python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# -------------------------------------------------------- # DIT: SELF-SUPERVISED PRE-TRAINING FOR DOCUMENT IMAGE TRANSFORMER # Based on Beit # --------------------------------------------------------' import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.data.mixup import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import ModelEma from optim_factory import create_optimizer, get_parameter_groups, LayerDecayValueAssigner import webdataset as wds from datasets import build_dataset from engine_for_finetuning import train_one_epoch, evaluate from utils import NativeScalerWithGradNormCount as NativeScaler import utils from scipy import interpolate def get_args(): parser = argparse.ArgumentParser('BEiT fine-tuning and evaluation script for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=30, type=int) parser.add_argument('--update_freq', default=1, type=int) parser.add_argument('--save_ckpt_freq', default=5, type=int) parser.add_argument('--eval_freq', default=5, type=int) # Model parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.add_argument('--qkv_bias', action='store_true') parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', help='Attention dropout rate (default: 0.)') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) parser.add_argument('--model_ema', action='store_true', default=False) parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD and using a larger decay by the end of training improves performance for ViTs.""") parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--layer_decay', type=float, default=0.9) parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='num of steps to warmup LR, will overload warmup_epochs if set > 0') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') # Evaluation parameters parser.add_argument('--crop_pct', type=float, default=None) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--model_key', default='model|module', type=str) parser.add_argument('--model_prefix', default='', type=str) parser.add_argument('--init_scale', default=0.001, type=float) parser.add_argument('--use_mean_pooling', action='store_true') parser.set_defaults(use_mean_pooling=True) parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') parser.add_argument('--disable_weight_decay_on_rel_pos_bias', action='store_true', default=False) # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') parser.add_argument('--nb_classes', default=0, type=int, help='number of the classification types') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder', "rvlcdip", "rvlcdip_wds"], type=str, help='ImageNet dataset path') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--save_ckpt', action='store_true') parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') parser.set_defaults(save_ckpt=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--enable_deepspeed', action='store_true', default=False) parser.add_argument('--zero_stage', default=0, type=int, help='ZeRO optimizer stage (default: 0)') known_args, _ = parser.parse_known_args() if known_args.enable_deepspeed: try: import deepspeed from deepspeed import DeepSpeedConfig parser = deepspeed.add_config_arguments(parser) ds_init = deepspeed.initialize except: print("Please 'pip install deepspeed==0.4.0'") exit(0) else: ds_init = None return parser.parse_args(), ds_init def main(args, ds_init): utils.init_distributed_mode(args) if ds_init is not None: utils.create_ds_config(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) if args.disable_eval_during_finetuning: dataset_val = None else: dataset_val, _ = build_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() if not isinstance(dataset_train, torch.utils.data.IterableDataset): sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if 'AMLT_OUTPUT_DIR' in os.environ: args.log_dir = os.environ['AMLT_OUTPUT_DIR'] print(f'update log_dir to {args.log_dir}') if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None dataset_size_train = len(dataset_train) if isinstance(dataset_train, torch.utils.data.IterableDataset): dataset_train = dataset_train.batched(args.batch_size, partial=False) data_loader_train = wds.WebLoader( dataset_train, num_workers=args.num_workers, batch_size=None, shuffle=False, ) data_loader_train = data_loader_train.ddp_equalize(dataset_size_train // args.batch_size, with_length=True) else: data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if dataset_val is not None: dataset_size_val = len(dataset_val) if not isinstance(dataset_val, torch.utils.data.IterableDataset): data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) else: dataset_val = dataset_val.batched(args.batch_size, partial=False) data_loader_val = wds.WebLoader( dataset_val, num_workers=args.num_workers, batch_size=None, shuffle=False, ) data_loader_val = data_loader_val.ddp_equalize(dataset_size_val // args.batch_size, with_length=True) else: data_loader_val = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) if "beit" not in args.model: model = create_model(args.model, pretrained=False, num_classes=args.nb_classes, distilled=False) else: model = create_model( args.model, pretrained=False, num_classes=args.nb_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, attn_drop_rate=args.attn_drop_rate, drop_block_rate=None, use_mean_pooling=args.use_mean_pooling, init_scale=args.init_scale, use_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, ) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.finetune, map_location='cpu', check_hash=False) else: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in args.model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] if getattr(model, "use_rel_pos_bias", False) and "rel_pos_bias.relative_position_bias_table" in checkpoint_model: print("Expand the shared relative position embedding to each transformer block. ") num_layers = model.get_num_layers() rel_pos_bias = checkpoint_model["rel_pos_bias.relative_position_bias_table"] for i in range(num_layers): checkpoint_model["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() checkpoint_model.pop("rel_pos_bias.relative_position_bias_table") all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) checkpoint_model[key] = new_rel_pos_bias # interpolate position embedding if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # model.load_state_dict(checkpoint_model, strict=False) model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') print("Using EMA with decay = %.8f" % args.model_ema_decay) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() num_training_steps_per_epoch = dataset_size_train // total_batch_size print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Update frequent = %d" % args.update_freq) print("Number of training examples = %d" % dataset_size_train) print("Number of training training per epoch = %d" % num_training_steps_per_epoch) # num_layers = model_without_ddp.get_num_layers() num_layers = len(model_without_ddp.blocks) if args.layer_decay < 1.0: assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))) else: assigner = None if assigner is not None: print("Assigned values = %s" % str(assigner.values)) skip_weight_decay_list = model.no_weight_decay() if args.disable_weight_decay_on_rel_pos_bias: for i in range(num_layers): skip_weight_decay_list.add("blocks.%d.attn.relative_position_bias_table" % i) if args.distributed: torch.distributed.barrier() if args.enable_deepspeed: loss_scaler = None optimizer_params = get_parameter_groups( model, args.weight_decay, skip_weight_decay_list, assigner.get_layer_id if assigner is not None else None, assigner.get_scale if assigner is not None else None) model, optimizer, _, _ = ds_init( args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, ) print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) assert model.gradient_accumulation_steps() == args.update_freq else: if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp, skip_list=skip_weight_decay_list, get_num_layer=assigner.get_layer_id if assigner is not None else None, get_layer_scale=assigner.get_scale if assigner is not None else None) loss_scaler = NativeScaler() print("Use step level LR scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {dataset_size_val} test images: {test_stats['acc1']:.1f}%") exit(0) print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler = getattr(data_loader_train, "sampler", None) if sampler is not None and hasattr(sampler, "set_epoch"): sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq, ) if args.output_dir and args.save_ckpt: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema) if data_loader_val is not None and ((epoch + 1) % args.eval_freq == 0 or epoch + 1 == args.epochs): test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {dataset_size_val} test images: {test_stats['acc1']:.1f}%") if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir and args.save_ckpt: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch) log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch) log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} else: log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, # **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts, ds_init = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts, ds_init)
EXA-1-master
exa/models/unilm-master/dit/classification/run_class_finetuning.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Modified on torchvision code bases # https://github.com/pytorch/vision # --------------------------------------------------------' import os import os.path import random from typing import Any, Callable, cast, Dict, List, Optional, Tuple from PIL import Image from torchvision.datasets.vision import VisionDataset def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return filename.lower().endswith(extensions) def is_image_file(filename: str) -> bool: """Checks if a file is an allowed image extension. Args: filename (string): path to a file Returns: bool: True if the filename ends with a known image extension """ return has_file_allowed_extension(filename, IMG_EXTENSIONS) def make_dataset( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: instances = [] directory = os.path.expanduser(directory) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): item = path, class_index instances.append(item) return instances class DatasetFolder(VisionDataset): """A generic data loader where the samples are arranged in this way: :: root/class_x/xxx.ext root/class_x/xxy.ext root/class_x/xxz.ext root/class_y/123.ext root/class_y/nsdf3.ext root/class_y/asd932_.ext Args: root (string): Root directory path. loader (callable): A function to load a sample given its path. extensions (tuple[string]): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. target_transform (callable, optional): A function/transform that takes in the target and transforms it. is_valid_file (callable, optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__( self, root: str, loader: Callable[[str], Any], extensions: Optional[Tuple[str, ...]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> None: super(DatasetFolder, self).__init__(root, transform=transform, target_transform=target_transform) classes, class_to_idx = self._find_classes(self.root) samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file) if len(samples) == 0: msg = "Found 0 files in subfolders of: {}\n".format(self.root) if extensions is not None: msg += "Supported extensions are: {}".format(",".join(extensions)) raise RuntimeError(msg) self.loader = loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. Ensures: No class is a subdirectory of another. """ classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ while True: try: path, target = self.samples[index] sample = self.loader(path) break except Exception as e: print(e) index = random.randint(0, len(self.samples) - 1) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self) -> int: return len(self.samples) IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') # TODO: specify the return type def accimage_loader(path: str) -> Any: import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path: str) -> Any: from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) class RvlcdipDatasetFolder(VisionDataset): def __init__( self, root: str, loader: Callable[[str], Any], extensions: Optional[Tuple[str, ...]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, split: str = None, dataset_size: Optional[int] = None ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.dataset_size = int(dataset_size) if dataset_size is not None else 42948004 classes = ["letter", "form", "email", "handwritten", "advertisement", "scientific report", "scientific publication", "specification", "file folder", "news article", "budget", "invoice", "presentation", "questionnaire", "resume", "memo"] class_to_idx = {c: i for i, c in enumerate(classes)} with open(os.path.join(self.root, "labels", split + ".txt"), "r") as f: labels = f.read().splitlines() samples = [(line.split()[0], int(line.split()[1])) for line in labels] try: assert len(samples) > 0 and os.path.exists(os.path.join(self.root, "images", samples[0][0])) except: msg = "Found 0 files in subfolders of: {}\n".format(self.root) msg += "Expected first file: {}".format(os.path.join(self.root, "images", samples[0][0])) raise RuntimeError(msg) self.loader = loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ while True: try: path, target = self.samples[index] sample = self.loader(os.path.join(self.root, "images", path)) break except Exception as e: print(e) index = random.randint(0, len(self.samples) - 1) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self) -> int: return len(self.samples) class RvlcdipImageFolder(RvlcdipDatasetFolder): def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, split: str = None, dataset_size: Optional[int] = None ): super().__init__(root, loader, IMG_EXTENSIONS if split is None else None, transform=transform, target_transform=target_transform, split=split, dataset_size=dataset_size) self.imgs = self.samples
EXA-1-master
exa/models/unilm-master/dit/classification/dataset_folder.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import datetime import io import os import math import time import json from collections import defaultdict, deque import datetime import numpy as np from timm.utils import get_state_dict from pathlib import Path import torch import torch.distributed as dist from torch._six import inf # from modeling_discrete_vae import Dalle_VAE, DiscreteVAE, DiscreteVAE2, VQGanVAE, DiscreteVAEforBEiT from torch.utils.tensorboard import SummaryWriter class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) class TensorboardLogger(object): def __init__(self, log_dir): self.writer = SummaryWriter(log_dir=log_dir) self.step = 0 def set_step(self, step=None): if step is not None: self.step = step else: self.step += 1 def update(self, head='scalar', step=None, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step) def flush(self): self.writer.flush() def _load_checkpoint_for_ema(model_ema, checkpoint): """ Workaround for ModelEma._load_checkpoint to accept an already-loaded object """ mem_file = io.BytesIO() torch.save(checkpoint, mem_file) mem_file.seek(0) model_ema._load_checkpoint(mem_file) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if args.dist_on_itp: args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, timeout=datetime.timedelta(0, 7200) ) torch.distributed.barrier() setup_for_distributed(args.rank == 0) def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix=prefix) warn_missing_keys = [] ignore_missing_keys = [] for key in missing_keys: keep_flag = True for ignore_key in ignore_missing.split('|'): if ignore_key in key: keep_flag = False break if keep_flag: warn_missing_keys.append(key) else: ignore_missing_keys.append(key) missing_keys = warn_missing_keys if len(missing_keys) > 0: print("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: print("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(ignore_missing_keys) > 0: print("Ignored weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, ignore_missing_keys)) if len(error_msgs) > 0: print('\n'.join(error_msgs)) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) # assert len(schedule) == epochs * niter_per_ep return schedule def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) epoch_name = str(epoch) if loss_scaler is not None: checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, } if model_ema is not None: to_save['model_ema'] = get_state_dict(model_ema) save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch} if model_ema is not None: client_state['model_ema'] = get_state_dict(model_ema) model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) if loss_scaler is not None: # torch.amp if args.auto_resume and len(args.resume) == 0: import glob all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) print("Auto resume checkpoint: %s" % args.resume) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) args.start_epoch = checkpoint['epoch'] + 1 if hasattr(args, 'model_ema') and args.model_ema: _load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") else: # deepspeed, only support '--auto_resume'. if args.auto_resume: import glob all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) print("Auto resume checkpoint: %d" % latest_ckpt) _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) args.start_epoch = client_states['epoch'] + 1 if model_ema is not None: if args.model_ema: _load_checkpoint_for_ema(model_ema, client_states['model_ema']) def create_ds_config(args): args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") with open(args.deepspeed_config, mode="w") as writer: ds_config = { "train_batch_size": args.batch_size * args.update_freq * get_world_size(), "train_micro_batch_size_per_gpu": args.batch_size, "steps_per_print": 1000, "optimizer": { "type": "Adam", "adam_w_mode": True, "params": { "lr": args.lr, "weight_decay": args.weight_decay, "bias_correction": True, "betas": [ 0.9, 0.999 ], "eps": 1e-8 } }, "fp16": { "enabled": True, "loss_scale": 0, "initial_scale_power": 16, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "zero_optimization": { "stage": args.zero_stage }, "amp": { "enabled": False, "opt_level": "O2" } } if args.clip_grad is not None: ds_config.update({'gradient_clipping': args.clip_grad}) writer.write(json.dumps(ds_config, indent=2))
EXA-1-master
exa/models/unilm-master/dit/classification/utils.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from timm.models.registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) trunc_normal_(self.head.weight, std=.02) self.apply(self._init_weights) self.fix_init_weight() self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias=rel_pos_bias) x = self.norm(x) if self.fc_norm is not None: t = x[:, 1:, :] return self.fc_norm(t.mean(1)) else: return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x @register_model def beit_small_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_512(pretrained=False, **kwargs): model = VisionTransformer( img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model
EXA-1-master
exa/models/unilm-master/dit/classification/modeling_finetune.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import torch from torch import optim as optim from timm.optim.adafactor import Adafactor from timm.optim.adahessian import Adahessian from timm.optim.adamp import AdamP from timm.optim.lookahead import Lookahead from timm.optim.nadam import Nadam from timm.optim.nvnovograd import NvNovoGrad from timm.optim.radam import RAdam from timm.optim.rmsprop_tf import RMSpropTF from timm.optim.sgdp import SGDP import json try: from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD has_apex = True except ImportError: has_apex = False def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("cls_token", "mask_token", "pos_embed"): return 0 elif var_name.startswith("patch_embed"): return 0 elif var_name.startswith("rel_pos_bias"): return num_max_layer - 1 elif var_name.startswith("blocks"): layer_id = int(var_name.split('.')[1]) return layer_id + 1 else: return num_max_layer - 1 class LayerDecayValueAssigner(object): def __init__(self, values): self.values = values def get_scale(self, layer_id): return self.values[layer_id] def get_layer_id(self, var_name): return get_num_layer_for_vit(var_name, len(self.values)) def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): parameter_group_names = {} parameter_group_vars = {} for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if get_num_layer is not None: layer_id = get_num_layer(name) group_name = "layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if get_layer_scale is not None: scale = get_layer_scale(layer_id) else: scale = 1. parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()) def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): opt_lower = args.opt.lower() weight_decay = args.weight_decay if weight_decay and filter_bias_and_bn: skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) weight_decay = 0. else: parameters = model.parameters() if 'fused' in opt_lower: assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, 'opt_eps') and args.opt_eps is not None: opt_args['eps'] = args.opt_eps if hasattr(args, 'opt_betas') and args.opt_betas is not None: opt_args['betas'] = args.opt_betas opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd' or opt_lower == 'nesterov': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'momentum': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'adam': optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == 'nadam': optimizer = Nadam(parameters, **opt_args) elif opt_lower == 'radam': optimizer = RAdam(parameters, **opt_args) elif opt_lower == 'adamp': optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == 'sgdp': optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'adadelta': optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == 'adafactor': if not args.lr: opt_args['lr'] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == 'adahessian': optimizer = Adahessian(parameters, **opt_args) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'novograd' or opt_lower == 'nvnovograd': optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == 'fusedsgd': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'fusedmomentum': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'fusedadam': optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == 'fusedadamw': optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == 'fusedlamb': optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == 'fusednovograd': opt_args.setdefault('betas', (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer
EXA-1-master
exa/models/unilm-master/dit/classification/optim_factory.py
#!/usr/bin/env python # -------------------------------------------------------------------------------- # MPViT: Multi-Path Vision Transformer for Dense Prediction # Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). # All Rights Reserved. # Written by Youngwan Lee # -------------------------------------------------------------------------------- """ Detection Training Script for MPViT. """ from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import default_argument_parser, default_setup, launch from detectron2.data.datasets import register_coco_instances from ditod import MyTrainer, add_vit_config def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() # add_coat_config(cfg) add_vit_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): register_coco_instances( "funsd_train", {}, "data/instances_training.json", "data/imgs" ) register_coco_instances( "funsd_test", {}, "data/instances_test.json", "data/imgs" ) cfg = setup(args) if args.eval_only: model = MyTrainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = MyTrainer.test(cfg, model) return res trainer = MyTrainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": parser = default_argument_parser() parser.add_argument("--debug", action="store_true", help="enable debug mode") args = parser.parse_args() print("Command Line Args:", args) if args.debug: import debugpy print("Enabling attach starts.") debugpy.listen(address=('0.0.0.0', 9310)) debugpy.wait_for_client() print("Enabling attach ends.") launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
EXA-1-master
exa/models/unilm-master/dit/text_detection/train_net.py
""" Mostly copy-paste from DINO and timm library: https://github.com/facebookresearch/dino https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ import warnings import math import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.models.layers import trunc_normal_, drop_path, to_2tuple from functools import partial def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.window_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches_w, self.num_patches_h = self.window_size self.num_patches = self.window_size[0] * self.window_size[1] self.img_size = img_size self.patch_size = patch_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = self.proj(x) return x class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros( 1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class ViT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, model_name='vit_base_patch16_224', img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24, num_heads=16, num_classes=19, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0.1, attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None, pos_embed_interp=False, random_init=False, align_corners=False, use_checkpoint=False, num_extra_tokens=1, out_features=None, **kwargs, ): super(ViT, self).__init__() self.model_name = model_name self.img_size = img_size self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.depth = depth self.num_heads = num_heads self.num_classes = num_classes self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.drop_rate = drop_rate self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.hybrid_backbone = hybrid_backbone self.norm_layer = norm_layer self.norm_cfg = norm_cfg self.pos_embed_interp = pos_embed_interp self.random_init = random_init self.align_corners = align_corners self.use_checkpoint = use_checkpoint self.num_extra_tokens = num_extra_tokens self.out_features = out_features self.out_indices = [int(name[5:]) for name in out_features] # self.num_stages = self.depth # self.out_indices = tuple(range(self.num_stages)) if self.hybrid_backbone is not None: self.patch_embed = HybridEmbed( self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim) else: self.patch_embed = PatchEmbed( img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim) self.num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) if self.num_extra_tokens == 2: self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.pos_embed = nn.Parameter(torch.zeros( 1, self.num_patches + self.num_extra_tokens, self.embed_dim)) self.pos_drop = nn.Dropout(p=self.drop_rate) # self.num_extra_tokens = self.pos_embed.shape[-2] - self.num_patches dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer) for i in range(self.depth)]) # NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here # self.repr = nn.Linear(embed_dim, representation_size) # self.repr_act = nn.Tanh() if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), nn.SyncBatchNorm(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) if self.num_extra_tokens==2: trunc_normal_(self.dist_token, std=0.2) self.apply(self._init_weights) # self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) ''' def init_weights(self): logger = get_root_logger() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) if self.init_cfg is None: logger.warn(f'No pre-trained weights for ' f'{self.__class__.__name__}, ' f'training start from scratch') else: assert 'checkpoint' in self.init_cfg, f'Only support ' \ f'specify `Pretrained` in ' \ f'`init_cfg` in ' \ f'{self.__class__.__name__} ' logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") load_checkpoint(self, filename=self.init_cfg['checkpoint'], strict=False, logger=logger) ''' def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def _conv_filter(self, state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict def to_2D(self, x): n, hw, c = x.shape h = w = int(math.sqrt(hw)) x = x.transpose(1, 2).reshape(n, c, h, w) return x def to_1D(self, x): n, c, h, w = x.shape x = x.reshape(n, c, -1).transpose(1, 2) return x def interpolate_pos_encoding(self, x, w, h): npatch = x.shape[1] - self.num_extra_tokens N = self.pos_embed.shape[1] - self.num_extra_tokens if npatch == N and w == h: return self.pos_embed class_ORdist_pos_embed = self.pos_embed[:, 0:self.num_extra_tokens] patch_pos_embed = self.pos_embed[:, self.num_extra_tokens:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_size[0] h0 = h // self.patch_embed.patch_size[1] # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_ORdist_pos_embed, patch_pos_embed), dim=1) def prepare_tokens(self, x, mask=None): B, nc, w, h = x.shape # patch linear embedding x = self.patch_embed(x) # mask image modeling if mask is not None: x = self.mask_model(x, mask) x = x.flatten(2).transpose(1, 2) # add the [CLS] token to the embed patch tokens all_tokens = [self.cls_token.expand(B, -1, -1)] if self.num_extra_tokens == 2: dist_tokens = self.dist_token.expand(B, -1, -1) all_tokens.append(dist_tokens) all_tokens.append(x) x = torch.cat(all_tokens, dim=1) # add positional encoding to each token x = x + self.interpolate_pos_encoding(x, w, h) return self.pos_drop(x) def forward_features(self, x): # print(f"==========shape of x is {x.shape}==========") B, _, H, W = x.shape Hp, Wp = H // self.patch_size, W // self.patch_size x = self.prepare_tokens(x) features = [] for i, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if i in self.out_indices: xp = x[:, self.num_extra_tokens:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) feat_out = {} for name, value in zip(self.out_features, features): feat_out[name] = value return feat_out def forward(self, x): x = self.forward_features(x) return x def deit_base_patch16(pretrained=False, **kwargs): model = ViT( patch_size=16, drop_rate=0., embed_dim=768, depth=12, num_heads=12, num_classes=1000, mlp_ratio=4., qkv_bias=True, use_checkpoint=True, num_extra_tokens=2, **kwargs) model.default_cfg = _cfg() return model def mae_base_patch16(pretrained=False, **kwargs): model = ViT( patch_size=16, drop_rate=0., embed_dim=768, depth=12, num_heads=12, num_classes=1000, mlp_ratio=4., qkv_bias=True, use_checkpoint=True, num_extra_tokens=1, **kwargs) model.default_cfg = _cfg() return model
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/deit.py
import os import json import copy import itertools from collections import OrderedDict import detectron2.utils.comm as comm from detectron2.evaluation import COCOEvaluator from .concern.icdar2015_eval.detection.iou import DetectionIoUEvaluator class FUNSDEvaluator(COCOEvaluator): def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} self._logger.warning("[evaluating...]The evaluator may take long time") id2img = {} gt = {} with open('data/instances_test.json', 'r', encoding='utf-8') as fr: data = json.load(fr) for img in data['images']: id = img['id'] name = os.path.basename(img['file_name'])[:-len('.jpg')] assert id not in id2img.keys() id2img[id] = name assert len(id2img) == len(data['images']) img2id, id2bbox = {}, {} for i in range(len(data['images'])): key = os.path.basename(data['images'][i]['file_name'][:-len('.png')]) assert key not in img2id.keys() img2id[key] = data['images'][i]['id'] for i in range(len(data['annotations'])): img_id = data['annotations'][i]['image_id'] if img_id not in id2bbox.keys(): id2bbox[img_id] = [] x0, y0, w, h = data['annotations'][i]['bbox'] x1, y1 = x0 + w, y0 + h line = [(x0, y0), (x1, y0), (x1, y1), (x0, y1)] id2bbox[img_id].append( { 'points': line, 'text': 1234, 'ignore': False, } ) for key, val in img2id.items(): assert key not in gt.keys() gt[key] = id2bbox[val] self._results = OrderedDict() evaluator = DetectionIoUEvaluator() for iter in range(3, 10): thr = iter * 0.1 self._results[thr] = {} total_prediction = {} for cur_pred in predictions: assert cur_pred['image_id'] in id2img.keys() id = id2img[cur_pred['image_id']] if id not in total_prediction.keys(): total_prediction[id] = [] for cur_inst in cur_pred['instances']: x0, y0, w, h = cur_inst['bbox'] cur_score = cur_inst['score'] if cur_score < thr: continue x1, y1 = x0 + w, y0 + h x0, x1 = int(x0 + 0.5), int(x1 + 0.5) y0, y1 = int(y0 + 0.5), int(y1 + 0.5) min_x, max_x = min([x0, x1]), max([x0, x1]) min_y, max_y = min([y0, y1]), max([y0, y1]) pred_line = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y] pred_line_str = ','.join(list(map(str, pred_line))) total_prediction[id].append(pred_line_str) final_gt = [] final_res = [] for key, _ in gt.items(): final_gt.append(copy.deepcopy(gt[key])) cur_res = [] pred = total_prediction[key] for i in range(len(pred)): line = list(map(int, pred[i].split(','))) line = [(line[0], line[1]), (line[2], line[3]), (line[4], line[5]), (line[6], line[7])] cur_res.append( { 'points': line, 'text': 1234, 'ignore': False, } ) final_res.append(cur_res) results = [] for cur_gt, pred in zip(final_gt, final_res): results.append(evaluator.evaluate_image(cur_gt, pred)) metrics = evaluator.combine_results(results) for key, val in metrics.items(): self._results["{:.1f}_{}".format(thr, key)] = val return copy.deepcopy(self._results)
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/funsd_evaluation.py
""" Vision Transformer (ViT) in PyTorch A PyTorch implement of Vision Transformers as described in 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 The official jax code is released and available at https://github.com/google-research/vision_transformer Status/TODO: * Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. * Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. * Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. * Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. Acknowledgments: * The paper authors for releasing code and weights, thanks! * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out for some einops/einsum fun * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert Hacked together by / Copyright 2020 Ross Wightman """ import warnings import math import torch from functools import partial import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.0) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def cogview_attn(self, attention_scores, alpha=32): ''' https://arxiv.org/pdf/2105.13290.pdf Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores) Seems the new attention_probs will result in a slower speed and a little bias Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison The smaller atol (e.g., 1e-08), the better. ''' scaled_attention_scores = attention_scores / alpha max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) # max_value = scaled_attention_scores.amax(dim=(-2, -1)).unsqueeze(-1).unsqueeze(-1) new_attention_scores = (scaled_attention_scores - max_value) * alpha return nn.Softmax(dim=-1)(new_attention_scores) def forward(self, x, rel_pos_bias=None, training_window_size=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: if training_window_size == self.window_size: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) else: training_window_size = tuple(training_window_size.tolist()) new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok new_relative_position_bias_table = F.interpolate( self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, 2 * self.window_size[0] - 1, 2 * self.window_size[1] - 1), size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', align_corners=False) new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, new_num_relative_distance - 3).permute( 1, 0) new_relative_position_bias_table = torch.cat( [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(training_window_size[0]) coords_w = torch.arange(training_window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += training_window_size[1] - 1 relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 relative_position_index = \ torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = new_num_relative_distance - 3 relative_position_index[0:, 0] = new_num_relative_distance - 2 relative_position_index[0, 0] = new_num_relative_distance - 1 relative_position_bias = \ new_relative_position_bias_table[relative_position_index.view(-1)].view( training_window_size[0] * training_window_size[1] + 1, training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) # attn = self.cogview_attn(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None, training_window_size=None): if self.gamma_1 is None: x = x + self.drop_path( self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches_w = self.patch_shape[0] self.num_patches_h = self.patch_shape[1] # the so-called patch_shape is the patch shape during pre-training self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, position_embedding=None, **kwargs): # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] if position_embedding is not None: # interpolate the position embedding to the corresponding size position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3, 1, 2) position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode='bicubic') x = x + position_embedding x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_heads = num_heads self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self, training_window_size): if training_window_size == self.window_size: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww else: training_window_size = tuple(training_window_size.tolist()) new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok new_relative_position_bias_table = F.interpolate( self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, 2 * self.window_size[0] - 1, 2 * self.window_size[1] - 1), size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', align_corners=False) new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, new_num_relative_distance - 3).permute( 1, 0) new_relative_position_bias_table = torch.cat( [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(training_window_size[0]) coords_w = torch.arange(training_window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += training_window_size[1] - 1 relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 relative_position_index = \ torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = new_num_relative_distance - 3 relative_position_index[0:, 0] = new_num_relative_distance - 2 relative_position_index[0, 0] = new_num_relative_distance - 1 relative_position_bias = \ new_relative_position_bias_table[relative_position_index.view(-1)].view( training_window_size[0] * training_window_size[1] + 1, training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww return relative_position_bias class BEiT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, init_values=None, use_abs_pos_emb=False, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_checkpoint=True, pretrained=None, out_features=None, ): super(BEiT, self).__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.use_checkpoint = use_checkpoint if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.out_features = out_features self.out_indices = [int(name[5:]) for name in out_features] self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) self.use_shared_rel_pos_bias = use_shared_rel_pos_bias if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) # trunc_normal_(self.mask_token, std=.02) if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), # nn.SyncBatchNorm(embed_dim), nn.BatchNorm2d(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) ''' def init_weights(self): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ logger = get_root_logger() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() if self.init_cfg is None: logger.warn(f'No pre-trained weights for ' f'{self.__class__.__name__}, ' f'training start from scratch') else: assert 'checkpoint' in self.init_cfg, f'Only support ' \ f'specify `Pretrained` in ' \ f'`init_cfg` in ' \ f'{self.__class__.__name__} ' logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") load_checkpoint(self, filename=self.init_cfg['checkpoint'], strict=False, logger=logger, beit_spec_expand_rel_pos = self.use_rel_pos_bias, ) ''' def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None) # Hp, Wp are HW for patches batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks if self.pos_embed is not None: cls_tokens = cls_tokens + self.pos_embed[:, :1, :] x = torch.cat((cls_tokens, x), dim=1) x = self.pos_drop(x) features = [] training_window_size = torch.tensor([Hp, Wp]) rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None for i, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, rel_pos_bias, training_window_size) else: x = blk(x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size) if i in self.out_indices: xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) feat_out = {} for name, value in zip(self.out_features, features): feat_out[name] = value return feat_out def forward(self, x): x = self.forward_features(x) return x def beit_base_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None, **kwargs) model.default_cfg = _cfg() return model def beit_large_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None, **kwargs) model.default_cfg = _cfg() return model def dit_base_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0.1, **kwargs) model.default_cfg = _cfg() return model def dit_large_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=1e-5, **kwargs) model.default_cfg = _cfg() return model if __name__ == '__main__': model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True) model = model.to("cuda:0") input1 = torch.rand(2, 3, 512, 762).to("cuda:0") input2 = torch.rand(2, 3, 800, 1200).to("cuda:0") input3 = torch.rand(2, 3, 720, 1000).to("cuda:0") output1 = model(input1) output2 = model(input2) output3 = model(input3) print("all done")
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/beit.py
from detectron2.config import CfgNode as CN def add_vit_config(cfg): """ Add config for VIT. """ _C = cfg _C.MODEL.VIT = CN() # CoaT model name. _C.MODEL.VIT.NAME = "" # Output features from CoaT backbone. _C.MODEL.VIT.OUT_FEATURES = ["layer3", "layer5", "layer7", "layer11"] _C.MODEL.VIT.IMG_SIZE = [224, 224] _C.MODEL.VIT.POS_TYPE = "shared_rel" _C.MODEL.VIT.DROP_PATH = 0. _C.MODEL.VIT.MODEL_KWARGS = "{}" _C.SOLVER.OPTIMIZER = "ADAMW" _C.SOLVER.BACKBONE_MULTIPLIER = 1.0 _C.AUG = CN() _C.AUG.DETR = False
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/config.py
from detectron2.checkpoint import DetectionCheckpointer from typing import Any import torch import torch.nn as nn #from fvcore.common.checkpoint import _IncompatibleKeys, _strip_prefix_if_present, TORCH_VERSION, quantization, \ # ObserverBase, FakeQuantizeBase from fvcore.common.checkpoint import _IncompatibleKeys, _strip_prefix_if_present, TORCH_VERSION from torch import distributed as dist from scipy import interpolate import numpy as np import torch.nn.functional as F def append_prefix(k): prefix = 'backbone.bottom_up.backbone.' # return prefix + k if not k.startswith(prefix) else k return k def modify_ckpt_state(model, state_dict, logger=None): # reshape absolute position embedding for Swin if state_dict.get(append_prefix('absolute_pos_embed')) is not None: absolute_pos_embed = state_dict[append_prefix('absolute_pos_embed')] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.backbone.bottom_up.backbone.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H * W: logger.warning("Error in loading absolute_pos_embed, pass") else: state_dict[append_prefix('absolute_pos_embed')] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) def get_dist_info(): if dist.is_available() and dist.is_initialized(): rank = dist.get_rank() world_size = dist.get_world_size() else: rank = 0 world_size = 1 return rank, world_size rank, _ = get_dist_info() all_keys = list(state_dict.keys()) for key in all_keys: if "relative_position_index" in key: state_dict.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() if key not in model.state_dict(): continue dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.backbone.bottom_up.backbone.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: if rank == 0: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.13492: # q = 1.13492 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) if rank == 0: print("x = {}".format(x)) print("dx = {}".format(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict[key] = new_rel_pos_bias if append_prefix('pos_embed') in state_dict: pos_embed_checkpoint = state_dict[append_prefix('pos_embed')] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.backbone.bottom_up.backbone.patch_embed.num_patches num_extra_tokens = model.backbone.bottom_up.backbone.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding # new_size = int(num_patches ** 0.5) new_size_w = model.backbone.bottom_up.backbone.patch_embed.num_patches_w new_size_h = model.backbone.bottom_up.backbone.patch_embed.num_patches_h # class_token and dist_token are kept unchanged if orig_size != new_size_h or orig_size != new_size_w: if rank == 0: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size_w, new_size_h)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size_w, new_size_h), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict[append_prefix('pos_embed')] = new_pos_embed # interpolate position bias table if needed relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] if table_key not in model.state_dict(): continue table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f"Error in loading {table_key}, pass") else: if L1 != L2: S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) table_pretrained_resized = F.interpolate( table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0) if append_prefix('rel_pos_bias.relative_position_bias_table') in state_dict and \ model.backbone.bottom_up.backbone.use_rel_pos_bias and \ not model.backbone.bottom_up.backbone.use_shared_rel_pos_bias and \ append_prefix('blocks.0.attn.relative_position_bias_table') not in state_dict: logger.info("[BEIT] Expand the shared relative position embedding to each transformer block. ") num_layers = model.backbone.bottom_up.backbone.get_num_layers() rel_pos_bias = state_dict[append_prefix("rel_pos_bias.relative_position_bias_table")] for i in range(num_layers): state_dict["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() state_dict.pop(append_prefix("rel_pos_bias.relative_position_bias_table")) return state_dict class MyDetectionCheckpointer(DetectionCheckpointer): def _load_model(self, checkpoint: Any) -> _IncompatibleKeys: """ Load weights from a checkpoint. Args: checkpoint (Any): checkpoint contains the weights. Returns: ``NamedTuple`` with ``missing_keys``, ``unexpected_keys``, and ``incorrect_shapes`` fields: * **missing_keys** is a list of str containing the missing keys * **unexpected_keys** is a list of str containing the unexpected keys * **incorrect_shapes** is a list of (key, shape in checkpoint, shape in model) This is just like the return value of :func:`torch.nn.Module.load_state_dict`, but with extra support for ``incorrect_shapes``. """ checkpoint_state_dict = checkpoint.pop("model") self._convert_ndarray_to_tensor(checkpoint_state_dict) # if the state_dict comes from a model that was wrapped in a # DataParallel or DistributedDataParallel during serialization, # remove the "module" prefix before performing the matching. _strip_prefix_if_present(checkpoint_state_dict, "module.") # workaround https://github.com/pytorch/pytorch/issues/24139 model_state_dict = self.model.state_dict() incorrect_shapes = [] # rename the para in checkpoint_state_dict # some bug here, do not support re load checkpoint_state_dict = { append_prefix(k): checkpoint_state_dict[k] for k in checkpoint_state_dict.keys() } checkpoint_state_dict = modify_ckpt_state(self.model, checkpoint_state_dict, logger=self.logger) for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: model_param = model_state_dict[k] # Allow mismatch for uninitialized parameters if TORCH_VERSION >= (1, 8) and isinstance( model_param, nn.parameter.UninitializedParameter ): continue shape_model = tuple(model_param.shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: has_observer_base_classes = ( TORCH_VERSION >= (1, 8) and hasattr(quantization, "ObserverBase") and hasattr(quantization, "FakeQuantizeBase") ) if has_observer_base_classes: # Handle the special case of quantization per channel observers, # where buffer shape mismatches are expected. def _get_module_for_key( model: torch.nn.Module, key: str ) -> torch.nn.Module: # foo.bar.param_or_buffer_name -> [foo, bar] key_parts = key.split(".")[:-1] cur_module = model for key_part in key_parts: cur_module = getattr(cur_module, key_part) return cur_module cls_to_skip = ( ObserverBase, FakeQuantizeBase, ) target_module = _get_module_for_key(self.model, k) if isinstance(target_module, cls_to_skip): # Do not remove modules with expected shape mismatches # them from the state_dict loading. They have special logic # in _load_from_state_dict to handle the mismatches. continue incorrect_shapes.append((k, shape_checkpoint, shape_model)) checkpoint_state_dict.pop(k) incompatible = self.model.load_state_dict(checkpoint_state_dict, strict=False) return _IncompatibleKeys( missing_keys=incompatible.missing_keys, unexpected_keys=incompatible.unexpected_keys, incorrect_shapes=incorrect_shapes, )
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/mycheckpointer.py
# -------------------------------------------------------------------------------- # VIT: Multi-Path Vision Transformer for Dense Prediction # Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). # All Rights Reserved. # Written by Youngwan Lee # This source code is licensed(Dual License(GPL3.0 & Commercial)) under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------------------------------- # References: # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm # CoaT: https://github.com/mlpc-ucsd/CoaT # -------------------------------------------------------------------------------- import torch from detectron2.layers import ( ShapeSpec, ) from detectron2.modeling import Backbone, BACKBONE_REGISTRY, FPN from detectron2.modeling.backbone.fpn import LastLevelP6P7, LastLevelMaxPool from .beit import beit_base_patch16, dit_base_patch16, dit_large_patch16, beit_large_patch16 from .deit import deit_base_patch16, mae_base_patch16 __all__ = [ "build_vit_fpn_backbone", ] class VIT_Backbone(Backbone): """ Implement VIT backbone. """ def __init__(self, name, out_features, drop_path, img_size, pos_type, model_kwargs): super().__init__() self._out_features = out_features if 'base' in name: self._out_feature_strides = {"layer3": 4, "layer5": 8, "layer7": 16, "layer11": 32} else: self._out_feature_strides = {"layer7": 4, "layer11": 8, "layer15": 16, "layer23": 32} if name == 'beit_base_patch16': model_func = beit_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == 'dit_base_patch16': model_func = dit_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == "deit_base_patch16": model_func = deit_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == "mae_base_patch16": model_func = mae_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == "dit_large_patch16": model_func = dit_large_patch16 self._out_feature_channels = {"layer7": 1024, "layer11": 1024, "layer15": 1024, "layer23": 1024} elif name == "beit_large_patch16": model_func = beit_large_patch16 self._out_feature_channels = {"layer7": 1024, "layer11": 1024, "layer15": 1024, "layer23": 1024} else: raise ValueError("Unsupported VIT name yet.") if 'beit' in name or 'dit' in name: if pos_type == "abs": self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, use_abs_pos_emb=True, **model_kwargs) elif pos_type == "shared_rel": self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, use_shared_rel_pos_bias=True, **model_kwargs) elif pos_type == "rel": self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, use_rel_pos_bias=True, **model_kwargs) else: raise ValueError() else: self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, **model_kwargs) def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert x.dim() == 4, f"VIT takes an input of shape (N, C, H, W). Got {x.shape} instead!" return self.backbone.forward_features(x) def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } def build_VIT_backbone(cfg): """ Create a VIT instance from config. Args: cfg: a detectron2 CfgNode Returns: A VIT backbone instance. """ # fmt: off name = cfg.MODEL.VIT.NAME out_features = cfg.MODEL.VIT.OUT_FEATURES drop_path = cfg.MODEL.VIT.DROP_PATH img_size = cfg.MODEL.VIT.IMG_SIZE pos_type = cfg.MODEL.VIT.POS_TYPE model_kwargs = eval(str(cfg.MODEL.VIT.MODEL_KWARGS).replace("`", "")) return VIT_Backbone(name, out_features, drop_path, img_size, pos_type, model_kwargs) @BACKBONE_REGISTRY.register() def build_vit_fpn_backbone(cfg, input_shape: ShapeSpec): """ Create a VIT w/ FPN backbone. Args: cfg: a detectron2 CfgNode Returns: backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. """ bottom_up = build_VIT_backbone(cfg) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) return backbone
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/backbone.py
# -------------------------------------------------------------------------------- # MPViT: Multi-Path Vision Transformer for Dense Prediction # Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). # All Rights Reserved. # Written by Youngwan Lee # This source code is licensed(Dual License(GPL3.0 & Commercial)) under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------------------------------- from .config import add_vit_config from .backbone import build_vit_fpn_backbone from .dataset_mapper import DetrDatasetMapper from .mycheckpointer import MyDetectionCheckpointer from .funsd_evaluation import FUNSDEvaluator from .mytrainer import MyTrainer
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # from https://github.com/facebookresearch/detr/blob/main/d2/detr/dataset_mapper.py import copy import logging import numpy as np import torch from detectron2.data import detection_utils as utils from detectron2.data import transforms as T __all__ = ["DetrDatasetMapper"] def build_transform_gen(cfg, is_train): """ Create a list of :class:`TransformGen` from config. Returns: list[TransformGen] """ if is_train: min_size = cfg.INPUT.MIN_SIZE_TRAIN max_size = cfg.INPUT.MAX_SIZE_TRAIN sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else: min_size = cfg.INPUT.MIN_SIZE_TEST max_size = cfg.INPUT.MAX_SIZE_TEST sample_style = "choice" if sample_style == "range": assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size)) logger = logging.getLogger(__name__) tfm_gens = [] if is_train: tfm_gens.append(T.RandomFlip()) tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style)) if is_train: logger.info("TransformGens used in training: " + str(tfm_gens)) return tfm_gens class DetrDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by DETR. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ def __init__(self, cfg, is_train=True): if cfg.INPUT.CROP.ENABLED and is_train: self.crop_gen = [ T.ResizeShortestEdge([400, 500, 600], sample_style="choice"), T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE), ] else: self.crop_gen = None self.mask_on = cfg.MODEL.MASK_ON self.tfm_gens = build_transform_gen(cfg, is_train) logging.getLogger(__name__).info( "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen)) ) self.img_format = cfg.INPUT.FORMAT self.is_train = is_train def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) if self.crop_gen is None: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: if np.random.rand() > 0.5: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: image, transforms = T.apply_transform_gens( self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image ) image_shape = image.shape[:2] # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) if not self.is_train: # USER: Modify this if you want to keep them for some reason. dataset_dict.pop("annotations", None) return dataset_dict if "annotations" in dataset_dict: # USER: Modify this if you want to keep them for some reason. for anno in dataset_dict["annotations"]: if not self.mask_on: anno.pop("segmentation", None) anno.pop("keypoints", None) # USER: Implement additional transformations if you have other types of data annos = [ utils.transform_instance_annotations(obj, transforms, image_shape) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances(annos, image_shape) dataset_dict["instances"] = utils.filter_empty_instances(instances) return dataset_dict
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/dataset_mapper.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. """ This file contains components with some default boilerplate logic user may need in training / testing. They will not work for everyone, but many users may find them useful. The behavior of functions/classes in this file is subject to change, since they are meant to represent the "common default behavior" people need in their projects. """ import argparse import logging import os import sys import weakref from collections import OrderedDict from typing import Optional import torch from fvcore.nn.precise_bn import get_bn_modules from omegaconf import OmegaConf from torch.nn.parallel import DistributedDataParallel import detectron2.data.transforms as T from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import CfgNode, LazyConfig from detectron2.data import ( MetadataCatalog, build_detection_test_loader, build_detection_train_loader, ) from detectron2.evaluation import ( DatasetEvaluator, inference_on_dataset, print_csv_format, verify_results, ) from detectron2.modeling import build_model from detectron2.solver import build_lr_scheduler, build_optimizer from detectron2.utils import comm from detectron2.utils.collect_env import collect_env_info from detectron2.utils.env import seed_all_rng from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger from detectron2.engine import hooks from detectron2.engine.train_loop import AMPTrainer, SimpleTrainer, TrainerBase from .mycheckpointer import MyDetectionCheckpointer from typing import Any, Dict, List, Set import itertools from detectron2.solver.build import maybe_add_gradient_clipping from .dataset_mapper import DetrDatasetMapper from .funsd_evaluation import FUNSDEvaluator __all__ = [ "create_ddp_model", "default_argument_parser", "default_setup", "default_writers", "DefaultPredictor", "MyTrainer", ] def create_ddp_model(model, *, fp16_compression=False, **kwargs): """ Create a DistributedDataParallel model if there are >1 processes. Args: model: a torch.nn.Module fp16_compression: add fp16 compression hooks to the ddp object. See more at https://pytorch.org/docs/stable/ddp_comm_hooks.html#torch.distributed.algorithms.ddp_comm_hooks.default_hooks.fp16_compress_hook kwargs: other arguments of :module:`torch.nn.parallel.DistributedDataParallel`. """ # noqa if comm.get_world_size() == 1: return model if "device_ids" not in kwargs: kwargs["device_ids"] = [comm.get_local_rank()] ddp = DistributedDataParallel(model, **kwargs) if fp16_compression: from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks ddp.register_comm_hook(state=None, hook=comm_hooks.fp16_compress_hook) return ddp def default_argument_parser(epilog=None): """ Create a parser with some common arguments used by detectron2 users. Args: epilog (str): epilog passed to ArgumentParser describing the usage. Returns: argparse.ArgumentParser: """ parser = argparse.ArgumentParser( epilog=epilog or f""" Examples: Run on single machine: $ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml Change some config options: $ {sys.argv[0]} --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001 Run on multiple machines: (machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags] (machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags] """, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") parser.add_argument( "--resume", action="store_true", help="Whether to attempt to resume from the checkpoint directory. " "See documentation of `MyTrainer.resume_or_load()` for what it means.", ) parser.add_argument("--eval-only", action="store_true", help="perform evaluation only") parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*") parser.add_argument("--num-machines", type=int, default=1, help="total number of machines") parser.add_argument( "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)" ) # PyTorch still may leave orphan processes in multi-gpu training. # Therefore we use a deterministic way to obtain port, # so that users are aware of orphan processes by seeing the port occupied. port = 2 ** 15 + 2 ** 14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2 ** 14 parser.add_argument( "--dist-url", default="tcp://127.0.0.1:{}".format(port), help="initialization URL for pytorch distributed backend. See " "https://pytorch.org/docs/stable/distributed.html for details.", ) parser.add_argument( "opts", help=""" Modify config options at the end of the command. For Yacs configs, use space-separated "PATH.KEY VALUE" pairs. For python-based LazyConfig, use "path.key=value". """.strip(), default=None, nargs=argparse.REMAINDER, ) return parser def _try_get_key(cfg, *keys, default=None): """ Try select keys from cfg until the first key that exists. Otherwise return default. """ if isinstance(cfg, CfgNode): cfg = OmegaConf.create(cfg.dump()) for k in keys: none = object() p = OmegaConf.select(cfg, k, default=none) if p is not none: return p return default def _highlight(code, filename): try: import pygments except ImportError: return code from pygments.lexers import Python3Lexer, YamlLexer from pygments.formatters import Terminal256Formatter lexer = Python3Lexer() if filename.endswith(".py") else YamlLexer() code = pygments.highlight(code, lexer, Terminal256Formatter(style="monokai")) return code def default_setup(cfg, args): """ Perform some basic common setups at the beginning of a job, including: 1. Set up the detectron2 logger 2. Log basic information about environment, cmdline arguments, and config 3. Backup the config to the output directory Args: cfg (CfgNode or omegaconf.DictConfig): the full config to be used args (argparse.NameSpace): the command line arguments to be logged """ output_dir = _try_get_key(cfg, "OUTPUT_DIR", "output_dir", "train.output_dir") if comm.is_main_process() and output_dir: PathManager.mkdirs(output_dir) rank = comm.get_rank() setup_logger(output_dir, distributed_rank=rank, name="fvcore") logger = setup_logger(output_dir, distributed_rank=rank) logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size())) logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info( "Contents of args.config_file={}:\n{}".format( args.config_file, _highlight(PathManager.open(args.config_file, "r").read(), args.config_file), ) ) if comm.is_main_process() and output_dir: # Note: some of our scripts may expect the existence of # config.yaml in output directory path = os.path.join(output_dir, "config.yaml") if isinstance(cfg, CfgNode): logger.info("Running with full config:\n{}".format(_highlight(cfg.dump(), ".yaml"))) with PathManager.open(path, "w") as f: f.write(cfg.dump()) else: LazyConfig.save(cfg, path) logger.info("Full config saved to {}".format(path)) # make sure each worker has a different, yet deterministic seed if specified seed = _try_get_key(cfg, "SEED", "train.seed", default=-1) seed_all_rng(None if seed < 0 else seed + rank) # cudnn benchmark has large overhead. It shouldn't be used considering the small size of # typical validation set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = _try_get_key( cfg, "CUDNN_BENCHMARK", "train.cudnn_benchmark", default=False ) def default_writers(output_dir: str, max_iter: Optional[int] = None): """ Build a list of :class:`EventWriter` to be used. It now consists of a :class:`CommonMetricPrinter`, :class:`TensorboardXWriter` and :class:`JSONWriter`. Args: output_dir: directory to store JSON metrics and tensorboard events max_iter: the total number of iterations Returns: list[EventWriter]: a list of :class:`EventWriter` objects. """ PathManager.mkdirs(output_dir) return [ # It may not always print what you want to see, since it prints "common" metrics only. CommonMetricPrinter(max_iter), JSONWriter(os.path.join(output_dir, "metrics.json")), TensorboardXWriter(output_dir), ] class DefaultPredictor: """ Create a simple end-to-end predictor with the given config that runs on single device for a single input image. Compared to using the model directly, this class does the following additions: 1. Load checkpoint from `cfg.MODEL.WEIGHTS`. 2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`. 3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`. 4. Take one input image and produce a single output, instead of a batch. This is meant for simple demo purposes, so it does the above steps automatically. This is not meant for benchmarks or running complicated inference logic. If you'd like to do anything more complicated, please refer to its source code as examples to build and use the model manually. Attributes: metadata (Metadata): the metadata of the underlying dataset, obtained from cfg.DATASETS.TEST. Examples: :: pred = DefaultPredictor(cfg) inputs = cv2.imread("input.jpg") outputs = pred(inputs) """ def __init__(self, cfg): self.cfg = cfg.clone() # cfg can be modified by model self.model = build_model(self.cfg) self.model.eval() if len(cfg.DATASETS.TEST): self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0]) checkpointer = DetectionCheckpointer(self.model) checkpointer.load(cfg.MODEL.WEIGHTS) self.aug = T.ResizeShortestEdge( [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) self.input_format = cfg.INPUT.FORMAT assert self.input_format in ["RGB", "BGR"], self.input_format def __call__(self, original_image): """ Args: original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). Returns: predictions (dict): the output of the model for one image only. See :doc:`/tutorials/models` for details about the format. """ with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258 # Apply pre-processing to image. if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] height, width = original_image.shape[:2] image = self.aug.get_transform(original_image).apply_image(original_image) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} predictions = self.model([inputs])[0] return predictions class MyTrainer(TrainerBase): """ A trainer with default training logic. It does the following: 1. Create a :class:`SimpleTrainer` using model, optimizer, dataloader defined by the given config. Create a LR scheduler defined by the config. 2. Load the last checkpoint or `cfg.MODEL.WEIGHTS`, if exists, when `resume_or_load` is called. 3. Register a few common hooks defined by the config. It is created to simplify the **standard model training workflow** and reduce code boilerplate for users who only need the standard training workflow, with standard features. It means this class makes *many assumptions* about your training logic that may easily become invalid in a new research. In fact, any assumptions beyond those made in the :class:`SimpleTrainer` are too much for research. The code of this class has been annotated about restrictive assumptions it makes. When they do not work for you, you're encouraged to: 1. Overwrite methods of this class, OR: 2. Use :class:`SimpleTrainer`, which only does minimal SGD training and nothing else. You can then add your own hooks if needed. OR: 3. Write your own training loop similar to `tools/plain_train_net.py`. See the :doc:`/tutorials/training` tutorials for more details. Note that the behavior of this class, like other functions/classes in this file, is not stable, since it is meant to represent the "common default behavior". It is only guaranteed to work well with the standard models and training workflow in detectron2. To obtain more stable behavior, write your own training logic with other public APIs. Examples: :: trainer = MyTrainer(cfg) trainer.resume_or_load() # load last checkpoint or MODEL.WEIGHTS trainer.train() Attributes: scheduler: checkpointer (DetectionCheckpointer): cfg (CfgNode): """ def __init__(self, cfg): """ Args: cfg (CfgNode): """ super().__init__() logger = logging.getLogger("detectron2") if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2 setup_logger() cfg = MyTrainer.auto_scale_workers(cfg, comm.get_world_size()) self.cfg = cfg # Assume these objects must be constructed in this order. model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) data_loader = self.build_train_loader(cfg) model = create_ddp_model(model, broadcast_buffers=False) self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)( model, data_loader, optimizer ) self.scheduler = self.build_lr_scheduler(cfg, optimizer) self.checkpointer = MyDetectionCheckpointer( # Assume you want to save checkpoints together with logs/statistics model, cfg.OUTPUT_DIR, trainer=weakref.proxy(self), ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.register_hooks(self.build_hooks()) def resume_or_load(self, resume=True): """ If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by a `last_checkpoint` file), resume from the file. Resuming means loading all available states (eg. optimizer and scheduler) and update iteration counter from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used. Otherwise, this is considered as an independent training. The method will load model weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start from iteration 0. Args: resume (bool): whether to do resume or not """ self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume) if resume and self.checkpointer.has_checkpoint(): # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration self.start_iter = self.iter + 1 def build_hooks(self): """ Build a list of default hooks, including timing, evaluation, checkpointing, lr scheduling, precise BN, writing events. Returns: list[HookBase]: """ cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN ret = [ hooks.IterationTimer(), hooks.LRScheduler(), hooks.PreciseBN( # Run at the same freq as (but before) evaluation. cfg.TEST.EVAL_PERIOD, self.model, # Build a new data loader to not affect training self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] # Do PreciseBN before checkpointer, because it updates the model and need to # be saved by checkpointer. # This is not always the best: if checkpointing has a different frequency, # some checkpoints may have more precise statistics than others. if comm.is_main_process(): ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD)) def test_and_save_results(): self._last_eval_results = self.test(self.cfg, self.model) return self._last_eval_results # Do evaluation after checkpointer, because then if it fails, # we can use the saved checkpoint to debug. ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results)) if comm.is_main_process(): # Here the default print/log frequency of each writer is used. # run writers in the end, so that evaluation metrics are written ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) return ret def build_writers(self): """ Build a list of writers to be used using :func:`default_writers()`. If you'd like a different list of writers, you can overwrite it in your trainer. Returns: list[EventWriter]: a list of :class:`EventWriter` objects. """ return default_writers(self.cfg.OUTPUT_DIR, self.max_iter) def train(self): """ Run training. Returns: OrderedDict of results, if evaluation is enabled. Otherwise None. """ super().train(self.start_iter, self.max_iter) if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process(): assert hasattr( self, "_last_eval_results" ), "No evaluation results obtained during training!" verify_results(self.cfg, self._last_eval_results) return self._last_eval_results def run_step(self): self._trainer.iter = self.iter self._trainer.run_step() @classmethod def build_model(cls, cfg): """ Returns: torch.nn.Module: It now calls :func:`detectron2.modeling.build_model`. Overwrite it if you'd like a different model. """ model = build_model(cfg) logger = logging.getLogger(__name__) logger.info("Model:\n{}".format(model)) return model @classmethod def build_optimizer(cls, cfg, model): params: List[Dict[str, Any]] = [] memo: Set[torch.nn.parameter.Parameter] = set() for key, value in model.named_parameters(recurse=True): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if "backbone" in key: lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class # detectron2 doesn't have full model gradient clipping now clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE enable = ( cfg.SOLVER.CLIP_GRADIENTS.ENABLED and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" and clip_norm_val > 0.0 ) class FullModelGradientClippingOptimizer(optim): def step(self, closure=None): all_params = itertools.chain(*[x["params"] for x in self.param_groups]) torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) super().step(closure=closure) return FullModelGradientClippingOptimizer if enable else optim optimizer_type = cfg.SOLVER.OPTIMIZER if optimizer_type == "SGD": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM ) elif optimizer_type == "ADAMW": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( params, cfg.SOLVER.BASE_LR ) else: raise NotImplementedError(f"no optimizer type {optimizer_type}") if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": optimizer = maybe_add_gradient_clipping(cfg, optimizer) return optimizer @classmethod def build_lr_scheduler(cls, cfg, optimizer): """ It now calls :func:`detectron2.solver.build_lr_scheduler`. Overwrite it if you'd like a different scheduler. """ return build_lr_scheduler(cfg, optimizer) @classmethod def build_train_loader(cls, cfg): if cfg.AUG.DETR: mapper = DetrDatasetMapper(cfg, is_train=True) else: mapper = None return build_detection_train_loader(cfg, mapper=mapper) @classmethod def build_test_loader(cls, cfg, dataset_name): """ Returns: iterable It now calls :func:`detectron2.data.build_detection_test_loader`. Overwrite it if you'd like a different data loader. """ return build_detection_test_loader(cfg, dataset_name) @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return FUNSDEvaluator(dataset_name, output_dir=output_folder) @classmethod def test(cls, cfg, model, evaluators=None): """ Evaluate the given model. The given model is expected to already contain weights to evaluate. Args: cfg (CfgNode): model (nn.Module): evaluators (list[DatasetEvaluator] or None): if None, will call :meth:`build_evaluator`. Otherwise, must have the same length as ``cfg.DATASETS.TEST``. Returns: dict: a dict of result metrics """ logger = logging.getLogger(__name__) if isinstance(evaluators, DatasetEvaluator): evaluators = [evaluators] if evaluators is not None: assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format( len(cfg.DATASETS.TEST), len(evaluators) ) results = OrderedDict() for idx, dataset_name in enumerate(cfg.DATASETS.TEST): data_loader = cls.build_test_loader(cfg, dataset_name) # When evaluators are passed in as arguments, # implicitly assume that evaluators can be created before data_loader. if evaluators is not None: evaluator = evaluators[idx] else: try: evaluator = cls.build_evaluator(cfg, dataset_name) except NotImplementedError: logger.warn( "No evaluator found. Use `MyTrainer.test(evaluators=)`, " "or implement its `build_evaluator` method." ) results[dataset_name] = {} continue results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i if comm.is_main_process(): assert isinstance( results_i, dict ), "Evaluator must return a dict on the main process. Got {} instead.".format( results_i ) logger.info("Evaluation results for {} in csv format:".format(dataset_name)) print_csv_format(results_i) if len(results) == 1: results = list(results.values())[0] return results @staticmethod def auto_scale_workers(cfg, num_workers: int): """ When the config is defined for certain number of workers (according to ``cfg.SOLVER.REFERENCE_WORLD_SIZE``) that's different from the number of workers currently in use, returns a new cfg where the total batch size is scaled so that the per-GPU batch size stays the same as the original ``IMS_PER_BATCH // REFERENCE_WORLD_SIZE``. Other config options are also scaled accordingly: * training steps and warmup steps are scaled inverse proportionally. * learning rate are scaled proportionally, following :paper:`ImageNet in 1h`. For example, with the original config like the following: .. code-block:: yaml IMS_PER_BATCH: 16 BASE_LR: 0.1 REFERENCE_WORLD_SIZE: 8 MAX_ITER: 5000 STEPS: (4000,) CHECKPOINT_PERIOD: 1000 When this config is used on 16 GPUs instead of the reference number 8, calling this method will return a new config with: .. code-block:: yaml IMS_PER_BATCH: 32 BASE_LR: 0.2 REFERENCE_WORLD_SIZE: 16 MAX_ITER: 2500 STEPS: (2000,) CHECKPOINT_PERIOD: 500 Note that both the original config and this new config can be trained on 16 GPUs. It's up to user whether to enable this feature (by setting ``REFERENCE_WORLD_SIZE``). Returns: CfgNode: a new config. Same as original if ``cfg.SOLVER.REFERENCE_WORLD_SIZE==0``. """ old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE if old_world_size == 0 or old_world_size == num_workers: return cfg cfg = cfg.clone() frozen = cfg.is_frozen() cfg.defrost() assert ( cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0 ), "Invalid REFERENCE_WORLD_SIZE in config!" scale = num_workers / old_world_size bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale)) lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale)) warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale)) cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS) cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale)) cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale)) cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers # maintain invariant logger = logging.getLogger(__name__) logger.info( f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, " f"max_iter={max_iter}, warmup={warmup_iter}." ) if frozen: cfg.freeze() return cfg # Access basic attributes from the underlying trainer for _attr in ["model", "data_loader", "optimizer"]: setattr( MyTrainer, _attr, property( # getter lambda self, x=_attr: getattr(self._trainer, x), # setter lambda self, value, x=_attr: setattr(self._trainer, x, value), ), )
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/mytrainer.py
import importlib from collections import OrderedDict import anyconfig import munch class Config(object): def __init__(self): pass def load(self, conf): conf = anyconfig.load(conf) return munch.munchify(conf) def compile(self, conf, return_packages=False): packages = conf.get('package', []) defines = {} for path in conf.get('import', []): parent_conf = self.load(path) parent_packages, parent_defines = self.compile( parent_conf, return_packages=True) packages.extend(parent_packages) defines.update(parent_defines) modules = [] for package in packages: module = importlib.import_module(package) modules.append(module) if isinstance(conf['define'], dict): conf['define'] = [conf['define']] for define in conf['define']: name = define.copy().pop('name') if not isinstance(name, str): raise RuntimeError('name must be str') defines[name] = self.compile_conf(define, defines, modules) if return_packages: return packages, defines else: return defines def compile_conf(self, conf, defines, modules): if isinstance(conf, (int, float)): return conf elif isinstance(conf, str): if conf.startswith('^'): return defines[conf[1:]] if conf.startswith('$'): return {'class': self.find_class_in_modules(conf[1:], modules)} return conf elif isinstance(conf, dict): if 'class' in conf: conf['class'] = self.find_class_in_modules( conf['class'], modules) if 'base' in conf: base = conf.copy().pop('base') if not isinstance(base, str): raise RuntimeError('base must be str') conf = { **defines[base], **conf, } return {key: self.compile_conf(value, defines, modules) for key, value in conf.items()} elif isinstance(conf, (list, tuple)): return [self.compile_conf(value, defines, modules) for value in conf] else: return conf def find_class_in_modules(self, cls, modules): if not isinstance(cls, str): raise RuntimeError('class name must be str') if cls.find('.') != -1: package, cls = cls.rsplit('.', 1) module = importlib.import_module(package) if hasattr(module, cls): return module.__name__ + '.' + cls for module in modules: if hasattr(module, cls): return module.__name__ + '.' + cls raise RuntimeError('class not found ' + cls) class State: def __init__(self, autoload=True, default=None): self.autoload = autoload self.default = default class StateMeta(type): def __new__(mcs, name, bases, attrs): current_states = [] for key, value in attrs.items(): if isinstance(value, State): current_states.append((key, value)) current_states.sort(key=lambda x: x[0]) attrs['states'] = OrderedDict(current_states) new_class = super(StateMeta, mcs).__new__(mcs, name, bases, attrs) # Walk through the MRO states = OrderedDict() for base in reversed(new_class.__mro__): if hasattr(base, 'states'): states.update(base.states) new_class.states = states for key, value in states.items(): setattr(new_class, key, value.default) return new_class class Configurable(metaclass=StateMeta): def __init__(self, *args, cmd={}, **kwargs): self.load_all(cmd=cmd, **kwargs) @staticmethod def construct_class_from_config(args): cls = Configurable.extract_class_from_args(args) return cls(**args) @staticmethod def extract_class_from_args(args): cls = args.copy().pop('class') package, cls = cls.rsplit('.', 1) module = importlib.import_module(package) cls = getattr(module, cls) return cls def load_all(self, **kwargs): for name, state in self.states.items(): if state.autoload: self.load(name, **kwargs) def load(self, state_name, **kwargs): # FIXME: kwargs should be filtered # Args passed from command line cmd = kwargs.pop('cmd', dict()) if state_name in kwargs: setattr(self, state_name, self.create_member_from_config( (kwargs[state_name], cmd))) else: setattr(self, state_name, self.states[state_name].default) def create_member_from_config(self, conf): args, cmd = conf if args is None or isinstance(args, (int, float, str)): return args elif isinstance(args, (list, tuple)): return [self.create_member_from_config((subargs, cmd)) for subargs in args] elif isinstance(args, dict): if 'class' in args: cls = self.extract_class_from_args(args) return cls(**args, cmd=cmd) return {key: self.create_member_from_config((subargs, cmd)) for key, subargs in args.items()} else: return args def dump(self): state = {} state['class'] = self.__class__.__module__ + \ '.' + self.__class__.__name__ for name, value in self.states.items(): obj = getattr(self, name) state[name] = self.dump_obj(obj) return state def dump_obj(self, obj): if obj is None: return None elif hasattr(obj, 'dump'): return obj.dump() elif isinstance(obj, (int, float, str)): return obj elif isinstance(obj, (list, tuple)): return [self.dump_obj(value) for value in obj] elif isinstance(obj, dict): return {key: self.dump_obj(value) for key, value in obj.items()} else: return str(obj)
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/config.py
class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count return self
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/average_meter.py
import os import logging import functools import json import time from datetime import datetime # from tensorboardX import SummaryWriter import yaml import cv2 import numpy as np from .config import Configurable, State class Logger(Configurable): SUMMARY_DIR_NAME = 'summaries' VISUALIZE_NAME = 'visualize' LOG_FILE_NAME = 'output.log' ARGS_FILE_NAME = 'args.log' METRICS_FILE_NAME = 'metrics.log' database_dir = State(default='./outputs/') log_dir = State(default='workspace') verbose = State(default=False) level = State(default='info') log_interval = State(default=100) def __init__(self, **kwargs): self.load_all(**kwargs) self._make_storage() cmd = kwargs['cmd'] self.name = cmd['name'] self.log_dir = os.path.join(self.log_dir, self.name) try: self.verbose = cmd['verbose'] except: print('verbose:', self.verbose) if self.verbose: print('Initializing log dir for', self.log_dir) if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) self.message_logger = self._init_message_logger() summary_path = os.path.join(self.log_dir, self.SUMMARY_DIR_NAME) self.tf_board_logger = SummaryWriter(summary_path) self.metrics_writer = open(os.path.join( self.log_dir, self.METRICS_FILE_NAME), 'at') self.timestamp = time.time() self.logged = -1 self.speed = None self.eta_time = None def _make_storage(self): application = os.path.basename(os.getcwd()) storage_dir = os.path.join( self.database_dir, self.log_dir, application) if not os.path.exists(storage_dir): os.makedirs(storage_dir) if not os.path.exists(self.log_dir): os.symlink(storage_dir, self.log_dir) def save_dir(self, dir_name): return os.path.join(self.log_dir, dir_name) def _init_message_logger(self): message_logger = logging.getLogger('messages') message_logger.setLevel( logging.DEBUG if self.verbose else logging.INFO) formatter = logging.Formatter( '[%(levelname)s] [%(asctime)s] %(message)s') std_handler = logging.StreamHandler() std_handler.setLevel(message_logger.level) std_handler.setFormatter(formatter) file_handler = logging.FileHandler( os.path.join(self.log_dir, self.LOG_FILE_NAME)) file_handler.setLevel(message_logger.level) file_handler.setFormatter(formatter) message_logger.addHandler(std_handler) message_logger.addHandler(file_handler) return message_logger def report_time(self, name: str): if self.verbose: self.info(name + " time :" + str(time.time() - self.timestamp)) self.timestamp = time.time() def report_eta(self, steps, total, epoch): self.logged = self.logged % total + 1 steps = steps % total if self.eta_time is None: self.eta_time = time.time() speed = -1 else: eta_time = time.time() speed = eta_time - self.eta_time if self.speed is not None: speed = ((self.logged - 1) * self.speed + speed) / self.logged self.speed = speed self.eta_time = eta_time seconds = (total - steps) * speed hours = seconds // 3600 minutes = (seconds - (hours * 3600)) // 60 seconds = seconds % 60 print('%d/%d batches processed in epoch %d, ETA: %2d:%2d:%2d' % (steps, total, epoch, hours, minutes, seconds), end='\r') def args(self, parameters=None): if parameters is None: with open(os.path.join(self.log_dir, self.ARGS_FILE_NAME), 'rt') as reader: return yaml.load(reader.read()) with open(os.path.join(self.log_dir, self.ARGS_FILE_NAME), 'wt') as writer: yaml.dump(parameters.dump(), writer) def metrics(self, epoch, steps, metrics_dict): results = {} for name, a in metrics_dict.items(): results[name] = {'count': a.count, 'value': float(a.avg)} self.add_scalar('metrics/' + name, a.avg, steps) result_dict = { str(datetime.now()): { 'epoch': epoch, 'steps': steps, **results } } string_result = yaml.dump(result_dict) self.info(string_result) self.metrics_writer.write(string_result) self.metrics_writer.flush() def named_number(self, name, num=None, default=0): if num is None: return int(self.has_signal(name)) or default else: with open(os.path.join(self.log_dir, name), 'w') as writer: writer.write(str(num)) return num epoch = functools.partialmethod(named_number, 'epoch') iter = functools.partialmethod(named_number, 'iter') def message(self, level, content): self.message_logger.__getattribute__(level)(content) def images(self, prefix, image_dict, step): for name, image in image_dict.items(): self.add_image(prefix + '/' + name, image, step, dataformats='HWC') def merge_save_images(self, name, images): for i, image in enumerate(images): if i == 0: result = image else: result = np.concatenate([result, image], 0) cv2.imwrite(os.path.join(self.vis_dir(), name+'.jpg'), result) def vis_dir(self): vis_dir = os.path.join(self.log_dir, self.VISUALIZE_NAME) if not os.path.exists(vis_dir): os.mkdir(vis_dir) return vis_dir def save_image_dict(self, images, max_size=1024): for file_name, image in images.items(): height, width = image.shape[:2] if height > width: actual_height = min(height, max_size) actual_width = int(round(actual_height * width / height)) else: actual_width = min(width, max_size) actual_height = int(round(actual_width * height / width)) image = cv2.resize(image, (actual_width, actual_height)) cv2.imwrite(os.path.join(self.vis_dir(), file_name+'.jpg'), image) def __getattr__(self, name): message_levels = set(['debug', 'info', 'warning', 'error', 'critical']) if name == '__setstate__': raise AttributeError('haha') if name in message_levels: return functools.partial(self.message, name) elif hasattr(self.__dict__.get('tf_board_logger'), name): return self.tf_board_logger.__getattribute__(name) else: super()
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/log.py
from PIL import Image import cv2 import base64 import io import numpy as np def convert(data): if isinstance(data, dict): ndata = {} for key, value in data.items(): nkey = key.decode() if nkey == 'img': img = Image.open(io.BytesIO(value)) img = img.convert('RGB') img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) nvalue = img else: nvalue = convert(value) ndata[nkey] = nvalue return ndata elif isinstance(data, list): return [convert(item) for item in data] elif isinstance(data, bytes): return data.decode() else: return data def to_np(x): return x.cpu().data.numpy()
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/convert.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # File : __init__.py # Author : Zhaoyi Wan <[email protected]> # Date : 21.11.2018 # Last Modified Date: 08.01.2019 # Last Modified By : Zhaoyi Wan <[email protected]> from .log import Logger from .average_meter import AverageMeter from .visualizer import Visualize from .box2seg import resize_with_coordinates, box2seg from .convert import convert
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/__init__.py
import os class SignalMonitor(object): def __init__(self, file_path): self.file_path = file_path def get_signal(self): if self.file_path is None: return None if os.path.exists(self.file_path): with open(self.file_path) as f: data = self.file.read() os.remove(f) return data else: return None
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/signal_monitor.py
import cv2 import numpy as np from scipy import interpolate def intersection(x, p1, p2): x1, y1 = p1 x2, y2 = p2 if x2 == x1: return 0 k = (x - x1) / (x2 - x1) return k * (y2 - y1) + y1 def midpoint(p1, p2, typed=float): return [typed((p1[0] + p2[0]) / 2), typed((p1[1] + p2[1]) / 2)] def resize_with_coordinates(image, width, height, coordinates): original_height, original_width = image.shape[:2] resized_image = cv2.resize(image, (width, height)) if coordinates is not None: assert coordinates.ndim == 2 assert coordinates.shape[-1] == 2 rate_x = width / original_width rate_y = height / original_height coordinates = coordinates * (rate_x, rate_y) return resized_image, coordinates def box2seg(image, boxes, label): height, width = image.shape[:2] mask = np.zeros((height, width), dtype=np.float32) seg = np.zeros((height, width), dtype=np.float32) points = [] for box_index in range(boxes.shape[0]): box = boxes[box_index, :, :] # 4x2 left_top = box[0] right_top = box[1] right_bottom = box[2] left_bottom = box[3] left = [(left_top[0] + left_bottom[0]) / 2, (left_top[1] + left_bottom[1]) / 2] right = [(right_top[0] + right_bottom[0]) / 2, (right_top[1] + right_bottom[1]) / 2] center = midpoint(left, right) points.append(midpoint(left, center)) points.append(midpoint(right, center)) poly = np.array([midpoint(left_top, center), midpoint(right_top, center), midpoint(right_bottom, center), midpoint(left_bottom, center) ]) seg = cv2.fillPoly(seg, [poly.reshape(4, 1, 2).astype(np.int32)], int(label[box_index])) left_y = intersection(0, points[0], points[1]) right_y = intersection(width, points[-1], points[-2]) points.insert(0, [0, left_y]) points.append([width, right_y]) points = np.array(points) f = interpolate.interp1d(points[:, 0], points[:, 1], fill_value='extrapolate') xnew = np.arange(0, width, 1) ynew = f(xnew).clip(0, height-1) for x in range(width - 1): mask[int(ynew[x]), x] = 1 return ynew.reshape(1, -1).round(), seg
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/box2seg.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # File : visualizer.py # Author : Zhaoyi Wan <[email protected]> # Date : 08.01.2019 # Last Modified Date: 02.12.2019 # Last Modified By : Minghui Liao import torch import numpy as np import cv2 class Visualize: @classmethod def visualize(cls, x): dimension = len(x.shape) if dimension == 2: pass elif dimension == 3: pass @classmethod def to_np(cls, x): return x.cpu().data.numpy() @classmethod def visualize_weights(cls, tensor, format='HW', normalize=True): if isinstance(tensor, torch.Tensor): x = cls.to_np(tensor.permute(format.index('H'), format.index('W'))) else: x = tensor.transpose(format.index('H'), format.index('W')) if normalize: x = (x - x.min()) / (x.max() - x.min()) # return np.tile(x * 255., (3, 1, 1)).swapaxes(0, 2).swapaxes(1, 0).astype(np.uint8) return cv2.applyColorMap((x * 255).astype(np.uint8), cv2.COLORMAP_JET) @classmethod def visualize_points(cls, image, tensor, radius=5, normalized=True): if isinstance(tensor, torch.Tensor): points = cls.to_np(tensor) else: points = tensor if normalized: points = points * image.shape[:2][::-1] for i in range(points.shape[0]): color = np.random.randint( 0, 255, (3, ), dtype=np.uint8).astype(np.float) image = cv2.circle(image, tuple(points[i].astype(np.int32).tolist()), radius, color, thickness=radius//2) return image @classmethod def visualize_heatmap(cls, tensor, format='CHW'): if isinstance(tensor, torch.Tensor): x = cls.to_np(tensor.permute(format.index('H'), format.index('W'), format.index('C'))) else: x = tensor.transpose( format.index('H'), format.index('W'), format.index('C')) canvas = np.zeros((x.shape[0], x.shape[1], 3), dtype=np.float) for c in range(0, x.shape[-1]): color = np.random.randint( 0, 255, (3, ), dtype=np.uint8).astype(np.float) canvas += np.tile(x[:, :, c], (3, 1, 1) ).swapaxes(0, 2).swapaxes(1, 0) * color canvas = canvas.astype(np.uint8) return canvas @classmethod def visualize_classes(cls, x): canvas = np.zeros((x.shape[0], x.shape[1], 3), dtype=np.uint8) for c in range(int(x.max())): color = np.random.randint( 0, 255, (3, ), dtype=np.uint8).astype(np.float) canvas[np.where(x == c)] = color return canvas @classmethod def visualize_grid(cls, x, y, stride=16, color=(0, 0, 255), canvas=None): h, w = x.shape if canvas is None: canvas = np.zeros((h, w, 3), dtype=np.uint8) # canvas = np.concatenate([canvas, canvas], axis=1) i, j = 0, 0 while i < w: j = 0 while j < h: canvas = cv2.circle(canvas, (int(x[i, j] * w + 0.5), int(y[i, j] * h + 0.5)), radius=max(stride//4, 1), color=color, thickness=stride//8) j += stride i += stride return canvas @classmethod def visualize_rect(cls, canvas, _rect, color=(0, 0, 255)): rect = (_rect + 0.5).astype(np.int32) return cv2.rectangle(canvas, (rect[0], rect[1]), (rect[2], rect[3]), color)
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/visualizer.py
#!/usr/bin/env mdl import os BASE_DIR = os.path.dirname(os.path.realpath(__file__)) import time import json import select import traceback import socket from multiprocessing import Process, Pipe import gevent from gevent.pywsgi import WSGIServer from geventwebsocket.handler import WebSocketHandler from flask import Flask, request, render_template, abort def log_important_msg(msg, *, padding=3): msg_len = len(msg) width = msg_len + padding * 2 + 2 print('#' * width) print('#' + ' ' * (width - 2) + '#') print('#' + ' ' * padding + msg + ' ' * padding + '#') print('#' + ' ' * (width - 2) + '#') print('#' * width) def hint_url(url, port): log_important_msg( 'The server is running at: {}'.format(url)) def _set_server(conn, name='webcv2', port=7788): package = None package_alive = False app = Flask(name) app.root_path = BASE_DIR @app.route('/') def index(): return render_template('index.html', title=name) @app.route('/stream') def stream(): def poll_ws(ws, delay): return len(select.select([ws.stream.handler.rfile], [], [], delay / 1000.)[0]) > 0 if request.environ.get('wsgi.websocket'): ws = request.environ['wsgi.websocket'] if ws is None: abort(404) else: should_send = True while not ws.closed: global package global package_alive if conn.poll(): package = conn.recv() package_alive = True should_send = True if not should_send: continue should_send = False if package is None: ws.send(None) else: delay, info_lst = package ws.send(json.dumps((time.time(), package_alive, delay, info_lst))) if package_alive: if delay <= 0 or poll_ws(ws, delay): message = ws.receive() if ws.closed or message is None: break try: if isinstance(message, bytes): message = message.decode('utf8') message = int(message) except: traceback.print_exc() message = -1 else: message = -1 conn.send(message) package_alive = False return "" http_server = WSGIServer(('', port), app, handler_class=WebSocketHandler) hint_url('http://{}:{}'.format(socket.getfqdn(), port), port) http_server.serve_forever() def get_server(name='webcv2', port=7788): conn_server, conn_factory = Pipe() p_server = Process( target=_set_server, args=(conn_server,), kwargs=dict( name=name, port=port, ), ) p_server.daemon = True p_server.start() return p_server, conn_factory
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/webcv2/server.py
#!/usr/bin/env mdl class WebCV2: def __init__(self): import cv2 self._cv2 = cv2 from .manager import global_manager as gm self._gm = gm def __getattr__(self, name): if hasattr(self._gm, name): return getattr(self._gm, name) elif hasattr(self._cv2, name): return getattr(self._cv2, name) else: raise AttributeError import sys sys.modules[__name__] = WebCV2()
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/webcv2/__init__.py
#!/usr/bin/env mdl import socket import base64 import cv2 import numpy as np from collections import OrderedDict from .server import get_server def jpeg_encode(img): return cv2.imencode('.png', img)[1] def get_free_port(rng, low=2000, high=10000): in_use = True while in_use: port = rng.randint(high - low) + low in_use = False s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind(("0.0.0.0", port)) except socket.error as e: if e.errno == 98: # port already in use in_use = True s.close() return port class Manager: def __init__(self, img_encode_method=jpeg_encode, rng=None): self._queue = OrderedDict() self._server = None self.img_encode_method = img_encode_method if rng is None: rng = np.random.RandomState(self.get_default_seed()) self.rng = rng def get_default_seed(self): return 0 def imshow(self, title, img): data = self.img_encode_method(img) data = base64.b64encode(data) data = data.decode('utf8') self._queue[title] = data def waitKey(self, delay=0): if self._server is None: self.port = get_free_port(self.rng) self._server, self._conn = get_server(port=self.port) self._conn.send([delay, list(self._queue.items())]) # self._queue = OrderedDict() return self._conn.recv() global_manager = Manager()
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/webcv2/manager.py
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/icdar2015_eval/__init__.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import math from collections import namedtuple import numpy as np from shapely.geometry import Polygon class DetectionMTWI2018Evaluator(object): def __init__( self, area_recall_constraint=0.7, area_precision_constraint=0.7, ev_param_ind_center_diff_thr=1, ): self.area_recall_constraint = area_recall_constraint self.area_precision_constraint = area_precision_constraint self.ev_param_ind_center_diff_thr = ev_param_ind_center_diff_thr def evaluate_image(self, gt, pred): def get_union(pD,pG): return Polygon(pD).union(Polygon(pG)).area def get_intersection_over_union(pD,pG): return get_intersection(pD, pG) / get_union(pD, pG) def get_intersection(pD,pG): return Polygon(pD).intersection(Polygon(pG)).area def one_to_one_match(row, col): cont = 0 for j in range(len(recallMat[0])): if recallMat[row,j] >= self.area_recall_constraint and precisionMat[row,j] >= self.area_precision_constraint: cont = cont +1 if (cont != 1): return False cont = 0 for i in range(len(recallMat)): if recallMat[i,col] >= self.area_recall_constraint and precisionMat[i,col] >= self.area_precision_constraint: cont = cont +1 if (cont != 1): return False if recallMat[row,col] >= self.area_recall_constraint and precisionMat[row,col] >= self.area_precision_constraint: return True return False def one_to_many_match(gtNum): many_sum = 0 detRects = [] for detNum in range(len(recallMat[0])): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and detNum not in detDontCareRectsNum: if precisionMat[gtNum,detNum] >= self.area_precision_constraint: many_sum += recallMat[gtNum,detNum] detRects.append(detNum) if round(many_sum,4) >= self.area_recall_constraint: return True,detRects else: return False,[] def many_to_one_match(detNum): many_sum = 0 gtRects = [] for gtNum in range(len(recallMat)): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum: if recallMat[gtNum,detNum] >= self.area_recall_constraint: many_sum += precisionMat[gtNum,detNum] gtRects.append(gtNum) if round(many_sum,4) >= self.area_precision_constraint: return True,gtRects else: return False,[] def center_distance(r1, r2): return ((np.mean(r1, axis=0) - np.mean(r2, axis=0)) ** 2).sum() ** 0.5 def diag(r): r = np.array(r) return ((r[:, 0].max() - r[:, 0].min()) ** 2 + (r[:, 1].max() - r[:, 1].min()) ** 2) ** 0.5 perSampleMetrics = {} recall = 0 precision = 0 hmean = 0 recallAccum = 0. precisionAccum = 0. gtRects = [] detRects = [] gtPolPoints = [] detPolPoints = [] gtDontCareRectsNum = []#Array of Ground Truth Rectangles' keys marked as don't Care detDontCareRectsNum = []#Array of Detected Rectangles' matched with a don't Care GT pairs = [] evaluationLog = "" recallMat = np.empty([1,1]) precisionMat = np.empty([1,1]) for n in range(len(gt)): points = gt[n]['points'] # transcription = gt[n]['text'] dontCare = gt[n]['ignore'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue gtRects.append(points) gtPolPoints.append(points) if dontCare: gtDontCareRectsNum.append( len(gtRects)-1 ) evaluationLog += "GT rectangles: " + str(len(gtRects)) + (" (" + str(len(gtDontCareRectsNum)) + " don't care)\n" if len(gtDontCareRectsNum)>0 else "\n") for n in range(len(pred)): points = pred[n]['points'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue detRect = points detRects.append(detRect) detPolPoints.append(points) if len(gtDontCareRectsNum)>0 : for dontCareRectNum in gtDontCareRectsNum: dontCareRect = gtRects[dontCareRectNum] intersected_area = get_intersection(dontCareRect,detRect) rdDimensions = Polygon(detRect).area if (rdDimensions==0) : precision = 0 else: precision= intersected_area / rdDimensions if (precision > 0.5): detDontCareRectsNum.append( len(detRects)-1 ) break evaluationLog += "DET rectangles: " + str(len(detRects)) + (" (" + str(len(detDontCareRectsNum)) + " don't care)\n" if len(detDontCareRectsNum)>0 else "\n") if len(gtRects)==0: recall = 1 precision = 0 if len(detRects)>0 else 1 if len(detRects)>0: #Calculate recall and precision matrixs outputShape=[len(gtRects),len(detRects)] recallMat = np.empty(outputShape) precisionMat = np.empty(outputShape) gtRectMat = np.zeros(len(gtRects),np.int8) detRectMat = np.zeros(len(detRects),np.int8) for gtNum in range(len(gtRects)): for detNum in range(len(detRects)): rG = gtRects[gtNum] rD = detRects[detNum] intersected_area = get_intersection(rG,rD) rgDimensions = Polygon(rG).area rdDimensions = Polygon(rD).area recallMat[gtNum,detNum] = 0 if rgDimensions==0 else intersected_area / rgDimensions precisionMat[gtNum,detNum] = 0 if rdDimensions==0 else intersected_area / rdDimensions # Find one-to-one matches evaluationLog += "Find one-to-one matches\n" for gtNum in range(len(gtRects)): for detNum in range(len(detRects)): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum and detNum not in detDontCareRectsNum : match = one_to_one_match(gtNum, detNum) if match is True : #in deteval we have to make other validation before mark as one-to-one rG = gtRects[gtNum] rD = detRects[detNum] normDist = center_distance(rG, rD); normDist /= diag(rG) + diag(rD); normDist *= 2.0; if normDist < self.ev_param_ind_center_diff_thr: gtRectMat[gtNum] = 1 detRectMat[detNum] = 1 recallAccum += 1.0 precisionAccum += 1.0 pairs.append({'gt':gtNum,'det':detNum,'type':'OO'}) evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(detNum) + "\n" else: evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(detNum) + " normDist: " + str(normDist) + " \n" # Find one-to-many matches evaluationLog += "Find one-to-many matches\n" for gtNum in range(len(gtRects)): if gtNum not in gtDontCareRectsNum: match,matchesDet = one_to_many_match(gtNum) if match is True : gtRectMat[gtNum] = 1 recallAccum += 1.0 precisionAccum += len(matchesDet) / (1 + math.log(len(matchesDet))) pairs.append({'gt':gtNum,'det':matchesDet,'type': 'OO' if len(matchesDet)==1 else 'OM'}) for detNum in matchesDet : detRectMat[detNum] = 1 evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(matchesDet) + "\n" # Find many-to-one matches evaluationLog += "Find many-to-one matches\n" for detNum in range(len(detRects)): if detNum not in detDontCareRectsNum: match,matchesGt = many_to_one_match(detNum) if match is True : detRectMat[detNum] = 1 recallAccum += len(matchesGt) / (1 + math.log(len(matchesGt))) precisionAccum += 1.0 pairs.append({'gt':matchesGt,'det':detNum,'type': 'OO' if len(matchesGt)==1 else 'MO'}) for gtNum in matchesGt : gtRectMat[gtNum] = 1 evaluationLog += "Match GT #" + str(matchesGt) + " with Det #" + str(detNum) + "\n" numGtCare = (len(gtRects) - len(gtDontCareRectsNum)) if numGtCare == 0: recall = float(1) precision = float(0) if len(detRects)>0 else float(1) else: recall = float(recallAccum) / numGtCare precision = float(0) if (len(detRects) - len(detDontCareRectsNum))==0 else float(precisionAccum) / (len(detRects) - len(detDontCareRectsNum)) hmean = 0 if (precision + recall)==0 else 2.0 * precision * recall / (precision + recall) numGtCare = len(gtRects) - len(gtDontCareRectsNum) numDetCare = len(detRects) - len(detDontCareRectsNum) perSampleMetrics = { 'precision':precision, 'recall':recall, 'hmean':hmean, 'pairs':pairs, 'recallMat':[] if len(detRects)>100 else recallMat.tolist(), 'precisionMat':[] if len(detRects)>100 else precisionMat.tolist(), 'gtPolPoints':gtPolPoints, 'detPolPoints':detPolPoints, 'gtCare': numGtCare, 'detCare': numDetCare, 'gtDontCare':gtDontCareRectsNum, 'detDontCare':detDontCareRectsNum, 'recallAccum':recallAccum, 'precisionAccum':precisionAccum, 'evaluationLog': evaluationLog } return perSampleMetrics def combine_results(self, results): numGt = 0 numDet = 0 methodRecallSum = 0 methodPrecisionSum = 0 for result in results: numGt += result['gtCare'] numDet += result['detCare'] methodRecallSum += result['recallAccum'] methodPrecisionSum += result['precisionAccum'] methodRecall = 0 if numGt==0 else methodRecallSum/numGt methodPrecision = 0 if numDet==0 else methodPrecisionSum/numDet methodHmean = 0 if methodRecall + methodPrecision==0 else 2* methodRecall * methodPrecision / (methodRecall + methodPrecision) methodMetrics = {'precision':methodPrecision, 'recall':methodRecall,'hmean': methodHmean } return methodMetrics if __name__=='__main__': evaluator = DetectionICDAR2013Evaluator() gts = [[{ 'points': [(0, 0), (1, 0), (1, 1), (0, 1)], 'text': 1234, 'ignore': False, }, { 'points': [(2, 2), (3, 2), (3, 3), (2, 3)], 'text': 5678, 'ignore': True, }]] preds = [[{ 'points': [(0.1, 0.1), (1, 0), (1, 1), (0, 1)], 'text': 123, 'ignore': False, }]] results = [] for gt, pred in zip(gts, preds): results.append(evaluator.evaluate_image(gt, pred)) metrics = evaluator.combine_results(results) print(metrics)
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/icdar2015_eval/detection/mtwi2018.py
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/icdar2015_eval/detection/__init__.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import math from collections import namedtuple import numpy as np from shapely.geometry import Polygon class DetectionICDAR2013Evaluator(object): def __init__( self, area_recall_constraint=0.8, area_precision_constraint=0.4, ev_param_ind_center_diff_thr=1, mtype_oo_o=1.0, mtype_om_o=0.8, mtype_om_m=1.0 ): self.area_recall_constraint = area_recall_constraint self.area_precision_constraint = area_precision_constraint self.ev_param_ind_center_diff_thr = ev_param_ind_center_diff_thr self.mtype_oo_o = mtype_oo_o self.mtype_om_o = mtype_om_o self.mtype_om_m = mtype_om_m def evaluate_image(self, gt, pred): def get_union(pD,pG): return Polygon(pD).union(Polygon(pG)).area def get_intersection_over_union(pD,pG): return get_intersection(pD, pG) / get_union(pD, pG) def get_intersection(pD,pG): return Polygon(pD).intersection(Polygon(pG)).area def one_to_one_match(row, col): cont = 0 for j in range(len(recallMat[0])): if recallMat[row,j] >= self.area_recall_constraint and precisionMat[row,j] >= self.area_precision_constraint: cont = cont +1 if (cont != 1): return False cont = 0 for i in range(len(recallMat)): if recallMat[i,col] >= self.area_recall_constraint and precisionMat[i,col] >= self.area_precision_constraint: cont = cont +1 if (cont != 1): return False if recallMat[row,col] >= self.area_recall_constraint and precisionMat[row,col] >= self.area_precision_constraint: return True return False def one_to_many_match(gtNum): many_sum = 0 detRects = [] for detNum in range(len(recallMat[0])): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and detNum not in detDontCareRectsNum: if precisionMat[gtNum,detNum] >= self.area_precision_constraint: many_sum += recallMat[gtNum,detNum] detRects.append(detNum) if round(many_sum,4) >= self.area_recall_constraint: return True,detRects else: return False,[] def many_to_one_match(detNum): many_sum = 0 gtRects = [] for gtNum in range(len(recallMat)): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum: if recallMat[gtNum,detNum] >= self.area_recall_constraint: many_sum += precisionMat[gtNum,detNum] gtRects.append(gtNum) if round(many_sum,4) >= self.area_precision_constraint: return True,gtRects else: return False,[] def center_distance(r1, r2): return ((np.mean(r1, axis=0) - np.mean(r2, axis=0)) ** 2).sum() ** 0.5 def diag(r): r = np.array(r) return ((r[:, 0].max() - r[:, 0].min()) ** 2 + (r[:, 1].max() - r[:, 1].min()) ** 2) ** 0.5 perSampleMetrics = {} recall = 0 precision = 0 hmean = 0 recallAccum = 0. precisionAccum = 0. gtRects = [] detRects = [] gtPolPoints = [] detPolPoints = [] gtDontCareRectsNum = []#Array of Ground Truth Rectangles' keys marked as don't Care detDontCareRectsNum = []#Array of Detected Rectangles' matched with a don't Care GT pairs = [] evaluationLog = "" recallMat = np.empty([1,1]) precisionMat = np.empty([1,1]) for n in range(len(gt)): points = gt[n]['points'] # transcription = gt[n]['text'] dontCare = gt[n]['ignore'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue gtRects.append(points) gtPolPoints.append(points) if dontCare: gtDontCareRectsNum.append( len(gtRects)-1 ) evaluationLog += "GT rectangles: " + str(len(gtRects)) + (" (" + str(len(gtDontCareRectsNum)) + " don't care)\n" if len(gtDontCareRectsNum)>0 else "\n") for n in range(len(pred)): points = pred[n]['points'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue detRect = points detRects.append(detRect) detPolPoints.append(points) if len(gtDontCareRectsNum)>0 : for dontCareRectNum in gtDontCareRectsNum: dontCareRect = gtRects[dontCareRectNum] intersected_area = get_intersection(dontCareRect,detRect) rdDimensions = Polygon(detRect).area if (rdDimensions==0) : precision = 0 else: precision= intersected_area / rdDimensions if (precision > self.area_precision_constraint): detDontCareRectsNum.append( len(detRects)-1 ) break evaluationLog += "DET rectangles: " + str(len(detRects)) + (" (" + str(len(detDontCareRectsNum)) + " don't care)\n" if len(detDontCareRectsNum)>0 else "\n") if len(gtRects)==0: recall = 1 precision = 0 if len(detRects)>0 else 1 if len(detRects)>0: #Calculate recall and precision matrixs outputShape=[len(gtRects),len(detRects)] recallMat = np.empty(outputShape) precisionMat = np.empty(outputShape) gtRectMat = np.zeros(len(gtRects),np.int8) detRectMat = np.zeros(len(detRects),np.int8) for gtNum in range(len(gtRects)): for detNum in range(len(detRects)): rG = gtRects[gtNum] rD = detRects[detNum] intersected_area = get_intersection(rG,rD) rgDimensions = Polygon(rG).area rdDimensions = Polygon(rD).area recallMat[gtNum,detNum] = 0 if rgDimensions==0 else intersected_area / rgDimensions precisionMat[gtNum,detNum] = 0 if rdDimensions==0 else intersected_area / rdDimensions # Find one-to-one matches evaluationLog += "Find one-to-one matches\n" for gtNum in range(len(gtRects)): for detNum in range(len(detRects)): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum and detNum not in detDontCareRectsNum : match = one_to_one_match(gtNum, detNum) if match is True : #in deteval we have to make other validation before mark as one-to-one rG = gtRects[gtNum] rD = detRects[detNum] normDist = center_distance(rG, rD); normDist /= diag(rG) + diag(rD); normDist *= 2.0; if normDist < self.ev_param_ind_center_diff_thr: gtRectMat[gtNum] = 1 detRectMat[detNum] = 1 recallAccum += self.mtype_oo_o precisionAccum += self.mtype_oo_o pairs.append({'gt':gtNum,'det':detNum,'type':'OO'}) evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(detNum) + "\n" else: evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(detNum) + " normDist: " + str(normDist) + " \n" # Find one-to-many matches evaluationLog += "Find one-to-many matches\n" for gtNum in range(len(gtRects)): if gtNum not in gtDontCareRectsNum: match,matchesDet = one_to_many_match(gtNum) if match is True : evaluationLog += "num_overlaps_gt=" + str(num_overlaps_gt(gtNum)) gtRectMat[gtNum] = 1 recallAccum += (self.mtype_oo_o if len(matchesDet)==1 else self.mtype_om_o) precisionAccum += (self.mtype_oo_o if len(matchesDet)==1 else self.mtype_om_o*len(matchesDet)) pairs.append({'gt':gtNum,'det':matchesDet,'type': 'OO' if len(matchesDet)==1 else 'OM'}) for detNum in matchesDet : detRectMat[detNum] = 1 evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(matchesDet) + "\n" # Find many-to-one matches evaluationLog += "Find many-to-one matches\n" for detNum in range(len(detRects)): if detNum not in detDontCareRectsNum: match,matchesGt = many_to_one_match(detNum) if match is True : detRectMat[detNum] = 1 recallAccum += (self.mtype_oo_o if len(matchesGt)==1 else self.mtype_om_m*len(matchesGt)) precisionAccum += (self.mtype_oo_o if len(matchesGt)==1 else self.mtype_om_m) pairs.append({'gt':matchesGt,'det':detNum,'type': 'OO' if len(matchesGt)==1 else 'MO'}) for gtNum in matchesGt : gtRectMat[gtNum] = 1 evaluationLog += "Match GT #" + str(matchesGt) + " with Det #" + str(detNum) + "\n" numGtCare = (len(gtRects) - len(gtDontCareRectsNum)) if numGtCare == 0: recall = float(1) precision = float(0) if len(detRects)>0 else float(1) else: recall = float(recallAccum) / numGtCare precision = float(0) if (len(detRects) - len(detDontCareRectsNum))==0 else float(precisionAccum) / (len(detRects) - len(detDontCareRectsNum)) hmean = 0 if (precision + recall)==0 else 2.0 * precision * recall / (precision + recall) numGtCare = len(gtRects) - len(gtDontCareRectsNum) numDetCare = len(detRects) - len(detDontCareRectsNum) perSampleMetrics = { 'precision':precision, 'recall':recall, 'hmean':hmean, 'pairs':pairs, 'recallMat':[] if len(detRects)>100 else recallMat.tolist(), 'precisionMat':[] if len(detRects)>100 else precisionMat.tolist(), 'gtPolPoints':gtPolPoints, 'detPolPoints':detPolPoints, 'gtCare': numGtCare, 'detCare': numDetCare, 'gtDontCare':gtDontCareRectsNum, 'detDontCare':detDontCareRectsNum, 'recallAccum':recallAccum, 'precisionAccum':precisionAccum, 'evaluationLog': evaluationLog } return perSampleMetrics def combine_results(self, results): numGt = 0 numDet = 0 methodRecallSum = 0 methodPrecisionSum = 0 for result in results: numGt += result['gtCare'] numDet += result['detCare'] methodRecallSum += result['recallAccum'] methodPrecisionSum += result['precisionAccum'] methodRecall = 0 if numGt==0 else methodRecallSum/numGt methodPrecision = 0 if numDet==0 else methodPrecisionSum/numDet methodHmean = 0 if methodRecall + methodPrecision==0 else 2* methodRecall * methodPrecision / (methodRecall + methodPrecision) methodMetrics = {'precision':methodPrecision, 'recall':methodRecall,'hmean': methodHmean } return methodMetrics if __name__=='__main__': evaluator = DetectionICDAR2013Evaluator() gts = [[{ 'points': [(0, 0), (1, 0), (1, 1), (0, 1)], 'text': 1234, 'ignore': False, }, { 'points': [(2, 2), (3, 2), (3, 3), (2, 3)], 'text': 5678, 'ignore': True, }]] preds = [[{ 'points': [(0.1, 0.1), (1, 0), (1, 1), (0, 1)], 'text': 123, 'ignore': False, }]] results = [] for gt, pred in zip(gts, preds): results.append(evaluator.evaluate_image(gt, pred)) metrics = evaluator.combine_results(results) print(metrics)
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/icdar2015_eval/detection/icdar2013.py
#!/usr/bin/env python # -*- coding: utf-8 -*- from collections import namedtuple import numpy as np from shapely.geometry import Polygon class DetectionIoUEvaluator(object): def __init__(self, iou_constraint=0.5, area_precision_constraint=0.5): self.iou_constraint = iou_constraint self.area_precision_constraint = area_precision_constraint def evaluate_image(self, gt, pred): def get_union(pD, pG): return Polygon(pD).union(Polygon(pG)).area def get_intersection_over_union(pD, pG): return get_intersection(pD, pG) / get_union(pD, pG) def get_intersection(pD, pG): return Polygon(pD).intersection(Polygon(pG)).area def compute_ap(confList, matchList, numGtCare): correct = 0 AP = 0 if len(confList) > 0: confList = np.array(confList) matchList = np.array(matchList) sorted_ind = np.argsort(-confList) confList = confList[sorted_ind] matchList = matchList[sorted_ind] for n in range(len(confList)): match = matchList[n] if match: correct += 1 AP += float(correct)/(n + 1) if numGtCare > 0: AP /= numGtCare return AP perSampleMetrics = {} matchedSum = 0 Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax') numGlobalCareGt = 0 numGlobalCareDet = 0 arrGlobalConfidences = [] arrGlobalMatches = [] recall = 0 precision = 0 hmean = 0 detMatched = 0 iouMat = np.empty([1, 1]) gtPols = [] detPols = [] gtPolPoints = [] detPolPoints = [] # Array of Ground Truth Polygons' keys marked as don't Care gtDontCarePolsNum = [] # Array of Detected Polygons' matched with a don't Care GT detDontCarePolsNum = [] pairs = [] detMatchedNums = [] arrSampleConfidences = [] arrSampleMatch = [] evaluationLog = "" for n in range(len(gt)): points = gt[n]['points'] # transcription = gt[n]['text'] dontCare = gt[n]['ignore'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue gtPol = points gtPols.append(gtPol) gtPolPoints.append(points) if dontCare: gtDontCarePolsNum.append(len(gtPols)-1) evaluationLog += "GT polygons: " + str(len(gtPols)) + (" (" + str(len( gtDontCarePolsNum)) + " don't care)\n" if len(gtDontCarePolsNum) > 0 else "\n") for n in range(len(pred)): points = pred[n]['points'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue detPol = points detPols.append(detPol) detPolPoints.append(points) if len(gtDontCarePolsNum) > 0: for dontCarePol in gtDontCarePolsNum: dontCarePol = gtPols[dontCarePol] intersected_area = get_intersection(dontCarePol, detPol) pdDimensions = Polygon(detPol).area precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions if (precision > self.area_precision_constraint): detDontCarePolsNum.append(len(detPols)-1) break evaluationLog += "DET polygons: " + str(len(detPols)) + (" (" + str(len( detDontCarePolsNum)) + " don't care)\n" if len(detDontCarePolsNum) > 0 else "\n") if len(gtPols) > 0 and len(detPols) > 0: # Calculate IoU and precision matrixs outputShape = [len(gtPols), len(detPols)] iouMat = np.empty(outputShape) gtRectMat = np.zeros(len(gtPols), np.int8) detRectMat = np.zeros(len(detPols), np.int8) for gtNum in range(len(gtPols)): for detNum in range(len(detPols)): pG = gtPols[gtNum] pD = detPols[detNum] iouMat[gtNum, detNum] = get_intersection_over_union(pD, pG) for gtNum in range(len(gtPols)): for detNum in range(len(detPols)): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum: if iouMat[gtNum, detNum] > self.iou_constraint: gtRectMat[gtNum] = 1 detRectMat[detNum] = 1 detMatched += 1 pairs.append({'gt': gtNum, 'det': detNum}) detMatchedNums.append(detNum) evaluationLog += "Match GT #" + \ str(gtNum) + " with Det #" + str(detNum) + "\n" numGtCare = (len(gtPols) - len(gtDontCarePolsNum)) numDetCare = (len(detPols) - len(detDontCarePolsNum)) if numGtCare == 0: recall = float(1) precision = float(0) if numDetCare > 0 else float(1) else: recall = float(detMatched) / numGtCare precision = 0 if numDetCare == 0 else float( detMatched) / numDetCare hmean = 0 if (precision + recall) == 0 else 2.0 * \ precision * recall / (precision + recall) matchedSum += detMatched numGlobalCareGt += numGtCare numGlobalCareDet += numDetCare perSampleMetrics = { 'precision': precision, 'recall': recall, 'hmean': hmean, 'pairs': pairs, 'iouMat': [] if len(detPols) > 100 else iouMat.tolist(), 'gtPolPoints': gtPolPoints, 'detPolPoints': detPolPoints, 'gtCare': numGtCare, 'detCare': numDetCare, 'gtDontCare': gtDontCarePolsNum, 'detDontCare': detDontCarePolsNum, 'detMatched': detMatched, 'evaluationLog': evaluationLog } return perSampleMetrics def combine_results(self, results): numGlobalCareGt = 0 numGlobalCareDet = 0 matchedSum = 0 for result in results: numGlobalCareGt += result['gtCare'] numGlobalCareDet += result['detCare'] matchedSum += result['detMatched'] methodRecall = 0 if numGlobalCareGt == 0 else float( matchedSum)/numGlobalCareGt methodPrecision = 0 if numGlobalCareDet == 0 else float( matchedSum)/numGlobalCareDet methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \ methodRecall * methodPrecision / (methodRecall + methodPrecision) methodMetrics = {'precision': methodPrecision, 'recall': methodRecall, 'hmean': methodHmean} return methodMetrics if __name__ == '__main__': evaluator = DetectionIoUEvaluator() gts = [[{ 'points': [(0, 0), (1, 0), (1, 1), (0, 1)], 'text': 1234, 'ignore': False, }, { 'points': [(2, 2), (3, 2), (3, 3), (2, 3)], 'text': 5678, 'ignore': False, }]] preds = [[{ 'points': [(0.1, 0.1), (1, 0), (1, 1), (0, 1)], 'text': 123, 'ignore': False, }]] results = [] for gt, pred in zip(gts, preds): results.append(evaluator.evaluate_image(gt, pred)) metrics = evaluator.combine_results(results) print(metrics)
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/icdar2015_eval/detection/iou.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import math from collections import namedtuple import numpy as np from shapely.geometry import Polygon class DetectionDetEvalEvaluator(object): def __init__( self, area_recall_constraint=0.8, area_precision_constraint=0.4, ev_param_ind_center_diff_thr=1, mtype_oo_o=1.0, mtype_om_o=0.8, mtype_om_m=1.0 ): self.area_recall_constraint = area_recall_constraint self.area_precision_constraint = area_precision_constraint self.ev_param_ind_center_diff_thr = ev_param_ind_center_diff_thr self.mtype_oo_o = mtype_oo_o self.mtype_om_o = mtype_om_o self.mtype_om_m = mtype_om_m def evaluate_image(self, gt, pred): def get_union(pD,pG): return Polygon(pD).union(Polygon(pG)).area def get_intersection_over_union(pD,pG): return get_intersection(pD, pG) / get_union(pD, pG) def get_intersection(pD,pG): return Polygon(pD).intersection(Polygon(pG)).area def one_to_one_match(row, col): cont = 0 for j in range(len(recallMat[0])): if recallMat[row,j] >= self.area_recall_constraint and precisionMat[row,j] >= self.area_precision_constraint: cont = cont +1 if (cont != 1): return False cont = 0 for i in range(len(recallMat)): if recallMat[i,col] >= self.area_recall_constraint and precisionMat[i,col] >= self.area_precision_constraint: cont = cont +1 if (cont != 1): return False if recallMat[row,col] >= self.area_recall_constraint and precisionMat[row,col] >= self.area_precision_constraint: return True return False def num_overlaps_gt(gtNum): cont = 0 for detNum in range(len(detRects)): if detNum not in detDontCareRectsNum: if recallMat[gtNum,detNum] > 0 : cont = cont +1 return cont def num_overlaps_det(detNum): cont = 0 for gtNum in range(len(recallMat)): if gtNum not in gtDontCareRectsNum: if recallMat[gtNum,detNum] > 0 : cont = cont +1 return cont def is_single_overlap(row, col): if num_overlaps_gt(row)==1 and num_overlaps_det(col)==1: return True else: return False def one_to_many_match(gtNum): many_sum = 0 detRects = [] for detNum in range(len(recallMat[0])): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and detNum not in detDontCareRectsNum: if precisionMat[gtNum,detNum] >= self.area_precision_constraint: many_sum += recallMat[gtNum,detNum] detRects.append(detNum) if round(many_sum,4) >= self.area_recall_constraint: return True,detRects else: return False,[] def many_to_one_match(detNum): many_sum = 0 gtRects = [] for gtNum in range(len(recallMat)): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum: if recallMat[gtNum,detNum] >= self.area_recall_constraint: many_sum += precisionMat[gtNum,detNum] gtRects.append(gtNum) if round(many_sum,4) >= self.area_precision_constraint: return True,gtRects else: return False,[] def center_distance(r1, r2): return ((np.mean(r1, axis=0) - np.mean(r2, axis=0)) ** 2).sum() ** 0.5 def diag(r): r = np.array(r) return ((r[:, 0].max() - r[:, 0].min()) ** 2 + (r[:, 1].max() - r[:, 1].min()) ** 2) ** 0.5 perSampleMetrics = {} recall = 0 precision = 0 hmean = 0 recallAccum = 0. precisionAccum = 0. gtRects = [] detRects = [] gtPolPoints = [] detPolPoints = [] gtDontCareRectsNum = []#Array of Ground Truth Rectangles' keys marked as don't Care detDontCareRectsNum = []#Array of Detected Rectangles' matched with a don't Care GT pairs = [] evaluationLog = "" recallMat = np.empty([1,1]) precisionMat = np.empty([1,1]) for n in range(len(gt)): points = gt[n]['points'] # transcription = gt[n]['text'] dontCare = gt[n]['ignore'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue gtRects.append(points) gtPolPoints.append(points) if dontCare: gtDontCareRectsNum.append( len(gtRects)-1 ) evaluationLog += "GT rectangles: " + str(len(gtRects)) + (" (" + str(len(gtDontCareRectsNum)) + " don't care)\n" if len(gtDontCareRectsNum)>0 else "\n") for n in range(len(pred)): points = pred[n]['points'] if not Polygon(points).is_valid or not Polygon(points).is_simple: continue detRect = points detRects.append(detRect) detPolPoints.append(points) if len(gtDontCareRectsNum)>0 : for dontCareRectNum in gtDontCareRectsNum: dontCareRect = gtRects[dontCareRectNum] intersected_area = get_intersection(dontCareRect,detRect) rdDimensions = Polygon(detRect).area if (rdDimensions==0) : precision = 0 else: precision= intersected_area / rdDimensions if (precision > self.area_precision_constraint): detDontCareRectsNum.append( len(detRects)-1 ) break evaluationLog += "DET rectangles: " + str(len(detRects)) + (" (" + str(len(detDontCareRectsNum)) + " don't care)\n" if len(detDontCareRectsNum)>0 else "\n") if len(gtRects)==0: recall = 1 precision = 0 if len(detRects)>0 else 1 if len(detRects)>0: #Calculate recall and precision matrixs outputShape=[len(gtRects),len(detRects)] recallMat = np.empty(outputShape) precisionMat = np.empty(outputShape) gtRectMat = np.zeros(len(gtRects),np.int8) detRectMat = np.zeros(len(detRects),np.int8) for gtNum in range(len(gtRects)): for detNum in range(len(detRects)): rG = gtRects[gtNum] rD = detRects[detNum] intersected_area = get_intersection(rG,rD) rgDimensions = Polygon(rG).area rdDimensions = Polygon(rD).area recallMat[gtNum,detNum] = 0 if rgDimensions==0 else intersected_area / rgDimensions precisionMat[gtNum,detNum] = 0 if rdDimensions==0 else intersected_area / rdDimensions # Find one-to-one matches evaluationLog += "Find one-to-one matches\n" for gtNum in range(len(gtRects)): for detNum in range(len(detRects)): if gtRectMat[gtNum] == 0 and detRectMat[detNum] == 0 and gtNum not in gtDontCareRectsNum and detNum not in detDontCareRectsNum : match = one_to_one_match(gtNum, detNum) if match is True : #in deteval we have to make other validation before mark as one-to-one if is_single_overlap(gtNum, detNum) is True : rG = gtRects[gtNum] rD = detRects[detNum] normDist = center_distance(rG, rD); normDist /= diag(rG) + diag(rD); normDist *= 2.0; if normDist < self.ev_param_ind_center_diff_thr: gtRectMat[gtNum] = 1 detRectMat[detNum] = 1 recallAccum += self.mtype_oo_o precisionAccum += self.mtype_oo_o pairs.append({'gt':gtNum,'det':detNum,'type':'OO'}) evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(detNum) + "\n" else: evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(detNum) + " normDist: " + str(normDist) + " \n" else: evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(detNum) + " not single overlap\n" # Find one-to-many matches evaluationLog += "Find one-to-many matches\n" for gtNum in range(len(gtRects)): if gtNum not in gtDontCareRectsNum: match,matchesDet = one_to_many_match(gtNum) if match is True : evaluationLog += "num_overlaps_gt=" + str(num_overlaps_gt(gtNum)) #in deteval we have to make other validation before mark as one-to-one if num_overlaps_gt(gtNum)>=2 : gtRectMat[gtNum] = 1 recallAccum += (self.mtype_oo_o if len(matchesDet)==1 else self.mtype_om_o) precisionAccum += (self.mtype_oo_o if len(matchesDet)==1 else self.mtype_om_o*len(matchesDet)) pairs.append({'gt':gtNum,'det':matchesDet,'type': 'OO' if len(matchesDet)==1 else 'OM'}) for detNum in matchesDet : detRectMat[detNum] = 1 evaluationLog += "Match GT #" + str(gtNum) + " with Det #" + str(matchesDet) + "\n" else: evaluationLog += "Match Discarded GT #" + str(gtNum) + " with Det #" + str(matchesDet) + " not single overlap\n" # Find many-to-one matches evaluationLog += "Find many-to-one matches\n" for detNum in range(len(detRects)): if detNum not in detDontCareRectsNum: match,matchesGt = many_to_one_match(detNum) if match is True : #in deteval we have to make other validation before mark as one-to-one if num_overlaps_det(detNum)>=2 : detRectMat[detNum] = 1 recallAccum += (self.mtype_oo_o if len(matchesGt)==1 else self.mtype_om_m*len(matchesGt)) precisionAccum += (self.mtype_oo_o if len(matchesGt)==1 else self.mtype_om_m) pairs.append({'gt':matchesGt,'det':detNum,'type': 'OO' if len(matchesGt)==1 else 'MO'}) for gtNum in matchesGt : gtRectMat[gtNum] = 1 evaluationLog += "Match GT #" + str(matchesGt) + " with Det #" + str(detNum) + "\n" else: evaluationLog += "Match Discarded GT #" + str(matchesGt) + " with Det #" + str(detNum) + " not single overlap\n" numGtCare = (len(gtRects) - len(gtDontCareRectsNum)) if numGtCare == 0: recall = float(1) precision = float(0) if len(detRects)>0 else float(1) else: recall = float(recallAccum) / numGtCare precision = float(0) if (len(detRects) - len(detDontCareRectsNum))==0 else float(precisionAccum) / (len(detRects) - len(detDontCareRectsNum)) hmean = 0 if (precision + recall)==0 else 2.0 * precision * recall / (precision + recall) numGtCare = len(gtRects) - len(gtDontCareRectsNum) numDetCare = len(detRects) - len(detDontCareRectsNum) perSampleMetrics = { 'precision':precision, 'recall':recall, 'hmean':hmean, 'pairs':pairs, 'recallMat':[] if len(detRects)>100 else recallMat.tolist(), 'precisionMat':[] if len(detRects)>100 else precisionMat.tolist(), 'gtPolPoints':gtPolPoints, 'detPolPoints':detPolPoints, 'gtCare': numGtCare, 'detCare': numDetCare, 'gtDontCare':gtDontCareRectsNum, 'detDontCare':detDontCareRectsNum, 'recallAccum':recallAccum, 'precisionAccum':precisionAccum, 'evaluationLog': evaluationLog } return perSampleMetrics def combine_results(self, results): numGt = 0 numDet = 0 methodRecallSum = 0 methodPrecisionSum = 0 for result in results: numGt += result['gtCare'] numDet += result['detCare'] methodRecallSum += result['recallAccum'] methodPrecisionSum += result['precisionAccum'] methodRecall = 0 if numGt==0 else methodRecallSum/numGt methodPrecision = 0 if numDet==0 else methodPrecisionSum/numDet methodHmean = 0 if methodRecall + methodPrecision==0 else 2* methodRecall * methodPrecision / (methodRecall + methodPrecision) methodMetrics = {'precision':methodPrecision, 'recall':methodRecall,'hmean': methodHmean } return methodMetrics if __name__=='__main__': evaluator = DetectionDetEvalEvaluator() gts = [[{ 'points': [(0, 0), (1, 0), (1, 1), (0, 1)], 'text': 1234, 'ignore': False, }, { 'points': [(2, 2), (3, 2), (3, 3), (2, 3)], 'text': 5678, 'ignore': True, }]] preds = [[{ 'points': [(0.1, 0.1), (1, 0), (1, 1), (0, 1)], 'text': 123, 'ignore': False, }]] results = [] for gt, pred in zip(gts, preds): results.append(evaluator.evaluate_image(gt, pred)) metrics = evaluator.combine_results(results) print(metrics)
EXA-1-master
exa/models/unilm-master/dit/text_detection/ditod/concern/icdar2015_eval/detection/deteval.py
import os from PIL import Image import xml.etree.ElementTree as ET import numpy as np import json from PIL import Image from shutil import copyfile def convert(ROOT, TRACK, SPLIT): coco_data = { "images": [], "annotations": [], "categories": [{"id": 1, "name": "table"}, ], } DATA_DIR = f"{ROOT}/{TRACK}/{SPLIT}" prefix = "cTDaR_t0" if TRACK == "trackA_archival" else "cTDaR_t1" print(TRACK, SPLIT, prefix) table_count = 0 for file in sorted(os.listdir(DATA_DIR)): if file.startswith(prefix) and file.endswith(".jpg"): img = Image.open(os.path.join(DATA_DIR, file)) coco_data["images"].append( { "file_name": file, "height": img.height, "width": img.width, "id": int(file[7:-4]), } ) elif file.startswith(prefix) and file.endswith(".xml"): # print(file) tree = ET.parse(os.path.join(DATA_DIR, file)) root = tree.getroot() assert len(root.findall("./table/Coords")) > 0 for table_id in range(len(root.findall("./table/Coords"))): four_points = root.findall("./table/Coords")[table_id].attrib["points"] four_points = list(map(lambda x: x.split(","), four_points.split())) four_points = [[int(j) for j in i] for i in four_points] segmentation = [j for i in four_points for j in i] bbox = [ four_points[0][0], four_points[0][1], four_points[2][0] - four_points[0][0], four_points[2][1] - four_points[0][1], ] coco_data["annotations"].append( { "segmentation": [segmentation], "area": bbox[2] * bbox[3], "iscrowd": 0, "image_id": int(file[7:-4]), "bbox": bbox, "category_id": 1, "id": table_count, } ) table_count += 1 with open(f"{ROOT}/{TRACK}/{SPLIT}.json", "w") as f: json.dump(coco_data, f) def clean_img(DATA_DIR): for file in sorted(os.listdir(DATA_DIR)): if file.endswith(".JPG"): os.rename(os.path.join(DATA_DIR, file), os.path.join(DATA_DIR, file.replace(".JPG", ".jpg"))) elif file.endswith(".TIFF"): img = Image.open(os.path.join(DATA_DIR, file)) img.save(os.path.join(DATA_DIR, file.replace(".TIFF", ".jpg"))) os.remove(os.path.join(DATA_DIR, file)) elif file.endswith(".png"): img = Image.open(os.path.join(DATA_DIR, file)) img.save(os.path.join(DATA_DIR, file.replace(".png", ".jpg"))) os.remove(os.path.join(DATA_DIR, file)) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--root_dir', required=True) parser.add_argument('--target_dir', required=True) args = parser.parse_args() test_data_dir = os.path.join(args.root_dir, 'test', 'TRACKA') test_gt_dir = os.path.join(args.root_dir, 'test_ground_truth', 'TRACKA') training_data_dir = os.path.join(args.root_dir, 'training', 'TRACKA', 'ground_truth') raw_datas = {"train": [training_data_dir], "test": [test_data_dir, test_gt_dir]} TRACKS = ["trackA_modern", "trackA_archival"] SPLITS = ["train", "test"] for track in TRACKS: prefix = "cTDaR_t0" if track == "trackA_archival" else "cTDaR_t1" for split in SPLITS: os.makedirs(os.path.join(args.target_dir, track, split)) for source_dir in raw_datas[split]: for fn in os.listdir(source_dir): if fn.startswith(prefix): ffn = os.path.join(source_dir, fn) copyfile(ffn, os.path.join(args.target_dir, track, split, fn)) clean_img(os.path.join(args.target_dir, track, split)) convert(args.target_dir, track, split)
EXA-1-master
exa/models/unilm-master/dit/object_detection/convert_to_coco_format.py
import argparse import cv2 from ditod import add_vit_config import torch from detectron2.config import get_cfg from detectron2.utils.visualizer import ColorMode, Visualizer from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor def main(): parser = argparse.ArgumentParser(description="Detectron2 inference script") parser.add_argument( "--image_path", help="Path to input image", type=str, required=True, ) parser.add_argument( "--output_file_name", help="Name of the output visualization file.", type=str, ) parser.add_argument( "--config-file", default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) args = parser.parse_args() # Step 1: instantiate config cfg = get_cfg() add_vit_config(cfg) cfg.merge_from_file(args.config_file) # Step 2: add model weights URL to config cfg.merge_from_list(args.opts) # Step 3: set device device = "cuda" if torch.cuda.is_available() else "cpu" cfg.MODEL.DEVICE = device # Step 4: define model predictor = DefaultPredictor(cfg) # Step 5: run inference img = cv2.imread(args.image_path) md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) if cfg.DATASETS.TEST[0]=='icdar2019_test': md.set(thing_classes=["table"]) else: md.set(thing_classes=["text","title","list","table","figure"]) output = predictor(img)["instances"] v = Visualizer(img[:, :, ::-1], md, scale=1.0, instance_mode=ColorMode.SEGMENTATION) result = v.draw_instance_predictions(output.to("cpu")) result_image = result.get_image()[:, :, ::-1] # step 6: save cv2.imwrite(args.output_file_name, result_image) if __name__ == '__main__': main()
EXA-1-master
exa/models/unilm-master/dit/object_detection/inference.py
#!/usr/bin/env python # -------------------------------------------------------------------------------- # MPViT: Multi-Path Vision Transformer for Dense Prediction # Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). # All Rights Reserved. # Written by Youngwan Lee # -------------------------------------------------------------------------------- """ Detection Training Script for MPViT. """ import os import itertools import torch from typing import Any, Dict, List, Set from detectron2.data import build_detection_train_loader from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.evaluation import COCOEvaluator from detectron2.solver.build import maybe_add_gradient_clipping from ditod import add_vit_config from ditod import DetrDatasetMapper from detectron2.data.datasets import register_coco_instances import logging from detectron2.utils.logger import setup_logger from detectron2.utils import comm from detectron2.engine.defaults import create_ddp_model import weakref from detectron2.engine.train_loop import AMPTrainer, SimpleTrainer from ditod import MyDetectionCheckpointer, ICDAREvaluator from ditod import MyTrainer def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() # add_coat_config(cfg) add_vit_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): """ register publaynet first """ register_coco_instances( "publaynet_train", {}, "./publaynet_data/train.json", "./publaynet_data/train" ) register_coco_instances( "publaynet_val", {}, "./publaynet_data/val.json", "./publaynet_data/val" ) register_coco_instances( "icdar2019_train", {}, "data/train.json", "data/train" ) register_coco_instances( "icdar2019_test", {}, "data/test.json", "data/test" ) cfg = setup(args) if args.eval_only: model = MyTrainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = MyTrainer.test(cfg, model) return res trainer = MyTrainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": parser = default_argument_parser() parser.add_argument("--debug", action="store_true", help="enable debug mode") args = parser.parse_args() print("Command Line Args:", args) if args.debug: import debugpy print("Enabling attach starts.") debugpy.listen(address=('0.0.0.0', 9310)) debugpy.wait_for_client() print("Enabling attach ends.") launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
EXA-1-master
exa/models/unilm-master/dit/object_detection/train_net.py
import argparse import os import cv2 import tqdm def convert(fn): # given a file name, convert it into binary and store at the same position img = cv2.imread(fn) gim = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gim = cv2.adaptiveThreshold(gim, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 45, 11) g3im = cv2.cvtColor(gim, cv2.COLOR_GRAY2BGR) cv2.imwrite(fn, g3im) if __name__ == '__main__': """ Now only feasible for trackA_XX """ parser = argparse.ArgumentParser() parser.add_argument('--root_dir', default="../datasets/icdar2019/at_trackA_archival") args = parser.parse_args() for fdname in os.listdir(args.root_dir): if fdname.endswith(".json"): continue ffdname = os.path.join(args.root_dir, fdname) for file in tqdm.tqdm(os.listdir(ffdname)): if file.endswith(".xml"): continue ffile = os.path.join(ffdname, file) convert(ffile)
EXA-1-master
exa/models/unilm-master/dit/object_detection/adaptive_binarize.py
""" Mostly copy-paste from DINO and timm library: https://github.com/facebookresearch/dino https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ import warnings import math import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.models.layers import trunc_normal_, drop_path, to_2tuple from functools import partial def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.window_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches_w, self.num_patches_h = self.window_size self.num_patches = self.window_size[0] * self.window_size[1] self.img_size = img_size self.patch_size = patch_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = self.proj(x) return x class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros( 1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class ViT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, model_name='vit_base_patch16_224', img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24, num_heads=16, num_classes=19, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0.1, attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None, pos_embed_interp=False, random_init=False, align_corners=False, use_checkpoint=False, num_extra_tokens=1, out_features=None, **kwargs, ): super(ViT, self).__init__() self.model_name = model_name self.img_size = img_size self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.depth = depth self.num_heads = num_heads self.num_classes = num_classes self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.drop_rate = drop_rate self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.hybrid_backbone = hybrid_backbone self.norm_layer = norm_layer self.norm_cfg = norm_cfg self.pos_embed_interp = pos_embed_interp self.random_init = random_init self.align_corners = align_corners self.use_checkpoint = use_checkpoint self.num_extra_tokens = num_extra_tokens self.out_features = out_features self.out_indices = [int(name[5:]) for name in out_features] # self.num_stages = self.depth # self.out_indices = tuple(range(self.num_stages)) if self.hybrid_backbone is not None: self.patch_embed = HybridEmbed( self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim) else: self.patch_embed = PatchEmbed( img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim) self.num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) if self.num_extra_tokens == 2: self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.pos_embed = nn.Parameter(torch.zeros( 1, self.num_patches + self.num_extra_tokens, self.embed_dim)) self.pos_drop = nn.Dropout(p=self.drop_rate) # self.num_extra_tokens = self.pos_embed.shape[-2] - self.num_patches dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer) for i in range(self.depth)]) # NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here # self.repr = nn.Linear(embed_dim, representation_size) # self.repr_act = nn.Tanh() if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), nn.SyncBatchNorm(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) if self.num_extra_tokens==2: trunc_normal_(self.dist_token, std=0.2) self.apply(self._init_weights) # self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) ''' def init_weights(self): logger = get_root_logger() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) if self.init_cfg is None: logger.warn(f'No pre-trained weights for ' f'{self.__class__.__name__}, ' f'training start from scratch') else: assert 'checkpoint' in self.init_cfg, f'Only support ' \ f'specify `Pretrained` in ' \ f'`init_cfg` in ' \ f'{self.__class__.__name__} ' logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") load_checkpoint(self, filename=self.init_cfg['checkpoint'], strict=False, logger=logger) ''' def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def _conv_filter(self, state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict def to_2D(self, x): n, hw, c = x.shape h = w = int(math.sqrt(hw)) x = x.transpose(1, 2).reshape(n, c, h, w) return x def to_1D(self, x): n, c, h, w = x.shape x = x.reshape(n, c, -1).transpose(1, 2) return x def interpolate_pos_encoding(self, x, w, h): npatch = x.shape[1] - self.num_extra_tokens N = self.pos_embed.shape[1] - self.num_extra_tokens if npatch == N and w == h: return self.pos_embed class_ORdist_pos_embed = self.pos_embed[:, 0:self.num_extra_tokens] patch_pos_embed = self.pos_embed[:, self.num_extra_tokens:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_size[0] h0 = h // self.patch_embed.patch_size[1] # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_ORdist_pos_embed, patch_pos_embed), dim=1) def prepare_tokens(self, x, mask=None): B, nc, w, h = x.shape # patch linear embedding x = self.patch_embed(x) # mask image modeling if mask is not None: x = self.mask_model(x, mask) x = x.flatten(2).transpose(1, 2) # add the [CLS] token to the embed patch tokens all_tokens = [self.cls_token.expand(B, -1, -1)] if self.num_extra_tokens == 2: dist_tokens = self.dist_token.expand(B, -1, -1) all_tokens.append(dist_tokens) all_tokens.append(x) x = torch.cat(all_tokens, dim=1) # add positional encoding to each token x = x + self.interpolate_pos_encoding(x, w, h) return self.pos_drop(x) def forward_features(self, x): # print(f"==========shape of x is {x.shape}==========") B, _, H, W = x.shape Hp, Wp = H // self.patch_size, W // self.patch_size x = self.prepare_tokens(x) features = [] for i, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if i in self.out_indices: xp = x[:, self.num_extra_tokens:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) feat_out = {} for name, value in zip(self.out_features, features): feat_out[name] = value return feat_out def forward(self, x): x = self.forward_features(x) return x def deit_base_patch16(pretrained=False, **kwargs): model = ViT( patch_size=16, drop_rate=0., embed_dim=768, depth=12, num_heads=12, num_classes=1000, mlp_ratio=4., qkv_bias=True, use_checkpoint=True, num_extra_tokens=2, **kwargs) model.default_cfg = _cfg() return model def mae_base_patch16(pretrained=False, **kwargs): model = ViT( patch_size=16, drop_rate=0., embed_dim=768, depth=12, num_heads=12, num_classes=1000, mlp_ratio=4., qkv_bias=True, use_checkpoint=True, num_extra_tokens=1, **kwargs) model.default_cfg = _cfg() return model
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/deit.py
import copy import itertools import os import os.path as osp import shutil from collections import OrderedDict from xml.dom.minidom import Document import detectron2.utils.comm as comm import torch from detectron2.evaluation import COCOEvaluator from detectron2.utils.file_io import PathManager from .table_evaluation.evaluate import calc_table_score class ICDAREvaluator(COCOEvaluator): def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() if "proposals" in predictions[0]: self._eval_box_proposals(predictions) if "instances" in predictions[0]: self._eval_predictions(predictions, img_ids=img_ids) self.evaluate_table(predictions) # Copy so the caller can do whatever with results return copy.deepcopy(self._results) def evaluate_table(self, predictions): xml_dir = self.convert_to_xml(predictions) results = calc_table_score(xml_dir) self._results["wF1"] = results['wF1'] def convert_to_xml(self, predictions): output_dir = osp.join(self._output_dir, "xml_results") if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir, exist_ok=True) coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) results_dict = {} for result in coco_results: if result["score"] < 0.7: continue image_id = result["image_id"] if image_id not in results_dict: results_dict[image_id] = [] results_dict[image_id].append(result) for image_id, tables in results_dict.items(): file_name = f"cTDaR_t{image_id:05d}.jpg" doc = Document() root = doc.createElement('document') root.setAttribute('filename', file_name) doc.appendChild(root) for table_id, table in enumerate(tables, start=1): nodeManager = doc.createElement('table') nodeManager.setAttribute('id', str(table_id)) bbox = list(map(int, table['bbox'])) bbox_str = '{},{} {},{} {},{} {},{}'.format(bbox[0], bbox[1], bbox[0], bbox[1] + bbox[3], bbox[0] + bbox[2], bbox[1] + bbox[3], bbox[0] + bbox[2], bbox[1]) nodeCoords = doc.createElement('Coords') nodeCoords.setAttribute('points', bbox_str) nodeManager.appendChild(nodeCoords) root.appendChild(nodeManager) filename = '{}-result.xml'.format(file_name[:-4]) fp = open(os.path.join(output_dir, filename), 'w') doc.writexml(fp, indent='', addindent='\t', newl='\n', encoding="utf-8") fp.flush() fp.close() return output_dir if __name__ == '__main__': pass
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/icdar_evaluation.py
""" Vision Transformer (ViT) in PyTorch A PyTorch implement of Vision Transformers as described in 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 The official jax code is released and available at https://github.com/google-research/vision_transformer Status/TODO: * Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. * Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. * Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. * Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. Acknowledgments: * The paper authors for releasing code and weights, thanks! * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out for some einops/einsum fun * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT * Bert reference code checks against Huggingface Transformers and Tensorflow Bert Hacked together by / Copyright 2020 Ross Wightman """ import warnings import math import torch from functools import partial import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.0) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None, training_window_size=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: if training_window_size == self.window_size: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) else: training_window_size = tuple(training_window_size.tolist()) new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok new_relative_position_bias_table = F.interpolate( self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, 2 * self.window_size[0] - 1, 2 * self.window_size[1] - 1), size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', align_corners=False) new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, new_num_relative_distance - 3).permute( 1, 0) new_relative_position_bias_table = torch.cat( [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(training_window_size[0]) coords_w = torch.arange(training_window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += training_window_size[1] - 1 relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 relative_position_index = \ torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = new_num_relative_distance - 3 relative_position_index[0:, 0] = new_num_relative_distance - 2 relative_position_index[0, 0] = new_num_relative_distance - 1 relative_position_bias = \ new_relative_position_bias_table[relative_position_index.view(-1)].view( training_window_size[0] * training_window_size[1] + 1, training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None, training_window_size=None): if self.gamma_1 is None: x = x + self.drop_path( self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches_w = self.patch_shape[0] self.num_patches_h = self.patch_shape[1] # the so-called patch_shape is the patch shape during pre-training self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, position_embedding=None, **kwargs): # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] if position_embedding is not None: # interpolate the position embedding to the corresponding size position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3, 1, 2) position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode='bicubic') x = x + position_embedding x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_heads = num_heads self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self, training_window_size): if training_window_size == self.window_size: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww else: training_window_size = tuple(training_window_size.tolist()) new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok new_relative_position_bias_table = F.interpolate( self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, 2 * self.window_size[0] - 1, 2 * self.window_size[1] - 1), size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', align_corners=False) new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, new_num_relative_distance - 3).permute( 1, 0) new_relative_position_bias_table = torch.cat( [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(training_window_size[0]) coords_w = torch.arange(training_window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += training_window_size[1] - 1 relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 relative_position_index = \ torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = new_num_relative_distance - 3 relative_position_index[0:, 0] = new_num_relative_distance - 2 relative_position_index[0, 0] = new_num_relative_distance - 1 relative_position_bias = \ new_relative_position_bias_table[relative_position_index.view(-1)].view( training_window_size[0] * training_window_size[1] + 1, training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww return relative_position_bias class BEiT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, init_values=None, use_abs_pos_emb=False, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_checkpoint=True, pretrained=None, out_features=None, ): super(BEiT, self).__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.use_checkpoint = use_checkpoint if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.out_features = out_features self.out_indices = [int(name[5:]) for name in out_features] self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) self.use_shared_rel_pos_bias = use_shared_rel_pos_bias if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) # trunc_normal_(self.mask_token, std=.02) if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), # nn.SyncBatchNorm(embed_dim), nn.BatchNorm2d(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) ''' def init_weights(self): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ logger = get_root_logger() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() if self.init_cfg is None: logger.warn(f'No pre-trained weights for ' f'{self.__class__.__name__}, ' f'training start from scratch') else: assert 'checkpoint' in self.init_cfg, f'Only support ' \ f'specify `Pretrained` in ' \ f'`init_cfg` in ' \ f'{self.__class__.__name__} ' logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") load_checkpoint(self, filename=self.init_cfg['checkpoint'], strict=False, logger=logger, beit_spec_expand_rel_pos = self.use_rel_pos_bias, ) ''' def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None) # Hp, Wp are HW for patches batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks if self.pos_embed is not None: cls_tokens = cls_tokens + self.pos_embed[:, :1, :] x = torch.cat((cls_tokens, x), dim=1) x = self.pos_drop(x) features = [] training_window_size = torch.tensor([Hp, Wp]) rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None for i, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, rel_pos_bias, training_window_size) else: x = blk(x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size) if i in self.out_indices: xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) feat_out = {} for name, value in zip(self.out_features, features): feat_out[name] = value return feat_out def forward(self, x): x = self.forward_features(x) return x def beit_base_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None, **kwargs) model.default_cfg = _cfg() return model def beit_large_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=None, **kwargs) model.default_cfg = _cfg() return model def dit_base_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0.1, **kwargs) model.default_cfg = _cfg() return model def dit_large_patch16(pretrained=False, **kwargs): model = BEiT( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=1e-5, **kwargs) model.default_cfg = _cfg() return model if __name__ == '__main__': model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True) model = model.to("cuda:0") input1 = torch.rand(2, 3, 512, 762).to("cuda:0") input2 = torch.rand(2, 3, 800, 1200).to("cuda:0") input3 = torch.rand(2, 3, 720, 1000).to("cuda:0") output1 = model(input1) output2 = model(input2) output3 = model(input3) print("all done")
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/beit.py
from detectron2.config import CfgNode as CN def add_vit_config(cfg): """ Add config for VIT. """ _C = cfg _C.MODEL.VIT = CN() # CoaT model name. _C.MODEL.VIT.NAME = "" # Output features from CoaT backbone. _C.MODEL.VIT.OUT_FEATURES = ["layer3", "layer5", "layer7", "layer11"] _C.MODEL.VIT.IMG_SIZE = [224, 224] _C.MODEL.VIT.POS_TYPE = "shared_rel" _C.MODEL.VIT.DROP_PATH = 0. _C.MODEL.VIT.MODEL_KWARGS = "{}" _C.SOLVER.OPTIMIZER = "ADAMW" _C.SOLVER.BACKBONE_MULTIPLIER = 1.0 _C.AUG = CN() _C.AUG.DETR = False
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/config.py
from detectron2.checkpoint import DetectionCheckpointer from typing import Any import torch import torch.nn as nn from fvcore.common.checkpoint import _IncompatibleKeys, _strip_prefix_if_present, TORCH_VERSION, quantization, \ ObserverBase, FakeQuantizeBase from torch import distributed as dist from scipy import interpolate import numpy as np import torch.nn.functional as F def append_prefix(k): prefix = 'backbone.bottom_up.backbone.' return prefix + k if not k.startswith(prefix) else k def modify_ckpt_state(model, state_dict, logger=None): # reshape absolute position embedding for Swin if state_dict.get(append_prefix('absolute_pos_embed')) is not None: absolute_pos_embed = state_dict[append_prefix('absolute_pos_embed')] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.backbone.bottom_up.backbone.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H * W: logger.warning("Error in loading absolute_pos_embed, pass") else: state_dict[append_prefix('absolute_pos_embed')] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) def get_dist_info(): if dist.is_available() and dist.is_initialized(): rank = dist.get_rank() world_size = dist.get_world_size() else: rank = 0 world_size = 1 return rank, world_size rank, _ = get_dist_info() all_keys = list(state_dict.keys()) for key in all_keys: if "relative_position_index" in key: state_dict.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() if key not in model.state_dict(): continue dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.backbone.bottom_up.backbone.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: if rank == 0: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.13492: # q = 1.13492 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) if rank == 0: print("x = {}".format(x)) print("dx = {}".format(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict[key] = new_rel_pos_bias if append_prefix('pos_embed') in state_dict: pos_embed_checkpoint = state_dict[append_prefix('pos_embed')] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.backbone.bottom_up.backbone.patch_embed.num_patches num_extra_tokens = model.backbone.bottom_up.backbone.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding # new_size = int(num_patches ** 0.5) new_size_w = model.backbone.bottom_up.backbone.patch_embed.num_patches_w new_size_h = model.backbone.bottom_up.backbone.patch_embed.num_patches_h # class_token and dist_token are kept unchanged if orig_size != new_size_h or orig_size != new_size_w: if rank == 0: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size_w, new_size_h)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size_w, new_size_h), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict[append_prefix('pos_embed')] = new_pos_embed # interpolate position bias table if needed relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] if table_key not in model.state_dict(): continue table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f"Error in loading {table_key}, pass") else: if L1 != L2: S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) table_pretrained_resized = F.interpolate( table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0) if append_prefix('rel_pos_bias.relative_position_bias_table') in state_dict and \ model.backbone.bottom_up.backbone.use_rel_pos_bias and \ not model.backbone.bottom_up.backbone.use_shared_rel_pos_bias and \ append_prefix('blocks.0.attn.relative_position_bias_table') not in state_dict: logger.info("[BEIT] Expand the shared relative position embedding to each transformer block. ") num_layers = model.backbone.bottom_up.backbone.get_num_layers() rel_pos_bias = state_dict[append_prefix("rel_pos_bias.relative_position_bias_table")] for i in range(num_layers): state_dict["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() state_dict.pop(append_prefix("rel_pos_bias.relative_position_bias_table")) return state_dict class MyDetectionCheckpointer(DetectionCheckpointer): def _load_model(self, checkpoint: Any) -> _IncompatibleKeys: """ Load weights from a checkpoint. Args: checkpoint (Any): checkpoint contains the weights. Returns: ``NamedTuple`` with ``missing_keys``, ``unexpected_keys``, and ``incorrect_shapes`` fields: * **missing_keys** is a list of str containing the missing keys * **unexpected_keys** is a list of str containing the unexpected keys * **incorrect_shapes** is a list of (key, shape in checkpoint, shape in model) This is just like the return value of :func:`torch.nn.Module.load_state_dict`, but with extra support for ``incorrect_shapes``. """ checkpoint_state_dict = checkpoint.pop("model") self._convert_ndarray_to_tensor(checkpoint_state_dict) # if the state_dict comes from a model that was wrapped in a # DataParallel or DistributedDataParallel during serialization, # remove the "module" prefix before performing the matching. _strip_prefix_if_present(checkpoint_state_dict, "module.") # workaround https://github.com/pytorch/pytorch/issues/24139 model_state_dict = self.model.state_dict() incorrect_shapes = [] # rename the para in checkpoint_state_dict # some bug here, do not support re load checkpoint_state_dict = { append_prefix(k): checkpoint_state_dict[k] for k in checkpoint_state_dict.keys() } checkpoint_state_dict = modify_ckpt_state(self.model, checkpoint_state_dict, logger=self.logger) for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: model_param = model_state_dict[k] # Allow mismatch for uninitialized parameters if TORCH_VERSION >= (1, 8) and isinstance( model_param, nn.parameter.UninitializedParameter ): continue shape_model = tuple(model_param.shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: has_observer_base_classes = ( TORCH_VERSION >= (1, 8) and hasattr(quantization, "ObserverBase") and hasattr(quantization, "FakeQuantizeBase") ) if has_observer_base_classes: # Handle the special case of quantization per channel observers, # where buffer shape mismatches are expected. def _get_module_for_key( model: torch.nn.Module, key: str ) -> torch.nn.Module: # foo.bar.param_or_buffer_name -> [foo, bar] key_parts = key.split(".")[:-1] cur_module = model for key_part in key_parts: cur_module = getattr(cur_module, key_part) return cur_module cls_to_skip = ( ObserverBase, FakeQuantizeBase, ) target_module = _get_module_for_key(self.model, k) if isinstance(target_module, cls_to_skip): # Do not remove modules with expected shape mismatches # them from the state_dict loading. They have special logic # in _load_from_state_dict to handle the mismatches. continue incorrect_shapes.append((k, shape_checkpoint, shape_model)) checkpoint_state_dict.pop(k) incompatible = self.model.load_state_dict(checkpoint_state_dict, strict=False) return _IncompatibleKeys( missing_keys=incompatible.missing_keys, unexpected_keys=incompatible.unexpected_keys, incorrect_shapes=incorrect_shapes, )
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/mycheckpointer.py
# -------------------------------------------------------------------------------- # VIT: Multi-Path Vision Transformer for Dense Prediction # Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). # All Rights Reserved. # Written by Youngwan Lee # This source code is licensed(Dual License(GPL3.0 & Commercial)) under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------------------------------- # References: # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm # CoaT: https://github.com/mlpc-ucsd/CoaT # -------------------------------------------------------------------------------- import torch from detectron2.layers import ( ShapeSpec, ) from detectron2.modeling import Backbone, BACKBONE_REGISTRY, FPN from detectron2.modeling.backbone.fpn import LastLevelP6P7, LastLevelMaxPool from .beit import beit_base_patch16, dit_base_patch16, dit_large_patch16, beit_large_patch16 from .deit import deit_base_patch16, mae_base_patch16 __all__ = [ "build_vit_fpn_backbone", ] class VIT_Backbone(Backbone): """ Implement VIT backbone. """ def __init__(self, name, out_features, drop_path, img_size, pos_type, model_kwargs): super().__init__() self._out_features = out_features if 'base' in name: self._out_feature_strides = {"layer3": 4, "layer5": 8, "layer7": 16, "layer11": 32} else: self._out_feature_strides = {"layer7": 4, "layer11": 8, "layer15": 16, "layer23": 32} if name == 'beit_base_patch16': model_func = beit_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == 'dit_base_patch16': model_func = dit_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == "deit_base_patch16": model_func = deit_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == "mae_base_patch16": model_func = mae_base_patch16 self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} elif name == "dit_large_patch16": model_func = dit_large_patch16 self._out_feature_channels = {"layer7": 1024, "layer11": 1024, "layer15": 1024, "layer23": 1024} elif name == "beit_large_patch16": model_func = beit_large_patch16 self._out_feature_channels = {"layer7": 1024, "layer11": 1024, "layer15": 1024, "layer23": 1024} else: raise ValueError("Unsupported VIT name yet.") if 'beit' in name or 'dit' in name: if pos_type == "abs": self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, use_abs_pos_emb=True, **model_kwargs) elif pos_type == "shared_rel": self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, use_shared_rel_pos_bias=True, **model_kwargs) elif pos_type == "rel": self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, use_rel_pos_bias=True, **model_kwargs) else: raise ValueError() else: self.backbone = model_func(img_size=img_size, out_features=out_features, drop_path_rate=drop_path, **model_kwargs) def forward(self, x): """ Args: x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. Returns: dict[str->Tensor]: names and the corresponding features """ assert x.dim() == 4, f"VIT takes an input of shape (N, C, H, W). Got {x.shape} instead!" return self.backbone.forward_features(x) def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] ) for name in self._out_features } def build_VIT_backbone(cfg): """ Create a VIT instance from config. Args: cfg: a detectron2 CfgNode Returns: A VIT backbone instance. """ # fmt: off name = cfg.MODEL.VIT.NAME out_features = cfg.MODEL.VIT.OUT_FEATURES drop_path = cfg.MODEL.VIT.DROP_PATH img_size = cfg.MODEL.VIT.IMG_SIZE pos_type = cfg.MODEL.VIT.POS_TYPE model_kwargs = eval(str(cfg.MODEL.VIT.MODEL_KWARGS).replace("`", "")) return VIT_Backbone(name, out_features, drop_path, img_size, pos_type, model_kwargs) @BACKBONE_REGISTRY.register() def build_vit_fpn_backbone(cfg, input_shape: ShapeSpec): """ Create a VIT w/ FPN backbone. Args: cfg: a detectron2 CfgNode Returns: backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. """ bottom_up = build_VIT_backbone(cfg) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) return backbone
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/backbone.py
# -------------------------------------------------------------------------------- # MPViT: Multi-Path Vision Transformer for Dense Prediction # Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). # All Rights Reserved. # Written by Youngwan Lee # This source code is licensed(Dual License(GPL3.0 & Commercial)) under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------------------------------- from .config import add_vit_config from .backbone import build_vit_fpn_backbone from .dataset_mapper import DetrDatasetMapper from .mycheckpointer import MyDetectionCheckpointer from .icdar_evaluation import ICDAREvaluator from .mytrainer import MyTrainer from .table_evaluation import calc_table_score
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # from https://github.com/facebookresearch/detr/blob/main/d2/detr/dataset_mapper.py import copy import logging import numpy as np import torch from detectron2.data import detection_utils as utils from detectron2.data import transforms as T __all__ = ["DetrDatasetMapper"] def build_transform_gen(cfg, is_train): """ Create a list of :class:`TransformGen` from config. Returns: list[TransformGen] """ if is_train: min_size = cfg.INPUT.MIN_SIZE_TRAIN max_size = cfg.INPUT.MAX_SIZE_TRAIN sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else: min_size = cfg.INPUT.MIN_SIZE_TEST max_size = cfg.INPUT.MAX_SIZE_TEST sample_style = "choice" if sample_style == "range": assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size)) logger = logging.getLogger(__name__) tfm_gens = [] if is_train: tfm_gens.append(T.RandomFlip()) tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style)) if is_train: logger.info("TransformGens used in training: " + str(tfm_gens)) return tfm_gens class DetrDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by DETR. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ def __init__(self, cfg, is_train=True): if cfg.INPUT.CROP.ENABLED and is_train: self.crop_gen = [ T.ResizeShortestEdge([400, 500, 600], sample_style="choice"), T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE), ] else: self.crop_gen = None self.mask_on = cfg.MODEL.MASK_ON self.tfm_gens = build_transform_gen(cfg, is_train) logging.getLogger(__name__).info( "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen)) ) self.img_format = cfg.INPUT.FORMAT self.is_train = is_train def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) if self.crop_gen is None: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: if np.random.rand() > 0.5: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: image, transforms = T.apply_transform_gens( self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image ) image_shape = image.shape[:2] # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) if not self.is_train: # USER: Modify this if you want to keep them for some reason. dataset_dict.pop("annotations", None) return dataset_dict if "annotations" in dataset_dict: # USER: Modify this if you want to keep them for some reason. for anno in dataset_dict["annotations"]: if not self.mask_on: anno.pop("segmentation", None) anno.pop("keypoints", None) # USER: Implement additional transformations if you have other types of data annos = [ utils.transform_instance_annotations(obj, transforms, image_shape) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances(annos, image_shape) dataset_dict["instances"] = utils.filter_empty_instances(instances) return dataset_dict
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/dataset_mapper.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. """ This file contains components with some default boilerplate logic user may need in training / testing. They will not work for everyone, but many users may find them useful. The behavior of functions/classes in this file is subject to change, since they are meant to represent the "common default behavior" people need in their projects. """ import argparse import logging import os import sys import weakref from collections import OrderedDict from typing import Optional import torch from fvcore.nn.precise_bn import get_bn_modules from omegaconf import OmegaConf from torch.nn.parallel import DistributedDataParallel import detectron2.data.transforms as T from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import CfgNode, LazyConfig from detectron2.data import ( MetadataCatalog, build_detection_test_loader, build_detection_train_loader, ) from detectron2.evaluation import ( DatasetEvaluator, inference_on_dataset, print_csv_format, verify_results, ) from detectron2.modeling import build_model from detectron2.solver import build_lr_scheduler, build_optimizer from detectron2.utils import comm from detectron2.utils.collect_env import collect_env_info from detectron2.utils.env import seed_all_rng from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger from detectron2.engine import hooks from detectron2.engine.train_loop import AMPTrainer, SimpleTrainer, TrainerBase from .mycheckpointer import MyDetectionCheckpointer from typing import Any, Dict, List, Set import itertools from detectron2.solver.build import maybe_add_gradient_clipping from .dataset_mapper import DetrDatasetMapper from .icdar_evaluation import ICDAREvaluator from detectron2.evaluation import COCOEvaluator __all__ = [ "create_ddp_model", "default_argument_parser", "default_setup", "default_writers", "DefaultPredictor", "MyTrainer", ] def create_ddp_model(model, *, fp16_compression=False, **kwargs): """ Create a DistributedDataParallel model if there are >1 processes. Args: model: a torch.nn.Module fp16_compression: add fp16 compression hooks to the ddp object. See more at https://pytorch.org/docs/stable/ddp_comm_hooks.html#torch.distributed.algorithms.ddp_comm_hooks.default_hooks.fp16_compress_hook kwargs: other arguments of :module:`torch.nn.parallel.DistributedDataParallel`. """ # noqa if comm.get_world_size() == 1: return model if "device_ids" not in kwargs: kwargs["device_ids"] = [comm.get_local_rank()] ddp = DistributedDataParallel(model, **kwargs) if fp16_compression: from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks ddp.register_comm_hook(state=None, hook=comm_hooks.fp16_compress_hook) return ddp def default_argument_parser(epilog=None): """ Create a parser with some common arguments used by detectron2 users. Args: epilog (str): epilog passed to ArgumentParser describing the usage. Returns: argparse.ArgumentParser: """ parser = argparse.ArgumentParser( epilog=epilog or f""" Examples: Run on single machine: $ {sys.argv[0]} --num-gpus 8 --config-file cfg.yaml Change some config options: $ {sys.argv[0]} --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001 Run on multiple machines: (machine0)$ {sys.argv[0]} --machine-rank 0 --num-machines 2 --dist-url <URL> [--other-flags] (machine1)$ {sys.argv[0]} --machine-rank 1 --num-machines 2 --dist-url <URL> [--other-flags] """, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") parser.add_argument( "--resume", action="store_true", help="Whether to attempt to resume from the checkpoint directory. " "See documentation of `MyTrainer.resume_or_load()` for what it means.", ) parser.add_argument("--eval-only", action="store_true", help="perform evaluation only") parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*") parser.add_argument("--num-machines", type=int, default=1, help="total number of machines") parser.add_argument( "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)" ) # PyTorch still may leave orphan processes in multi-gpu training. # Therefore we use a deterministic way to obtain port, # so that users are aware of orphan processes by seeing the port occupied. port = 2 ** 15 + 2 ** 14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2 ** 14 parser.add_argument( "--dist-url", default="tcp://127.0.0.1:{}".format(port), help="initialization URL for pytorch distributed backend. See " "https://pytorch.org/docs/stable/distributed.html for details.", ) parser.add_argument( "opts", help=""" Modify config options at the end of the command. For Yacs configs, use space-separated "PATH.KEY VALUE" pairs. For python-based LazyConfig, use "path.key=value". """.strip(), default=None, nargs=argparse.REMAINDER, ) return parser def _try_get_key(cfg, *keys, default=None): """ Try select keys from cfg until the first key that exists. Otherwise return default. """ if isinstance(cfg, CfgNode): cfg = OmegaConf.create(cfg.dump()) for k in keys: none = object() p = OmegaConf.select(cfg, k, default=none) if p is not none: return p return default def _highlight(code, filename): try: import pygments except ImportError: return code from pygments.lexers import Python3Lexer, YamlLexer from pygments.formatters import Terminal256Formatter lexer = Python3Lexer() if filename.endswith(".py") else YamlLexer() code = pygments.highlight(code, lexer, Terminal256Formatter(style="monokai")) return code def default_setup(cfg, args): """ Perform some basic common setups at the beginning of a job, including: 1. Set up the detectron2 logger 2. Log basic information about environment, cmdline arguments, and config 3. Backup the config to the output directory Args: cfg (CfgNode or omegaconf.DictConfig): the full config to be used args (argparse.NameSpace): the command line arguments to be logged """ output_dir = _try_get_key(cfg, "OUTPUT_DIR", "output_dir", "train.output_dir") if comm.is_main_process() and output_dir: PathManager.mkdirs(output_dir) rank = comm.get_rank() setup_logger(output_dir, distributed_rank=rank, name="fvcore") logger = setup_logger(output_dir, distributed_rank=rank) logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size())) logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info( "Contents of args.config_file={}:\n{}".format( args.config_file, _highlight(PathManager.open(args.config_file, "r").read(), args.config_file), ) ) if comm.is_main_process() and output_dir: # Note: some of our scripts may expect the existence of # config.yaml in output directory path = os.path.join(output_dir, "config.yaml") if isinstance(cfg, CfgNode): logger.info("Running with full config:\n{}".format(_highlight(cfg.dump(), ".yaml"))) with PathManager.open(path, "w") as f: f.write(cfg.dump()) else: LazyConfig.save(cfg, path) logger.info("Full config saved to {}".format(path)) # make sure each worker has a different, yet deterministic seed if specified seed = _try_get_key(cfg, "SEED", "train.seed", default=-1) seed_all_rng(None if seed < 0 else seed + rank) # cudnn benchmark has large overhead. It shouldn't be used considering the small size of # typical validation set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = _try_get_key( cfg, "CUDNN_BENCHMARK", "train.cudnn_benchmark", default=False ) def default_writers(output_dir: str, max_iter: Optional[int] = None): """ Build a list of :class:`EventWriter` to be used. It now consists of a :class:`CommonMetricPrinter`, :class:`TensorboardXWriter` and :class:`JSONWriter`. Args: output_dir: directory to store JSON metrics and tensorboard events max_iter: the total number of iterations Returns: list[EventWriter]: a list of :class:`EventWriter` objects. """ PathManager.mkdirs(output_dir) return [ # It may not always print what you want to see, since it prints "common" metrics only. CommonMetricPrinter(max_iter), JSONWriter(os.path.join(output_dir, "metrics.json")), TensorboardXWriter(output_dir), ] class DefaultPredictor: """ Create a simple end-to-end predictor with the given config that runs on single device for a single input image. Compared to using the model directly, this class does the following additions: 1. Load checkpoint from `cfg.MODEL.WEIGHTS`. 2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`. 3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`. 4. Take one input image and produce a single output, instead of a batch. This is meant for simple demo purposes, so it does the above steps automatically. This is not meant for benchmarks or running complicated inference logic. If you'd like to do anything more complicated, please refer to its source code as examples to build and use the model manually. Attributes: metadata (Metadata): the metadata of the underlying dataset, obtained from cfg.DATASETS.TEST. Examples: :: pred = DefaultPredictor(cfg) inputs = cv2.imread("input.jpg") outputs = pred(inputs) """ def __init__(self, cfg): self.cfg = cfg.clone() # cfg can be modified by model self.model = build_model(self.cfg) self.model.eval() if len(cfg.DATASETS.TEST): self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0]) checkpointer = DetectionCheckpointer(self.model) checkpointer.load(cfg.MODEL.WEIGHTS) self.aug = T.ResizeShortestEdge( [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) self.input_format = cfg.INPUT.FORMAT assert self.input_format in ["RGB", "BGR"], self.input_format def __call__(self, original_image): """ Args: original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). Returns: predictions (dict): the output of the model for one image only. See :doc:`/tutorials/models` for details about the format. """ with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258 # Apply pre-processing to image. if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] height, width = original_image.shape[:2] image = self.aug.get_transform(original_image).apply_image(original_image) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} predictions = self.model([inputs])[0] return predictions class MyTrainer(TrainerBase): """ A trainer with default training logic. It does the following: 1. Create a :class:`SimpleTrainer` using model, optimizer, dataloader defined by the given config. Create a LR scheduler defined by the config. 2. Load the last checkpoint or `cfg.MODEL.WEIGHTS`, if exists, when `resume_or_load` is called. 3. Register a few common hooks defined by the config. It is created to simplify the **standard model training workflow** and reduce code boilerplate for users who only need the standard training workflow, with standard features. It means this class makes *many assumptions* about your training logic that may easily become invalid in a new research. In fact, any assumptions beyond those made in the :class:`SimpleTrainer` are too much for research. The code of this class has been annotated about restrictive assumptions it makes. When they do not work for you, you're encouraged to: 1. Overwrite methods of this class, OR: 2. Use :class:`SimpleTrainer`, which only does minimal SGD training and nothing else. You can then add your own hooks if needed. OR: 3. Write your own training loop similar to `tools/plain_train_net.py`. See the :doc:`/tutorials/training` tutorials for more details. Note that the behavior of this class, like other functions/classes in this file, is not stable, since it is meant to represent the "common default behavior". It is only guaranteed to work well with the standard models and training workflow in detectron2. To obtain more stable behavior, write your own training logic with other public APIs. Examples: :: trainer = MyTrainer(cfg) trainer.resume_or_load() # load last checkpoint or MODEL.WEIGHTS trainer.train() Attributes: scheduler: checkpointer (DetectionCheckpointer): cfg (CfgNode): """ def __init__(self, cfg): """ Args: cfg (CfgNode): """ super().__init__() logger = logging.getLogger("detectron2") if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2 setup_logger() cfg = MyTrainer.auto_scale_workers(cfg, comm.get_world_size()) self.cfg = cfg # Assume these objects must be constructed in this order. model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) data_loader = self.build_train_loader(cfg) model = create_ddp_model(model, broadcast_buffers=False) self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)( model, data_loader, optimizer ) self.scheduler = self.build_lr_scheduler(cfg, optimizer) self.checkpointer = MyDetectionCheckpointer( # Assume you want to save checkpoints together with logs/statistics model, cfg.OUTPUT_DIR, trainer=weakref.proxy(self), ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.register_hooks(self.build_hooks()) def resume_or_load(self, resume=True): """ If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by a `last_checkpoint` file), resume from the file. Resuming means loading all available states (eg. optimizer and scheduler) and update iteration counter from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used. Otherwise, this is considered as an independent training. The method will load model weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start from iteration 0. Args: resume (bool): whether to do resume or not """ self.checkpointer.resume_or_load(self.cfg.MODEL.WEIGHTS, resume=resume) if resume and self.checkpointer.has_checkpoint(): # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration self.start_iter = self.iter + 1 def build_hooks(self): """ Build a list of default hooks, including timing, evaluation, checkpointing, lr scheduling, precise BN, writing events. Returns: list[HookBase]: """ cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN ret = [ hooks.IterationTimer(), hooks.LRScheduler(), hooks.PreciseBN( # Run at the same freq as (but before) evaluation. cfg.TEST.EVAL_PERIOD, self.model, # Build a new data loader to not affect training self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] # Do PreciseBN before checkpointer, because it updates the model and need to # be saved by checkpointer. # This is not always the best: if checkpointing has a different frequency, # some checkpoints may have more precise statistics than others. if comm.is_main_process(): ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD)) def test_and_save_results(): self._last_eval_results = self.test(self.cfg, self.model) return self._last_eval_results # Do evaluation after checkpointer, because then if it fails, # we can use the saved checkpoint to debug. ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results)) if comm.is_main_process(): # Here the default print/log frequency of each writer is used. # run writers in the end, so that evaluation metrics are written ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) return ret def build_writers(self): """ Build a list of writers to be used using :func:`default_writers()`. If you'd like a different list of writers, you can overwrite it in your trainer. Returns: list[EventWriter]: a list of :class:`EventWriter` objects. """ return default_writers(self.cfg.OUTPUT_DIR, self.max_iter) def train(self): """ Run training. Returns: OrderedDict of results, if evaluation is enabled. Otherwise None. """ super().train(self.start_iter, self.max_iter) if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process(): assert hasattr( self, "_last_eval_results" ), "No evaluation results obtained during training!" verify_results(self.cfg, self._last_eval_results) return self._last_eval_results def run_step(self): self._trainer.iter = self.iter self._trainer.run_step() @classmethod def build_model(cls, cfg): """ Returns: torch.nn.Module: It now calls :func:`detectron2.modeling.build_model`. Overwrite it if you'd like a different model. """ model = build_model(cfg) logger = logging.getLogger(__name__) logger.info("Model:\n{}".format(model)) return model @classmethod def build_optimizer(cls, cfg, model): params: List[Dict[str, Any]] = [] memo: Set[torch.nn.parameter.Parameter] = set() for key, value in model.named_parameters(recurse=True): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if "backbone" in key: lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class # detectron2 doesn't have full model gradient clipping now clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE enable = ( cfg.SOLVER.CLIP_GRADIENTS.ENABLED and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" and clip_norm_val > 0.0 ) class FullModelGradientClippingOptimizer(optim): def step(self, closure=None): all_params = itertools.chain(*[x["params"] for x in self.param_groups]) torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) super().step(closure=closure) return FullModelGradientClippingOptimizer if enable else optim optimizer_type = cfg.SOLVER.OPTIMIZER if optimizer_type == "SGD": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM ) elif optimizer_type == "ADAMW": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( params, cfg.SOLVER.BASE_LR ) else: raise NotImplementedError(f"no optimizer type {optimizer_type}") if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": optimizer = maybe_add_gradient_clipping(cfg, optimizer) return optimizer @classmethod def build_lr_scheduler(cls, cfg, optimizer): """ It now calls :func:`detectron2.solver.build_lr_scheduler`. Overwrite it if you'd like a different scheduler. """ return build_lr_scheduler(cfg, optimizer) @classmethod def build_train_loader(cls, cfg): if cfg.AUG.DETR: mapper = DetrDatasetMapper(cfg, is_train=True) else: mapper = None return build_detection_train_loader(cfg, mapper=mapper) @classmethod def build_test_loader(cls, cfg, dataset_name): """ Returns: iterable It now calls :func:`detectron2.data.build_detection_test_loader`. Overwrite it if you'd like a different data loader. """ return build_detection_test_loader(cfg, dataset_name) @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") if 'icdar' not in dataset_name: return COCOEvaluator(dataset_name, output_dir=output_folder) else: return ICDAREvaluator(dataset_name, output_dir=output_folder) @classmethod def test(cls, cfg, model, evaluators=None): """ Evaluate the given model. The given model is expected to already contain weights to evaluate. Args: cfg (CfgNode): model (nn.Module): evaluators (list[DatasetEvaluator] or None): if None, will call :meth:`build_evaluator`. Otherwise, must have the same length as ``cfg.DATASETS.TEST``. Returns: dict: a dict of result metrics """ logger = logging.getLogger(__name__) if isinstance(evaluators, DatasetEvaluator): evaluators = [evaluators] if evaluators is not None: assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format( len(cfg.DATASETS.TEST), len(evaluators) ) results = OrderedDict() for idx, dataset_name in enumerate(cfg.DATASETS.TEST): data_loader = cls.build_test_loader(cfg, dataset_name) # When evaluators are passed in as arguments, # implicitly assume that evaluators can be created before data_loader. if evaluators is not None: evaluator = evaluators[idx] else: try: evaluator = cls.build_evaluator(cfg, dataset_name) except NotImplementedError: logger.warn( "No evaluator found. Use `MyTrainer.test(evaluators=)`, " "or implement its `build_evaluator` method." ) results[dataset_name] = {} continue results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i if comm.is_main_process(): assert isinstance( results_i, dict ), "Evaluator must return a dict on the main process. Got {} instead.".format( results_i ) logger.info("Evaluation results for {} in csv format:".format(dataset_name)) print_csv_format(results_i) if len(results) == 1: results = list(results.values())[0] return results @staticmethod def auto_scale_workers(cfg, num_workers: int): """ When the config is defined for certain number of workers (according to ``cfg.SOLVER.REFERENCE_WORLD_SIZE``) that's different from the number of workers currently in use, returns a new cfg where the total batch size is scaled so that the per-GPU batch size stays the same as the original ``IMS_PER_BATCH // REFERENCE_WORLD_SIZE``. Other config options are also scaled accordingly: * training steps and warmup steps are scaled inverse proportionally. * learning rate are scaled proportionally, following :paper:`ImageNet in 1h`. For example, with the original config like the following: .. code-block:: yaml IMS_PER_BATCH: 16 BASE_LR: 0.1 REFERENCE_WORLD_SIZE: 8 MAX_ITER: 5000 STEPS: (4000,) CHECKPOINT_PERIOD: 1000 When this config is used on 16 GPUs instead of the reference number 8, calling this method will return a new config with: .. code-block:: yaml IMS_PER_BATCH: 32 BASE_LR: 0.2 REFERENCE_WORLD_SIZE: 16 MAX_ITER: 2500 STEPS: (2000,) CHECKPOINT_PERIOD: 500 Note that both the original config and this new config can be trained on 16 GPUs. It's up to user whether to enable this feature (by setting ``REFERENCE_WORLD_SIZE``). Returns: CfgNode: a new config. Same as original if ``cfg.SOLVER.REFERENCE_WORLD_SIZE==0``. """ old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE if old_world_size == 0 or old_world_size == num_workers: return cfg cfg = cfg.clone() frozen = cfg.is_frozen() cfg.defrost() assert ( cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0 ), "Invalid REFERENCE_WORLD_SIZE in config!" scale = num_workers / old_world_size bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale)) lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale)) warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale)) cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS) cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale)) cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale)) cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers # maintain invariant logger = logging.getLogger(__name__) logger.info( f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, " f"max_iter={max_iter}, warmup={warmup_iter}." ) if frozen: cfg.freeze() return cfg # Access basic attributes from the underlying trainer for _attr in ["model", "data_loader", "optimizer"]: setattr( MyTrainer, _attr, property( # getter lambda self, x=_attr: getattr(self._trainer, x), # setter lambda self, value, x=_attr: setattr(self._trainer, x, value), ), )
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/mytrainer.py
from .evaluate import calc_table_score
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/table_evaluation/__init__.py
""" Evaluation of -.tar.gz file. Yu Fang - March 2019 """ import os import xml.dom.minidom # from eval import eval reg_gt_path = os.path.abspath("data/test") reg_gt_path_archival = os.path.abspath("data/test") reg_gt_path_modern = os.path.abspath("data/test") str_gt_path_1 = os.path.abspath("data/test") str_gt_path_2 = os.path.abspath("data/test") str_gt_path_archival = os.path.abspath("data/test") str_gt_path_modern = os.path.abspath("data/test") import xml.dom.minidom # from functools import cmp_to_key from os.path import join as osj from .data_structure import * class eval: STR = "-str" REG = "-reg" DEFAULT_ENCODING = "UTF-8" # reg_gt_path = "./annotations/trackA/" # str_gt_path = "./annotations/trackB/" # reg_gt_path = os.path.abspath("data/test") # reg_gt_path_archival = os.path.abspath("data/test") # reg_gt_path_modern = os.path.abspath("data/test") # str_gt_path_1 = os.path.abspath("data/test") # str_gt_path_2 = os.path.abspath("data/test") # str_gt_path_archival = os.path.abspath("data/test") # str_gt_path_modern = os.path.abspath("data/test") # dummyDom = xml.dom.minidom.parse("./dummyXML.xml") def __init__(self, track, res_path): self.return_result = None self.reg = True self.str = False self.resultFile = res_path self.inPrefix = os.path.split(res_path)[-1].split(".")[0][:-7] if track == "-trackA": self.reg = True self.GTFile = osj(reg_gt_path, self.inPrefix + ".xml") # self.GTFile = osj(self.reg_gt_path, self.inPrefix) elif track == "-trackA1": # archival documents self.reg = True self.GTFile = osj(reg_gt_path_archival, self.inPrefix + ".xml") elif track == "-trackA2": # modern documents self.reg = True self.GTFile = osj(reg_gt_path_modern, self.inPrefix + ".xml") elif track == "-trackB1": self.str = True self.GTFile = osj(str_gt_path_1, self.inPrefix + ".xml") # self.GTFile = osj(self.str_gt_path_1, self.inPrefix) elif track == "-trackB2": self.str = True self.GTFile = osj(str_gt_path_2, self.inPrefix + ".xml") # print(self.GTFile) # self.GTFile = osj(self.str_gt_path_2, self.inPrefix) elif track == "-trackB2_a": self.str = True self.GTFile = osj(str_gt_path_archival, self.inPrefix + ".xml") elif track == "-trackB2_m": self.str = True self.GTFile = osj(str_gt_path_modern, self.inPrefix + ".xml") else: print(track) print("Not a valid track, please check your spelling.") # self.resultFile = res_path # self.inPrefix = os.path.split(res_path)[-1].split("-")[0] # if self.str: # # self.GTFile = osj(self.str_gt_path, self.inPrefix + "-str.xml") # self.GTFile = osj(self.str_gt_path, self.inPrefix + ".xml") # elif self.reg: # # self.GTFile = osj(self.reg_gt_path, self.inPrefix + "-reg.xml") # self.GTFile = osj(self.reg_gt_path, self.inPrefix + ".xml") # else: # print("Not a valid track, please check your spelling.") self.gene_ret_lst() @property def result(self): return self.return_result def gene_ret_lst(self): ret_lst = [] for iou in [0.6, 0.7, 0.8, 0.9]: temp = self.compute_retVal(iou) ret_lst.append(temp) # ret_lst.append(self.compute_retVal(iou)) ret_lst.append(self.inPrefix + ".xml") # ret_lst.append(self.inPrefix) # print("Done processing {}\n".format(self.resultFile)) self.return_result = ret_lst def compute_retVal(self, iou): gt_dom = xml.dom.minidom.parse(self.GTFile) # incorrect submission format handling try: result_dom = xml.dom.minidom.parse(self.resultFile) except Exception as e: # result_dom = xml.dom.minidom.parse(dummyDom) gt_tables = eval.get_table_list(gt_dom) retVal = ResultStructure(truePos=0, gtTotal=len(gt_tables), resTotal=0) return retVal # result_dom = xml.dom.minidom.parse(self.resultFile) if self.reg: ret = self.evaluate_result_reg(gt_dom, result_dom, iou) return ret if self.str: ret = self.evaluate_result_str(gt_dom, result_dom, iou) return ret @staticmethod def get_table_list(dom): """ return a list of Table objects corresponding to the table element of the DOM. """ return [Table(_nd) for _nd in dom.documentElement.getElementsByTagName("table")] @staticmethod def evaluate_result_reg(gt_dom, result_dom, iou_value): # parse the tables in input elements gt_tables = eval.get_table_list(gt_dom) result_tables = eval.get_table_list(result_dom) # duplicate result table list remaining_tables = result_tables.copy() # map the tables in gt and result file table_matches = [] # @param: table_matches - list of mapping of tables in gt and res file, in order (gt, res) for gtt in gt_tables: for rest in remaining_tables: if gtt.compute_table_iou(rest) >= iou_value: remaining_tables.remove(rest) table_matches.append((gtt, rest)) break assert len(table_matches) <= len(gt_tables) assert len(table_matches) <= len(result_tables) retVal = ResultStructure(truePos=len(table_matches), gtTotal=len(gt_tables), resTotal=len(result_tables)) return retVal @staticmethod def evaluate_result_str(gt_dom, result_dom, iou_value, table_iou_value=0.8): # parse the tables in input elements gt_tables = eval.get_table_list(gt_dom) result_tables = eval.get_table_list(result_dom) # duplicate result table list remaining_tables = result_tables.copy() gt_remaining = gt_tables.copy() # map the tables in gt and result file table_matches = [] # @param: table_matches - list of mapping of tables in gt and res file, in order (gt, res) for gtt in gt_remaining: for rest in remaining_tables: # note: for structural analysis, use 0.8 for table mapping if gtt.compute_table_iou(rest) >= table_iou_value: table_matches.append((gtt, rest)) remaining_tables.remove(rest) # unsafe... should be ok with the break below gt_remaining.remove(gtt) break total_gt_relation, total_res_relation, total_correct_relation = 0, 0, 0 for gt_table, ress_table in table_matches: # set up the cell mapping for matching tables cell_mapping = gt_table.find_cell_mapping(ress_table, iou_value) # set up the adj relations, convert the one for result table to a dictionary for faster searching gt_AR = gt_table.find_adj_relations() total_gt_relation += len(gt_AR) res_AR = ress_table.find_adj_relations() total_res_relation += len(res_AR) if False: # for DEBUG Table.printCellMapping(cell_mapping) Table.printAdjacencyRelationList(gt_AR, "GT") Table.printAdjacencyRelationList(res_AR, "run") # Now map GT adjacency relations to result lMappedAR = [] for ar in gt_AR: try: resFromCell = cell_mapping[ar.fromText] resToCell = cell_mapping[ar.toText] # make a mapped adjacency relation lMappedAR.append(AdjRelation(resFromCell, resToCell, ar.direction)) except: # no mapping is possible pass # compare two list of adjacency relation correct_dect = 0 for ar1 in res_AR: for ar2 in lMappedAR: if ar1.isEqual(ar2): correct_dect += 1 break total_correct_relation += correct_dect # handle gt_relations in unmatched gt table for gtt_remain in gt_remaining: total_gt_relation += len(gtt_remain.find_adj_relations()) # handle gt_relation in unmatched res table for res_remain in remaining_tables: total_res_relation += len(res_remain.find_adj_relations()) retVal = ResultStructure(truePos=total_correct_relation, gtTotal=total_gt_relation, resTotal=total_res_relation) return retVal # calculate the gt adj_relations of the missing file # @param: file_lst - list of missing ground truth file # @param: cur_gt_num - current total of ground truth objects (tables / cells) def process_missing_files(track, gt_file_lst, cur_gt_num): if track in ["-trackA", "-trackA1", "-trackA2"]: gt_file_lst_full = [osj(reg_gt_path, filename) for filename in gt_file_lst] for file in gt_file_lst_full: if os.path.split(file)[-1].split(".")[-1] == "xml": gt_dom = xml.dom.minidom.parse(file) gt_root = gt_dom.documentElement # tables = [] table_elements = gt_root.getElementsByTagName("table") for res_table in table_elements: # t = Table(res_table) # tables.append(t) cur_gt_num += 1 return cur_gt_num elif track == "-trackB1": gt_file_lst_full = [osj(str_gt_path_1, filename) for filename in gt_file_lst] for file in gt_file_lst_full: if os.path.split(file)[-1].split(".")[-1] == "xml": gt_dom = xml.dom.minidom.parse(file) gt_root = gt_dom.documentElement tables = [] table_elements = gt_root.getElementsByTagName("table") for res_table in table_elements: t = Table(res_table) tables.append(t) for table in tables: cur_gt_num += len(table.find_adj_relations()) return cur_gt_num elif track == "-trackB2": gt_file_lst_full = [osj(str_gt_path_2, filename) for filename in gt_file_lst] for file in gt_file_lst_full: if os.path.split(file)[-1].split(".")[-1] == "xml": gt_dom = xml.dom.minidom.parse(file) gt_root = gt_dom.documentElement tables = [] table_elements = gt_root.getElementsByTagName("table") for res_table in table_elements: t = Table(res_table) tables.append(t) for table in tables: cur_gt_num += len(table.find_adj_relations()) return cur_gt_num def calc(F1): sum_a = 0.6 * F1[0] + 0.7 * F1[1] + 0.8 * F1[2] + 0.9 * F1[3] sum_b = 0.6 + 0.7 + 0.8 + 0.9 return sum_a / sum_b def calc_table_score(result_path): # measure = eval(*sys.argv[1:]) gt_file_lst = os.listdir(reg_gt_path_archival) track = "-trackA1" untar_path = result_path res_lst = [] for root, files, dirs in os.walk(untar_path): for name in dirs: if name.split(".")[-1] == "xml": cur_filepath = osj(os.path.abspath(root), name) res_lst.append(eval(track, cur_filepath)) # printing for debug # print("Processing... {}".format(name)) # print("DONE WITH FILE PROCESSING\n") # note: results are stored as list of each when iou at [0.6, 0.7, 0.8, 0.9, gt_filename] # gt number should be the same for all files gt_num = 0 correct_six, res_six = 0, 0 correct_seven, res_seven = 0, 0 correct_eight, res_eight = 0, 0 correct_nine, res_nine = 0, 0 for each_file in res_lst: # print(each_file) try: gt_file_lst.remove(each_file.result[-1]) if each_file.result[-1].replace('.xml', '.jpg') in gt_file_lst: gt_file_lst.remove(each_file.result[-1].replace('.xml', '.jpg')) correct_six += each_file.result[0].truePos gt_num += each_file.result[0].gtTotal res_six += each_file.result[0].resTotal # print("{} {} {}".format(each_file.result[0].truePos, each_file.result[0].gtTotal, each_file.result[0].resTotal)) correct_seven += each_file.result[1].truePos res_seven += each_file.result[1].resTotal correct_eight += each_file.result[2].truePos res_eight += each_file.result[2].resTotal correct_nine += each_file.result[3].truePos res_nine += each_file.result[3].resTotal except: print("Error occur in processing result list.") print(each_file.result[-1]) break # print(each_file.result[-1]) # print(each_file) # for file in gt_file_lst: # if file.split(".") != "xml": # gt_file_lst.remove(file) # # print(gt_file_lst) for i in range(len(gt_file_lst) - 1, -1, -1): if gt_file_lst[i].split(".")[-1] != "xml": del gt_file_lst[i] if len(gt_file_lst) > 0: print("\nWarning: missing result annotations for file: {}\n".format(gt_file_lst)) gt_total = process_missing_files(track, gt_file_lst, gt_num) else: gt_total = gt_num try: # print("Evaluation of {}".format(track.replace("-", ""))) # iou @ 0.6 p_six = correct_six / res_six r_six = correct_six / gt_total f1_six = 2 * p_six * r_six / (p_six + r_six) print("IOU @ 0.6 -\nprecision: {}\nrecall: {}\nf1: {}".format(p_six, r_six, f1_six)) print("correct: {}, gt: {}, res: {}\n".format(correct_six, gt_total, res_six)) # iou @ 0.7 p_seven = correct_seven / res_seven r_seven = correct_seven / gt_total f1_seven = 2 * p_seven * r_seven / (p_seven + r_seven) print("IOU @ 0.7 -\nprecision: {}\nrecall: {}\nf1: {}".format(p_seven, r_seven, f1_seven)) print("correct: {}, gt: {}, res: {}\n".format(correct_seven, gt_total, res_seven)) # iou @ 0.8 p_eight = correct_eight / res_eight r_eight = correct_eight / gt_total f1_eight = 2 * p_eight * r_eight / (p_eight + r_eight) print("IOU @ 0.8 -\nprecision: {}\nrecall: {}\nf1: {}".format(p_eight, r_eight, f1_eight)) print("correct: {}, gt: {}, res: {}\n".format(correct_eight, gt_total, res_eight)) # iou @ 0.9 p_nine = correct_nine / res_nine r_nine = correct_nine / gt_total f1_nine = 2 * p_nine * r_nine / (p_nine + r_nine) print("IOU @ 0.9 -\nprecision: {}\nrecall: {}\nf1: {}".format(p_nine, r_nine, f1_nine)) print("correct: {}, gt: {}, res: {}".format(correct_nine, gt_total, res_nine)) F1 = [f1_six, f1_seven, f1_eight, f1_nine] wF1 = calc(F1) print("Average weight F1: {}".format(wF1)) return { 'p_six':p_six * 100, "r_six":r_six * 100, "f1_six":f1_six * 100, "p_seven":p_seven * 100, "r_seven":r_seven * 100, "f1_seven":f1_seven * 100, "p_eight":p_eight * 100, "r_eight":r_eight * 100, "f1_eight":f1_eight * 100, "p_nine":p_nine * 100, "r_nine":r_nine * 100, "f1_nine":f1_nine * 100, "wF1":wF1 * 100 } except ZeroDivisionError: print( "Error: zero devision error found, (possible that no adjacency relations are found), please check the file input.") return {"wF1": 0} if __name__=="__main__": pass
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/table_evaluation/evaluate.py
""" Data structures used by the evaluation process. Yu Fang - March 2019 """ from collections import Iterable import numpy as np from shapely.geometry import Polygon # helper functions def flatten(lis): for item in lis: if isinstance(item, Iterable) and not isinstance(item, str): for x in flatten(item): yield x else: yield item # derived from https://blog.csdn.net/u012433049/article/details/82909484 def compute_poly_iou(list1, list2): a1 = np.array(list1, dtype=int).reshape(-1, 2) poly1 = Polygon(a1) poly1_clean = poly1.buffer(0) a2 = np.array(list2, dtype=int).reshape(-1, 2) poly2 = Polygon(a2) poly2_clean = poly2.buffer(0) try: # iou = poly1.intersection(poly2).area / poly1.union(poly2).area iou = poly1_clean.intersection(poly2_clean).area / poly1_clean.union(poly2_clean).area except ZeroDivisionError: iou = 0 return iou class Cell(object): # @:param start_row : start row index of the Cell # @:param start_col : start column index of the Cell # @:param end-row : end row index of the Cell # @:param end-col : end column index of the Cell # @:param cell_box: bounding-box of the Cell (coordinates are saved as a string) # @:param content_box: bounding-box of the text content within Cell (unused variable) # @:param cell_id: unique id of the Cell def __init__(self, table_id, start_row, start_col, cell_box, end_row, end_col, content_box=""): self._start_row = int(start_row) self._start_col = int(start_col) self._cell_box = cell_box self._content_box = content_box self._table_id = table_id # the table_id this cell belongs to # self._cell_name = cell_id # specify the cell using passed-in cell_id self._cell_id = id(self) # self._region = region # check for end-row and end-col special case if end_row == -1: self._end_row = self.start_row else: self._end_row = int(end_row) if end_col == -1: self._end_col = self._start_col else: self._end_col = int(end_col) @property def start_row(self): return self._start_row @property def start_col(self): return self._start_col @property def end_row(self): return self._end_row @property def end_col(self): return self._end_col @property def cell_box(self): return self._cell_box @property def content_box(self): return self._content_box @property def cell_id(self): return self._cell_id @property def table_id(self): return self._table_id def __str__(self): return "CELL row=[%d, %d] col=[%d, %d] (coords=%s)" %(self.start_row, self.end_row , self.start_col, self.end_col , self.cell_box) # return the IoU value of two cell blocks def compute_cell_iou(self, another_cell): cell_box_1_temp = [] for el in self.cell_box.split(): cell_box_1_temp.append((el.split(","))) cell_box_1 = list(flatten(cell_box_1_temp)) cell_box_1 = [int(x) for x in cell_box_1] cell_box_2_temp = [] for el in another_cell.cell_box.split(): cell_box_2_temp.append((el.split(","))) cell_box_2 = list(flatten(cell_box_2_temp)) cell_box_2 = [int(x) for x in cell_box_2] return compute_poly_iou(cell_box_1, cell_box_2) # check if the two cell object denotes same cell area in table def check_same(self, another_cell): return self._start_row == another_cell.start_row and self._end_row == another_cell.end_row and \ self._start_col == another_cell.start_col and self._end_col == another_cell.end_col # Note: currently save the relation with two cell object involved, # can be replaced by cell_id in follow-up memory clean up class AdjRelation: DIR_HORIZ = 1 DIR_VERT = 2 def __init__(self, fromText, toText, direction): # @param: fromText, toText are Cell objects (may be changed to cell-ID for further development) self._fromText = fromText self._toText = toText self._direction = direction @property def fromText(self): return self._fromText @property def toText(self): return self._toText @property def direction(self): return self._direction def __str__(self): if self.direction == self.DIR_VERT: dir = "vertical" else: dir = "horizontal" return 'ADJ_RELATION: ' + str(self._fromText) + ' ' + str(self._toText) + ' ' + dir def isEqual(self, otherRelation): return self.fromText.cell_id == otherRelation.fromText.cell_id and \ self.toText.cell_id == otherRelation.toText.cell_id and self.direction == otherRelation.direction class Table: def __init__(self, tableNode): self._root = tableNode self._id = id(self) self._table_coords = "" self._maxRow = 0 # PS: indexing from 0 self._maxCol = 0 self._cells = [] # save a table as list of <Cell>s self.adj_relations = [] # save the adj_relations for the table self.parsed = False self.found = False # check if the find_adj_relations() has been called once self.parse_table() def __str__(self): return "TABLE object - {} row x {} col".format(self._maxRow+1, self._maxCol+1) @property def id(self): return self._id @property def table_coords(self): return self._table_coords @property def table_cells(self): return self._cells # parse input xml to cell lists def parse_table(self): # get the table bbox self._table_coords = str(self._root.getElementsByTagName("Coords")[0].getAttribute("points")) # get info for each cell cells = self._root.getElementsByTagName("cell") max_row = max_col = 0 for cell in cells: sr = cell.getAttribute("start-row") sc = cell.getAttribute("start-col") cell_id = cell.getAttribute("id") b_points = str(cell.getElementsByTagName("Coords")[0].getAttribute("points")) # try: # try: # text = cell.getElementsByTagName("content")[0].firstChild.nodeValue # except AttributeError: # text = "" # except IndexError: # text = "initialized cell as no content" er = cell.getAttribute("end-row") if cell.hasAttribute("end-row") else -1 ec = cell.getAttribute("end-col") if cell.hasAttribute("end-col") else -1 new_cell = Cell(table_id=str(self.id), start_row=sr, start_col=sc, cell_box=b_points, end_row=er, end_col=ec) max_row = max(max_row, int(sr), int(er)) max_col = max(max_col, int(sc), int(ec)) self._cells.append(new_cell) self._maxCol = max_col self._maxRow = max_row self.parsed = True # generate a table-like structure for finding adj_relations def convert_2d(self): table = [[0 for x in range(self._maxCol+1)] for y in range(self._maxRow+1)] # init blank cell with int 0 for cell in self._cells: cur_row = cell.start_row while cur_row <= cell.end_row: cur_col = cell.start_col while cur_col <= cell.end_col: temp = table[cur_row][cur_col] if temp == 0: table[cur_row][cur_col] = cell elif type(temp) == list: temp.append(cell) table[cur_row][cur_col] = temp else: table[cur_row][cur_col] = [temp, cell] cur_col += 1 cur_row += 1 return table def find_adj_relations(self): if self.found: return self.adj_relations else: # if len(self._cells) == 0: if self.parsed == False: # fix: cases where there's no cell in table? print("table is not parsed for further steps.") self.parse_table() self.find_adj_relations() else: retVal = [] tab = self.convert_2d() # find horizontal relations for r in range(self._maxRow+1): for c_from in range(self._maxCol): temp_pos = tab[r][c_from] if temp_pos == 0: continue elif type(temp_pos) == list: for cell in temp_pos: c_to = c_from + 1 if tab[r][c_to] != 0: # find relation between two adjacent cells if type(tab[r][c_to]) == list: for cell_to in tab[r][c_to]: if cell != cell_to and (not cell.check_same(cell_to)): adj_relation = AdjRelation(cell, cell_to, AdjRelation.DIR_HORIZ) retVal.append(adj_relation) else: if cell != tab[r][c_to]: adj_relation = AdjRelation(cell, tab[r][c_to], AdjRelation.DIR_HORIZ) retVal.append(adj_relation) else: # find the next non-blank cell, if exists for temp in range(c_from + 1, self._maxCol + 1): if tab[r][temp] != 0: if type(tab[r][temp]) == list: for cell_to in tab[r][temp]: adj_relation = AdjRelation(cell, cell_to, AdjRelation.DIR_HORIZ) retVal.append(adj_relation) else: adj_relation = AdjRelation(cell, tab[r][temp], AdjRelation.DIR_HORIZ) retVal.append(adj_relation) break else: c_to = c_from + 1 if tab[r][c_to] != 0: # find relation between two adjacent cells if type(tab[r][c_to]) == list: for cell_to in tab[r][c_to]: if temp_pos != cell_to: adj_relation = AdjRelation(temp_pos, cell_to, AdjRelation.DIR_HORIZ) retVal.append(adj_relation) else: if temp_pos != tab[r][c_to]: adj_relation = AdjRelation(temp_pos, tab[r][c_to], AdjRelation.DIR_HORIZ) retVal.append(adj_relation) else: # find the next non-blank cell, if exists for temp in range(c_from + 1, self._maxCol + 1): if tab[r][temp] != 0: if type(tab[r][temp]) == list: for cell_to in tab[r][temp]: adj_relation = AdjRelation(temp_pos, cell_to, AdjRelation.DIR_HORIZ) retVal.append(adj_relation) else: adj_relation = AdjRelation(temp_pos, tab[r][temp], AdjRelation.DIR_HORIZ) retVal.append(adj_relation) break # find vertical relations for c in range(self._maxCol+1): for r_from in range(self._maxRow): temp_pos = tab[r_from][c] if temp_pos == 0: continue elif type(temp_pos) == list: for cell in temp_pos: r_to = r_from + 1 if tab[r_to][c] != 0: # find relation between two adjacent cells if type(tab[r_to][c]) == list: for cell_to in tab[r_to][c]: if cell != cell_to and (not cell.check_same(cell_to)): adj_relation = AdjRelation(cell, cell_to, AdjRelation.DIR_VERT) retVal.append(adj_relation) else: if cell != tab[r_to][c]: adj_relation = AdjRelation(cell, tab[r_to][c], AdjRelation.DIR_VERT) retVal.append(adj_relation) else: # find the next non-blank cell, if exists for temp in range(r_from + 1, self._maxRow + 1): if tab[temp][c] != 0: if type(tab[temp][c]) == list: for cell_to in tab[temp][c]: adj_relation = AdjRelation(cell, cell_to, AdjRelation.DIR_VERT) retVal.append(adj_relation) else: adj_relation = AdjRelation(cell, tab[temp][c], AdjRelation.DIR_VERT) retVal.append(adj_relation) break else: r_to = r_from + 1 if tab[r_to][c] != 0: # find relation between two adjacent cells if type(tab[r_to][c]) == list: for cell_to in tab[r_to][c]: if temp_pos != cell_to: adj_relation = AdjRelation(temp_pos, cell_to, AdjRelation.DIR_VERT) retVal.append(adj_relation) else: if temp_pos != tab[r_to][c]: adj_relation = AdjRelation(temp_pos, tab[r_to][c], AdjRelation.DIR_VERT) retVal.append(adj_relation) else: # find the next non-blank cell, if exists for temp in range(r_from + 1, self._maxRow + 1): if tab[temp][c] != 0: if type(tab[temp][c]) == list: for cell_to in tab[temp][c]: adj_relation = AdjRelation(temp_pos, cell_to, AdjRelation.DIR_VERT) retVal.append(adj_relation) else: adj_relation = AdjRelation(temp_pos, tab[temp][c], AdjRelation.DIR_VERT) retVal.append(adj_relation) break # eliminate duplicates repeat = True while repeat: repeat = False duplicates = [] for ar1 in retVal: for ar2 in retVal: if ar1 != ar2: if ar1.direction == ar2.direction and ar1.fromText == ar2.fromText and\ ar1.toText == ar2.toText: duplicates.append(ar2) break else: continue break if len(duplicates) > 0: repeat = True retVal.remove(duplicates[0]) self.found = True self.adj_relations = retVal return self.adj_relations # compute the IOU of table, pass-in var is another Table object def compute_table_iou(self, another_table): table_box_1_temp = [] for el in self.table_coords.split(): table_box_1_temp.append((el.split(","))) table_box_1 = list(flatten(table_box_1_temp)) table_box_1 = [int(x) for x in table_box_1] table_box_2_temp = [] for el in another_table.table_coords.split(): table_box_2_temp.append((el.split(","))) table_box_2 = list(flatten(table_box_2_temp)) table_box_2 = [int(x) for x in table_box_2] return compute_poly_iou(table_box_1, table_box_2) # find the cell mapping of tables as dictionary, pass-in var is another table and the desired IOU value def find_cell_mapping(self, target_table, iou_value): mapped_cell = [] # store the matches as tuples - (gt, result) mind the order of table when passing in for cell_1 in self.table_cells: for cell_2 in target_table.table_cells: if cell_1.compute_cell_iou(cell_2) >= iou_value: mapped_cell.append((cell_1, cell_2)) break ret = dict(mapped_cell) # print(ret) return ret # to print a table cell mapping @classmethod def printCellMapping(cls, dMappedCell): print("-"*25) for cell1, cell2 in dMappedCell.items(): print(" ", cell1, " --> ", cell2) # to print a table set of adjacency relations @classmethod def printAdjacencyRelationList(cls, lAdjRel, title=""): print("--- %s "%title + "-"*25) for adj in lAdjRel: print(adj) class ResultStructure: def __init__(self, truePos, gtTotal, resTotal): self._truePos = truePos self._gtTotal = gtTotal self._resTotal = resTotal @property def truePos(self): return self._truePos @property def gtTotal(self): return self._gtTotal @property def resTotal(self): return self._resTotal def __str__(self): return "true: {}, gt: {}, res: {}".format(self._truePos, self._gtTotal, self._resTotal)
EXA-1-master
exa/models/unilm-master/dit/object_detection/ditod/table_evaluation/data_structure.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import sys from typing import Iterable, Optional import torch from timm.data import Mixup from timm.utils import accuracy, ModelEma import utils def train_class_batch(model, samples, target, criterion): outputs = model(samples) loss = criterion(outputs, target) return loss, outputs def get_loss_scale_for_deepspeed(model): optimizer = model.optimizer return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, num_training_steps_per_epoch=None, update_freq=None): model.train(True) metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 if loss_scaler is None: model.zero_grad() model.micro_steps = 0 else: optimizer.zero_grad() for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): step = data_iter_step // update_freq if step >= num_training_steps_per_epoch: continue it = start_steps + step # global training iteration # Update LR & WD for the first acc if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples = samples.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) if loss_scaler is None: samples = samples.half() loss, output = train_class_batch( model, samples, targets, criterion) else: with torch.cuda.amp.autocast(): loss, output = train_class_batch( model, samples, targets, criterion) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) if loss_scaler is None: loss /= update_freq model.backward(loss) model.step() if (data_iter_step + 1) % update_freq == 0: # model.zero_grad() # Deepspeed will call step() & model.zero_grad() automatic if model_ema is not None: model_ema.update(model) grad_norm = None loss_scale_value = get_loss_scale_for_deepspeed(model) else: # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order loss /= update_freq grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order, update_grad=(data_iter_step + 1) % update_freq == 0) if (data_iter_step + 1) % update_freq == 0: optimizer.zero_grad() if model_ema is not None: model_ema.update(model) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() if mixup_fn is None: class_acc = (output.max(-1)[-1] == targets).float().mean() else: class_acc = None metric_logger.update(loss=loss_value) metric_logger.update(class_acc=class_acc) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(class_acc=class_acc, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
EXA-1-master
exa/models/unilm-master/beit/engine_for_finetuning.py
""" Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 Copyright Zhun Zhong & Liang Zheng Hacked together by / Copyright 2020 Ross Wightman Modified by Hangbo Bao, for generating the masked position for visual image transformer """ # -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 # Copyright Zhun Zhong & Liang Zheng # # Hacked together by / Copyright 2020 Ross Wightman # # Modified by Hangbo Bao, for generating the masked position for visual image transformer # --------------------------------------------------------' import random import math import numpy as np class MaskingGenerator: def __init__( self, input_size, num_masking_patches, min_num_patches=4, max_num_patches=None, min_aspect=0.3, max_aspect=None): if not isinstance(input_size, tuple): input_size = (input_size, ) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.num_masking_patches = num_masking_patches self.min_num_patches = min_num_patches self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self): repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( self.height, self.width, self.min_num_patches, self.max_num_patches, self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1]) return repr_str def get_shape(self): return self.height, self.width def _mask(self, mask, max_mask_patches): delta = 0 for attempt in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top: top + h, left: left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self): mask = np.zeros(shape=self.get_shape(), dtype=np.int) mask_count = 0 while mask_count < self.num_masking_patches: max_mask_patches = self.num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._mask(mask, max_mask_patches) if delta == 0: break else: mask_count += delta return mask
EXA-1-master
exa/models/unilm-master/beit/masking_generator.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on OpenAI DALL-E and lucidrains' DALLE-pytorch code bases # https://github.com/openai/DALL-E # https://github.com/lucidrains/DALLE-pytorch # --------------------------------------------------------' from math import sqrt import os import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange def top_k(logits, thres = 0.5): num_logits = logits.shape[-1] k = max(int((1 - thres) * num_logits), 1) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs def exists(val): return val is not None def default(val, d): return val if exists(val) else d def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner class BasicVAE(nn.Module): def get_codebook_indices(self, images): raise NotImplementedError() def decode(self, img_seq): raise NotImplementedError() def get_codebook_probs(self, img_seq): raise NotImplementedError() def get_image_tokens_size(self): pass def get_image_size(self): pass class ResBlock(nn.Module): def __init__(self, chan_in, hidden_size, chan_out): super().__init__() self.net = nn.Sequential( nn.Conv2d(chan_in, hidden_size, 3, padding=1), nn.ReLU(), nn.Conv2d(hidden_size, hidden_size, 3, padding=1), nn.ReLU(), nn.Conv2d(hidden_size, chan_out, 1) ) def forward(self, x): return self.net(x) + x class DiscreteVAE(BasicVAE): def __init__( self, image_size = 256, num_tokens = 512, codebook_dim = 512, num_layers = 3, hidden_dim = 64, channels = 3, smooth_l1_loss = False, temperature = 0.9, straight_through = False, kl_div_loss_weight = 0. ): super().__init__() # assert log2(image_size).is_integer(), 'image size must be a power of 2' assert num_layers >= 1, 'number of layers must be greater than or equal to 1' self.image_size = image_size self.num_tokens = num_tokens self.num_layers = num_layers self.temperature = temperature self.straight_through = straight_through self.codebook = nn.Embedding(num_tokens, codebook_dim) enc_layers = [] dec_layers = [] enc_in = channels dec_in = codebook_dim for layer_id in range(num_layers): enc_layers.append(nn.Sequential(nn.Conv2d(enc_in, hidden_dim, 4, stride=2, padding=1), nn.ReLU())) enc_layers.append(ResBlock(chan_in=hidden_dim, hidden_size=hidden_dim, chan_out=hidden_dim)) enc_in = hidden_dim dec_layers.append(nn.Sequential(nn.ConvTranspose2d(dec_in, hidden_dim, 4, stride=2, padding=1), nn.ReLU())) dec_layers.append(ResBlock(chan_in=hidden_dim, hidden_size=hidden_dim, chan_out=hidden_dim)) dec_in = hidden_dim enc_layers.append(nn.Conv2d(hidden_dim, num_tokens, 1)) dec_layers.append(nn.Conv2d(hidden_dim, channels, 1)) self.encoder = nn.Sequential(*enc_layers) self.decoder = nn.Sequential(*dec_layers) self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss self.kl_div_loss_weight = kl_div_loss_weight def get_image_size(self): return self.image_size def get_image_tokens_size(self): return self.image_size // 8 @torch.no_grad() @eval_decorator def get_codebook_indices(self, images): logits = self.forward(images, return_logits = True) codebook_indices = logits.argmax(dim = 1) return codebook_indices @torch.no_grad() @eval_decorator def get_codebook_probs(self, images): logits = self.forward(images, return_logits = True) return nn.Softmax(dim=1)(logits) def decode( self, img_seq ): image_embeds = self.codebook(img_seq) b, n, d = image_embeds.shape h = w = int(sqrt(n)) image_embeds = rearrange(image_embeds, 'b (h w) d -> b d h w', h = h, w = w) images = self.decoder(image_embeds) return images def forward( self, img, return_loss = False, return_recons = False, return_logits = False, temp = None ): device, num_tokens, image_size, kl_div_loss_weight = img.device, self.num_tokens, self.image_size, self.kl_div_loss_weight assert img.shape[-1] == image_size and img.shape[-2] == image_size, f'input must have the correct image size {image_size}' logits = self.encoder(img) if return_logits: return logits # return logits for getting hard image indices for DALL-E training temp = default(temp, self.temperature) soft_one_hot = F.gumbel_softmax(logits, tau = temp, dim = 1, hard = self.straight_through) sampled = einsum('b n h w, n d -> b d h w', soft_one_hot, self.codebook.weight) out = self.decoder(sampled) if not return_loss: return out # reconstruction loss recon_loss = self.loss_fn(img, out) # kl divergence logits = rearrange(logits, 'b n h w -> b (h w) n') qy = F.softmax(logits, dim = -1) log_qy = torch.log(qy + 1e-10) log_uniform = torch.log(torch.tensor([1. / num_tokens], device = device)) kl_div = F.kl_div(log_uniform, log_qy, None, None, 'batchmean', log_target = True) loss = recon_loss + (kl_div * kl_div_loss_weight) if not return_recons: return loss return loss, out from dall_e import load_model class Dalle_VAE(BasicVAE): def __init__(self, image_size): super().__init__() self.encoder = None self.decoder = None self.image_size = image_size def load_model(self, model_dir, device): self.encoder = load_model(os.path.join(model_dir, "encoder.pkl"), device) self.decoder = load_model(os.path.join(model_dir, "decoder.pkl"), device) def decode(self, img_seq): bsz = img_seq.size()[0] img_seq = img_seq.view(bsz, self.image_size // 8, self.image_size // 8) z = F.one_hot(img_seq, num_classes=self.encoder.vocab_size).permute(0, 3, 1, 2).float() return self.decoder(z).float() def get_codebook_indices(self, images): z_logits = self.encoder(images) return torch.argmax(z_logits, axis=1) def get_codebook_probs(self, images): z_logits = self.encoder(images) return nn.Softmax(dim=1)(z_logits) def forward(self, img_seq_prob, no_process=False): if no_process: return self.decoder(img_seq_prob.float()).float() else: bsz, seq_len, num_class = img_seq_prob.size() z = img_seq_prob.view(bsz, self.image_size // 8, self.image_size // 8, self.encoder.vocab_size) return self.decoder(z.permute(0, 3, 1, 2).float()).float()
EXA-1-master
exa/models/unilm-master/beit/modeling_discrete_vae.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import torch import torchvision.transforms.functional as F from PIL import Image import warnings import math import random import numpy as np class ToNumpy: def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return np_img class ToTensor: def __init__(self, dtype=torch.float32): self.dtype = dtype def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return torch.from_numpy(np_img).to(dtype=self.dtype) _pil_interpolation_to_str = { Image.NEAREST: 'PIL.Image.NEAREST', Image.BILINEAR: 'PIL.Image.BILINEAR', Image.BICUBIC: 'PIL.Image.BICUBIC', Image.LANCZOS: 'PIL.Image.LANCZOS', Image.HAMMING: 'PIL.Image.HAMMING', Image.BOX: 'PIL.Image.BOX', } def _pil_interp(method): if method == 'bicubic': return Image.BICUBIC elif method == 'lanczos': return Image.LANCZOS elif method == 'hamming': return Image.HAMMING else: # default bilinear, do we want to allow nearest? return Image.BILINEAR _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) class RandomResizedCropAndInterpolationWithTwoPic: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', second_interpolation='lanczos'): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if second_size is not None: if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = _pil_interp(interpolation) self.second_interpolation = _pil_interp(second_interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation]) else: interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0}'.format(interpolate_str) if self.second_size is not None: format_string += ', second_size={0}'.format(self.second_size) format_string += ', second_interpolation={0}'.format(_pil_interpolation_to_str[self.second_interpolation]) format_string += ')' return format_string
EXA-1-master
exa/models/unilm-master/beit/transforms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import sys from typing import Iterable import torch import torch.nn as nn import utils def train_one_epoch(model: torch.nn.Module, d_vae: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 for step, (batch, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # assign learning rate & weight decay for each step it = start_steps + step # global training iteration if lr_schedule_values is not None or wd_schedule_values is not None: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples, images, bool_masked_pos = batch images = images.to(device, non_blocking=True) samples = samples.to(device, non_blocking=True) bool_masked_pos = bool_masked_pos.to(device, non_blocking=True) with torch.no_grad(): input_ids = d_vae.get_codebook_indices(images).flatten(1) bool_masked_pos = bool_masked_pos.flatten(1).to(torch.bool) labels = input_ids[bool_masked_pos] with torch.cuda.amp.autocast(): outputs = model(samples, bool_masked_pos=bool_masked_pos, return_all_tokens=False) loss = nn.CrossEntropyLoss()(input=outputs, target=labels) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) optimizer.zero_grad() # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() mlm_acc = (outputs.max(-1)[1] == labels).float().mean().item() metric_logger.update(mlm_acc=mlm_acc) if log_writer is not None: log_writer.update(mlm_acc=mlm_acc, head="loss") metric_logger.update(loss=loss_value) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() if lr_scheduler is not None: lr_scheduler.step_update(start_steps + step) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
EXA-1-master
exa/models/unilm-master/beit/engine_for_pretraining.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # --------------------------------------------------------' import math import torch import torch.nn as nn from functools import partial from modeling_finetune import Block, _cfg, PatchEmbed, RelativePositionBias from timm.models.registry import register_model from timm.models.layers import trunc_normal_ as __call_trunc_normal_ def trunc_normal_(tensor, mean=0., std=1.): __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) __all__ = [ 'beit_base_patch16_224_8k_vocab', 'beit_large_patch16_224_8k_vocab', ] class VisionTransformerForMaskedImageModeling(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, vocab_size=8192, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, init_values=None, attn_head_dim=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02, **kwargs): super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, attn_head_dim=attn_head_dim, ) for i in range(depth)]) self.norm = norm_layer(embed_dim) self.init_std = init_std self.lm_head = nn.Linear(embed_dim, vocab_size) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=self.init_std) trunc_normal_(self.cls_token, std=self.init_std) trunc_normal_(self.mask_token, std=self.init_std) trunc_normal_(self.lm_head.weight, std=self.init_std) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=self.init_std) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=self.init_std) if m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_num_layers(self): return len(self.blocks) def forward_features(self, x, bool_masked_pos): x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias=rel_pos_bias) return self.norm(x) def forward(self, x, bool_masked_pos, return_all_tokens=False): x = self.forward_features(x, bool_masked_pos=bool_masked_pos) x = x[:, 1:] if return_all_tokens: return self.lm_head(x) else: # return the masked tokens return self.lm_head(x[bool_masked_pos]) @register_model def beit_base_patch16_224_8k_vocab(pretrained=False, **kwargs): model = VisionTransformerForMaskedImageModeling( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_large_patch16_224_8k_vocab(pretrained=False, **kwargs): model = VisionTransformerForMaskedImageModeling( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model
EXA-1-master
exa/models/unilm-master/beit/modeling_pretrain.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import os import torch from torchvision import datasets, transforms from timm.data.constants import \ IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from transforms import RandomResizedCropAndInterpolationWithTwoPic from timm.data import create_transform from dall_e.utils import map_pixels from masking_generator import MaskingGenerator from dataset_folder import ImageFolder class DataAugmentationForBEiT(object): def __init__(self, args): imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD self.common_transform = transforms.Compose([ transforms.ColorJitter(0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(p=0.5), RandomResizedCropAndInterpolationWithTwoPic( size=args.input_size, second_size=args.second_input_size, interpolation=args.train_interpolation, second_interpolation=args.second_interpolation, ), ]) self.patch_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=torch.tensor(mean), std=torch.tensor(std)) ]) if args.discrete_vae_type == "dall-e": self.visual_token_transform = transforms.Compose([ transforms.ToTensor(), map_pixels, ]) elif args.discrete_vae_type == "customized": self.visual_token_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, ), ]) else: raise NotImplementedError() self.masked_position_generator = MaskingGenerator( args.window_size, num_masking_patches=args.num_mask_patches, max_num_patches=args.max_mask_patches_per_block, min_num_patches=args.min_mask_patches_per_block, ) def __call__(self, image): for_patches, for_visual_tokens = self.common_transform(image) return \ self.patch_transform(for_patches), self.visual_token_transform(for_visual_tokens), \ self.masked_position_generator() def __repr__(self): repr = "(DataAugmentationForBEiT,\n" repr += " common_transform = %s,\n" % str(self.common_transform) repr += " patch_transform = %s,\n" % str(self.patch_transform) repr += " visual_tokens_transform = %s,\n" % str(self.visual_token_transform) repr += " Masked position generator = %s,\n" % str(self.masked_position_generator) repr += ")" return repr def build_beit_pretraining_dataset(args): transform = DataAugmentationForBEiT(args) print("Data Aug = %s" % str(transform)) return ImageFolder(args.data_path, transform=transform) def build_dataset(is_train, args): transform = build_transform(is_train, args) print("Transform = ") if isinstance(transform, tuple): for trans in transform: print(" - - - - - - - - - - ") for t in trans.transforms: print(t) else: for t in transform.transforms: print(t) print("---------------------------") if args.data_set == 'CIFAR': dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform) nb_classes = 100 elif args.data_set == 'IMNET': root = os.path.join(args.data_path, 'train' if is_train else 'val') dataset = datasets.ImageFolder(root, transform=transform) nb_classes = 1000 elif args.data_set == "image_folder": root = args.data_path if is_train else args.eval_data_path dataset = ImageFolder(root, transform=transform) nb_classes = args.nb_classes assert len(dataset.class_to_idx) == nb_classes else: raise NotImplementedError() assert nb_classes == args.nb_classes print("Number of the class = %d" % args.nb_classes) return dataset, nb_classes def build_transform(is_train, args): resize_im = args.input_size > 32 imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation=args.train_interpolation, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop( args.input_size, padding=4) return transform t = [] if resize_im: if args.crop_pct is None: if args.input_size < 384: args.crop_pct = 224 / 256 else: args.crop_pct = 1.0 size = int(args.input_size / args.crop_pct) t.append( transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t)
EXA-1-master
exa/models/unilm-master/beit/datasets.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.data.mixup import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import ModelEma from optim_factory import create_optimizer, get_parameter_groups, LayerDecayValueAssigner from datasets import build_dataset from engine_for_finetuning import train_one_epoch, evaluate from utils import NativeScalerWithGradNormCount as NativeScaler import utils from scipy import interpolate import modeling_finetune def get_args(): parser = argparse.ArgumentParser('BEiT fine-tuning and evaluation script for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=30, type=int) parser.add_argument('--update_freq', default=1, type=int) parser.add_argument('--save_ckpt_freq', default=5, type=int) # Model parameters parser.add_argument('--model', default='beit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.set_defaults(abs_pos_emb=False) parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', help='Attention dropout rate (default: 0.)') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) parser.add_argument('--model_ema', action='store_true', default=False) parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD and using a larger decay by the end of training improves performance for ViTs.""") parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--layer_decay', type=float, default=0.9) parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='num of steps to warmup LR, will overload warmup_epochs if set > 0') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') # Evaluation parameters parser.add_argument('--crop_pct', type=float, default=None) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--model_key', default='model|module', type=str) parser.add_argument('--model_prefix', default='', type=str) parser.add_argument('--init_scale', default=0.001, type=float) parser.add_argument('--use_mean_pooling', action='store_true') parser.set_defaults(use_mean_pooling=True) parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') parser.add_argument('--disable_weight_decay_on_rel_pos_bias', action='store_true', default=False) # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') parser.add_argument('--nb_classes', default=0, type=int, help='number of the classification types') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'], type=str, help='ImageNet dataset path') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--save_ckpt', action='store_true') parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') parser.set_defaults(save_ckpt=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--enable_deepspeed', action='store_true', default=False) known_args, _ = parser.parse_known_args() if known_args.enable_deepspeed: try: import deepspeed from deepspeed import DeepSpeedConfig parser = deepspeed.add_config_arguments(parser) ds_init = deepspeed.initialize except: print("Please 'pip install deepspeed==0.4.0'") exit(0) else: ds_init = None return parser.parse_args(), ds_init def main(args, ds_init): utils.init_distributed_mode(args) if ds_init is not None: utils.create_ds_config(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) if args.disable_eval_during_finetuning: dataset_val = None else: dataset_val, _ = build_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if dataset_val is not None: data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) else: data_loader_val = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = create_model( args.model, pretrained=False, num_classes=args.nb_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, attn_drop_rate=args.attn_drop_rate, drop_block_rate=None, use_mean_pooling=args.use_mean_pooling, init_scale=args.init_scale, use_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, ) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.finetune, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in args.model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] if model.use_rel_pos_bias and "rel_pos_bias.relative_position_bias_table" in checkpoint_model: print("Expand the shared relative position embedding to each transformer block. ") num_layers = model.get_num_layers() rel_pos_bias = checkpoint_model["rel_pos_bias.relative_position_bias_table"] for i in range(num_layers): checkpoint_model["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() checkpoint_model.pop("rel_pos_bias.relative_position_bias_table") all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) checkpoint_model[key] = new_rel_pos_bias # interpolate position embedding if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # model.load_state_dict(checkpoint_model, strict=False) model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') print("Using EMA with decay = %.8f" % args.model_ema_decay) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() num_training_steps_per_epoch = len(dataset_train) // total_batch_size print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Update frequent = %d" % args.update_freq) print("Number of training examples = %d" % len(dataset_train)) print("Number of training training per epoch = %d" % num_training_steps_per_epoch) num_layers = model_without_ddp.get_num_layers() if args.layer_decay < 1.0: assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))) else: assigner = None if assigner is not None: print("Assigned values = %s" % str(assigner.values)) skip_weight_decay_list = model.no_weight_decay() if args.disable_weight_decay_on_rel_pos_bias: for i in range(num_layers): skip_weight_decay_list.add("blocks.%d.attn.relative_position_bias_table" % i) if args.enable_deepspeed: loss_scaler = None optimizer_params = get_parameter_groups( model, args.weight_decay, skip_weight_decay_list, assigner.get_layer_id if assigner is not None else None, assigner.get_scale if assigner is not None else None) model, optimizer, _, _ = ds_init( args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, ) print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) assert model.gradient_accumulation_steps() == args.update_freq else: if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp, skip_list=skip_weight_decay_list, get_num_layer=assigner.get_layer_id if assigner is not None else None, get_layer_scale=assigner.get_scale if assigner is not None else None) loss_scaler = NativeScaler() print("Use step level LR scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") exit(0) print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq, ) if args.output_dir and args.save_ckpt: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema) if data_loader_val is not None: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir and args.save_ckpt: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch) log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch) log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} else: log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, # **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts, ds_init = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts, ds_init)
EXA-1-master
exa/models/unilm-master/beit/run_class_finetuning.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Modified on torchvision code bases # https://github.com/pytorch/vision # --------------------------------------------------------' from torchvision.datasets.vision import VisionDataset from PIL import Image import os import os.path import random from typing import Any, Callable, cast, Dict, List, Optional, Tuple def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return filename.lower().endswith(extensions) def is_image_file(filename: str) -> bool: """Checks if a file is an allowed image extension. Args: filename (string): path to a file Returns: bool: True if the filename ends with a known image extension """ return has_file_allowed_extension(filename, IMG_EXTENSIONS) def make_dataset( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: instances = [] directory = os.path.expanduser(directory) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): item = path, class_index instances.append(item) return instances class DatasetFolder(VisionDataset): """A generic data loader where the samples are arranged in this way: :: root/class_x/xxx.ext root/class_x/xxy.ext root/class_x/xxz.ext root/class_y/123.ext root/class_y/nsdf3.ext root/class_y/asd932_.ext Args: root (string): Root directory path. loader (callable): A function to load a sample given its path. extensions (tuple[string]): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. target_transform (callable, optional): A function/transform that takes in the target and transforms it. is_valid_file (callable, optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__( self, root: str, loader: Callable[[str], Any], extensions: Optional[Tuple[str, ...]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> None: super(DatasetFolder, self).__init__(root, transform=transform, target_transform=target_transform) classes, class_to_idx = self._find_classes(self.root) samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file) if len(samples) == 0: msg = "Found 0 files in subfolders of: {}\n".format(self.root) if extensions is not None: msg += "Supported extensions are: {}".format(",".join(extensions)) raise RuntimeError(msg) self.loader = loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. Ensures: No class is a subdirectory of another. """ classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ while True: try: path, target = self.samples[index] sample = self.loader(path) break except Exception as e: print(e) index = random.randint(0, len(self.samples) - 1) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self) -> int: return len(self.samples) IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') # TODO: specify the return type def accimage_loader(path: str) -> Any: import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path: str) -> Any: from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) class ImageFolder(DatasetFolder): """A generic data loader where the images are arranged in this way: :: root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png Args: root (string): Root directory path. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. is_valid_file (callable, optional): A function that takes path of an Image file and check if the file is a valid file (used to check of corrupt files) Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples """ def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, is_valid_file: Optional[Callable[[str], bool]] = None, ): super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None, transform=transform, target_transform=target_transform, is_valid_file=is_valid_file) self.imgs = self.samples
EXA-1-master
exa/models/unilm-master/beit/dataset_folder.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.models import create_model from optim_factory import create_optimizer from datasets import build_beit_pretraining_dataset from engine_for_pretraining import train_one_epoch from utils import NativeScalerWithGradNormCount as NativeScaler import utils import modeling_pretrain def get_args(): parser = argparse.ArgumentParser('BEiT pre-training script', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--save_ckpt_freq', default=20, type=int) parser.add_argument("--discrete_vae_weight_path", type=str) parser.add_argument("--discrete_vae_type", type=str, default="dall-e") # Model parameters parser.add_argument('--model', default='beit_base_patch16_224_8k_vocab', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.set_defaults(abs_pos_emb=False) parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--num_mask_patches', default=75, type=int, help='number of the visual tokens/patches need be masked') parser.add_argument('--max_mask_patches_per_block', type=int, default=None) parser.add_argument('--min_mask_patches_per_block', type=int, default=16) parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone') parser.add_argument('--second_input_size', default=112, type=int, help='images input size for discrete vae') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=[0.9, 0.999], type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: 0.9, 0.999, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD. (Set the same value with args.weight_decay to keep weight decay no change)""") parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='epochs to warmup LR, if scheduler supports') # Augmentation parameters parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--second_interpolation', type=str, default='lanczos', help='Interpolation for discrete vae (random, bilinear, bicubic default: "lanczos")') # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser.parse_args() def get_model(args): print(f"Creating model: {args.model}") model = create_model( args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, ) return model def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True model = get_model(args) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size # get dataset dataset_train = build_beit_pretraining_dataset(args) # prepare discrete vae d_vae = utils.create_d_vae( weight_path=args.discrete_vae_weight_path, d_vae_type=args.discrete_vae_type, device=device, image_size=args.second_input_size) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_rank = global_rank num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * utils.get_world_size() print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Number of training steps = %d" % num_training_steps_per_epoch) print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp) loss_scaler = NativeScaler() print("Use step level LR & WD scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) print(f"Start training for {args.epochs} epochs") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch) train_stats = train_one_epoch( model, d_vae, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, ) if args.output_dir: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts)
EXA-1-master
exa/models/unilm-master/beit/run_beit_pretraining.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import io import os import math import time import json from collections import defaultdict, deque import datetime import numpy as np from timm.utils import get_state_dict from pathlib import Path import torch import torch.distributed as dist from torch._six import inf from modeling_discrete_vae import Dalle_VAE, DiscreteVAE from tensorboardX import SummaryWriter class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) class TensorboardLogger(object): def __init__(self, log_dir): self.writer = SummaryWriter(logdir=log_dir) self.step = 0 def set_step(self, step=None): if step is not None: self.step = step else: self.step += 1 def update(self, head='scalar', step=None, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step) def flush(self): self.writer.flush() def _load_checkpoint_for_ema(model_ema, checkpoint): """ Workaround for ModelEma._load_checkpoint to accept an already-loaded object """ mem_file = io.BytesIO() torch.save(checkpoint, mem_file) mem_file.seek(0) model_ema._load_checkpoint(mem_file) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if args.dist_on_itp: args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix=prefix) warn_missing_keys = [] ignore_missing_keys = [] for key in missing_keys: keep_flag = True for ignore_key in ignore_missing.split('|'): if ignore_key in key: keep_flag = False break if keep_flag: warn_missing_keys.append(key) else: ignore_missing_keys.append(key) missing_keys = warn_missing_keys if len(missing_keys) > 0: print("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: print("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(ignore_missing_keys) > 0: print("Ignored weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, ignore_missing_keys)) if len(error_msgs) > 0: print('\n'.join(error_msgs)) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:k].reshape(-1).float().sum(0) * 100. / batch_size for k in topk] def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) epoch_name = str(epoch) if loss_scaler is not None: checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, } if model_ema is not None: to_save['model_ema'] = get_state_dict(model_ema) save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch} if model_ema is not None: client_state['model_ema'] = get_state_dict(model_ema) model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def restart_from_checkpoint(ckp_path, run_variables=None, **kwargs): """ Re-start from checkpoint """ if not os.path.isfile(ckp_path): return print("Found checkpoint at {}".format(ckp_path)) # open checkpoint file checkpoint = torch.load(ckp_path, map_location="cpu") # key is what to look for in the checkpoint file # value is the object to load # example: {'state_dict': model} for key, value in kwargs.items(): if key in checkpoint and value is not None: try: msg = value.load_state_dict(checkpoint[key], strict=False) print("=> loaded '{}' from checkpoint '{}' with msg {}".format(key, ckp_path, msg)) except TypeError: try: msg = value.load_state_dict(checkpoint[key]) print("=> loaded '{}' from checkpoint: '{}'".format(key, ckp_path)) except ValueError: print("=> failed to load '{}' from checkpoint: '{}'".format(key, ckp_path)) else: print("=> key '{}' not found in checkpoint: '{}'".format(key, ckp_path)) # re load variable important for the run if run_variables is not None: for var_name in run_variables: if var_name in checkpoint: run_variables[var_name] = checkpoint[var_name] def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) if loss_scaler is not None: # torch.amp if args.auto_resume and len(args.resume) == 0: import glob all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) print("Auto resume checkpoint: %s" % args.resume) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) args.start_epoch = checkpoint['epoch'] + 1 if hasattr(args, 'model_ema') and args.model_ema: _load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") else: # deepspeed, only support '--auto_resume'. if args.auto_resume: import glob all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) print("Auto resume checkpoint: %d" % latest_ckpt) _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) args.start_epoch = client_states['epoch'] + 1 if model_ema is not None: if args.model_ema: _load_checkpoint_for_ema(model_ema, client_states['model_ema']) def create_d_vae(weight_path, d_vae_type, image_size, device): if d_vae_type == "dall-e": return get_dalle_vae(weight_path, image_size, device) elif d_vae_type == "customized": return get_d_vae(weight_path, image_size, device) else: raise NotImplementedError() def get_dalle_vae(weight_path, image_size, device): vae = Dalle_VAE(image_size) vae.load_model(model_dir=weight_path, device=device) return vae def get_d_vae(weight_path, image_size, device): NUM_TOKENS = 8192 NUM_LAYERS = 3 EMB_DIM = 512 HID_DIM = 256 state_dict = torch.load(os.path.join(weight_path, "pytorch_model.bin"), map_location="cpu")["weights"] model = DiscreteVAE( image_size=image_size, num_layers=NUM_LAYERS, num_tokens=NUM_TOKENS, codebook_dim=EMB_DIM, hidden_dim=HID_DIM, ).to(device) model.load_state_dict(state_dict) return model def create_ds_config(args): args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") with open(args.deepspeed_config, mode="w") as writer: ds_config = { "train_batch_size": args.batch_size * args.update_freq * get_world_size(), "train_micro_batch_size_per_gpu": args.batch_size, "steps_per_print": 1000, "optimizer": { "type": "Adam", "adam_w_mode": True, "params": { "lr": args.lr, "weight_decay": args.weight_decay, "bias_correction": True, "betas": [ 0.9, 0.999 ], "eps": 1e-8 } }, "fp16": { "enabled": True, "loss_scale": 0, "initial_scale_power": 7, "loss_scale_window": 128 } } writer.write(json.dumps(ds_config, indent=2))
EXA-1-master
exa/models/unilm-master/beit/utils.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on DINO code bases # https://github.com/facebookresearch/dino/blob/main/eval_linear.py # --------------------------------------------------------' import os import argparse import json from pathlib import Path import torch from torch import nn import torch.distributed as dist import torch.backends.cudnn as cudnn from torchvision import datasets from torchvision import transforms as pth_transforms import utils import modeling_finetune from timm.models import create_model def load_model(model, checkpoint_file, model_key, model_prefix): if checkpoint_file.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( checkpoint_file, map_location='cpu', check_hash=True) else: checkpoint = torch.load(checkpoint_file, map_location='cpu') checkpoint_model = None for model_key in model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint utils.load_state_dict(model, checkpoint_model, prefix=model_prefix) def eval_linear(args): utils.init_distributed_mode(args) # print("git:\n {}\n".format(utils.get_sha())) print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))) cudnn.benchmark = True mean = (0.485, 0.456, 0.406) if args.imagenet_default_mean_and_std else (0.5, 0.5, 0.5) std = (0.229, 0.224, 0.225) if args.imagenet_default_mean_and_std else (0.5, 0.5, 0.5) # ============ preparing data ... ============ train_transform = pth_transforms.Compose([ pth_transforms.RandomResizedCrop(224), pth_transforms.RandomHorizontalFlip(), pth_transforms.ToTensor(), pth_transforms.Normalize(mean, std), ]) val_transform = pth_transforms.Compose([ pth_transforms.Resize(256, interpolation=3), pth_transforms.CenterCrop(224), pth_transforms.ToTensor(), pth_transforms.Normalize(mean, std), ]) print("train_transform = %s" % str(train_transform)) print("val_transform = %s" % str(val_transform)) dataset_train = datasets.ImageFolder(os.path.join(args.data_path, "train"), transform=train_transform) dataset_val = datasets.ImageFolder(os.path.join(args.data_path, "val"), transform=val_transform) global_rank = utils.get_rank() world_size = utils.get_world_size() sampler = torch.utils.data.distributed.DistributedSampler( dataset_train, num_replicas=world_size, rank=global_rank, shuffle=True) train_loader = torch.utils.data.DataLoader( dataset_train, sampler=sampler, batch_size=args.batch_size_per_gpu, num_workers=args.num_workers, pin_memory=True, ) val_loader = torch.utils.data.DataLoader( dataset_val, batch_size=args.batch_size_per_gpu, num_workers=args.num_workers, pin_memory=True, ) print(f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs.") # ============ building network ... ============ model = create_model( args.model, pretrained=False, num_classes=0, drop_rate=0, drop_path_rate=0, attn_drop_rate=0, drop_block_rate=None, use_mean_pooling=False, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, ) model.cuda() model.eval() print(f"Model {args.model} built.") # load weights to evaluate load_model(model=model, checkpoint_file=args.pretrained_weights, model_key=args.checkpoint_key, model_prefix="") linear_classifier = LinearClassifier( dim=model.embed_dim * (1 + int(args.avgpool_patchtokens)), num_labels=args.num_labels, num_layers=model.get_num_layers()) linear_classifier = linear_classifier.cuda() if world_size > 1: linear_classifier = nn.parallel.DistributedDataParallel(linear_classifier, device_ids=[args.gpu]) print("Model = %s" % str(linear_classifier)) # set optimizer learning_rate = args.lr or args.base_lr * (args.batch_size_per_gpu * utils.get_world_size()) / 256 # use absolute or linear scaled learning rate if args.optimizer.lower() == "sgd": optimizer = torch.optim.SGD( linear_classifier.parameters(), learning_rate, momentum=0.9, weight_decay=0, # we do not apply weight decay ) else: optimizer = torch.optim.AdamW( linear_classifier.parameters(), learning_rate, weight_decay=1e-4, ) print(f"Optimizer = %s" % str(optimizer)) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=0) # Optionally resume from a checkpoint to_restore = {"epoch": 0, "best_acc": 0.} utils.restart_from_checkpoint( os.path.join(args.output_dir, "checkpoint.pth.tar"), run_variables=to_restore, state_dict=linear_classifier, optimizer=optimizer, scheduler=scheduler, ) start_epoch = to_restore["epoch"] best_acc = to_restore["best_acc"] for epoch in range(start_epoch, args.epochs): train_loader.sampler.set_epoch(epoch) train_stats = train( model, linear_classifier, optimizer, train_loader, epoch, args.avgpool_patchtokens, args.amp_forward) scheduler.step() log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch} if epoch % args.val_freq == 0 or epoch == args.epochs - 1: test_stats = validate_network( val_loader, model, linear_classifier, args.avgpool_patchtokens, args.amp_forward) for classifier_key in test_stats: classifier = test_stats[classifier_key] print(f"Accuracy at epoch {epoch} of the network on the {len(dataset_val)} test images: {classifier['acc1']:.1f}%") best_acc = max(best_acc, classifier["acc1"]) print(f'Max accuracy so far: {best_acc:.2f}%') log_stats = {**{k: v for k, v in log_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}} if utils.is_main_process(): with (Path(args.output_dir) / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") save_dict = { "epoch": epoch + 1, "state_dict": linear_classifier.state_dict(), "optimizer": optimizer.state_dict(), "scheduler": scheduler.state_dict(), "best_acc": best_acc, } torch.save(save_dict, os.path.join(args.output_dir, "checkpoint.pth.tar")) print("Training of the supervised linear classifier on frozen features completed.\n" "Top-1 test accuracy: {acc:.1f}".format(acc=best_acc)) def train(model, linear_classifier, optimizer, loader, epoch, avgpool, amp_forward): linear_classifier.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) assert avgpool for (inp, target) in metric_logger.log_every(loader, 20, header): # move to gpu inp = inp.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # forward with torch.no_grad(): if amp_forward: with torch.cuda.amp.autocast(): intermediate_output = model.get_intermediate_layers(inp) else: intermediate_output = model.get_intermediate_layers(inp) output = [] for each_layer in intermediate_output: cls_rep = each_layer[:, 0] mean_rep = torch.mean(each_layer[:, 1:], dim=1) output.append(torch.cat((cls_rep, mean_rep), dim=-1).float()) output = linear_classifier(output) # compute cross entropy loss loss = 0 for each_output in output: loss += nn.CrossEntropyLoss()(each_output, target) # compute the gradients optimizer.zero_grad() loss.backward() # step optimizer.step() # log torch.cuda.synchronize() metric_logger.update(loss=loss.item()) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def validate_network(val_loader, model, linear_classifier, avgpool, amp_forward): linear_classifier.eval() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' assert avgpool module = linear_classifier.module if hasattr(linear_classifier, 'module') else linear_classifier for inp, target in metric_logger.log_every(val_loader, 20, header): # move to gpu inp = inp.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # forward with torch.no_grad(): if amp_forward: with torch.cuda.amp.autocast(): intermediate_output = model.get_intermediate_layers(inp) else: intermediate_output = model.get_intermediate_layers(inp) output = [] for each_layer in intermediate_output: cls_rep = each_layer[:, 0] mean_rep = torch.mean(each_layer[:, 1:], dim=1) output.append(torch.cat((cls_rep, mean_rep), dim=-1).float()) all_output = linear_classifier(output) for i, output in enumerate(all_output): loss = nn.CrossEntropyLoss()(output, target) if module.num_labels >= 5: acc1, acc5 = utils.accuracy(output, target, topk=(1, 5)) else: acc1, = utils.accuracy(output, target, topk=(1,)) batch_size = inp.shape[0] post_str = '_layer%d' % i metric_logger.update(loss=loss.item()) metric_logger.meters['acc1' + post_str].update(acc1.item(), n=batch_size) if module.num_labels >= 5: metric_logger.meters['acc5' + post_str].update(acc5.item(), n=batch_size) eval_results = {k: meter.global_avg for k, meter in metric_logger.meters.items()} updated_results = {} for key in eval_results: if '_' in key: this_key, classifier_idx = key.split('_') if classifier_idx not in updated_results: updated_results[classifier_idx] = {} updated_results[classifier_idx][this_key] = eval_results[key] print("Eval result = %s" % json.dumps(updated_results, indent=2)) return updated_results class LinearClassifier(nn.Module): """Linear layer to train on top of frozen features""" def __init__(self, num_layers, dim, num_labels=1000): super(LinearClassifier, self).__init__() self.num_labels = num_labels self.linear = nn.ModuleList() self.num_classifier = num_layers for i in range(self.num_classifier): linear = nn.Linear(dim, num_labels) linear.weight.data.normal_(mean=0.0, std=0.01) linear.bias.data.zero_() self.linear.append(linear) def forward(self, x_list): results = [] for i, linear in enumerate(self.linear): results.append(linear(x_list[i])) return results def bool_flag(s): """ Parse boolean arguments from the command line. """ FALSY_STRINGS = {"off", "false", "0"} TRUTHY_STRINGS = {"on", "true", "1"} if s.lower() in FALSY_STRINGS: return False elif s.lower() in TRUTHY_STRINGS: return True else: raise argparse.ArgumentTypeError("invalid value for a boolean flag") if __name__ == '__main__': parser = argparse.ArgumentParser('Evaluation with linear classification on ImageNet') parser.add_argument('--avgpool_patchtokens', default=True, type=bool_flag, help="""Whether ot not to concatenate the global average pooled features to the [CLS] token. We typically set this to True for BEiT pretrained models. """) parser.add_argument('--model', default='beit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.set_defaults(abs_pos_emb=False) parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.') parser.add_argument('--optimizer', default="adamw", type=str, help='optimizer type') parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.") parser.add_argument("--checkpoint_key", default="model|module|teacher", type=str, help='Key to use in the checkpoint (example: "teacher")') parser.add_argument('--epochs', default=100, type=int, help='Number of epochs of training.') parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') parser.add_argument("--base_lr", default=0.001, type=float, help="""Learning rate at the beginning of training (highest LR used during training). The learning rate is linearly scaled with the batch size, and specified here for a reference batch size of 256. We recommend tweaking the LR depending on the checkpoint evaluated.""") parser.add_argument('--batch_size_per_gpu', default=128, type=int, help='Per-GPU batch-size') parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up distributed training; see https://pytorch.org/docs/stable/distributed.html""") parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.") parser.add_argument('--data_path', default='/path/to/imagenet/', type=str) parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.') parser.add_argument('--val_freq', default=1, type=int, help="Epoch frequency for validation.") parser.add_argument('--output_dir', default=".", help='Path to save logs and checkpoints') parser.add_argument('--num_labels', default=1000, type=int, help='Number of labels for linear classifier') parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--imagenet_default_mean_and_std', default=False, type=bool_flag, help="""Set True to use the imagenet default mean and std, Set False will use the mean and std in Inception. We recommand keep it same to the pre-training stage. """) parser.add_argument('--amp_forward', default=True, type=bool_flag, help='Use amp to inference the pre-trained model, which can speed up the evaluation. ') args = parser.parse_args() Path(args.output_dir).mkdir(parents=True, exist_ok=True) eval_linear(args)
EXA-1-master
exa/models/unilm-master/beit/run_linear_eval.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from timm.models.registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None and init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) if isinstance(self.head, nn.Linear): trunc_normal_(self.head.weight, std=.02) self.apply(self._init_weights) self.fix_init_weight() if isinstance(self.head, nn.Linear): self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias=rel_pos_bias) x = self.norm(x) if self.fc_norm is not None: t = x[:, 1:, :] return self.fc_norm(t.mean(1)) else: return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def get_intermediate_layers(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) features = [] rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias) features.append(x) return features @register_model def beit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_512(pretrained=False, **kwargs): model = VisionTransformer( img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model
EXA-1-master
exa/models/unilm-master/beit/modeling_finetune.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import torch from torch import optim as optim from timm.optim.adafactor import Adafactor from timm.optim.adahessian import Adahessian from timm.optim.adamp import AdamP from timm.optim.lookahead import Lookahead from timm.optim.nadam import Nadam from timm.optim.novograd import NovoGrad from timm.optim.nvnovograd import NvNovoGrad from timm.optim.radam import RAdam from timm.optim.rmsprop_tf import RMSpropTF from timm.optim.sgdp import SGDP import json try: from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD has_apex = True except ImportError: has_apex = False def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("cls_token", "mask_token", "pos_embed"): return 0 elif var_name.startswith("patch_embed"): return 0 elif var_name.startswith("rel_pos_bias"): return num_max_layer - 1 elif var_name.startswith("blocks"): layer_id = int(var_name.split('.')[1]) return layer_id + 1 else: return num_max_layer - 1 class LayerDecayValueAssigner(object): def __init__(self, values): self.values = values def get_scale(self, layer_id): return self.values[layer_id] def get_layer_id(self, var_name): return get_num_layer_for_vit(var_name, len(self.values)) def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): parameter_group_names = {} parameter_group_vars = {} for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if get_num_layer is not None: layer_id = get_num_layer(name) group_name = "layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if get_layer_scale is not None: scale = get_layer_scale(layer_id) else: scale = 1. parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()) def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): opt_lower = args.opt.lower() weight_decay = args.weight_decay if weight_decay and filter_bias_and_bn: skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) weight_decay = 0. else: parameters = model.parameters() if 'fused' in opt_lower: assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, 'opt_eps') and args.opt_eps is not None: opt_args['eps'] = args.opt_eps if hasattr(args, 'opt_betas') and args.opt_betas is not None: opt_args['betas'] = args.opt_betas opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd' or opt_lower == 'nesterov': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'momentum': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'adam': optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == 'nadam': optimizer = Nadam(parameters, **opt_args) elif opt_lower == 'radam': optimizer = RAdam(parameters, **opt_args) elif opt_lower == 'adamp': optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == 'sgdp': optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'adadelta': optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == 'adafactor': if not args.lr: opt_args['lr'] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == 'adahessian': optimizer = Adahessian(parameters, **opt_args) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'novograd': optimizer = NovoGrad(parameters, **opt_args) elif opt_lower == 'nvnovograd': optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == 'fusedsgd': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'fusedmomentum': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'fusedadam': optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == 'fusedadamw': optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == 'fusedlamb': optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == 'fusednovograd': opt_args.setdefault('betas', (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer
EXA-1-master
exa/models/unilm-master/beit/optim_factory.py
import attr import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from functools import partial from dall_e.utils import Conv2d @attr.s(eq=False, repr=False) class DecoderBlock(nn.Module): n_in: int = attr.ib(validator=lambda i, a, x: x >= 1) n_out: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 4 ==0) n_layers: int = attr.ib(validator=lambda i, a, x: x >= 1) device: torch.device = attr.ib(default=None) requires_grad: bool = attr.ib(default=False) def __attrs_post_init__(self) -> None: super().__init__() self.n_hid = self.n_out // 4 self.post_gain = 1 / (self.n_layers ** 2) make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) self.id_path = make_conv(self.n_in, self.n_out, 1) if self.n_in != self.n_out else nn.Identity() self.res_path = nn.Sequential(OrderedDict([ ('relu_1', nn.ReLU()), ('conv_1', make_conv(self.n_in, self.n_hid, 1)), ('relu_2', nn.ReLU()), ('conv_2', make_conv(self.n_hid, self.n_hid, 3)), ('relu_3', nn.ReLU()), ('conv_3', make_conv(self.n_hid, self.n_hid, 3)), ('relu_4', nn.ReLU()), ('conv_4', make_conv(self.n_hid, self.n_out, 3)),])) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.id_path(x) + self.post_gain * self.res_path(x) @attr.s(eq=False, repr=False) class Decoder(nn.Module): group_count: int = 4 n_init: int = attr.ib(default=128, validator=lambda i, a, x: x >= 8) n_hid: int = attr.ib(default=256, validator=lambda i, a, x: x >= 64) n_blk_per_group: int = attr.ib(default=2, validator=lambda i, a, x: x >= 1) output_channels: int = attr.ib(default=3, validator=lambda i, a, x: x >= 1) vocab_size: int = attr.ib(default=8192, validator=lambda i, a, x: x >= 512) device: torch.device = attr.ib(default=torch.device('cpu')) requires_grad: bool = attr.ib(default=False) use_mixed_precision: bool = attr.ib(default=True) def __attrs_post_init__(self) -> None: super().__init__() blk_range = range(self.n_blk_per_group) n_layers = self.group_count * self.n_blk_per_group make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) make_blk = partial(DecoderBlock, n_layers=n_layers, device=self.device, requires_grad=self.requires_grad) self.blocks = nn.Sequential(OrderedDict([ ('input', make_conv(self.vocab_size, self.n_init, 1, use_float16=False)), ('group_1', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(self.n_init if i == 0 else 8 * self.n_hid, 8 * self.n_hid)) for i in blk_range], ('upsample', nn.Upsample(scale_factor=2, mode='nearest')), ]))), ('group_2', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(8 * self.n_hid if i == 0 else 4 * self.n_hid, 4 * self.n_hid)) for i in blk_range], ('upsample', nn.Upsample(scale_factor=2, mode='nearest')), ]))), ('group_3', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(4 * self.n_hid if i == 0 else 2 * self.n_hid, 2 * self.n_hid)) for i in blk_range], ('upsample', nn.Upsample(scale_factor=2, mode='nearest')), ]))), ('group_4', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(2 * self.n_hid if i == 0 else 1 * self.n_hid, 1 * self.n_hid)) for i in blk_range], ]))), ('output', nn.Sequential(OrderedDict([ ('relu', nn.ReLU()), ('conv', make_conv(1 * self.n_hid, 2 * self.output_channels, 1)), ]))), ])) def forward(self, x: torch.Tensor) -> torch.Tensor: if len(x.shape) != 4: raise ValueError(f'input shape {x.shape} is not 4d') if x.shape[1] != self.vocab_size: raise ValueError(f'input has {x.shape[1]} channels but model built for {self.vocab_size}') if x.dtype != torch.float32: raise ValueError('input must have dtype torch.float32') return self.blocks(x)
EXA-1-master
exa/models/unilm-master/beit/dall_e/decoder.py
import io, requests import torch import torch.nn as nn from dall_e.encoder import Encoder from dall_e.decoder import Decoder from dall_e.utils import map_pixels, unmap_pixels def load_model(path: str, device: torch.device = None) -> nn.Module: if path.startswith('http://') or path.startswith('https://'): resp = requests.get(path) resp.raise_for_status() with io.BytesIO(resp.content) as buf: return torch.load(buf, map_location=device) else: with open(path, 'rb') as f: return torch.load(f, map_location=device)
EXA-1-master
exa/models/unilm-master/beit/dall_e/__init__.py
import attr import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from functools import partial from dall_e.utils import Conv2d @attr.s(eq=False, repr=False) class EncoderBlock(nn.Module): n_in: int = attr.ib(validator=lambda i, a, x: x >= 1) n_out: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 4 ==0) n_layers: int = attr.ib(validator=lambda i, a, x: x >= 1) device: torch.device = attr.ib(default=None) requires_grad: bool = attr.ib(default=False) def __attrs_post_init__(self) -> None: super().__init__() self.n_hid = self.n_out // 4 self.post_gain = 1 / (self.n_layers ** 2) make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) self.id_path = make_conv(self.n_in, self.n_out, 1) if self.n_in != self.n_out else nn.Identity() self.res_path = nn.Sequential(OrderedDict([ ('relu_1', nn.ReLU()), ('conv_1', make_conv(self.n_in, self.n_hid, 3)), ('relu_2', nn.ReLU()), ('conv_2', make_conv(self.n_hid, self.n_hid, 3)), ('relu_3', nn.ReLU()), ('conv_3', make_conv(self.n_hid, self.n_hid, 3)), ('relu_4', nn.ReLU()), ('conv_4', make_conv(self.n_hid, self.n_out, 1)),])) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.id_path(x) + self.post_gain * self.res_path(x) @attr.s(eq=False, repr=False) class Encoder(nn.Module): group_count: int = 4 n_hid: int = attr.ib(default=256, validator=lambda i, a, x: x >= 64) n_blk_per_group: int = attr.ib(default=2, validator=lambda i, a, x: x >= 1) input_channels: int = attr.ib(default=3, validator=lambda i, a, x: x >= 1) vocab_size: int = attr.ib(default=8192, validator=lambda i, a, x: x >= 512) device: torch.device = attr.ib(default=torch.device('cpu')) requires_grad: bool = attr.ib(default=False) use_mixed_precision: bool = attr.ib(default=True) def __attrs_post_init__(self) -> None: super().__init__() blk_range = range(self.n_blk_per_group) n_layers = self.group_count * self.n_blk_per_group make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) make_blk = partial(EncoderBlock, n_layers=n_layers, device=self.device, requires_grad=self.requires_grad) self.blocks = nn.Sequential(OrderedDict([ ('input', make_conv(self.input_channels, 1 * self.n_hid, 7)), ('group_1', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(1 * self.n_hid, 1 * self.n_hid)) for i in blk_range], ('pool', nn.MaxPool2d(kernel_size=2)), ]))), ('group_2', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(1 * self.n_hid if i == 0 else 2 * self.n_hid, 2 * self.n_hid)) for i in blk_range], ('pool', nn.MaxPool2d(kernel_size=2)), ]))), ('group_3', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(2 * self.n_hid if i == 0 else 4 * self.n_hid, 4 * self.n_hid)) for i in blk_range], ('pool', nn.MaxPool2d(kernel_size=2)), ]))), ('group_4', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(4 * self.n_hid if i == 0 else 8 * self.n_hid, 8 * self.n_hid)) for i in blk_range], ]))), ('output', nn.Sequential(OrderedDict([ ('relu', nn.ReLU()), ('conv', make_conv(8 * self.n_hid, self.vocab_size, 1, use_float16=False)), ]))), ])) def forward(self, x: torch.Tensor) -> torch.Tensor: if len(x.shape) != 4: raise ValueError(f'input shape {x.shape} is not 4d') if x.shape[1] != self.input_channels: raise ValueError(f'input has {x.shape[1]} channels but model built for {self.input_channels}') if x.dtype != torch.float32: raise ValueError('input must have dtype torch.float32') return self.blocks(x)
EXA-1-master
exa/models/unilm-master/beit/dall_e/encoder.py
import attr import math import torch import torch.nn as nn import torch.nn.functional as F logit_laplace_eps: float = 0.1 @attr.s(eq=False) class Conv2d(nn.Module): n_in: int = attr.ib(validator=lambda i, a, x: x >= 1) n_out: int = attr.ib(validator=lambda i, a, x: x >= 1) kw: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 2 == 1) use_float16: bool = attr.ib(default=True) device: torch.device = attr.ib(default=torch.device('cpu')) requires_grad: bool = attr.ib(default=False) def __attrs_post_init__(self) -> None: super().__init__() w = torch.empty((self.n_out, self.n_in, self.kw, self.kw), dtype=torch.float32, device=self.device, requires_grad=self.requires_grad) w.normal_(std=1 / math.sqrt(self.n_in * self.kw ** 2)) b = torch.zeros((self.n_out,), dtype=torch.float32, device=self.device, requires_grad=self.requires_grad) self.w, self.b = nn.Parameter(w), nn.Parameter(b) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.use_float16 and 'cuda' in self.w.device.type: if x.dtype != torch.float16: x = x.half() w, b = self.w.half(), self.b.half() else: if x.dtype != torch.float32: x = x.float() w, b = self.w, self.b return F.conv2d(x, w, b, padding=(self.kw - 1) // 2) def map_pixels(x: torch.Tensor) -> torch.Tensor: if x.dtype != torch.float: raise ValueError('expected input to have type float') return (1 - 2 * logit_laplace_eps) * x + logit_laplace_eps def unmap_pixels(x: torch.Tensor) -> torch.Tensor: if len(x.shape) != 4: raise ValueError('expected input to be 4d') if x.dtype != torch.float: raise ValueError('expected input to have type float') return torch.clamp((x - logit_laplace_eps) / (1 - 2 * logit_laplace_eps), 0, 1)
EXA-1-master
exa/models/unilm-master/beit/dall_e/utils.py
import argparse import os import mmcv import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from mmcv.utils import DictAction from mmseg.apis import multi_gpu_test, single_gpu_test from mmseg.datasets import build_dataloader, build_dataset from mmseg.models import build_segmentor from backbone import beit def parse_args(): parser = argparse.ArgumentParser( description='mmseg test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--aug-test', action='store_true', help='Use Flip and Multi scale aug') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' ' for generic datasets, and "cityscapes" for Cityscapes') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu_collect is not specified') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True if args.aug_test: # hard code index cfg.data.test.pipeline[1].img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 ] cfg.data.test.pipeline[1].flip = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') model.CLASSES = checkpoint['meta']['CLASSES'] model.PALETTE = checkpoint['meta']['PALETTE'] efficient_test = False if args.eval_options is not None: efficient_test = args.eval_options.get('efficient_test', False) if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, efficient_test) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect, efficient_test) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs) if __name__ == '__main__': main()
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/tools/test.py
import argparse import copy import os import os.path as osp import time import mmcv import mmcv_custom import torch from mmcv.runner import init_dist from mmcv.utils import Config, DictAction, get_git_hash from mmseg import __version__ from mmseg.apis import set_random_seed from mmcv_custom import train_segmentor from mmseg.datasets import build_dataset from mmseg.models import build_segmentor from mmseg.utils import collect_env, get_root_logger from backbone import beit def parse_args(): parser = argparse.ArgumentParser(description='Train a segmentor') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--load-from', help='the checkpoint file to load weights from') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.load_from is not None: cfg.load_from = args.load_from if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, deterministic: ' f'{args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_segmentor( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) logger.info(model) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmseg version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmseg_version=f'{__version__}+{get_git_hash()[:7]}', config=cfg.pretty_text, CLASSES=datasets[0].CLASSES, PALETTE=datasets[0].PALETTE) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_segmentor( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/tools/train.py
import json from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor from mmcv.runner import get_dist_info def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.patch_embed"): return 0 elif var_name.startswith("backbone.blocks"): layer_id = int(var_name.split('.')[2]) return layer_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LayerDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate') print("Build LayerDecayOptimizerConstructor %f - %d" % (layer_decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token'): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay layer_id = get_num_layer_for_vit(name, num_layers) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_groups: scale = layer_decay_rate ** (num_layers - layer_id - 1) parameter_groups[group_name] = { "weight_decay": this_weight_decay, "params": [], "param_names": [], "lr_scale": scale, "group_name": group_name, "lr": scale * self.base_lr, } parameter_groups[group_name]["params"].append(param) parameter_groups[group_name]["param_names"].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { "param_names": parameter_groups[key]["param_names"], "lr_scale": parameter_groups[key]["lr_scale"], "lr": parameter_groups[key]["lr"], "weight_decay": parameter_groups[key]["weight_decay"], } print("Param groups = %s" % json.dumps(to_display, indent=2)) # state_dict = module.state_dict() # for group_name in parameter_groups: # group = parameter_groups[group_name] # for name in group["param_names"]: # group["params"].append(state_dict[name]) params.extend(parameter_groups.values())
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/layer_decay_optimizer_constructor.py
import random import warnings import numpy as np import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import build_optimizer, build_runner from mmseg.core import DistEvalHook, EvalHook from mmseg.datasets import build_dataloader, build_dataset from mmseg.utils import get_root_logger try: import apex except: print('apex is not installed') def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def train_segmentor(model, dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): """Launch segmentor training.""" logger = get_root_logger(cfg.log_level) # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, # cfg.gpus will be ignored if distributed len(cfg.gpu_ids), dist=distributed, seed=cfg.seed, drop_last=True) for ds in dataset ] # build optimizer optimizer = build_optimizer(model, cfg.optimizer) # use apex fp16 optimizer if cfg.optimizer_config.get("type", None) and cfg.optimizer_config["type"] == "DistOptimizerHook": if cfg.optimizer_config.get("use_fp16", False): model, optimizer = apex.amp.initialize( model.cuda(), optimizer, opt_level="O1") for m in model.modules(): if hasattr(m, "fp16_enabled"): m.fp16_enabled = True # put model on gpus if distributed: find_unused_parameters = cfg.get('find_unused_parameters', False) # Sets the `find_unused_parameters` parameter in # torch.nn.parallel.DistributedDataParallel model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: model = MMDataParallel( model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) if cfg.get('runner') is None: cfg.runner = {'type': 'IterBasedRunner', 'max_iters': cfg.total_iters} warnings.warn( 'config is now expected to have a `runner` section, ' 'please set `runner` in your config.', UserWarning) runner = build_runner( cfg.runner, default_args=dict( model=model, batch_processor=None, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta)) # register hooks runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None)) # an ugly walkaround to make the .log and .log.json filenames the same runner.timestamp = timestamp # register eval hooks if validate: val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) val_dataloader = build_dataloader( val_dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) eval_cfg = cfg.get('evaluation', {}) eval_cfg['by_epoch'] = 'IterBasedRunner' not in cfg.runner['type'] eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow)
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/train_api.py
import mmcv import numpy as np from mmseg.datasets.builder import PIPELINES @PIPELINES.register_module() class SETR_Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes: - ``ratio_range is not None``: randomly sample a ratio from the ratio range and multiply it with the image scale. - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, crop_size=None, setr_multi_scale=False): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] # assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given a scale and a range of image ratio assert len(self.img_scale) == 1 else: # mode 2: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.crop_size = crop_size self.setr_multi_scale = setr_multi_scale @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: if self.setr_multi_scale: if min(results['scale']) < self.crop_size[0]: new_short = self.crop_size[0] else: new_short = min(results['scale']) h, w = results['img'].shape[:2] if h > w: new_h, new_w = new_short * h / w, new_short else: new_h, new_w = new_short, new_short * w / h results['scale'] = (new_h, new_w) img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') results['gt_semantic_seg'] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/resize_transform.py
# Copyright (c) Open-MMLab. All rights reserved. import io import os import os.path as osp import pkgutil import time import warnings from collections import OrderedDict from importlib import import_module from tempfile import TemporaryDirectory import torch import torchvision from torch.optim import Optimizer from torch.utils import model_zoo from torch.nn import functional as F import mmcv from mmcv.fileio import FileClient from mmcv.fileio import load as load_file from mmcv.parallel import is_module_wrapper from mmcv.utils import mkdir_or_exist from mmcv.runner import get_dist_info from scipy import interpolate import numpy as np import math ENV_MMCV_HOME = 'MMCV_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' def _get_mmcv_home(): mmcv_home = os.path.expanduser( os.getenv( ENV_MMCV_HOME, os.path.join( os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] all_missing_keys = [] err_msg = [] metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # use _load_from_state_dict to enable checkpoint version control def load(module, prefix=''): # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, all_missing_keys, unexpected_keys, err_msg) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(module) load = None # break load->load reference cycle # ignore "num_batches_tracked" of BN layers missing_keys = [ key for key in all_missing_keys if 'num_batches_tracked' not in key ] if unexpected_keys: err_msg.append('unexpected key in source ' f'state_dict: {", ".join(unexpected_keys)}\n') if missing_keys: err_msg.append( f'missing keys in source state_dict: {", ".join(missing_keys)}\n') rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert( 0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: print(err_msg) def load_url_dist(url, model_dir=None, map_location="cpu"): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) return checkpoint def load_pavimodel_dist(model_path, map_location=None): """In distributed setting, this function only download checkpoint at local rank 0.""" try: from pavi import modelcloud except ImportError as e: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') from e rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load(downloaded_file, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load( downloaded_file, map_location=map_location) return checkpoint def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def _load_checkpoint(filename, map_location=None): """Load checkpoint from somewhere (modelzoo, file, url). Args: filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Default: None. Returns: dict | OrderedDict: The loaded checkpoint. It can be either an OrderedDict storing model weights or a dict containing other information, which depends on the checkpoint. """ if filename.startswith('modelzoo://'): warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' 'use "torchvision://" instead') model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_urls = get_external_models() model_name = filename[13:] deprecated_urls = get_deprecated_model_names() if model_name in deprecated_urls: warnings.warn(f'open-mmlab://{model_name} is deprecated in favor ' f'of open-mmlab://{deprecated_urls[model_name]}') model_name = deprecated_urls[model_name] model_url = model_urls[model_name] # check if is url if model_url.startswith(('http://', 'https://')): checkpoint = load_url_dist(model_url) else: filename = osp.join(_get_mmcv_home(), model_url) if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) elif filename.startswith('mmcls://'): model_urls = get_mmcls_models() model_name = filename[8:] checkpoint = load_url_dist(model_urls[model_name]) checkpoint = _process_mmcls_checkpoint(checkpoint) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) elif filename.startswith('pavi://'): model_path = filename[7:] checkpoint = load_pavimodel_dist(model_path, map_location=map_location) elif filename.startswith('s3://'): checkpoint = load_fileclient_dist( filename, backend='ceph', map_location=map_location) else: if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) return checkpoint def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def load_checkpoint(model, filename, map_location='cpu', strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = _load_checkpoint(filename, map_location) # OrderedDict is a subclass of dict if not isinstance(checkpoint, dict): raise RuntimeError( f'No state_dict found in checkpoint file {filename}') # get state_dict from checkpoint if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] elif 'module' in checkpoint: state_dict = checkpoint['module'] else: state_dict = checkpoint # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} # for MoBY, load model of online branch if sorted(list(state_dict.keys()))[0].startswith('encoder'): state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')} # reshape absolute position embedding for Swin if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H*W: logger.warning("Error in loading absolute_pos_embed, pass") else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) rank, _ = get_dist_info() if "rel_pos_bias.relative_position_bias_table" in state_dict: if rank == 0: print("Expand the shared relative position embedding to each layers. ") num_layers = model.get_num_layers() rel_pos_bias = state_dict["rel_pos_bias.relative_position_bias_table"] for i in range(num_layers): state_dict["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() state_dict.pop("rel_pos_bias.relative_position_bias_table") all_keys = list(state_dict.keys()) for key in all_keys: if "relative_position_index" in key: state_dict.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: if rank == 0: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.13492: # q = 1.13492 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) if rank == 0: print("x = {}".format(x)) print("dx = {}".format(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict[key] = new_rel_pos_bias if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: if rank == 0: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed # interpolate position bias table if needed relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f"Error in loading {table_key}, pass") else: if L1 != L2: S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) table_pretrained_resized = F.interpolate( table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0) # load state_dict load_state_dict(model, state_dict, strict, logger) return checkpoint def weights_to_cpu(state_dict): """Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU. """ state_dict_cpu = OrderedDict() for key, val in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu def _save_to_state_dict(module, destination, prefix, keep_vars): """Saves module state to `destination` dictionary. This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. Args: module (nn.Module): The module to generate state_dict. destination (dict): A dict where state will be stored. prefix (str): The prefix for parameters and buffers used in this module. """ for name, param in module._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.detach() for name, buf in module._buffers.items(): # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d if buf is not None: destination[prefix + name] = buf if keep_vars else buf.detach() def get_state_dict(module, destination=None, prefix='', keep_vars=False): """Returns a dictionary containing a whole state of the module. Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. This method is modified from :meth:`torch.nn.Module.state_dict` to recursively check parallel module in case that the model has a complicated structure, e.g., nn.Module(nn.Module(DDP)). Args: module (nn.Module): The module to generate state_dict. destination (OrderedDict): Returned dict for the state of the module. prefix (str): Prefix of the key. keep_vars (bool): Whether to keep the variable property of the parameters. Default: False. Returns: dict: A dictionary containing a whole state of the module. """ # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module # below is the same as torch.nn.Module.state_dict() if destination is None: destination = OrderedDict() destination._metadata = OrderedDict() destination._metadata[prefix[:-1]] = local_metadata = dict( version=module._version) _save_to_state_dict(module, destination, prefix, keep_vars) for name, child in module._modules.items(): if child is not None: get_state_dict( child, destination, prefix + name + '.', keep_vars=keep_vars) for hook in module._state_dict_hooks.values(): hook_result = hook(module, destination, prefix, local_metadata) if hook_result is not None: destination = hook_result return destination def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 3 fields: ``meta``, ``state_dict`` and ``optimizer``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError as e: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') from e model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/checkpoint.py
# -*- coding: utf-8 -*- from .checkpoint import load_checkpoint from .layer_decay_optimizer_constructor import LayerDecayOptimizerConstructor from .resize_transform import SETR_Resize from .apex_runner.optimizer import DistOptimizerHook from .train_api import train_segmentor __all__ = ['load_checkpoint', 'LayerDecayOptimizerConstructor', 'SETR_Resize', 'DistOptimizerHook', 'train_segmentor']
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/__init__.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import platform import shutil import torch from torch.optim import Optimizer import mmcv from mmcv.runner import RUNNERS, IterBasedRunner from .checkpoint import save_checkpoint try: import apex except: print('apex is not installed') @RUNNERS.register_module() class IterBasedRunnerAmp(IterBasedRunner): """Iteration-based Runner with AMP support. This runner train models iteration by iteration. """ def save_checkpoint(self, out_dir, filename_tmpl='iter_{}.pth', meta=None, save_optimizer=True, create_symlink=False): """Save checkpoint to file. Args: out_dir (str): Directory to save checkpoint files. filename_tmpl (str, optional): Checkpoint file template. Defaults to 'iter_{}.pth'. meta (dict, optional): Metadata to be saved in checkpoint. Defaults to None. save_optimizer (bool, optional): Whether save optimizer. Defaults to True. create_symlink (bool, optional): Whether create symlink to the latest checkpoint file. Defaults to True. """ if meta is None: meta = dict(iter=self.iter + 1, epoch=self.epoch + 1) elif isinstance(meta, dict): meta.update(iter=self.iter + 1, epoch=self.epoch + 1) else: raise TypeError( f'meta should be a dict or None, but got {type(meta)}') if self.meta is not None: meta.update(self.meta) filename = filename_tmpl.format(self.iter + 1) filepath = osp.join(out_dir, filename) optimizer = self.optimizer if save_optimizer else None save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta) # in some environments, `os.symlink` is not supported, you may need to # set `create_symlink` to False # if create_symlink: # dst_file = osp.join(out_dir, 'latest.pth') # if platform.system() != 'Windows': # mmcv.symlink(filename, dst_file) # else: # shutil.copy(filepath, dst_file) def resume(self, checkpoint, resume_optimizer=True, map_location='default'): if map_location == 'default': if torch.cuda.is_available(): device_id = torch.cuda.current_device() checkpoint = self.load_checkpoint( checkpoint, map_location=lambda storage, loc: storage.cuda(device_id)) else: checkpoint = self.load_checkpoint(checkpoint) else: checkpoint = self.load_checkpoint( checkpoint, map_location=map_location) self._epoch = checkpoint['meta']['epoch'] self._iter = checkpoint['meta']['iter'] self._inner_iter = checkpoint['meta']['iter'] if 'optimizer' in checkpoint and resume_optimizer: if isinstance(self.optimizer, Optimizer): self.optimizer.load_state_dict(checkpoint['optimizer']) elif isinstance(self.optimizer, dict): for k in self.optimizer.keys(): self.optimizer[k].load_state_dict( checkpoint['optimizer'][k]) else: raise TypeError( 'Optimizer should be dict or torch.optim.Optimizer ' f'but got {type(self.optimizer)}') if 'amp' in checkpoint: apex.amp.load_state_dict(checkpoint['amp']) self.logger.info('load amp state dict') self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}')
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/apex_runner/apex_iter_based_runner.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import time from tempfile import TemporaryDirectory import torch from torch.optim import Optimizer import mmcv from mmcv.parallel import is_module_wrapper from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict try: import apex except: print('apex is not installed') def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 4 fields: ``meta``, ``state_dict`` and ``optimizer``, ``amp``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() # save amp state dict in the checkpoint checkpoint['amp'] = apex.amp.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/apex_runner/checkpoint.py
# Copyright (c) Open-MMLab. All rights reserved. from .checkpoint import save_checkpoint from .apex_iter_based_runner import IterBasedRunnerAmp __all__ = [ 'save_checkpoint', 'IterBasedRunnerAmp', ]
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/apex_runner/__init__.py
from mmcv.runner import OptimizerHook, HOOKS try: import apex except: print('apex is not installed') @HOOKS.register_module() class DistOptimizerHook(OptimizerHook): """Optimizer hook for distributed training.""" def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval self.use_fp16 = use_fp16 def before_run(self, runner): runner.optimizer.zero_grad() def after_train_iter(self, runner): runner.outputs['loss'] /= self.update_interval if self.use_fp16: with apex.amp.scale_loss(runner.outputs['loss'], runner.optimizer) as scaled_loss: scaled_loss.backward() else: runner.outputs['loss'].backward() if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad()
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/mmcv_custom/apex_runner/optimizer.py
# yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook', by_epoch=False), # dict(type='TensorboardLoggerHook') ]) # yapf:enable dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] cudnn_benchmark = True
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/_base_/default_runtime.py
# dataset settings dataset_type = 'ADE20KDataset' data_root = 'data/ade/ADEChallengeData2016' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (640, 640) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2560, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/_base_/datasets/ade20k_640x640.py
# dataset settings dataset_type = 'ADE20KDataset' data_root = 'data/ade/ADEChallengeData2016' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/_base_/datasets/ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='UPerHead', in_channels=[384, 384, 384, 384], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=384, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/_base_/models/upernet_beit.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=160000) checkpoint_config = dict(by_epoch=False, interval=16000) evaluation = dict(interval=16000, metric='mIoU')
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/_base_/schedules/schedule_160k.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=320000) checkpoint_config = dict(by_epoch=False, interval=32000) evaluation = dict(interval=32000, metric='mIoU')
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/_base_/schedules/schedule_320k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' # recommand use this config for BEiT models which are self-supervised pretrained and then intermediate fine-tuned on imagenet _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_512_slide_160k_ade20k_pt2ft.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' # recommand use this config for BEiT models which are self-supervised pretrained and then intermediate fine-tuned on imagenet _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_512_slide_160k_ade20k_pt2ft.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' # recommand use this config for BEiT models which are self-supervised pretrained and then intermediate fine-tuned on imagenet _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_640_slide_160k_ade20k_pt2ft.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' # recommand use this config for BEiT models which are self-supervised pretrained on imagenet _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=7e-4, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_512_slide_160k_ade20k_pt.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' # recommand use this config for BEiT models which are self-supervised pretrained and then intermediate fine-tuned on imagenet _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_320k.py' ] # We set samples_per_gpu to 1 and optimizer_config.update_interval to 2, the total update step keep 160k. crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=3000, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=1) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 # We set samples_per_gpu to 1 and optimizer_config.update_interval to 2, the total update step keep 160k. fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=2, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_640_slide_160k_ade20k_pt2ft.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data = dict(samples_per_gpu=2) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_512_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data = dict(samples_per_gpu=2) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_512_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (640, 640) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline), samples_per_gpu=2, ) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_640_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_320k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=3000, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=1) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (640, 640) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=2, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_640_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' import math import torch from functools import partial import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from mmcv_custom import load_checkpoint from mmseg.utils import get_root_logger from mmseg.models.builder import BACKBONES class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.0) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww @BACKBONES.register_module() class BEiT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, init_values=None, use_checkpoint=False, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, out_indices=[3, 5, 7, 11]): super().__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.out_indices = out_indices self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.use_checkpoint = use_checkpoint self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) self.out_indices = out_indices if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), nn.SyncBatchNorm(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None features = [] for i, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, rel_pos_bias) else: x = blk(x, rel_pos_bias) if i in self.out_indices: xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) return tuple(features) def forward(self, x): x = self.forward_features(x) return x
EXA-1-master
exa/models/unilm-master/beit/semantic_segmentation/backbone/beit.py
""" Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py To create the package for pypi. 1. Change the version in __init__.py, setup.py as well as docs/source/conf.py. 2. Commit these changes with the message: "Release: VERSION" 3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' " Push the tag to git: git push --tags origin master 4. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). For the wheel, run: "python setup.py bdist_wheel" in the top level directory. (this will build a wheel for the python version you use to build it). For the sources, run: "python setup.py sdist" You should now have a /dist directory with both .whl and .tar.gz source versions. 5. Check that everything looks correct by uploading the package to the pypi test server: twine upload dist/* -r pypitest (pypi suggest using twine as other methods upload files via plaintext.) You may have to specify the repository url, use the following command then: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/ Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi transformers 6. Upload the final version to actual pypi: twine upload dist/* -r pypi 7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. 8. Update the documentation commit in .circleci/deploy.sh for the accurate documentation to be displayed 9. Update README.md to redirect to correct documentation. """ import shutil from pathlib import Path from setuptools import find_packages, setup # Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466 stale_egg_info = Path(__file__).parent / "transformers.egg-info" if stale_egg_info.exists(): print( ( "Warning: {} exists.\n\n" "If you recently updated transformers to 3.0 or later, this is expected,\n" "but it may prevent transformers from installing in editable mode.\n\n" "This directory is automatically generated by Python's packaging tools.\n" "I will remove it now.\n\n" "See https://github.com/pypa/pip/issues/5466 for details.\n" ).format(stale_egg_info) ) shutil.rmtree(stale_egg_info) extras = {} extras["mecab"] = ["mecab-python3"] extras["sklearn"] = ["scikit-learn==0.22.1"] extras["tf"] = ["tensorflow"] extras["tf-cpu"] = ["tensorflow-cpu"] extras["torch"] = ["torch"] extras["serving"] = ["pydantic", "uvicorn", "fastapi", "starlette"] extras["all"] = extras["serving"] + ["tensorflow", "torch"] extras["testing"] = ["pytest", "pytest-xdist"] extras["quality"] = ["black", "isort", "flake8"] extras["docs"] = ["recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme"] extras["dev"] = extras["testing"] + extras["quality"] + ["mecab-python3", "scikit-learn", "tensorflow", "torch"] setup( name="transformers", version="2.5.1", author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Sam Shleifer, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors", author_email="[email protected]", description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch", long_description="", long_description_content_type="text/markdown", keywords="NLP deep learning transformer pytorch tensorflow BERT GPT GPT-2 google openai CMU", license="Apache", url="https://github.com/huggingface/transformers", package_dir={"": "src"}, packages=find_packages("src"), install_requires=[ "numpy", "tokenizers == 0.5.2", # accessing files from S3 directly "boto3", # filesystem locks e.g. to prevent parallel downloads "filelock", # for downloading models over HTTPS "requests", # progress bars in model download and training scripts "tqdm >= 4.27", # for OpenAI GPT "regex != 2019.12.17", # for XLNet "sentencepiece == 0.1.91", # for XLM "sacremoses", # for ndcg "scikit-learn == 0.22", # for tensorboard "tensorboardX", # for ner "seqeval == 0.0.12", # for torch "torch", # for preprocessing "networkx == 1.11", ], extras_require=extras, scripts=["transformers-cli"], python_requires=">=3.5.0", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )
EXA-1-master
exa/models/unilm-master/xtune/setup.py
# coding=utf-8 # Copyright 2020 Google and DeepMind. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import argparse from transformers import BertTokenizer, XLMTokenizer, XLMRobertaTokenizer import os from collections import defaultdict import csv import random import os import shutil import json TOKENIZERS = { 'bert': BertTokenizer, 'xlm': XLMTokenizer, 'xlmr': XLMRobertaTokenizer, } def panx_tokenize_preprocess(args): def _preprocess_one_file(infile, outfile, idxfile, tokenizer, max_len): if not os.path.exists(infile): print(f'{infile} not exists') return 0 special_tokens_count = 3 if isinstance(tokenizer, XLMRobertaTokenizer) else 2 max_seq_len = max_len - special_tokens_count subword_len_counter = idx = 0 with open(infile, "rt") as fin, open(outfile, "w") as fout, open(idxfile, "w") as fidx: for line in fin: line = line.strip() if not line: fout.write('\n') fidx.write('\n') idx += 1 subword_len_counter = 0 continue items = line.split() token = items[0].strip() if len(items) == 2: label = items[1].strip() else: label = 'O' current_subwords_len = len(tokenizer.tokenize(token)) if (current_subwords_len == 0 or current_subwords_len > max_seq_len) and len(token) != 0: token = tokenizer.unk_token current_subwords_len = 1 if (subword_len_counter + current_subwords_len) > max_seq_len: fout.write(f"\n{token}\t{label}\n") fidx.write(f"\n{idx}\n") subword_len_counter = current_subwords_len else: fout.write(f"{token}\t{label}\n") fidx.write(f"{idx}\n") subword_len_counter += current_subwords_len return 1 model_type = args.model_type tokenizer = TOKENIZERS[model_type].from_pretrained(args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) for lang in args.languages.split(','): out_dir = os.path.join(args.output_dir, lang) if not os.path.exists(out_dir): os.makedirs(out_dir) if lang == 'en': files = ['dev', 'test', 'train'] else: files = ['dev', 'test'] for file in files: infile = os.path.join(args.data_dir, f'{file}-{lang}.tsv') outfile = os.path.join(out_dir, "{}.{}".format(file, args.model_name_or_path)) idxfile = os.path.join(out_dir, "{}.{}.idx".format(file, args.model_name_or_path)) if os.path.exists(outfile) and os.path.exists(idxfile): print(f'{outfile} and {idxfile} exist') else: code = _preprocess_one_file(infile, outfile, idxfile, tokenizer, args.max_len) if code > 0: print(f'finish preprocessing {outfile}') def panx_preprocess(args): def _process_one_file(infile, outfile): lines = open(infile, 'r').readlines() if lines[-1].strip() == '': lines = lines[:-1] with open(outfile, 'w') as fout: for l in lines: items = l.strip().split('\t') if len(items) == 2: label = items[1].strip() idx = items[0].find(':') if idx != -1: token = items[0][idx+1:].strip() # if 'test' in infile: # fout.write(f'{token}\n') # else: # fout.write(f'{token}\t{label}\n') fout.write(f'{token}\t{label}\n') else: fout.write('\n') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) langs = 'ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur fa fr it pt es bg ru ja ka ko th sw yo my zh kk tr et fi hu'.split(' ') for lg in langs: for split in ['train', 'test', 'dev']: infile = os.path.join(args.data_dir, f'{lg}-{split}') outfile = os.path.join(args.output_dir, f'{split}-{lg}.tsv') _process_one_file(infile, outfile) def udpos_tokenize_preprocess(args): def _preprocess_one_file(infile, outfile, idxfile, tokenizer, max_len): if not os.path.exists(infile): print(f'{infile} does not exist') return subword_len_counter = idx = 0 special_tokens_count = 3 if isinstance(tokenizer, XLMRobertaTokenizer) else 2 max_seq_len = max_len - special_tokens_count with open(infile, "rt") as fin, open(outfile, "w") as fout, open(idxfile, "w") as fidx: for line in fin: line = line.strip() if len(line) == 0 or line == '': fout.write('\n') fidx.write('\n') idx += 1 subword_len_counter = 0 continue items = line.split() if len(items) == 2: label = items[1].strip() else: label = "X" token = items[0].strip() current_subwords_len = len(tokenizer.tokenize(token)) if (current_subwords_len == 0 or current_subwords_len > max_seq_len) and len(token) != 0: token = tokenizer.unk_token current_subwords_len = 1 if (subword_len_counter + current_subwords_len) > max_seq_len: fout.write(f"\n{token}\t{label}\n") fidx.write(f"\n{idx}\n") subword_len_counter = current_subwords_len else: fout.write(f"{token}\t{label}\n") fidx.write(f"{idx}\n") subword_len_counter += current_subwords_len model_type = args.model_type tokenizer = TOKENIZERS[model_type].from_pretrained(args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) for lang in args.languages.split(','): out_dir = os.path.join(args.output_dir, lang) if not os.path.exists(out_dir): os.makedirs(out_dir) if lang == 'en': files = ['dev', 'test', 'train'] else: files = ['dev', 'test'] for file in files: infile = os.path.join(args.data_dir, "{}-{}.tsv".format(file, lang)) outfile = os.path.join(out_dir, "{}.{}".format(file, args.model_name_or_path)) idxfile = os.path.join(out_dir, "{}.{}.idx".format(file, args.model_name_or_path)) if os.path.exists(outfile) and os.path.exists(idxfile): print(f'{outfile} and {idxfile} exist') else: _preprocess_one_file(infile, outfile, idxfile, tokenizer, args.max_len) print(f'finish preprocessing {outfile}') def udpos_preprocess(args): def _read_one_file(file): data = [] sent, tag, lines = [], [], [] for line in open(file, 'r'): items = line.strip().split('\t') if len(items) != 10: empty = all(w == '_' for w in sent) num_empty = sum([int(w == '_') for w in sent]) if num_empty == 0 or num_empty < len(sent) - 1: data.append((sent, tag, lines)) sent, tag, lines = [], [], [] else: sent.append(items[1].strip()) tag.append(items[3].strip()) lines.append(line.strip()) assert len(sent) == int(items[0]), 'line={}, sent={}, tag={}'.format(line, sent, tag) return data def isfloat(value): try: float(value) return True except ValueError: return False def remove_empty_space(data): new_data = {} for split in data: new_data[split] = [] for sent, tag, lines in data[split]: new_sent = [''.join(w.replace('\u200c', '').split(' ')) for w in sent] lines = [line.replace('\u200c', '') for line in lines] assert len(" ".join(new_sent).split(' ')) == len(tag) new_data[split].append((new_sent, tag, lines)) return new_data def check_file(file): for i, l in enumerate(open(file)): items = l.strip().split('\t') assert len(items[0].split(' ')) == len(items[1].split(' ')), 'idx={}, line={}'.format(i, l) def _write_files(data, output_dir, lang, suffix): for split in data: if len(data[split]) > 0: prefix = os.path.join(output_dir, f'{split}-{lang}') if suffix == 'mt': with open(prefix + '.mt.tsv', 'w') as fout: for idx, (sent, tag, _) in enumerate(data[split]): newline = '\n' if idx != len(data[split]) - 1 else '' # if split == 'test': # fout.write('{}{}'.format(' '.join(sent, newline))) # else: # fout.write('{}\t{}{}'.format(' '.join(sent), ' '.join(tag), newline)) fout.write('{}\t{}{}'.format(' '.join(sent), ' '.join(tag), newline)) check_file(prefix + '.mt.tsv') print(' - finish checking ' + prefix + '.mt.tsv') elif suffix == 'tsv': with open(prefix + '.tsv', 'w') as fout: for sidx, (sent, tag, _) in enumerate(data[split]): for widx, (w, t) in enumerate(zip(sent, tag)): newline = '' if (sidx == len(data[split]) - 1) and (widx == len(sent) - 1) else '\n' # if split == 'test': # fout.write('{}{}'.format(w, newline)) # else: # fout.write('{}\t{}{}'.format(w, t, newline)) fout.write('{}\t{}{}'.format(w, t, newline)) fout.write('\n') elif suffix == 'conll': with open(prefix + '.conll', 'w') as fout: for _, _, lines in data[split]: for l in lines: fout.write(l.strip() + '\n') fout.write('\n') print(f'finish writing file to {prefix}.{suffix}') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) languages = 'af ar bg de el en es et eu fa fi fr he hi hu id it ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh'.split(' ') for root, dirs, files in os.walk(args.data_dir): lg = root.strip().split('/')[-1] if root == args.data_dir or lg not in languages: continue data = {k: [] for k in ['train', 'dev', 'test']} for f in sorted(files): if f.endswith('conll'): file = os.path.join(root, f) examples = _read_one_file(file) if 'train' in f: data['train'].extend(examples) elif 'dev' in f: data['dev'].extend(examples) elif 'test' in f: data['test'].extend(examples) else: print('split not found: ', file) print(' - finish reading {}, {}'.format(file, [(k, len(v)) for k,v in data.items()])) data = remove_empty_space(data) for sub in ['tsv']: _write_files(data, args.output_dir, lg, sub) def pawsx_preprocess(args): def _preprocess_one_file(infile, outfile, remove_label=False): data = [] for i, line in enumerate(open(infile, 'r')): if i == 0: continue items = line.strip().split('\t') sent1 = ' '.join(items[1].strip().split(' ')) sent2 = ' '.join(items[2].strip().split(' ')) label = items[3] data.append([sent1, sent2, label]) with open(outfile, 'w') as fout: writer = csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='') for sent1, sent2, label in data: # if remove_label: # writer.writerow([sent1, sent2]) # else: # writer.writerow([sent1, sent2, label]) writer.writerow([sent1, sent2, label]) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) split2file = {'train': 'train', 'test': 'test_2k', 'dev': 'dev_2k'} for lang in ['en', 'de', 'es', 'fr', 'ja', 'ko', 'zh']: for split in ['train', 'test', 'dev']: if split == 'train' and lang != 'en': continue file = split2file[split] infile = os.path.join(args.data_dir, lang, "{}.tsv".format(file)) outfile = os.path.join(args.output_dir, "{}-{}.tsv".format(split, lang)) _preprocess_one_file(infile, outfile, remove_label=(split == 'test')) print(f'finish preprocessing {outfile}') def xnli_preprocess(args): def _preprocess_file(infile, output_dir, split): all_langs = defaultdict(list) for i, line in enumerate(open(infile, 'r')): if i == 0: continue items = line.strip().split('\t') lang = items[0].strip() label = "contradiction" if items[1].strip() == "contradictory" else items[1].strip() sent1 = ' '.join(items[6].strip().split(' ')) sent2 = ' '.join(items[7].strip().split(' ')) all_langs[lang].append((sent1, sent2, label)) print(f'# langs={len(all_langs)}') for lang, pairs in all_langs.items(): outfile = os.path.join(output_dir, '{}-{}.tsv'.format(split, lang)) with open(outfile, 'w') as fout: writer = csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='') for (sent1, sent2, label) in pairs: # if split == 'test': # writer.writerow([sent1, sent2]) # else: # writer.writerow([sent1, sent2, label]) writer.writerow([sent1, sent2, label]) print(f'finish preprocess {outfile}') def _preprocess_train_file(infile, outfile): with open(outfile, 'w') as fout: writer = csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='') for i, line in enumerate(open(infile, 'r')): if i == 0: continue items = line.strip().split('\t') sent1 = ' '.join(items[0].strip().split(' ')) sent2 = ' '.join(items[1].strip().split(' ')) label = "contradiction" if items[2].strip() == "contradictory" else items[2].strip() writer.writerow([sent1, sent2, label]) print(f'finish preprocess {outfile}') infile = os.path.join(args.data_dir, 'XNLI-MT-1.0/multinli/multinli.train.en.tsv') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) outfile = os.path.join(args.output_dir, 'train-en.tsv') _preprocess_train_file(infile, outfile) for split in ['test', 'dev']: infile = os.path.join(args.data_dir, 'XNLI-1.0/xnli.{}.tsv'.format(split)) print(f'reading file {infile}') _preprocess_file(infile, args.output_dir, split) def tatoeba_preprocess(args): lang3_dict = { 'afr':'af', 'ara':'ar', 'bul':'bg', 'ben':'bn', 'deu':'de', 'ell':'el', 'spa':'es', 'est':'et', 'eus':'eu', 'pes':'fa', 'fin':'fi', 'fra':'fr', 'heb':'he', 'hin':'hi', 'hun':'hu', 'ind':'id', 'ita':'it', 'jpn':'ja', 'jav':'jv', 'kat':'ka', 'kaz':'kk', 'kor':'ko', 'mal':'ml', 'mar':'mr', 'nld':'nl', 'por':'pt', 'rus':'ru', 'swh':'sw', 'tam':'ta', 'tel':'te', 'tha':'th', 'tgl':'tl', 'tur':'tr', 'urd':'ur', 'vie':'vi', 'cmn':'zh', 'eng':'en', } if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) for sl3, sl2 in lang3_dict.items(): if sl3 != 'eng': src_file = f'{args.data_dir}/tatoeba.{sl3}-eng.{sl3}' tgt_file = f'{args.data_dir}/tatoeba.{sl3}-eng.eng' src_out = f'{args.output_dir}/{sl2}-en.{sl2}' tgt_out = f'{args.output_dir}/{sl2}-en.en' shutil.copy(src_file, src_out) tgts = [l.strip() for l in open(tgt_file)] idx = range(len(tgts)) data = zip(tgts, idx) with open(tgt_out, 'w') as ftgt: for t, i in sorted(data, key=lambda x: x[0]): ftgt.write(f'{t}\n') def xquad_preprocess(args): # Remove the test annotations to prevent accidental cheating # remove_qa_test_annotations(args.data_dir) pass def mlqa_preprocess(args): # Remove the test annotations to prevent accidental cheating # remove_qa_test_annotations(args.data_dir) pass def tydiqa_preprocess(args): LANG2ISO = {'arabic': 'ar', 'bengali': 'bn', 'english': 'en', 'finnish': 'fi', 'indonesian': 'id', 'korean': 'ko', 'russian': 'ru', 'swahili': 'sw', 'telugu': 'te'} assert os.path.exists(args.data_dir) train_file = os.path.join(args.data_dir, 'tydiqa-goldp-v1.1-train.json') os.makedirs(args.output_dir, exist_ok=True) # Split the training file into language-specific files lang2data = defaultdict(list) with open(train_file, 'r') as f_in: data = json.load(f_in) version = data['version'] for doc in data['data']: for par in doc['paragraphs']: context = par['context'] for qa in par['qas']: question = qa['question'] question_id = qa['id'] example_lang = question_id.split('-')[0] q_id = question_id.split('-')[-1] for answer in qa['answers']: a_start, a_text = answer['answer_start'], answer['text'] a_end = a_start + len(a_text) assert context[a_start:a_end] == a_text lang2data[example_lang].append({'paragraphs': [{ 'context': context, 'qas': [{'answers': qa['answers'], 'question': question, 'id': q_id}]}]}) for lang, data in lang2data.items(): out_file = os.path.join( args.output_dir, 'tydiqa.%s.train.json' % LANG2ISO[lang]) with open(out_file, 'w') as f: json.dump({'data': data, 'version': version}, f) # Rename the dev files dev_dir = os.path.join(args.data_dir, 'tydiqa-goldp-v1.1-dev') assert os.path.exists(dev_dir) for lang, iso in LANG2ISO.items(): src_file = os.path.join(dev_dir, 'tydiqa-goldp-dev-%s.json' % lang) dst_file = os.path.join(dev_dir, 'tydiqa.%s.dev.json' % iso) os.rename(src_file, dst_file) # Remove the test annotations to prevent accidental cheating # remove_qa_test_annotations(dev_dir) def remove_qa_test_annotations(test_dir): assert os.path.exists(test_dir) for file_name in os.listdir(test_dir): new_data = [] test_file = os.path.join(test_dir, file_name) with open(test_file, 'r') as f: data = json.load(f) version = data['version'] for doc in data['data']: for par in doc['paragraphs']: context = par['context'] for qa in par['qas']: question = qa['question'] question_id = qa['id'] for answer in qa['answers']: a_start, a_text = answer['answer_start'], answer['text'] a_end = a_start + len(a_text) assert context[a_start:a_end] == a_text new_data.append({'paragraphs': [{ 'context': context, 'qas': [{'answers': [{'answer_start': 0, 'text': ''}], 'question': question, 'id': question_id}]}]}) with open(test_file, 'w') as f: json.dump({'data': new_data, 'version': version}, f) if __name__ == "__main__": parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output data dir where any processed files will be written to.") parser.add_argument("--task", default="panx", type=str, required=True, help="The task name") parser.add_argument("--model_name_or_path", default="bert-base-multilingual-cased", type=str, help="The pre-trained model") parser.add_argument("--model_type", default="bert", type=str, help="model type") parser.add_argument("--max_len", default=512, type=int, help="the maximum length of sentences") parser.add_argument("--do_lower_case", action='store_true', help="whether to do lower case") parser.add_argument("--cache_dir", default=None, type=str, help="cache directory") parser.add_argument("--languages", default="en", type=str, help="process language") parser.add_argument("--remove_last_token", action='store_true', help="whether to remove the last token") parser.add_argument("--remove_test_label", action='store_true', help="whether to remove test set label") args = parser.parse_args() if args.task == 'panx_tokenize': panx_tokenize_preprocess(args) if args.task == 'panx': panx_preprocess(args) if args.task == 'udpos_tokenize': udpos_tokenize_preprocess(args) if args.task == 'udpos': udpos_preprocess(args) if args.task == 'pawsx': pawsx_preprocess(args) if args.task == 'xnli': xnli_preprocess(args) if args.task == 'tatoeba': tatoeba_preprocess(args) if args.task == 'xquad': xquad_preprocess(args) if args.task == 'mlqa': mlqa_preprocess(args) if args.task == 'tydiqa': tydiqa_preprocess(args)
EXA-1-master
exa/models/unilm-master/xtune/utils_preprocess.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet).""" import argparse import glob import logging import os import random import timeit import itertools import json import copy import math import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer, BertConfig, BertForQuestionAnswering, BertTokenizer, XLMRobertaConfig, XLMRobertaForQuestionAnsweringStable, XLMRobertaTokenizer, CamembertConfig, CamembertForQuestionAnswering, CamembertTokenizer, DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer, RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer, XLMConfig, XLMForQuestionAnswering, XLMTokenizer, XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer, get_linear_schedule_with_warmup, squad_convert_examples_to_features, ) from transformers.data.metrics.squad_metrics import ( compute_predictions_log_probs, compute_predictions_logits, ) from transformers.data.metrics.evaluate_mlqa import evaluate_with_path as mlqa_evaluate_with_path from transformers.data.metrics.evaluate_squad import evaluate_with_path as squad_evaluate_with_path from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor, MLQAProcessor, \ TyDiQAProcessor, XQuADProcessor from transformers.tokenization_bert import whitespace_tokenize from transformers.data.processors.squad import _improve_answer_span, _new_check_is_max_context, SquadFeatures try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) ALL_MODELS = sum( ( tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, CamembertConfig, RobertaConfig, XLNetConfig, XLMConfig) ), (), ) MODEL_CLASSES = { "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer), "camembert": (CamembertConfig, CamembertForQuestionAnswering, CamembertTokenizer), "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer), "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer), "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer), "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer), "albert": (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer), "xlmr": (XLMRobertaConfig, XLMRobertaForQuestionAnsweringStable, XLMRobertaTokenizer), } class NoisedDataGenerator(object): def __init__(self, task_name="mlqa", r1_lambda=5.0, enable_r1_loss=False, original_loss=True, noised_loss=False, keep_boundary_unchanged=False, r1_on_boundary_only=False, noised_max_seq_length=512, max_seq_length=512, doc_stride=128, max_query_length=64, overall_ratio=1.0, enable_bpe_switch=False, bpe_switch_ratio=0.5, tokenizer_dir=None, do_lower_case=False, tokenizer_languages=None, enable_bpe_sampling=False, bpe_sampling_ratio=0.5, tokenizer=None, sampling_alpha=0.3, sampling_nbest_size=-1, enable_random_noise=False, noise_detach_embeds=False, noise_eps=1e-5, noise_type='uniform', enable_code_switch=False, code_switch_ratio=0.5, dict_dir=None, dict_languages=None, translation_path=None, disable_translate_labels=False, translate_languages=None, enable_data_augmentation=False, augment_ratio=0.0, augment_method=None, r2_lambda=1.0, use_hard_labels=False): if enable_code_switch: assert dict_dir is not None assert dict_languages is not None assert tokenizer is not None if enable_random_noise: assert noise_type in ['uniform', 'normal'] self.task_name = task_name.lower() self.n_tokens = 0 self.n_cs_tokens = 0 self.r1_lambda = r1_lambda self.original_loss = original_loss self.noised_loss = noised_loss self.enable_r1_loss = enable_r1_loss self.keep_boundary_unchanged = keep_boundary_unchanged self.r1_on_boundary_only = r1_on_boundary_only self.max_seq_length = max_seq_length self.noised_max_seq_length = noised_max_seq_length self.doc_stride = doc_stride self.max_query_length = max_query_length self.overall_ratio = overall_ratio self.enable_bpe_switch = enable_bpe_switch self.bpe_switch_ratio = bpe_switch_ratio / self.overall_ratio assert not self.enable_bpe_switch or self.bpe_switch_ratio <= 1.0 self.tokenizer_dir = tokenizer_dir self.tokenizer_languages = tokenizer_languages self.enable_bpe_sampling = enable_bpe_sampling self.bpe_sampling_ratio = bpe_sampling_ratio / self.overall_ratio assert not self.enable_bpe_sampling or self.bpe_sampling_ratio <= 1.0 self.tokenizer = tokenizer self.sampling_alpha = sampling_alpha self.sampling_nbest_size = sampling_nbest_size self.enable_random_noise = enable_random_noise self.noise_detach_embeds = noise_detach_embeds self.noise_eps = noise_eps self.noise_type = noise_type self.enable_code_switch = enable_code_switch self.code_switch_ratio = code_switch_ratio / self.overall_ratio assert not self.enable_code_switch or self.code_switch_ratio <= 1.0 self.dict_dir = dict_dir self.dict_languages = dict_languages self.lang2dict = {} for lang in copy.deepcopy(dict_languages): dict_path = os.path.join(self.dict_dir, "en-{}.txt".format(lang)) if not os.path.exists(dict_path): logger.info("dictionary en-{} doesn't exist.".format(lang)) self.dict_languages.remove(lang) continue logger.info("reading dictionary from {}".format(dict_path)) assert os.path.exists(dict_path) with open(dict_path, "r", encoding="utf-8") as reader: raw = reader.readlines() self.lang2dict[lang] = {} for line in raw: line = line.strip() try: src, tgt = line.split("\t") except: src, tgt = line.split(" ") if src not in self.lang2dict[lang]: self.lang2dict[lang][src] = [tgt] else: self.lang2dict[lang][src].append(tgt) self.lang2tokenizer = {} for lang in tokenizer_languages: self.lang2tokenizer[lang] = XLMRobertaTokenizer.from_pretrained( os.path.join(tokenizer_dir, "{}".format(lang)), do_lower_case=do_lower_case) self.translation_path = translation_path self.disable_translate_labels = disable_translate_labels self.translate_languages = translate_languages self.enable_data_augmentation = enable_data_augmentation self.augment_ratio = augment_ratio self.augment_method = augment_method self.r2_lambda = r2_lambda self.use_hard_labels = use_hard_labels self.id2ex = None if self.enable_data_augmentation and self.augment_method == "mt": # drop_languages = ["en", "zh-CN", "zh", "ja", "ko", "th", "my", "ml", "ta"] drop_languages = ["en"] for lang in drop_languages: if lang in self.translate_languages: self.translate_languages.remove(lang) self.id2ex = {} for lang in self.translate_languages: if self.task_name == "tydiqa": file_name = "tydiqa.translate.train.en-{}.json".format(lang) else: file_name = "squad.translate.train.en-{}.json".format(lang) logger.info("Reading translation from {}".format(os.path.join(self.translation_path, file_name))) processor = MLQAProcessor() examples = processor.get_train_examples(self.translation_path, file_name) for ex in examples: if ex.qas_id not in self.id2ex: self.id2ex[ex.qas_id] = [] if self.disable_translate_labels: ex.is_impossible = True self.id2ex[ex.qas_id].append(ex) def augment_examples(self, examples): n_augment = math.ceil(len(examples) * self.augment_ratio) augment_examples = [] while n_augment > 0: examples = copy.deepcopy(examples) augment_examples += examples[:n_augment] n_augment -= len(examples[:n_augment]) random.shuffle(examples) return augment_examples def get_translate_data(self, examples): translate_examples = [] n_unfound = 0 qas_ids = list(self.id2ex.keys()) for ex_idx, example in enumerate(examples): qas_id = example.qas_id if self.task_name == "tydiqa" or qas_id not in self.id2ex: rand_qas_id = qas_ids[random.randint(0, len(qas_ids) - 1)] # logger.info( # "qas_id {} is not found in translate data, using {} as replacement.".format(qas_id, rand_qas_id)) n_unfound += 1 qas_id = rand_qas_id idx = random.randint(0, len(self.id2ex[qas_id]) - 1) tgt_ex = self.id2ex[qas_id][idx] translate_examples.append(tgt_ex) logger.info("{} qas_ids unfound.".format(n_unfound)) return translate_examples def get_noised_dataset(self, examples): # maybe do not save augmented examples examples = copy.deepcopy(examples) is_augmented = [0] * len(examples) if self.enable_data_augmentation: augment_examples = self.augment_examples(examples) if self.augment_method == "mt": assert not self.enable_code_switch augment_examples = self.get_translate_data(augment_examples) is_augmented += [1] * len(augment_examples) examples += augment_examples if self.enable_code_switch: self.n_tokens = 0 self.n_cs_tokens = 0 dataset = self.convert_examples_to_dataset(examples, is_augmented) if self.enable_code_switch: logger.info("{:.2f}% tokens have been code-switched.".format(self.n_cs_tokens / self.n_tokens * 100)) return dataset def tokenize_token(self, token, switch_text=False, can_be_switched=True, enable_code_switch=False, enable_bpe_switch=False, enable_bpe_sampling=False, ): switch_token = (random.random() <= self.overall_ratio) and can_be_switched is_switched = False self.n_tokens += 1 if enable_code_switch and switch_text and switch_token and random.random() <= self.code_switch_ratio: lang = self.dict_languages[random.randint(0, len(self.dict_languages) - 1)] if token.lower() in self.lang2dict[lang]: self.n_cs_tokens += 1 token = self.lang2dict[lang][token.lower()][ random.randint(0, len(self.lang2dict[lang][token.lower()]) - 1)] is_switched = True if enable_bpe_switch and switch_text and switch_token and random.random() <= self.bpe_switch_ratio: lang = self.tokenizer_languages[random.randint(0, len(self.tokenizer_languages) - 1)] tokenizer = self.lang2tokenizer[lang] is_switched = True else: tokenizer = self.tokenizer if enable_bpe_sampling and switch_text and switch_token and random.random() <= self.bpe_sampling_ratio: sub_tokens = tokenizer.tokenize(token, nbest_size=self.sampling_nbest_size, alpha=self.sampling_alpha) is_switched = True else: sub_tokens = tokenizer.tokenize(token) return sub_tokens, switch_token and is_switched def tokenize_sentence(self, sentence, switch_text=False): all_sub_tokens = [] tokens = sentence.split(" ") for token in tokens: sub_tokens, switch_token = self.tokenize_token(token, switch_text) all_sub_tokens += sub_tokens return all_sub_tokens def convert_examples_to_dataset(self, examples, is_augmented=None, is_training=True): all_original_input_ids = [] all_original_attention_mask = [] all_original_token_type_ids = [] all_original_r1_mask = [] all_original_start_positions = [] all_original_end_positions = [] all_noised_input_ids = [] all_noised_attention_mask = [] all_noised_token_type_ids = [] all_noised_r1_mask = [] all_noised_start_positions = [] all_noised_end_positions = [] all_is_augmented = [] for (ex_index, example) in enumerate(examples): if is_training and not example.is_impossible: # Get start and end position start_position = example.start_position end_position = example.end_position # If the answer cannot be found in the text, then skip this example. actual_text = " ".join(example.doc_tokens[start_position: (end_position + 1)]) cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) # exit(0) else: start_position, end_position = None, None if ex_index % 1000 == 0: logger.info("Writing example %d/%d" % (ex_index, len(examples))) # if ex_index == 1000: # break # switch all examples switch_text = True noised_orig_to_tok_index = [] noised_all_doc_tokens = [] noised_tok_to_orig_index = [] original_orig_to_tok_index = [] original_all_doc_tokens = [] original_tok_to_orig_index = [] is_token_switched = [False] * len(example.doc_tokens) for (i, token) in enumerate(example.doc_tokens): original_orig_to_tok_index.append(len(original_all_doc_tokens)) can_be_switched = False if self.keep_boundary_unchanged and ( i == start_position or i == end_position) else True if self.enable_data_augmentation and is_augmented[ex_index]: if self.augment_method == "cs": if start_position <= i <= end_position: can_be_switched = False original_sub_tokens, switch_token = self.tokenize_token(token, switch_text, can_be_switched=can_be_switched, enable_code_switch=True) elif self.augment_method == "ss": original_sub_tokens, switch_token = self.tokenize_token(token, switch_text, can_be_switched=can_be_switched, enable_bpe_sampling=True) elif self.augment_method == "mt" or self.augment_method == "gn": original_sub_tokens, switch_token = self.tokenize_token(token, switch_text=False) else: assert False else: original_sub_tokens, switch_token = self.tokenize_token(token, switch_text=False) # original_sub_tokens = self.tokenizer.tokenize(token) is_token_switched[i] = is_token_switched[i] or switch_token for sub_token in original_sub_tokens: original_tok_to_orig_index.append(i) original_all_doc_tokens.append(sub_token) keep_answer_unchanged = False if is_training and not example.is_impossible: original_tok_start_position = original_orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: original_tok_end_position = original_orig_to_tok_index[example.end_position + 1] - 1 else: original_tok_end_position = len(original_all_doc_tokens) - 1 (new_original_tok_start_position, new_original_tok_end_position) = _improve_answer_span( original_all_doc_tokens, original_tok_start_position, original_tok_end_position, self.tokenizer, example.answer_text ) keep_answer_unchanged = (original_tok_start_position != new_original_tok_start_position) or ( original_tok_end_position != new_original_tok_end_position) for (i, token) in enumerate(example.doc_tokens): noised_orig_to_tok_index.append(len(noised_all_doc_tokens)) can_be_switched = False if self.keep_boundary_unchanged and ( i == start_position or i == end_position) else True if keep_answer_unchanged and i >= start_position and i <= end_position: can_be_switched = False noised_sub_tokens, switch_token = self.tokenize_token(token, switch_text, can_be_switched=can_be_switched, enable_code_switch=self.enable_code_switch, enable_bpe_switch=self.enable_bpe_switch, enable_bpe_sampling=self.enable_bpe_sampling) is_token_switched[i] = is_token_switched[i] or switch_token for sub_token in noised_sub_tokens: noised_tok_to_orig_index.append(i) noised_all_doc_tokens.append(sub_token) if is_training and not example.is_impossible: noised_tok_start_position = noised_orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: noised_tok_end_position = noised_orig_to_tok_index[example.end_position + 1] - 1 else: noised_tok_end_position = len(noised_all_doc_tokens) - 1 (noised_tok_start_position, noised_tok_end_position) = _improve_answer_span( noised_all_doc_tokens, noised_tok_start_position, noised_tok_end_position, self.tokenizer, example.answer_text ) original_truncated_query = self.tokenizer.encode(example.question_text, add_special_tokens=False, truncation=True, max_length=self.max_query_length) noised_question_sub_tokens = self.tokenize_sentence(example.question_text, switch_text) noised_truncated_query = self.tokenizer.encode(noised_question_sub_tokens, add_special_tokens=False, truncation=True, max_length=self.max_query_length) sequence_added_tokens = ( self.tokenizer.max_len - self.tokenizer.max_len_single_sentence + 1 if "roberta" in str(type(self.tokenizer)) or "camembert" in str(type(self.tokenizer)) else self.tokenizer.max_len - self.tokenizer.max_len_single_sentence ) sequence_pair_added_tokens = self.tokenizer.max_len - self.tokenizer.max_len_sentences_pair spans = [] span_doc_tokens = original_all_doc_tokens while len(spans) * self.doc_stride < len(original_all_doc_tokens): original_encoded_dict = self.tokenizer.encode_plus( # TODO(thom) update this logic original_truncated_query if self.tokenizer.padding_side == "right" else span_doc_tokens, span_doc_tokens if self.tokenizer.padding_side == "right" else original_truncated_query, max_length=self.max_seq_length, return_overflowing_tokens=True, pad_to_max_length=True, stride=self.max_seq_length - self.doc_stride - len( original_truncated_query) - sequence_pair_added_tokens, truncation_strategy="only_second" if self.tokenizer.padding_side == "right" else "only_first", ) paragraph_len = min( len(original_all_doc_tokens) - len(spans) * self.doc_stride, self.max_seq_length - len(original_truncated_query) - sequence_pair_added_tokens, ) if self.tokenizer.pad_token_id in original_encoded_dict["input_ids"]: if self.tokenizer.padding_side == "right": non_padded_ids = original_encoded_dict["input_ids"][ : original_encoded_dict["input_ids"].index(self.tokenizer.pad_token_id)] else: last_padding_id_position = ( len(original_encoded_dict["input_ids"]) - 1 - original_encoded_dict["input_ids"][ ::-1].index( self.tokenizer.pad_token_id) ) non_padded_ids = original_encoded_dict["input_ids"][last_padding_id_position + 1:] else: non_padded_ids = original_encoded_dict["input_ids"] tokens = self.tokenizer.convert_ids_to_tokens(non_padded_ids) original_encoded_dict["tokens"] = tokens original_encoded_dict["start"] = len(spans) * self.doc_stride original_encoded_dict["length"] = paragraph_len noised_tokens = [] noised_r1_mask = [] original_r1_mask = [] token_to_orig_map = {} span_start = None break_flag = False for i in range(paragraph_len): index = len( original_truncated_query) + sequence_added_tokens + i if self.tokenizer.padding_side == "right" else i token_to_orig_map[index] = original_tok_to_orig_index[len(spans) * self.doc_stride + i] original_index = len(spans) * self.doc_stride + i cur_orig_index = original_tok_to_orig_index[original_index] pre_orig_index = original_tok_to_orig_index[original_index - 1] if i > 0 else -1 if not is_token_switched[cur_orig_index]: noised_index = original_index - original_orig_to_tok_index[cur_orig_index] + \ noised_orig_to_tok_index[cur_orig_index] assert original_all_doc_tokens[original_index] == noised_all_doc_tokens[noised_index] if span_start is None: span_start = noised_index if len(noised_tokens) + len( noised_truncated_query) + sequence_pair_added_tokens == self.noised_max_seq_length: break noised_tokens.append(noised_all_doc_tokens[noised_index]) noised_r1_mask.append(1) elif is_token_switched[cur_orig_index] and cur_orig_index != pre_orig_index: noised_index = noised_orig_to_tok_index[cur_orig_index] while noised_index < len(noised_tok_to_orig_index): if noised_tok_to_orig_index[noised_index] != cur_orig_index: break if span_start is None: span_start = noised_index if len(noised_tokens) + len( noised_truncated_query) + sequence_pair_added_tokens == self.noised_max_seq_length: break_flag = True break noised_tokens.append(noised_all_doc_tokens[noised_index]) noised_r1_mask.append(0) noised_index += 1 if break_flag: break original_r1_mask.append(1 if not is_token_switched[cur_orig_index] else 0) assert len(noised_tokens) + len( noised_truncated_query) + sequence_pair_added_tokens <= self.noised_max_seq_length if self.tokenizer.padding_side == "right": noised_r1_mask = [0] * (len(noised_truncated_query) + 3) + noised_r1_mask + [0] original_r1_mask = [0] * (len(original_truncated_query) + 3) + original_r1_mask + [0] else: assert False noised_r1_mask += (self.noised_max_seq_length - len(noised_r1_mask)) * [0] original_r1_mask += (self.max_seq_length - len(original_r1_mask)) * [0] noised_encoded_dict = self.tokenizer.encode_plus( # TODO(thom) update this logic noised_truncated_query if self.tokenizer.padding_side == "right" else noised_tokens, noised_tokens if self.tokenizer.padding_side == "right" else original_truncated_query, max_length=self.noised_max_seq_length, pad_to_max_length=True, truncation_strategy="only_second" if self.tokenizer.padding_side == "right" else "only_first", ) if self.tokenizer.pad_token_id in noised_encoded_dict["input_ids"]: if self.tokenizer.padding_side == "right": non_padded_ids = noised_encoded_dict["input_ids"][ : noised_encoded_dict["input_ids"].index(self.tokenizer.pad_token_id)] else: last_padding_id_position = ( len(noised_encoded_dict["input_ids"]) - 1 - noised_encoded_dict["input_ids"][ ::-1].index( self.tokenizer.pad_token_id) ) non_padded_ids = noised_encoded_dict["input_ids"][last_padding_id_position + 1:] else: non_padded_ids = noised_encoded_dict["input_ids"] tokens = self.tokenizer.convert_ids_to_tokens(non_padded_ids) noised_encoded_dict["tokens"] = tokens noised_encoded_dict["r1_mask"] = noised_r1_mask assert span_start is not None noised_encoded_dict["start"] = span_start noised_encoded_dict["length"] = len(noised_tokens) original_encoded_dict["r1_mask"] = original_r1_mask spans.append((original_encoded_dict, noised_encoded_dict)) if "overflowing_tokens" not in original_encoded_dict: break span_doc_tokens = original_encoded_dict["overflowing_tokens"] for (original_span, noised_span) in spans: # Identify the position of the CLS token original_cls_index = original_span["input_ids"].index(self.tokenizer.cls_token_id) noised_cls_index = noised_span["input_ids"].index(self.tokenizer.cls_token_id) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # Original TF implem also keep the classification token (set to 0) (not sure why...) original_p_mask = np.array(original_span["token_type_ids"]) noised_p_mask = np.array(noised_span["token_type_ids"]) original_p_mask = np.minimum(original_p_mask, 1) noised_p_mask = np.minimum(noised_p_mask, 1) if self.tokenizer.padding_side == "right": # Limit positive values to one original_p_mask = 1 - original_p_mask noised_p_mask = 1 - noised_p_mask original_p_mask[np.where(np.array(original_span["input_ids"]) == self.tokenizer.sep_token_id)[0]] = 1 noised_p_mask[np.where(np.array(noised_span["input_ids"]) == self.tokenizer.sep_token_id)[0]] = 1 # Set the CLS index to '0' original_p_mask[original_cls_index] = 0 noised_p_mask[noised_cls_index] = 0 # TODO cls_index in xlm-r is 0 assert original_cls_index == 0 assert noised_cls_index == 0 original_span["r1_mask"][original_cls_index] = 1 noised_span["r1_mask"][noised_cls_index] = 1 span_is_impossible = example.is_impossible original_start_position = 0 original_end_position = 0 noised_start_position = 0 noised_end_position = 0 if is_training and not span_is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. noised_doc_start = noised_span["start"] noised_doc_end = noised_span["start"] + noised_span["length"] - 1 noised_out_of_span = False original_doc_start = original_span["start"] original_doc_end = original_span["start"] + original_span["length"] - 1 original_out_of_span = False if not ( noised_tok_start_position >= noised_doc_start and noised_tok_end_position <= noised_doc_end): noised_out_of_span = True if not ( new_original_tok_start_position >= original_doc_start and new_original_tok_end_position <= original_doc_end): original_out_of_span = True if noised_out_of_span: noised_start_position = noised_cls_index noised_end_position = noised_cls_index span_is_impossible = True else: if self.tokenizer.padding_side == "left": doc_offset = 0 else: doc_offset = len(noised_truncated_query) + sequence_added_tokens noised_start_position = noised_tok_start_position - noised_doc_start + doc_offset noised_end_position = noised_tok_end_position - noised_doc_start + doc_offset if original_out_of_span: original_start_position = original_cls_index original_end_position = original_cls_index span_is_impossible = True else: if self.tokenizer.padding_side == "left": doc_offset = 0 else: doc_offset = len(original_truncated_query) + sequence_added_tokens original_start_position = new_original_tok_start_position - original_doc_start + doc_offset original_end_position = new_original_tok_end_position - original_doc_start + doc_offset all_original_input_ids += [original_span["input_ids"]] all_original_attention_mask += [original_span["attention_mask"]] all_original_token_type_ids += [original_span["token_type_ids"]] all_original_r1_mask += [original_span["r1_mask"]] all_original_start_positions += [original_start_position] all_original_end_positions += [original_end_position] all_noised_input_ids += [noised_span["input_ids"]] all_noised_attention_mask += [noised_span["attention_mask"]] all_noised_token_type_ids += [noised_span["token_type_ids"]] all_noised_r1_mask += [noised_span["r1_mask"]] all_noised_start_positions += [noised_start_position] all_noised_end_positions += [noised_end_position] all_is_augmented += [is_augmented[ex_index]] # Convert to Tensors and build dataset all_original_input_ids = torch.tensor([input_ids for input_ids in all_original_input_ids], dtype=torch.long) all_original_attention_mask = torch.tensor([attention_mask for attention_mask in all_original_attention_mask], dtype=torch.long) all_original_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_original_token_type_ids], dtype=torch.long) all_original_r1_mask = torch.tensor([original_r1_mask for original_r1_mask in all_original_r1_mask], dtype=torch.long) all_original_start_positions = torch.tensor([start_position for start_position in all_original_start_positions], dtype=torch.long) all_original_end_positions = torch.tensor([end_position for end_position in all_original_end_positions], dtype=torch.long) all_noised_input_ids = torch.tensor([input_ids for input_ids in all_noised_input_ids], dtype=torch.long) all_noised_attention_mask = torch.tensor([attention_mask for attention_mask in all_noised_attention_mask], dtype=torch.long) all_noised_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_noised_token_type_ids], dtype=torch.long) all_noised_r1_mask = torch.tensor([noised_r1_mask for noised_r1_mask in all_noised_r1_mask], dtype=torch.long) all_noised_start_positions = torch.tensor([start_position for start_position in all_noised_start_positions], dtype=torch.long) all_noised_end_positions = torch.tensor([end_position for end_position in all_noised_end_positions], dtype=torch.long) all_is_augmented = torch.tensor([is_augmented for is_augmented in all_is_augmented]) dataset = TensorDataset(all_original_input_ids, all_original_attention_mask, all_original_token_type_ids, all_original_start_positions, all_original_end_positions, all_original_attention_mask, all_original_attention_mask, all_original_attention_mask, all_noised_input_ids, all_noised_attention_mask, all_noised_token_type_ids, all_noised_r1_mask, all_original_r1_mask, all_noised_start_positions, all_noised_end_positions, all_is_augmented) return dataset def get_train_steps(self, examples, args): if args.max_steps > 0: t_total = args.max_steps else: assert False return t_total def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def to_list(tensor): return tensor.detach().cpu().tolist() def train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, noised_data_generator=None): """ Train the model """ if args.local_rank in [-1, 0]: tb_log_dir = os.getenv("PHILLY_JOB_DIRECTORY", None) tb_writer = SummaryWriter(log_dir=tb_log_dir) log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w') args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) # args.warmup_steps == -1 means 0.1 warmup ratio if args.warmup_steps == -1: args.warmup_steps = int(t_total * 0.1) logger.info("Warmup steps: %d" % args.warmup_steps) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 1 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): try: # set global_step to gobal_step of last saved checkpoint from model path checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss, best_avg_f1 = 0.0, 0.0, 0.0 tr_original_loss, logging_original_loss = 0.0, 0.0 tr_noised_loss, logging_noised_loss = 0.0, 0.0 tr_r1_loss, logging_r1_loss = 0.0, 0.0 tr_r2_loss, logging_r2_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) # Added here for reproductibility set_seed(args) def logging(eval=False): results = None # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank in [-1, 0] and args.evaluate_during_training and eval: results = evaluate(args, model, tokenizer) for key, value in results.items(): logger.info("eval_{}: {}".format(key, value)) # for key, value in results.items(): # tb_writer.add_scalar("eval_{}".format(key), value, global_step) log_writer.write("{0}\t{1}".format(global_step, json.dumps(results)) + '\n') log_writer.flush() logger.info( "global_step: {}, lr: {:.6f}, loss: {:.6f}, original_loss: {:.6f}, noised_loss: {:.6f}, r1_loss: {:.6f}, r2_loss: {:.6f}".format( global_step, scheduler.get_lr()[0], (tr_loss - logging_loss) / args.logging_steps, (tr_original_loss - logging_original_loss) / args.logging_steps, (tr_noised_loss - logging_noised_loss) / args.logging_steps, (tr_r1_loss - logging_r1_loss) / args.logging_steps, (tr_r2_loss - logging_r2_loss) / args.logging_steps)) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) tb_writer.add_scalar("original_loss", (tr_original_loss - logging_original_loss) / args.logging_steps, global_step) tb_writer.add_scalar("noised_loss", (tr_noised_loss - logging_noised_loss) / args.logging_steps, global_step) tb_writer.add_scalar("r1_loss", (tr_r1_loss - logging_r1_loss) / args.logging_steps, global_step) tb_writer.add_scalar("r2_loss", (tr_r2_loss - logging_r2_loss) / args.logging_steps, global_step) if results is not None: return results["dev_avg"]["f1"] else: return None for _ in train_iterator: use_noised_ids = False if noised_data_generator is not None: assert noised_data_generator.enable_r1_loss or noised_data_generator.noised_loss or noised_data_generator.enable_data_augmentation noised_train_dataset = noised_data_generator.get_noised_dataset(train_examples) train_sampler = RandomSampler(noised_train_dataset) if args.local_rank == -1 else DistributedSampler( noised_train_dataset) train_dataloader = DataLoader(noised_train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=True) # epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() if first_stage_model is not None: first_stage_model.eval() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], "start_positions": batch[3], "end_positions": batch[4], } if first_stage_model is not None: with torch.no_grad(): inputs["first_stage_model_start_logits"], inputs["first_stage_model_end_logits"] = first_stage_model(**inputs)[1:3] if noised_data_generator is not None: inputs.update({"noised_input_ids": batch[8], "noised_attention_mask": batch[9], "noised_token_type_ids": batch[10], "noised_r1_mask": batch[11], "original_r1_mask": batch[12], "noised_start_positions": batch[13], "noised_end_positions": batch[14], "is_augmented": batch[15]}) if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if use_noised_ids: del inputs["noised_token_type_ids"] if args.model_type in ["xlnet", "xlm"]: assert False inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) if args.version_2_with_negative: inputs.update({"is_impossible": batch[7]}) if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) outputs = model(**inputs) # model outputs are always tuple in transformers (see doc) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if True or noised_data_generator is not None: original_loss, noised_loss, r1_loss, r2_loss = outputs[1:5] if args.n_gpu > 1: original_loss = original_loss.mean() noised_loss = noised_loss.mean() r1_loss = r1_loss.mean() r2_loss = r2_loss.mean() if args.gradient_accumulation_steps > 1: original_loss = original_loss / args.gradient_accumulation_steps noised_loss = noised_loss / args.gradient_accumulation_steps r1_loss = r1_loss / args.gradient_accumulation_steps r2_loss = r2_loss / args.gradient_accumulation_steps tr_original_loss += original_loss.item() tr_noised_loss += noised_loss.item() tr_r1_loss += r1_loss.item() tr_r2_loss += r2_loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: cur_result = logging(eval=args.evaluate_steps > 0 and global_step % args.evaluate_steps == 0) logging_loss = tr_loss logging_original_loss = tr_original_loss logging_noised_loss = tr_noised_loss logging_r1_loss = tr_r1_loss logging_r2_loss = tr_r2_loss if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.local_rank in [-1, 0] and args.logging_each_epoch: avg_f1 = logging(eval=True) logging_loss = tr_loss logging_original_loss = tr_original_loss logging_noised_loss = tr_noised_loss logging_r1_loss = tr_r1_loss logging_r2_loss = tr_r2_loss if avg_f1 > best_avg_f1: best_avg_f1 = avg_f1 output_dir = os.path.join(args.output_dir, "checkpoint-best") if not os.path.exists(output_dir): os.makedirs(output_dir) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() log_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): languages = args.language.split(',') all_languages_results = {} if args.task_name.lower() == "mlqa" or args.task_name == "mlqa_dev": processor = MLQAProcessor() elif args.task_name.lower() == "xquad": processor = XQuADProcessor() elif args.task_name.lower() == "tydiqa": processor = TyDiQAProcessor() elif args.task_name.lower() == "squad": processor = SquadV1Processor() else: assert False split_lang_list = [] # split_lang_list.append(("run_dev", "en")) for lang in languages: split_lang_list.append(("dev", lang)) if args.task_name.lower() == "mlqa": for lang in languages: split_lang_list.append(("test", lang)) for split, lang in split_lang_list: # for split, lang in itertools.product(["dev", "test"], languages): print("evaluating on {0} {1}".format(split, lang)) dataset, examples, features = load_and_cache_examples(args, tokenizer, language=lang, split=split, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) all_results = [] start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], } if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] example_indices = batch[3] # XLNet and XLM use more arguments for their predictions if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) # for lang_id-sensitive xlm models if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) outputs = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = int(eval_feature.unique_id) output = [to_list(output[i]) for output in outputs] # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler" # models only use two. if len(output) >= 5: start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( unique_id, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) else: start_logits, end_logits = output result = SquadResult(unique_id, start_logits, end_logits) all_results.append(result) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) # Compute predictions output_prediction_file = os.path.join(args.output_dir, "{}.prediction".format(lang)) output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}_{}_{}.json".format(prefix, split, lang)) if args.version_2_with_negative: output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}_{}_{}.json".format(prefix, split, lang)) else: output_null_log_odds_file = None # XLNet and XLM use a more complex post-processing procedure if args.model_type in ["xlnet", "xlm"]: start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top predictions = compute_predictions_log_probs( examples, features, all_results, args.n_best_size, args.max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, start_n_top, end_n_top, args.version_2_with_negative, tokenizer, args.verbose_logging, ) else: predictions = compute_predictions_logits( examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, tokenizer, map_to_origin=not (args.model_type == "xlmr" and (lang == 'zh' or lang == "ko")), # map_to_origin=False, ) # Compute the F1 and exact scores. if args.task_name.lower() == "mlqa" or args.task_name.lower() == "mlqa_dev": results = mlqa_evaluate_with_path(processor.get_dataset_path(args.data_dir, split, lang), output_prediction_file, lang) else: results = squad_evaluate_with_path(processor.get_dataset_path(args.data_dir, split, lang), output_prediction_file) # results = squad_evaluate(examples, predictions) # results = evaluate_with_path(processor.get_dataset_path(args.data_dir, split, lang), output_prediction_file, # lang) all_languages_results["{0}_{1}".format(split, lang)] = results for split in ["dev", "test"]: all_languages_results["{0}_avg".format(split)] = average_dic( [value for key, value in all_languages_results.items() if split in key]) return all_languages_results def average_dic(dic_list): if len(dic_list) == 0: return {} dic_sum = {} for dic in dic_list: if len(dic_sum) == 0: for key, value in dic.items(): dic_sum[key] = value else: assert set(dic_sum.keys()) == set(dic.keys()), "sum_keys:{0}, dic_keys:{1}".format(set(dic_sum.keys()), set(dic.keys())) for key, value in dic.items(): dic_sum[key] += value for key in dic_sum: dic_sum[key] /= len(dic_list) return dic_sum def load_and_cache_examples(args, tokenizer, language, split="train", output_examples=False): if args.local_rank not in [-1, 0] and split == "train": # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() # Load data features from cache or dataset file input_dir = args.data_dir if args.data_dir else "." model_name = "xlmr-base-final" cached_features_file = os.path.join( input_dir, "cached_{}_{}_{}_{}".format( split, language, model_name, str(args.max_seq_length), ), ) # Init features and dataset from cache if it exists if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features_and_dataset = torch.load(cached_features_file) features, dataset, examples = ( features_and_dataset["features"], features_and_dataset["dataset"], features_and_dataset["examples"], ) else: logger.info("Creating features from dataset file at %s", input_dir) if not args.data_dir and ( (split != "train" and not args.predict_file) or (split == "train" and not args.train_file)): raise ValueError("data dir can't be empty") try: import tensorflow_datasets as tfds except ImportError: raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.") if args.version_2_with_negative: logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.") tfds_examples = tfds.load("squad") examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) else: # processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() if args.task_name.lower() == "mlqa" or args.task_name.lower() == "mlqa_dev": processor = MLQAProcessor() elif args.task_name.lower() == "xquad": processor = XQuADProcessor() elif args.task_name.lower() == "tydiqa": processor = TyDiQAProcessor() elif args.task_name.lower() == "squad": processor = SquadV1Processor() else: assert False if split == "run_dev": examples = processor.get_dev_examples(args.data_dir) elif split == "dev": if args.task_name.lower() == "squad": examples = processor.get_dev_examples(args.data_dir) else: examples = processor.get_dev_examples_by_language(args.data_dir, language=language) elif split == "test": examples = processor.get_test_examples_by_language(args.data_dir, language=language) else: examples = processor.get_train_examples(args.data_dir) features, dataset = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=split == "train", return_dataset="pt", threads=args.threads, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) if args.local_rank == 0 and split == "train": # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() if output_examples: return dataset, examples, features return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--reload", default="", type=str, help="path to infoxlm checkpoint", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) parser.add_argument( "--task_name", default="mlqa", type=str, help="task_name", ) # stable fine-tuning paramters parser.add_argument("--overall_ratio", default=1.0, type=float, help="overall ratio") parser.add_argument("--enable_r1_loss", action="store_true", help="Whether to enable r1 loss.") parser.add_argument("--r1_lambda", default=5.0, type=float, help="lambda of r1 loss") parser.add_argument("--original_loss", action="store_true", help="Whether to use cross entropy loss on the former example.") parser.add_argument("--noised_loss", action="store_true", help="Whether to use cross entropy loss on the latter example.") parser.add_argument("--noised_max_seq_length", default=512, type=int, help="noised max sequence length") parser.add_argument("--keep_boundary_unchanged", action="store_true", help="Whether to keep the boundary of answer unchanged.") parser.add_argument("--r1_on_boundary_only", action="store_true", help="Whether to enable r1 loss on boundary only.") parser.add_argument("--enable_bpe_switch", action="store_true", help="Whether to enable bpe-switch.") parser.add_argument("--bpe_switch_ratio", default=0.5, type=float, help="bpe_switch_ratio") parser.add_argument("--tokenizer_dir", default=None, type=str, help="tokenizer dir") parser.add_argument("--tokenizer_languages", default=None, type=str, help="tokenizer languages") parser.add_argument("--enable_bpe_sampling", action="store_true", help="Whether to enable bpe sampling.") parser.add_argument("--bpe_sampling_ratio", default=0.5, type=float, help="bpe_sampling_ratio") parser.add_argument("--sampling_alpha", default=5.0, type=float, help="alpha of sentencepiece sampling") parser.add_argument("--sampling_nbest_size", default=-1, type=int, help="nbest_size of sentencepiece sampling") parser.add_argument("--enable_random_noise", action="store_true", help="Whether to enable random noise.") parser.add_argument("--noise_detach_embeds", action="store_true", help="Whether to detach noised embeddings.") parser.add_argument("--noise_eps", default=1e-5, type=float, help="noise eps") parser.add_argument('--noise_type', type=str, default='uniform', choices=['normal', 'uniform'], help='type of noises for RXF methods') parser.add_argument("--enable_code_switch", action="store_true", help="Whether to enable code switch.") parser.add_argument("--code_switch_ratio", default=0.5, type=float, help="code_switch_ratio") parser.add_argument("--dict_dir", default=None, type=str, help="dict dir") parser.add_argument("--dict_languages", default=None, type=str, help="dict languages") parser.add_argument("--enable_translate_data", action="store_true", help="Whether to enable translate data.") parser.add_argument("--translation_path", default=None, type=str, help="path to translation") parser.add_argument("--disable_translate_labels", action="store_true", help="Whether to disable translate labels.") parser.add_argument("--translate_languages", default=None, type=str, help="translate languages") parser.add_argument("--translate_augment_ratio", default=0.0, type=float, help="translate augment ratio") parser.add_argument("--enable_data_augmentation", action="store_true", help="Whether to enable data augmentation.") parser.add_argument("--augment_ratio", default=1.0, type=float, help="augmentation ratio.") parser.add_argument("--augment_method", default=None, type=str, required=False, help="augment_method") parser.add_argument("--first_stage_model_path", default=None, type=str, required=False, help="stable model path") parser.add_argument("--r2_lambda", default=1.0, type=float, required=False, help="r2_lambda") parser.add_argument("--use_hard_labels", action="store_true", help="Whether to use hard labels.") # Other parameters parser.add_argument( "--data_dir", default=None, type=str, help="The input data dir. Should contain the .json files for the task." + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--train_file", default=None, type=str, help="The input training file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--predict_file", default=None, type=str, help="The input evaluation file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.", ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument( "--max_query_length", default=64, type=int, help="The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.", ) parser.add_argument( "--verbose_logging", action="store_true", help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.", ) parser.add_argument( "--lang_id", default=0, type=int, help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)", ) parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--evaluate_steps", type=int, default=0, help="Log every X updates steps.") parser.add_argument("--logging_each_epoch", action="store_true", help="Whether to log after each epoch.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") # cross-lingual part parser.add_argument( "--language", default=None, type=str, required=True, help="Evaluation language. Also train language if `train_language` is set to None.", ) parser.add_argument( "--train_language", default=None, type=str, help="Train language if is different of the evaluation language." ) args = parser.parse_args() if args.doc_stride >= args.max_seq_length - args.max_query_length: logger.warning( "WARNING - You've set a doc stride which may be superior to the document length in some " "examples. This could result in errors when building features from the examples. Please reduce the doc " "stride or increase the maximum length to ensure the features are correctly built." ) if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.enable_r1_loss or args.noised_loss or args.enable_translate_data or args.enable_data_augmentation: noised_data_generator = NoisedDataGenerator( task_name=args.task_name, r1_lambda=args.r1_lambda, enable_r1_loss=args.enable_r1_loss, original_loss=args.original_loss, noised_loss=args.noised_loss, keep_boundary_unchanged=args.keep_boundary_unchanged, r1_on_boundary_only=args.r1_on_boundary_only, noised_max_seq_length=args.noised_max_seq_length, max_seq_length=args.max_seq_length, max_query_length=args.max_query_length, doc_stride=args.doc_stride, overall_ratio=args.overall_ratio, enable_bpe_switch=args.enable_bpe_switch, bpe_switch_ratio=args.bpe_switch_ratio, tokenizer_dir=args.tokenizer_dir, do_lower_case=args.do_lower_case, tokenizer_languages=args.tokenizer_languages.split(',') if args.tokenizer_languages is not None else [], enable_bpe_sampling=args.enable_bpe_sampling, bpe_sampling_ratio=args.bpe_sampling_ratio, tokenizer=tokenizer, sampling_alpha=args.sampling_alpha, sampling_nbest_size=args.sampling_nbest_size, enable_random_noise=args.enable_random_noise, noise_detach_embeds=args.noise_detach_embeds, noise_eps=args.noise_eps, noise_type=args.noise_type, enable_code_switch=args.enable_code_switch, code_switch_ratio=args.code_switch_ratio, dict_dir=args.dict_dir, dict_languages=args.dict_languages.split(',') if args.dict_languages is not None else [], translation_path=args.translation_path, disable_translate_labels=args.disable_translate_labels, translate_languages=args.translate_languages.split( ',') if args.translate_languages is not None else args.language.split(','), enable_data_augmentation=args.enable_data_augmentation, augment_ratio=args.augment_ratio, augment_method=args.augment_method, r2_lambda=args.r2_lambda, use_hard_labels=args.use_hard_labels, ) else: noised_data_generator = None if args.first_stage_model_path is not None: first_stage_model = model_class.from_pretrained(args.first_stage_model_path, config=config) else: first_stage_model = None state_dict = None if args.reload != "": from tools.dump_hf_state_dict import convert_pt_to_hf state_dict = convert_pt_to_hf(os.path.join(args.model_name_or_path, 'pytorch_model.bin'), args.reload, logger) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, noised_data_generator=noised_data_generator, cache_dir=args.cache_dir if args.cache_dir else None, state_dict=state_dict, ) if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(args.device) if first_stage_model is not None: first_stage_model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, "einsum") except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") # Training if args.do_train: # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) train_dataset, train_examples, _ = load_and_cache_examples(args, tokenizer, language=args.train_language, split="train", output_examples=True) global_step, tr_loss = train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, noised_data_generator=noised_data_generator) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) # , force_download=True) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) if args.do_train: logger.info("Loading checkpoints saved during training for evaluation") checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs else: logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path) checkpoints = [args.model_name_or_path] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "test" model = model_class.from_pretrained(checkpoint) # , force_download=True) model.to(args.device) # Evaluate log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w') result = evaluate(args, model, tokenizer, prefix=global_step) # result = squad(args, model, tokenizer, prefix=global_step) log_writer.write("{0}\t{1}".format(global_step, json.dumps(result)) + '\n') result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items()) results.update(result) logger.info("Results: {}".format(results)) logger.info("Task MLQA Finished!") return results if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/xtune/src/run_qa.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, # The HuggingFace Inc. team, and The XTREME Benchmark Authors. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning models for NER and POS tagging.""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import copy import json import random import math import numpy as np import torch from seqeval.metrics import precision_score, recall_score, f1_score from tensorboardX import SummaryWriter from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from torch.utils.data import RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from utils_tag import convert_examples_to_features from utils_tag import get_labels from utils_tag import read_examples_from_file from utils_tag import InputExample from transformers import ( AdamW, get_linear_schedule_with_warmup, WEIGHTS_NAME, RobertaConfig, XLMRobertaConfig, XLMRobertaTokenizer, XLMRobertaForTokenClassificationPoolingStable, ) logger = logging.getLogger(__name__) ALL_MODELS = sum( (tuple(conf.pretrained_config_archive_map.keys()) for conf in (RobertaConfig, XLMRobertaConfig)), () ) MODEL_CLASSES = { "xlmr": (XLMRobertaConfig, XLMRobertaForTokenClassificationPoolingStable, XLMRobertaTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def get_root(x, parent): if x == parent[x]: return x parent[x] = get_root(parent[x], parent) return parent[x] class NoisedDataGenerator(object): def __init__(self, label_list, pad_token_label_id, r1_lambda=5.0, r1_on_unswitched_tokens=False, enable_r1_loss=False, disable_backward_kl=False, use_sentence_label_probs=False, use_token_label_probs=False, original_loss=True, noised_loss=False, max_seq_length=512, noised_max_seq_length=512, overall_ratio=1.0, enable_bpe_switch=False, bpe_switch_ratio=0.5, tokenizer_dir=None, do_lower_case=False, tokenizer_languages=None, enable_bpe_sampling=False, bpe_sampling_ratio=0.5, tokenizer=None, sampling_alpha=0.3, sampling_nbest_size=-1, enable_random_noise=False, detach_embeds=False, noise_eps=1e-5, noise_type='uniform', enable_code_switch=False, code_switch_ratio=0.5, dict_dir=None, dict_languages=None, use_average_representations=False, translation_path=None, translate_languages=None, use_align_label_probs=False, enable_data_augmentation=False, augment_ratio=0.0, augment_method=None, r2_lambda=1.0, use_hard_labels=False): if enable_code_switch: assert dict_dir is not None assert dict_languages is not None assert tokenizer is not None if enable_random_noise: assert noise_type in ['uniform', 'normal'] if enable_r1_loss: assert use_token_label_probs or use_sentence_label_probs or ( use_align_label_probs and enable_translate_data) self.use_average_representations = use_average_representations self.n_tokens = 0 self.n_cs_tokens = 0 self.r1_lambda = r1_lambda self.r1_on_unswitched_tokens = r1_on_unswitched_tokens self.original_loss = original_loss self.noised_loss = noised_loss self.enable_r1_loss = enable_r1_loss self.disable_backward_kl = disable_backward_kl self.use_align_label_probs = use_align_label_probs self.use_sentence_label_probs = use_sentence_label_probs self.use_token_label_probs = use_token_label_probs self.max_seq_length = max_seq_length self.noised_max_seq_length = noised_max_seq_length self.overall_ratio = overall_ratio self.enable_bpe_switch = enable_bpe_switch self.bpe_switch_ratio = bpe_switch_ratio / self.overall_ratio assert not self.enable_bpe_switch or self.bpe_switch_ratio <= 1.0 self.tokenizer_dir = tokenizer_dir self.tokenizer_languages = tokenizer_languages self.enable_bpe_sampling = enable_bpe_sampling self.bpe_sampling_ratio = bpe_sampling_ratio / self.overall_ratio assert not self.enable_bpe_sampling or self.bpe_sampling_ratio <= 1.0 self.tokenizer = tokenizer self.sampling_alpha = sampling_alpha self.sampling_nbest_size = sampling_nbest_size self.enable_random_noise = enable_random_noise self.detach_embeds = detach_embeds self.noise_eps = noise_eps self.noise_type = noise_type self.enable_code_switch = enable_code_switch self.code_switch_ratio = code_switch_ratio / self.overall_ratio assert not self.enable_code_switch or self.code_switch_ratio <= 1.0 self.dict_dir = dict_dir self.dict_languages = [] self.lang2dict = {} for lang in dict_languages: # dict_path = os.path.join(self.dict_dir, "{}2.txt".format(lang)) dict_path = os.path.join(self.dict_dir, "en-{}.txt".format(lang)) if not os.path.exists(dict_path): logger.info("dictionary en-{} doesn't exist.".format(lang)) continue self.dict_languages.append(lang) logger.info("reading dictionary from {}".format(dict_path)) with open(dict_path, "r", encoding="utf-8") as reader: raw = reader.readlines() self.lang2dict[lang] = {} for line in raw: line = line.strip() try: src, tgt = line.split("\t") except: src, tgt = line.split(" ") if src not in self.lang2dict[lang]: self.lang2dict[lang][src] = [tgt] else: self.lang2dict[lang][src].append(tgt) self.lang2tokenizer = {} for lang in tokenizer_languages: self.lang2tokenizer[lang] = XLMRobertaTokenizer.from_pretrained( os.path.join(tokenizer_dir, "{}".format(lang)), do_lower_case=do_lower_case) self.translation_path = translation_path self.translate_languages = translate_languages self.augment_method = augment_method self.enable_data_augmentation = enable_data_augmentation if self.enable_data_augmentation and self.augment_method == "mt": drop_languages = ["en", "zh-CN", "zh", "ja", "ko", "th", "my", "ml", "ta"] for lang in drop_languages: if lang in self.translate_languages: self.translate_languages.remove(lang) # self.translate_languages = ["de"] self.src2tgt = {} logger.info("Reading translation from {}".format(self.translation_path)) with open(self.translation_path, encoding="utf-8") as f: line_cnt = 0 for line in f: # if line_cnt == 100: # exit(0) line_cnt += 1 if line_cnt % 10000 == 0: print("Reading lines {}".format(line_cnt)) items = line.split("\t") if len(items) == 3: src_sent, tgt_lang, tgt_sent = line.split("\t") alignment = None else: src_sent, tgt_lang, tgt_sent, alignment_str = line.split("\t") alignment = [] for x in alignment_str.split(" "): alignment.append((int(x.split("/")[0]), int(x.split("/")[1]))) if tgt_lang in drop_languages: continue if self.translate_languages is not None and tgt_lang not in self.translate_languages: continue if src_sent not in self.src2tgt: self.src2tgt[src_sent] = [] if alignment is not None: n_src = len(src_sent.split(" ")) n_tgt = len(tgt_sent.split(" ")) parent = list(range(0, n_src + n_tgt)) for x in alignment: x_src = x[0] x_tgt = x[1] + n_src if get_root(x_src, parent) != get_root(x_tgt, parent): parent[x_src] = get_root(x_tgt, parent) cnt = [0] * (n_src + n_tgt) for i in range(n_src + n_tgt): cnt[get_root(i, parent)] += 1 align_pooling_id = [0] * (n_src + n_tgt) root2id = {} for i in range(n_src + n_tgt): if cnt[get_root(i, parent)] == 1: continue if not get_root(i, parent) in root2id: root2id[get_root(i, parent)] = len(root2id) + 1 align_pooling_id[i] = root2id[get_root(i, parent)] # print(align_pooling_id[:n_src], align_pooling_id[n_src:]) self.src2tgt[src_sent].append( (tgt_lang, tgt_sent, (align_pooling_id[:n_src], align_pooling_id[n_src:]))) else: self.src2tgt[src_sent].append( (tgt_lang, tgt_sent, None)) # print(align_pooling_id[:n_src], align_pooling_id[n_src:]) self.enable_data_augmentation = enable_data_augmentation self.augment_ratio = augment_ratio self.r2_lambda = r2_lambda self.use_hard_labels = use_hard_labels self.label_list = label_list self.cls_token_at_end = False self.cls_token = self.tokenizer.cls_token self.cls_token_segment_id = 0 self.sep_token = self.tokenizer.sep_token self.sep_token_extra = True self.pad_on_left = False self.pad_token = self.tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0] self.pad_token_segment_id = 0 self.pad_token_label_id = pad_token_label_id self.sequence_a_segment_id = 0 self.mask_padding_with_zero = True def augment_examples(self, examples): n_augment = math.ceil(len(examples) * self.augment_ratio) augment_examples = [] while n_augment > 0: examples = copy.deepcopy(examples) augment_examples += examples[:n_augment] n_augment -= len(examples[:n_augment]) random.shuffle(examples) return augment_examples def get_translate_data(self, examples): translate_examples = [] n_unfound = 0 for ex_idx, example in enumerate(examples): src_sent = " ".join(example.words) if src_sent not in self.src2tgt: logger.info("sentence || {} || is not found in translate data".format(src_sent)) tgt_sent = src_sent tgt_lang = "en" align_pooling_id = ( list(range(1, len(src_sent.split(" ")) + 1)), list(range(1, len(src_sent.split(" ")) + 1))) n_unfound += 1 else: # assert src_sent in self.src2tgt idx = random.randint(0, len(self.src2tgt[src_sent]) - 1) tgt_lang, tgt_sent, align_pooling_id = self.src2tgt[src_sent][idx] words = tgt_sent.split(" ") # print(len(words)) labels = ['<unk_label>'] * len(words) translate_examples.append(InputExample(ex_idx, words, labels, langs=tgt_lang)) logger.info("{} sentences unfound.".format(n_unfound)) return translate_examples def get_noised_dataset(self, examples): # maybe do not save augmented examples examples = copy.deepcopy(examples) is_augmented = [0] * len(examples) if self.enable_data_augmentation: augment_examples = self.augment_examples(examples) if self.augment_method == "mt": assert not self.enable_code_switch augment_examples = self.get_translate_data(augment_examples) is_augmented += [1] * len(augment_examples) examples += augment_examples if self.enable_code_switch: self.n_tokens = 0 self.n_cs_tokens = 0 dataset = self.convert_examples_to_dataset(examples, is_augmented) if self.enable_code_switch: logger.info("{:.2f}% tokens have been code-switched.".format(self.n_cs_tokens / self.n_tokens * 100)) return dataset, None def tokenize_token(self, token, switch_text=False, enable_code_switch=False, enable_bpe_switch=False, enable_bpe_sampling=False): switch_token = random.random() <= self.overall_ratio is_switched = False self.n_tokens += 1 if enable_code_switch and switch_text and switch_token and random.random() <= self.code_switch_ratio: lang = self.dict_languages[random.randint(0, len(self.dict_languages) - 1)] if token.lower() in self.lang2dict[lang]: self.n_cs_tokens += 1 token = self.lang2dict[lang][token.lower()][ random.randint(0, len(self.lang2dict[lang][token.lower()]) - 1)] is_switched = True if enable_bpe_switch and switch_text and switch_token and random.random() <= self.bpe_switch_ratio: lang = self.tokenizer_languages[random.randint(0, len(self.tokenizer_languages) - 1)] tokenizer = self.lang2tokenizer[lang] is_switched = True else: tokenizer = self.tokenizer if enable_bpe_sampling and switch_text and switch_token and random.random() <= self.bpe_sampling_ratio: sub_tokens = tokenizer.tokenize(token, nbest_size=self.sampling_nbest_size, alpha=self.sampling_alpha) is_switched = True else: sub_tokens = tokenizer.tokenize(token) return sub_tokens, is_switched def convert_examples_to_dataset(self, examples, is_augmented): all_original_input_ids = [] all_original_input_mask = [] all_original_segment_ids = [] all_original_label_ids = [] all_original_pooling_ids = [] all_original_r1_mask = [] all_noised_input_ids = [] all_noised_input_mask = [] all_noised_segment_ids = [] all_noised_label_ids = [] all_noised_pooling_ids = [] all_noised_r1_mask = [] all_is_augmented = [] label_map = {label: i for i, label in enumerate(self.label_list)} for (ex_index, example) in enumerate(examples): if ex_index % 1000 == 0: logger.info("Writing example %d/%d" % (ex_index, len(examples))) noised_tokens = [] original_tokens = [] noised_label_ids = [] original_label_ids = [] noised_pooling_ids = [] original_pooling_ids = [] noised_r1_mask = [] original_r1_mask = [] switch_text = True # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if self.sep_token_extra else 2 for word, label in zip(example.words, example.labels): noised_word_tokens, noised_is_switched = self.tokenize_token(word, switch_text=switch_text, enable_code_switch=self.enable_code_switch, enable_bpe_switch=self.enable_bpe_switch, enable_bpe_sampling=self.enable_bpe_sampling) if self.enable_data_augmentation and is_augmented[ex_index]: if self.augment_method == "cs": original_word_tokens, original_is_switched = self.tokenize_token(word, switch_text=switch_text, enable_code_switch=True) elif self.augment_method == "ss": original_word_tokens, original_is_switched = self.tokenize_token(word, switch_text=switch_text, enable_bpe_sampling=True) elif self.augment_method == "mt" or self.augment_method == "gn": original_word_tokens, original_is_switched = self.tokenize_token(word, switch_text=False) else: assert False else: original_word_tokens, original_is_switched = self.tokenize_token(word, switch_text=False) is_switched = noised_is_switched or original_is_switched if len(word) != 0 and len(original_word_tokens) == 0: original_word_tokens = [self.tokenizer.unk_token] if len(word) != 0 and len(noised_word_tokens) == 0: noised_word_tokens = [self.tokenizer.unk_token] if len(noised_word_tokens) == 0 or len(original_word_tokens) == 0: continue noised_tokens.extend(noised_word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens noised_label_ids.extend([label_map.get(label, self.pad_token_label_id)] + [self.pad_token_label_id] * ( len(noised_word_tokens) - 1)) noised_pooling_ids.extend([len(noised_pooling_ids) + 1] * len(noised_word_tokens)) original_tokens.extend(original_word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens original_label_ids.extend( [label_map.get(label, self.pad_token_label_id)] + [self.pad_token_label_id] * ( len(original_word_tokens) - 1)) original_pooling_ids.extend([len(original_pooling_ids) + 1] * len(original_word_tokens)) if is_switched and self.r1_on_unswitched_tokens: noised_r1_mask.extend([0] + [0] * (len(noised_word_tokens) - 1)) else: noised_r1_mask.extend([1] + [0] * (len(noised_word_tokens) - 1)) if is_switched and self.r1_on_unswitched_tokens: original_r1_mask.extend([0] + [0] * (len(original_word_tokens) - 1)) else: original_r1_mask.extend([1] + [0] * (len(original_word_tokens) - 1)) break_flag = False if len(noised_tokens) >= self.noised_max_seq_length - special_tokens_count: logger.info('truncate noised token {} {} {}'.format(len(noised_tokens), self.noised_max_seq_length, special_tokens_count)) noised_tokens = noised_tokens[:(self.noised_max_seq_length - special_tokens_count)] noised_label_ids = noised_label_ids[:(self.noised_max_seq_length - special_tokens_count)] noised_pooling_ids = noised_pooling_ids[:(self.noised_max_seq_length - special_tokens_count)] noised_r1_mask = noised_r1_mask[:(self.noised_max_seq_length - special_tokens_count)] break_flag = True if len(original_tokens) >= self.max_seq_length - special_tokens_count: logger.info('truncate original token {} {} {}'.format(len(original_tokens), self.max_seq_length, special_tokens_count)) original_tokens = original_tokens[:(self.max_seq_length - special_tokens_count)] original_label_ids = original_label_ids[:(self.max_seq_length - special_tokens_count)] original_pooling_ids = original_pooling_ids[:(self.max_seq_length - special_tokens_count)] original_r1_mask = original_r1_mask[:(self.max_seq_length - special_tokens_count)] break_flag = True if break_flag: break assert len(noised_tokens) <= self.noised_max_seq_length - special_tokens_count original_tokens += [self.sep_token] original_label_ids += [self.pad_token_label_id] original_pooling_ids += [0] original_r1_mask += [0] noised_tokens += [self.sep_token] noised_label_ids += [self.pad_token_label_id] noised_pooling_ids += [0] noised_r1_mask += [0] if self.sep_token_extra: # roberta uses an extra separator b/w pairs of sentences noised_tokens += [self.sep_token] noised_label_ids += [self.pad_token_label_id] noised_pooling_ids += [0] noised_r1_mask += [0] original_tokens += [self.sep_token] original_label_ids += [self.pad_token_label_id] original_pooling_ids += [0] original_r1_mask += [0] noised_segment_ids = [self.sequence_a_segment_id] * len(noised_tokens) original_segment_ids = [self.sequence_a_segment_id] * len(original_tokens) if self.cls_token_at_end: noised_tokens += [self.cls_token] noised_label_ids += [self.pad_token_label_id] noised_segment_ids += [self.cls_token_segment_id] noised_pooling_ids += [0] noised_r1_mask += [0] original_tokens += [self.cls_token] original_label_ids += [self.pad_token_label_id] original_segment_ids += [self.cls_token_segment_id] original_pooling_ids += [0] original_r1_mask += [0] else: noised_tokens = [self.cls_token] + noised_tokens noised_label_ids = [self.pad_token_label_id] + noised_label_ids noised_segment_ids = [self.cls_token_segment_id] + noised_segment_ids noised_pooling_ids = [0] + noised_pooling_ids noised_r1_mask = [0] + noised_r1_mask original_tokens = [self.cls_token] + original_tokens original_label_ids = [self.pad_token_label_id] + original_label_ids original_segment_ids = [self.cls_token_segment_id] + original_segment_ids original_pooling_ids = [0] + original_pooling_ids original_r1_mask = [0] + original_r1_mask noised_input_ids = self.tokenizer.convert_tokens_to_ids(noised_tokens) original_input_ids = self.tokenizer.convert_tokens_to_ids(original_tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. noised_input_mask = [1 if self.mask_padding_with_zero else 0] * len(noised_input_ids) original_input_mask = [1 if self.mask_padding_with_zero else 0] * len(original_input_ids) # Zero-pad up to the sequence length. noised_padding_length = self.noised_max_seq_length - len(noised_input_ids) original_padding_length = self.max_seq_length - len(original_input_ids) if self.pad_on_left: noised_input_ids = [self.pad_token] * noised_padding_length + noised_input_ids noised_input_mask = [ 0 if self.mask_padding_with_zero else 1] * noised_padding_length + noised_input_mask noised_segment_ids = [self.pad_token_segment_id] * noised_padding_length + noised_segment_ids noised_label_ids = [self.pad_token_label_id] * noised_padding_length + noised_label_ids noised_pooling_ids = ([0] * noised_padding_length) + noised_pooling_ids noised_r1_mask = [0] * noised_padding_length + noised_r1_mask original_input_ids = [self.pad_token] * original_padding_length + original_input_ids original_input_mask = [ 0 if self.mask_padding_with_zero else 1] * original_padding_length + original_input_mask original_segment_ids = [self.pad_token_segment_id] * original_padding_length + original_segment_ids original_label_ids = [self.pad_token_label_id] * original_padding_length + original_label_ids original_pooling_ids = ([0] * original_padding_length) + original_pooling_ids original_r1_mask = [0] * original_padding_length + original_r1_mask else: noised_input_ids += [self.pad_token] * noised_padding_length noised_input_mask += [0 if self.mask_padding_with_zero else 1] * noised_padding_length noised_segment_ids += [self.pad_token_segment_id] * noised_padding_length noised_label_ids += [self.pad_token_label_id] * noised_padding_length noised_pooling_ids += ([0] * noised_padding_length) noised_r1_mask += [0] * noised_padding_length original_input_ids += [self.pad_token] * original_padding_length original_input_mask += [0 if self.mask_padding_with_zero else 1] * original_padding_length original_segment_ids += [self.pad_token_segment_id] * original_padding_length original_label_ids += [self.pad_token_label_id] * original_padding_length original_pooling_ids += ([0] * original_padding_length) original_r1_mask += [0] * original_padding_length assert sum(noised_r1_mask) == sum(original_r1_mask) assert len(noised_input_ids) == self.noised_max_seq_length assert len(noised_input_mask) == self.noised_max_seq_length assert len(noised_segment_ids) == self.noised_max_seq_length assert len(noised_label_ids) == self.noised_max_seq_length assert len(noised_pooling_ids) == self.noised_max_seq_length assert len(original_input_ids) == self.max_seq_length assert len(original_input_mask) == self.max_seq_length assert len(original_segment_ids) == self.max_seq_length assert len(original_label_ids) == self.max_seq_length assert len(original_pooling_ids) == self.max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("original_tokens: %s", " ".join([str(x) for x in original_tokens])) logger.info("original_input_ids: %s", " ".join([str(x) for x in original_input_ids])) logger.info("original_input_mask: %s", " ".join([str(x) for x in original_input_mask])) logger.info("original_segment_ids: %s", " ".join([str(x) for x in original_segment_ids])) logger.info("original_label_ids: %s", " ".join([str(x) for x in original_label_ids])) logger.info("original_pooling_ids: %s", " ".join([str(x) for x in original_pooling_ids])) logger.info("original_r1_mask: %s", " ".join([str(x) for x in original_r1_mask])) logger.info("noised_tokens: %s", " ".join([str(x) for x in noised_tokens])) logger.info("noised_input_ids: %s", " ".join([str(x) for x in noised_input_ids])) logger.info("noised_input_mask: %s", " ".join([str(x) for x in noised_input_mask])) logger.info("noised_segment_ids: %s", " ".join([str(x) for x in noised_segment_ids])) logger.info("noised_label_ids: %s", " ".join([str(x) for x in noised_label_ids])) logger.info("noised_pooling_ids: %s", " ".join([str(x) for x in noised_pooling_ids])) logger.info("noised_r1_mask: %s", " ".join([str(x) for x in noised_r1_mask])) all_noised_input_ids += [noised_input_ids] all_noised_input_mask += [noised_input_mask] all_noised_segment_ids += [noised_segment_ids] all_noised_label_ids += [noised_label_ids] all_noised_pooling_ids += [noised_pooling_ids] all_noised_r1_mask += [noised_r1_mask] all_original_input_ids += [original_input_ids] all_original_input_mask += [original_input_mask] all_original_segment_ids += [original_segment_ids] all_original_label_ids += [original_label_ids] all_original_pooling_ids += [original_pooling_ids] all_original_r1_mask += [original_r1_mask] all_is_augmented += [is_augmented[ex_index]] # Convert to Tensors and build dataset all_noised_input_ids = torch.tensor([input_ids for input_ids in all_noised_input_ids], dtype=torch.long) all_noised_input_mask = torch.tensor([input_mask for input_mask in all_noised_input_mask], dtype=torch.long) all_noised_segment_ids = torch.tensor([segment_ids for segment_ids in all_noised_segment_ids], dtype=torch.long) all_noised_label_ids = torch.tensor([label_ids for label_ids in all_noised_label_ids], dtype=torch.long) all_noised_pooling_ids = torch.tensor([pooling_ids for pooling_ids in all_noised_pooling_ids], dtype=torch.long) all_noised_r1_mask = torch.tensor([noised_r1_mask for noised_r1_mask in all_noised_r1_mask], dtype=torch.long) all_original_input_ids = torch.tensor([input_ids for input_ids in all_original_input_ids], dtype=torch.long) all_original_input_mask = torch.tensor([input_mask for input_mask in all_original_input_mask], dtype=torch.long) all_original_segment_ids = torch.tensor([segment_ids for segment_ids in all_original_segment_ids], dtype=torch.long) all_original_label_ids = torch.tensor([label_ids for label_ids in all_original_label_ids], dtype=torch.long) all_original_pooling_ids = torch.tensor([pooling_ids for pooling_ids in all_original_pooling_ids], dtype=torch.long) all_original_r1_mask = torch.tensor([original_r1_mask for original_r1_mask in all_original_r1_mask], dtype=torch.long) all_is_augmented = torch.tensor([is_augmented for is_augmented in all_is_augmented]) # print(all_noised_r1_mask.sum(), all_original_r1_mask.sum()) assert all_noised_r1_mask.sum() == all_original_r1_mask.sum() dataset = TensorDataset(all_original_input_ids, all_original_input_mask, all_original_segment_ids, all_original_label_ids, all_original_pooling_ids, all_noised_input_ids, all_noised_input_mask, all_noised_segment_ids, all_noised_label_ids, all_noised_pooling_ids, all_noised_r1_mask, all_original_r1_mask, all_is_augmented) return dataset def load_translate_data(self, examples): n_unfound = 0 translate_examples = [] all_align_pooling_ids = [] for ex_idx, example in enumerate(examples): src_sent = " ".join(example.words) if src_sent not in self.src2tgt: logger.info("sentence || {} || is not found in translate data".format(src_sent)) tgt_sent = src_sent tgt_lang = "en" align_pooling_id = ( list(range(1, len(src_sent.split(" ")) + 1)), list(range(1, len(src_sent.split(" ")) + 1))) n_unfound += 1 else: # assert src_sent in self.src2tgt idx = random.randint(0, len(self.src2tgt[src_sent]) - 1) tgt_lang, tgt_sent, align_pooling_id = self.src2tgt[src_sent][idx] words = tgt_sent.split(" ") # print(len(words)) labels = ['O'] * len(words) translate_examples.append(InputExample(ex_idx, words, labels, langs=tgt_lang)) # print(align_pooling_id) all_align_pooling_ids.append(align_pooling_id) print("{} sentences unfound.".format(n_unfound)) features = convert_examples_to_features(translate_examples, self.label_list, self.max_seq_length, self.tokenizer, cls_token_at_end=self.cls_token_at_end, cls_token=self.cls_token, cls_token_segment_id=self.cls_token_segment_id, sep_token=self.sep_token, sep_token_extra=self.sep_token_extra, pad_on_left=self.pad_on_left, pad_token=self.pad_token, pad_token_segment_id=self.pad_token_segment_id, pad_token_label_id=self.pad_token_label_id, lang=None) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_pooling_ids = torch.tensor([f.pooling_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) # not used under this setting all_noised_r1_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_original_r1_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_pooling_ids, all_noised_r1_mask, all_original_r1_mask, all_label_ids) return dataset, all_align_pooling_ids def load_translate_data_by_batch(self, examples, train_batch_size): translate_languagse = self.translate_languages language_cnt = [0] * len(translate_languagse) pass def get_train_steps(self, examples, args): n_augment_examples = math.ceil(len(examples) * (1 + self.augment_ratio)) augment_steps = math.ceil(n_augment_examples / args.train_batch_size) // args.gradient_accumulation_steps if args.max_steps > 0: t_total = args.max_steps assert False else: t_total = augment_steps * args.num_train_epochs return t_total def train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, labels, pad_token_label_id, noised_data_generator=None): """Train the model.""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() tb_log_dir = os.getenv("PHILLY_JOB_DIRECTORY", None) tb_writer = SummaryWriter(log_dir=tb_log_dir) log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w') args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if noised_data_generator is not None and noised_data_generator.enable_data_augmentation: t_total = noised_data_generator.get_train_steps(train_examples, args) else: if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ {"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay}, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) # args.warmup_steps == -1 means 0.1 warmup ratio if args.warmup_steps == -1: args.warmup_steps = int(t_total * 0.1) logger.info("Warmup steps: %d" % args.warmup_steps) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) best_score = 0.0 best_checkpoint = None patience = 0 global_step = 0 tr_loss, logging_loss, best_avg = 0.0, 0.0, 0.0 tr_original_loss, logging_original_loss = 0.0, 0.0 tr_noised_loss, logging_noised_loss = 0.0, 0.0 tr_r1_loss, logging_r1_loss = 0.0, 0.0 tr_r2_loss, logging_r2_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Add here for reproductibility (even between python 2 and 3) def logging(eval=False): results = None # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank in [-1, 0] and args.evaluate_during_training and eval: results = evaluate(args, model, tokenizer, labels, pad_token_label_id) for key, value in results.items(): logger.info("eval_{}: {}".format(key, value)) # for key, value in results.items(): # tb_writer.add_scalar("eval_{}".format(key), value, global_step) log_writer.write("{0}\t{1}".format(global_step, json.dumps(results)) + '\n') log_writer.flush() logger.info( "global_step: {}, lr: {:.6f}, loss: {:.6f}, original_loss: {:.6f}, noised_loss: {:.6f}, r1_loss: {:.6f}, r2_loss: {:.6f}".format( global_step, scheduler.get_lr()[0], (tr_loss - logging_loss) / args.logging_steps, (tr_original_loss - logging_original_loss) / args.logging_steps, (tr_noised_loss - logging_noised_loss) / args.logging_steps, (tr_r1_loss - logging_r1_loss) / args.logging_steps, (tr_r2_loss - logging_r2_loss) / args.logging_steps)) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) tb_writer.add_scalar("original_loss", (tr_original_loss - logging_original_loss) / args.logging_steps, global_step) tb_writer.add_scalar("noised_loss", (tr_noised_loss - logging_noised_loss) / args.logging_steps, global_step) tb_writer.add_scalar("r1_loss", (tr_r1_loss - logging_r1_loss) / args.logging_steps, global_step) tb_writer.add_scalar("r2_loss", (tr_r2_loss - logging_r2_loss) / args.logging_steps, global_step) return results for _ in train_iterator: if noised_data_generator is not None: assert noised_data_generator.enable_r1_loss or noised_data_generator.noised_loss or noised_data_generator.enable_data_augmentation noised_train_dataset, all_align_pooling_ids = noised_data_generator.get_noised_dataset(train_examples) train_sampler = RandomSampler(noised_train_dataset) if args.local_rank == -1 else DistributedSampler( noised_train_dataset) train_dataloader = DataLoader(noised_train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) # if not args.max_steps > 0: # assert t_total == len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=True) for step, batch in enumerate(epoch_iterator): model.train() if first_stage_model is not None: first_stage_model.eval() batch = tuple(t.to(args.device) for t in batch if t is not None) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "pooling_ids": batch[4]} if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # if args.model_type == "xlm": # inputs["langs"] = batch[5] if first_stage_model is not None: with torch.no_grad(): inputs["first_stage_model_logits"] = first_stage_model(**inputs)[1] # if noised_data_generator is not None and noised_data_generator.enable_r1_loss and \ # noised_data_generator.enable_translate_data and noised_data_generator.use_align_label_probs: # inputs.update({"src_pooling_ids": batch[-2], # "tgt_pooling_ids": batch[-1]}) # batch = batch[:-2] if noised_data_generator is not None: inputs.update({"noised_input_ids": batch[5], "noised_attention_mask": batch[6], "noised_token_type_ids": None, "noised_labels": batch[8], "noised_pooling_ids": batch[9], "noised_r1_mask": batch[10], "original_r1_mask": batch[11], "is_augmented": batch[12]}) outputs = model(**inputs) loss = outputs[0] if args.n_gpu > 1: # mean() to average on multi-gpu parallel training loss = loss.mean() if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if noised_data_generator is not None: original_loss, noised_loss, r1_loss, r2_loss = outputs[1:5] if args.n_gpu > 1: original_loss = original_loss.mean() noised_loss = noised_loss.mean() r1_loss = r1_loss.mean() r2_loss = r2_loss.mean() if args.gradient_accumulation_steps > 1: original_loss = original_loss / args.gradient_accumulation_steps noised_loss = noised_loss / args.gradient_accumulation_steps r1_loss = r1_loss / args.gradient_accumulation_steps r2_loss = r2_loss / args.gradient_accumulation_steps tr_original_loss += original_loss.item() tr_noised_loss += noised_loss.item() tr_r1_loss += r1_loss.item() tr_r2_loss += r2_loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() # Update learning rate schedule optimizer.step() model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: do_eval = args.evaluate_steps > 0 and global_step % args.evaluate_steps == 0 cur_result = logging(do_eval) logging_loss = tr_loss logging_original_loss = tr_original_loss logging_noised_loss = tr_noised_loss logging_r1_loss = tr_r1_loss logging_r2_loss = tr_r2_loss if do_eval: print(cur_result) if cur_result["dev_avg"]["f1"] > best_score: logger.info( "result['f1']={} > best_score={}".format(cur_result["dev_avg"]["f1"], best_score)) best_score = cur_result["dev_avg"]["f1"] # Save the best model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-best") best_checkpoint = output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving the best model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) logger.info("Reset patience to 0") patience = 0 else: patience += 1 logger.info("Hit patience={}".format(patience)) if args.eval_patience > 0 and patience > args.eval_patience: logger.info("early stop! patience={}".format(patience)) epoch_iterator.close() train_iterator.close() if args.local_rank in [-1, 0]: tb_writer.close() log_writer.close() return global_step, tr_loss / global_step if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() log_writer.close() return global_step, tr_loss / global_step def predict(args, model, tokenizer, labels, pad_token_label_id, mode, prefix="", lang="en", print_result=True): eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode, lang=lang) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation %s in %s *****" % (prefix, lang)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "pooling_ids": batch[4]} if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == 'xlm': inputs["langs"] = batch[5] outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: # mean() to average on multi-gpu parallel evaluating tmp_eval_loss = tmp_eval_loss.mean() eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) if nb_eval_steps == 0: results = {k: 0 for k in ["loss", "precision", "recall", "f1"]} else: eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list) } if print_result: logger.info("***** Evaluation result %s in %s *****" % (prefix, lang)) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) return results, preds_list def evaluate(args, model, tokenizer, labels, pad_token_label_id, prefix=""): # eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) eval_datasets = [] eval_langs = args.predict_langs.split(',') splits = ["dev", "test"] if args.do_train else ["test"] for split in splits: for lang in eval_langs: eval_datasets.append((split, lang)) all_languages_results = {} # leave interface for multi-task evaluation # eval_task = eval_task_names[0] eval_output_dir = eval_outputs_dirs[0] # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) for split, lang in eval_datasets: task_name = "{0}-{1}".format(split, lang) eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=split, lang=lang) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation %s in %s *****" % (prefix, lang)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in eval_dataloader: model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "pooling_ids": batch[4]} if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None if args.model_type == 'xlm': inputs["langs"] = batch[5] outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: # mean() to average on multi-gpu parallel evaluating tmp_eval_loss = tmp_eval_loss.mean() eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) if nb_eval_steps == 0: results = {k: 0 for k in ["precision", "recall", "f1"]} continue else: eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list) } all_languages_results["{0}_{1}".format(split, lang)] = results for split in splits: all_languages_results["{0}_avg".format(split)] = average_dic( [value for key, value in all_languages_results.items() if split in key]) return all_languages_results def average_dic(dic_list): if len(dic_list) == 0: return {} dic_sum = {} for dic in dic_list: if len(dic_sum) == 0: for key, value in dic.items(): dic_sum[key] = value else: assert set(dic_sum.keys()) == set(dic.keys()), "sum_keys:{0}, dic_keys:{1}".format(set(dic_sum.keys()), set(dic.keys())) for key, value in dic.items(): dic_sum[key] += value for key in dic_sum: dic_sum[key] /= len(dic_list) return dic_sum def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode, lang, few_shot=-1, return_examples=False): # Make sure only the first process in distributed training process # the dataset, and the others will use the cache if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Load data features from cache or dataset file model_name = "xlm-roberta-base" if args.word_dropout_rate > 0: assert mode != "train" cached_features_file = os.path.join(args.data_dir, "cached_{}_{}_{}_{}_wdr{}".format(mode, lang, model_name, str(args.max_seq_length), str( args.word_dropout_rate))) else: cached_features_file = os.path.join(args.data_dir, "cached_{}_{}_{}_{}".format(mode, lang, model_name, str(args.max_seq_length))) cached_features_file += "_pooling" if args.languages_without_spaces is not None and lang in args.languages_without_spaces.split(','): cached_features_file += "_lws" data_file = os.path.join(args.data_dir, lang, "{}.{}".format(mode, model_name)) logger.info("Creating features from dataset file at {} in language {}".format(data_file, lang)) examples = read_examples_from_file(data_file, lang) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("all languages = {}".format(lang)) features = convert_examples_to_features(examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta", "xlmr"]), pad_on_left=bool(args.model_type in ["xlnet"]), pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[ 0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, lang=lang, languages_without_spaces=args.languages_without_spaces.split( ',') if args.languages_without_spaces is not None else None, word_dropout_rate=args.word_dropout_rate, ) if args.local_rank in [-1, 0]: logger.info( "Saving features into cached file {}, len(features)={}".format(cached_features_file, len(features))) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process # the dataset, and the others will use the cache if args.local_rank == 0 and not evaluate: torch.distributed.barrier() if few_shot > 0 and mode == 'train': logger.info("Original no. of examples = {}".format(len(features))) features = features[: few_shot] logger.info('Using few-shot learning on {} examples'.format(len(features))) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_pooling_ids = torch.tensor([f.pooling_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) if args.model_type == 'xlm' and features[0].langs is not None: all_langs = torch.tensor([f.langs for f in features], dtype=torch.long) logger.info('all_langs[0] = {}'.format(all_langs[0])) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_pooling_ids, all_langs) else: dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_pooling_ids) if return_examples: return dataset, examples else: return dataset def ConcatDataset(dataset_list): all_input_ids = torch.cat([dataset.tensors[0] for dataset in dataset_list], dim=0) all_input_mask = torch.cat([dataset.tensors[1] for dataset in dataset_list], dim=0) all_segment_ids = torch.cat([dataset.tensors[2] for dataset in dataset_list], dim=0) all_label_ids = torch.cat([dataset.tensors[3] for dataset in dataset_list], dim=0) all_pooling_ids = torch.cat([dataset.tensors[4] for dataset in dataset_list], dim=0) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_pooling_ids) return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the NER/POS task.") parser.add_argument("--model_type", default=None, type=str, required=True, help="") parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( ALL_MODELS)) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") # stable fine-tuning paramters parser.add_argument("--overall_ratio", default=1.0, type=float, help="overall ratio") parser.add_argument("--enable_r1_loss", action="store_true", help="Whether to enable r1 loss.") parser.add_argument("--disable_backward_kl", action="store_true", help="Whether to disable backward kl loss.") parser.add_argument("--r1_lambda", default=5.0, type=float, help="lambda of r1 loss") parser.add_argument("--r1_on_unswitched_tokens", action="store_true", help="Whether to enable r1 loss only on unswitched tokens.") parser.add_argument("--original_loss", action="store_true", help="Whether to use cross entropy loss on the former example.") parser.add_argument("--noised_loss", action="store_true", help="Whether to use cross entropy loss on the latter example.") parser.add_argument("--noised_max_seq_length", default=256, type=int, help="noised max sequence length") parser.add_argument("--enable_bpe_switch", action="store_true", help="Whether to enable bpe-switch.") parser.add_argument("--bpe_switch_ratio", default=0.5, type=float, help="bpe_switch_ratio") parser.add_argument("--tokenizer_dir", default=None, type=str, help="tokenizer dir") parser.add_argument("--tokenizer_languages", default=None, type=str, help="tokenizer languages") parser.add_argument("--enable_bpe_sampling", action="store_true", help="Whether to enable bpe sampling.") parser.add_argument("--bpe_sampling_ratio", default=0.5, type=float, help="bpe_sampling_ratio") parser.add_argument("--sampling_alpha", default=5.0, type=float, help="alpha of sentencepiece sampling") parser.add_argument("--sampling_nbest_size", default=-1, type=int, help="nbest_size of sentencepiece sampling") parser.add_argument("--enable_random_noise", action="store_true", help="Whether to enable random noise.") parser.add_argument("--detach_embeds", action="store_true", help="Whether to detach noised embeddings.") parser.add_argument("--noise_eps", default=1e-5, type=float, help="noise eps") parser.add_argument('--noise_type', type=str, default='uniform', choices=['normal', 'uniform'], help='type of noises for RXF methods') parser.add_argument("--enable_code_switch", action="store_true", help="Whether to enable code switch.") parser.add_argument("--code_switch_ratio", default=0.5, type=float, help="code_switch_ratio") parser.add_argument("--dict_dir", default=None, type=str, help="dict dir") parser.add_argument("--dict_languages", default=None, type=str, help="dict languages") parser.add_argument("--hidden_dropout_prob", default=None, type=float, help="hidden_dropout_prob") parser.add_argument("--attention_probs_dropout_prob", default=None, type=float, help="attention_probs_dropout_prob") parser.add_argument("--use_pooling_strategy", action="store_true", help="Whether to use pooling strategy.") parser.add_argument("--use_sentence_label_probs", action="store_true", help="Whether to use r1 loss on sentence-level label probs.") parser.add_argument("--use_token_label_probs", action="store_true", help="Whether to use r1 loss on token-level label probs.") parser.add_argument("--use_average_representations", action="store_true", help="Whether to use average representation.") parser.add_argument("--translation_path", default=None, type=str, help="path to translation") parser.add_argument("--translate_languages", default=None, type=str, help="translate languages") parser.add_argument("--languages_without_spaces", default=None, type=str, help="languages without spaces") parser.add_argument("--use_align_label_probs", action="store_true", help="Whether to use r1 loss on align label probs.") parser.add_argument("--enable_data_augmentation", action="store_true", help="Whether to enable data augmentation.") parser.add_argument("--augment_ratio", default=1.0, type=float, help="augmentation ratio.") parser.add_argument("--augment_method", default=None, type=str, required=False, help="augment method") parser.add_argument("--first_stage_model_path", default=None, type=str, required=False, help="stable model path") parser.add_argument("--r2_lambda", default=1.0, type=float, required=False, help="r2_lambda") parser.add_argument("--use_hard_labels", action="store_true", help="Whether to use hard labels.") parser.add_argument("--word_dropout_rate", default=0.0, type=float, required=False, help="test word dropout rate") ## Other parameters parser.add_argument("--labels", default="", type=str, help="Path to a file containing all labels. If not specified, NER/POS labels are used.") parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument("--do_predict_dev", action="store_true", help="Whether to run predictions on the dev set.") parser.add_argument("--init_checkpoint", default=None, type=str, help="initial checkpoint for train/predict") parser.add_argument("--evaluate_during_training", action="store_true", help="Whether to run evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.") parser.add_argument("--few_shot", default=-1, type=int, help="num of few-shot exampes") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--evaluate_steps", type=int, default=0, help="Log every X updates steps.") parser.add_argument("--save_only_best_checkpoint", action="store_true", help="Save only the best checkpoint during training") parser.add_argument("--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument("--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory") parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument("--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") parser.add_argument("--predict_langs", type=str, default="en", help="prediction languages") parser.add_argument("--train_langs", default="en", type=str, help="The languages in the training sets.") parser.add_argument("--log_file", type=str, default=None, help="log file") parser.add_argument("--eval_patience", type=int, default=-1, help="wait N times of decreasing dev score before early stop during training") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which sychronizes nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging # logging.basicConfig(handlers=[logging.FileHandler(args.log_file), logging.StreamHandler()], # format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', # datefmt='%m/%d/%Y %H:%M:%S', # level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logging.info("Input args: %r" % args) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare NER/POS task labels = get_labels(args.labels) logger.info(labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id # so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer # Make sure only the first process in distributed training loads model/vocab if args.local_rank not in [-1, 0]: torch.distributed.barrier() args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, cache_dir=args.cache_dir if args.cache_dir else None) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if args.hidden_dropout_prob is not None: config.hidden_dropout_prob = args.hidden_dropout_prob if args.attention_probs_dropout_prob is not None: config.attention_probs_dropout_prob = args.attention_probs_dropout_prob if args.noised_loss or args.enable_r1_loss or args.enable_data_augmentation: noised_data_generator = NoisedDataGenerator( label_list=labels, pad_token_label_id=pad_token_label_id, r1_lambda=args.r1_lambda, r1_on_unswitched_tokens=args.r1_on_unswitched_tokens, enable_r1_loss=args.enable_r1_loss, disable_backward_kl=args.disable_backward_kl, use_sentence_label_probs=args.use_sentence_label_probs, use_token_label_probs=args.use_token_label_probs, original_loss=args.original_loss, noised_loss=args.noised_loss, max_seq_length=args.max_seq_length, noised_max_seq_length=args.noised_max_seq_length, overall_ratio=args.overall_ratio, enable_bpe_switch=args.enable_bpe_switch, bpe_switch_ratio=args.bpe_switch_ratio, tokenizer_dir=args.tokenizer_dir, do_lower_case=args.do_lower_case, tokenizer_languages=args.tokenizer_languages.split(',') if args.tokenizer_languages is not None else [], enable_bpe_sampling=args.enable_bpe_sampling, bpe_sampling_ratio=args.bpe_sampling_ratio, tokenizer=tokenizer, sampling_alpha=args.sampling_alpha, sampling_nbest_size=args.sampling_nbest_size, enable_random_noise=args.enable_random_noise, detach_embeds=args.detach_embeds, noise_eps=args.noise_eps, noise_type=args.noise_type, enable_code_switch=args.enable_code_switch, code_switch_ratio=args.code_switch_ratio, dict_dir=args.dict_dir, dict_languages=args.dict_languages.split(',') if args.dict_languages is not None else [], use_average_representations=args.use_average_representations, translation_path=args.translation_path, translate_languages=args.translate_languages.split( ',') if args.translate_languages is not None else args.predict_langs.split(','), use_align_label_probs=args.use_align_label_probs, enable_data_augmentation=args.enable_data_augmentation, augment_ratio=args.augment_ratio, augment_method=args.augment_method, r2_lambda=args.r2_lambda, use_hard_labels=args.use_hard_labels, ) else: noised_data_generator = None if args.first_stage_model_path is not None: first_stage_model = model_class.from_pretrained(args.first_stage_model_path, config=config, use_pooling_strategy=args.use_pooling_strategy, ) else: first_stage_model = None if args.init_checkpoint: logger.info("loading from init_checkpoint={}".format(args.init_checkpoint)) model = model_class.from_pretrained(args.init_checkpoint, config=config, noised_data_generator=noised_data_generator, use_pooling_strategy=args.use_pooling_strategy, cache_dir=args.init_checkpoint) else: logger.info("loading from cached model = {}".format(args.model_name_or_path)) model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, noised_data_generator=noised_data_generator, use_pooling_strategy=args.use_pooling_strategy, cache_dir=args.cache_dir if args.cache_dir else None) # Make sure only the first process in distributed training loads model/vocab if args.local_rank == 0: torch.distributed.barrier() model.to(args.device) if first_stage_model is not None: first_stage_model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) train_langs = args.train_langs.split(',') dataset_list = [] train_examples = [] for lang in train_langs: lg_train_dataset, lg_train_examples = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train", lang=lang, few_shot=args.few_shot, return_examples=True) dataset_list.append(lg_train_dataset) train_examples += lg_train_examples train_dataset = ConcatDataset(dataset_list) global_step, tr_loss = train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, labels, pad_token_label_id, noised_data_generator=noised_data_generator) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use default names for the model, # you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) # Save model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` # Take care of distributed/parallel training logger.info("Saving model checkpoint to %s", args.output_dir) model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Initialization for evaluation results = {} if args.init_checkpoint: best_checkpoint = args.init_checkpoint elif os.path.exists(os.path.join(args.output_dir, 'checkpoint-best')): best_checkpoint = os.path.join(args.output_dir, 'checkpoint-best') else: best_checkpoint = args.output_dir best_f1 = 0 # Evaluation if args.do_eval and args.local_rank in [-1, 0]: # tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, do_lower_case=args.do_lower_case) checkpoints = [best_checkpoint] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))) logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint, use_pooling_strategy=args.use_pooling_strategy) model.to(args.device) results = evaluate(args, model, tokenizer, labels, pad_token_label_id) for key, value in results.items(): logger.info("eval_{}: {}".format(key, value)) log_writer = open(os.path.join(args.output_dir, "evaluate_wdr{}_logs.txt".format(args.word_dropout_rate)), 'w') log_writer.write("{0}\t{1}".format("evaluate", json.dumps(results)) + '\n') exit(0) result, _ = predict(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step, lang=args.train_langs) if result["f1"] > best_f1: best_checkpoint = checkpoint best_f1 = result["f1"] if global_step: result = {"{}_{}".format(global_step, k): v for k, v in result.items()} results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) writer.write("best checkpoint = {}, best f1 = {}\n".format(best_checkpoint, best_f1)) # Prediction if args.do_predict and args.local_rank in [-1, 0]: logger.info("Loading the best checkpoint from {}\n".format(best_checkpoint)) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model = model_class.from_pretrained(best_checkpoint, use_pooling_strategy=args.use_pooling_strategy) model.to(args.device) output_test_results_file = os.path.join(args.output_dir, "test_results.txt") with open(output_test_results_file, "a") as result_writer: for lang in args.predict_langs.split(','): if not os.path.exists(os.path.join(args.data_dir, lang, 'test.{}'.format(args.model_name_or_path))): logger.info("Language {} does not exist".format(lang)) continue result, predictions = predict(args, model, tokenizer, labels, pad_token_label_id, mode="test", lang=lang) # Save results result_writer.write("=====================\nlanguage={}\n".format(lang)) for key in sorted(result.keys()): result_writer.write("{} = {}\n".format(key, str(result[key]))) # Save predictions output_test_predictions_file = os.path.join(args.output_dir, "test_{}_predictions.txt".format(lang)) infile = os.path.join(args.data_dir, lang, "test.{}".format(args.model_name_or_path)) idxfile = infile + '.idx' save_predictions(args, predictions, output_test_predictions_file, infile, idxfile) # Predict dev set if args.do_predict_dev and args.local_rank in [-1, 0]: logger.info("Loading the best checkpoint from {}\n".format(best_checkpoint)) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model = model_class.from_pretrained(best_checkpoint, use_pooling_strategy=args.use_pooling_strategy) model.to(args.device) output_test_results_file = os.path.join(args.output_dir, "dev_results.txt") with open(output_test_results_file, "w") as result_writer: for lang in args.predict_langs.split(','): if not os.path.exists(os.path.join(args.data_dir, lang, 'dev.{}'.format(args.model_name_or_path))): logger.info("Language {} does not exist".format(lang)) continue result, predictions = predict(args, model, tokenizer, labels, pad_token_label_id, mode="dev", lang=lang) # Save results result_writer.write("=====================\nlanguage={}\n".format(lang)) for key in sorted(result.keys()): result_writer.write("{} = {}\n".format(key, str(result[key]))) # Save predictions output_test_predictions_file = os.path.join(args.output_dir, "dev_{}_predictions.txt".format(lang)) infile = os.path.join(args.data_dir, lang, "dev.{}".format(args.model_name_or_path)) idxfile = infile + '.idx' save_predictions(args, predictions, output_test_predictions_file, infile, idxfile) def save_predictions(args, predictions, output_file, text_file, idx_file, output_word_prediction=False): # Save predictions with open(text_file, "r") as text_reader, open(idx_file, "r") as idx_reader: text = text_reader.readlines() index = idx_reader.readlines() assert len(text) == len(index) # Sanity check on the predictions with open(output_file, "w") as writer: example_id = 0 prev_id = int(index[0]) for line, idx in zip(text, index): if line == "" or line == "\n": example_id += 1 else: cur_id = int(idx) output_line = '\n' if cur_id != prev_id else '' if output_word_prediction: output_line += line.split()[0] + '\t' output_line += predictions[example_id].pop(0) + '\n' writer.write(output_line) prev_id = cur_id if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/xtune/src/run_tag.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, # The HuggingFace Inc. team, and The XTREME Benchmark Authors. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for NER/POS tagging tasks.""" from __future__ import absolute_import, division, print_function import logging import os import random from io import open from transformers import XLMTokenizer logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for token classification.""" def __init__(self, guid, words, labels, langs=None): """Constructs a InputExample. Args: guid: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.words = words self.labels = labels self.langs = langs class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_ids, pooling_ids, langs=None): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_ids = label_ids self.pooling_ids = pooling_ids self.langs = langs def read_examples_from_file(file_path, lang, lang2id=None): if not os.path.exists(file_path): logger.info("[Warming] file {} not exists".format(file_path)) return [] guid_index = 1 examples = [] subword_len_counter = 0 if lang2id: lang_id = lang2id.get(lang, lang2id['en']) else: lang_id = 0 logger.info("lang_id={}, lang={}, lang2id={}".format(lang_id, lang, lang2id)) with open(file_path, encoding="utf-8") as f: words = [] labels = [] langs = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if word: examples.append(InputExample(guid="{}-{}".format(lang, guid_index), words=words, labels=labels, langs=langs)) guid_index += 1 words = [] labels = [] langs = [] subword_len_counter = 0 else: print(f'guid_index', guid_index, words, langs, labels, subword_len_counter) else: splits = line.split("\t") word = splits[0] words.append(splits[0]) langs.append(lang_id) if len(splits) > 1: labels.append(splits[-1].replace("\n", "")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid="%s-%d".format(lang, guid_index), words=words, labels=labels, langs=langs)) return examples def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-1, sequence_a_segment_id=0, mask_padding_with_zero=True, lang='en', languages_without_spaces=None, word_dropout_rate=0): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 1000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] label_ids = [] pooling_ids = [] for i, (word, label) in enumerate(zip(example.words, example.labels)): if isinstance(tokenizer, XLMTokenizer): word_tokens = tokenizer.tokenize(word, lang=lang) else: if languages_without_spaces is not None and lang in languages_without_spaces and i > 0: word_tokens = tokenizer.tokenize(word, remove_space=True) else: word_tokens = tokenizer.tokenize(word) if len(word) != 0 and len(word_tokens) == 0: word_tokens = [tokenizer.unk_token] if len(word_tokens) == 0: continue tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) pooling_ids.extend([len(pooling_ids) + 1] * len(word_tokens)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if sep_token_extra else 2 if len(tokens) > max_seq_length - special_tokens_count: print('truncate token', len(tokens), max_seq_length, special_tokens_count) tokens = tokens[:(max_seq_length - special_tokens_count)] label_ids = label_ids[:(max_seq_length - special_tokens_count)] pooling_ids = pooling_ids[:(max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. if word_dropout_rate > 0: for i in range(len(tokens)): if random.random() < word_dropout_rate: tokens[i] = tokenizer.unk_token tokens += [sep_token] label_ids += [pad_token_label_id] pooling_ids += [0] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] pooling_ids += [0] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] pooling_ids += [0] else: tokens = [cls_token] + tokens label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids pooling_ids = [0] + pooling_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids pooling_ids = ([0] * padding_length) + pooling_ids else: input_ids += ([pad_token] * padding_length) input_mask += ([0 if mask_padding_with_zero else 1] * padding_length) segment_ids += ([pad_token_segment_id] * padding_length) label_ids += ([pad_token_label_id] * padding_length) pooling_ids += ([0] * padding_length) if example.langs and len(example.langs) > 0: langs = [example.langs[0]] * max_seq_length else: print('example.langs', example.langs, example.words, len(example.langs)) print('ex_index', ex_index, len(examples)) langs = None assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length assert len(pooling_ids) == max_seq_length assert len(langs) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) logger.info("pooling_ids: %s", " ".join([str(x) for x in pooling_ids])) logger.info("langs: {}".format(langs)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids, pooling_ids=pooling_ids, langs=langs)) return features def get_labels(path): with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels
EXA-1-master
exa/models/unilm-master/xtune/src/utils_tag.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning multi-lingual models on classification (Bert, DistilBERT, XLM, XLM-R). Adapted from `examples/run_glue.py`""" import argparse import glob import logging import os import random import json import copy import math import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset, ConcatDataset, Subset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForSequenceClassification, BertTokenizer, DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer, XLMConfig, XLMForSequenceClassification, XLMTokenizer, XLMRobertaConfig, XLMRobertaForSequenceClassificationStable, XLMRobertaTokenizer, get_linear_schedule_with_warmup, ) from transformers import xtreme_convert_examples_to_features as convert_examples_to_features from transformers import xtreme_compute_metrics as compute_metrics from transformers import xtreme_output_modes as output_modes from transformers import xtreme_processors as processors try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) ALL_MODELS = sum( (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, DistilBertConfig, XLMConfig, XLMRobertaConfig)), () ) MODEL_CLASSES = { "bert": (BertConfig, BertForSequenceClassification, BertTokenizer), "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer), "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), "xlmr": (XLMRobertaConfig, XLMRobertaForSequenceClassificationStable, XLMRobertaTokenizer) } class NoisedDataGenerator(object): def __init__(self, task_name="xnli", enable_r1_loss=False, r1_lambda=5.0, original_loss=True, noised_loss=False, max_length=512, overall_ratio=1.0, enable_bpe_switch=False, bpe_switch_ratio=0.5, tokenizer_dir=None, do_lower_case=False, tokenizer_languages=None, enable_bpe_sampling=False, tokenizer=None, bpe_sampling_ratio=0.5, sampling_alpha=0.3, sampling_nbest_size=-1, enable_random_noise=False, noise_detach_embeds=False, noise_eps=1e-5, noise_type='uniform', enable_code_switch=False, code_switch_ratio=0.5, dict_dir=None, dict_languages=None, enable_word_dropout=False, word_dropout_rate=0.1, enable_translate_data=False, translation_path=None, train_language=None, data_dir=None, translate_different_pair=False, translate_en_data=False, enable_data_augmentation=False, augment_method=None, augment_ratio=0.0, r2_lambda=1.0, use_hard_labels=False): if enable_code_switch: assert dict_dir is not None assert dict_languages is not None assert tokenizer is not None if enable_random_noise: assert noise_type in ['uniform', 'normal'] self.task_name = task_name self.n_tokens = 0 self.n_cs_tokens = 0 self.enable_r1_loss = enable_r1_loss self.r1_lambda = r1_lambda self.original_loss = original_loss self.noised_loss = noised_loss self.max_length = max_length self.overall_ratio = overall_ratio self.enable_bpe_switch = enable_bpe_switch self.bpe_switch_ratio = bpe_switch_ratio / self.overall_ratio assert self.bpe_switch_ratio <= 1.0 self.tokenizer_dir = tokenizer_dir self.tokenizer_languages = tokenizer_languages self.enable_bpe_sampling = enable_bpe_sampling self.bpe_sampling_ratio = bpe_sampling_ratio / self.overall_ratio assert self.bpe_sampling_ratio <= 1.0 self.tokenizer = tokenizer self.sampling_alpha = sampling_alpha self.sampling_nbest_size = sampling_nbest_size self.enable_random_noise = enable_random_noise self.noise_detach_embeds = noise_detach_embeds self.noise_eps = noise_eps self.noise_type = noise_type self.enable_word_dropout = enable_word_dropout self.word_dropout_rate = word_dropout_rate self.enable_translate_data = enable_translate_data self.train_languages = train_language.split(',') self.data_dir = data_dir self.translate_different_pair = translate_different_pair self.translate_en_data = translate_en_data if "en" in self.train_languages: self.train_languages.remove("en") self.translate_train_dicts = [] self.tgt2src_dict = {} self.tgt2src_cnt = {} self.translation_path = translation_path self.enable_code_switch = enable_code_switch self.code_switch_ratio = code_switch_ratio / self.overall_ratio assert self.code_switch_ratio <= 1.0 self.dict_dir = dict_dir self.dict_languages = dict_languages self.lang2dict = {} for lang in copy.deepcopy(dict_languages): dict_path = os.path.join(self.dict_dir, "en-{}.txt".format(lang)) if not os.path.exists(dict_path): logger.info("dictionary en-{} doesn't exist.".format(lang)) self.dict_languages.remove(lang) continue logger.info("reading dictionary from {}".format(dict_path)) assert os.path.exists(dict_path) with open(dict_path, "r", encoding="utf-8") as reader: raw = reader.readlines() self.lang2dict[lang] = {} for line in raw: line = line.strip() try: src, tgt = line.split("\t") except: src, tgt = line.split(" ") if src not in self.lang2dict[lang]: self.lang2dict[lang][src] = [tgt] else: self.lang2dict[lang][src].append(tgt) self.lang2tokenizer = {} for lang in tokenizer_languages: self.lang2tokenizer[lang] = XLMRobertaTokenizer.from_pretrained( os.path.join(tokenizer_dir, "{}".format(lang)), do_lower_case=do_lower_case) self.enable_data_augmentation = enable_data_augmentation self.augment_method = augment_method self.augment_ratio = augment_ratio self.r2_lambda = r2_lambda self.use_hard_labels = use_hard_labels def augment_examples(self, examples): n_augment = math.ceil(len(examples) * self.augment_ratio) augment_examples = [] while n_augment > 0: examples = copy.deepcopy(examples) augment_examples += examples[:n_augment] n_augment -= len(examples[:n_augment]) random.shuffle(examples) return augment_examples def get_noised_dataset(self, examples): # maybe do not save augmented examples examples = copy.deepcopy(examples) if (self.enable_data_augmentation and self.augment_method == "mt") or self.enable_translate_data: self.load_translate_data() is_augmented = [0] * len(examples) if self.enable_data_augmentation: augment_examples = self.augment_examples(examples) is_augmented += [1] * len(augment_examples) examples += augment_examples if self.enable_code_switch: self.n_tokens = 0 self.n_cs_tokens = 0 dataset = self.convert_examples_to_dataset(examples, is_augmented) if self.enable_code_switch: logger.info("{:.2f}% tokens have been code-switched.".format(self.n_cs_tokens / self.n_tokens * 100)) return dataset def encode_sentence(self, text, switch_text=False, enable_code_switch=False, enable_bpe_switch=False, enable_bpe_sampling=False, enable_word_dropout=False, ): if text is None: return None ids = [] tokens = text.split(" ") for token in tokens: switch_token = random.random() <= self.overall_ratio self.n_tokens += 1 if enable_code_switch and switch_text and switch_token and random.random() <= self.code_switch_ratio: lang = self.dict_languages[random.randint(0, len(self.dict_languages) - 1)] if token.lower() in self.lang2dict[lang]: self.n_cs_tokens += 1 token = self.lang2dict[lang][token.lower()][ random.randint(0, len(self.lang2dict[lang][token.lower()]) - 1)] if enable_bpe_switch and switch_text and switch_token and random.random() <= self.bpe_switch_ratio: lang = self.tokenizer_languages[random.randint(0, len(self.tokenizer_languages) - 1)] tokenizer = self.lang2tokenizer[lang] else: tokenizer = self.tokenizer if enable_bpe_sampling and switch_text and switch_token and random.random() <= self.bpe_sampling_ratio: token_ids = tokenizer.encode_plus(token, add_special_tokens=True, nbest_size=self.sampling_nbest_size, alpha=self.sampling_alpha)["input_ids"] else: token_ids = tokenizer.encode_plus(token, add_special_tokens=True)["input_ids"] if enable_word_dropout: for token_id in token_ids[1:-1]: if random.random() <= self.word_dropout_rate: ids += [tokenizer.unk_token_id] else: ids += [token_id] else: ids += token_ids[1:-1] return ids def encode_plus(self, text_a, text_b, switch_text=False, enable_code_switch=False, enable_bpe_switch=False, enable_bpe_sampling=False, enable_word_dropout=False, ): # switch all sentences ids = self.encode_sentence(text_a, switch_text, enable_code_switch, enable_bpe_switch, enable_bpe_sampling, enable_word_dropout) pair_ids = self.encode_sentence(text_b, switch_text, enable_code_switch, enable_bpe_switch, enable_bpe_sampling, enable_word_dropout) pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 encoded_inputs = {} # Handle max sequence length total_len = len_ids + len_pair_ids + (self.tokenizer.num_added_tokens(pair=pair)) if self.max_length and total_len > self.max_length: ids, pair_ids, overflowing_tokens = self.tokenizer.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - self.max_length, truncation_strategy="longest_first", stride=0, ) # Handle special_tokens sequence = self.tokenizer.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(ids, pair_ids) encoded_inputs["input_ids"] = sequence encoded_inputs["token_type_ids"] = token_type_ids return encoded_inputs def convert_examples_to_dataset( self, examples, is_augmented=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True ): processor = processors[self.task_name](language="en", train_language="en") label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, self.task_name)) label_map = {label: i for i, label in enumerate(label_list)} output_mode = output_modes[self.task_name] logger.info("Using output mode %s for task %s" % (output_mode, self.task_name)) all_original_input_ids = [] all_original_attention_mask = [] all_original_token_type_ids = [] all_labels = [] all_noised_input_ids = [] all_noised_attention_mask = [] all_noised_token_type_ids = [] all_r1_mask = [] all_is_augmented = [] for (ex_index, example) in enumerate(examples): len_examples = len(examples) if ex_index % 10000 == 0: logger.info("Writing example %d/%d" % (ex_index, len_examples)) # if ex_index == 10000: break if is_augmented[ex_index]: if self.augment_method == "mt": example.text_a, example.text_b = self.get_translation_pair(example.text_a, example.text_b) original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=False) all_r1_mask.append(1) elif self.augment_method == "gn": original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=False) all_r1_mask.append(1) elif self.augment_method == "cs": original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=True, enable_code_switch=True) all_r1_mask.append(1) elif self.augment_method == "ss": original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=True, enable_bpe_sampling=True) all_r1_mask.append(1) else: assert False else: original_inputs = self.encode_plus(example.text_a, example.text_b, switch_text=False) all_r1_mask.append(1) all_is_augmented.append(is_augmented[ex_index]) original_input_ids, original_token_type_ids = original_inputs["input_ids"], original_inputs[ "token_type_ids"] original_attention_mask = [1 if mask_padding_with_zero else 0] * len(original_input_ids) original_padding_length = self.max_length - len(original_input_ids) if pad_on_left: original_input_ids = ([pad_token] * original_padding_length) + original_input_ids original_attention_mask = ([0 if mask_padding_with_zero else 1] * original_padding_length) + \ original_attention_mask original_token_type_ids = ([pad_token_segment_id] * original_padding_length) + original_token_type_ids else: original_input_ids = original_input_ids + ([pad_token] * original_padding_length) original_attention_mask = original_attention_mask + ( [0 if mask_padding_with_zero else 1] * original_padding_length) original_token_type_ids = original_token_type_ids + ([pad_token_segment_id] * original_padding_length) assert len(original_input_ids) == self.max_length, "Error with input length {} vs {}".format( len(original_input_ids), self.max_length) assert len(original_attention_mask) == self.max_length, "Error with input length {} vs {}".format( len(original_attention_mask), self.max_length) assert len(original_token_type_ids) == self.max_length, "Error with input length {} vs {}".format( len(original_token_type_ids), self.max_length) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("original text a: %s" % (example.text_a)) logger.info("original text b: %s" % (example.text_b)) logger.info("original_input_ids: %s" % " ".join([str(x) for x in original_input_ids])) logger.info("original_attention_mask: %s" % " ".join([str(x) for x in original_attention_mask])) logger.info("original_token_type_ids: %s" % " ".join([str(x) for x in original_token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) all_original_input_ids.append(original_input_ids) all_original_attention_mask.append(original_attention_mask) all_original_token_type_ids.append(original_token_type_ids) all_labels.append(label) if not self.enable_r1_loss: continue if self.enable_translate_data: noised_text_a, noised_text_b = self.get_translation_pair(example.text_a, example.text_b) else: noised_text_a, noised_text_b = example.text_a, example.text_b noised_inputs = self.encode_plus(noised_text_a, noised_text_b, switch_text=True, enable_code_switch=self.enable_code_switch, enable_bpe_switch=self.enable_bpe_switch, enable_bpe_sampling=self.enable_bpe_sampling, enable_word_dropout=self.enable_word_dropout) noised_input_ids, noised_token_type_ids = noised_inputs["input_ids"], noised_inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. noised_attention_mask = [1 if mask_padding_with_zero else 0] * len(noised_input_ids) # Zero-pad up to the sequence length. noised_padding_length = self.max_length - len(noised_input_ids) if pad_on_left: noised_input_ids = ([pad_token] * noised_padding_length) + noised_input_ids noised_attention_mask = ([0 if mask_padding_with_zero else 1] * noised_padding_length) + \ noised_attention_mask noised_token_type_ids = ([pad_token_segment_id] * noised_padding_length) + noised_token_type_ids else: noised_input_ids = noised_input_ids + ([pad_token] * noised_padding_length) noised_attention_mask = noised_attention_mask + ( [0 if mask_padding_with_zero else 1] * noised_padding_length) noised_token_type_ids = noised_token_type_ids + ([pad_token_segment_id] * noised_padding_length) assert len(noised_input_ids) == self.max_length, "Error with input length {} vs {}".format( len(noised_input_ids), self.max_length) assert len(noised_attention_mask) == self.max_length, "Error with input length {} vs {}".format( len(noised_attention_mask), self.max_length) assert len(noised_token_type_ids) == self.max_length, "Error with input length {} vs {}".format( len(noised_token_type_ids), self.max_length) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("noised text a: %s" % (noised_text_a)) logger.info("noised text b: %s" % (noised_text_b)) logger.info("noised_input_ids: %s" % " ".join([str(x) for x in noised_input_ids])) logger.info("noised_attention_mask: %s" % " ".join([str(x) for x in noised_attention_mask])) logger.info("noised_token_type_ids: %s" % " ".join([str(x) for x in noised_token_type_ids])) all_noised_input_ids.append(noised_input_ids) all_noised_attention_mask.append(noised_attention_mask) all_noised_token_type_ids.append(noised_token_type_ids) all_original_input_ids = torch.tensor([input_ids for input_ids in all_original_input_ids], dtype=torch.long) all_original_attention_mask = torch.tensor([attention_mask for attention_mask in all_original_attention_mask], dtype=torch.long) all_original_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_original_token_type_ids], dtype=torch.long) all_labels = torch.tensor([label for label in all_labels], dtype=torch.long) is_augmented = torch.tensor([is_augmented for is_augmented in all_is_augmented], dtype=torch.long) if self.enable_r1_loss: all_noised_input_ids = torch.tensor([input_ids for input_ids in all_noised_input_ids], dtype=torch.long) all_noised_attention_mask = torch.tensor([attention_mask for attention_mask in all_noised_attention_mask], dtype=torch.long) all_noised_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_noised_token_type_ids], dtype=torch.long) all_r1_mask = torch.tensor([r1_mask for r1_mask in all_r1_mask], dtype=torch.long) dataset = TensorDataset(all_original_input_ids, all_original_attention_mask, all_original_token_type_ids, all_labels, is_augmented, all_noised_input_ids, all_noised_attention_mask, all_noised_token_type_ids, all_r1_mask) else: dataset = TensorDataset(all_original_input_ids, all_original_attention_mask, all_original_token_type_ids, all_labels, is_augmented) return dataset def get_translation_pair(self, text_a, text_b): if text_a.strip() in self.tgt2src_dict and text_b.strip() in self.tgt2src_dict: # tgt to {en, tgt} en_text_a = self.tgt2src_dict[text_a.strip()] en_text_b = self.tgt2src_dict[text_b.strip()] lang_id_a = random.randint(0, len(self.train_languages) - 1) if self.translate_different_pair: lang_id_b = random.randint(0, len(self.train_languages) - 1) else: lang_id_b = lang_id_a if text_a == self.translate_train_dicts[lang_id_a][en_text_a.strip()]: text_a = en_text_a else: text_a = self.translate_train_dicts[lang_id_a][en_text_a.strip()] if text_b == self.translate_train_dicts[lang_id_b][en_text_b.strip()]: text_b = en_text_b else: text_b = self.translate_train_dicts[lang_id_b][en_text_b.strip()] else: # en to tgt lang_id_a = random.randint(0, len(self.train_languages) - 1) if self.translate_different_pair: lang_id_b = random.randint(0, len(self.train_languages) - 1) else: lang_id_b = lang_id_a assert text_a.strip() in self.translate_train_dicts[lang_id_a] assert text_b.strip() in self.translate_train_dicts[lang_id_b] text_a = self.translate_train_dicts[lang_id_a][text_a.strip()] text_b = self.translate_train_dicts[lang_id_b][text_b.strip()] return text_a, text_b def load_translate_data(self): self.translate_train_dicts = [] self.tgt2src_dict = {} self.tgt2src_cnt = {} for i, language in enumerate(self.train_languages): logger.info("reading training data from lang {}".format(language)) processor = processors[self.task_name](language=language, train_language=language) src2tgt_dict = processor.get_translate_train_dict(self.translation_path, self.tgt2src_dict, self.tgt2src_cnt) self.translate_train_dicts.append(src2tgt_dict) def get_train_steps(self, dataloader_size, args): n_augment_batch = math.ceil(dataloader_size * (1 + self.augment_ratio)) augment_steps = n_augment_batch // args.gradient_accumulation_steps if args.max_steps > 0: t_total = args.max_steps assert False else: t_total = augment_steps * args.num_train_epochs return t_total def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def ConcatDataset(dataset_list): all_input_ids = torch.cat([dataset.tensors[0] for dataset in dataset_list], dim=0) all_attention_mask = torch.cat([dataset.tensors[1] for dataset in dataset_list], dim=0) all_token_type_ids = torch.cat([dataset.tensors[2] for dataset in dataset_list], dim=0) all_labels = torch.cat([dataset.tensors[3] for dataset in dataset_list], dim=0) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, noised_data_generator=None): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter(os.path.join(args.output_dir, "tb-log")) log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w') args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if noised_data_generator is not None and noised_data_generator.enable_data_augmentation: t_total = noised_data_generator.get_train_steps(len(train_dataloader), args) else: if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) logger.info(" Logging steps = %d", args.logging_steps) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path) and False: # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss, best_avg = 0.0, 0.0, 0.0 tr_original_loss, logging_original_loss = 0.0, 0.0 tr_noised_loss, logging_noised_loss = 0.0, 0.0 tr_r1_loss, logging_r1_loss = 0.0, 0.0 tr_r2_loss, logging_r2_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) set_seed(args) # Added here for reproductibility def logging(eval=False): results = None if args.evaluate_during_training and eval: results = evaluate(args, model, tokenizer, single_gpu=True) for task, result in results.items(): for key, value in result.items(): tb_writer.add_scalar("eval_{}_{}".format(task, key), value, global_step) logger.info("eval_%s_%s: %s" % (task, key, value)) log_writer.write("{0}\t{1}\n".format(global_step, json.dumps(results))) log_writer.flush() logger.info( "global_step: {}, lr: {:.6f}, loss: {:.6f}, original_loss: {:.6f}, noised_loss: {:.6f}, r1_loss: {:.6f}, r2_loss: {:.6f}".format( global_step, scheduler.get_lr()[0], (tr_loss - logging_loss) / args.logging_steps, (tr_original_loss - logging_original_loss) / args.logging_steps, (tr_noised_loss - logging_noised_loss) / args.logging_steps, (tr_r1_loss - logging_r1_loss) / args.logging_steps, (tr_r2_loss - logging_r2_loss) / args.logging_steps)) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) tb_writer.add_scalar("original_loss", (tr_original_loss - logging_original_loss) / args.logging_steps, global_step) tb_writer.add_scalar("noised_loss", (tr_noised_loss - logging_noised_loss) / args.logging_steps, global_step) tb_writer.add_scalar("r1_loss", (tr_r1_loss - logging_r1_loss) / args.logging_steps, global_step) tb_writer.add_scalar("r2_loss", (tr_r2_loss - logging_r2_loss) / args.logging_steps, global_step) return results def save_checkpoint_best(result): task_metric = "acc" if args.task_name == "rel": task_metric = "ndcg" if result is not None and best_avg < result["valid_avg"][task_metric]: output_dir = os.path.join(args.output_dir, "checkpoint-best") if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) return result["valid_avg"][task_metric] else: return best_avg for _ in train_iterator: if noised_data_generator is not None: assert noised_data_generator.enable_r1_loss or noised_data_generator.noised_loss or noised_data_generator.enable_data_augmentation noised_train_dataset = noised_data_generator.get_noised_dataset(train_examples) train_sampler = RandomSampler(noised_train_dataset) if args.local_rank == -1 else DistributedSampler( noised_train_dataset) train_dataloader = DataLoader(noised_train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) # if not args.max_steps > 0: # assert t_total == len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=True) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() if first_stage_model is not None: first_stage_model.eval() batch = tuple(t.to(args.device) for t in batch) if len(batch) == 4: inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids elif len(batch) == 5: inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids inputs["is_augmented"] = batch[4] else: assert len(batch) == 9 inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], "is_augmented": batch[4], "noised_input_ids": batch[5], "noised_attention_mask": batch[6], "r1_mask": batch[8]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids inputs["noised_token_type_ids"] = ( batch[7] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids if first_stage_model is not None: first_stage_model_inputs = {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "token_type_ids": inputs["token_type_ids"], "labels": inputs["labels"]} with torch.no_grad(): inputs["first_stage_model_logits"] = first_stage_model(**first_stage_model_inputs)[1] outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if noised_data_generator is not None: original_loss, noised_loss, r1_loss, r2_loss = outputs[1:5] if args.n_gpu > 1: original_loss = original_loss.mean() noised_loss = noised_loss.mean() r1_loss = r1_loss.mean() r2_loss = r2_loss.mean() if args.gradient_accumulation_steps > 1: original_loss = original_loss / args.gradient_accumulation_steps noised_loss = noised_loss / args.gradient_accumulation_steps r1_loss = r1_loss / args.gradient_accumulation_steps r2_loss = r2_loss / args.gradient_accumulation_steps tr_original_loss += original_loss.item() tr_noised_loss += noised_loss.item() tr_r1_loss += r1_loss.item() tr_r2_loss += r2_loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: do_eval = args.evaluate_steps > 0 and global_step % args.evaluate_steps == 0 cur_result = logging(eval=do_eval) logging_loss = tr_loss logging_original_loss = tr_original_loss logging_noised_loss = tr_noised_loss logging_r1_loss = tr_r1_loss logging_r2_loss = tr_r2_loss best_avg = save_checkpoint_best(cur_result) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.local_rank in [-1, 0] and args.logging_each_epoch: cur_result = logging(eval=True) logging_loss = tr_loss logging_original_loss = tr_original_loss logging_noised_loss = tr_noised_loss logging_r1_loss = tr_r1_loss logging_r2_loss = tr_r2_loss best_avg = save_checkpoint_best(cur_result) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() log_writer.close() return global_step, tr_loss / (global_step + 1) def predict(args, model, tokenizer, label_list, prefix="", single_gpu=False, verbose=True): if single_gpu: args = copy.deepcopy(args) args.local_rank = -1 args.n_gpu = 1 eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) eval_datasets = [] eval_langs = args.language.split(',') for split in ["test"]: for lang in eval_langs: eval_datasets.append((split, lang)) results = {} # leave interface for multi-task evaluation eval_task = eval_task_names[0] eval_output_dir = eval_outputs_dirs[0] # multi-gpu eval if args.n_gpu > 1: model = torch.nn.DataParallel(model) for split, lang in eval_datasets: task_name = "{0}-{1}".format(split, lang) eval_dataset, guids = load_and_cache_examples(args, eval_task, tokenizer, lang, split=split) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None guids = np.array(guids) for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids outputs = model(**inputs) logits = outputs[0] nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) if args.output_mode == "classification": preds = np.argmax(preds, axis=1) else: raise ValueError("No other `output_mode` for XGLUE.") results[lang] = preds for lang in results.keys(): output_eval_file = os.path.join(eval_output_dir, prefix, "{}.prediction".format(lang)) with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) print("results:", results) for item in results[lang]: writer.write(str(label_list[item]) + "\n") def evaluate(args, model, tokenizer, prefix="", single_gpu=False, verbose=True): if single_gpu: args = copy.deepcopy(args) args.local_rank = -1 args.n_gpu = 1 eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) eval_datasets = [] eval_langs = args.language.split(',') splits = ["valid", "test"] if args.do_train else ["test"] for split in splits: for lang in eval_langs: eval_datasets.append((split, lang)) results = {} # leave interface for multi-task evaluation eval_task = eval_task_names[0] eval_output_dir = eval_outputs_dirs[0] # multi-gpu eval if args.n_gpu > 1: model = torch.nn.DataParallel(model) for split, lang in eval_datasets: task_name = "{0}-{1}".format(split, lang) eval_dataset, guids = load_and_cache_examples(args, eval_task, tokenizer, lang, split=split) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None guids = np.array(guids) for batch in eval_dataloader: model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) else: raise ValueError("No other `output_mode` for XGLUE.") # print("pred:" + split + str([i for i in preds[:500]]), flush=True) # print("label:" + split + str([i for i in out_label_ids[:500]]), flush=True) result = compute_metrics(eval_task, preds, out_label_ids, guids) results[task_name] = result if args.do_train: results["valid_avg"] = average_dic([value for key, value in results.items() if key.startswith("valid")]) results["test_avg"] = average_dic([value for key, value in results.items() if key.startswith("test")]) return results def average_dic(dic_list): if len(dic_list) == 0: return {} dic_sum = {} for dic in dic_list: if len(dic_sum) == 0: for key, value in dic.items(): dic_sum[key] = value else: assert set(dic_sum.keys()) == set(dic.keys()), "sum_keys:{0}, dic_keys:{1}".format(set(dic_sum.keys()), set(dic.keys())) for key, value in dic.items(): dic_sum[key] += value for key in dic_sum: dic_sum[key] /= len(dic_list) return dic_sum def load_and_cache_examples(args, task, tokenizer, language, split="train", return_examples=False): assert split in ["train", "valid", "test"] if args.local_rank not in [-1, 0] and evaluate == "train": torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task](language=language, train_language=language) output_mode = output_modes[task] # Load data features from cache or dataset file # data_cache_name = list(filter(None, args.model_name_or_path.split("/"))).pop() data_cache_name = "xlmr-base-final" if args.data_cache_name is not None: data_cache_name = args.data_cache_name cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}_{}".format( split, data_cache_name, str(args.max_seq_length), str(task), str(language), ), ) if split == "test": examples = processor.get_test_examples(args.data_dir) elif split == "valid": examples = processor.get_valid_examples(args.data_dir) else: # train examples = processor.get_train_examples(args.data_dir) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, pad_on_left=False, pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=0, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_guids = [f.guid for f in features] all_labels = torch.tensor([f.label for f in features], dtype=torch.long) # if output_mode == "classification" and (not split == "test") : # all_labels = torch.tensor([f.label for f in features], dtype=torch.long) # else: # all_labels = torch.tensor([0 for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) if return_examples: return dataset, all_guids, examples else: return dataset, all_guids def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--reload", default="", type=str, help="path to infoxlm checkpoint", ) parser.add_argument( "--data_cache_name", default=None, type=str, help="The name of cached data", ) parser.add_argument( "--language", default=None, type=str, required=True, help="Evaluation language. Also train language if `train_language` is set to None.", ) parser.add_argument( "--train_language", default=None, type=str, help="Train language if is different of the evaluation language." ) parser.add_argument( "--sample_ratio", default=0.0, type=float, help="The training sample ratio of each language" ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # stable fine-tuning paramters parser.add_argument("--overall_ratio", default=1.0, type=float, help="overall ratio") parser.add_argument("--enable_r1_loss", action="store_true", help="Whether to enable r1 loss.") parser.add_argument("--r1_lambda", default=5.0, type=float, help="lambda of r1 loss") parser.add_argument("--original_loss", action="store_true", help="Whether to use cross entropy loss on the former example.") parser.add_argument("--noised_loss", action="store_true", help="Whether to use cross entropy loss on the latter example.") parser.add_argument("--enable_bpe_switch", action="store_true", help="Whether to enable bpe-switch.") parser.add_argument("--bpe_switch_ratio", default=0.5, type=float, help="bpe_switch_ratio") parser.add_argument("--tokenizer_dir", default=None, type=str, help="tokenizer dir") parser.add_argument("--tokenizer_languages", default=None, type=str, help="tokenizer languages") parser.add_argument("--enable_bpe_sampling", action="store_true", help="Whether to enable bpe sampling.") parser.add_argument("--bpe_sampling_ratio", default=0.5, type=float, help="bpe_sampling_ratio") parser.add_argument("--sampling_alpha", default=5.0, type=float, help="alpha of sentencepiece sampling") parser.add_argument("--sampling_nbest_size", default=-1, type=int, help="nbest_size of sentencepiece sampling") parser.add_argument("--enable_random_noise", action="store_true", help="Whether to enable random noise.") parser.add_argument("--noise_detach_embeds", action="store_true", help="Whether to detach noised embeddings.") parser.add_argument("--noise_eps", default=1e-5, type=float, help="noise eps") parser.add_argument('--noise_type', type=str, default='uniform', choices=['normal', 'uniform'], help='type of noises for RXF methods') parser.add_argument("--enable_code_switch", action="store_true", help="Whether to enable code switch.") parser.add_argument("--code_switch_ratio", default=0.5, type=float, help="code_switch_ratio") parser.add_argument("--dict_dir", default=None, type=str, help="dict dir") parser.add_argument("--dict_languages", default=None, type=str, help="dict languages") parser.add_argument("--enable_word_dropout", action="store_true", help="Whether to enable word dropout.") parser.add_argument("--word_dropout_rate", default=0.1, type=float, help="word dropout rate.") parser.add_argument("--enable_translate_data", action="store_true", help="Whether to enable translate data.") parser.add_argument("--translation_path", default=None, type=str, help="translation path") parser.add_argument("--translate_languages", default=None, type=str, help="translate languages") parser.add_argument("--translate_different_pair", action="store_true", help="Whether to translate different pair.") parser.add_argument("--translate_en_data", action="store_true", help="Whether to translate en data.") parser.add_argument("--enable_data_augmentation", action="store_true", help="Whether to enable data augmentation.") parser.add_argument("--augment_method", default=None, type=str, help="augment method") parser.add_argument("--augment_ratio", default=1.0, type=float, help="augmentation ratio.") parser.add_argument("--first_stage_model_path", default=None, type=str, required=False, help="stable model path") parser.add_argument("--r2_lambda", default=1.0, type=float, required=False, help="r2_lambda") parser.add_argument("--use_hard_labels", action="store_true", help="Whether to use hard labels.") # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--gpu_id", default="", type=str, help="GPU id" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run prediction on the test set.") parser.add_argument("--init_checkpoint", default=None, type=str, help="initial checkpoint for train/predict") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--evaluate_steps", type=int, default=5000, help="Log every X updates steps.") parser.add_argument("--logging_each_epoch", action="store_true", help="Whether to log after each epoch.") parser.add_argument("--logging_steps_in_sample", type=int, default=-1, help="log every X samples.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") parser.add_argument("--train_cut_ratio", type=float, default=1.0, help="Cut training data to the ratio") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # preprocess args if args.train_language is None or args.train_language == "all": args.train_language = args.language assert not ( args.logging_steps != -1 and args.logging_steps_in_sample != -1), "these two parameters can't both be setted" if args.logging_steps == -1 and args.logging_steps_in_sample != -1: total_batch_size = args.n_gpu * args.per_gpu_train_batch_size * args.gradient_accumulation_steps args.logging_steps = args.logging_steps_in_sample // total_batch_size # Set seed set_seed(args) if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name](language=args.language, train_language=args.train_language) args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.enable_r1_loss or args.noised_loss or args.enable_data_augmentation: noised_data_generator = NoisedDataGenerator( task_name=args.task_name, enable_r1_loss=args.enable_r1_loss, r1_lambda=args.r1_lambda, original_loss=args.original_loss, noised_loss=args.noised_loss, max_length=args.max_seq_length, overall_ratio=args.overall_ratio, enable_bpe_switch=args.enable_bpe_switch, bpe_switch_ratio=args.bpe_switch_ratio, tokenizer_dir=args.tokenizer_dir, do_lower_case=args.do_lower_case, tokenizer_languages=args.tokenizer_languages.split(',') if args.tokenizer_languages is not None else [], enable_bpe_sampling=args.enable_bpe_sampling, bpe_sampling_ratio=args.bpe_sampling_ratio, tokenizer=tokenizer, sampling_alpha=args.sampling_alpha, sampling_nbest_size=args.sampling_nbest_size, enable_random_noise=args.enable_random_noise, noise_detach_embeds=args.noise_detach_embeds, noise_eps=args.noise_eps, noise_type=args.noise_type, enable_code_switch=args.enable_code_switch, code_switch_ratio=args.code_switch_ratio, dict_dir=args.dict_dir, dict_languages=args.dict_languages.split(',') if args.dict_languages is not None else [], enable_word_dropout=args.enable_word_dropout, word_dropout_rate=args.word_dropout_rate, enable_translate_data=args.enable_translate_data, translation_path=args.translation_path, train_language=args.language if args.translate_languages is None else args.translate_languages, data_dir=args.data_dir, translate_different_pair=args.translate_different_pair, translate_en_data=args.translate_en_data, enable_data_augmentation=args.enable_data_augmentation, augment_method=args.augment_method, augment_ratio=args.augment_ratio, r2_lambda=args.r2_lambda, use_hard_labels=args.use_hard_labels, ) else: noised_data_generator = None if args.first_stage_model_path is not None: first_stage_model = model_class.from_pretrained(args.first_stage_model_path, config=config) else: first_stage_model = None state_dict = None if args.reload != "": from tools.dump_hf_state_dict import convert_pt_to_hf state_dict = convert_pt_to_hf(os.path.join(args.model_name_or_path, 'pytorch_model.bin'), args.reload, logger) # state_dict = torch.load(args.reload) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, noised_data_generator=noised_data_generator, cache_dir=args.cache_dir if args.cache_dir else None, state_dict=state_dict, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab if first_stage_model is not None: first_stage_model.to(args.device) model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) train_langs = args.train_language.split(',') dataset_list = [] train_examples = [] for lang in train_langs: lg_train_dataset, guids, lg_examples = load_and_cache_examples(args, args.task_name, tokenizer, lang, split="train", return_examples=True) dataset_list.append(lg_train_dataset) train_examples += lg_examples train_dataset = ConcatDataset(dataset_list) global_step, tr_loss = train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, noised_data_generator) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.init_checkpoint: best_checkpoint = args.init_checkpoint elif os.path.exists(os.path.join(args.output_dir, 'checkpoint-best')): best_checkpoint = os.path.join(args.output_dir, 'checkpoint-best') else: best_checkpoint = args.output_dir best_f1 = 0 results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoint = best_checkpoint tokenizer = tokenizer_class.from_pretrained(checkpoint, do_lower_case=args.do_lower_case) logger.info("Evaluate the following checkpoints: %s", checkpoint) model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer) for key, value in result.items(): logger.info("eval_{}: {}".format(key, value)) log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w') log_writer.write("{0}\t{1}".format("evaluate", json.dumps(result)) + '\n') if args.do_predict and args.local_rank in [-1, 0]: # tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoint = best_checkpoint tokenizer = tokenizer_class.from_pretrained(checkpoint, do_lower_case=args.do_lower_case) model = model_class.from_pretrained(checkpoint) model.to(args.device) predict(args, model, tokenizer, label_list) logger.info("Task {0} finished!".format(args.task_name)) return results if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/xtune/src/run_cls.py
import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--translation_path", default=None, type=str, required=True, help="", ) drop_languages = ["en", "zh-CN", "zh", "ja", "ko", "th", "my", "ml", "ta"] translate_languages = None args = parser.parse_args() src2tgt = {} print("Reading translation from {}".format(args.translation_path)) with open(args.translation_path, encoding="utf-8") as f: cnt = 0 for line in f: cnt += 1 if cnt % 10000 == 0: print("Reading lines {}".format(cnt)) items = line.split("\t") if items == 3: src_sent, tgt_lang, tgt_sent = line.split("\t") alignment = None else: src_sent, tgt_lang, tgt_sent, alignment_str = line.split("\t") alignment = [] for x in alignment_str.split(" "): alignment.append((int(x.split("/")[0]), int(x.split("/")[1]))) if tgt_lang in drop_languages: continue if translate_languages is not None and tgt_lang not in translate_languages: continue cnt_src = {} cnt_tgt = {} for x in alignment: if x[0] not in cnt_src: cnt_src[x[0]] = 0 cnt_src[x[0]] += 1 if x[1] not in cnt_tgt: cnt_tgt[x[1]] = 0 cnt_tgt[x[1]] += 1 if not (cnt_src[x[0]] <= 1 or cnt_tgt[x[1]] <= 1): print(cnt_src, cnt_tgt) print(alignment) print(src_sent, tgt_sent) assert cnt_src[x[0]] <= 1 or cnt_tgt[x[1]] <= 1
EXA-1-master
exa/models/unilm-master/xtune/src/tools/check_many2many_alignment.py