataset for audio, and Index dataset for phonemized text, then concatenate them to by fairseq.data.multi_corpus_dataset.MultiCorpusDataset. """ speech_splits = split.split('+')[0].split(',') ### 1st, create a speech dataset using STSpeechDataset (modified from HubertDataset) dicts = [self.target_dictionary] if self.cfg.fine_tuning else self.dictionaries pad_list = [dict.pad() for dict in dicts] eos_list = [dict.eos() for dict in dicts] procs = [LabelEncoder(dict) for dict in dicts] if self.cfg.speech_tgt_lang != "": tgt_lang_idx = _lang_token_index(dicts[0], self.cfg.speech_tgt_lang) logger.info(f"Will prepend <{tgt_lang_idx}> at the beginning of prev_output_tokens to replace <eos>") else: tgt_lang_idx = None # hubert v1: pad_audio=True, random_crop=False; speech_datasets = [] for speech_split in speech_splits: paths = [ f"{self.get_label_dir()}/{speech_split}.{l}" for l in self.cfg.labels ] speech_datasets.append( HubertDataset( f"{self.cfg.data}/{speech_split}.tsv", sample_rate=self.cfg.sample_rate, label_paths=paths, label_rates=self.cfg.label_rate, pad_list=pad_list, eos_list=eos_list, label_processors=procs, max_keep_sample_size=self.cfg.max_keep_size, min_keep_sample_size=self.cfg.min_sample_size, max_sample_size=self.cfg.max_sample_size, pad_audio=self.cfg.pad_audio, normalize=self.cfg.normalize, store_labels=self.cfg.store_labels, random_crop=self.cfg.random_crop, single_target=self.cfg.single_target, tgt_dict=dicts[0], add_decoder_target=self.cfg.add_decoder_target, fine_tuning=self.cfg.fine_tuning, tgt_lang_idx=tgt_lang_idx, tokenizer=self.hubert_tokenizer, ) ) if len(speech_datasets) > 1: speech_dataset = ConcatDataset(speech_datasets) else: speech_dataset = speech_datasets[0] has_text = len(split.split('+')) > 1 if not has_text: assert speech_dataset is not None self.datasets[split] = speech_dataset return ### 2nd, create paired/mono text datasets using Langpairdataset if split.split('+')[1] != '': paired_splits = [paired_split for paired_split in split.split('+')[1].split(',') if paired_split != ''] paired_datasets = [self.load_paired_dataset(paired_split) for paired_split in paired_splits] else: paired_splits, paired_datasets = [], [] if len(split.split('+')) > 2 and split.split('+')[2] != '': mono_splits = [mono_split for mono_split in split.split('+')[2].split(',') if mono_split != ''] mono_datasets = [self.load_paired_dataset(mono_split, truncate_source=self.cfg.text_cfg.truncate_mono_source) for mono_split in mono_splits] else: mono_splits, mono_datasets = [], [] assert len(mono_datasets + paired_datasets) > 0, f"split {split} has no text! you should check out for that" ### 3rd, if provided, create a supervised dataset with labeled data if len(split.split('+')) > 3 and split.split('+')[3] != '': assert len(paired_splits) > 0, f"supervised dataset can not be loaded without text paired dataset!" tgt = paired_splits[0].rsplit('.', 1)[1].split("-")[1] sup_split = split.split('+')[3] sup_dataset = HubertDataset( f"{self.cfg.data}/{sup_split}.tsv", sample_rate=self.cfg.sample_rate, label_paths=[f"{self.get_label_dir()}/{sup_split}.{tgt}"], label_rates=[-1], pad_list=[self.text_dictionary.pad()], eos_list=[self.text_dictionary.eos()], label_processors=[LabelEncoder(self.text_dictionary)], max_keep_sample_size=self.cfg.max_keep_size, min_keep_sample_size=None, max_sample_size=None, pad_audio=True, normalize=self.cfg.normalize, store_labels=self.cfg.store_labels, random_crop=False, single_target=True, tgt_dict=self.text_dictionary, add_decoder_target=self.cfg.add_decoder_target, fine_tuning=True, tgt_lang_idx=None, tokenizer=None, ) else: sup_dataset = None ### 4th, compose a MultiCorpusDataset dataset_dict, max_positions_dict, distributions, max_tokens_ratios = self.resample_multi_modality_dataset( speech_dataset, sup_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=epoch, ) self.datasets[split] = MultiCorpusDataset( dataset_dict, max_positions=max_positions_dict, distribution=distributions, max_tokens_ratio=max_tokens_ratios, seed=self.cfg.text_cfg.seed, sort_indices=True, ) def max_positions(self) -> Tuple[int, int]: return (sys.maxsize, sys.maxsize) def filter_indices_by_size( self, indices: np.array, *args, **kwargs ) -> np.array: return indices def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, skip_remainder_batch=False, grouped_shuffling=False, update_epoch_batch_itr=False, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~fairseq.data.FairseqDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). data_buffer_size (int, optional): number of batches to preload (default: 0). disable_iterator_cache (bool, optional): don't cache the EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`) (default: False). skip_remainder_batch (bool, optional): if set, discard the last batch in each training epoch, as the last batch is often smaller than local_batch_size * distributed_word_size (default: ``True``). grouped_shuffling (bool, optional): group batches with each groups containing num_shards batches and shuffle groups. Reduces difference between sequence lengths among workers for batches sorted by length. update_epoch_batch_itr (bool optional): if true then donot use the cached batch iterator for the epoch Returns: ~fairseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ if self.fine_tuning or not isinstance(dataset, MultiCorpusDataset): return super().get_batch_iterator( dataset, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, data_buffer_size=data_buffer_size, disable_iterator_cache=disable_iterator_cache, skip_remainder_batch=skip_remainder_batch, grouped_shuffling=grouped_shuffling, update_epoch_batch_itr=update_epoch_batch_itr, ) can_reuse_epoch_itr = ( not disable_iterator_cache and not update_epoch_batch_itr and self.can_reuse_epoch_itr(dataset) ) if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter: logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch)) return self.dataset_to_epoch_iter[dataset] assert isinstance(dataset, FairseqDataset) # initialize the dataset with the correct starting epoch dataset.set_epoch(epoch) # get indices ordered by example size with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() # filter examples that are too large if max_positions is not None: indices = self.filter_indices_by_size( indices, dataset, max_positions, ignore_invalid_inputs ) # create mini-batches with given size constraints batch_sampler = dataset.get_batch_sampler( indices, num_shards, seed, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, split_modality_batch=self.cfg.split_modality_batch, ) # return a reusable, sharded iterator epoch_iter = iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, buffer_size=data_buffer_size, skip_remainder_batch=skip_remainder_batch, disable_shuffling=True, grouped_shuffling=grouped_shuffling, ) if can_reuse_epoch_itr: self.dataset_to_epoch_iter[dataset] = epoch_iter return epoch_iter @classmethod def _get_size_ratios(cls, ids: List[str], sizes: List[int], alpha: float = 1.0): """Size ratios for temperature-based sampling (https://arxiv.org/abs/1907.05019)""" _sizes = np.array(sizes) prob = _sizes / _sizes.sum() smoothed_prob = prob ** alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() size_ratio = (smoothed_prob * _sizes.sum()) / _sizes o_str = str({_i: f"{prob[i]:.3f}" for i, _i in enumerate(ids)}) logger.info(f"original sampling probability: {o_str}") p_str = str({_i: f"{smoothed_prob[i]:.3f}" for i, _i in enumerate(ids)}) logger.info(f"balanced sampling probability: {p_str}") sr_str = str({_id: f"{size_ratio[i]:.3f}" for i, _id in enumerate(ids)}) logger.info(f"balanced sampling size ratio: {sr_str}") return size_ratio.tolist() def resample_multi_modality_dataset(self, speech_dataset, sup_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=1, train=True): assert len(mono_datasets+paired_datasets) > 0, f"No text data loaded!" if len(mono_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0: size_ratios = self._get_size_ratios( mono_splits, [len(s) for s in mono_datasets], alpha=self.cfg.text_sampling_alpha ) mono_datasets = [ ResamplingDataset( d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0) ) for d, r in zip(mono_datasets, size_ratios) ] if len(paired_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0: size_ratios = self._get_size_ratios( paired_splits, [len(s) for s in paired_datasets], alpha=self.cfg.text_sampling_alpha ) paired_datasets = [ ResamplingDataset( d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0) ) for d, r in zip(paired_datasets, size_ratios) ] dataset_list = [speech_dataset, sup_dataset] for datasets in [mono_datasets, paired_datasets]: if len(datasets) > 1: dataset_list.append(ConcatDataset(datasets)) elif len(datasets) == 1: dataset_list.append(datasets[0]) else: dataset_list.append(None) ### match speech/text datasets according to modality dataset_dict = OrderedDict((name, d) for name, d in zip(["speech", "speech_sup", "text_mono", "text_paired"], dataset_list) if d is not None) max_positions_dict = { "speech": None, "speech_sup": None, "text_mono": (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample), "text_paired": (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample), } max_positions_dict = OrderedDict((name, max_positions_dict[name]) for name in dataset_dict.keys()) max_tokens_ratios_dict = { "speech": 1.0, "speech_sup": 1.0, "text_mono": 1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio, "text_paired": 1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio, } max_tokens_ratios = [max_tokens_ratios_dict[name] for name in dataset_dict.keys()] dataset_lens = np.array([len(dataset) for dataset in dataset_dict.values()]) dataset_avg_sample_lens = np.array([ sum([dataset.num_tokens(i) for i in np.random.randint(low=0, high=len(dataset), size=10000)]) / 10000.0 for dataset in dataset_dict.values() ]) if not "speech" in dataset_dict: distributions = [l / sum(dataset_lens) for l in dataset_lens] else: ## we just keep the batches of speech and non-speech the same, expand_coef is to ensure speech batches is less than others first_ratio = dataset_lens[0] / sum(dataset_lens) expand_coef = 1.8 if sup_dataset is None else 1.1 * sum(dataset_lens[0:2]) / dataset_lens[0] distributions = [expand_coef * max_tokens_ratios[i] * dataset_avg_sample_lens[0] / l for (i, l) in enumerate(dataset_avg_sample_lens)] distributions[0] = 1.0 if sup_dataset is not None: distributions[1] = dataset_lens[1] / dataset_lens[0] distributions = [first_ratio * d for d in distributions] logging.info(f"Number samples of datasets is {dataset_lens}") logging.info(f"Avg sample length of datasets is {dataset_avg_sample_lens}") logging.info(f"Sampling distributions is {distributions}") logging.info(f"Maxtokens ratio is {max_tokens_ratios}") return dataset_dict, max_positions_dict, distributions, max_tokens_ratios def build_tokenizer(self, cfg=None): logger.info(f"tokenizer: {self.cfg.hubert_tokenizer}") if self.cfg.hubert_tokenizer != "none": return encoders.build_bpe(Namespace(**{"bpe": self.cfg.hubert_tokenizer, "sentencepiece_model": self.cfg.sp_path})) else: return None def load_char_bart_dataset(self, split): mono_dataset = data_utils.load_indexed_dataset( f"{self.cfg.text_cfg.text_data}/{split}", self.text_dictionary, ) mono_dataset = StripTokenDataset(mono_dataset, self.text_dictionary.eos()) mono_dataset = maybe_shorten_dataset( mono_dataset, split, self.cfg.text_cfg.shorten_data_split_list, self.cfg.text_cfg.shorten_method, self.cfg.text_cfg.tokens_per_sample - 2, self.cfg.text_cfg.seed, ) logger.info("loaded {} samples from: {}".format(len(mono_dataset), mono_dataset)) ### prepend bos and eos to dataset mono_dataset = PrependTokenDataset(mono_dataset, self.text_dictionary.bos()) mono_dataset = AppendTokenDataset(mono_dataset, self.text_dictionary.eos()) mask_whole_words = ( get_whole_word_mask(None, self.text_dictionary) if self.cfg.text_cfg.mask_whole_words else None ) lang=self.cfg.speech_tgt_lang mono_dataset = DenoisingDataset( mono_dataset, mono_dataset.sizes, self.text_dictionary, self.mask_idx, mask_whole_words, shuffle=self.cfg.text_cfg.shuffle_instance, seed=self.cfg.text_cfg.seed, args=self.cfg.text_cfg, tgt_lang_idx=_lang_token_index(self.text_dictionary, lang) if self.cfg.text_cfg.prepend_tgt_lang_tag else None, ) return mono_dataset
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/tasks/joint_sc2t_pretrain.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import torch import numpy as np import logging from pathlib import Path from argparse import Namespace from fairseq.tasks import LegacyFairseqTask, register_task from fairseq.data import Dictionary, encoders from fairseq.data.audio.speech_to_text_joint_dataset import S2TJointDataConfig from speechlm.unit_generator import NonAutoregressiveUnitGenerator from speechlm.data.text_to_unit_dataset import Text2UnitDatasetCreator logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) @register_task("fast_text_to_unit") class FastTextToUnitTask(LegacyFairseqTask): @staticmethod def add_args(parser): parser.add_argument("data", help="manifest root path") parser.add_argument( "--config-yaml", type=str, default="config.yaml", help="Configuration YAML filename (under manifest root)", ) parser.add_argument( "--max-source-positions", default=2048, type=int, metavar="N", help="max number of tokens in the source sequence", ) parser.add_argument( "--max-target-positions", default=1024, type=int, metavar="N", help="max number of tokens in the target sequence", ) parser.add_argument("--n-frames-per-step", type=int, default=1) parser.add_argument("--eos-prob-threshold", type=float, default=0.5) parser.add_argument("--eval-inference", action="store_true") parser.add_argument("--eval-tb-nsample", type=int, default=8) parser.add_argument("--vocoder", type=str, default="griffin_lim") parser.add_argument("--spec-bwd-max-iter", type=int, default=8) def __init__(self, args, src_dict, tgt_dict): super().__init__(args) self.src_dict = src_dict self.tgt_dict = tgt_dict self.data_cfg = S2TJointDataConfig(Path(args.data) / args.config_yaml) self.speaker_to_id = self._get_speaker_to_id() @classmethod def setup_task(cls, args, **kwargs): data_cfg = S2TJointDataConfig(Path(args.data) / args.config_yaml) src_dict_path = Path(args.data) / data_cfg.src_vocab_filename if not src_dict_path.is_file(): raise FileNotFoundError(f"Dict not found: {src_dict_path.as_posix()}") src_dict = Dictionary.load(src_dict_path.as_posix()) logger.info( f"Source dictionary size ({data_cfg.src_vocab_filename}): " f"{len(src_dict):,}" ) tgt_dict_path = Path(args.data) / data_cfg.vocab_filename if not tgt_dict_path.is_file(): raise FileNotFoundError(f"Dict not found: {tgt_dict_path.as_posix()}") tgt_dict = Dictionary.load(tgt_dict_path.as_posix()) logger.info( f"Target dictionary size ({data_cfg.vocab_filename}): " f"{len(tgt_dict):,}" ) if getattr(args, "train_subset", None) is not None: if not all(s.startswith("train") for s in args.train_subset.split(",")): raise ValueError('Train splits should be named like "train*".') return cls(args, src_dict, tgt_dict) def load_dataset(self, split, epoch=1, combine=False, **kwargs): is_train_split = split.startswith("train") pre_tokenizer = self.build_tokenizer(self.args) bpe_tokenizer = self.build_bpe(self.args) self.datasets[split] = Text2UnitDatasetCreator.from_tsv( self.args.data, self.data_cfg, split, self.src_dict, pre_tokenizer, bpe_tokenizer, is_train_split=is_train_split, epoch=epoch, seed=self.args.seed, n_frames_per_step=self.args.n_frames_per_step, speaker_to_id=self.speaker_to_id, ) @property def target_dictionary(self): return self.tgt_dict @property def source_dictionary(self): return self.src_dict def max_positions(self): return self.args.max_source_positions, self.args.max_target_positions def _get_speaker_to_id(self): speaker_to_id = None speaker_set_filename = self.data_cfg.config.get("speaker_set_filename") if speaker_set_filename is not None: speaker_set_path = Path(self.args.data) / speaker_set_filename with open(speaker_set_path) as f: speaker_to_id = {r.strip(): i for i, r in enumerate(f)} return speaker_to_id @classmethod def get_speaker_embeddings(cls, args): # It Will be used in FastText2UnitModel model, insdead of nn.Embedding on speaker-id, we default to use x-vectors extracted ahead. # This is for varying the speaker information when generating units from text. if args.speaker_to_id is not None: embed_speaker = torch.nn.Embedding( len(args.speaker_to_id), args.speaker_embed_dim ) elif args.speaker_embedding_type == "x-vector": # return LayerNorm(args.speaker_embed_dim) return lambda x: x.unsqueeze(1) elif args.speaker_embedding_type == "i-vector": # return LayerNorm(args.speaker_embed_dim) return lambda x: x else: embed_speaker = None return embed_speaker def build_model(self, cfg): cfg.pitch_min = self.data_cfg.config["features"].get("pitch_min", None) cfg.pitch_max = self.data_cfg.config["features"].get("pitch_max", None) cfg.energy_min = self.data_cfg.config["features"].get("energy_min", None) cfg.energy_max = self.data_cfg.config["features"].get("energy_max", None) cfg.speaker_to_id = self.speaker_to_id cfg.speaker_embedding_type = self.data_cfg.config.get("speaker_embedding_type", None) model = super().build_model(cfg) self.generator = None if getattr(cfg, "eval_inference", False): self.generator = self.build_generator([model], cfg) return model def build_generator(self, models, cfg, vocoder=None, **unused): model = models[0] assert getattr(model, "NON_AUTOREGRESSIVE") is True return NonAutoregressiveUnitGenerator(model, vocoder, self.data_cfg) def build_tokenizer(self, args): logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}") return encoders.build_tokenizer(Namespace(**self.data_cfg.pre_tokenizer)) def build_bpe(self, args): logger.info(f"tokenizer: {self.data_cfg.bpe_tokenizer}") return encoders.build_bpe(Namespace(**self.data_cfg.bpe_tokenizer))
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/tasks/fast_text_to_unit.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import logging from dataclasses import dataclass, field from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils, checkpoint_utils from fairseq.data.data_utils import compute_mask_indices from fairseq.data.dictionary import Dictionary from fairseq.dataclass import ChoiceEnum from fairseq.models import BaseFairseqModel, register_model from fairseq.models.transformer import Embedding from fairseq.file_io import PathManager from torch import Tensor from fairseq.models.wav2vec.wav2vec2 import ConvFeatureExtractionModel from fairseq.modules import GradMultiply, LayerNorm from fairseq.tasks.hubert_pretraining import ( HubertPretrainingConfig, HubertPretrainingTask, ) from fairseq.models.hubert import HubertConfig from fairseq.models.transformer import TransformerConfig from speechlm.modules.w2v_encoder import TransformerEncoder from speechlm.modules.transformer_encoder import TransformerEncoderBase logger = logging.getLogger(__name__) EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) @dataclass class SpeechlmConfig(HubertConfig): use_rel_pos_enc: bool = field( default=False, metadata={"help": "whether to use relative positional encoding"}, ) scaling_for_att: float = field( default=1.0, metadata={"help": "scaling for attention weights to prevent overflow issue (for large model)"}, ) # unit encoder-decoder text_transformer: TransformerConfig = TransformerConfig() add_unit_encoder: bool = field( default=False, metadata={"help": "add unit encoder"}, ) add_decoder: bool = field( default=False, metadata={"help": "add decoder"}, ) add_text_ctc: bool = field( default=False, metadata={"help": "add_text_ctc head"}, ) text_ctc_conv_kernel: int = field( default=2, metadata={"help": "text_ctc_conv kernel size"}, ) mask_u2t: bool = field( default=True, metadata={"help": "mask the unit input in unit-to-text task"}, ) compute_mum: bool = field( default=False, metadata={"help": "compute MLM loss in unit-to-text task"}, ) # embedding mixing mix_with_unit: bool = field( default=True, metadata={"help": "mix with the unit embeddings"}, ) use_pred_unit: bool = field( default=False, metadata={"help": "use the embeddings of predicted units"}, ) l2_embedding: bool = field( default=False, metadata={"help": "compute l2 loss between unit embedding and unit hidden state"}, ) # Finetune related encoder_dict_size: int = field( default=-1, metadata={"help": "text encoder dictionary dimension"}, ) decoder_dict_size: int = field( default=-1, metadata={"help": "decoder dictionary dimension"}, ) @register_model("speechlm", dataclass=SpeechlmConfig) class SpeechlmModel(BaseFairseqModel): def __init__( self, cfg: SpeechlmConfig, task_cfg: HubertPretrainingConfig, dictionaries: List[Dictionary], unit_dictionary: Dictionary = None, text_tgt_dictionary: Dictionary = None, ) -> None: super().__init__() logger.info(f"SpeechlmModel Config: {cfg}") feature_enc_layers = eval(cfg.conv_feature_layers) # noqa self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers]) self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.logit_temp = cfg.logit_temp self.skip_masked = cfg.skip_masked self.skip_nomask = cfg.skip_nomask final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.final_dim = final_dim assert len(dictionaries) <= 2, f"Only support <=2 kinds of targets, get {len(dictionaries)} dictionaries" if len(dictionaries) == 1: dictionaries = [dictionaries[0], dictionaries[0]] self.final_proj_list = nn.ModuleList([ nn.Linear(cfg.encoder_embed_dim, final_dim) for _ in dictionaries ]) self.num_classes = [len(d) for d in dictionaries] self.label_embs_list = nn.ParameterList([ nn.Parameter(torch.FloatTensor(n, final_dim)) for n in self.num_classes ]) for i in range(len(self.num_classes)): nn.init.uniform_(self.label_embs_list[i]) ### build unit encoder: self.mask_u2t = cfg.mask_u2t self.compute_mum = cfg.compute_mum self.add_text_ctc = cfg.add_text_ctc self.text_ctc_conv_kernel = cfg.text_ctc_conv_kernel self.padding_idx = unit_dictionary.pad() self.unit_mask_idx = unit_dictionary.index("<mask>") self.add_unit_encoder = cfg.add_unit_encoder self.mix_with_unit = cfg.mix_with_unit self.use_pred_unit = cfg.use_pred_unit self.l2_embedding = cfg.l2_embedding if self.add_unit_encoder: assert len(unit_dictionary) == self.num_classes[0], f"unit_dictionary: {len(unit_dictionary)}, self.num_classes[0]: {self.num_classes[0]}" ### build unit pre-net, and shared with hubert label_embs if needed (default: False) self.unit_embed_tokens = self.build_embedding( unit_dictionary, cfg.text_transformer.encoder.embed_dim, ) if self.final_dim == cfg.text_transformer.encoder.embed_dim: logger.info("Share label_embs[0] with unit_embed_tokens ...") nn.init.uniform_(self.unit_embed_tokens.weight) self.label_embs_list[0] = self.unit_embed_tokens.weight ### build unit encoder self.unit_encoder = TransformerEncoderBase( cfg.text_transformer, unit_dictionary, self.unit_embed_tokens, use_rel_pos_enc=cfg.use_rel_pos_enc, scaling_for_att=cfg.scaling_for_att, ) ### build text ctc head if self.add_text_ctc: conv = nn.Conv1d( cfg.text_transformer.encoder.embed_dim, cfg.text_transformer.encoder.embed_dim, self.text_ctc_conv_kernel, stride=self.text_ctc_conv_kernel // 2, bias=False, padding=self.text_ctc_conv_kernel // 2, ) nn.init.kaiming_normal_(conv.weight) self.unit_encoder_ctc_head = nn.Sequential( Rotate3D(), conv, nn.Dropout(p=0.1), nn.Sequential( Rotate3D(), Rotate3D(), LayerNorm(cfg.text_transformer.encoder.embed_dim), ), nn.GELU(), nn.Linear(cfg.text_transformer.encoder.embed_dim, len(text_tgt_dictionary)), ) ### build unit2text decoder, not available for now self.add_decoder = cfg.add_decoder def build_embedding(self, dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() return Embedding(num_embeddings, embed_dim, padding_idx) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: SpeechlmConfig, task: HubertPretrainingTask): """Build a new model instance.""" unit_dictionary = getattr(task, "text_src_dictionary", None) text_tgt_dictionary = getattr(task, "text_dictionary", None) model = SpeechlmModel(cfg, task.cfg, task.dictionaries, unit_dictionary, text_tgt_dictionary) return model def apply_mask(self, x, padding_mask, target_list): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def forward_features(self, source: torch.Tensor) -> torch.Tensor: if self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(source) return features def forward_targets( self, features: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_inds += np.random.choice(int(self.feat2tar_ratio)) target_list = [t[:, target_inds.long()] for t in target_list] return features, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) padding_mask = padding_mask.all(-1) return padding_mask def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample) lprobs.batch_first = True return lprobs def downsample_ctc_padding_mask(self, padding_mask): """ padding_mask: (B, T) """ stride = self.text_ctc_conv_kernel // 2 return padding_mask[:, ::stride] def compute_pred(self, proj_x, label_embs): if self.target_glu: label_embs = self.target_glu(label_embs) x = F.normalize(proj_x.float(), dim=-1) # (S, D) label_embs = F.normalize(label_embs.float(), dim=-1) # (C, D) logits = torch.matmul(x, label_embs.T).type_as(proj_x) # (S, C) logits /= self.logit_temp return logits def compute_hubert_logits(self, x, target, proj, label_embs, padding_mask, mask_indices): if not self.skip_masked: masked_indices = torch.logical_and(~padding_mask, mask_indices) proj_x_m = proj(x[masked_indices]) logit_m_list = [(self.compute_pred(proj_x_m, label_embs), target[masked_indices])] else: logit_m_list = [None] if not self.skip_nomask: nomask_indices = torch.logical_and(~padding_mask, ~mask_indices) proj_x_u = proj(x[nomask_indices]) logit_u_list = [(self.compute_pred(proj_x_u, label_embs), target[nomask_indices])] else: logit_u_list = [None] return logit_m_list, logit_u_list def convert_embeddings(self, x, padding_mask, target=None, mask_indices=None, mix_with_unit=False, use_pred_unit=False, l2_embedding=False, remask=False ): """ 1. Mix with units if needed (default: True) 2. Prepare for unit_encoder inputs Inputs: x, (B, T, D) Return: src_tokens, (B, T) soft_embeddings, (B, T, D) l2_loss, a loss """ soft_embeddings = self.final_proj_list[0](x) if x.size(-1) == self.final_dim else x if padding_mask is None: padding_mask = soft_embeddings.new_zeros(soft_embeddings.size(0), soft_embeddings.size(1), dtype=torch.long) if use_pred_unit: src_tokens = self.compute_pred(self.final_proj_list[0](x), self.label_embs_list[0]).argmax(dim=-1) src_tokens[padding_mask] = self.padding_idx elif target is not None: src_tokens = target else: src_tokens = padding_mask.long() if l2_embedding | mix_with_unit: unit_embeddings = self.unit_embed_tokens(src_tokens) # (B, T, D) l2_loss = 0 if l2_embedding: if mask_indices is not None: l2_loss = (soft_embeddings - unit_embeddings)[mask_indices].float().pow(2).mean(dim=-1) scale = unit_embeddings[mask_indices].float().pow(2).sum(dim=-1) else: l2_loss = (soft_embeddings - unit_embeddings).float().pow(2).mean(dim=-1) scale = unit_embeddings.float().pow(2).sum(dim=-1) l2_loss = (l2_loss / scale).mean() if mix_with_unit: B, T, D = x.shape selected_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob / 2, self.mask_length // 2, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) selected_indices = torch.from_numpy(selected_indices).to(x.device) if mask_indices is not None: if remask: remask_indices = torch.logical_and(selected_indices, mask_indices) soft_embeddings[remask_indices] = self.mask_emb swap_indices = torch.logical_and(selected_indices, ~mask_indices) else: swap_indices = selected_indices soft_embeddings[swap_indices] = unit_embeddings[swap_indices] soft_embeddings = soft_embeddings * (1 - padding_mask.unsqueeze(-1).type_as(x)) return src_tokens, soft_embeddings, l2_loss def forward( self, source: torch.Tensor = None, src_tokens: torch.Tensor = None, src_lengths: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: assert source is not None or src_tokens is not None if source is not None: return self.forward_speech( source=source, target_list=target_list, padding_mask=padding_mask, mask=mask, features_only=features_only, output_layer=output_layer, ) else: return self.forward_text( src_tokens=src_tokens, src_lengths=src_lengths, mask=self.mask_u2t, output_layer=output_layer, ) def forward_speech( self, source: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: """output layer is 1-based""" features = self.forward_features(source) if target_list is not None: features, target_list = self.forward_targets(features, target_list) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) if mask: x, mask_indices = self.apply_mask(features, padding_mask, target_list) else: x = features mask_indices = None # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, _ = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1, ) if features_only: return {"x": x, "padding_mask": padding_mask, "features": features} logit_m_list, logit_u_list = self.compute_hubert_logits( x, target_list[0], self.final_proj_list[0], self.label_embs_list[0], padding_mask, mask_indices, ) result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, "features_pen": features_pen, } if self.add_unit_encoder: src_tokens, x_emb, l2_loss = self.convert_embeddings( x, padding_mask, target_list[0], mask_indices=mask_indices, mix_with_unit=self.mix_with_unit, use_pred_unit=self.use_pred_unit, l2_embedding=self.l2_embedding, ) encoder_out = self.unit_encoder(src_tokens, token_embeddings=x_emb) result['encoder_out'] = encoder_out['encoder_out'] # [(T, B, D)] result['encoder_padding_mask'] = encoder_out['encoder_padding_mask'] # [(B, T)] if self.l2_embedding: result['embedding_l2_loss'] = l2_loss code_logit_m_list, code_logit_u_list = self.compute_hubert_logits( encoder_out['encoder_out'][0].transpose(0, 1), target_list[-1], self.final_proj_list[-1], self.label_embs_list[-1], padding_mask, mask_indices, ) result['logit_m_list'] += code_logit_m_list result['logit_u_list'] += code_logit_u_list return result def forward_text( self, src_tokens: torch.Tensor = None, src_lengths: torch.Tensor = None, target_list: Optional[List[torch.Tensor]] = None, mask: bool = True, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: assert self.add_unit_encoder, f"Can not forward unit-text branch without unit_encoder!" padding_mask = src_tokens == self.padding_idx unit_embeddings = self.unit_embed_tokens(src_tokens) if mask: unit_embeddings, mask_indices = self.apply_mask(unit_embeddings, padding_mask, [src_tokens]) else: ### If already applied mask on src_tokens, then the target_list should contains many padding_idx mask_indices = target_list[-1] != self.padding_idx unit_embeddings[mask_indices] = self.mask_emb encoder_out = self.unit_encoder( src_tokens, token_embeddings=unit_embeddings, return_all_hiddens=output_layer is not None, ) result = {} result["encoder_out"] = encoder_out["encoder_out"] result["encoder_states"] = encoder_out["encoder_states"] result["padding_mask"] = padding_mask if self.compute_mum: code_logit_m_list, code_logit_u_list = self.compute_hubert_logits( encoder_out["encoder_out"].transpose(0, 1), target_list[-1], self.final_proj_list[-1], self.label_embs_list[-1], padding_mask, mask_indices, ) result["logit_m_list"] = code_logit_m_list result["logit_u_list"] = code_logit_u_list if self.add_text_ctc: result["encoder_out_ctc"] = [self.unit_encoder_ctc_head(x) for x in encoder_out['encoder_out']] result["encoder_padding_mask"] = [ self.downsample_ctc_padding_mask(padding_mask) for padding_mask in encoder_out['encoder_padding_mask'] ] return result def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """Extract features for only speech input""" res = self.forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) x = res["x"] # B x T x D padding_mask = res["padding_mask"] if self.add_unit_encoder: src_tokens, x, _ = self.convert_embeddings( x, padding_mask, mix_with_unit=False, use_pred_unit=False, ) encoder_out = self.unit_encoder( src_tokens, token_embeddings=x, return_all_hiddens=output_layer is not None ) res["x"] = encoder_out['encoder_out'][0].transpose(0, 1) # (B, T, D) feature = res["features"] if ret_conv else res["x"] if output_layer is not None: feature = encoder_out['encoder_states'] return feature, padding_mask def get_logits(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] logits_list = [x[0].float() for x in logits_list if x is not None] return logits_list def get_targets(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] targets_list = [x[1].long() for x in logits_list if x is not None] return targets_list def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") if "embedding_l2_loss" in net_output: extra_losses.append(net_output["embedding_l2_loss"]) names.append("embedding_l2_loss") return extra_losses, names def remove_pretraining_modules(self, step2=False): self.target_glu = None def load_checkpoint(self, checkpoint: str): if not PathManager.exists(checkpoint): raise IOError("Model file not found: {}".format(checkpoint)) state = checkpoint_utils.load_checkpoint_to_cpu(checkpoint) return state class Rotate3D(nn.Module): """ (T, B, D) --> (B, D, T) --> (D, T, B) --> (T, B, D) """ def __init__(self): super().__init__() def forward(self, x): return x.permute(1, 2, 0)
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/models/speechlm.py
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/models/__init__.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import contextlib import torch import torch.nn as nn from argparse import Namespace from dataclasses import dataclass, field from typing import Any from fairseq import checkpoint_utils, tasks, utils from fairseq.models import FairseqEncoderDecoderModel, register_model from fairseq.models.fairseq_decoder import FairseqDecoder from fairseq.models.fairseq_encoder import FairseqEncoder from fairseq.tasks import FairseqTask from fairseq.dataclass import ChoiceEnum from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models.hubert import HubertAsrConfig from speechlm.modules.transformer_decoder import TransformerDecoderScriptable @dataclass class SpeechLMS2TConfig(HubertAsrConfig): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) use_rel_pos_enc: bool = field( default=True, metadata={"help": "whether to use relative positional encoding for decoder"}, ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension, used for enc-dec att"} ) decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=768, metadata={"help": "decoder output dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"}) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=12, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside the decoder" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) ### the following config is only for the compatibility to fairseq speech_to_text task input_feat_per_channel: Any = None input_channels: Any = None speaker_to_id: Any = None @register_model("speechlm_st_legacy", dataclass=SpeechLMS2TConfig) class SpeechLMS2T(FairseqEncoderDecoderModel): def __init__(self, cfg: SpeechLMS2TConfig, encoder: FairseqEncoder, decoder: FairseqDecoder): super().__init__(encoder, decoder) self.cfg = cfg def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: SpeechLMS2TConfig, task: FairseqTask): """Build a new model instance.""" def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() return Embedding(num_embeddings, embed_dim, padding_idx) src_dict, tgt_dict = task.source_dictionary, task.target_dictionary encoder = SpeechLMEncoder(cfg, task) assert cfg.encoder_embed_dim == encoder.w2v_model.encoder.embedding_dim decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) decoder = TransformerDecoderScriptable(cfg, tgt_dict, decoder_embed_tokens) return cls(cfg, encoder, decoder) class SpeechLMEncoder(FairseqEncoder): """ Modified from fairseq.models.hubert.hubert_asr.HubertEncoder 1. make it compatible with fairseq speech_to_text task 2. make it compatible with encoder-decoder model """ def __init__(self, cfg: HubertAsrConfig, task): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) assert task.data_cfg.standardize_audio() == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for " "both pre-training and here" ) w2v_args.task.data = cfg.data pretrain_task = tasks.setup_task(w2v_args.task) if state is not None and "task_state" in state: # This will load the stored "dictionaries" object pretrain_task.load_state_dict(state["task_state"]) else: pretrain_task.load_state_dict(task.state_dict()) model = pretrain_task.build_model(w2v_args.model, from_checkpoint=True) if state is not None and not cfg.no_pretrained_weights: # set strict=False because we omit some modules model.load_state_dict(state["model"], strict=False) model.remove_pretraining_modules() super().__init__(pretrain_task.source_dictionary) d = w2v_args.model.encoder_embed_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, src_tokens=None, src_lengths=None, **kwargs): w2v_args = { "source": src_tokens, "padding_mask": lengths_to_padding_mask(src_lengths), "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_features(**w2v_args) # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [padding_mask], # B x T "padding_mask": [padding_mask], } def forward_torchscript(self, net_input): """A TorchScript-compatible version of forward. Encoders which use additional arguments may want to override this method for TorchScript compatibility. """ _net_input = { "source": net_input["src_tokens"], "padding_mask": lengths_to_padding_mask(net_input["src_lengths"]), "mask": False, } x, padding_mask = self.w2v_model.extract_features(**_net_input) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_out = { "encoder_out" : [x], "encoder_padding_mask" : [padding_mask], } return encoder_out def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = [ x.index_select(1, new_order) for x in encoder_out["encoder_out"] ] if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = [ x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"] ] return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/models/speechlm_st.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import logging import torch from fairseq import utils from fairseq.models import ( FairseqEncoderModel, register_model, register_model_architecture, ) from fairseq.models.text_to_speech import fastspeech2 logger = logging.getLogger(__name__) class VarianceAdaptor(fastspeech2.VarianceAdaptor): def __init__(self, args): super().__init__(args) self.use_pitch = args.use_pitch self.use_energe = args.use_energe def forward( self, x, padding_mask, durations=None, pitches=None, energies=None, d_factor=1.0, p_factor=1.0, e_factor=1.0, ): # x: B x T x C log_dur_out = self.duration_predictor(x) dur_out = torch.clamp( torch.round((torch.exp(log_dur_out) - 1) * d_factor).long(), min=0 ) dur_out.masked_fill_(padding_mask, 0) if self.use_pitch: pitch_out, pitch_emb = self.get_pitch_emb(x, pitches, p_factor) x = x + pitch_emb else: pitch_out = None if self.use_energe: energy_out, energy_emb = self.get_energy_emb(x, energies, e_factor) x = x + energy_emb else: energy_out = None x, out_lens = self.length_regulator( x, dur_out if durations is None else durations ) return x, out_lens, log_dur_out, pitch_out, energy_out class FastSpeech2Encoder(fastspeech2.FastSpeech2Encoder): def __init__(self, args, src_dict, embed_speaker): super().__init__(args, src_dict, embed_speaker) self.var_adaptor = VarianceAdaptor(args) self.apply(fastspeech2.model_init) @register_model("fasttext2unit") class FastText2UnitModel(FairseqEncoderModel): """ Implementation for https://arxiv.org/abs/2006.04558 """ NON_AUTOREGRESSIVE = True @staticmethod def add_args(parser): parser.add_argument("--dropout", type=float) parser.add_argument("--output-frame-dim", type=int) parser.add_argument("--speaker-embed-dim", type=int) # FFT blocks parser.add_argument("--fft-hidden-dim", type=int) parser.add_argument("--fft-kernel-size", type=int) parser.add_argument("--attention-dropout", type=float) parser.add_argument("--encoder-layers", type=int) parser.add_argument("--encoder-embed-dim", type=int) parser.add_argument("--encoder-attention-heads", type=int) parser.add_argument("--decoder-layers", type=int) parser.add_argument("--decoder-embed-dim", type=int) parser.add_argument("--decoder-attention-heads", type=int) # variance predictor parser.add_argument("--var-pred-n-bins", type=int) parser.add_argument("--var-pred-hidden-dim", type=int) parser.add_argument("--var-pred-kernel-size", type=int) parser.add_argument("--var-pred-dropout", type=float) # postnet parser.add_argument("--add-postnet", action="store_true") parser.add_argument("--postnet-dropout", type=float) parser.add_argument("--postnet-layers", type=int) parser.add_argument("--postnet-conv-dim", type=int) parser.add_argument("--postnet-conv-kernel-size", type=int) # pitch & energe parser.add_argument("--use-pitch", action="store_true") parser.add_argument("--use-energe", action="store_true") def __init__(self, encoder, args, src_dict): super().__init__(encoder) self._num_updates = 0 @classmethod def build_model(cls, args, task): embed_speaker = task.get_speaker_embeddings(args) if args.output_frame_dim == -1: args.output_frame_dim = len(task.tgt_dict) encoder = FastSpeech2Encoder(args, task.src_dict, embed_speaker) return cls(encoder, args, task.src_dict) def set_num_updates(self, num_updates): super().set_num_updates(num_updates) self._num_updates = num_updates def get_normalized_probs(self, net_output, log_probs, sample=None): logits = net_output[0] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) @register_model_architecture("fasttext2unit", "fasttext2unit_s") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.2) args.output_frame_dim = getattr(args, "output_frame_dim", -1) args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256) # FFT blocks args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024) args.fft_kernel_size = getattr(args, "fft_kernel_size", 9) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.encoder_layers = getattr(args, "encoder_layers", 4) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2) args.decoder_layers = getattr(args, "decoder_layers", 4) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2) # variance predictor args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256) args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256) args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3) args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5) # postnet args.add_postnet = getattr(args, "add_postnet", False) args.postnet_dropout = getattr(args, "postnet_dropout", 0.5) args.postnet_layers = getattr(args, "postnet_layers", 5) args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512) args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5) # pitch & energe args.use_pitch = getattr(args, "use_pitch", False) args.use_energe = getattr(args, "use_energe", False) @register_model_architecture("fasttext2unit", "fasttext2unit_m") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.2) args.output_frame_dim = getattr(args, "output_frame_dim", -1) args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256) # FFT blocks args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024) args.fft_kernel_size = getattr(args, "fft_kernel_size", 9) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2) # variance predictor args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256) args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256) args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3) args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5) # postnet args.add_postnet = getattr(args, "add_postnet", False) args.postnet_dropout = getattr(args, "postnet_dropout", 0.5) args.postnet_layers = getattr(args, "postnet_layers", 5) args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512) args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5) # pitch & energe args.use_pitch = getattr(args, "use_pitch", False) args.use_energe = getattr(args, "use_energe", False) @register_model_architecture("fasttext2unit", "fasttext2unit_l") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.2) args.output_frame_dim = getattr(args, "output_frame_dim", -1) args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256) # FFT blocks args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1536) args.fft_kernel_size = getattr(args, "fft_kernel_size", 9) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 384) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 6) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 384) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 6) # variance predictor args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256) args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256) args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3) args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5) # postnet args.add_postnet = getattr(args, "add_postnet", False) args.postnet_dropout = getattr(args, "postnet_dropout", 0.5) args.postnet_layers = getattr(args, "postnet_layers", 5) args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512) args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5) # pitch & energe args.use_pitch = getattr(args, "use_pitch", False) args.use_energe = getattr(args, "use_energe", False)
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/models/fasttext2unit.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- from dataclasses import dataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.tasks import FairseqTask from fairseq.models.hubert import HubertAsrConfig, HubertCtc, HubertEncoder @dataclass class SpeechLMCtcConfig(HubertAsrConfig): pass @register_model("speechlm_ctc", dataclass=SpeechLMCtcConfig) class SpeechLMCtc(HubertCtc): def __init__(self, cfg: SpeechLMCtcConfig, w2v_encoder: BaseFairseqModel): super().__init__(cfg, w2v_encoder) @classmethod def build_model(cls, cfg: SpeechLMCtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = SpeechLMEncoder(cfg, task) return cls(cfg, w2v_encoder) class SpeechLMEncoder(HubertEncoder): def __init__(self, cfg: HubertAsrConfig, task): super().__init__(cfg, task) if (task.target_dictionary is not None) and ( hasattr(self.w2v_model, "unit_encoder_ctc_head") ): self.proj = self.w2v_model.unit_encoder_ctc_head self.conv_ctc_proj = True else: self.conv_ctc_proj = False def forward(self, source, padding_mask, tbc=True, **kwargs): results = super().forward( source, padding_mask, tbc, **kwargs, ) if self.conv_ctc_proj: results["padding_mask"] = self.w2v_model.downsample_ctc_padding_mask(results["padding_mask"]) return results
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/models/speechlm_ctcasr.py
# ---------------------------------------------------------------------------- # SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import math from typing import Dict, List, Optional import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.distributed import fsdp_wrap from fairseq.models import FairseqEncoder from fairseq.modules import ( FairseqDropout, LayerDropModuleList, LayerNorm, SinusoidalPositionalEmbedding, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from torch import Tensor from fairseq.models.transformer import ( TransformerConfig, ) from speechlm.modules import transformer_layer, LearnedPositionalEmbedding from speechlm.modules.relative_pos_enc import RelativePositionalEncoding # rewrite name for backward compatibility in `make_generation_fast_` def module_name_fordropout(module_name: str) -> str: if module_name == "TransformerEncoderBase": return "TransformerEncoder" else: return module_name class TransformerEncoderBase(FairseqEncoder): """ Transformer encoder consisting of *cfg.encoder.layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, cfg, dictionary, embed_tokens, use_rel_pos_enc=False, scaling_for_att=1.0): self.cfg = cfg super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( cfg.dropout, module_name=module_name_fordropout(self.__class__.__name__) ) self.encoder_layerdrop = cfg.encoder.layerdrop embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = cfg.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( cfg.max_source_positions, embed_dim, self.padding_idx, learned=cfg.encoder.learned_pos, ) if not cfg.no_token_positional_embeddings else None ) if cfg.layernorm_embedding: self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export) else: self.layernorm_embedding = None if not cfg.adaptive_input and cfg.quant_noise.pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), cfg.quant_noise.pq, cfg.quant_noise.pq_block_size, ) else: self.quant_noise = None if self.encoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.encoder_layerdrop) else: self.layers = nn.ModuleList([]) self.use_rel_pos_enc = use_rel_pos_enc self.scaling_for_att = scaling_for_att self.layers.extend( [self.build_encoder_layer(cfg) for i in range(cfg.encoder.layers)] ) self.num_layers = len(self.layers) if cfg.encoder.normalize_before: self.layer_norm = LayerNorm(embed_dim, export=cfg.export) else: self.layer_norm = None if self.use_rel_pos_enc: self.pos_emb = RelativePositionalEncoding(embed_dim // cfg.encoder.attention_heads, 160) def build_encoder_layer(self, cfg): layer = transformer_layer.TransformerEncoderLayerBase(cfg, has_relative_attention_bias=self.use_rel_pos_enc, scaling_for_att=self.scaling_for_att) checkpoint = cfg.checkpoint_activations if checkpoint: offload_to_cpu = cfg.offload_activations layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) if self.quant_noise is not None: x = self.quant_noise(x) return x, embed def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, uniformity_layers: Optional[List[int]] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ return self.forward_scriptable( src_tokens, src_lengths, return_all_hiddens, token_embeddings, uniformity_layers ) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def forward_scriptable( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, uniformity_layers: Optional[List[int]] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any() x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # account for padding while computing the representation if has_pads: x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) if self.use_rel_pos_enc: x_len = x.shape[0] pos_seq = torch.arange(0, x_len).long().to(x.device) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_k, pos_v = self.pos_emb(pos_seq) else: pos_k = None encoder_states = [] uniformity_hiddens = [] if return_all_hiddens: encoder_states.append(x) if uniformity_layers is not None and 0 in uniformity_layers: x = F.normalize(x.float(), dim=-1).type_as(x) uniformity_hiddens.append(x) # encoder layers for i, layer in enumerate(self.layers): x = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None, pos_bias=pos_k, ) if uniformity_layers is not None and i+1 in uniformity_layers: x = F.normalize(x.float(), dim=-1).type_as(x) uniformity_hiddens.append(x) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. src_lengths = ( src_tokens.ne(self.padding_idx) .sum(dim=1, dtype=torch.int32) .reshape(-1, 1) .contiguous() ) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "uniformity_hiddens": uniformity_hiddens, # List[T x B x C] "src_tokens": [], "src_lengths": [src_lengths], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerEncoder(TransformerEncoderBase): def __init__(self, args, dictionary, embed_tokens): self.args = args super().__init__( TransformerConfig.from_namespace(args), dictionary, embed_tokens, use_rel_pos_enc=getattr(args, "use_rel_pos_enc", False), scaling_for_att=getattr(args, "scaling_for_att", 1.0), ) def build_encoder_layer(self, args): return super().build_encoder_layer( TransformerConfig.from_namespace(args), ) def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, ): if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/modules/transformer_encoder.py
# -------------------------------------------------------- # Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data (https://arxiv.org/abs/2203.17113) # Github source: https://github.com/microsoft/SpeechT5/tree/main/Speech2C # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq code bases # https://github.com/pytorch/fairseq # -------------------------------------------------------- from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from torch import Tensor from fairseq.modules import MultiheadAttention as FairseqMultiheadAttention class MultiheadAttention(FairseqMultiheadAttention): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, scaling_for_att=1.0 ): super().__init__( embed_dim, num_heads, kdim, vdim, dropout, bias, add_bias_kv, add_zero_attn, self_attention, encoder_decoder_attention, q_noise, qn_block_size, ) self.scaling_for_att = scaling_for_att def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, position_bias: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True is_tpu = query.device.type == "xla" tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if ( not self.onnx_trace and not is_tpu # don't use PyTorch version on TPUs and incremental_state is None and not static_kv # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() and position_bias is None ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q *= (1 / self.scaling_for_att) if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) if position_bias is not None: ## first order ## position_bias: [241, 241, 64] #print ("attn_weights: ", attn_weights.size()) # [492, 241, 241] reshape_q = q.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0,1) #[241, 492, 64] #print ("reshape_q: ", reshape_q.size()) B = torch.matmul(reshape_q, position_bias.transpose(-2, -1)) #print ("B: ", B.size()) ## [241, 492, 241] #B = B.transpose(0, 1).view(bsz, self.num_heads, position_bias.size(0), position_bias.size(1)) B = B.transpose(0, 1).view(bsz*self.num_heads, position_bias.size(0), position_bias.size(1)) #print ("B 2: ", B.size()) attn_weights += B attn_weights *= self.scaling_for_att assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not is_tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if self.scaling_for_att > 1.0: attn_weights = attn_weights - attn_weights.detach().max(dim=-1, keepdim=True)[0] if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/modules/multihead_attention.py
# -------------------------------------------------------- # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq code bases # https://github.com/facebookresearch/fairseq # -------------------------------------------------------- """ Modified from https://github.com/facebookresearch/fairseq/blob/main/fairseq/modules/learned_positional_embedding.py 1. Add clamping if the input length exceeds the max-source-tokens """ from typing import Dict, Optional import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from torch import Tensor class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): super().__init__(num_embeddings, embedding_dim, padding_idx) self.onnx_trace = False if self.padding_idx is not None: self.max_positions = self.num_embeddings - self.padding_idx - 1 else: self.max_positions = self.num_embeddings def forward( self, input: Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, positions: Optional[Tensor] = None, ): """Input is expected to be of size [bsz x seqlen].""" assert (positions is None) or ( self.padding_idx is None ), "If positions is pre-computed then padding_idx should not be set." if positions is None: if incremental_state is not None: # positions is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX positions = torch.zeros( (1, 1), device=input.device, dtype=input.dtype ).fill_(int(self.padding_idx + input.size(1))) else: positions = utils.make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) positions = torch.clamp(positions, max=self.padding_idx + self.max_positions) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, )
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/modules/learned_positional_embedding.py
# -------------------------------------------------------- # The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777) # Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq code bases # https://github.com/facebookresearch/fairseq # -------------------------------------------------------- """ wav2vec encoder adding relitive position bias, modified from https://github.com/microsoft/SpeechT5/blob/main/Speech2C/speech2c/models/modules/transformer_encoder.py https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py """ import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.dataclass import ChoiceEnum from fairseq.modules import ( LayerNorm, SamePad, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.utils import index_put from fairseq.distributed import fsdp_wrap from fairseq.models.wav2vec.utils import pad_to_multiple ## reload multi-head attition with rel-pos-bias from fairseq.models.wav2vec.wav2vec2 import TransformerEncoder as W2vTransformerEncoder from speechlm.modules.relative_pos_enc import RelativePositionalEncoding from speechlm.modules.multihead_attention import MultiheadAttention EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) class TransformerEncoder(W2vTransformerEncoder): def __init__(self, args): super().__init__(args) self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.required_seq_len_multiple = args.required_seq_len_multiple self.use_rel_pos_enc = getattr(args, "use_rel_pos_enc", False) self.pos_conv = nn.Conv1d( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) nn.init.normal_(self.pos_conv.weight, mean=0, std=std) nn.init.constant_(self.pos_conv.bias, 0) self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) layers = [] for _ in range(args.encoder_layers): layer = TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, has_relative_attention_bias=self.use_rel_pos_enc, ) if args.checkpoint_activations: layer = fsdp_wrap(layer) layer = checkpoint_wrapper(layer) layers.append(layer) self.layers = nn.ModuleList(layers) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop if self.use_rel_pos_enc: self.pos_emb = RelativePositionalEncoding(args.encoder_embed_dim // args.encoder_attention_heads, 160) self.apply(init_bert_params) def forward(self, x, padding_mask=None, layer=None): x, layer_results = self.extract_features(x, padding_mask, layer) if self.layer_norm_first and layer is None: x = self.layer_norm(x) return x, layer_results def extract_features(self, x, padding_mask=None, tgt_layer=None): if padding_mask is not None: x = index_put(x, padding_mask, 0) x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x = x + x_conv if not self.layer_norm_first: x = self.layer_norm(x) # pad to the sequence length dimension x, pad_length = pad_to_multiple( x, self.required_seq_len_multiple, dim=-2, value=0 ) if pad_length > 0 and padding_mask is None: padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) padding_mask[:, -pad_length:] = True else: padding_mask, _ = pad_to_multiple( padding_mask, self.required_seq_len_multiple, dim=-1, value=True ) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) if self.use_rel_pos_enc: x_len = x.shape[0] pos_seq = torch.arange(0, x_len).long().to(x.device) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_k, pos_v = self.pos_emb(pos_seq) else: pos_k = None layer_results = [] r = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_k) if tgt_layer is not None: # unpad if needed if pad_length > 0: layer_results.append( ( x[:-pad_length], z[:, :-pad_length, :-pad_length] if z is not None else z, ) ) else: layer_results.append((x, z)) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C x = x.transpose(0, 1) # undo paddding if pad_length > 0: x = x[:, :-pad_length] return x, layer_results class TransformerSentenceEncoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, has_relative_attention_bias: bool = False, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) if has_relative_attention_bias: self.norm_k = LayerNorm(self.embedding_dim//num_attention_heads) def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, att_args=None, pos_bias=None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) if pos_bias is not None: pos_bias = self.norm_k(pos_bias) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, attn_mask=self_attn_mask, position_bias=pos_bias, ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, position_bias=pos_bias, ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, attn
EXA-1-master
exa/models/unilm-master/speechlm/speechlm/modules/w2v_encoder.py