python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import os import torch import collections import logging from tqdm import tqdm, trange import json import bs4 from os import path as osp from bs4 import BeautifulSoup as bs # from transformers.models.bert.tokenization_bert import BasicTokenizer, whitespace_tokenize from torch.utils.data import Dataset import networkx as nx from lxml import etree import pickle # from transformers.tokenization_bert import BertTokenizer from transformers import BertTokenizer import argparse tags_dict = {'a': 0, 'abbr': 1, 'acronym': 2, 'address': 3, 'altGlyph': 4, 'altGlyphDef': 5, 'altGlyphItem': 6, 'animate': 7, 'animateColor': 8, 'animateMotion': 9, 'animateTransform': 10, 'applet': 11, 'area': 12, 'article': 13, 'aside': 14, 'audio': 15, 'b': 16, 'base': 17, 'basefont': 18, 'bdi': 19, 'bdo': 20, 'bgsound': 21, 'big': 22, 'blink': 23, 'blockquote': 24, 'body': 25, 'br': 26, 'button': 27, 'canvas': 28, 'caption': 29, 'center': 30, 'circle': 31, 'cite': 32, 'clipPath': 33, 'code': 34, 'col': 35, 'colgroup': 36, 'color-profile': 37, 'content': 38, 'cursor': 39, 'data': 40, 'datalist': 41, 'dd': 42, 'defs': 43, 'del': 44, 'desc': 45, 'details': 46, 'dfn': 47, 'dialog': 48, 'dir': 49, 'div': 50, 'dl': 51, 'dt': 52, 'ellipse': 53, 'em': 54, 'embed': 55, 'feBlend': 56, 'feColorMatrix': 57, 'feComponentTransfer': 58, 'feComposite': 59, 'feConvolveMatrix': 60, 'feDiffuseLighting': 61, 'feDisplacementMap': 62, 'feDistantLight': 63, 'feFlood': 64, 'feFuncA': 65, 'feFuncB': 66, 'feFuncG': 67, 'feFuncR': 68, 'feGaussianBlur': 69, 'feImage': 70, 'feMerge': 71, 'feMergeNode': 72, 'feMorphology': 73, 'feOffset': 74, 'fePointLight': 75, 'feSpecularLighting': 76, 'feSpotLight': 77, 'feTile': 78, 'feTurbulence': 79, 'fieldset': 80, 'figcaption': 81, 'figure': 82, 'filter': 83, 'font-face-format': 84, 'font-face-name': 85, 'font-face-src': 86, 'font-face-uri': 87, 'font-face': 88, 'font': 89, 'footer': 90, 'foreignObject': 91, 'form': 92, 'frame': 93, 'frameset': 94, 'g': 95, 'glyph': 96, 'glyphRef': 97, 'h1': 98, 'h2': 99, 'h3': 100, 'h4': 101, 'h5': 102, 'h6': 103, 'head': 104, 'header': 105, 'hgroup': 106, 'hkern': 107, 'hr': 108, 'html': 109, 'i': 110, 'iframe': 111, 'image': 112, 'img': 113, 'input': 114, 'ins': 115, 'kbd': 116, 'keygen': 117, 'label': 118, 'legend': 119, 'li': 120, 'line': 121, 'linearGradient': 122, 'link': 123, 'main': 124, 'map': 125, 'mark': 126, 'marker': 127, 'marquee': 128, 'mask': 129, 'math': 130, 'menu': 131, 'menuitem': 132, 'meta': 133, 'metadata': 134, 'meter': 135, 'missing-glyph': 136, 'mpath': 137, 'nav': 138, 'nobr': 139, 'noembed': 140, 'noframes': 141, 'noscript': 142, 'object': 143, 'ol': 144, 'optgroup': 145, 'option': 146, 'output': 147, 'p': 148, 'param': 149, 'path': 150, 'pattern': 151, 'picture': 152, 'plaintext': 153, 'polygon': 154, 'polyline': 155, 'portal': 156, 'pre': 157, 'progress': 158, 'q': 159, 'radialGradient': 160, 'rb': 161, 'rect': 162, 'rp': 163, 'rt': 164, 'rtc': 165, 'ruby': 166, 's': 167, 'samp': 168, 'script': 169, 'section': 170, 'select': 171, 'set': 172, 'shadow': 173, 'slot': 174, 'small': 175, 'source': 176, 'spacer': 177, 'span': 178, 'stop': 179, 'strike': 180, 'strong': 181, 'style': 182, 'sub': 183, 'summary': 184, 'sup': 185, 'svg': 186, 'switch': 187, 'symbol': 188, 'table': 189, 'tbody': 190, 'td': 191, 'template': 192, 'text': 193, 'textPath': 194, 'textarea': 195, 'tfoot': 196, 'th': 197, 'thead': 198, 'time': 199, 'title': 200, 'tr': 201, 'track': 202, 'tref': 203, 'tspan': 204, 'tt': 205, 'u': 206, 'ul': 207, 'use': 208, 'var': 209, 'video': 210, 'view': 211, 'vkern': 212, 'wbr': 213, 'xmp': 214} def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # ---------- copied ! -------------- def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join([w for w in doc_tokens[new_start:(new_end + 1)] if w[0] != '<' or w[-1] != '>']) if text_span == tok_answer_text: return new_start, new_end return input_start, input_end class StrucDataset(Dataset): """Dataset wrapping tensors. Each sample will be retrieved by indexing tensors along the first dimension. Arguments: *tensors (*torch.Tensor): tensors that have the same size of the first dimension. page_ids (list): the corresponding page ids of the input features. cnn_feature_dir (str): the direction where the cnn features are stored. token_to_tag (torch.Tensor): the mapping from each token to its corresponding tag id. """ def __init__(self, *tensors, pad_id=0, all_expended_attention_mask=None, all_graph_names=None, all_token_to_tag=None, page_ids=None, attention_width=None, has_tree_attention_bias = False): tensors = tuple(tensor for tensor in tensors) assert all(len(tensors[0]) == len(tensor) for tensor in tensors) if all_expended_attention_mask is not None: assert len(tensors[0]) == len(all_expended_attention_mask) tensors += (all_expended_attention_mask,) self.tensors = tensors self.page_ids = page_ids self.all_graph_names = all_graph_names self.all_token_to_tag = all_token_to_tag self.pad_id = pad_id self.attention_width = attention_width self.has_tree_attention_bias = has_tree_attention_bias def __getitem__(self, index): output = [tensor[index] for tensor in self.tensors] input_id = output[0] attention_mask = output[1] if not self.attention_width is None or self.has_tree_attention_bias: assert self.all_graph_names is not None , ("For non-empty attention_width / tree rel pos," "Graph names must be sent in!") if self.all_graph_names is not None: assert self.all_token_to_tag is not None graph_name = self.all_graph_names[index] token_to_tag = self.all_token_to_tag[index] with open(graph_name,"rb") as f: node_pairs_lengths = pickle.load(f) # node_pairs_lengths = dict(nx.all_pairs_shortest_path_length(graph)) seq_len = len(token_to_tag) if self.has_tree_attention_bias: mat = [[0]*seq_len]*seq_len else: mat = None if self.attention_width is not None: emask = attention_mask.expand(seq_len,seq_len) else: emask = None for nid in range(seq_len): if input_id[nid]==self.pad_id: break for anid in range(nid+1,seq_len): if input_id[anid]==self.pad_id: break x_tid4nid = token_to_tag[nid] x_tid4anid = token_to_tag[anid] if x_tid4nid==x_tid4anid: continue try: xx = node_pairs_lengths[x_tid4nid] # x_tid4nid in valid tid list, or == -1 except: # x_tid4nid out of bound, like `question`, `sep` or `cls` xx = node_pairs_lengths[-1] x_tid4nid=-1 try: dis = xx[x_tid4anid] # x_tid4anid in valid tid list, or == -1 except: # x_tid4nid out of bound, like `question`, `sep` or `cls` dis = xx[-1] x_tid4anid = -1 # xx = node_pairs_lengths.get(tid4nid,node_pairs_lengths[-1]) # dis = xx.get(tid4anid,xx[-1]) if self.has_tree_attention_bias: if x_tid4nid<x_tid4anid: mat[nid][anid]=dis mat[anid][nid]=-dis else: mat[nid][anid] = -dis mat[anid][nid] = dis if self.attention_width is not None: # [nid][anid] determines whether nid can see anid if x_tid4nid==-1 or x_tid4anid==-1: # sep / cls / question / pad continue if dis>self.attention_width: emask[nid][anid]=0 emask[anid][nid]=0 if self.attention_width is not None: output.append(emask) if self.has_tree_attention_bias: t_mat = torch.tensor(mat,dtype=torch.long) output.append(t_mat) return tuple(item for item in output) def __len__(self): return len(self.tensors[0]) def get_xpath4tokens(html_fn: str, unique_tids: set): xpath_map = {} tree = etree.parse(html_fn, etree.HTMLParser()) nodes = tree.xpath('//*') for node in nodes: tid = node.attrib.get("tid") if int(tid) in unique_tids: xpath_map[int(tid)] = tree.getpath(node) xpath_map[len(nodes)] = "/html" xpath_map[len(nodes) + 1] = "/html" return xpath_map def get_xpath_and_treeid4tokens(html_code, unique_tids, max_depth): unknown_tag_id = len(tags_dict) pad_tag_id = unknown_tag_id + 1 max_width = 1000 width_pad_id = 1001 pad_x_tag_seq = [pad_tag_id] * max_depth pad_x_subs_seq = [width_pad_id] * max_depth pad_x_box = [0,0,0,0] pad_tree_id_seq = [width_pad_id] * max_depth def xpath_soup(element): xpath_tags = [] xpath_subscripts = [] tree_index = [] child = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag siblings = parent.find_all(child.name, recursive=False) para_siblings = parent.find_all(True, recursive=False) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(siblings) else next(i for i, s in enumerate(siblings, 1) if s is child)) tree_index.append(next(i for i, s in enumerate(para_siblings, 0) if s is child)) child = parent xpath_tags.reverse() xpath_subscripts.reverse() tree_index.reverse() return xpath_tags, xpath_subscripts, tree_index xpath_tag_map = {} xpath_subs_map = {} tree_id_map = {} for tid in unique_tids: element = html_code.find(attrs={'tid': tid}) if element is None: xpath_tags = pad_x_tag_seq xpath_subscripts = pad_x_subs_seq tree_index = pad_tree_id_seq xpath_tag_map[tid] = xpath_tags xpath_subs_map[tid] = xpath_subscripts tree_id_map[tid] = tree_index continue xpath_tags, xpath_subscripts, tree_index = xpath_soup(element) assert len(xpath_tags) == len(xpath_subscripts) assert len(xpath_tags) == len(tree_index) if len(xpath_tags) > max_depth: xpath_tags = xpath_tags[-max_depth:] xpath_subscripts = xpath_subscripts[-max_depth:] # tree_index = tree_index[-max_depth:] xpath_tags = [tags_dict.get(name, unknown_tag_id) for name in xpath_tags] xpath_subscripts = [min(i, max_width) for i in xpath_subscripts] tree_index = [min(i, max_width) for i in tree_index] # we do not append them to max depth here xpath_tags += [pad_tag_id] * (max_depth - len(xpath_tags)) xpath_subscripts += [width_pad_id] * (max_depth - len(xpath_subscripts)) # tree_index += [width_pad_id] * (max_depth - len(tree_index)) xpath_tag_map[tid] = xpath_tags xpath_subs_map[tid] = xpath_subscripts tree_id_map[tid] = tree_index return xpath_tag_map, xpath_subs_map, tree_id_map # ---------- copied ! -------------- def _check_is_max_context(doc_spans, cur_span_index, position): best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index class SRCExample(object): r""" The Containers for SRC Examples. Arguments: doc_tokens (list[str]): the original tokens of the HTML file before dividing into sub-tokens. qas_id (str): the id of the corresponding question. tag_num (int): the total tag number in the corresponding HTML file, including the additional 'yes' and 'no'. question_text (str): the text of the corresponding question. orig_answer_text (str): the answer text provided by the dataset. all_doc_tokens (list[str]): the sub-tokens of the corresponding HTML file. start_position (int): the position where the answer starts in the all_doc_tokens. end_position (int): the position where the answer ends in the all_doc_tokens; NOTE that the answer tokens include the token at end_position. tok_to_orig_index (list[int]): the mapping from sub-tokens (all_doc_tokens) to origin tokens (doc_tokens). orig_to_tok_index (list[int]): the mapping from origin tokens (doc_tokens) to sub-tokens (all_doc_tokens). tok_to_tags_index (list[int]): the mapping from sub-tokens (all_doc_tokens) to the id of the deepest tag it belongs to. """ # the difference between T-PLM and H-PLM is just add <xx> and </xx> into the # original tokens and further-tokenized tokens def __init__(self, doc_tokens, qas_id, tag_num, # <xx> ?? </xx> is counted as one tag question_text=None, html_code=None, orig_answer_text=None, start_position=None, # in all_doc_tokens end_position=None, # in all_doc_tokens tok_to_orig_index=None, orig_to_tok_index=None, all_doc_tokens=None, tok_to_tags_index=None, xpath_tag_map=None, xpath_subs_map=None, xpath_box=None, tree_id_map=None, visible_matrix=None, ): self.doc_tokens = doc_tokens self.qas_id = qas_id self.tag_num = tag_num self.question_text = question_text self.html_code = html_code self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.tok_to_orig_index = tok_to_orig_index self.orig_to_tok_index = orig_to_tok_index self.all_doc_tokens = all_doc_tokens self.tok_to_tags_index = tok_to_tags_index self.xpath_tag_map = xpath_tag_map self.xpath_subs_map = xpath_subs_map self.xpath_box = xpath_box self.tree_id_map = tree_id_map self.visible_matrix = visible_matrix def __str__(self): return self.__repr__() def __repr__(self): """ s = "" s += "qas_id: %s" % self.qas_id s += ", question_text: %s" % ( self.question_text) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % self.start_position if self.end_position: s += ", end_position: %d" % self.end_position """ s = "[INFO]\n" s += f"qas_id ({type(self.qas_id)}): {self.qas_id}\n" s += f"tag_num ({type(self.tag_num)}): {self.tag_num}\n" s += f"question_text ({type(self.question_text)}): {self.question_text}\n" s += f"html_code ({type(self.html_code)}): {self.html_code}\n" s += f"orig_answer_text ({type(self.orig_answer_text)}): {self.orig_answer_text}\n" s += f"start_position ({type(self.start_position)}): {self.start_position}\n" s += f"end_position ({type(self.end_position)}): {self.end_position}\n" s += f"tok_to_orig_index ({type(self.tok_to_orig_index)}): {self.tok_to_orig_index}\n" s += f"orig_to_tok_index ({type(self.orig_to_tok_index)}): {self.orig_to_tok_index}\n" s += f"all_doc_tokens ({type(self.all_doc_tokens)}): {self.all_doc_tokens}\n" s += f"tok_to_tags_index ({type(self.tok_to_tags_index)}): {self.tok_to_tags_index}\n" s += f"xpath_tag_map ({type(self.xpath_tag_map)}): {self.xpath_tag_map}\n" s += f"xpath_subs_map ({type(self.xpath_subs_map)}): {self.xpath_subs_map}\n" s += f"tree_id_map ({type(self.tree_id_map)}): {self.tree_id_map}\n" return s class InputFeatures(object): r""" The Container for the Features of Input Doc Spans. Arguments: unique_id (int): the unique id of the input doc span. example_index (int): the index of the corresponding SRC Example of the input doc span. page_id (str): the id of the corresponding web page of the question. doc_span_index (int): the index of the doc span among all the doc spans which corresponding to the same SRC Example. tokens (list[str]): the sub-tokens of the input sequence, including cls token, sep tokens, and the sub-tokens of the question and HTML file. token_to_orig_map (dict[int, int]): the mapping from the HTML file's sub-tokens in the sequence tokens (tokens) to the origin tokens (all_tokens in the corresponding SRC Example). token_is_max_context (dict[int, bool]): whether the current doc span contains the max pre- and post-context for each HTML file's sub-tokens. input_ids (list[int]): the ids of the sub-tokens in the input sequence (tokens). input_mask (list[int]): use 0/1 to distinguish the input sequence from paddings. segment_ids (list[int]): use 0/1 to distinguish the question and the HTML files. paragraph_len (int): the length of the HTML file's sub-tokens. start_position (int): the position where the answer starts in the input sequence (0 if the answer is not fully in the input sequence). end_position (int): the position where the answer ends in the input sequence; NOTE that the answer tokens include the token at end_position (0 if the answer is not fully in the input sequence). token_to_tag_index (list[int]): the mapping from sub-tokens of the input sequence to the id of the deepest tag it belongs to. is_impossible (bool): whether the answer is fully in the doc span. """ def __init__(self, unique_id, example_index, page_id, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, paragraph_len, start_position=None, end_position=None, token_to_tag_index=None, is_impossible=None, xpath_tags_seq=None, xpath_subs_seq=None, xpath_box_seq=None, extended_attention_mask=None): self.unique_id = unique_id self.example_index = example_index self.page_id = page_id self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.paragraph_len = paragraph_len self.start_position = start_position self.end_position = end_position self.token_to_tag_index = token_to_tag_index self.is_impossible = is_impossible self.xpath_tags_seq = xpath_tags_seq self.xpath_subs_seq = xpath_subs_seq self.xpath_box_seq = xpath_box_seq self.extended_attention_mask = extended_attention_mask def html_escape(html): r""" replace the special expressions in the html file for specific punctuation. """ html = html.replace('&quot;', '"') html = html.replace('&amp;', '&') html = html.replace('&lt;', '<') html = html.replace('&gt;', '>') html = html.replace('&nbsp;', ' ') return html def read_squad_examples(args, input_file, root_dir, is_training, tokenizer, simplify=False, max_depth=50, split_flag="n-eon", attention_width=None): r""" pre-process the data in json format into SRC Examples. Arguments: split_flag: attention_width: input_file (str): the inputting data file in json format. root_dir (str): the root directory of the raw WebSRC dataset, which contains the HTML files. is_training (bool): True if processing the training set, else False. tokenizer (Tokenizer): the tokenizer for PLM in use. method (str): the name of the method in use, choice: ['T-PLM', 'H-PLM', 'V-PLM']. simplify (bool): when setting to Ture, the returned Example will only contain document tokens, the id of the question-answers, and the total tag number in the corresponding html files. Returns: list[SRCExamples]: the resulting SRC Examples, contained all the needed information for the feature generation process, except when the argument simplify is setting to True; set[str]: all the tag names appeared in the processed dataset, e.g. <div>, <img/>, </p>, etc.. """ with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader)["data"] pad_tree_id_seq = [1001] * max_depth def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False def html_to_text_list(h): tag_num, text_list = 0, [] for element in h.descendants: if (type(element) == bs4.element.NavigableString) and (element.strip()): text_list.append(element.strip()) if type(element) == bs4.element.Tag: tag_num += 1 return text_list, tag_num + 2 # + 2 because we treat the additional 'yes' and 'no' as two special tags. def html_to_text(h): tag_list = set() for element in h.descendants: if type(element) == bs4.element.Tag: element.attrs = {} temp = str(element).split() tag_list.add(temp[0]) tag_list.add(temp[-1]) return html_escape(str(h)), tag_list def adjust_offset(offset, text): text_list = text.split() cnt, adjustment = 0, [] for t in text_list: if not t: continue if t[0] == '<' and t[-1] == '>': adjustment.append(offset.index(cnt)) else: cnt += 1 add = 0 adjustment.append(len(offset)) for i in range(len(offset)): while i >= adjustment[add]: add += 1 offset[i] += add return offset def e_id_to_t_id(e_id, html): t_id = 0 for element in html.descendants: if type(element) == bs4.element.NavigableString and element.strip(): t_id += 1 if type(element) == bs4.element.Tag: if int(element.attrs['tid']) == e_id: break return t_id def calc_num_from_raw_text_list(t_id, l): n_char = 0 for i in range(t_id): n_char += len(l[i]) + 1 return n_char def word_to_tag_from_text(tokens, h): cnt, w_t, path = -1, [], [] unique_tids = set() for t in tokens[0:-2]: if len(t) < 2: w_t.append(path[-1]) unique_tids.add(path[-1]) continue if t[0] == '<' and t[-2] == '/': cnt += 1 w_t.append(cnt) unique_tids.add(cnt) continue if t[0] == '<' and t[1] != '/': cnt += 1 path.append(cnt) w_t.append(path[-1]) unique_tids.add(path[-1]) if t[0] == '<' and t[1] == '/': del path[-1] w_t.append(cnt + 1) unique_tids.add(cnt + 1) w_t.append(cnt + 2) unique_tids.add(cnt + 2) assert len(w_t) == len(tokens) assert len(path) == 0, print(h) return w_t, unique_tids def word_tag_offset(html): cnt, w_t, t_w, tags, tags_tids = 0, [], [], [], [] for element in html.descendants: if type(element) == bs4.element.Tag: content = ' '.join(list(element.strings)).split() t_w.append({'start': cnt, 'len': len(content)}) tags.append('<' + element.name + '>') tags_tids.append(element['tid']) elif type(element) == bs4.element.NavigableString and element.strip(): text = element.split() tid = element.parent['tid'] ind = tags_tids.index(tid) for _ in text: w_t.append(ind) cnt += 1 assert cnt == len(w_t) w_t.append(len(t_w)) w_t.append(len(t_w) + 1) return w_t def subtoken_tag_offset(html, s_tok): w_t = word_tag_offset(html) s_t = [] unique_tids = set() for i in range(len(s_tok)): s_t.append(w_t[s_tok[i]]) unique_tids.add(w_t[s_tok[i]]) return s_t, unique_tids def subtoken_tag_offset_plus_eon(html, s_tok, all_doc_tokens): w_t = word_tag_offset(html) s_t = [] unique_tids = set() offset = 0 for i in range(len(s_tok)): if all_doc_tokens[i] not in ('<end-of-node>', tokenizer.sep_token, tokenizer.cls_token): s_t.append(w_t[s_tok[i] - offset]) unique_tids.add(w_t[s_tok[i] - offset]) else: prev_tid = s_t[-1] s_t.append(prev_tid) offset += 1 return s_t, unique_tids def check_visible(path1, path2, attention_width): i = 0 j = 0 dis = 0 lp1 = len(path1) lp2 = len(path2) while i < lp1 and j < lp2 and path1[i] == path2[j]: i += 1 j += 1 if i < lp1 and j < lp2: dis += lp1 - i + lp2 - j else: if i == lp1: dis += lp2 - j else: dis += lp1 - i if dis <= attention_width: return True return False def from_tids_to_box(html_fn, unique_tids, json_fn): sorted_ids = sorted(unique_tids) f = open(json_fn, 'r') data = json.load(f) orig_width, orig_height = data['2']['rect']['width'], data['2']['rect']['height'] orig_x, orig_y = data['2']['rect']['x'], data['2']['rect']['y'] return_dict = {} for id in sorted_ids: if str(id) in data: x, y, width, height = data[str(id)]['rect']['x'], data[str(id)]['rect']['y'], data[str(id)]['rect']['width'], data[str(id)]['rect']['height'] resize_x = (x - orig_x) * 1000 // orig_width resize_y = (y - orig_y) * 1000 // orig_height resize_width = width * 1000 // orig_width resize_height = height * 1000 // orig_height # if not (resize_x <= 1000 and resize_y <= 1000): # print('before', x, y, width, height) # print('after', resize_x, resize_y, resize_width, resize_height) # print('file name ', html_fn) # # exit(0) if resize_x < 0 or resize_y < 0 or resize_width < 0 or resize_height < 0: # meaningless return_dict[id] = [0, 0, 0, 0] else: return_dict[id] = [int(resize_x), int(resize_y), int(resize_x+resize_width), int(resize_y+resize_height)] else: return_dict[id] = [0,0,0,0] return return_dict def get_visible_matrix(unique_tids, tree_id_map, attention_width): if attention_width is None: return None unique_tids_list = list(unique_tids) visible_matrix = collections.defaultdict(list) for i in range(len(unique_tids_list)): if tree_id_map[unique_tids_list[i]] == pad_tree_id_seq: visible_matrix[unique_tids_list[i]] = list() continue visible_matrix[unique_tids_list[i]].append(unique_tids_list[i]) for j in range(i + 1, len(unique_tids_list)): if check_visible(tree_id_map[unique_tids_list[i]], tree_id_map[unique_tids_list[j]], attention_width): visible_matrix[unique_tids_list[i]].append(unique_tids_list[j]) visible_matrix[unique_tids_list[j]].append(unique_tids_list[i]) return visible_matrix examples = [] all_tag_list = set() total_num = sum([len(entry["websites"]) for entry in input_data]) with tqdm(total=total_num, desc="Converting websites to examples") as t: for entry in input_data: # print('entry', entry) domain = entry["domain"] for website in entry["websites"]: # print('website', website) # Generate Doc Tokens page_id = website["page_id"] # print('page_id', page_id) curr_dir = osp.join(root_dir, domain, page_id[0:2], 'processed_data') html_fn = osp.join(curr_dir, page_id + '.html') json_fn = osp.join(curr_dir, page_id + '.json') # print('html', html_fn) html_file = open(html_fn).read() html_code = bs(html_file, "html.parser") raw_text_list, tag_num = html_to_text_list(html_code) # print(raw_text_list) # print(tag_num) # exit(0) doc_tokens = [] char_to_word_offset = [] # print(split_flag) # n-eon # exit(0) if split_flag in ["y-eon", "y-sep", "y-cls"]: prev_is_whitespace = True for i, doc_string in enumerate(raw_text_list): for c in doc_string: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) if i < len(raw_text_list) - 1: prev_is_whitespace = True char_to_word_offset.append(len(doc_tokens) - 1) if split_flag == "y-eon": doc_tokens.append('<end-of-node>') elif split_flag == "y-sep": doc_tokens.append(tokenizer.sep_token) elif split_flag == "y-cls": doc_tokens.append(tokenizer.cls_token) else: raise ValueError("Split flag should be `y-eon` or `y-sep` or `y-cls`") prev_is_whitespace = True elif split_flag =="n-eon" or split_flag == "y-hplm": page_text = ' '.join(raw_text_list) prev_is_whitespace = True for c in page_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) doc_tokens.append('no') char_to_word_offset.append(len(doc_tokens) - 1) doc_tokens.append('yes') char_to_word_offset.append(len(doc_tokens) - 1) if split_flag == "y-hplm": real_text, tag_list = html_to_text(bs(html_file)) all_tag_list = all_tag_list | tag_list char_to_word_offset = adjust_offset(char_to_word_offset, real_text) doc_tokens = real_text.split() doc_tokens.append('no') doc_tokens.append('yes') doc_tokens = [i for i in doc_tokens if i] else: tag_list = [] assert len(doc_tokens) == char_to_word_offset[-1] + 1, (len(doc_tokens), char_to_word_offset[-1]) if simplify: for qa in website["qas"]: qas_id = qa["id"] example = SRCExample(doc_tokens=doc_tokens, qas_id=qas_id, tag_num=tag_num) examples.append(example) t.update(1) else: # Tokenize all doc tokens # tokenize sth like < / > tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) if token in tag_list: sub_tokens = [token] else: sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) # Generate extra information for features if split_flag in ["y-eon", "y-sep", "y-cls"]: tok_to_tags_index, unique_tids = subtoken_tag_offset_plus_eon(html_code, tok_to_orig_index, all_doc_tokens) elif split_flag == "n-eon": tok_to_tags_index, unique_tids = subtoken_tag_offset(html_code, tok_to_orig_index) elif split_flag == "y-hplm": tok_to_tags_index, unique_tids = word_to_tag_from_text(all_doc_tokens, html_code) else: raise ValueError("Unsupported split_flag!") xpath_tag_map, xpath_subs_map, tree_id_map = get_xpath_and_treeid4tokens(html_code, unique_tids, max_depth=max_depth) # tree_id_map : neither truncated nor padded xpath_box = from_tids_to_box(html_fn, unique_tids, json_fn) assert tok_to_tags_index[-1] == tag_num - 1, (tok_to_tags_index[-1], tag_num - 1) # we get attention_mask here visible_matrix = get_visible_matrix(unique_tids, tree_id_map, attention_width=attention_width) # Process each qas, which is mainly calculate the answer position for qa in website["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None if is_training: if len(qa["answers"]) != 1: raise ValueError( "For training, each question should have exactly 1 answer.") answer = qa["answers"][0] orig_answer_text = answer["text"] if answer["element_id"] == -1: num_char = len(char_to_word_offset) - 2 else: num_char = calc_num_from_raw_text_list(e_id_to_t_id(answer["element_id"], html_code), raw_text_list) answer_offset = num_char + answer["answer_start"] answer_length = len(orig_answer_text) if answer["element_id"] != -1 else 1 start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join([w for w in doc_tokens[start_position:(end_position + 1)] if (w[0] != '<' or w[-1] != '>') and w != "<end-of-node>" and w != tokenizer.sep_token and w != tokenizer.cls_token]) cleaned_answer_text = " ".join(whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logging.warning("Could not find answer of question %s: '%s' vs. '%s'", qa['id'], actual_text, cleaned_answer_text) continue example = SRCExample( doc_tokens=doc_tokens, qas_id=qas_id, tag_num=tag_num, question_text=question_text, html_code=html_code, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, tok_to_orig_index=tok_to_orig_index, orig_to_tok_index=orig_to_tok_index, all_doc_tokens=all_doc_tokens, tok_to_tags_index=tok_to_tags_index, xpath_tag_map=xpath_tag_map, xpath_subs_map=xpath_subs_map, xpath_box=xpath_box, tree_id_map=tree_id_map, visible_matrix=visible_matrix ) examples.append(example) if args.web_num_features != 0: if len(examples) >= args.web_num_features: return examples, all_tag_list t.update(1) return examples, all_tag_list def load_and_cache_examples(args, tokenizer, max_depth=50, evaluate=False, output_examples=False): r""" Load and process the raw data. """ if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, # and the others will use the cache # Load data features from cache or dataset file input_file = args.web_eval_file if evaluate else args.web_train_file cached_features_file = os.path.join(args.cache_dir, 'cached_{}_{}_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train', "markuplm", str(args.max_seq_length), str(max_depth), args.web_num_features, args.model_type )) if not os.path.exists(os.path.dirname(cached_features_file)): os.makedirs(os.path.dirname(cached_features_file)) if os.path.exists(cached_features_file) and not args.overwrite_cache: print("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) if output_examples: examples, tag_list = read_squad_examples(args, input_file=input_file, root_dir=args.web_root_dir, is_training=not evaluate, tokenizer=tokenizer, simplify=True, max_depth=max_depth ) else: examples = None else: print("Creating features from dataset file at %s", input_file) examples, _ = read_squad_examples(args, input_file=input_file, root_dir=args.web_root_dir, is_training=not evaluate, tokenizer=tokenizer, simplify=False, max_depth=max_depth) features = convert_examples_to_features(examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token, pad_token=tokenizer.pad_token_id, sequence_a_segment_id=0, sequence_b_segment_id=0, max_depth=max_depth) if args.local_rank in [-1, 0] and args.web_save_features: print("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, # and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_xpath_tags_seq = torch.tensor([f.xpath_tags_seq for f in features], dtype=torch.long) all_xpath_subs_seq = torch.tensor([f.xpath_subs_seq for f in features], dtype=torch.long) all_xpath_box_seq = torch.tensor([f.xpath_box_seq for f in features], dtype=torch.long) if evaluate: all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = StrucDataset(all_input_ids, all_input_mask, all_segment_ids, all_feature_index, all_xpath_tags_seq, all_xpath_subs_seq, all_xpath_box_seq) else: all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) dataset = StrucDataset(all_input_ids, all_input_mask, all_segment_ids, all_xpath_tags_seq, all_xpath_subs_seq, all_start_positions, all_end_positions, all_xpath_box_seq) if output_examples: dataset = (dataset, examples, features) return dataset def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, cls_token='[CLS]', sep_token='[SEP]', pad_token=0, sequence_a_segment_id=0, sequence_b_segment_id=1, cls_token_segment_id=0, pad_token_segment_id=0, mask_padding_with_zero=True, max_depth=50): r""" Converting the SRC Examples further into the features for all the input doc spans. Arguments: examples (list[SRCExample]): the list of SRC Examples to process. tokenizer (Tokenizer): the tokenizer for PLM in use. max_seq_length (int): the max length of the total sub-token sequence, including the question, cls token, sep tokens, and documents; if the length of the input is bigger than max_seq_length, the input will be cut into several doc spans. doc_stride (int): the stride length when the input is cut into several doc spans. max_query_length (int): the max length of the sub-token sequence of the questions; the question will be truncate if it is longer than max_query_length. is_training (bool): True if processing the training set, else False. cls_token (str): the cls token in use, default is '[CLS]'. sep_token (str): the sep token in use, default is '[SEP]'. pad_token (int): the id of the padding token in use when the total sub-token length is smaller that max_seq_length, default is 0 which corresponding to the '[PAD]' token. sequence_a_segment_id: the segment id for the first sequence (the question), default is 0. sequence_b_segment_id: the segment id for the second sequence (the html file), default is 1. cls_token_segment_id: the segment id for the cls token, default is 0. pad_token_segment_id: the segment id for the padding tokens, default is 0. mask_padding_with_zero: determine the pattern of the returned input mask; 0 for padding tokens and 1 for others when True, and vice versa. Returns: list[InputFeatures]: the resulting input features for all the input doc spans """ pad_x_tag_seq = [216] * max_depth pad_x_subs_seq = [1001] * max_depth pad_x_box = [0,0,0,0] pad_tree_id_seq = [1001] * max_depth unique_id = 1000000000 features = [] for (example_index, example) in enumerate(tqdm(examples, desc="Converting examples to features")): xpath_tag_map = example.xpath_tag_map xpath_subs_map = example.xpath_subs_map xpath_box = example.xpath_box tree_id_map = example.tree_id_map visible_matrix = example.visible_matrix query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_start_position = None tok_end_position = None if is_training: tok_start_position = example.orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = example.orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(example.all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( example.all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(example.all_doc_tokens): length = len(example.all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(example.all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] token_to_tag_index = [] # CLS token at the beginning tokens.append(cls_token) segment_ids.append(cls_token_segment_id) token_to_tag_index.append(example.tag_num) # Query tokens += query_tokens segment_ids += [sequence_a_segment_id] * len(query_tokens) token_to_tag_index += [example.tag_num] * len(query_tokens) # SEP token tokens.append(sep_token) segment_ids.append(sequence_a_segment_id) token_to_tag_index.append(example.tag_num) # Paragraph for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = example.tok_to_orig_index[split_token_index] token_to_tag_index.append(example.tok_to_tags_index[split_token_index]) is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(example.all_doc_tokens[split_token_index]) segment_ids.append(sequence_b_segment_id) paragraph_len = doc_span.length # SEP token tokens.append(sep_token) segment_ids.append(sequence_b_segment_id) token_to_tag_index.append(example.tag_num) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(pad_token) input_mask.append(0 if mask_padding_with_zero else 1) segment_ids.append(pad_token_segment_id) token_to_tag_index.append(example.tag_num) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(token_to_tag_index) == max_seq_length span_is_impossible = False start_position = None end_position = None if is_training: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: span_is_impossible = True start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset ''' if 10 < example_index < 20: print("*** Example ***") #print("page_id: %s" % (example.qas_id[:-5])) #print("token_to_tag_index :%s" % token_to_tag_index) #print(len(token_to_tag_index)) #print("unique_id: %s" % (unique_id)) #print("example_index: %s" % (example_index)) #print("doc_span_index: %s" % (doc_span_index)) # print("tokens: %s" % " ".join(tokens)) print("tokens: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in enumerate(tokens) ])) #print("token_to_orig_map: %s" % " ".join([ # "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()])) #print(len(token_to_orig_map)) # print("token_is_max_context: %s" % " ".join([ # "%d:%s" % (x, y) for (x, y) in token_is_max_context.items() # ])) #print(len(token_is_max_context)) #print("input_ids: %s" % " ".join([str(x) for x in input_ids])) #print(len(input_ids)) #print( # "input_mask: %s" % " ".join([str(x) for x in input_mask])) #print(len(input_mask)) #print( # "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) #print(len(segment_ids)) print(f"original answer: {example.orig_answer_text}") if is_training and span_is_impossible: print("impossible example") if is_training and not span_is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) print("start_position: %d" % (start_position)) print("end_position: %d" % (end_position)) print( "answer: %s" % (answer_text)) ''' # print('token_to_tag_index', token_to_tag_index) # print('xpath_tag_map', xpath_tag_map) # exit(0) xpath_tags_seq = [xpath_tag_map.get(tid, pad_x_tag_seq) for tid in token_to_tag_index] # ok xpath_subs_seq = [xpath_subs_map.get(tid, pad_x_subs_seq) for tid in token_to_tag_index] # ok xpath_box_seq = [xpath_box.get(tid, pad_x_box) for tid in token_to_tag_index] # print(xpath_box_seq) # exit(0) # we need to get extended_attention_mask if visible_matrix is not None: extended_attention_mask = [] for tid in token_to_tag_index: if tid == example.tag_num: extended_attention_mask.append(input_mask) else: visible_tids = visible_matrix[tid] if len(visible_tids) == 0: extended_attention_mask.append(input_mask) continue visible_per_token = [] for i, tid in enumerate(token_to_tag_index): if tid == example.tag_num and input_mask[i] == (1 if mask_padding_with_zero else 0): visible_per_token.append(1 if mask_padding_with_zero else 0) elif tid in visible_tids: visible_per_token.append(1 if mask_padding_with_zero else 0) else: visible_per_token.append(0 if mask_padding_with_zero else 1) extended_attention_mask.append(visible_per_token) # should be (max_seq_len*max_seq_len) else: extended_attention_mask = None features.append( InputFeatures( unique_id=unique_id, example_index=example_index, page_id=example.qas_id[:-5], doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, paragraph_len=paragraph_len, start_position=start_position, end_position=end_position, token_to_tag_index=token_to_tag_index, is_impossible=span_is_impossible, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, xpath_box_seq=xpath_box_seq, extended_attention_mask=extended_attention_mask, )) unique_id += 1 return features def get_websrc_dataset(args, tokenizer, evaluate=False, output_examples=False): if not evaluate: websrc_dataset = load_and_cache_examples(args, tokenizer, evaluate=evaluate, output_examples=False) return websrc_dataset else: dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=evaluate, output_examples=True) return dataset, examples, features
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/websrc/websrc.py
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss from transformers import BertConfig, BertModel, BertPreTrainedModel, RobertaConfig # from transformers.modeling_bert import BertLayerNorm, BertOnlyMLMHead from transformers.models.bert.modeling_bert import BertOnlyMLMHead BertLayerNorm = torch.nn.LayerNorm logger = logging.getLogger(__name__) LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP = {} LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class Layoutlmv1Config_roberta(RobertaConfig): pretrained_config_archive_map = LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "bert" def __init__(self, max_2d_position_embeddings=1024, add_linear=False, **kwargs): super().__init__(**kwargs) self.max_2d_position_embeddings = max_2d_position_embeddings self.add_linear = add_linear # determine whether to add an additional mapping class Layoutlmv1Config(BertConfig): pretrained_config_archive_map = LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "bert" def __init__(self, max_2d_position_embeddings=1024, add_linear=False, **kwargs): super().__init__(**kwargs) self.max_2d_position_embeddings = max_2d_position_embeddings self.add_linear = add_linear # determine whether to add an additional mapping class WebConfig: max_depth = 50 xpath_unit_hidden_size = 32 hidden_size = 768 hidden_dropout_prob = 0.1 layer_norm_eps = 1e-12 max_xpath_tag_unit_embeddings = 256 max_xpath_subs_unit_embeddings = 1024 class XPathEmbeddings(nn.Module): """Construct the embddings from xpath -- tag and subscript""" # we drop tree-id in this version, as its info can be covered by xpath def __init__(self, config): super(XPathEmbeddings, self).__init__() config = WebConfig() self.max_depth = config.max_depth self.xpath_unitseq2_embeddings = nn.Linear( config.xpath_unit_hidden_size * self.max_depth, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.activation = nn.ReLU() self.xpath_unitseq2_inner = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, 4 * config.hidden_size) self.inner2emb = nn.Linear(4 * config.hidden_size, config.hidden_size) self.xpath_tag_sub_embeddings = nn.ModuleList( [nn.Embedding(config.max_xpath_tag_unit_embeddings, config.xpath_unit_hidden_size) for _ in range(self.max_depth)]) self.xpath_subs_sub_embeddings = nn.ModuleList( [nn.Embedding(config.max_xpath_subs_unit_embeddings, config.xpath_unit_hidden_size) for _ in range(self.max_depth)]) def forward(self, xpath_tags_seq=None, xpath_subs_seq=None): xpath_tags_embeddings = [] xpath_subs_embeddings = [] for i in range(self.max_depth): xpath_tags_embeddings.append(self.xpath_tag_sub_embeddings[i](xpath_tags_seq[:, :, i])) xpath_subs_embeddings.append(self.xpath_subs_sub_embeddings[i](xpath_subs_seq[:, :, i])) xpath_tags_embeddings = torch.cat(xpath_tags_embeddings, dim=-1) xpath_subs_embeddings = torch.cat(xpath_subs_embeddings, dim=-1) xpath_embeddings = xpath_tags_embeddings + xpath_subs_embeddings xpath_embeddings = self.inner2emb( self.dropout(self.activation(self.xpath_unitseq2_inner(xpath_embeddings)))) return xpath_embeddings class Layoutlmv1Embeddings(nn.Module): def __init__(self, config): super(Layoutlmv1Embeddings, self).__init__() self.config = config self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=0 ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) self.x_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.y_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.h_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.w_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size ) # for web extension self.xpath_embeddings = XPathEmbeddings(config) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.doc_linear1 = nn.Linear(config.hidden_size, config.hidden_size) self.doc_linear2 = nn.Linear(config.hidden_size, config.hidden_size) self.web_linear1 = nn.Linear(config.hidden_size, config.hidden_size) self.web_linear2 = nn.Linear(config.hidden_size, config.hidden_size) self.web_linear3 = nn.Linear(config.hidden_size, config.hidden_size) self.web_linear4 = nn.Linear(config.hidden_size, config.hidden_size) self.relu = nn.ReLU() def forward( self, input_ids, bbox=None, xpath_tags_seq=None, xpath_subs_seq=None, token_type_ids=None, position_ids=None, inputs_embeds=None, embedding_mode=None ): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device ) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) if embedding_mode != None and embedding_mode == 'box' : # doc entry bbox = torch.clamp(bbox, 0, self.config.max_2d_position_embeddings-1) left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) embeddings = ( words_embeddings + position_embeddings + left_position_embeddings + upper_position_embeddings # + right_position_embeddings # + lower_position_embeddings # + h_position_embeddings # + w_position_embeddings + token_type_embeddings ) elif embedding_mode != None and embedding_mode == 'html+box' : # doc entry bbox = torch.clamp(bbox, 0, self.config.max_2d_position_embeddings-1) left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) xpath_embeddings = self.xpath_embeddings(xpath_tags_seq, xpath_subs_seq) embeddings = ( words_embeddings + position_embeddings + left_position_embeddings + upper_position_embeddings + xpath_embeddings # + right_position_embeddings # + lower_position_embeddings # + h_position_embeddings # + w_position_embeddings + token_type_embeddings ) else: # web entry if not self.config.add_linear: xpath_embeddings = self.xpath_embeddings(xpath_tags_seq, xpath_subs_seq) embeddings = ( words_embeddings + position_embeddings + token_type_embeddings + xpath_embeddings ) else: xpath_embeddings = self.xpath_embeddings(xpath_tags_seq, xpath_subs_seq) temp_embeddings = self.web_linear2(self.relu(self.web_linear1( xpath_embeddings ))) embeddings = ( words_embeddings + position_embeddings + token_type_embeddings + temp_embeddings ) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class Layoutlmv1Model(BertModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super(Layoutlmv1Model, self).__init__(config) self.embeddings = Layoutlmv1Embeddings(config) self.init_weights() def forward( self, input_ids, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, xpath_tags_seq=None, xpath_subs_seq=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, embedding_mode=None, ): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=torch.float32 # dtype=next(self.parameters()).dtype # this will trigger error when using high version torch ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = ( head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) ) head_mask = head_mask.expand( self.config.num_hidden_layers, -1, -1, -1, -1 ) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids, bbox=bbox, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, position_ids=position_ids, token_type_ids=token_type_ids, embedding_mode=embedding_mode ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class Layoutlmv1ForTokenClassification(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = Layoutlmv1Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): outputs = self.bert( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[ 2: ] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions) class Layoutlmv1ForMaskedLM(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.bert = Layoutlmv1Model(config) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_input_embeddings(self): return self.bert.embeddings.word_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder def forward( self, input_ids, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, masked_lm_labels=None, encoder_hidden_states=None, encoder_attention_mask=None, lm_labels=None, xpath_tags_seq=None, xpath_subs_seq=None, ): outputs = self.bert( input_ids, bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) outputs = (prediction_scores,) + outputs[ 2: ] # Add hidden states and attention if they are here # Although this may seem awkward, BertForMaskedLM supports two scenarios: # 1. If a tensor that contains the indices of masked labels is provided, # the cross-entropy is the MLM cross-entropy that measures the likelihood # of predictions for masked words. # 2. If `lm_labels` is provided we are in a causal scenario where we # try to predict the next token for each input in the decoder. if masked_lm_labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1), ) outputs = (masked_lm_loss,) + outputs return ( outputs ) # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions) class Layoutlmv1ForMaskedLM_roberta(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.roberta = Layoutlmv1Model(config) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_input_embeddings(self): return self.roberta.embeddings.word_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder def forward( self, input_ids, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, masked_lm_labels=None, encoder_hidden_states=None, encoder_attention_mask=None, lm_labels=None, xpath_tags_seq=None, xpath_subs_seq=None, ): outputs = self.roberta( input_ids, bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) outputs = (prediction_scores,) + outputs[ 2: ] # Add hidden states and attention if they are here # Although this may seem awkward, BertForMaskedLM supports two scenarios: # 1. If a tensor that contains the indices of masked labels is provided, # the cross-entropy is the MLM cross-entropy that measures the likelihood # of predictions for masked words. # 2. If `lm_labels` is provided we are in a causal scenario where we # try to predict the next token for each input in the decoder. if masked_lm_labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1), ) outputs = (masked_lm_loss,) + outputs return ( outputs ) # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions) class Layoutlmv1ForQuestionAnswering(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = Layoutlmv1Model(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, # inputs_embeds=None, start_positions=None, end_positions=None, # output_attentions=None, # output_hidden_states=None, # return_dict=None, xpath_tags_seq=None, xpath_subs_seq=None, embedding_mode=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ # return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids=input_ids, bbox=bbox, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, embedding_mode=embedding_mode ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 # if not return_dict: # output = (start_logits, end_logits) + outputs[2:] # return ((total_loss,) + output) if total_loss is not None else output # # return QuestionAnsweringModelOutput( # loss=total_loss, # start_logits=start_logits, # end_logits=end_logits, # hidden_states=outputs.hidden_states, # attentions=outputs.attentions, # ) output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output class Layoutlmv1ForQuestionAnswering_roberta(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = Layoutlmv1Model(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, # inputs_embeds=None, start_positions=None, end_positions=None, # output_attentions=None, # output_hidden_states=None, # return_dict=None, xpath_tags_seq=None, xpath_subs_seq=None, embedding_mode=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ # return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids=input_ids, bbox=bbox, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, embedding_mode=embedding_mode ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 # if not return_dict: # output = (start_logits, end_logits) + outputs[2:] # return ((total_loss,) + output) if total_loss is not None else output # # return QuestionAnsweringModelOutput( # loss=total_loss, # start_logits=start_logits, # end_logits=end_logits, # hidden_states=outputs.hidden_states, # attentions=outputs.attentions, # ) output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/websrc/model.py
tags_dict = {'a': 0, 'abbr': 1, 'acronym': 2, 'address': 3, 'altGlyph': 4, 'altGlyphDef': 5, 'altGlyphItem': 6, 'animate': 7, 'animateColor': 8, 'animateMotion': 9, 'animateTransform': 10, 'applet': 11, 'area': 12, 'article': 13, 'aside': 14, 'audio': 15, 'b': 16, 'base': 17, 'basefont': 18, 'bdi': 19, 'bdo': 20, 'bgsound': 21, 'big': 22, 'blink': 23, 'blockquote': 24, 'body': 25, 'br': 26, 'button': 27, 'canvas': 28, 'caption': 29, 'center': 30, 'circle': 31, 'cite': 32, 'clipPath': 33, 'code': 34, 'col': 35, 'colgroup': 36, 'color-profile': 37, 'content': 38, 'cursor': 39, 'data': 40, 'datalist': 41, 'dd': 42, 'defs': 43, 'del': 44, 'desc': 45, 'details': 46, 'dfn': 47, 'dialog': 48, 'dir': 49, 'div': 50, 'dl': 51, 'dt': 52, 'ellipse': 53, 'em': 54, 'embed': 55, 'feBlend': 56, 'feColorMatrix': 57, 'feComponentTransfer': 58, 'feComposite': 59, 'feConvolveMatrix': 60, 'feDiffuseLighting': 61, 'feDisplacementMap': 62, 'feDistantLight': 63, 'feFlood': 64, 'feFuncA': 65, 'feFuncB': 66, 'feFuncG': 67, 'feFuncR': 68, 'feGaussianBlur': 69, 'feImage': 70, 'feMerge': 71, 'feMergeNode': 72, 'feMorphology': 73, 'feOffset': 74, 'fePointLight': 75, 'feSpecularLighting': 76, 'feSpotLight': 77, 'feTile': 78, 'feTurbulence': 79, 'fieldset': 80, 'figcaption': 81, 'figure': 82, 'filter': 83, 'font-face-format': 84, 'font-face-name': 85, 'font-face-src': 86, 'font-face-uri': 87, 'font-face': 88, 'font': 89, 'footer': 90, 'foreignObject': 91, 'form': 92, 'frame': 93, 'frameset': 94, 'g': 95, 'glyph': 96, 'glyphRef': 97, 'h1': 98, 'h2': 99, 'h3': 100, 'h4': 101, 'h5': 102, 'h6': 103, 'head': 104, 'header': 105, 'hgroup': 106, 'hkern': 107, 'hr': 108, 'html': 109, 'i': 110, 'iframe': 111, 'image': 112, 'img': 113, 'input': 114, 'ins': 115, 'kbd': 116, 'keygen': 117, 'label': 118, 'legend': 119, 'li': 120, 'line': 121, 'linearGradient': 122, 'link': 123, 'main': 124, 'map': 125, 'mark': 126, 'marker': 127, 'marquee': 128, 'mask': 129, 'math': 130, 'menu': 131, 'menuitem': 132, 'meta': 133, 'metadata': 134, 'meter': 135, 'missing-glyph': 136, 'mpath': 137, 'nav': 138, 'nobr': 139, 'noembed': 140, 'noframes': 141, 'noscript': 142, 'object': 143, 'ol': 144, 'optgroup': 145, 'option': 146, 'output': 147, 'p': 148, 'param': 149, 'path': 150, 'pattern': 151, 'picture': 152, 'plaintext': 153, 'polygon': 154, 'polyline': 155, 'portal': 156, 'pre': 157, 'progress': 158, 'q': 159, 'radialGradient': 160, 'rb': 161, 'rect': 162, 'rp': 163, 'rt': 164, 'rtc': 165, 'ruby': 166, 's': 167, 'samp': 168, 'script': 169, 'section': 170, 'select': 171, 'set': 172, 'shadow': 173, 'slot': 174, 'small': 175, 'source': 176, 'spacer': 177, 'span': 178, 'stop': 179, 'strike': 180, 'strong': 181, 'style': 182, 'sub': 183, 'summary': 184, 'sup': 185, 'svg': 186, 'switch': 187, 'symbol': 188, 'table': 189, 'tbody': 190, 'td': 191, 'template': 192, 'text': 193, 'textPath': 194, 'textarea': 195, 'tfoot': 196, 'th': 197, 'thead': 198, 'time': 199, 'title': 200, 'tr': 201, 'track': 202, 'tref': 203, 'tspan': 204, 'tt': 205, 'u': 206, 'ul': 207, 'use': 208, 'var': 209, 'video': 210, 'view': 211, 'vkern': 212, 'wbr': 213, 'xmp': 214}
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/websrc/web_tag_utils.py
import os import sys sys.path.append(os.getcwd()) import torch import torch.nn as nn import shutil import logging import torch.distributed as dist from transformers import ( BertTokenizer, RobertaTokenizer ) from args import args from model import ( Layoutlmv1ForQuestionAnswering, Layoutlmv1Config, Layoutlmv1Config_roberta, Layoutlmv1ForQuestionAnswering_roberta ) from util import set_seed, set_exp_folder, check_screen from trainer import train, evaluate # choose a specific train function # from data.datasets.docvqa import DocvqaDataset from websrc import get_websrc_dataset def main(args): set_seed(args) set_exp_folder(args) # Set up logger logging.basicConfig(filename="{}/output/{}/log.txt".format(args.output_dir, args.exp_name), level=logging.INFO, format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S') logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) logging.info('Args '+str(args)) # Get config, model, and tokenizer if args.model_type == 'bert': config_class, model_class, tokenizer_class = Layoutlmv1Config, Layoutlmv1ForQuestionAnswering, BertTokenizer elif args.model_type == 'roberta': config_class, model_class, tokenizer_class = Layoutlmv1Config_roberta, Layoutlmv1ForQuestionAnswering_roberta, RobertaTokenizer config = config_class.from_pretrained( args.model_name_or_path, cache_dir=args.cache_dir ) config.add_linear = args.add_linear tokenizer = tokenizer_class.from_pretrained( args.model_name_or_path, cache_dir=args.cache_dir ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir, ) parameters = sum(p.numel() for p in model.parameters()) print("Total params: %.2fM" % (parameters/1e6)) ## Start training if args.do_train: dataset_web = get_websrc_dataset(args, tokenizer) logging.info(f'Web dataset is successfully loaded. Length : {len(dataset_web)}') train(args, dataset_web, model, tokenizer) # ## Start evaluating # if args.do_eval: logging.info('Start evaluating') dataset_web, examples, features = get_websrc_dataset(args, tokenizer, evaluate=True, output_examples=True) logging.info(f'[Eval] Web dataset is successfully loaded. Length : {len(dataset_web)}') evaluate(args, dataset_web, examples, features, model, tokenizer) ## Start testing if args.do_test: pass if __name__ == '__main__': main(args)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/websrc/run_websrc.py
import argparse parser = argparse.ArgumentParser() parser.add_argument("--exp_name", default='your_exp_name', type=str) parser.add_argument("--seed", default=42, type=int) parser.add_argument("--output_dir", default='.', type=str) parser.add_argument("--overwrite_output_dir", default=True) parser.add_argument("--model_name_or_path", type=str, default='/path/to/xdoc-pretrain-roberta-1M') parser.add_argument("--cache_dir", type=str, default='./cache') parser.add_argument("--scratch", action='store_true') parser.add_argument("--model_type", default='roberta', choices=['bert', 'roberta']) parser.add_argument("--do_train", default=False, type=bool) parser.add_argument("--do_eval", default=True, type=bool) parser.add_argument("--do_test", default=False, type=bool) parser.add_argument("--overwrite_cache", default=False, type=bool) parser.add_argument("--train_file", default='train.json', type=str) parser.add_argument("--dev_file", default='val.json', type=str) parser.add_argument("--test_file", default='test.json', type=str) parser.add_argument("--doc_stride", default=128, type=int) parser.add_argument("--threads", default=1, type=int) parser.add_argument("--max_query_length", default=64, type=int) parser.add_argument("--local_rank", default=-1, type=int) parser.add_argument("--pad_img_input", default=False, type=bool) parser.add_argument("--fix_visual", default=False, type=bool) parser.add_argument("--num_workers", default=8, type=int) # dataset (args to load websrc) parser.add_argument("--web_train_file", default='/path/to/WebSRC/websrc1.0_train_.json', type=str) parser.add_argument("--web_eval_file", default='/path/to/WebSRC/websrc1.0_dev_.json', type=str) parser.add_argument("--web_root_dir", default='/path/to/WebSRC', type=str) parser.add_argument("--root_dir", default='/path/to/WebSRC', type=str) parser.add_argument("--n_best_size", default=20, type=int) parser.add_argument("--max_answer_length", default=30, type=int) parser.add_argument("--do_lower_case", default=True, type=bool) parser.add_argument("--web_num_features", default=0, type=int) parser.add_argument("--web_save_features", default=True, type=bool) parser.add_argument("--verbose_logging", default=True, type=bool) parser.add_argument("--embedding_mode", choices=['html','box','html+box'], default='html', type=str) parser.add_argument("--dataloader_shuffle", default=True, type=bool) # train parser.add_argument("--batch_per_gpu", default=16, type=int) parser.add_argument("--epoch", default=5, type=int) parser.add_argument("--warmup_ratio", default=0.1, type=float) parser.add_argument("--weight_decay", default=0, type=float) parser.add_argument("--fp16", default=False) parser.add_argument("--fp16_opt_level", default='O1', type=str) parser.add_argument("--learning_rate", default=5e-5, type=float) parser.add_argument("--adam_epsilon", default=1e-8, type=float) parser.add_argument("--max_grad_norm", default=1, type=float) parser.add_argument("--log_step", default=50, type=int) parser.add_argument("--save_step", default=10000, type=int) parser.add_argument("--add_linear", default=True, type=bool) parser.add_argument("--accumulation", default=1, type=int) # mlm parser.add_argument("--mlm_probability", default=0.15, type=float) args = parser.parse_args()
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/websrc/args.py
from genericpath import exists import os import torch.nn as nn import torch import logging from tqdm import tqdm, trange import timeit import collections import json import math from bs4 import BeautifulSoup from copy import deepcopy import string import re from torch.utils.tensorboard import SummaryWriter from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler) from transformers import ( BasicTokenizer, ) from transformers import ( AdamW, get_linear_schedule_with_warmup, ) def reorganize_batch_web(args, batch_web): dic = {} dic['input_ids'] = batch_web[0].cuda() dic['attention_mask'] = batch_web[1].cuda() dic['token_type_ids'] = batch_web[2].cuda() dic['xpath_tags_seq'] = batch_web[3].cuda() dic['xpath_subs_seq'] = batch_web[4].cuda() dic['start_positions'] = batch_web[5].cuda() dic['end_positions'] = batch_web[6].cuda() if 'box' in args.embedding_mode: dic['bbox'] = batch_web[7].cuda() # new added dic['embedding_mode'] = args.embedding_mode return dic def train(args, dataset_web, model, tokenizer): # torch.cuda.set_device(args.local_rank) # Log when executing on clusters try: from azureml.core.run import Run aml_run = Run.get_context() except: aml_run = None # Open tensorboard writer = SummaryWriter(f'{args.output_dir}/output/{args.exp_name}') # Count batch gpu_nums = torch.cuda.device_count() batch = args.batch_per_gpu * gpu_nums dataloader_web = DataLoader( dataset_web, batch_size=batch, num_workers=args.num_workers, pin_memory=False, shuffle=True, ) # Get warmup steps total_step = args.epoch * len(dataloader_web) warmup_steps = int(args.warmup_ratio * total_step) # Prepare optimizers no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon ) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_step ) # Transfer the parameters to cuda model = model.cuda() # Prepare fp16 if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level ) logging.info('Successfully load fp16 mode') # Parallel or Distribute if gpu_nums > 1: model = torch.nn.DataParallel(model) # Record some training info logging.info("***** Running training *****") # logging.info(" Num examples in dataset_doc = %d", len(dataset_doc)) logging.info(" Num examples in dataset_web = %d", len(dataset_web)) # logging.info(" Num steps for each epoch for doc = %d", len(dataloader_doc)) logging.info(" Num steps for each epoch for web = %d", len(dataloader_web)) logging.info(" Num Epochs = %d", args.epoch) logging.info( " Instantaneous batch size per GPU = %d", args.batch_per_gpu ) logging.info(" Total optimization steps = %d", total_step) # Start training model.zero_grad() train_iterator = trange( 0, int(args.epoch), desc="Epoch", ) global_step = 0 for now_epoch, _ in enumerate(tqdm(train_iterator, desc="Iteration")): # tqdm for epoch # epoch_iterator_doc = iter(dataloader_doc) epoch_iterator_web = iter(dataloader_web) min_step = len(epoch_iterator_web) for now_step in tqdm(range(min_step), desc="Iteration"): # tqdm for step # batch_doc = epoch_iterator_doc.next() batch_web = epoch_iterator_web.next() batch_web = reorganize_batch_web(args, batch_web) model.train() # loss_doc = model(**batch_doc)[0] loss_web = model(**batch_web)[0] loss = loss_web if gpu_nums > 1: loss = loss.mean() # loss_doc = loss_doc.mean() loss_web = loss_web.mean() if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm ) else: torch.nn.utils.clip_grad_norm_( model.parameters(), args.max_grad_norm ) if global_step % args.accumulation == 0: optimizer.step() model.zero_grad() scheduler.step() global_step += 1 if global_step % args.log_step == 0: logging.info(f'epoch: {now_epoch} | step: {now_step+1} | total_step: {global_step} | loss: {loss} | lr: {scheduler.get_lr()[0]}') writer.add_scalar('loss', loss, global_step//args.log_step) # writer.add_scalar('loss_doc', loss_doc, global_step//args.log_step) writer.add_scalar('loss_web', loss_web, global_step//args.log_step) writer.add_scalar('lr', scheduler.get_lr()[0], global_step//args.log_step) if aml_run is not None: aml_run.log('loss', loss.item()) # aml_run.log('loss_doc', loss_doc.item()) aml_run.log('loss_web', loss_web.item()) aml_run.log('lr', scheduler.get_lr()[0]) if global_step % args.save_step == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, 'output', args.exp_name, f'step-{global_step}') os.makedirs(output_dir, exist_ok=True) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logging.info("Saving model checkpoint to %s", output_dir) torch.save( optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt") ) torch.save( scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt") ) logging.info( "Saving optimizer and scheduler states to %s", output_dir ) if global_step % 1000 == 0: # eval print('Start eval!') from data.datasets.websrc import get_websrc_dataset dataset_web, examples, features = get_websrc_dataset(args, tokenizer, evaluate=True, output_examples=True) evaluate(args, dataset_web, examples, features, model, tokenizer, global_step) RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def to_list(tensor): return tensor.detach().cpu().tolist() def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return ns_text, ns_to_s_map # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: # if verbose_logging: # logging.info( # "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs class EvalOpts: r""" The options which the matrix evaluation process needs. Arguments: data_file (str): the SQuAD-style json file of the dataset in evaluation. root_dir (str): the root directory of the raw WebSRC dataset, which contains the HTML files. pred_file (str): the prediction file which contain the best predicted answer text of each question from the model. tag_pred_file (str): the prediction file which contain the best predicted answer tag id of each question from the model. result_file (str): the file to write down the matrix evaluation results of each question. out_file (str): the file to write down the final matrix evaluation results of the whole dataset. """ def __init__(self, data_file, root_dir, pred_file, tag_pred_file, result_file='', out_file=""): self.data_file = data_file self.root_dir = root_dir self.pred_file = pred_file self.tag_pred_file = tag_pred_file self.result_file = result_file self.out_file = out_file def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_tag_prediction_file, output_nbest_file, verbose_logging, tokenizer): r""" Compute and write down the final results, including the n best results. Arguments: all_examples (list[SRCExample]): all the SRC Example of the dataset; note that we only need it to provide the mapping from example index to the question-answers id. all_features (list[InputFeatures]): all the features for the input doc spans. all_results (list[RawResult]): all the results from the models. n_best_size (int): the number of the n best buffer and the final n best result saved. max_answer_length (int): constrain the model to predict the answer no longer than it. do_lower_case (bool): whether the model distinguish upper and lower case of the letters. output_prediction_file (str): the file which the best answer text predictions will be written to. output_tag_prediction_file (str): the file which the best answer tag predictions will be written to. output_nbest_file (str): the file which the n best answer predictions including text, tag, and probabilities will be written to. verbose_logging (bool): if true, all of the warnings related to data processing will be printed. """ logging.info("Writing predictions to: %s" % output_prediction_file) logging.info("Writing nbest to: %s" % output_nbest_file) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit", "tag_ids"]) all_predictions = collections.OrderedDict() all_tag_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue tag_ids = set(feature.token_to_tag_index[start_index: end_index + 1]) prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index], tag_ids=list(tag_ids))) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit", "tag_ids"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = _get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit, tag_ids=pred.tag_ids)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0, tag_ids=[-1])) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit output["tag_ids"] = entry.tag_ids nbest_json.append(output) assert len(nbest_json) >= 1 best = nbest_json[0]["text"].split() best = ' '.join([w for w in best if (w[0] != '<' or w[-1] != '>') and w != "<end-of-node>" and w != tokenizer.sep_token and w != tokenizer.cls_token]) all_predictions[example.qas_id] = best all_tag_predictions[example.qas_id] = nbest_json[0]["tag_ids"] all_nbest_json[example.qas_id] = nbest_json with open(output_prediction_file, "w+") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with open(output_nbest_file, "w+") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") with open(output_tag_prediction_file, 'w+') as writer: writer.write(json.dumps(all_tag_predictions, indent=4) + '\n') return def make_qid_to_has_ans(dataset): r""" Pick all the questions which has answer in the dataset and return the list. """ qid_to_has_ans = {} for domain in dataset: for w in domain['websites']: for qa in w['qas']: qid_to_has_ans[qa['id']] = bool(qa['answers']) return qid_to_has_ans def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def compute_exact(a_gold, a_pred): r""" Calculate the exact match. """ if normalize_answer(a_gold) == normalize_answer(a_pred): return 1 return 0 def get_raw_scores(dataset, preds, tag_preds, root_dir): r""" Calculate all the three matrix (exact match, f1, POS) for each question. Arguments: dataset (dict): the dataset in use. preds (dict): the answer text prediction for each question in the dataset. tag_preds (dict): the answer tags prediction for each question in the dataset. root_dir (str): the base directory for the html files. Returns: tuple(dict, dict, dict): exact match, f1, pos scores for each question. """ exact_scores = {} f1_scores = {} pos_scores = {} for websites in dataset: for w in websites['websites']: f = os.path.join(root_dir, websites['domain'], w['page_id'][0:2], 'processed_data', w['page_id'] + '.html') for qa in w['qas']: qid = qa['id'] gold_answers = [a['text'] for a in qa['answers'] if normalize_answer(a['text'])] gold_tag_answers = [a['element_id'] for a in qa['answers']] additional_tag_information = [a['answer_start'] for a in qa['answers']] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [''] if qid not in preds: print('Missing prediction for %s' % qid) continue a_pred, t_pred = preds[qid], tag_preds[qid] # Take max over all gold answers exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) pos_scores[qid] = max(compute_pos(f, t, a, t_pred) for t, a in zip(gold_tag_answers, additional_tag_information)) return exact_scores, f1_scores, pos_scores def get_tokens(s): r""" Get the word list in the input. """ if not s: return [] return normalize_answer(s).split() def compute_f1(a_gold, a_pred): r""" Calculate the f1 score. """ gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def compute_pos(f, t_gold, addition, t_pred): r""" Calculate the POS score. Arguments: f (str): the html file on which the question is based. t_gold (int): the gold answer tag id provided by the dataset (the value correspond to the key element_id). addition (int): the addition information used for yes/no question provided by the dataset (the value corresponding to the key answer_start). t_pred (list[int]): the tag ids of the tags corresponding the each word in the predicted answer. Returns: float: the POS score. """ h = BeautifulSoup(open(f), "lxml") p_gold, e_gold = set(), h.find(tid=t_gold) if e_gold is None: if len(t_pred) != 1: return 0 else: t = t_pred[0] e_pred, e_prev = h.find(tid=t), h.find(tid=t-1) if (e_pred is not None) or (addition == 1 and e_prev is not None) or\ (addition == 0 and e_prev is None): return 0 else: return 1 else: p_gold.add(e_gold['tid']) for e in e_gold.parents: if int(e['tid']) < 2: break p_gold.add(e['tid']) p = None for t in t_pred: p_pred, e_pred = set(), h.find(tid=t) if e_pred is not None: p_pred.add(e_pred['tid']) if e_pred.name != 'html': for e in e_pred.parents: if int(e['tid']) < 2: break p_pred.add(e['tid']) else: p_pred.add(str(t)) if p is None: p = p_pred else: p = p & p_pred return len(p_gold & p) / len(p_gold | p) def make_pages_list(dataset): r""" Record all the pages which appears in the dataset and return the list. """ pages_list = [] last_page = None for domain in dataset: for w in domain['websites']: for qa in w['qas']: if last_page != qa['id'][:4]: last_page = qa['id'][:4] pages_list.append(last_page) return pages_list def make_eval_dict(exact_scores, f1_scores, pos_scores, qid_list=None): r""" Make the dictionary to show the evaluation results. """ if qid_list is None: total = len(exact_scores) return collections.OrderedDict([ ('exact', 100.0 * sum(exact_scores.values()) / total), ('f1', 100.0 * sum(f1_scores.values()) / total), ('pos', 100.0 * sum(pos_scores.values()) / total), ('total', total), ]) else: total = len(qid_list) if total == 0: return collections.OrderedDict([ ('exact', 0), ('f1', 0), ('pos', 0), ('total', 0), ]) return collections.OrderedDict([ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total), ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total), ('pos', 100.0 * sum(pos_scores[k] for k in qid_list) / total), ('total', total), ]) def merge_eval(main_eval, new_eval, prefix): for k in new_eval: main_eval['%s_%s' % (prefix, k)] = new_eval[k] def evaluate_on_squad(opts): with open(opts.data_file) as f: dataset_json = json.load(f) dataset = dataset_json['data'] if isinstance(opts.pred_file, str): with open(opts.pred_file) as f: preds = json.load(f) else: preds = opts.pred_file if isinstance(opts.tag_pred_file, str): with open(opts.tag_pred_file) as f: tag_preds = json.load(f) else: tag_preds = opts.tag_pred_file qid_to_has_ans = make_qid_to_has_ans(dataset) has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact, f1, pos = get_raw_scores(dataset, preds, tag_preds, opts.root_dir) out_eval = make_eval_dict(exact, f1, pos) if has_ans_qids: has_ans_eval = make_eval_dict(exact, f1, pos, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, 'HasAns') if no_ans_qids: no_ans_eval = make_eval_dict(exact, f1, pos, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, 'NoAns') print(json.dumps(out_eval, indent=2)) pages_list, write_eval = make_pages_list(dataset), deepcopy(out_eval) for p in pages_list: pages_ans_qids = [k for k, _ in qid_to_has_ans.items() if p in k] page_eval = make_eval_dict(exact, f1, pos, qid_list=pages_ans_qids) merge_eval(write_eval, page_eval, p) if opts.result_file: with open(opts.result_file, 'w') as f: w = {} for k, v in qid_to_has_ans.items(): w[k] = {'exact': exact[k], 'f1': f1[k], 'pos': pos[k]} json.dump(w, f) if opts.out_file: with open(opts.out_file, 'w') as f: json.dump(write_eval, f) print('****** result ******') print(out_eval) return out_eval def evaluate(args, dataset_web, examples, features, model, tokenizer, step=0): gpu_nums = torch.cuda.device_count() batch = args.batch_per_gpu * gpu_nums eval_sampler = SequentialSampler(dataset_web) eval_dataloader = DataLoader(dataset_web, sampler=eval_sampler, batch_size=batch, num_workers=8) # Eval! logging.info("***** Running evaluation *****") logging.info(" Num examples = %d", len(dataset_web)) logging.info(" Batch size = %d", batch) model = model.cuda() all_results = [] start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.cuda() for t in batch) with torch.no_grad(): inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2], 'xpath_tags_seq': batch[4], 'xpath_subs_seq': batch[5], } feature_indices = batch[3] outputs = model(**inputs) for i, feature_index in enumerate(feature_indices): eval_feature = features[feature_index.item()] unique_id = int(eval_feature.unique_id) result = RawResult(unique_id=unique_id, start_logits=to_list(outputs[0][i]), end_logits=to_list(outputs[1][i])) all_results.append(result) eval_time = timeit.default_timer() - start_time logging.info(" Evaluation done in total %f secs (%f sec per example)", eval_time, eval_time / len(dataset_web)) # Compute predictions # output_dir = os.path.join(args.output_dir, 'output', args.exp_name, f'step-{global_step}') output_prediction_file = os.path.join(args.output_dir,"output", args.exp_name, f"predictions_{step}.json") output_tag_prediction_file = os.path.join(args.output_dir,"output", args.exp_name, f"tag_predictions_{step}.json") output_nbest_file = os.path.join(args.output_dir,"output", args.exp_name, f"nbest_predictions_{step}.json") output_result_file = os.path.join(args.output_dir,"output", args.exp_name, f"qas_eval_results_{step}.json") output_file = os.path.join(args.output_dir,"output", args.exp_name, f"eval_matrix_results_{step}") write_predictions(examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_tag_prediction_file, output_nbest_file, args.verbose_logging, tokenizer) # Evaluate evaluate_options = EvalOpts(data_file=args.web_eval_file, root_dir=args.root_dir, pred_file=output_prediction_file, tag_pred_file=output_tag_prediction_file, result_file=output_result_file, out_file=output_file) results = evaluate_on_squad(evaluate_options) return results
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/websrc/trainer.py
import collections import json import logging import os from typing import Optional, Tuple import numpy as np from tqdm.auto import tqdm logger = logging.getLogger(__name__) def postprocess_qa_predictions( examples, features, predictions: Tuple[np.ndarray, np.ndarray], version_2_with_negative: bool = False, n_best_size: int = 20, max_answer_length: int = 30, null_score_diff_threshold: float = 0.0, output_dir: Optional[str] = None, prefix: Optional[str] = None, log_level: Optional[int] = logging.WARNING, ): """ Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the original contexts. This is the base postprocessing functions for models that only return start and end logits. Args: examples: The non-preprocessed dataset (see the main script for more information). features: The processed dataset (see the main script for more information). predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): The predictions of the model: two arrays containing the start logits and the end logits respectively. Its first dimension must match the number of elements of :obj:`features`. version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the underlying dataset contains examples with no answers. n_best_size (:obj:`int`, `optional`, defaults to 20): The total number of n-best predictions to generate when looking for an answer. max_answer_length (:obj:`int`, `optional`, defaults to 30): The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another. null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0): The threshold used to select the null answer: if the best answer has a score that is less than the score of the null answer minus this threshold, the null answer is selected for this example (note that the score of the null answer for an example giving several features is the minimum of the scores for the null answer on each feature: all features must be aligned on the fact they `want` to predict a null answer). Only useful when :obj:`version_2_with_negative` is :obj:`True`. output_dir (:obj:`str`, `optional`): If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null answers, are saved in `output_dir`. prefix (:obj:`str`, `optional`): If provided, the dictionaries mentioned above are saved with `prefix` added to their names. log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``): ``logging`` log level (e.g., ``logging.WARNING``) """ if len(predictions) != 2: raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).") all_start_logits, all_end_logits = predictions if len(predictions[0]) != len(features): raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.") # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() if version_2_with_negative: scores_diff_json = collections.OrderedDict() # Logging. logger.setLevel(log_level) logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") # Let's loop over all the examples! for example_index, example in enumerate(tqdm(examples)): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_prediction = None prelim_predictions = [] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_logits = all_start_logits[feature_index] end_logits = all_end_logits[feature_index] # This is what will allow us to map some the positions in our logits to span of texts in the original # context. offset_mapping = features[feature_index]["offset_mapping"] # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context # available in the current feature. token_is_max_context = features[feature_index].get("token_is_max_context", None) # Update minimum null prediction. feature_null_score = start_logits[0] + end_logits[0] if min_null_prediction is None or min_null_prediction["score"] > feature_null_score: min_null_prediction = { "offsets": (0, 0), "score": feature_null_score, "start_logit": start_logits[0], "end_logit": end_logits[0], } # Go through all possibilities for the `n_best_size` greater start and end logits. start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() for start_index in start_indexes: for end_index in end_indexes: # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond # to part of the input_ids that are not in the context. if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or len(offset_mapping[start_index]) < 2 or offset_mapping[end_index] is None or len(offset_mapping[end_index]) < 2 ): continue # Don't consider answers with a length that is either < 0 or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue # Don't consider answer that don't have the maximum context available (if such information is # provided). if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): continue prelim_predictions.append( { "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), "score": start_logits[start_index] + end_logits[end_index], "start_logit": start_logits[start_index], "end_logit": end_logits[end_index], } ) if version_2_with_negative and min_null_prediction is not None: # Add the minimum null prediction prelim_predictions.append(min_null_prediction) null_score = min_null_prediction["score"] # Only keep the best `n_best_size` predictions. predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] # Add back the minimum null prediction if it was removed because of its low score. if ( version_2_with_negative and min_null_prediction is not None and not any(p["offsets"] == (0, 0) for p in predictions) ): predictions.append(min_null_prediction) # Use the offsets to gather the answer text in the original context. context = example["context"] for pred in predictions: offsets = pred.pop("offsets") pred["text"] = context[offsets[0] : offsets[1]] # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid # failure. if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""): predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0}) # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using # the LogSumExp trick). scores = np.array([pred.pop("score") for pred in predictions]) exp_scores = np.exp(scores - np.max(scores)) probs = exp_scores / exp_scores.sum() # Include the probabilities in our predictions. for prob, pred in zip(probs, predictions): pred["probability"] = prob # Pick the best prediction. If the null answer is not possible, this is easy. if not version_2_with_negative: all_predictions[example["id"]] = predictions[0]["text"] else: # Otherwise we first need to find the best non-empty prediction. i = 0 while predictions[i]["text"] == "": i += 1 best_non_null_pred = predictions[i] # Then we compare to the null prediction using the threshold. score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"] scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable. if score_diff > null_score_diff_threshold: all_predictions[example["id"]] = "" else: all_predictions[example["id"]] = best_non_null_pred["text"] # Make `predictions` JSON-serializable by casting np.float back to float. all_nbest_json[example["id"]] = [ {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} for pred in predictions ] # If we have an output_dir, let's save all those dicts. if output_dir is not None: if not os.path.isdir(output_dir): raise EnvironmentError(f"{output_dir} is not a directory.") prediction_file = os.path.join( output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" ) nbest_file = os.path.join( output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" ) if version_2_with_negative: null_odds_file = os.path.join( output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" ) logger.info(f"Saving predictions to {prediction_file}.") with open(prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") logger.info(f"Saving nbest_preds to {nbest_file}.") with open(nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: logger.info(f"Saving null_odds to {null_odds_file}.") with open(null_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions def postprocess_qa_predictions_with_beam_search( examples, features, predictions: Tuple[np.ndarray, np.ndarray], version_2_with_negative: bool = False, n_best_size: int = 20, max_answer_length: int = 30, start_n_top: int = 5, end_n_top: int = 5, output_dir: Optional[str] = None, prefix: Optional[str] = None, log_level: Optional[int] = logging.WARNING, ): """ Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as cls token predictions. Args: examples: The non-preprocessed dataset (see the main script for more information). features: The processed dataset (see the main script for more information). predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): The predictions of the model: two arrays containing the start logits and the end logits respectively. Its first dimension must match the number of elements of :obj:`features`. version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the underlying dataset contains examples with no answers. n_best_size (:obj:`int`, `optional`, defaults to 20): The total number of n-best predictions to generate when looking for an answer. max_answer_length (:obj:`int`, `optional`, defaults to 30): The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another. start_n_top (:obj:`int`, `optional`, defaults to 5): The number of top start logits too keep when searching for the :obj:`n_best_size` predictions. end_n_top (:obj:`int`, `optional`, defaults to 5): The number of top end logits too keep when searching for the :obj:`n_best_size` predictions. output_dir (:obj:`str`, `optional`): If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null answers, are saved in `output_dir`. prefix (:obj:`str`, `optional`): If provided, the dictionaries mentioned above are saved with `prefix` added to their names. log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``): ``logging`` log level (e.g., ``logging.WARNING``) """ if len(predictions) != 5: raise ValueError("`predictions` should be a tuple with five elements.") start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions if len(predictions[0]) != len(features): raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.") # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() if version_2_with_negative else None # Logging. logger.setLevel(log_level) logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") # Let's loop over all the examples! for example_index, example in enumerate(tqdm(examples)): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_score = None prelim_predictions = [] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_log_prob = start_top_log_probs[feature_index] start_indexes = start_top_index[feature_index] end_log_prob = end_top_log_probs[feature_index] end_indexes = end_top_index[feature_index] feature_null_score = cls_logits[feature_index] # This is what will allow us to map some the positions in our logits to span of texts in the original # context. offset_mapping = features[feature_index]["offset_mapping"] # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context # available in the current feature. token_is_max_context = features[feature_index].get("token_is_max_context", None) # Update minimum null prediction if min_null_score is None or feature_null_score < min_null_score: min_null_score = feature_null_score # Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits. for i in range(start_n_top): for j in range(end_n_top): start_index = int(start_indexes[i]) j_index = i * end_n_top + j end_index = int(end_indexes[j_index]) # Don't consider out-of-scope answers (last part of the test should be unnecessary because of the # p_mask but let's not take any risk) if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or len(offset_mapping[start_index]) < 2 or offset_mapping[end_index] is None or len(offset_mapping[end_index]) < 2 ): continue # Don't consider answers with a length negative or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue # Don't consider answer that don't have the maximum context available (if such information is # provided). if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): continue prelim_predictions.append( { "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), "score": start_log_prob[i] + end_log_prob[j_index], "start_log_prob": start_log_prob[i], "end_log_prob": end_log_prob[j_index], } ) # Only keep the best `n_best_size` predictions. predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] # Use the offsets to gather the answer text in the original context. context = example["context"] for pred in predictions: offsets = pred.pop("offsets") pred["text"] = context[offsets[0] : offsets[1]] # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid # failure. if len(predictions) == 0: # Without predictions min_null_score is going to be None and None will cause an exception later min_null_score = -2e-6 predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": min_null_score}) # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using # the LogSumExp trick). scores = np.array([pred.pop("score") for pred in predictions]) exp_scores = np.exp(scores - np.max(scores)) probs = exp_scores / exp_scores.sum() # Include the probabilities in our predictions. for prob, pred in zip(probs, predictions): pred["probability"] = prob # Pick the best prediction and set the probability for the null answer. all_predictions[example["id"]] = predictions[0]["text"] if version_2_with_negative: scores_diff_json[example["id"]] = float(min_null_score) # Make `predictions` JSON-serializable by casting np.float back to float. all_nbest_json[example["id"]] = [ {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} for pred in predictions ] # If we have an output_dir, let's save all those dicts. if output_dir is not None: if not os.path.isdir(output_dir): raise EnvironmentError(f"{output_dir} is not a directory.") prediction_file = os.path.join( output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" ) nbest_file = os.path.join( output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" ) if version_2_with_negative: null_odds_file = os.path.join( output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" ) logger.info(f"Saving predictions to {prediction_file}.") with open(prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") logger.info(f"Saving nbest_preds to {nbest_file}.") with open(nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: logger.info(f"Saving null_odds to {null_odds_file}.") with open(null_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions, scores_diff_json
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/squad/utils_qa.py
import logging import os os.environ['DISABLE_MLFLOW_INTEGRATION'] = 'True' import sys from dataclasses import dataclass, field from typing import Optional import datasets from datasets import load_dataset, load_metric import transformers from trainer_qa import QuestionAnsweringTrainer from transformers import ( AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PreTrainedTokenizerFast, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version from utils_qa import postprocess_qa_predictions # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.20.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt") logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=384, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) pad_to_max_length: bool = field( default=True, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) version_2_with_negative: bool = field( default=False, metadata={"help": "If true, some of the examples do not have an answer."} ) null_score_diff_threshold: float = field( default=0.0, metadata={ "help": ( "The threshold used to select the null answer: if the best answer has a score that is less than " "the score of the null answer minus this threshold, the null answer is selected for this example. " "Only useful when `version_2_with_negative=True`." ) }, ) doc_stride: int = field( default=128, metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, ) n_best_size: int = field( default=20, metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, ) max_answer_length: int = field( default=30, metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) }, ) def __post_init__(self): if ( self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None ): raise ValueError("Need either a dataset name or a training/validation file/test_file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.test_file is not None: extension = self.test_file.split(".")[-1] assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. # set_seed(training_args.seed) set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] raw_datasets = load_dataset( extension, data_files=data_files, field="data", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForQuestionAnswering.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Tokenizer check: this script requires a fast tokenizer. if not isinstance(tokenizer, PreTrainedTokenizerFast): raise ValueError( "This example script only works for models that have a fast tokenizer. Checkout the big table of models at" " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" " this requirement" ) # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names else: column_names = raw_datasets["test"].column_names question_column_name = "question" if "question" in column_names else column_names[0] context_column_name = "context" if "context" in column_names else column_names[1] answer_column_name = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). pad_on_right = tokenizer.padding_side == "right" if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Training preprocessing def prepare_train_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length" if data_args.pad_to_max_length else False, ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != (1 if pad_on_right else 0): token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != (1 if pad_on_right else 0): token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) return tokenized_examples if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: # We will select sample from whole data if argument is specified max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) # Create train feature from dataset with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( prepare_train_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) if data_args.max_train_samples is not None: # Number of samples might increase during Feature Creation, We select only specified max samples max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) # Validation preprocessing def prepare_validation_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length" if data_args.pad_to_max_length else False, ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_examples = raw_datasets["validation"] if data_args.max_eval_samples is not None: # We will select sample from whole data max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) eval_examples = eval_examples.select(range(max_eval_samples)) # Validation Feature Creation with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) if data_args.max_eval_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) if training_args.do_predict: if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_examples = raw_datasets["test"] if data_args.max_predict_samples is not None: # We will select sample from whole data predict_examples = predict_examples.select(range(data_args.max_predict_samples)) # Predict Feature Creation with training_args.main_process_first(desc="prediction dataset map pre-processing"): predict_dataset = predict_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on prediction dataset", ) if data_args.max_predict_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) # Data collator # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data # collator. data_collator = ( default_data_collator if data_args.pad_to_max_length else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None) ) # Post-processing: def post_processing_function(examples, features, predictions, stage="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. predictions = postprocess_qa_predictions( examples=examples, features=features, predictions=predictions, version_2_with_negative=data_args.version_2_with_negative, n_best_size=data_args.n_best_size, max_answer_length=data_args.max_answer_length, null_score_diff_threshold=data_args.null_score_diff_threshold, output_dir=training_args.output_dir, log_level=log_level, prefix=stage, ) # Format the result to the format the metric expects. if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=formatted_predictions, label_ids=references) metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad") def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Initialize our Trainer trainer = QuestionAnsweringTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, eval_examples=eval_examples if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, post_process_function=post_processing_function, compute_metrics=compute_metrics, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Prediction if training_args.do_predict: logger.info("*** Predict ***") results = trainer.predict(predict_dataset, predict_examples) metrics = results.metrics max_predict_samples = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) ) metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/squad/run_squad.py
from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class QuestionAnsweringTrainer(Trainer): def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs): super().__init__(*args, **kwargs) self.eval_examples = eval_examples self.post_process_function = post_process_function def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"): eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset eval_dataloader = self.get_eval_dataloader(eval_dataset) eval_examples = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions) metrics = self.compute_metrics(eval_preds) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) self.log(metrics) else: metrics = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) return metrics def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"): predict_dataloader = self.get_test_dataloader(predict_dataset) # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( predict_dataloader, description="Prediction", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict") metrics = self.compute_metrics(predictions) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/squad/trainer_qa.py
from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import Seq2SeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput if is_torch_tpu_available(): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer): def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs): super().__init__(*args, **kwargs) self.eval_examples = eval_examples self.post_process_function = post_process_function # def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"): def evaluate( self, eval_dataset: Optional[Dataset] = None, eval_examples=None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", max_length: Optional[int] = None, num_beams: Optional[int] = None, ) -> Dict[str, float]: self._max_length = max_length if max_length is not None else self.args.generation_max_length self._num_beams = num_beams if num_beams is not None else self.args.generation_num_beams eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset eval_dataloader = self.get_eval_dataloader(eval_dataset) eval_examples = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: eval_preds = self.post_process_function(eval_examples, eval_dataset, output) metrics = self.compute_metrics(eval_preds) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) self.log(metrics) else: metrics = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) return metrics def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"): predict_dataloader = self.get_test_dataloader(predict_dataset) # Temporarily disable metric computation, we will do it in the loop here. compute_metrics = self.compute_metrics self.compute_metrics = None eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: output = eval_loop( predict_dataloader, description="Prediction", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if compute_metrics is None else None, ignore_keys=ignore_keys, ) finally: self.compute_metrics = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict") metrics = self.compute_metrics(predictions) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/squad/trainer_seq2seq_qa.py
#!/usr/bin/env python # coding=utf-8 import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np from datasets import ClassLabel, load_dataset, load_metric import layoutlmft.data.datasets.funsd import transformers from layoutlmft.data import DataCollatorForKeyValueExtraction from layoutlmft.data.data_args import DataTrainingArguments from layoutlmft.models.model_args import ModelArguments from layoutlmft.trainers import FunsdTrainer as Trainer from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, HfArgumentParser, PreTrainedTokenizerFast, TrainingArguments, set_seed, RobertaConfig ) import torch from model import Layoutlmv1ForTokenClassification from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.5.0") logger = logging.getLogger(__name__) def main(): parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() training_args.per_device_train_batch_size = 16 training_args.num_train_epochs=100.0 # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") set_seed(training_args.seed) datasets = load_dataset(os.path.abspath(layoutlmft.data.datasets.funsd.__file__)) print(datasets) if training_args.do_train: column_names = datasets["train"].column_names features = datasets["train"].features else: column_names = datasets["test"].column_names features = datasets["test"].features text_column_name = "tokens" if "tokens" in column_names else column_names[0] label_column_name = ( f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1] ) remove_columns = column_names def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list if isinstance(features[label_column_name].feature, ClassLabel): label_list = features[label_column_name].feature.names # No need to convert the labels since they are already ints. label_to_id = {i: i for i in range(len(label_list))} else: label_list = get_label_list(datasets["train"][label_column_name]) label_to_id = {l: i for i, l in enumerate(label_list)} num_labels = len(label_list) config = RobertaConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, add_prefix_space=True ) # model = AutoModelForTokenClassification.from_pretrained( model = Layoutlmv1ForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Tokenizer check: this script requires a fast tokenizer. if not isinstance(tokenizer, PreTrainedTokenizerFast): raise ValueError( "This example script only works for models that have a fast tokenizer. Checkout the big table of models " "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this " "requirement" ) # Preprocessing the dataset # Padding strategy padding = "max_length" if data_args.pad_to_max_length else False # Tokenize all texts and align the labels with them. def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer( examples[text_column_name], padding=padding, truncation=True, return_overflowing_tokens=True, # We use this argument because the texts in our dataset are lists of words (with a label for each word). is_split_into_words=True, ) labels = [] bboxes = [] images = [] for batch_index in range(len(tokenized_inputs["input_ids"])): word_ids = tokenized_inputs.word_ids(batch_index=batch_index) org_batch_index = tokenized_inputs["overflow_to_sample_mapping"][batch_index] label = examples[label_column_name][org_batch_index] bbox = examples["bboxes"][org_batch_index] image = examples["image"][org_batch_index] previous_word_idx = None label_ids = [] bbox_inputs = [] for word_idx in word_ids: # Special tokens have a word id that is None. We set the label to -100 so they are automatically # ignored in the loss function. if word_idx is None: label_ids.append(-100) bbox_inputs.append([0, 0, 0, 0]) # We set the label for the first token of each word. elif word_idx != previous_word_idx: label_ids.append(label_to_id[label[word_idx]]) bbox_inputs.append(bbox[word_idx]) # For the other tokens in a word, we set the label to either the current label or -100, depending on # the label_all_tokens flag. else: label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100) bbox_inputs.append(bbox[word_idx]) previous_word_idx = word_idx labels.append(label_ids) bboxes.append(bbox_inputs) images.append(image) tokenized_inputs["labels"] = labels tokenized_inputs["bbox"] = bboxes tokenized_inputs["image"] = images return tokenized_inputs if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) train_dataset = train_dataset.map( tokenize_and_align_labels, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "test" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["test"] if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) eval_dataset = eval_dataset.map( tokenize_and_align_labels, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_predict: if "test" not in datasets: raise ValueError("--do_predict requires a test dataset") test_dataset = datasets["test"] if data_args.max_test_samples is not None: test_dataset = test_dataset.select(range(data_args.max_test_samples)) test_dataset = test_dataset.map( tokenize_and_align_labels, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator data_collator = DataCollatorForKeyValueExtraction( tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None, padding=padding, max_length=512, ) # Metrics metric = load_metric("seqeval") def compute_metrics(p): predictions, labels = p predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] true_labels = [ [label_list[l] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] results = metric.compute(predictions=true_predictions, references=true_labels) if data_args.return_entity_level_metrics: # Unpack nested dictionaries final_results = {} for key, value in results.items(): if isinstance(value, dict): for n, v in value.items(): final_results[f"{key}_{n}"] = v else: final_results[key] = value return final_results else: return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) # Training if training_args.do_train: checkpoint = last_checkpoint if last_checkpoint else None train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics trainer.save_model() # Saves the tokenizer too for easy upload max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: logger.info("*** Predict ***") predictions, labels, metrics = trainer.predict(test_dataset) predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] trainer.log_metrics("test", metrics) trainer.save_metrics("test", metrics) # Save predictions output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") if trainer.is_world_process_zero(): with open(output_test_predictions_file, "w") as writer: for prediction in true_predictions: writer.write(" ".join(prediction) + "\n") def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/run_funsd.py
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss from transformers import BertConfig, BertModel, BertPreTrainedModel, RobertaConfig # from transformers.modeling_bert import BertLayerNorm, BertOnlyMLMHead logger = logging.getLogger(__name__) LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP = {} LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class Layoutlmv1Config(RobertaConfig): pretrained_config_archive_map = LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "bert" def __init__(self, max_2d_position_embeddings=1024, add_linear=False, **kwargs): super().__init__(**kwargs) pass class Layoutlmv1Embeddings(nn.Module): def __init__(self, config): super(Layoutlmv1Embeddings, self).__init__() self.config = config self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=0 ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) config.max_2d_position_embeddings = 1024 self.x_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.y_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.h_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.w_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size ) self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.doc_linear1 = nn.Linear(config.hidden_size, config.hidden_size) self.doc_linear2 = nn.Linear(config.hidden_size, config.hidden_size) self.doc_linear3 = nn.Linear(config.hidden_size, config.hidden_size) self.doc_linear4 = nn.Linear(config.hidden_size, config.hidden_size) self.relu = nn.ReLU() def forward( self, input_ids, bbox, token_type_ids=None, position_ids=None, inputs_embeds=None, ): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device ) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) h_position_embeddings = self.h_position_embeddings( bbox[:, :, 3] - bbox[:, :, 1] ) w_position_embeddings = self.w_position_embeddings( bbox[:, :, 2] - bbox[:, :, 0] ) temp_embeddings = self.doc_linear2(self.relu(self.doc_linear1( left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings ))) embeddings = ( words_embeddings + position_embeddings + temp_embeddings + token_type_embeddings ) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class Layoutlmv1Model(BertModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super(Layoutlmv1Model, self).__init__(config) self.embeddings = Layoutlmv1Embeddings(config) self.init_weights() def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, ): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=torch.float32 # dtype=next(self.parameters()).dtype # this will trigger error when using high version torch ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = ( head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) ) head_mask = head_mask.expand( self.config.num_hidden_layers, -1, -1, -1, -1 ) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class Layoutlmv1ForTokenClassification(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = Layoutlmv1Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): outputs = self.roberta( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[ 2: ] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions) class Layoutlmv1ForMaskedLM(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.bert = Layoutlmv1Model(config) self.cls = BertOnlyMLMHead(config) self.init_weights() def get_input_embeddings(self): return self.bert.embeddings.word_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, masked_lm_labels=None, encoder_hidden_states=None, encoder_attention_mask=None, lm_labels=None, ): outputs = self.layoutlm( input_ids, bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) outputs = (prediction_scores,) + outputs[ 2: ] # Add hidden states and attention if they are here # Although this may seem awkward, BertForMaskedLM supports two scenarios: # 1. If a tensor that contains the indices of masked labels is provided, # the cross-entropy is the MLM cross-entropy that measures the likelihood # of predictions for masked words. # 2. If `lm_labels` is provided we are in a causal scenario where we # try to predict the next token for each input in the decoder. if masked_lm_labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1), ) outputs = (masked_lm_loss,) + outputs return ( outputs ) # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions) class Layoutlmv1ForQuestionAnswering(BertPreTrainedModel): config_class = Layoutlmv1Config pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = Layoutlmv1Model(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, # inputs_embeds=None, start_positions=None, end_positions=None, # output_attentions=None, # output_hidden_states=None, # return_dict=None, ): # import numpy as np # torch.set_printoptions(threshold=np.inf) # print(bbox[0]) # exit(0) r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ # return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/model.py
import os import re import numpy as np from transformers.utils import logging logger = logging.get_logger(__name__) PREFIX_CHECKPOINT_DIR = "checkpoint" _re_checkpoint = re.compile(r"^" + PREFIX_CHECKPOINT_DIR + r"\-(\d+)$") def get_last_checkpoint(folder): content = os.listdir(folder) checkpoints = [ path for path in content if _re_checkpoint.search(path) is not None and os.path.isdir(os.path.join(folder, path)) ] if len(checkpoints) == 0: return return os.path.join(folder, max(checkpoints, key=lambda x: int(_re_checkpoint.search(x).groups()[0]))) def re_score(pred_relations, gt_relations, mode="strict"): """Evaluate RE predictions Args: pred_relations (list) : list of list of predicted relations (several relations in each sentence) gt_relations (list) : list of list of ground truth relations rel = { "head": (start_idx (inclusive), end_idx (exclusive)), "tail": (start_idx (inclusive), end_idx (exclusive)), "head_type": ent_type, "tail_type": ent_type, "type": rel_type} vocab (Vocab) : dataset vocabulary mode (str) : in 'strict' or 'boundaries'""" assert mode in ["strict", "boundaries"] relation_types = [v for v in [0, 1] if not v == 0] scores = {rel: {"tp": 0, "fp": 0, "fn": 0} for rel in relation_types + ["ALL"]} # Count GT relations and Predicted relations n_sents = len(gt_relations) n_rels = sum([len([rel for rel in sent]) for sent in gt_relations]) n_found = sum([len([rel for rel in sent]) for sent in pred_relations]) # Count TP, FP and FN per type for pred_sent, gt_sent in zip(pred_relations, gt_relations): for rel_type in relation_types: # strict mode takes argument types into account if mode == "strict": pred_rels = { (rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in pred_sent if rel["type"] == rel_type } gt_rels = { (rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in gt_sent if rel["type"] == rel_type } # boundaries mode only takes argument spans into account elif mode == "boundaries": pred_rels = {(rel["head"], rel["tail"]) for rel in pred_sent if rel["type"] == rel_type} gt_rels = {(rel["head"], rel["tail"]) for rel in gt_sent if rel["type"] == rel_type} scores[rel_type]["tp"] += len(pred_rels & gt_rels) scores[rel_type]["fp"] += len(pred_rels - gt_rels) scores[rel_type]["fn"] += len(gt_rels - pred_rels) # Compute per entity Precision / Recall / F1 for rel_type in scores.keys(): if scores[rel_type]["tp"]: scores[rel_type]["p"] = scores[rel_type]["tp"] / (scores[rel_type]["fp"] + scores[rel_type]["tp"]) scores[rel_type]["r"] = scores[rel_type]["tp"] / (scores[rel_type]["fn"] + scores[rel_type]["tp"]) else: scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0 if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0: scores[rel_type]["f1"] = ( 2 * scores[rel_type]["p"] * scores[rel_type]["r"] / (scores[rel_type]["p"] + scores[rel_type]["r"]) ) else: scores[rel_type]["f1"] = 0 # Compute micro F1 Scores tp = sum([scores[rel_type]["tp"] for rel_type in relation_types]) fp = sum([scores[rel_type]["fp"] for rel_type in relation_types]) fn = sum([scores[rel_type]["fn"] for rel_type in relation_types]) if tp: precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * precision * recall / (precision + recall) else: precision, recall, f1 = 0, 0, 0 scores["ALL"]["p"] = precision scores["ALL"]["r"] = recall scores["ALL"]["f1"] = f1 scores["ALL"]["tp"] = tp scores["ALL"]["fp"] = fp scores["ALL"]["fn"] = fn # Compute Macro F1 Scores scores["ALL"]["Macro_f1"] = np.mean([scores[ent_type]["f1"] for ent_type in relation_types]) scores["ALL"]["Macro_p"] = np.mean([scores[ent_type]["p"] for ent_type in relation_types]) scores["ALL"]["Macro_r"] = np.mean([scores[ent_type]["r"] for ent_type in relation_types]) logger.info(f"RE Evaluation in *** {mode.upper()} *** mode") logger.info( "processed {} sentences with {} relations; found: {} relations; correct: {}.".format( n_sents, n_rels, n_found, tp ) ) logger.info( "\tALL\t TP: {};\tFP: {};\tFN: {}".format(scores["ALL"]["tp"], scores["ALL"]["fp"], scores["ALL"]["fn"]) ) logger.info("\t\t(m avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (micro)".format(precision, recall, f1)) logger.info( "\t\t(M avg): precision: {:.2f};\trecall: {:.2f};\tf1: {:.2f} (Macro)\n".format( scores["ALL"]["Macro_p"], scores["ALL"]["Macro_r"], scores["ALL"]["Macro_f1"] ) ) for rel_type in relation_types: logger.info( "\t{}: \tTP: {};\tFP: {};\tFN: {};\tprecision: {:.2f};\trecall: {:.2f};\tf1: {:.2f};\t{}".format( rel_type, scores[rel_type]["tp"], scores[rel_type]["fp"], scores[rel_type]["fn"], scores[rel_type]["p"], scores[rel_type]["r"], scores[rel_type]["f1"], scores[rel_type]["tp"] + scores[rel_type]["fp"], ) ) return scores
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/evaluation.py
from collections import OrderedDict from transformers import CONFIG_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_NAMES_MAPPING, TOKENIZER_MAPPING from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, BertConverter, XLMRobertaConverter from transformers.models.auto.modeling_auto import auto_class_factory from .models.layoutlmv2 import ( LayoutLMv2Config, LayoutLMv2ForRelationExtraction, LayoutLMv2ForTokenClassification, LayoutLMv2Tokenizer, LayoutLMv2TokenizerFast, ) from .models.layoutxlm import ( LayoutXLMConfig, LayoutXLMForRelationExtraction, LayoutXLMForTokenClassification, LayoutXLMTokenizer, LayoutXLMTokenizerFast, ) CONFIG_MAPPING.update([("layoutlmv2", LayoutLMv2Config), ("layoutxlm", LayoutXLMConfig)]) MODEL_NAMES_MAPPING.update([("layoutlmv2", "LayoutLMv2"), ("layoutxlm", "LayoutXLM")]) TOKENIZER_MAPPING.update( [ (LayoutLMv2Config, (LayoutLMv2Tokenizer, LayoutLMv2TokenizerFast)), (LayoutXLMConfig, (LayoutXLMTokenizer, LayoutXLMTokenizerFast)), ] ) SLOW_TO_FAST_CONVERTERS.update({"LayoutLMv2Tokenizer": BertConverter, "LayoutXLMTokenizer": XLMRobertaConverter}) MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.update( [(LayoutLMv2Config, LayoutLMv2ForTokenClassification), (LayoutXLMConfig, LayoutXLMForTokenClassification)] ) MODEL_FOR_RELATION_EXTRACTION_MAPPING = OrderedDict( [(LayoutLMv2Config, LayoutLMv2ForRelationExtraction), (LayoutXLMConfig, LayoutXLMForRelationExtraction)] ) AutoModelForTokenClassification = auto_class_factory( "AutoModelForTokenClassification", MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, head_doc="token classification" ) AutoModelForRelationExtraction = auto_class_factory( "AutoModelForRelationExtraction", MODEL_FOR_RELATION_EXTRACTION_MAPPING, head_doc="relation extraction" )
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/__init__.py
from dataclasses import dataclass from typing import Dict, Optional, Tuple import torch from transformers.file_utils import ModelOutput @dataclass class ReOutput(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None entities: Optional[Dict] = None relations: Optional[Dict] = None pred_relations: Optional[Dict] = None
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/utils.py
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/__init__.py
from dataclasses import dataclass, field from typing import Optional @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, )
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/model_args.py
# coding=utf-8 from transformers.models.layoutlm.tokenization_layoutlm import LayoutLMTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/vocab.txt", "microsoft/layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlmv2-base-uncased": 512, "microsoft/layoutlmv2-large-uncased": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/layoutlmv2-base-uncased": {"do_lower_case": True}, "microsoft/layoutlmv2-large-uncased": {"do_lower_case": True}, } class LayoutLMv2Tokenizer(LayoutLMTokenizer): r""" Constructs a LayoutLMv2 tokenizer. :class:`~transformers.LayoutLMv2Tokenizer is identical to :class:`~transformers.BertTokenizer` and runs end-to-end tokenization: punctuation splitting + wordpiece. Refer to superclass :class:`~transformers.BertTokenizer` for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self, model_max_length=512, **kwargs): super().__init__(model_max_length=model_max_length, **kwargs)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutlmv2/tokenization_layoutlmv2.py
from .configuration_layoutlmv2 import LayoutLMv2Config from .modeling_layoutlmv2 import LayoutLMv2ForRelationExtraction, LayoutLMv2ForTokenClassification, LayoutLMv2Model from .tokenization_layoutlmv2 import LayoutLMv2Tokenizer from .tokenization_layoutlmv2_fast import LayoutLMv2TokenizerFast
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutlmv2/__init__.py
# -*- coding: utf-8 -*- def add_layoutlmv2_config(cfg): _C = cfg # ----------------------------------------------------------------------------- # Config definition # ----------------------------------------------------------------------------- _C.MODEL.MASK_ON = True # When using pre-trained models in Detectron1 or any MSRA models, # std has been absorbed into its conv1 weights, so the std needs to be set 1. # Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std) _C.MODEL.PIXEL_STD = [57.375, 57.120, 58.395] # ---------------------------------------------------------------------------- # # Backbone options # ---------------------------------------------------------------------------- # _C.MODEL.BACKBONE.NAME = "build_resnet_fpn_backbone" # ---------------------------------------------------------------------------- # # FPN options # ---------------------------------------------------------------------------- # # Names of the input feature maps to be used by FPN # They must have contiguous power of 2 strides # e.g., ["res2", "res3", "res4", "res5"] _C.MODEL.FPN.IN_FEATURES = ["res2", "res3", "res4", "res5"] # ---------------------------------------------------------------------------- # # Anchor generator options # ---------------------------------------------------------------------------- # # Anchor sizes (i.e. sqrt of area) in absolute pixels w.r.t. the network input. # Format: list[list[float]]. SIZES[i] specifies the list of sizes # to use for IN_FEATURES[i]; len(SIZES) == len(IN_FEATURES) must be true, # or len(SIZES) == 1 is true and size list SIZES[0] is used for all # IN_FEATURES. _C.MODEL.ANCHOR_GENERATOR.SIZES = [[32], [64], [128], [256], [512]] # ---------------------------------------------------------------------------- # # RPN options # ---------------------------------------------------------------------------- # # Names of the input feature maps to be used by RPN # e.g., ["p2", "p3", "p4", "p5", "p6"] for FPN _C.MODEL.RPN.IN_FEATURES = ["p2", "p3", "p4", "p5", "p6"] # Number of top scoring RPN proposals to keep before applying NMS # When FPN is used, this is *per FPN level* (not total) _C.MODEL.RPN.PRE_NMS_TOPK_TRAIN = 2000 _C.MODEL.RPN.PRE_NMS_TOPK_TEST = 1000 # Number of top scoring RPN proposals to keep after applying NMS # When FPN is used, this limit is applied per level and then again to the union # of proposals from all levels # NOTE: When FPN is used, the meaning of this config is different from Detectron1. # It means per-batch topk in Detectron1, but per-image topk here. # See the "find_top_rpn_proposals" function for details. _C.MODEL.RPN.POST_NMS_TOPK_TRAIN = 1000 _C.MODEL.RPN.POST_NMS_TOPK_TEST = 1000 # ---------------------------------------------------------------------------- # # ROI HEADS options # ---------------------------------------------------------------------------- # _C.MODEL.ROI_HEADS.NAME = "StandardROIHeads" # Number of foreground classes _C.MODEL.ROI_HEADS.NUM_CLASSES = 5 # Names of the input feature maps to be used by ROI heads # Currently all heads (box, mask, ...) use the same input feature map list # e.g., ["p2", "p3", "p4", "p5"] is commonly used for FPN _C.MODEL.ROI_HEADS.IN_FEATURES = ["p2", "p3", "p4", "p5"] # ---------------------------------------------------------------------------- # # Box Head # ---------------------------------------------------------------------------- # # C4 don't use head name option # Options for non-C4 models: FastRCNNConvFCHead, _C.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" _C.MODEL.ROI_BOX_HEAD.NUM_FC = 2 _C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14 # ---------------------------------------------------------------------------- # # Mask Head # ---------------------------------------------------------------------------- # _C.MODEL.ROI_MASK_HEAD.NAME = "MaskRCNNConvUpsampleHead" _C.MODEL.ROI_MASK_HEAD.NUM_CONV = 4 # The number of convs in the mask head _C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 7 # ---------------------------------------------------------------------------- # # ResNe[X]t options (ResNets = {ResNet, ResNeXt} # Note that parts of a resnet may be used for both the backbone and the head # These options apply to both # ---------------------------------------------------------------------------- # _C.MODEL.RESNETS.DEPTH = 101 _C.MODEL.RESNETS.SIZES = [[32], [64], [128], [256], [512]] _C.MODEL.RESNETS.ASPECT_RATIOS = [[0.5, 1.0, 2.0]] _C.MODEL.RESNETS.OUT_FEATURES = ["res2", "res3", "res4", "res5"] # res4 for C4 backbone, res2..5 for FPN backbone # Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt _C.MODEL.RESNETS.NUM_GROUPS = 32 # Baseline width of each group. # Scaling this parameters will scale the width of all bottleneck layers. _C.MODEL.RESNETS.WIDTH_PER_GROUP = 8 # Place the stride 2 conv on the 1x1 filter # Use True only for the original MSRA ResNet; use False for C2 and Torch models _C.MODEL.RESNETS.STRIDE_IN_1X1 = False
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutlmv2/detectron2_config.py
# coding=utf-8 import math import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss import detectron2 from detectron2.modeling import META_ARCH_REGISTRY from transformers import PreTrainedModel from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, TokenClassifierOutput, ) from transformers.modeling_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from transformers.models.layoutlm.modeling_layoutlm import LayoutLMIntermediate as LayoutLMv2Intermediate from transformers.models.layoutlm.modeling_layoutlm import LayoutLMOutput as LayoutLMv2Output from transformers.models.layoutlm.modeling_layoutlm import LayoutLMPooler as LayoutLMv2Pooler from transformers.models.layoutlm.modeling_layoutlm import LayoutLMSelfOutput as LayoutLMv2SelfOutput from transformers.utils import logging from ...modules.decoders.re import REDecoder from ...utils import ReOutput from .configuration_layoutlmv2 import LayoutLMv2Config from .detectron2_config import add_layoutlmv2_config logger = logging.get_logger(__name__) LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "layoutlmv2-base-uncased", "layoutlmv2-large-uncased", ] LayoutLMv2LayerNorm = torch.nn.LayerNorm class LayoutLMv2Embeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super(LayoutLMv2Embeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = LayoutLMv2LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) def _cal_spatial_position_embeddings(self, bbox): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The :obj:`bbox`coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) return spatial_position_embeddings class LayoutLMv2SelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.fast_qkv = config.fast_qkv self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if config.fast_qkv: self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False) self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) else: self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def compute_qkv(self, hidden_states): if self.fast_qkv: qkv = self.qkv_linear(hidden_states) q, k, v = torch.chunk(qkv, 3, dim=-1) if q.ndimension() == self.q_bias.ndimension(): q = q + self.q_bias v = v + self.v_bias else: _sz = (1,) * (q.ndimension() - 1) + (-1,) q = q + self.q_bias.view(*_sz) v = v + self.v_bias.view(*_sz) else: q = self.query(hidden_states) k = self.key(hidden_states) v = self.value(hidden_states) return q, k, v def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): q, k, v = self.compute_qkv(hidden_states) # (B, L, H*D) -> (B, H, L, D) query_layer = self.transpose_for_scores(q) key_layer = self.transpose_for_scores(k) value_layer = self.transpose_for_scores(v) query_layer = query_layer / math.sqrt(self.attention_head_size) # [BSZ, NAT, L, L] attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.has_relative_attention_bias: attention_scores += rel_pos if self.has_spatial_attention_bias: attention_scores += rel_2d_pos attention_scores = attention_scores.float().masked_fill_(attention_mask.to(torch.bool), float("-inf")) attention_probs = F.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class LayoutLMv2Attention(nn.Module): def __init__(self, config): super().__init__() self.self = LayoutLMv2SelfAttention(config) self.output = LayoutLMv2SelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class LayoutLMv2Layer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LayoutLMv2Attention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" self.crossattention = LayoutLMv2Attention(config) self.intermediate = LayoutLMv2Intermediate(config) self.output = LayoutLMv2Output(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): ret = 0 if bidirectional: num_buckets //= 2 ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret class LayoutLMv2Encoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)]) self.has_relative_attention_bias = config.has_relative_attention_bias self.has_spatial_attention_bias = config.has_spatial_attention_bias if self.has_relative_attention_bias: self.rel_pos_bins = config.rel_pos_bins self.max_rel_pos = config.max_rel_pos self.rel_pos_onehot_size = config.rel_pos_bins self.rel_pos_bias = nn.Linear(self.rel_pos_onehot_size, config.num_attention_heads, bias=False) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config.max_rel_2d_pos self.rel_2d_pos_bins = config.rel_2d_pos_bins self.rel_2d_pos_onehot_size = config.rel_2d_pos_bins self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_onehot_size, config.num_attention_heads, bias=False) self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_onehot_size, config.num_attention_heads, bias=False) def _cal_1d_pos_emb(self, hidden_states, position_ids): rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = relative_position_bucket( rel_pos_mat, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos, ) rel_pos = F.one_hot(rel_pos, num_classes=self.rel_pos_onehot_size).type_as(hidden_states) rel_pos = self.rel_pos_bias(rel_pos).permute(0, 3, 1, 2) rel_pos = rel_pos.contiguous() return rel_pos def _cal_2d_pos_emb(self, hidden_states, bbox): position_coord_x = bbox[:, :, 0] position_coord_y = bbox[:, :, 3] rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) rel_pos_x = relative_position_bucket( rel_pos_x_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_y = relative_position_bucket( rel_pos_y_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos, ) rel_pos_x = F.one_hot(rel_pos_x, num_classes=self.rel_2d_pos_onehot_size).type_as(hidden_states) rel_pos_y = F.one_hot(rel_pos_y, num_classes=self.rel_2d_pos_onehot_size).type_as(hidden_states) rel_pos_x = self.rel_pos_x_bias(rel_pos_x).permute(0, 3, 1, 2) rel_pos_y = self.rel_pos_y_bias(rel_pos_y).permute(0, 3, 1, 2) rel_pos_x = rel_pos_x.contiguous() rel_pos_y = rel_pos_y.contiguous() rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, bbox=None, position_ids=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None rel_pos = self._cal_1d_pos_emb(hidden_states, position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._cal_2d_pos_emb(hidden_states, bbox) if self.has_spatial_attention_bias else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warn( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class LayoutLMv2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LayoutLMv2Config pretrained_model_archive_map = LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST base_model_prefix = "layoutlmv2" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayoutLMv2LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def my_convert_sync_batchnorm(module, process_group=None): # same as `nn.modules.SyncBatchNorm.convert_sync_batchnorm` but allowing converting from `detectron2.layers.FrozenBatchNorm2d` if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): return nn.modules.SyncBatchNorm.convert_sync_batchnorm(module, process_group) module_output = module if isinstance(module, detectron2.layers.FrozenBatchNorm2d): module_output = torch.nn.SyncBatchNorm( num_features=module.num_features, eps=module.eps, affine=True, track_running_stats=True, process_group=process_group, ) module_output.weight = torch.nn.Parameter(module.weight) module_output.bias = torch.nn.Parameter(module.bias) module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = torch.tensor(0, dtype=torch.long, device=module.running_mean.device) for name, child in module.named_children(): module_output.add_module(name, my_convert_sync_batchnorm(child, process_group)) del module return module_output class VisualBackbone(nn.Module): def __init__(self, config): super().__init__() self.cfg = detectron2.config.get_cfg() add_layoutlmv2_config(self.cfg) meta_arch = self.cfg.MODEL.META_ARCHITECTURE model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg) assert isinstance(model.backbone, detectron2.modeling.backbone.FPN) self.backbone = model.backbone if ( config.convert_sync_batchnorm and torch.distributed.is_available() and torch.distributed.is_initialized() and torch.distributed.get_rank() > -1 ): self_rank = torch.distributed.get_rank() node_size = torch.cuda.device_count() world_size = torch.distributed.get_world_size() assert world_size % node_size == 0 node_global_ranks = [ list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size) ] sync_bn_groups = [ torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size) ] node_rank = self_rank // node_size assert self_rank in node_global_ranks[node_rank] self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank]) assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD) num_channels = len(self.cfg.MODEL.PIXEL_MEAN) self.register_buffer( "pixel_mean", torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1), ) self.register_buffer("pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1)) self.out_feature_key = "p2" if torch.is_deterministic(): logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`") input_shape = (224, 224) backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride self.pool = nn.AvgPool2d( ( math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]), math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]), ) ) else: self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2]) if len(config.image_feature_pool_shape) == 2: config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels) assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2] def forward(self, images): images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std features = self.backbone(images_input) features = features[self.out_feature_key] features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous() return features class LayoutLMv2Model(LayoutLMv2PreTrainedModel): def __init__(self, config): super(LayoutLMv2Model, self).__init__(config) self.config = config self.has_visual_segment_embedding = config.has_visual_segment_embedding self.embeddings = LayoutLMv2Embeddings(config) self.visual = VisualBackbone(config) self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size) if self.has_visual_segment_embedding: self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0]) self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.visual_dropout = nn.Dropout(config.hidden_dropout_prob) self.encoder = LayoutLMv2Encoder(config) self.pooler = LayoutLMv2Pooler(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.embeddings.word_embeddings(input_ids) position_embeddings = self.embeddings.position_embeddings(position_ids) spatial_position_embeddings = self.embeddings._cal_spatial_position_embeddings(bbox) token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + spatial_position_embeddings + token_type_embeddings embeddings = self.embeddings.LayerNorm(embeddings) embeddings = self.embeddings.dropout(embeddings) return embeddings def _calc_img_embeddings(self, image, bbox, position_ids): visual_embeddings = self.visual_proj(self.visual(image)) position_embeddings = self.embeddings.position_embeddings(position_ids) spatial_position_embeddings = self.embeddings._cal_spatial_position_embeddings(bbox) embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings if self.has_visual_segment_embedding: embeddings += self.visual_segment_embedding embeddings = self.visual_LayerNorm(embeddings) embeddings = self.visual_dropout(embeddings) return embeddings def forward( self, input_ids=None, bbox=None, image=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device visual_shape = list(input_shape) visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1] visual_shape = torch.Size(visual_shape) final_shape = list(input_shape) final_shape[1] += visual_shape[1] final_shape = torch.Size(final_shape) visual_bbox_x = ( torch.arange( 0, 1000 * (self.config.image_feature_pool_shape[1] + 1), 1000, device=device, dtype=bbox.dtype, ) // self.config.image_feature_pool_shape[1] ) visual_bbox_y = ( torch.arange( 0, 1000 * (self.config.image_feature_pool_shape[0] + 1), 1000, device=device, dtype=bbox.dtype, ) // self.config.image_feature_pool_shape[0] ) visual_bbox = torch.stack( [ visual_bbox_x[:-1].repeat(self.config.image_feature_pool_shape[0], 1), visual_bbox_y[:-1].repeat(self.config.image_feature_pool_shape[1], 1).transpose(0, 1), visual_bbox_x[1:].repeat(self.config.image_feature_pool_shape[0], 1), visual_bbox_y[1:].repeat(self.config.image_feature_pool_shape[1], 1).transpose(0, 1), ], dim=-1, ).view(-1, bbox.size(-1)) visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1) final_bbox = torch.cat([bbox, visual_bbox], dim=1) if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) visual_attention_mask = torch.ones(visual_shape, device=device) final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if position_ids is None: seq_length = input_shape[1] position_ids = self.embeddings.position_ids[:, :seq_length] position_ids = position_ids.expand_as(input_ids) visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat( input_shape[0], 1 ) final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1) if bbox is None: bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) text_layout_emb = self._calc_text_embeddings( input_ids=input_ids, bbox=bbox, token_type_ids=token_type_ids, position_ids=position_ids, ) visual_emb = self._calc_img_embeddings( image=image, bbox=visual_bbox, position_ids=visual_position_ids, ) final_emb = torch.cat([text_layout_emb, visual_emb], dim=1) extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.to(dtype=next(self.parameters()).dtype) else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( final_emb, extended_attention_mask, bbox=final_bbox, position_ids=final_position_ids, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.layoutlmv2 = LayoutLMv2Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def get_input_embeddings(self): return self.layoutlmv2.embeddings.word_embeddings def forward( self, input_ids=None, bbox=None, image=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) seq_length = input_ids.size(1) sequence_output, image_output = outputs[0][:, :seq_length], outputs[0][:, seq_length:] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class LayoutLMv2ForRelationExtraction(LayoutLMv2PreTrainedModel): def __init__(self, config): super().__init__(config) self.layoutlmv2 = LayoutLMv2Model(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.extractor = REDecoder(config) self.init_weights() def forward( self, input_ids, bbox, labels=None, image=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, entities=None, relations=None, ): outputs = self.layoutlmv2( input_ids=input_ids, bbox=bbox, image=image, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) seq_length = input_ids.size(1) sequence_output, image_output = outputs[0][:, :seq_length], outputs[0][:, seq_length:] sequence_output = self.dropout(sequence_output) loss, pred_relations = self.extractor(sequence_output, entities, relations) return ReOutput( loss=loss, entities=entities, relations=relations, pred_relations=pred_relations, hidden_states=outputs[0], )
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutlmv2/modeling_layoutlmv2.py
# coding=utf-8 from transformers.models.layoutlm.tokenization_layoutlm_fast import LayoutLMTokenizerFast from transformers.utils import logging from .tokenization_layoutlmv2 import LayoutLMv2Tokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/vocab.txt", "microsoft/layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "microsoft/layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/tokenizer.json", "microsoft/layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/layoutlmv2-base-uncased": 512, "microsoft/layoutlmv2-large-uncased": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/layoutlmv2-base-uncased": {"do_lower_case": True}, "microsoft/layoutlmv2-large-uncased": {"do_lower_case": True}, } class LayoutLMv2TokenizerFast(LayoutLMTokenizerFast): r""" Constructs a "Fast" LayoutLMv2Tokenizer. Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION slow_tokenizer_class = LayoutLMv2Tokenizer def __init__(self, model_max_length=512, **kwargs): super().__init__(model_max_length=model_max_length, **kwargs)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutlmv2/tokenization_layoutlmv2_fast.py
# coding=utf-8 from transformers.models.layoutlm.configuration_layoutlm import LayoutLMConfig from transformers.utils import logging logger = logging.get_logger(__name__) LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { "layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/config.json", "layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/config.json", } class LayoutLMv2Config(LayoutLMConfig): model_type = "layoutlmv2" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, gradient_checkpointing=False, max_2d_position_embeddings=1024, max_rel_pos=128, rel_pos_bins=32, fast_qkv=True, max_rel_2d_pos=256, rel_2d_pos_bins=64, convert_sync_batchnorm=True, image_feature_pool_shape=[7, 7, 256], coordinate_size=128, shape_size=128, has_relative_attention_bias=True, has_spatial_attention_bias=True, has_visual_segment_embedding=False, **kwargs ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, hidden_act=hidden_act, hidden_dropout_prob=hidden_dropout_prob, attention_probs_dropout_prob=attention_probs_dropout_prob, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, initializer_range=initializer_range, layer_norm_eps=layer_norm_eps, pad_token_id=pad_token_id, gradient_checkpointing=gradient_checkpointing, **kwargs, ) self.max_2d_position_embeddings = max_2d_position_embeddings self.max_rel_pos = max_rel_pos self.rel_pos_bins = rel_pos_bins self.fast_qkv = fast_qkv self.max_rel_2d_pos = max_rel_2d_pos self.rel_2d_pos_bins = rel_2d_pos_bins self.convert_sync_batchnorm = convert_sync_batchnorm self.image_feature_pool_shape = image_feature_pool_shape self.coordinate_size = coordinate_size self.shape_size = shape_size self.has_relative_attention_bias = has_relative_attention_bias self.has_spatial_attention_bias = has_spatial_attention_bias self.has_visual_segment_embedding = has_visual_segment_embedding
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutlmv2/configuration_layoutlmv2.py
# coding=utf-8 from transformers.utils import logging from ..layoutlmv2 import LayoutLMv2Config logger = logging.get_logger(__name__) LAYOUTXLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "layoutxlm-base": "https://huggingface.co/layoutxlm-base/resolve/main/config.json", "layoutxlm-large": "https://huggingface.co/layoutxlm-large/resolve/main/config.json", } class LayoutXLMConfig(LayoutLMv2Config): model_type = "layoutxlm"
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutxlm/configuration_layoutxlm.py
# coding=utf-8 from transformers import XLMRobertaTokenizerFast from transformers.file_utils import is_sentencepiece_available from transformers.utils import logging if is_sentencepiece_available(): from .tokenization_layoutxlm import LayoutXLMTokenizer else: LayoutXLMTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "layoutxlm-base": "https://huggingface.co/layoutxlm-base/resolve/main/sentencepiece.bpe.model", "layoutxlm-large": "https://huggingface.co/layoutxlm-large/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "layoutxlm-base": "https://huggingface.co/layoutxlm-base/resolve/main/tokenizer.json", "layoutxlm-large": "https://huggingface.co/layoutxlm-large/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "layoutxlm-base": 512, "layoutxlm-large": 512, } class LayoutXLMTokenizerFast(XLMRobertaTokenizerFast): vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = LayoutXLMTokenizer def __init__(self, model_max_length=512, **kwargs): super().__init__(model_max_length=model_max_length, **kwargs)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutxlm/tokenization_layoutxlm_fast.py
# coding=utf-8 from transformers import XLMRobertaTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "layoutxlm-base": "https://huggingface.co/layoutxlm-base/resolve/main/sentencepiece.bpe.model", "layoutxlm-large": "https://huggingface.co/layoutxlm-large/resolve/main/sentencepiece.bpe.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "layoutxlm-base": 512, "layoutxlm-large": 512, } class LayoutXLMTokenizer(XLMRobertaTokenizer): vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__(self, model_max_length=512, **kwargs): super().__init__(model_max_length=model_max_length, **kwargs)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutxlm/tokenization_layoutxlm.py
from .configuration_layoutxlm import LayoutXLMConfig from .modeling_layoutxlm import LayoutXLMForRelationExtraction, LayoutXLMForTokenClassification, LayoutXLMModel from .tokenization_layoutxlm import LayoutXLMTokenizer from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutxlm/__init__.py
# coding=utf-8 from transformers.utils import logging from ..layoutlmv2 import LayoutLMv2ForRelationExtraction, LayoutLMv2ForTokenClassification, LayoutLMv2Model from .configuration_layoutxlm import LayoutXLMConfig logger = logging.get_logger(__name__) LAYOUTXLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "layoutxlm-base", "layoutxlm-large", ] class LayoutXLMModel(LayoutLMv2Model): config_class = LayoutXLMConfig class LayoutXLMForTokenClassification(LayoutLMv2ForTokenClassification): config_class = LayoutXLMConfig class LayoutXLMForRelationExtraction(LayoutLMv2ForRelationExtraction): config_class = LayoutXLMConfig
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutxlm/modeling_layoutxlm.py
from transformers.models.layoutlm import *
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/models/layoutlm/__init__.py
import collections import time from typing import Any, Dict, List, Optional, Tuple, Union import torch from packaging import version from torch import nn from torch.utils.data import DataLoader, Dataset from transformers.trainer_utils import EvalPrediction, PredictionOutput, speed_metrics from transformers.utils import logging from .funsd_trainer import FunsdTrainer if version.parse(torch.__version__) >= version.parse("1.6"): _is_native_amp_available = True from torch.cuda.amp import autocast logger = logging.get_logger(__name__) class XfunSerTrainer(FunsdTrainer): pass class XfunReTrainer(FunsdTrainer): def __init__(self, **kwargs): super().__init__(**kwargs) self.label_names.append("relations") def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: inputs = self._prepare_inputs(inputs) with torch.no_grad(): if self.use_amp: with autocast(): outputs = model(**inputs) else: outputs = model(**inputs) labels = tuple(inputs.get(name) for name in self.label_names) return outputs, labels def prediction_loop( self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`. Works both with or without labels. """ if not isinstance(dataloader.dataset, collections.abc.Sized): raise ValueError("dataset must implement __len__") prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) if self.args.deepspeed and not self.args.do_train: # no harm, but flagging to the user that deepspeed config is ignored for eval # flagging only for when --do_train wasn't passed as only then it's redundant logger.info("Detected the deepspeed argument but it will not be used for evaluation") model = self._wrap_model(self.model, training=False) # if full fp16 is wanted on eval and this ``evaluation`` or ``predict`` isn't called while # ``train`` is running, half it first and then put on device if not self.is_in_train and self.args.fp16_full_eval: model = model.half().to(self.args.device) batch_size = dataloader.batch_size num_examples = self.num_examples(dataloader) logger.info("***** Running %s *****", description) logger.info(" Num examples = %d", num_examples) logger.info(" Batch size = %d", batch_size) model.eval() self.callback_handler.eval_dataloader = dataloader re_labels = None pred_relations = None entities = None for step, inputs in enumerate(dataloader): outputs, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) re_labels = labels[1] if re_labels is None else re_labels + labels[1] pred_relations = ( outputs.pred_relations if pred_relations is None else pred_relations + outputs.pred_relations ) entities = outputs.entities if entities is None else entities + outputs.entities self.control = self.callback_handler.on_prediction_step(self.args, self.state, self.control) gt_relations = [] for b in range(len(re_labels)): rel_sent = [] for head, tail in zip(re_labels[b]["head"], re_labels[b]["tail"]): rel = {} rel["head_id"] = head rel["head"] = (entities[b]["start"][rel["head_id"]], entities[b]["end"][rel["head_id"]]) rel["head_type"] = entities[b]["label"][rel["head_id"]] rel["tail_id"] = tail rel["tail"] = (entities[b]["start"][rel["tail_id"]], entities[b]["end"][rel["tail_id"]]) rel["tail_type"] = entities[b]["label"][rel["tail_id"]] rel["type"] = 1 rel_sent.append(rel) gt_relations.append(rel_sent) re_metrics = self.compute_metrics(EvalPrediction(predictions=pred_relations, label_ids=gt_relations)) re_metrics = { "precision": re_metrics["ALL"]["p"], "recall": re_metrics["ALL"]["r"], "f1": re_metrics["ALL"]["f1"], } re_metrics[f"{metric_key_prefix}_loss"] = outputs.loss.mean().item() metrics = {} # # Prefix all keys with metric_key_prefix + '_' for key in list(re_metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): metrics[f"{metric_key_prefix}_{key}"] = re_metrics.pop(key) else: metrics[f"{key}"] = re_metrics.pop(key) return metrics def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (:obj:`Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not accepted by the ``model.forward()`` method are automatically removed. It must implement the :obj:`__len__` method. ignore_keys (:obj:`Lst[str]`, `optional`): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (:obj:`str`, `optional`, defaults to :obj:`"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is "eval" (default) Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ if eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized): raise ValueError("eval_dataset must implement __len__") self.args.local_rank = -1 eval_dataloader = self.get_eval_dataloader(eval_dataset) self.args.local_rank = torch.distributed.get_rank() start_time = time.time() metrics = self.prediction_loop( eval_dataloader, description="Evaluation", # No point gathering the predictions if there are no metrics, otherwise we defer to # self.args.prediction_loss_only prediction_loss_only=True if self.compute_metrics is None else None, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix, ) n_samples = len(eval_dataset if eval_dataset is not None else self.eval_dataset) metrics.update(speed_metrics(metric_key_prefix, start_time, n_samples)) self.log(metrics) self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics) return metrics
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/trainers/xfun_trainer.py
from .funsd_trainer import FunsdTrainer from .xfun_trainer import XfunReTrainer, XfunSerTrainer
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/trainers/__init__.py
from typing import Any, Dict, Union import torch from transformers import Trainer class FunsdTrainer(Trainer): def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]: """ Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and handling potential state. """ for k, v in inputs.items(): if hasattr(v, "to") and hasattr(v, "device"): inputs[k] = v.to(self.args.device) if self.args.past_index >= 0 and self._past is not None: inputs["mems"] = self._past return inputs
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/trainers/funsd_trainer.py
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/modules/__init__.py
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/modules/decoders/__init__.py
import copy import torch from torch import nn from torch.nn import CrossEntropyLoss class BiaffineAttention(torch.nn.Module): """Implements a biaffine attention operator for binary relation classification. PyTorch implementation of the biaffine attention operator from "End-to-end neural relation extraction using deep biaffine attention" (https://arxiv.org/abs/1812.11275) which can be used as a classifier for binary relation classification. Args: in_features (int): The size of the feature dimension of the inputs. out_features (int): The size of the feature dimension of the output. Shape: - x_1: `(N, *, in_features)` where `N` is the batch dimension and `*` means any number of additional dimensisons. - x_2: `(N, *, in_features)`, where `N` is the batch dimension and `*` means any number of additional dimensions. - Output: `(N, *, out_features)`, where `N` is the batch dimension and `*` means any number of additional dimensions. Examples: >>> batch_size, in_features, out_features = 32, 100, 4 >>> biaffine_attention = BiaffineAttention(in_features, out_features) >>> x_1 = torch.randn(batch_size, in_features) >>> x_2 = torch.randn(batch_size, in_features) >>> output = biaffine_attention(x_1, x_2) >>> print(output.size()) torch.Size([32, 4]) """ def __init__(self, in_features, out_features): super(BiaffineAttention, self).__init__() self.in_features = in_features self.out_features = out_features self.bilinear = torch.nn.Bilinear(in_features, in_features, out_features, bias=False) self.linear = torch.nn.Linear(2 * in_features, out_features, bias=True) self.reset_parameters() def forward(self, x_1, x_2): return self.bilinear(x_1, x_2) + self.linear(torch.cat((x_1, x_2), dim=-1)) def reset_parameters(self): self.bilinear.reset_parameters() self.linear.reset_parameters() class REDecoder(nn.Module): def __init__(self, config): super().__init__() self.entity_emb = nn.Embedding(3, config.hidden_size, scale_grad_by_freq=True) projection = nn.Sequential( nn.Linear(config.hidden_size * 2, config.hidden_size), nn.ReLU(), nn.Dropout(config.hidden_dropout_prob), nn.Linear(config.hidden_size, config.hidden_size // 2), nn.ReLU(), nn.Dropout(config.hidden_dropout_prob), ) self.ffnn_head = copy.deepcopy(projection) self.ffnn_tail = copy.deepcopy(projection) self.rel_classifier = BiaffineAttention(config.hidden_size // 2, 2) self.loss_fct = CrossEntropyLoss() def build_relation(self, relations, entities): batch_size = len(relations) new_relations = [] for b in range(batch_size): if len(entities[b]["start"]) <= 2: entities[b] = {"end": [1, 1], "label": [0, 0], "start": [0, 0]} all_possible_relations = set( [ (i, j) for i in range(len(entities[b]["label"])) for j in range(len(entities[b]["label"])) if entities[b]["label"][i] == 1 and entities[b]["label"][j] == 2 ] ) if len(all_possible_relations) == 0: all_possible_relations = set([(0, 1)]) positive_relations = set(list(zip(relations[b]["head"], relations[b]["tail"]))) negative_relations = all_possible_relations - positive_relations positive_relations = set([i for i in positive_relations if i in all_possible_relations]) reordered_relations = list(positive_relations) + list(negative_relations) relation_per_doc = {"head": [], "tail": [], "label": []} relation_per_doc["head"] = [i[0] for i in reordered_relations] relation_per_doc["tail"] = [i[1] for i in reordered_relations] relation_per_doc["label"] = [1] * len(positive_relations) + [0] * ( len(reordered_relations) - len(positive_relations) ) assert len(relation_per_doc["head"]) != 0 new_relations.append(relation_per_doc) return new_relations, entities def get_predicted_relations(self, logits, relations, entities): pred_relations = [] for i, pred_label in enumerate(logits.argmax(-1)): if pred_label != 1: continue rel = {} rel["head_id"] = relations["head"][i] rel["head"] = (entities["start"][rel["head_id"]], entities["end"][rel["head_id"]]) rel["head_type"] = entities["label"][rel["head_id"]] rel["tail_id"] = relations["tail"][i] rel["tail"] = (entities["start"][rel["tail_id"]], entities["end"][rel["tail_id"]]) rel["tail_type"] = entities["label"][rel["tail_id"]] rel["type"] = 1 pred_relations.append(rel) return pred_relations def forward(self, hidden_states, entities, relations): batch_size, max_n_words, context_dim = hidden_states.size() device = hidden_states.device relations, entities = self.build_relation(relations, entities) loss = 0 all_pred_relations = [] for b in range(batch_size): head_entities = torch.tensor(relations[b]["head"], device=device) tail_entities = torch.tensor(relations[b]["tail"], device=device) relation_labels = torch.tensor(relations[b]["label"], device=device) entities_start_index = torch.tensor(entities[b]["start"], device=device) entities_labels = torch.tensor(entities[b]["label"], device=device) head_index = entities_start_index[head_entities] head_label = entities_labels[head_entities] head_label_repr = self.entity_emb(head_label) tail_index = entities_start_index[tail_entities] tail_label = entities_labels[tail_entities] tail_label_repr = self.entity_emb(tail_label) head_repr = torch.cat( (hidden_states[b][head_index], head_label_repr), dim=-1, ) tail_repr = torch.cat( (hidden_states[b][tail_index], tail_label_repr), dim=-1, ) heads = self.ffnn_head(head_repr) tails = self.ffnn_tail(tail_repr) logits = self.rel_classifier(heads, tails) loss += self.loss_fct(logits, relation_labels) pred_relations = self.get_predicted_relations(logits, relations[b], entities[b]) all_pred_relations.append(pred_relations) return loss, all_pred_relations
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/modules/decoders/re.py
# flake8: noqa from .data_collator import DataCollatorForKeyValueExtraction from .datasets import *
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/data/__init__.py
import torch from detectron2.data.detection_utils import read_image from detectron2.data.transforms import ResizeTransform, TransformList def normalize_bbox(bbox, size): return [ int(1000 * bbox[0] / size[0]), int(1000 * bbox[1] / size[1]), int(1000 * bbox[2] / size[0]), int(1000 * bbox[3] / size[1]), ] def simplify_bbox(bbox): return [ min(bbox[0::2]), min(bbox[1::2]), max(bbox[2::2]), max(bbox[3::2]), ] def merge_bbox(bbox_list): x0, y0, x1, y1 = list(zip(*bbox_list)) return [min(x0), min(y0), max(x1), max(y1)] def load_image(image_path): image = read_image(image_path, format="BGR") h = image.shape[0] w = image.shape[1] img_trans = TransformList([ResizeTransform(h=h, w=w, new_h=224, new_w=224)]) image = torch.tensor(img_trans.apply_image(image).copy()).permute(2, 0, 1) # copy to make it writeable return image, (w, h)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/data/utils.py
from dataclasses import dataclass, field from typing import Optional @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."}) dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a csv or JSON file)."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) pad_to_max_length: bool = field( default=True, metadata={ "help": "Whether to pad all samples to model maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_val_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." }, ) max_test_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of test examples to this " "value if set." }, ) label_all_tokens: bool = field( default=False, metadata={ "help": "Whether to put the label for one word on all tokens of generated by that word or just on the " "one (in which case the other tokens will have a padding index)." }, ) return_entity_level_metrics: bool = field( default=False, metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, ) @dataclass class XFUNDataTrainingArguments(DataTrainingArguments): lang: Optional[str] = field(default="en") additional_langs: Optional[str] = field(default=None)
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/data/data_args.py
from dataclasses import dataclass from typing import Optional, Union import torch from detectron2.structures import ImageList from transformers import PreTrainedTokenizerBase from transformers.file_utils import PaddingStrategy @dataclass class DataCollatorForKeyValueExtraction: """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). label_pad_token_id (:obj:`int`, `optional`, defaults to -100): The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 def __call__(self, features): label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None has_image_input = "image" in features[0] has_bbox_input = "bbox" in features[0] if has_image_input: image = ImageList.from_tensors([torch.tensor(feature["image"]) for feature in features], 32) for feature in features: del feature["image"] batch = self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, # Conversion to tensors will fail if we have labels as they are not of the same length yet. return_tensors="pt" if labels is None else None, ) if labels is None: return batch sequence_length = torch.tensor(batch["input_ids"]).shape[1] padding_side = self.tokenizer.padding_side if padding_side == "right": batch["labels"] = [label + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels] if has_bbox_input: batch["bbox"] = [bbox + [[0, 0, 0, 0]] * (sequence_length - len(bbox)) for bbox in batch["bbox"]] else: batch["labels"] = [[self.label_pad_token_id] * (sequence_length - len(label)) + label for label in labels] if has_bbox_input: batch["bbox"] = [[[0, 0, 0, 0]] * (sequence_length - len(bbox)) + bbox for bbox in batch["bbox"]] batch = {k: torch.tensor(v, dtype=torch.int64) if isinstance(v[0], list) else v for k, v in batch.items()} if has_image_input: batch["image"] = image return batch
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/data/data_collator.py
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/data/datasets/__init__.py
# Lint as: python3 import json import logging import os import datasets from layoutlmft.data.utils import load_image, merge_bbox, normalize_bbox, simplify_bbox from transformers import AutoTokenizer _URL = "https://github.com/doc-analysis/XFUN/releases/download/v1.0/" _LANG = ["zh", "de", "es", "fr", "en", "it", "ja", "pt"] logger = logging.getLogger(__name__) class XFUNConfig(datasets.BuilderConfig): """BuilderConfig for XFUN.""" def __init__(self, lang, additional_langs=None, **kwargs): """ Args: lang: string, language for the input text **kwargs: keyword arguments forwarded to super. """ super(XFUNConfig, self).__init__(**kwargs) self.lang = lang self.additional_langs = additional_langs class XFUN(datasets.GeneratorBasedBuilder): """XFUN dataset.""" BUILDER_CONFIGS = [XFUNConfig(name=f"xfun.{lang}", lang=lang) for lang in _LANG] tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "input_ids": datasets.Sequence(datasets.Value("int64")), "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "labels": datasets.Sequence( datasets.ClassLabel( names=["O", "B-QUESTION", "B-ANSWER", "B-HEADER", "I-ANSWER", "I-QUESTION", "I-HEADER"] ) ), "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"), "entities": datasets.Sequence( { "start": datasets.Value("int64"), "end": datasets.Value("int64"), "label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]), } ), "relations": datasets.Sequence( { "head": datasets.Value("int64"), "tail": datasets.Value("int64"), "start_index": datasets.Value("int64"), "end_index": datasets.Value("int64"), } ), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": [f"{_URL}{self.config.lang}.train.json", f"{_URL}{self.config.lang}.train.zip"], "val": [f"{_URL}{self.config.lang}.val.json", f"{_URL}{self.config.lang}.val.zip"], # "test": [f"{_URL}{self.config.lang}.test.json", f"{_URL}{self.config.lang}.test.zip"], } downloaded_files = dl_manager.download_and_extract(urls_to_download) train_files_for_many_langs = [downloaded_files["train"]] val_files_for_many_langs = [downloaded_files["val"]] # test_files_for_many_langs = [downloaded_files["test"]] if self.config.additional_langs: additional_langs = self.config.additional_langs.split("+") if "all" in additional_langs: additional_langs = [lang for lang in _LANG if lang != self.config.lang] for lang in additional_langs: urls_to_download = {"train": [f"{_URL}{lang}.train.json", f"{_URL}{lang}.train.zip"]} additional_downloaded_files = dl_manager.download_and_extract(urls_to_download) train_files_for_many_langs.append(additional_downloaded_files["train"]) logger.info(f"Training on {self.config.lang} with additional langs({self.config.additional_langs})") logger.info(f"Evaluating on {self.config.lang}") logger.info(f"Testing on {self.config.lang}") return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files_for_many_langs}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files_for_many_langs} ), # datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": test_files_for_many_langs}), ] def _generate_examples(self, filepaths): for filepath in filepaths: logger.info("Generating examples from = %s", filepath) with open(filepath[0], "r", encoding="utf-8") as f: data = json.load(f) for doc in data["documents"]: doc["img"]["fpath"] = os.path.join(filepath[1], doc["img"]["fname"]) image, size = load_image(doc["img"]["fpath"]) document = doc["document"] tokenized_doc = {"input_ids": [], "bbox": [], "labels": []} entities = [] relations = [] id2label = {} entity_id_to_index_map = {} empty_entity = set() for line in document: if len(line["text"]) == 0: empty_entity.add(line["id"]) continue id2label[line["id"]] = line["label"] relations.extend([tuple(sorted(l)) for l in line["linking"]]) tokenized_inputs = self.tokenizer( line["text"], add_special_tokens=False, return_offsets_mapping=True, return_attention_mask=False, ) text_length = 0 ocr_length = 0 bbox = [] last_box = None for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]): if token_id == 6: bbox.append(None) continue text_length += offset[1] - offset[0] tmp_box = [] while ocr_length < text_length: ocr_word = line["words"].pop(0) ocr_length += len( self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip()) ) tmp_box.append(simplify_bbox(ocr_word["box"])) if len(tmp_box) == 0: tmp_box = last_box bbox.append(normalize_bbox(merge_bbox(tmp_box), size)) last_box = tmp_box bbox = [ [bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b for i, b in enumerate(bbox) ] if line["label"] == "other": label = ["O"] * len(bbox) else: label = [f"I-{line['label'].upper()}"] * len(bbox) label[0] = f"B-{line['label'].upper()}" tokenized_inputs.update({"bbox": bbox, "labels": label}) if label[0] != "O": entity_id_to_index_map[line["id"]] = len(entities) entities.append( { "start": len(tokenized_doc["input_ids"]), "end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]), "label": line["label"].upper(), } ) for i in tokenized_doc: tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i] relations = list(set(relations)) relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity] kvrelations = [] for rel in relations: pair = [id2label[rel[0]], id2label[rel[1]]] if pair == ["question", "answer"]: kvrelations.append( {"head": entity_id_to_index_map[rel[0]], "tail": entity_id_to_index_map[rel[1]]} ) elif pair == ["answer", "question"]: kvrelations.append( {"head": entity_id_to_index_map[rel[1]], "tail": entity_id_to_index_map[rel[0]]} ) else: continue def get_relation_span(rel): bound = [] for entity_index in [rel["head"], rel["tail"]]: bound.append(entities[entity_index]["start"]) bound.append(entities[entity_index]["end"]) return min(bound), max(bound) relations = sorted( [ { "head": rel["head"], "tail": rel["tail"], "start_index": get_relation_span(rel)[0], "end_index": get_relation_span(rel)[1], } for rel in kvrelations ], key=lambda x: x["head"], ) chunk_size = 512 for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)): item = {} for k in tokenized_doc: item[k] = tokenized_doc[k][index : index + chunk_size] entities_in_this_span = [] global_to_local_map = {} for entity_id, entity in enumerate(entities): if ( index <= entity["start"] < index + chunk_size and index <= entity["end"] < index + chunk_size ): entity["start"] = entity["start"] - index entity["end"] = entity["end"] - index global_to_local_map[entity_id] = len(entities_in_this_span) entities_in_this_span.append(entity) relations_in_this_span = [] for relation in relations: if ( index <= relation["start_index"] < index + chunk_size and index <= relation["end_index"] < index + chunk_size ): relations_in_this_span.append( { "head": global_to_local_map[relation["head"]], "tail": global_to_local_map[relation["tail"]], "start_index": relation["start_index"] - index, "end_index": relation["end_index"] - index, } ) item.update( { "id": f"{doc['id']}_{chunk_id}", "image": image, "entities": entities_in_this_span, "relations": relations_in_this_span, } ) yield f"{doc['id']}_{chunk_id}", item
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/data/datasets/xfun.py
# coding=utf-8 import json import os import datasets from layoutlmft.data.utils import load_image, normalize_bbox logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{Jaume2019FUNSDAD, title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents}, author={Guillaume Jaume and H. K. Ekenel and J. Thiran}, journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)}, year={2019}, volume={2}, pages={1-6} } """ _DESCRIPTION = """\ https://guillaumejaume.github.io/FUNSD/ """ class FunsdConfig(datasets.BuilderConfig): """BuilderConfig for FUNSD""" def __init__(self, **kwargs): """BuilderConfig for FUNSD. Args: **kwargs: keyword arguments forwarded to super. """ super(FunsdConfig, self).__init__(**kwargs) class Funsd(datasets.GeneratorBasedBuilder): """Conll2003 dataset.""" BUILDER_CONFIGS = [ FunsdConfig(name="funsd", version=datasets.Version("1.0.0"), description="FUNSD dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=["O", "B-HEADER", "I-HEADER", "B-QUESTION", "I-QUESTION", "B-ANSWER", "I-ANSWER"] ) ), "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"), } ), supervised_keys=None, homepage="https://guillaumejaume.github.io/FUNSD/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_file = dl_manager.download_and_extract("https://guillaumejaume.github.io/FUNSD/dataset.zip") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/dataset/training_data/"} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/dataset/testing_data/"} ), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) ann_dir = os.path.join(filepath, "annotations") img_dir = os.path.join(filepath, "images") for guid, file in enumerate(sorted(os.listdir(ann_dir))): tokens = [] bboxes = [] ner_tags = [] file_path = os.path.join(ann_dir, file) with open(file_path, "r", encoding="utf8") as f: data = json.load(f) image_path = os.path.join(img_dir, file) image_path = image_path.replace("json", "png") image, size = load_image(image_path) for item in data["form"]: words, label = item["words"], item["label"] whole_box = item["box"] words = [w for w in words if w["text"].strip() != ""] if len(words) == 0: continue if label == "other": for w in words: tokens.append(w["text"]) ner_tags.append("O") # bboxes.append(normalize_bbox(w["box"], size)) bboxes.append(normalize_bbox(whole_box, size)) else: tokens.append(words[0]["text"]) ner_tags.append("B-" + label.upper()) # bboxes.append(normalize_bbox(words[0]["box"], size)) bboxes.append(normalize_bbox(whole_box, size)) for w in words[1:]: tokens.append(w["text"]) ner_tags.append("I-" + label.upper()) # bboxes.append(normalize_bbox(w["box"], size)) bboxes.append(normalize_bbox(whole_box, size)) yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/funsd/layoutlmft/data/datasets/funsd.py
"""BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import math import os import pickle import random from time import sleep import numpy as np import torch from nltk.translate.bleu_score import sentence_bleu from tqdm import tqdm from transformers import \ BertTokenizer, RobertaTokenizer from transformers.tokenization_bert import whitespace_tokenize import s2s_ft.s2s_loader as seq2seq_loader from s2s_ft.modeling_decoding import LayoutlmForSeq2SeqDecoder, BertConfig from s2s_ft.tokenization_minilm import MinilmTokenizer from s2s_ft.tokenization_unilm import UnilmTokenizer from s2s_ft.utils import load_and_cache_layoutlm_examples, convert_src_layout_inputs_to_tokens, \ get_tokens_from_src_and_index, convert_tgt_layout_inputs_to_tokens TOKENIZER_CLASSES = { 'bert': BertTokenizer, 'minilm': MinilmTokenizer, 'roberta': RobertaTokenizer, 'unilm': UnilmTokenizer, 'layoutlm': BertTokenizer, } class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def detokenize(tk_list): r_list = [] for tk in tk_list: if tk.startswith('##') and len(r_list) > 0: r_list[-1] = r_list[-1] + tk[2:] else: r_list.append(tk) return r_list def ascii_print(text): text = text.encode("ascii", "ignore") print(text) def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(TOKENIZER_CLASSES.keys())) parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model checkpoint.") parser.add_argument("--config_path", default=None, type=str, help="Path to config.json for the model.") parser.add_argument("--sentence_shuffle_rate", default=0, type=float) parser.add_argument("--layoutlm_only_layout", action='store_true') # tokenizer_name parser.add_argument("--tokenizer_name", default=None, type=str, required=True, help="tokenizer name") parser.add_argument("--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") # decoding parameters parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--amp', action='store_true', help="Whether to use amp for fp16") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument("--input_folder", type=str, help="Input folder") parser.add_argument("--cached_feature_file", type=str) parser.add_argument('--subset', type=int, default=0, help="Decode a subset of the input dataset.") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Forbid the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=1, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") parser.add_argument('--s2s_special_token', action='store_true', help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.") parser.add_argument('--s2s_add_segment', action='store_true', help="Additional segmental for the encoder of S2S.") parser.add_argument('--s2s_share_segment', action='store_true', help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).") parser.add_argument('--pos_shift', action='store_true', help="Using position shift for fine-tuning.") parser.add_argument("--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3") args = parser.parse_args() model_path = args.model_path assert os.path.exists(model_path), 'model_path ' + model_path + ' not exists!' if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1.") if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() if args.seed > 0: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) else: random_seed = random.randint(0, 10000) logger.info("Set random seed as: {}".format(random_seed)) random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = TOKENIZER_CLASSES[args.model_type].from_pretrained( args.tokenizer_name, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, max_len=args.max_seq_length ) if args.model_type == "roberta": vocab = tokenizer.encoder else: vocab = tokenizer.vocab # NOTE: tokenizer cannot setattr, so move this to the initialization step # tokenizer.max_len = args.max_seq_length config_file = args.config_path if args.config_path else os.path.join(args.model_path, "config.json") logger.info("Read decoding config from: %s" % config_file) config = BertConfig.from_json_file(config_file, # base_model_type=args.model_type layoutlm_only_layout_flag=args.layoutlm_only_layout ) bi_uni_pipeline = [] bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder( list(vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, pos_shift=args.pos_shift, source_type_id=config.source_type_id, target_type_id=config.target_type_id, cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token, pad_token=tokenizer.pad_token, layout_flag=args.model_type == 'layoutlm' )) mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids( [tokenizer.mask_token, tokenizer.sep_token, tokenizer.sep_token]) forbid_ignore_set = None if args.forbid_ignore_word: w_list = [] for w in args.forbid_ignore_word.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list)) print(args.model_path) found_checkpoint_flag = False for model_recover_path in [args.model_path.strip()]: logger.info("***** Recover model: %s *****", model_recover_path) found_checkpoint_flag = True model = LayoutlmForSeq2SeqDecoder.from_pretrained( model_recover_path, config=config, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, pos_shift=args.pos_shift, ) if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length max_tgt_length = args.max_tgt_length example_path = args.input_file if args.input_file else args.input_folder to_pred = load_and_cache_layoutlm_examples( example_path, tokenizer, local_rank=-1, cached_features_file=args.cached_feature_file, shuffle=False, layout_flag=args.model_type == 'layoutlm', src_shuffle_rate=args.sentence_shuffle_rate ) input_lines = convert_src_layout_inputs_to_tokens(to_pred, tokenizer.convert_ids_to_tokens, max_src_length, layout_flag=args.model_type == 'layoutlm') target_lines = convert_tgt_layout_inputs_to_tokens(to_pred, tokenizer.convert_ids_to_tokens, max_tgt_length, layout_flag=args.model_type == 'layoutlm') target_geo_scores = [x['bleu'] for x in to_pred] if args.subset > 0: logger.info("Decoding subset: %d", args.subset) input_lines = input_lines[:args.subset] # NOTE: add the sequence index through enumerate input_lines = sorted(list(enumerate(input_lines)), key=lambda x: -len(x[1])) score_trace_list = [None] * len(input_lines) total_batch = math.ceil(len(input_lines) / args.batch_size) fn_out = args.output_file fout = open(fn_out, "w", encoding="utf-8") with tqdm(total=total_batch) as pbar: batch_count = 0 first_batch = True while first_batch or (next_i + args.batch_size <= len(input_lines)): # while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] next_i += args.batch_size batch_count += 1 max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors( instances) batch = [ t.to(device) if t is not None else None for t in batch] input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() for i in range(len(buf)): w_ids = output_ids[i] output_buf = get_tokens_from_src_and_index(src=buf[i], index=w_ids, modifier=lambda x: x-1) output_tokens = [] for t in output_buf: if t in (tokenizer.sep_token, tokenizer.pad_token): break output_tokens.append(t) output_tokens = output_tokens[:len(target_lines[buf_id[i]])] if args.model_type == "roberta": output_sequence = tokenizer.convert_tokens_to_string(output_tokens) else: output_sequence = ' '.join(detokenize(output_tokens)) if '\n' in output_sequence: output_sequence = " [X_SEP] ".join(output_sequence.split('\n')) target = target_lines[buf_id[i]] target = detokenize(target) result = output_sequence.split() score = sentence_bleu([target], result) geo_score = target_geo_scores[buf_id[i]] target_sequence = ' '.join(target) fout.write('{}\t{:.8f}\t{:.8f}\t{}\t{}\n'.format(buf_id[i], score, geo_score, output_sequence, target_sequence)) if first_batch or batch_count % 50 == 0: logger.info("{}: BLEU={:.4f} GEO={:.4f} | {}" .format(buf_id[i], score, target_geo_scores[buf_id[i]], output_sequence)) if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]} pbar.update(1) first_batch = False outscore = open(fn_out, encoding='utf-8') bleu_score = geo_score = {} total_bleu = total_geo = 0.0 for line in outscore.readlines(): id, bleu, geo, out_seq, tgt_seq = line.split('\t') bleu_score[int(id)] = float(bleu) total_bleu += float(bleu) geo_score[int(id)] = float(geo) total_geo += float(geo) print("avg_bleu", round(100 * total_bleu / len(bleu_score), 1)) print("avg_geo", round(100 * total_geo / len(geo_score), 1)) # released model (layoutreader-base-readingbank): avg_bleu 98.2, avg_geo 69.7 if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump( {"version": 0.0, "num_samples": len(input_lines)}, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace) if not found_checkpoint_flag: logger.info("Not found the model checkpoint file!") if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/layoutreader/decode_seq2seq.py
from io import open from setuptools import find_packages, setup extras = { 'serving': ['pydantic', 'uvicorn', 'fastapi'], 'serving-tf': ['pydantic', 'uvicorn', 'fastapi'], 'serving-torch': ['pydantic', 'uvicorn', 'fastapi', 'torch'] } extras['all'] = [package for package in extras.values()] setup( name="s2s-ft", version="0.0.1", author="UniLM Team", author_email="[email protected]", description="Fine-Tuning Bidirectional Transformers for Sequence-to-Sequence Learning", long_description=open("README.md", "r", encoding='utf-8').read(), long_description_content_type="text/markdown", keywords='Fine-Tuning Bidirectional Transformers for Sequence-to-Sequence Learning', license='Apache', url="https://github.com/microsoft/unilm/tree/master/s2s-ft", packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]), install_requires=['numpy', 'boto3', 'requests', 'tqdm', 'regex != 2019.12.17', 'sentencepiece', 'sacremoses', 'tensorboardX', 'transformers <= 2.10.0'], extras_require=extras, python_requires='>=3.5.0', classifiers=[ 'Programming Language :: Python :: 3', ], )
EXA-1-master
exa/models/unilm-master/layoutreader/setup.py
from __future__ import absolute_import, division, print_function import argparse import json import logging import os import random import numpy as np import torch from torch.utils.data import (DataLoader, SequentialSampler) from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter import tqdm from s2s_ft.modeling import LayoutlmForSequenceToSequence, LayoutlmConfig from transformers import AdamW, get_linear_schedule_with_warmup from transformers import \ RobertaConfig, BertConfig, \ BertTokenizer, RobertaTokenizer, \ XLMRobertaConfig, XLMRobertaTokenizer from s2s_ft.configuration_unilm import UnilmConfig from s2s_ft.tokenization_unilm import UnilmTokenizer from s2s_ft.configuration_minilm import MinilmConfig from s2s_ft.tokenization_minilm import MinilmTokenizer from s2s_ft import utils from s2s_ft.config import BertForSeq2SeqConfig logger = logging.getLogger(__name__) MODEL_CLASSES = { 'bert': (BertConfig, BertTokenizer), 'minilm': (MinilmConfig, MinilmTokenizer), 'roberta': (RobertaConfig, RobertaTokenizer), 'xlm-roberta': (XLMRobertaConfig, XLMRobertaTokenizer), 'unilm': (UnilmConfig, UnilmTokenizer), 'layoutlm': (LayoutlmConfig, BertTokenizer), } def prepare_for_training(args, model, checkpoint_state_dict, amp): no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) if amp: model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if checkpoint_state_dict: amp.load_state_dict(checkpoint_state_dict['amp']) if checkpoint_state_dict: optimizer.load_state_dict(checkpoint_state_dict['optimizer']) model.load_state_dict(checkpoint_state_dict['model']) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) return model, optimizer def train(args, training_features, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0] and args.log_dir: tb_writer = SummaryWriter(log_dir=args.log_dir) else: tb_writer = None if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") else: amp = None # model recover recover_step = utils.get_max_epoch_model(args.output_dir) checkpoint_state_dict = None model.to(args.device) model, optimizer = prepare_for_training(args, model, checkpoint_state_dict, amp=amp) if args.n_gpu == 0 or args.no_cuda: per_node_train_batch_size = args.per_gpu_train_batch_size * args.gradient_accumulation_steps else: per_node_train_batch_size = args.per_gpu_train_batch_size * args.n_gpu * args.gradient_accumulation_steps train_batch_size = per_node_train_batch_size * (torch.distributed.get_world_size() if args.local_rank != -1 else 1) global_step = recover_step if recover_step else 0 if args.num_training_steps == -1: args.num_training_steps = int(args.num_training_epochs * len(training_features) / train_batch_size) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.num_training_steps, last_epoch=-1) if checkpoint_state_dict: scheduler.load_state_dict(checkpoint_state_dict["lr_scheduler"]) train_dataset = utils.Seq2seqDatasetForLayoutlm( features=training_features, max_source_len=args.max_source_seq_length, max_target_len=args.max_target_seq_length, vocab_size=tokenizer.vocab_size, cls_id=tokenizer.cls_token_id, sep_id=tokenizer.sep_token_id, pad_id=tokenizer.pad_token_id, mask_id=tokenizer.mask_token_id, random_prob=args.random_prob, keep_prob=args.keep_prob, offset=train_batch_size * global_step, num_training_instances=train_batch_size * args.num_training_steps, layout_flag=args.model_type == 'layoutlm' ) logger.info("Check dataset:") for i in range(5): source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_index = train_dataset.__getitem__( i) logger.info("Instance-%d" % i) try: src = [sid[0] for sid in source_ids] tgt = [tid[0] for tid in target_ids] except TypeError: src = source_ids tgt = target_ids logger.info("Source tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(src))) logger.info("Target tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(tgt))) logger.info("Mode = %s" % str(model)) # Train! logger.info(" ***** Running training ***** *") logger.info(" Num examples = %d", len(training_features)) logger.info(" Num Epochs = %.2f", len(train_dataset) / len(training_features)) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Batch size per node = %d", per_node_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", train_batch_size) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", args.num_training_steps) if args.num_training_steps <= global_step: logger.info("Training is done. Please use a new dir or clean this dir!") else: # The training features are shuffled train_sampler = SequentialSampler(train_dataset) \ if args.local_rank == -1 else DistributedSampler(train_dataset, shuffle=False) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=per_node_train_batch_size // args.gradient_accumulation_steps, collate_fn=utils.batch_list_to_batch_tensors) train_iterator = tqdm.tqdm( train_dataloader, initial=global_step, desc="Iter (loss=X.XXX, lr=X.XXXXXXX)", disable=args.local_rank not in [-1, 0]) model.train() model.zero_grad() tr_loss, logging_loss = 0.0, 0.0 for step, batch in enumerate(train_iterator): batch = tuple(t.to(args.device) for t in batch) inputs = {'source_idxys': batch[0], 'target_idxys': batch[1], 'pseudo_idxys': batch[2], 'num_source_tokens': batch[3], 'num_target_tokens': batch[4], 'target_index': batch[-1]} loss = model(**inputs) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training train_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0])) if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() logging_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and global_step % args.logging_steps == 0 and tb_writer is not None: logging_loss = 0.0 tb_writer.add_scalar('train/lr', scheduler.get_lr()[0], global_step=global_step) tb_writer.add_scalar('train/loss', loss.item(), global_step=global_step) if args.local_rank in [-1, 0] and args.save_steps > 0 and \ (global_step % args.save_steps == 0 or global_step == args.num_training_steps): save_path = os.path.join(args.output_dir, "ckpt-%d" % global_step) os.makedirs(save_path, exist_ok=True) model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(save_path) optim_to_save = { "optimizer": optimizer.state_dict(), "lr_scheduler": scheduler.state_dict(), } if args.fp16: optim_to_save["amp"] = amp.state_dict() torch.save( optim_to_save, os.path.join(args.output_dir, 'optim.{}.bin'.format(global_step))) logger.info("Saving model checkpoint %d into %s", global_step, save_path) if args.local_rank in [-1, 0] and tb_writer: tb_writer.close() def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--train_file", default=None, type=str, help="Training data (json format) for training. Keys: source and target") parser.add_argument("--train_folder", default=None, type=str, help="Training data folder for training. Keys: source and target") parser.add_argument("--sentence_shuffle_rate", default=0, type=float) parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--layoutlm_only_layout", action='store_true') parser.add_argument("--layout_only_dataset", action='store_true') parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list:") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.") parser.add_argument("--log_dir", default=None, type=str, help="The output directory where the log will be written.") ## Other parameters parser.add_argument("--config_name", default=None, type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default=None, type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_source_seq_length", default=464, type=int, help="The maximum total source sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--max_target_seq_length", default=48, type=int, help="The maximum total target sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--cached_train_features_file", default=None, type=str, help="Cached training features file") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--label_smoothing", default=0.1, type=float, help="Label smoothing.") parser.add_argument("--num_training_steps", default=-1, type=int, help="set total number of training steps to perform") parser.add_argument("--num_training_epochs", default=10, type=int, help="set total number of training epochs to perform (--num_training_steps has higher priority)") parser.add_argument("--num_warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--random_prob", default=0.1, type=float, help="prob to random replace a masked token") parser.add_argument("--keep_prob", default=0.1, type=float, help="prob to keep no change for a masked token") parser.add_argument('--logging_steps', type=int, default=500, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=1500, help="Save checkpoint every X updates steps.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() return args def prepare(args): # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() os.makedirs(args.output_dir, exist_ok=True) json.dump(args.__dict__, open(os.path.join( args.output_dir, 'train_opt.json'), 'w'), sort_keys=True, indent=2) # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, 'einsum') except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") def get_model_and_tokenizer(args): config_class, tokenizer_class = MODEL_CLASSES[args.model_type] model_config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None) config = BertForSeq2SeqConfig.from_exist_config( config=model_config, label_smoothing=args.label_smoothing, max_position_embeddings=args.max_source_seq_length + args.max_target_seq_length, max_source_length=args.max_source_seq_length, base_model_type=args.model_type, layoutlm_only_layout_flag=args.layoutlm_only_layout, ) logger.info("Model config for seq2seq: %s", str(config)) if args.model_type == 'layoutlm': if args.tokenizer_name is not None: tokenizer_name = args.tokenizer_name else: tokenizer_name = 'bert' + args.model_name_or_path[8:] tokenizer = tokenizer_class.from_pretrained( tokenizer_name, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) else: tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) model = LayoutlmForSequenceToSequence.from_pretrained( args.model_name_or_path, config=config, model_type=args.model_type, reuse_position_embedding=True, cache_dir=args.cache_dir if args.cache_dir else None, ) return model, tokenizer def main(): args = get_args() prepare(args) if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab # Load pretrained model and tokenizer model, tokenizer = get_model_and_tokenizer(args) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab if args.cached_train_features_file is None: args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training.pt") example_path = args.train_file if args.train_file else args.train_folder if args.layout_only_dataset: training_features = utils.load_and_cache_line_order_examples( example_path=example_path, tokenizer=tokenizer, local_rank=args.local_rank, cached_features_file=args.cached_train_features_file, max_src_length=args.max_source_seq_length, layout_flag=args.model_type == 'layoutlm', shuffle=True, src_shuffle_rate=args.sentence_shuffle_rate) else: training_features = utils.load_and_cache_layoutlm_examples( example_path=example_path, tokenizer=tokenizer, local_rank=args.local_rank, cached_features_file=args.cached_train_features_file, max_src_length=args.max_source_seq_length, layout_flag=args.model_type == 'layoutlm', shuffle=True, src_shuffle_rate=args.sentence_shuffle_rate ) train(args, training_features, model, tokenizer) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/layoutreader/run_seq2seq.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging from transformers import BertConfig, RobertaConfig from s2s_ft.configuration_unilm import UnilmConfig # from s2s_ft.modeling import LayoutlmConfig logger = logging.getLogger(__name__) class BertForSeq2SeqConfig(BertConfig): def __init__(self, label_smoothing=0.1, source_type_id=0, target_type_id=1, **kwargs): super(BertForSeq2SeqConfig, self).__init__(**kwargs) self.label_smoothing = label_smoothing self.source_type_id = source_type_id self.target_type_id = target_type_id @classmethod def from_exist_config(cls, config, label_smoothing=0.1, max_position_embeddings=None, max_source_length=None, base_model_type='bert', layoutlm_only_layout_flag=False): required_keys = [ "vocab_size", "hidden_size", "num_hidden_layers", "num_attention_heads", "hidden_act", "intermediate_size", "hidden_dropout_prob", "attention_probs_dropout_prob", "max_position_embeddings", "type_vocab_size", "initializer_range", "layer_norm_eps"] kwargs = {} for key in required_keys: assert hasattr(config, key) kwargs[key] = getattr(config, key) kwargs["vocab_size_or_config_json_file"] = kwargs["vocab_size"] if isinstance(config, RobertaConfig): kwargs["type_vocab_size"] = 0 kwargs["max_position_embeddings"] = kwargs["max_position_embeddings"] - 2 additional_keys = [ "source_type_id", "target_type_id" ] for key in additional_keys: if hasattr(config, key): kwargs[key] = getattr(config, key) # if isinstance(config, LayoutlmConfig): if hasattr(config, 'max_2d_position_embeddings'): layoutlm_special_keys = ['max_2d_position_embeddings',] for key in layoutlm_special_keys: kwargs[key] = getattr(config, key) kwargs['base_model_type'] = base_model_type kwargs['layoutlm_only_layout'] = layoutlm_only_layout_flag if max_position_embeddings is not None and max_position_embeddings > config.max_position_embeddings: kwargs["max_position_embeddings"] = max_position_embeddings logger.info(" ** Change max position embeddings to %d ** " % max_position_embeddings) if max_source_length is not None: kwargs['max_source_length'] = max_source_length return cls(label_smoothing=label_smoothing, **kwargs)
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/config.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ MiniLM model configuration """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import sys from io import open from transformers.configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) MINILM_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased-config.json", } class MinilmConfig(PretrainedConfig): r""" :class:`~transformers.MinilmConfig` is the configuration class to store the configuration of a `MinilmModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `MiniLMModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `MiniLMModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = MINILM_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size=28996, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=6, initializer_range=0.02, layer_norm_eps=1e-12, source_type_id=0, target_type_id=1, **kwargs): super(MinilmConfig, self).__init__(**kwargs) if isinstance(vocab_size, str) or (sys.version_info[0] == 2 and isinstance(vocab_size, unicode)): with open(vocab_size, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size, int): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.source_type_id = source_type_id self.target_type_id = target_type_id else: raise ValueError("First argument must be either a vocabulary size (int)" " or the path to a pretrained model config file (str)")
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/configuration_minilm.py
# coding=utf-8 """PyTorch BERT model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import json import logging import math import os import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.nn.modules.loss import _Loss class LabelSmoothingLoss(_Loss): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing=0, tgt_vocab_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__( size_average=size_average, reduce=reduce, reduction=reduction) assert label_smoothing > 0 assert tgt_vocab_size > 0 smoothing_value = label_smoothing / (tgt_vocab_size - 2) one_hot = torch.full((tgt_vocab_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing self.tgt_vocab_size = tgt_vocab_size def forward(self, output, target): """ output (FloatTensor): batch_size * num_pos * n_classes target (LongTensor): batch_size * num_pos """ assert self.tgt_vocab_size == output.size(2) batch_size, num_pos = target.size(0), target.size(1) output = output.view(-1, self.tgt_vocab_size) target = target.view(-1) model_prob = self.one_hot.repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2) logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased.bin" } CONFIG_NAME = 'config.json' WEIGHTS_NAME = 'pytorch_model.bin' def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} class BertConfig(object): """Configuration class to store the configuration of a `BertModel`. """ def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, relax_projection=0, new_pos_ids=False, initializer_range=0.02, task_idx=None, fp32_embedding=False, ffn_type=0, label_smoothing=None, num_qkv=0, seg_emb=False, source_type_id=0, target_type_id=1, no_segment_embedding=False, **kwargs): """Constructs BertConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.relax_projection = relax_projection self.new_pos_ids = new_pos_ids self.initializer_range = initializer_range self.task_idx = task_idx self.fp32_embedding = fp32_embedding self.ffn_type = ffn_type self.label_smoothing = label_smoothing self.num_qkv = num_qkv self.seg_emb = seg_emb self.no_segment_embedding = no_segment_embedding self.source_type_id = source_type_id self.target_type_id = target_type_id if type_vocab_size == 0: self.no_segment_embedding = True else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file, **kwargs): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() json_info = json.loads(text) for k, v in kwargs.items(): json_info[k] = v return cls.from_dict(json_info) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except ImportError: print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.") class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-5): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size) if config.no_segment_embedding: self.token_type_embeddings = None else: self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size) if hasattr(config, 'fp32_embedding'): self.fp32_embedding = config.fp32_embedding else: self.fp32_embedding = False if hasattr(config, 'new_pos_ids') and config.new_pos_ids: self.num_pos_emb = 4 else: self.num_pos_emb = 1 self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size * self.num_pos_emb) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, position_ids=None, task_idx=None): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) if self.num_pos_emb > 1: num_batch = position_embeddings.size(0) num_pos = position_embeddings.size(1) position_embeddings = position_embeddings.view( num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :] embeddings = words_embeddings + position_embeddings if self.token_type_embeddings is not None: embeddings = embeddings + self.token_type_embeddings(token_type_ids) if self.fp32_embedding: embeddings = embeddings.half() embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutlmEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(LayoutlmEmbeddings, self).__init__() # self.word_embeddings = nn.Embedding( # config.vocab_size, config.hidden_size) self.only_layout = config.layoutlm_only_layout_flag if not self.only_layout: self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=0 ) else: self.word_embeddings = None self.x_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.y_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.h_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.w_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) if config.no_segment_embedding: self.token_type_embeddings = None else: self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size) if hasattr(config, 'fp32_embedding'): self.fp32_embedding = config.fp32_embedding else: self.fp32_embedding = False if hasattr(config, 'new_pos_ids') and config.new_pos_ids: self.num_pos_emb = 4 else: self.num_pos_emb = 1 self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size * self.num_pos_emb) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, bbox, token_type_ids=None, position_ids=None, task_idx=None): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) position_embeddings = self.position_embeddings(position_ids) if self.num_pos_emb > 1: num_batch = position_embeddings.size(0) num_pos = position_embeddings.size(1) position_embeddings = position_embeddings.view( num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :] left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) h_position_embeddings = self.h_position_embeddings( bbox[:, :, 3] - bbox[:, :, 1] ) w_position_embeddings = self.w_position_embeddings( bbox[:, :, 2] - bbox[:, :, 0] ) # token_type_embeddings = self.token_type_embeddings(token_type_ids) # words_embeddings = self.word_embeddings(input_ids) # position_embeddings = self.position_embeddings(position_ids) embeddings = ( # words_embeddings position_embeddings + left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings ) if not self.only_layout: words_embeddings = self.word_embeddings(input_ids) embeddings = embeddings + words_embeddings if self.token_type_embeddings is not None: embeddings = embeddings + self.token_type_embeddings(token_type_ids) if self.fp32_embedding: embeddings = embeddings.half() embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int( config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size if hasattr(config, 'num_qkv') and (config.num_qkv > 1): self.num_qkv = config.num_qkv else: self.num_qkv = 1 self.query = nn.Linear( config.hidden_size, self.all_head_size * self.num_qkv) self.key = nn.Linear(config.hidden_size, self.all_head_size * self.num_qkv) self.value = nn.Linear( config.hidden_size, self.all_head_size * self.num_qkv) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.uni_debug_flag = True if os.getenv( 'UNI_DEBUG_FLAG', '') else False if self.uni_debug_flag: self.register_buffer('debug_attention_probs', torch.zeros((512, 512))) if hasattr(config, 'seg_emb') and config.seg_emb: self.b_q_s = nn.Parameter(torch.zeros( 1, self.num_attention_heads, 1, self.attention_head_size)) self.seg_emb = nn.Embedding( config.type_vocab_size, self.all_head_size) else: self.b_q_s = None self.seg_emb = None def transpose_for_scores(self, x, mask_qkv=None): if self.num_qkv > 1: sz = x.size()[:-1] + (self.num_qkv, self.num_attention_heads, self.all_head_size) # (batch, pos, num_qkv, head, head_hid) x = x.view(*sz) if mask_qkv is None: x = x[:, :, 0, :, :] elif isinstance(mask_qkv, int): x = x[:, :, mask_qkv, :, :] else: # mask_qkv: (batch, pos) if mask_qkv.size(1) > sz[1]: mask_qkv = mask_qkv[:, :sz[1]] # -> x: (batch, pos, head, head_hid) x = x.gather(2, mask_qkv.view(sz[0], sz[1], 1, 1, 1).expand( sz[0], sz[1], 1, sz[3], sz[4])).squeeze(2) else: sz = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) # (batch, pos, head, head_hid) x = x.view(*sz) # (batch, head, pos, head_hid) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, history_states=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None, key_cache=None, value_cache=None, ): if history_states is None: mixed_query_layer = self.query(hidden_states) # possible issue: https://github.com/NVIDIA/apex/issues/131 mixed_key_layer = F.linear(hidden_states, self.key.weight) mixed_value_layer = self.value(hidden_states) else: x_states = torch.cat((history_states, hidden_states), dim=1) mixed_query_layer = self.query(hidden_states) # possible issue: https://github.com/NVIDIA/apex/issues/131 mixed_key_layer = F.linear(x_states, self.key.weight) mixed_value_layer = self.value(x_states) if key_cache is not None and isinstance(key_cache, list): key_cache.append(mixed_key_layer) mixed_key_layer = torch.cat(key_cache, dim=1) if value_cache is not None and isinstance(value_cache, list): value_cache.append(mixed_value_layer) mixed_value_layer = torch.cat(value_cache, dim=1) query_layer = self.transpose_for_scores(mixed_query_layer, mask_qkv) key_layer = self.transpose_for_scores(mixed_key_layer, mask_qkv) value_layer = self.transpose_for_scores(mixed_value_layer, mask_qkv) if key_history is not None and not isinstance(key_history, list): key_layer = torch.cat((key_history, key_layer), dim=-2) value_layer = torch.cat((value_history, value_layer), dim=-2) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch, head, pos, pos) attention_scores = torch.matmul( query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2)) if self.seg_emb is not None: seg_rep = self.seg_emb(seg_ids) # (batch, pos, head, head_hid) seg_rep = seg_rep.view(seg_rep.size(0), seg_rep.size( 1), self.num_attention_heads, self.attention_head_size) qs = torch.einsum('bnih,bjnh->bnij', query_layer + self.b_q_s, seg_rep) attention_scores = attention_scores + qs # attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) if self.uni_debug_flag: _pos = attention_probs.size(-1) self.debug_attention_probs[:_pos, :_pos].copy_( attention_probs[0].mean(0).view(_pos, _pos)) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[ :-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) if isinstance(key_history, list): key_history.append(key_layer) if isinstance(value_history, list): value_history.append(value_layer) return context_layer class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask, history_states=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None): self_output = self.self( input_tensor, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids, key_history=key_history, value_history=value_history) attention_output = self.output(self_output, input_tensor) return attention_output class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TransformerFFN(nn.Module): def __init__(self, config): super(TransformerFFN, self).__init__() self.ffn_type = config.ffn_type assert self.ffn_type in (1, 2) if self.ffn_type in (1, 2): self.wx0 = nn.Linear(config.hidden_size, config.hidden_size) if self.ffn_type in (2,): self.wx1 = nn.Linear(config.hidden_size, config.hidden_size) if self.ffn_type in (1, 2): self.output = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, x): if self.ffn_type in (1, 2): x0 = self.wx0(x) if self.ffn_type == 1: x1 = x elif self.ffn_type == 2: x1 = self.wx1(x) out = self.output(x0 * x1) out = self.dropout(out) out = self.LayerNorm(out + x) return out class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.ffn_type = config.ffn_type if self.ffn_type: self.ffn = TransformerFFN(config) else: self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask, history_states=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None): attention_output = self.attention( hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids, key_history=key_history, value_history=value_history) if self.ffn_type: layer_output = self.ffn(attention_output) else: intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() layer = BertLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None): # history embedding and encoded layer must be simultanously given assert (prev_embedding is None) == (prev_encoded_layers is None) all_encoder_layers = [] if (prev_embedding is not None) and (prev_encoded_layers is not None): history_states = prev_embedding for i, layer_module in enumerate(self.layer): hidden_states = layer_module( hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if prev_encoded_layers is not None: history_states = prev_encoded_layers[i] else: for i, layer_module in enumerate(self.layer): set_key = None if isinstance(key_history, list): set_key = key_history if len(key_history) < len(self.layer) else key_history[i] set_value = None if isinstance(value_history, list): set_value = value_history if len(key_history) < len(self.layer) else value_history[i] hidden_states = layer_module( hidden_states, attention_mask, mask_qkv=mask_qkv, seg_ids=seg_ids, key_history=set_key, value_history=set_value) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act hid_size = config.hidden_size if hasattr(config, 'relax_projection') and (config.relax_projection > 1): hid_size *= config.relax_projection self.dense = nn.Linear(config.hidden_size, hid_size) self.LayerNorm = BertLayerNorm(hid_size, eps=1e-5) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class LayoutlmSPLMPredictionHead(nn.Module): def __init__(self, config, src_len): super(LayoutlmSPLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.bias = nn.Parameter(torch.zeros(src_len)) if hasattr(config, 'relax_projection') and (config.relax_projection > 1): self.relax_projection = config.relax_projection else: self.relax_projection = 0 self.fp32_embedding = config.fp32_embedding def convert_to_type(tensor): if self.fp32_embedding: return tensor.half() else: return tensor self.type_converter = convert_to_type self.converted = False def forward(self, hidden_states, src_emb, task_idx=None): if not self.converted: self.converted = True if self.fp32_embedding: self.transform.half() hidden_states = self.transform(self.type_converter(hidden_states)) if self.relax_projection > 1: num_batch = hidden_states.size(0) num_pos = hidden_states.size(1) # (batch, num_pos, relax_projection*hid) -> (batch, num_pos, relax_projection, hid) -> (batch, num_pos, hid) hidden_states = hidden_states.view( num_batch, num_pos, self.relax_projection, -1)[torch.arange(0, num_batch).long(), :, task_idx, :] if self.fp32_embedding: hidden_states = torch.einsum('btf,bsf->bts', self.type_converter(hidden_states), self.type_converter(src_emb)) + \ self.type_converter(self.bias) # hidden_states = F.linear(self.type_converter(hidden_states), self.type_converter( # self.decoder.weight), self.type_converter(self.bias)) else: hidden_states = torch.einsum('btf,bsf->bts', hidden_states, src_emb) + self.bias return hidden_states class LayoutlmSPPreTrainingHeads(nn.Module): def __init__(self, config, src_len, num_labels=2): super(LayoutlmSPPreTrainingHeads, self).__init__() self.predictions = LayoutlmSPLMPredictionHead(config, src_len) self.seq_relationship = nn.Linear(config.hidden_size, num_labels) def forward(self, sequence_output, pooled_output, src_emb, task_idx=None): prediction_scores = self.predictions(sequence_output, src_emb, task_idx) if pooled_output is None: seq_relationship_score = None else: seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class PreTrainedBertModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super(PreTrainedBertModel, self).__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_bert_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) # module.weight.data.copy_(torch.Tensor( # truncnorm.rvs(-1, 1, size=list(module.weight.data.shape)) * self.config.initializer_range)) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name, config, state_dict=None, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name: either: - a str with the name of a pre-trained model to load selected in the list of: . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` . `bert-base-multilingual` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance cache_dir: an optional path to a folder in which the pre-trained models will be cached. state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ logger.info("Model config {}".format(config)) # clean the arguments in kwargs for arg_clean in ('config_path', 'type_vocab_size', 'relax_projection', 'new_pos_ids', 'task_idx', 'max_position_embeddings', 'fp32_embedding', 'ffn_type', 'label_smoothing', 'hidden_dropout_prob', 'attention_probs_dropout_prob', 'num_qkv', 'seg_emb', 'word_emb_map', 'num_labels', 'num_rel', 'num_sentlvl_labels'): if arg_clean in kwargs: del kwargs[arg_clean] # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None: weights_path = os.path.join(pretrained_model_name, WEIGHTS_NAME) state_dict = torch.load(weights_path, map_location='cpu') old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix='' if hasattr(model, 'bert') else 'bert.') model.missing_keys = missing_keys if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: logger.info('\n'.join(error_msgs)) return model class BertModel(PreTrainedBertModel): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). ``` """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_bert_weights) def rescale_some_parameters(self): for layer_id, layer in enumerate(self.encoder.layer): layer.attention.output.dense.weight.data.div_( math.sqrt(2.0 * (layer_id + 1))) layer.output.dense.weight.data.div_(math.sqrt(2.0 * (layer_id + 1))) def get_extended_attention_mask(self, input_ids, token_type_ids, attention_mask): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. if attention_mask.dim() == 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) elif attention_mask.dim() == 3: extended_attention_mask = attention_mask.unsqueeze(1) else: raise NotImplementedError # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, mask_qkv=None, task_idx=None, key_history=None, value_history=None, position_ids=None): extended_attention_mask = self.get_extended_attention_mask( input_ids, token_type_ids, attention_mask) embedding_output = self.embeddings( input_ids, token_type_ids, task_idx=task_idx, position_ids=position_ids) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids, key_history=key_history, value_history=value_history) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers, pooled_output class LayoutlmModel(PreTrainedBertModel): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). ``` """ def __init__(self, config): super(LayoutlmModel, self).__init__(config) self.embeddings = LayoutlmEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_bert_weights) def rescale_some_parameters(self): for layer_id, layer in enumerate(self.encoder.layer): layer.attention.output.dense.weight.data.div_( math.sqrt(2.0 * (layer_id + 1))) layer.output.dense.weight.data.div_(math.sqrt(2.0 * (layer_id + 1))) def get_extended_attention_mask(self, input_ids, token_type_ids, attention_mask): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. if attention_mask.dim() == 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) elif attention_mask.dim() == 3: extended_attention_mask = attention_mask.unsqueeze(1) else: raise NotImplementedError # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, mask_qkv=None, task_idx=None, key_history=None, value_history=None, position_ids=None): extended_attention_mask = self.get_extended_attention_mask( input_ids[:, :, 0], token_type_ids, attention_mask) embedding_output = self.embeddings( input_ids[:, :, 0], input_ids[:, :, 1:], token_type_ids, task_idx=task_idx, position_ids=position_ids) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids, key_history=key_history, value_history=value_history) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers, pooled_output class BertModelIncr(BertModel): def __init__(self, config): super(BertModelIncr, self).__init__(config) def forward(self, input_ids, token_type_ids, position_ids, attention_mask, output_all_encoded_layers=True, prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, task_idx=None): extended_attention_mask = self.get_extended_attention_mask( input_ids, token_type_ids, attention_mask) embedding_output = self.embeddings( input_ids, token_type_ids, position_ids, task_idx=task_idx) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return embedding_output, encoded_layers, pooled_output class LayoutlmModelIncr(LayoutlmModel): def __init__(self, config): super(LayoutlmModelIncr, self).__init__(config) def forward(self, input_ids, token_type_ids, position_ids, attention_mask, output_all_encoded_layers=True, prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, task_idx=None): extended_attention_mask = self.get_extended_attention_mask( input_ids[:, :, 0], token_type_ids, attention_mask) embedding_output = self.embeddings( input_ids[:, :, 0], input_ids[:, :, 1:], token_type_ids, position_ids, task_idx=task_idx) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return embedding_output, encoded_layers, pooled_output class LayoutlmForSeq2SeqDecoder(PreTrainedBertModel): """refer to BertForPreTraining""" def __init__(self, config, mask_word_id=0, num_labels=2, num_rel=0, search_beam_size=1, length_penalty=1.0, eos_id=0, sos_id=0, forbid_duplicate_ngrams=False, forbid_ignore_set=None, ngram_size=3, min_len=0, mode="s2s", pos_shift=False): super(LayoutlmForSeq2SeqDecoder, self).__init__(config) self.layout_flag = config.base_model_type == 'layoutlm' if config.base_model_type == 'layoutlm': self.bert = LayoutlmModelIncr(config) else: self.bert = BertModelIncr(config) # self.bert = BertModelIncr(config) # note: the max source length is the max src seq length during fine tuning which includes the cls and sep # NOTE: we don't remove anything. the 0 is for padding self.cls = LayoutlmSPPreTrainingHeads( config, src_len=config.max_source_length, num_labels=num_labels) self.apply(self.init_bert_weights) self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none') self.crit_next_sent = nn.CrossEntropyLoss(ignore_index=-1) self.mask_word_id = mask_word_id self.num_labels = num_labels self.num_rel = num_rel self.search_beam_size = search_beam_size self.length_penalty = length_penalty self.eos_id = eos_id self.sos_id = sos_id self.forbid_duplicate_ngrams = forbid_duplicate_ngrams self.forbid_ignore_set = forbid_ignore_set self.ngram_size = ngram_size self.min_len = min_len assert mode in ("s2s", "l2r") self.mode = mode self.pos_shift = pos_shift def forward(self, input_ids, token_type_ids, position_ids, attention_mask, task_idx=None, mask_qkv=None): if self.search_beam_size > 1: return self.beam_search(input_ids, token_type_ids, position_ids, attention_mask, task_idx=task_idx, mask_qkv=mask_qkv) input_shape = list(input_ids.size()) batch_size = input_shape[0] input_length = input_shape[1] output_shape = list(token_type_ids.size()) output_length = output_shape[1] output_ids = [] prev_embedding = None prev_encoded_layers = None curr_ids = input_ids if not self.layout_flag: mask_ids = input_ids.new(batch_size, 1).fill_(self.mask_word_id) else: mask_ids = input_ids.new_zeros(batch_size, 1, 5) mask_ids[:, :, 0] = self.mask_word_id next_pos = input_length if self.pos_shift: if not self.layout_flag: sos_ids = input_ids.new(batch_size, 1).fill_(self.sos_id) else: sos_ids = input_ids.new_zeros(batch_size, 1, 5) sos_ids[:, :, 0] = self.sos_id src_embedding = None while next_pos < output_length: curr_length = list(curr_ids.size())[1] if self.pos_shift: if next_pos == input_length: x_input_ids = torch.cat((curr_ids, sos_ids), dim=1) start_pos = 0 else: x_input_ids = curr_ids start_pos = next_pos else: start_pos = next_pos - curr_length # if self.layout_flag: # mask_ids[:, -1, 1:] = curr_ids[:, , 1:] x_input_ids = torch.cat((curr_ids, mask_ids), dim=1) curr_token_type_ids = token_type_ids[:, start_pos:next_pos + 1] curr_attention_mask = attention_mask[:, start_pos:next_pos + 1, :next_pos + 1] curr_position_ids = position_ids[:, start_pos:next_pos + 1] new_embedding, new_encoded_layers, _ = \ self.bert(x_input_ids, curr_token_type_ids, curr_position_ids, curr_attention_mask, output_all_encoded_layers=True, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv) if src_embedding is None: # note: cut three embedding: CLS (1st), ..., SEP (-2nd), next to pred (-1st) # note: (NEW) the sep is kept for ignore index in loss func (for padding's index) # NOTE: only remove the next to pred token src_embedding = new_embedding[:, :-1, :] last_hidden = new_encoded_layers[-1][:, -1:, :] prediction_scores, _ = self.cls(last_hidden, None, src_embedding, task_idx=task_idx) _, max_ids = torch.max(prediction_scores, dim=-1) output_ids.append(max_ids) if self.pos_shift: if prev_embedding is None: prev_embedding = new_embedding else: prev_embedding = torch.cat( (prev_embedding, new_embedding), dim=1) if prev_encoded_layers is None: prev_encoded_layers = [x for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1]), dim=1) for x in zip( prev_encoded_layers, new_encoded_layers)] else: if prev_embedding is None: prev_embedding = new_embedding[:, :-1, :] else: prev_embedding = torch.cat( (prev_embedding, new_embedding[:, :-1, :]), dim=1) if prev_encoded_layers is None: prev_encoded_layers = [x[:, :-1, :] for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1][:, :-1, :]), dim=1) for x in zip(prev_encoded_layers, new_encoded_layers)] if not self.layout_flag: index = max_ids curr_ids = torch.gather(input_ids, 1, index) else: _, _, dim = input_ids.shape index = max_ids.unsqueeze(-1) index = index.expand(index.shape[0], index.shape[1], dim) # index = index.repeat(1, 1, dim) curr_ids = torch.gather(input_ids, 1, index) # if len(input_ids.shape) == 2: # real_input_ids = input_ids[:, 1:] # index = max_ids # curr_ids = torch.gather(real_input_ids, 1, index) # else: # real_input_ids = input_ids[:, 1:, :] # _, _, dim = real_input_ids.shape # index = max_ids.unsqueeze(-1) # index = index.expand(index.shape[0], index.shape[1], dim) # curr_ids = torch.gather(real_input_ids, 1, index) # # note: real input ids only include the ids for real data (remove the cls and sep) # real_input_ids = input_ids[:, 1: -1, :] # # _, _, dim = real_input_ids.shape # index = max_ids.unsqueeze(-1) # index = index.expand(index.shape[0], index.shape[1], dim) # # curr_ids = torch.gather(real_input_ids, 1, index) # curr_ids = real_input_ids[:, max_ids, :] # curr_ids = max_ids next_pos += 1 return torch.cat(output_ids, dim=1) # TODO: do the same with beam search as forward() def beam_search(self, input_ids, token_type_ids, position_ids, attention_mask, task_idx=None, mask_qkv=None): input_shape = list(input_ids.size()) batch_size = input_shape[0] input_length = input_shape[1] output_shape = list(token_type_ids.size()) output_length = output_shape[1] output_ids = [] prev_embedding = None prev_encoded_layers = None curr_ids = input_ids # mask_ids = input_ids.new(batch_size, 1).fill_(self.mask_word_id) if not self.layout_flag: mask_ids = input_ids.new(batch_size, 1).fill_(self.mask_word_id) else: mask_ids = input_ids.new_zeros(batch_size, 1, 5) mask_ids[:, :, 0] = self.mask_word_id next_pos = input_length if self.pos_shift: if not self.layout_flag: sos_ids = input_ids.new(batch_size, 1).fill_(self.sos_id) else: sos_ids = input_ids.new_zeros(batch_size, 1, 5) sos_ids[:, :, 0] = self.sos_id K = self.search_beam_size total_scores = [] beam_masks = [] step_ids = [] step_back_ptrs = [] partial_seqs = [] forbid_word_mask = None buf_matrix = None src_embedding = None while next_pos < output_length: curr_length = list(curr_ids.size())[1] if self.pos_shift: if next_pos == input_length: x_input_ids = torch.cat((curr_ids, sos_ids), dim=1) start_pos = 0 else: x_input_ids = curr_ids start_pos = next_pos else: start_pos = next_pos - curr_length x_input_ids = torch.cat((curr_ids, mask_ids), dim=1) curr_token_type_ids = token_type_ids[:, start_pos:next_pos + 1] curr_attention_mask = attention_mask[:, start_pos:next_pos + 1, :next_pos + 1] curr_position_ids = position_ids[:, start_pos:next_pos + 1] new_embedding, new_encoded_layers, _ = \ self.bert(x_input_ids, curr_token_type_ids, curr_position_ids, curr_attention_mask, output_all_encoded_layers=True, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv) def first_expand(x): input_shape = list(x.size()) expanded_shape = input_shape[:1] + [1] + input_shape[1:] x = torch.reshape(x, expanded_shape) repeat_count = [1, K] + [1] * (len(input_shape) - 1) x = x.repeat(*repeat_count) x = torch.reshape(x, [input_shape[0] * K] + input_shape[1:]) return x if src_embedding is None: src_embedding = new_embedding[:, :-1, :] if src_embedding.shape[0] != new_embedding.shape[0]: src_embedding = first_expand(src_embedding) last_hidden = new_encoded_layers[-1][:, -1:, :] prediction_scores, _ = self.cls(last_hidden, None, src_embedding, task_idx=task_idx) log_scores = torch.nn.functional.log_softmax( prediction_scores, dim=-1) # if forbid_word_mask is not None: # log_scores += (forbid_word_mask * -10000.0) # if self.min_len and (next_pos - input_length + 1 <= self.min_len): # log_scores[:, :, self.eos_id].fill_(-10000.0) kk_scores, kk_ids = torch.topk(log_scores, k=K) if len(total_scores) == 0: k_ids = torch.reshape(kk_ids, [batch_size, K]) back_ptrs = torch.zeros(batch_size, K, dtype=torch.long) k_scores = torch.reshape(kk_scores, [batch_size, K]) else: last_eos = torch.reshape( beam_masks[-1], [batch_size * K, 1, 1]) last_seq_scores = torch.reshape( total_scores[-1], [batch_size * K, 1, 1]) kk_scores += last_eos * (-10000.0) + last_seq_scores kk_scores = torch.reshape(kk_scores, [batch_size, K * K]) k_scores, k_ids = torch.topk(kk_scores, k=K) back_ptrs = torch.floor_divide(k_ids, K) kk_ids = torch.reshape(kk_ids, [batch_size, K * K]) k_ids = torch.gather(kk_ids, 1, k_ids) step_back_ptrs.append(back_ptrs) step_ids.append(k_ids) beam_masks.append(torch.eq(k_ids, self.eos_id).type_as(kk_scores)) total_scores.append(k_scores) # def first_expand(x): # input_shape = list(x.size()) # expanded_shape = input_shape[:1] + [1] + input_shape[1:] # x = torch.reshape(x, expanded_shape) # repeat_count = [1, K] + [1] * (len(input_shape) - 1) # x = x.repeat(*repeat_count) # x = torch.reshape(x, [input_shape[0] * K] + input_shape[1:]) # return x def select_beam_items(x, ids): id_shape = list(ids.size()) id_rank = len(id_shape) assert len(id_shape) == 2 x_shape = list(x.size()) x = torch.reshape(x, [batch_size, K] + x_shape[1:]) x_rank = len(x_shape) + 1 assert x_rank >= 2 if id_rank < x_rank: ids = torch.reshape( ids, id_shape + [1] * (x_rank - id_rank)) ids = ids.expand(id_shape + x_shape[1:]) y = torch.gather(x, 1, ids) y = torch.reshape(y, x_shape) return y is_first = (prev_embedding is None) if self.pos_shift: if prev_embedding is None: prev_embedding = first_expand(new_embedding) else: prev_embedding = torch.cat( (prev_embedding, new_embedding), dim=1) prev_embedding = select_beam_items( prev_embedding, back_ptrs) if prev_encoded_layers is None: prev_encoded_layers = [first_expand( x) for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1]), dim=1) for x in zip( prev_encoded_layers, new_encoded_layers)] prev_encoded_layers = [select_beam_items( x, back_ptrs) for x in prev_encoded_layers] else: if prev_embedding is None: prev_embedding = first_expand(new_embedding[:, :-1, :]) else: prev_embedding = torch.cat( (prev_embedding, new_embedding[:, :-1, :]), dim=1) prev_embedding = select_beam_items( prev_embedding, back_ptrs) if prev_encoded_layers is None: prev_encoded_layers = [first_expand( x[:, :-1, :]) for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1][:, :-1, :]), dim=1) for x in zip(prev_encoded_layers, new_encoded_layers)] prev_encoded_layers = [select_beam_items( x, back_ptrs) for x in prev_encoded_layers] max_ids = torch.reshape(k_ids, [batch_size * K, 1]) if len(input_ids.shape) == 2: expand_input_ids = first_expand(input_ids) index = max_ids curr_ids = torch.gather(expand_input_ids, 1, index) else: expand_input_ids = first_expand(input_ids) _, _, dim = expand_input_ids.shape index = max_ids.unsqueeze(-1) index = index.expand(index.shape[0], index.shape[1], dim) curr_ids = torch.gather(expand_input_ids, 1, index) if is_first: token_type_ids = first_expand(token_type_ids) position_ids = first_expand(position_ids) attention_mask = first_expand(attention_mask) mask_ids = first_expand(mask_ids) if mask_qkv is not None: mask_qkv = first_expand(mask_qkv) if self.forbid_duplicate_ngrams: wids = step_ids[-1].tolist() ptrs = step_back_ptrs[-1].tolist() if is_first: partial_seqs = [] for b in range(batch_size): for k in range(K): partial_seqs.append([wids[b][k]]) else: new_partial_seqs = [] for b in range(batch_size): for k in range(K): new_partial_seqs.append( partial_seqs[ptrs[b][k] + b * K] + [wids[b][k]]) partial_seqs = new_partial_seqs def get_dup_ngram_candidates(seq, n): cands = set() if len(seq) < n: return [] tail = seq[-(n - 1):] if self.forbid_ignore_set and any(tk in self.forbid_ignore_set for tk in tail): return [] for i in range(len(seq) - (n - 1)): mismatch = False for j in range(n - 1): if tail[j] != seq[i + j]: mismatch = True break if (not mismatch) and not ( self.forbid_ignore_set and (seq[i + n - 1] in self.forbid_ignore_set)): cands.add(seq[i + n - 1]) return list(sorted(cands)) if len(partial_seqs[0]) >= self.ngram_size: dup_cands = [] for seq in partial_seqs: dup_cands.append( get_dup_ngram_candidates(seq, self.ngram_size)) if max(len(x) for x in dup_cands) > 0: if buf_matrix is None: vocab_size = list(log_scores.size())[-1] buf_matrix = np.zeros( (batch_size * K, vocab_size), dtype=float) else: buf_matrix.fill(0) for bk, cands in enumerate(dup_cands): for i, wid in enumerate(cands): buf_matrix[bk, wid] = 1.0 forbid_word_mask = torch.tensor( buf_matrix, dtype=log_scores.dtype) forbid_word_mask = torch.reshape( forbid_word_mask, [batch_size * K, 1, vocab_size]).to(input_ids.device) else: forbid_word_mask = None next_pos += 1 # [(batch, beam)] total_scores = [x.tolist() for x in total_scores] step_ids = [x.tolist() for x in step_ids] step_back_ptrs = [x.tolist() for x in step_back_ptrs] # back tracking traces = {'pred_seq': [], 'scores': [], 'wids': [], 'ptrs': []} for b in range(batch_size): # [(beam,)] scores = [x[b] for x in total_scores] wids_list = [x[b] for x in step_ids] ptrs = [x[b] for x in step_back_ptrs] traces['scores'].append(scores) traces['wids'].append(wids_list) traces['ptrs'].append(ptrs) # first we need to find the eos frame where all symbols are eos # any frames after the eos frame are invalid last_frame_id = len(scores) - 1 for i, wids in enumerate(wids_list): if all(wid == self.eos_id for wid in wids): last_frame_id = i break max_score = -math.inf frame_id = -1 pos_in_frame = -1 for fid in range(last_frame_id + 1): for i, wid in enumerate(wids_list[fid]): if wid == self.eos_id or fid == last_frame_id: s = scores[fid][i] if self.length_penalty > 0: s /= math.pow((5 + fid + 1) / 6.0, self.length_penalty) if s > max_score: max_score = s frame_id = fid pos_in_frame = i if frame_id == -1: traces['pred_seq'].append([0]) else: seq = [wids_list[frame_id][pos_in_frame]] for fid in range(frame_id, 0, -1): pos_in_frame = ptrs[fid][pos_in_frame] seq.append(wids_list[fid - 1][pos_in_frame]) seq.reverse() traces['pred_seq'].append(seq) def _pad_sequence(sequences, max_len, padding_value=0): trailing_dims = sequences[0].size()[1:] out_dims = (len(sequences), max_len) + trailing_dims out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value) for i, tensor in enumerate(sequences): length = tensor.size(0) # use index notation to prevent duplicate references to the tensor out_tensor[i, :length, ...] = tensor return out_tensor # convert to tensors for DataParallel for k in ('pred_seq', 'scores', 'wids', 'ptrs'): ts_list = traces[k] if not isinstance(ts_list[0], torch.Tensor): dt = torch.float if k == 'scores' else torch.long ts_list = [torch.tensor(it, dtype=dt) for it in ts_list] traces[k] = _pad_sequence( ts_list, output_length, padding_value=0).to(input_ids.device) return traces
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/modeling_decoding.py
import numpy as np from random import randint, shuffle, choice from random import random as rand import math import logging import torch import torch.utils.data logger = logging.getLogger(__name__) def get_random_word(vocab_words): i = randint(0, len(vocab_words)-1) return vocab_words[i] def batch_list_to_batch_tensors(batch): batch_tensors = [] for x in zip(*batch): if x[0] is None: batch_tensors.append(None) elif isinstance(x[0], torch.Tensor): batch_tensors.append(torch.stack(x)) else: batch_tensors.append(torch.tensor(x, dtype=torch.long)) return batch_tensors def _get_word_split_index(tokens, st, end): split_idx = [] i = st while i < end: if (not tokens[i].startswith('##')) or (i == st): split_idx.append(i) i += 1 split_idx.append(end) return split_idx def _expand_whole_word(tokens, st, end): new_st, new_end = st, end while (new_st >= 0) and tokens[new_st].startswith('##'): new_st -= 1 while (new_end < len(tokens)) and tokens[new_end].startswith('##'): new_end += 1 return new_st, new_end class Pipeline(): """ Pre-process Pipeline Class : callable """ def __init__(self): super().__init__() self.skipgram_prb = None self.skipgram_size = None self.pre_whole_word = None self.mask_whole_word = None self.word_subsample_prb = None self.sp_prob = None self.pieces_dir = None self.vocab_words = None self.pieces_threshold = 10 self.call_count = 0 self.offline_mode = False self.skipgram_size_geo_list = None self.span_same_mask = False def __call__(self, instance): raise NotImplementedError class Preprocess4Seq2seqDecoder(Pipeline): """ Pre-processing steps for pretraining transformer """ def __init__(self, vocab_words, indexer, max_len=512, max_tgt_length=128, mode="s2s", pos_shift=False, source_type_id=0, target_type_id=1, cls_token='[CLS]', sep_token='[SEP]', pad_token='[PAD]', layout_flag=False): super().__init__() self.max_len = max_len self.vocab_words = vocab_words # vocabulary (sub)words self.indexer = indexer # function from token to token index self.max_len = max_len self._tril_matrix = torch.tril(torch.ones((max_len, max_len), dtype=torch.long)) self.task_idx = 3 # relax projection layer for different tasks assert mode in ("s2s", "l2r") self.mode = mode self.max_tgt_length = max_tgt_length self.pos_shift = pos_shift self.layout_flag = layout_flag if layout_flag: self.cls_token = [cls_token, 0, 0, 0, 0] self.sep_token = [sep_token, 1000, 1000, 1000, 1000] self.pad_token = [pad_token, 0, 0, 0, 0] else: self.cls_token = cls_token self.sep_token = sep_token self.pad_token = pad_token self.source_type_id = source_type_id self.target_type_id = target_type_id self.cc = 0 def __call__(self, instance): tokens_a, max_a_len = instance # NOTE: must pad to the max src length max_a_len = 511 padded_tokens_a = [self.cls_token] + tokens_a + [self.sep_token] assert len(padded_tokens_a) <= max_a_len + 2 if max_a_len + 2 > len(padded_tokens_a): padded_tokens_a += [self.pad_token] * \ (max_a_len + 2 - len(padded_tokens_a)) assert len(padded_tokens_a) == max_a_len + 2 max_len_in_batch = min(self.max_tgt_length + max_a_len + 2, self.max_len) tokens = padded_tokens_a segment_ids = [self.source_type_id] * (len(padded_tokens_a)) \ + [self.target_type_id] * (max_len_in_batch - len(padded_tokens_a)) mask_qkv = None position_ids = [] for i in range(len(tokens_a) + 2): position_ids.append(i) for i in range(len(tokens_a) + 2, max_a_len + 2): position_ids.append(0) for i in range(max_a_len + 2, max_len_in_batch): position_ids.append(i - (max_a_len + 2) + len(tokens_a) + 2) # Token Indexing if not self.layout_flag: input_ids = self.indexer(tokens) else: raw_text = [x[0] for x in tokens] raw_text_ids = self.indexer(raw_text) input_ids = [[i] + x[1:] for i, x in zip(raw_text_ids, tokens)] self.cc += 1 if self.cc < 5: if not self.layout_flag: logger.info("Input src = %s" % " ".join(self.vocab_words[tk_id] for tk_id in input_ids)) else: logger.info("Input src = %s" % " ".join(self.vocab_words[tk_id[0]] for tk_id in input_ids)) # Zero Padding input_mask = torch.zeros( max_len_in_batch, max_len_in_batch, dtype=torch.long) if self.mode == "s2s": input_mask[:, :len(tokens_a)+2].fill_(1) else: st, end = 0, len(tokens_a) + 2 input_mask[st:end, st:end].copy_( self._tril_matrix[:end, :end]) input_mask[end:, :len(tokens_a)+2].fill_(1) second_st, second_end = len(padded_tokens_a), max_len_in_batch input_mask[second_st:second_end, second_st:second_end].copy_( self._tril_matrix[:second_end-second_st, :second_end-second_st]) return input_ids, segment_ids, position_ids, input_mask, mask_qkv, self.task_idx
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/s2s_loader.py
import torch import logging from transformers.modeling_utils import cached_path, WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME logger = logging.getLogger(__name__) def get_checkpoint_from_transformer_cache( archive_file, pretrained_model_name_or_path, pretrained_model_archive_map, cache_dir, force_download, proxies, resume_download, ): try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download) except EnvironmentError: if pretrained_model_name_or_path in pretrained_model_archive_map: msg = "Couldn't reach server at '{}' to download pretrained weights.".format( archive_file) else: msg = "Model name '{}' was not found in model name list ({}). " \ "We assumed '{}' was a path or url to model weight files named one of {} but " \ "couldn't find any such file at this path or url.".format( pretrained_model_name_or_path, ', '.join(pretrained_model_archive_map.keys()), archive_file, [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME]) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format( archive_file, resolved_archive_file)) return torch.load(resolved_archive_file, map_location='cpu') def hf_roberta_to_hf_bert(state_dict): logger.info(" * Convert Huggingface RoBERTa format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key == 'roberta.embeddings.position_embeddings.weight': value = value[2:] if key == 'roberta.embeddings.token_type_embeddings.weight': continue if key.startswith('roberta'): key = 'bert.' + key[8:] elif key.startswith('lm_head'): if 'layer_norm' in key or 'dense' in key: key = 'cls.predictions.transform.' + key[8:] else: key = 'cls.predictions.' + key[8:] key = key.replace('layer_norm', 'LayerNorm') new_state_dict[key] = value return new_state_dict def hf_distilbert_to_hf_bert(state_dict): logger.info(" * Convert Huggingface DistilBERT format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key == 'roberta.embeddings.position_embeddings.weight': value = value[2:] if key == 'roberta.embeddings.token_type_embeddings.weight': continue if key.startswith('roberta'): key = 'bert.' + key[8:] elif key.startswith('lm_head'): if 'layer_norm' in key or 'dense' in key: key = 'cls.predictions.transform.' + key[8:] else: key = 'cls.predictions.' + key[8:] key = key.replace('layer_norm', 'LayerNorm') new_state_dict[key] = value return new_state_dict def hf_bert_to_hf_bert(state_dict): # NOTE: all cls states are used for prediction, # we predict the index so omit all pretrained states for prediction. new_state_dict = {} for key in state_dict: value = state_dict[key] if key.startswith('cls'): # NOTE: all cls states are used for prediction, # we predict the index so omit all pretrained states for prediction. continue new_state_dict[key] = value return new_state_dict def hf_layoutlm_to_hf_bert(state_dict): logger.info(" * Convert Huggingface LayoutLM format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key.startswith('layoutlm'): key = 'bert.' + key[9:] elif key.startswith('cls'): # NOTE: all cls states are used for prediction, # we predict the index so omit all pretrained states for prediction. continue new_state_dict[key] = value return new_state_dict state_dict_convert = { 'bert': hf_bert_to_hf_bert, 'unilm': hf_bert_to_hf_bert, 'minilm': hf_bert_to_hf_bert, 'layoutlm': hf_layoutlm_to_hf_bert, 'roberta': hf_roberta_to_hf_bert, 'xlm-roberta': hf_roberta_to_hf_bert, 'distilbert': hf_distilbert_to_hf_bert, }
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/convert_state_dict.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Tokenization classes for UniLM.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import unicodedata from io import open from transformers.tokenization_bert import BertTokenizer, whitespace_tokenize logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} PRETRAINED_VOCAB_FILES_MAP = { 'vocab_file': { 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-large-cased-vocab.txt", 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-base-cased-vocab.txt", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased-vocab.txt", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased-vocab.txt", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased-vocab.txt" } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { 'unilm-large-cased': 512, 'unilm-base-cased': 512, 'unilm1-large-cased': 512, 'unilm1-base-cased': 512, 'unilm1.2-base-uncased': 512, } class UnilmTokenizer(BertTokenizer): r""" Constructs a UnilmTokenizer. :class:`~transformers.UnilmTokenizer` is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text)
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/tokenization_unilm.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ UniLM model configuration """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import sys from io import open from transformers.configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-large-cased-config.json", 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-base-cased-config.json", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased-config.json", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased-config.json", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased-config.json", } class UnilmConfig(PretrainedConfig): r""" :class:`~transformers.UnilmConfig` is the configuration class to store the configuration of a `UnilmModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `UnilmModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `UnilmModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size=28996, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=6, initializer_range=0.02, layer_norm_eps=1e-12, source_type_id=0, target_type_id=1, **kwargs): super(UnilmConfig, self).__init__(**kwargs) if isinstance(vocab_size, str) or (sys.version_info[0] == 2 and isinstance(vocab_size, unicode)): with open(vocab_size, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size, int): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.source_type_id = source_type_id self.target_type_id = target_type_id else: raise ValueError("First argument must be either a vocabulary size (int)" " or the path to a pretrained model config file (str)")
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/configuration_unilm.py
from __future__ import absolute_import, division, print_function import logging import os import json import random import glob import re import torch import tqdm import torch.utils.data logger = logging.getLogger(__name__) class Seq2seqDatasetForBert(torch.utils.data.Dataset): def __init__( self, features, max_source_len, max_target_len, vocab_size, cls_id, sep_id, pad_id, mask_id, random_prob, keep_prob, offset, num_training_instances, span_len=1, span_prob=1.0): self.features = features self.max_source_len = max_source_len self.max_target_len = max_target_len self.offset = offset if offset > 0: logger.info(" **** Set offset %d in Seq2seqDatasetForBert **** ", offset) self.cls_id = cls_id self.sep_id = sep_id self.pad_id = pad_id self.random_prob = random_prob self.keep_prob = keep_prob self.mask_id = mask_id self.vocab_size = vocab_size self.num_training_instances = num_training_instances self.span_len = span_len self.span_prob = span_prob def __len__(self): return int(self.num_training_instances) def __trunk(self, ids, max_len): if len(ids) > max_len - 1: ids = ids[:max_len - 1] ids = ids + [self.sep_id] return ids def __pad(self, ids, max_len): if len(ids) < max_len: return ids + [self.pad_id] * (max_len - len(ids)) else: assert len(ids) == max_len return ids def __getitem__(self, idx): idx = (self.offset + idx) % len(self.features) feature = self.features[idx] source_ids = self.__trunk([self.cls_id] + feature["source_ids"], self.max_source_len) target_ids = self.__trunk(feature["target_ids"], self.max_target_len) pseudo_ids = [] for tk_id in target_ids: p = random.random() if p < self.keep_prob: pseudo_ids.append(tk_id) elif p < self.keep_prob + self.random_prob: pseudo_ids.append(random.randint(0, self.vocab_size - 1)) else: pseudo_ids.append(self.mask_id) num_source_tokens = len(source_ids) num_target_tokens = len(target_ids) source_ids = self.__pad(source_ids, self.max_source_len) target_ids = self.__pad(target_ids, self.max_target_len) pseudo_ids = self.__pad(pseudo_ids, self.max_target_len) if self.span_len > 1: span_ids = [] span_id = 1 while len(span_ids) < num_target_tokens: p = random.random() if p < self.span_prob: span_len = random.randint(2, self.span_len) span_len = min(span_len, num_target_tokens - len(span_ids)) else: span_len = 1 span_ids.extend([span_id] * span_len) span_id += 1 span_ids = self.__pad(span_ids, self.max_target_len) return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids else: return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens # DONE: finish this!!! the 2D input id settings. class Seq2seqDatasetForLayoutlm(torch.utils.data.Dataset): def __init__( self, features, max_source_len, max_target_len, vocab_size, cls_id, sep_id, pad_id, mask_id, random_prob, keep_prob, offset, num_training_instances, layout_flag=True, span_len=1, span_prob=1.0): self.layout_flag = layout_flag self.features = features self.max_source_len = max_source_len self.max_target_len = max_target_len self.offset = offset if offset > 0: logger.info(" **** Set offset %d in Seq2seqDatasetForBert **** ", offset) self.cls_id = cls_id self.sep_id = sep_id self.pad_id = pad_id self.random_prob = random_prob self.keep_prob = keep_prob self.mask_id = mask_id self.vocab_size = vocab_size self.num_training_instances = num_training_instances self.span_len = span_len self.span_prob = span_prob self.index_sp_id = 0 def __len__(self): return int(self.num_training_instances) def __clip_index(self, ids): replace_value = 0 for i in range(len(ids)): if ids[i] > self.max_source_len - 1: ids[i] = replace_value return ids def __trunk(self, ids, max_len, simple=False, value=None): trunk_value = value if value is not None else self.sep_id if len(ids) > max_len - 1: ids = ids[:max_len - 1] if simple: ids = ids + [trunk_value] else: ids = ids + [[trunk_value, 1000, 1000, 1000, 1000]] return ids def __pad(self, ids, max_len, simple=False, value=None): pad_value = value if value is not None else self.pad_id if len(ids) < max_len: if simple: return ids + [pad_value] * (max_len - len(ids)) else: return ids + [[pad_value, 0, 0, 0, 0]] * (max_len - len(ids)) else: assert len(ids) == max_len return ids def __getitem__(self, idx): if self.layout_flag: return self.__getitem_layout__(idx) else: return self.__getitem_bert__(idx) def __getitem_bert__(self, idx): idx = (self.offset + idx) % len(self.features) feature = self.features[idx] source_ids = self.__trunk([self.cls_id] + feature["source_ids"], self.max_source_len, simple=True) target_ids = self.__trunk(feature["target_ids"], self.max_target_len, simple=True) target_index = self.__trunk(feature['target_index'], self.max_target_len, simple=True, value=self.index_sp_id) pseudo_ids = [] for tk_id in target_ids: p = random.random() if p < self.keep_prob: pseudo_ids.append(tk_id) elif p < self.keep_prob + self.random_prob: pseudo_ids.append(random.randint(0, self.vocab_size - 1)) else: pseudo_ids.append(self.mask_id) num_source_tokens = len(source_ids) num_target_tokens = len(target_ids) source_ids = self.__pad(source_ids, self.max_source_len, simple=True) target_ids = self.__pad(target_ids, self.max_target_len, simple=True) pseudo_ids = self.__pad(pseudo_ids, self.max_target_len, simple=True) target_index = self.__pad(target_index, self.max_target_len, simple=True, value=self.index_sp_id) target_index = self.__clip_index(target_index) if self.span_len > 1: span_ids = [] span_id = 1 while len(span_ids) < num_target_tokens: p = random.random() if p < self.span_prob: span_len = random.randint(2, self.span_len) span_len = min(span_len, num_target_tokens - len(span_ids)) else: span_len = 1 span_ids.extend([span_id] * span_len) span_id += 1 span_ids = self.__pad(span_ids, self.max_target_len) return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids, target_index else: return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_index def __getitem_layout__(self, idx): # TODO: how to initialize the random and masked tokens' pos emb # Simple Solution: only mask the text idx = (self.offset + idx) % len(self.features) feature = self.features[idx] source_ids = self.__trunk([[self.cls_id, 0, 0, 0, 0]] + feature["source_ids"], self.max_source_len) target_ids = self.__trunk(feature["target_ids"], self.max_target_len) target_index = self.__trunk(feature['target_index'], self.max_target_len, simple=True, value=self.index_sp_id) pseudo_ids = [] for tk_id in target_ids: p = random.random() if p < self.keep_prob: pseudo_ids.append(tk_id) elif p < self.keep_prob + self.random_prob: pseudo_ids.append([random.randint(0, self.vocab_size - 1)] + [0, 0, 0, 0]) # tk_id[1:]) else: pseudo_ids.append([self.mask_id] + [0, 0, 0, 0]) # tk_id[1:]) num_source_tokens = len(source_ids) num_target_tokens = len(target_ids) source_ids = self.__pad(source_ids, self.max_source_len) target_ids = self.__pad(target_ids, self.max_target_len) pseudo_ids = self.__pad(pseudo_ids, self.max_target_len) target_index = self.__pad(target_index, self.max_target_len, simple=True, value=self.index_sp_id) target_index = self.__clip_index(target_index) if self.span_len > 1: span_ids = [] span_id = 1 while len(span_ids) < num_target_tokens: p = random.random() if p < self.span_prob: span_len = random.randint(2, self.span_len) span_len = min(span_len, num_target_tokens - len(span_ids)) else: span_len = 1 span_ids.extend([span_id] * span_len) span_id += 1 span_ids = self.__pad(span_ids, self.max_target_len) return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids, target_index else: return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_index def batch_list_to_batch_tensors(batch): batch_tensors = [] for x in zip(*batch): if isinstance(x[0], torch.Tensor): batch_tensors.append(torch.stack(x)) else: batch_tensors.append(torch.tensor(x, dtype=torch.long)) return batch_tensors def get_max_epoch_model(output_dir): fn_model_list = glob.glob(os.path.join(output_dir, "model.*.bin")) fn_optim_list = glob.glob(os.path.join(output_dir, "optim.*.bin")) if (not fn_model_list) or (not fn_optim_list): return None os.path.basename(output_dir) both_set = set([int(os.path.basename(fn).split('.')[1]) for fn in fn_model_list] ) & set([int(os.path.basename(fn).split('.')[1]) for fn in fn_optim_list]) if both_set: return max(both_set) else: return None def load_and_cache_examples( example_file, tokenizer, local_rank, cached_features_file, shuffle=True): # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank not in [-1, 0]: torch.distributed.barrier() if cached_features_file is not None and os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", example_file) examples = [] with open(example_file, mode="r", encoding="utf-8") as reader: for i, line in enumerate(reader): if i == 100: break examples.append(json.loads(line)) features = [] for example in tqdm.tqdm(examples): if isinstance(example["src"], list): source_tokens = example["src"] target_tokens = example["tgt"] else: source_tokens = tokenizer.tokenize(example["src"]) target_tokens = tokenizer.tokenize(example["tgt"]) features.append({ "source_ids": tokenizer.convert_tokens_to_ids(source_tokens), "target_ids": tokenizer.convert_tokens_to_ids(target_tokens), }) if shuffle: random.shuffle(features) if local_rank in [-1, 0] and cached_features_file is not None: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank == 0: torch.distributed.barrier() return features def load_and_cache_line_order_examples( example_path, tokenizer, local_rank, cached_features_file, max_src_length=1024, layout_flag=True, shuffle=True, src_shuffle_rate=0, file_info_flag=False, ): # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank not in [-1, 0]: torch.distributed.barrier() if cached_features_file is not None and os.path.exists(cached_features_file) and False: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset at %s", example_path) examples = [] with open(example_path, 'r') as layout_reader: logger.info(f'Start loading {example_path}') for i, line in enumerate(layout_reader): examples.append(json.loads(line)) features = [] for layout in tqdm.tqdm(examples): bleu = layout['bleu'] if random.random() < src_shuffle_rate: # print('Random!!!') # DONE: the random src! here has bug! index also need shuffle src_layout = layout['src'] tgt_index = layout['tgt_index'] source_length = len(src_layout) shuffle_index = list(range(source_length)) random.shuffle(shuffle_index) shuffle_layout = ['' for _ in range(source_length)] for i, j in enumerate(shuffle_index): # NOTE: map i-th token to j-th token shuffle_layout[j] = src_layout[i] shuffle_target_index = [shuffle_index[i] for i in tgt_index] layout['tgt_index'] = shuffle_target_index layout['src'] = shuffle_layout mask = tokenizer.mask_token_id src_ids = [tokenizer.convert_tokens_to_ids([str(tmp_i)])[:1] + src_layout for tmp_i, src_layout in enumerate(layout['src'])] tgt_ids = [tokenizer.convert_tokens_to_ids([str(tmp_i)])[:1] + tgt_layout for tmp_i, tgt_layout in enumerate(layout['tgt'])] tgt_index = layout['tgt_index'] feature = { "source_ids": src_ids, "target_ids": tgt_ids, "target_index": tgt_index, 'bleu': bleu } if file_info_flag: file_info = {'original_filename': layout['filename'], 'filename': layout['filename'], 'page_idx': 0} feature['file_info'] = file_info features.append(feature) if shuffle: random.shuffle(features) if local_rank in [-1, 0] and cached_features_file is not None: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank == 0: torch.distributed.barrier() return features def load_and_cache_layoutlm_examples( example_path, tokenizer, local_rank, cached_features_file, max_src_length=1024, layout_flag=True, shuffle=True, src_shuffle_rate=0, file_info_flag=False ): # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank not in [-1, 0]: torch.distributed.barrier() if cached_features_file is not None and os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset at %s", example_path) examples = [] if os.path.isdir(example_path): text_files = glob.glob(f'{example_path}/*text*.json') layout_files = [re.sub('text|txt', 'layout', x, 1) for x in text_files] else: text_files = [example_path] layout_files = [re.sub('text|txt', 'layout', example_path, 1)] for text_file, layout_file in zip(text_files, layout_files): with open(text_file, mode='r', encoding='utf-8') as text_reader, \ open(layout_file, mode='r', encoding='utf-8') as layout_reader: logger.info(f'Start loading {text_file}') for i, (text_line, layout_line) in enumerate(zip(text_reader, layout_reader)): if (i + 1) % 10000 == 0: logger.info(f'{i + 1} lines ...') examples.append((json.loads(text_line), json.loads(layout_line))) features = [] def tokenize_text_and_layout_src(_text, _layout, _layout_flag): ret = [] index_split = {} words = _text.split() # note: (OLD) the index should start from 1: 0-the cls token in src # note: (NEW) we need to remove the src embedding's CLS SEP token so we can still start from 0 # note: (NEWER) we need to at least one blank pos for ignore index in loss function (we use sep's index) # NOTE: (NEWER-ER) 1 for all padding tgt index new_token_index = 1 # first ordinary index for i, (word, box) in enumerate(zip(words, _layout)): if (not box[2] >= box[0]) or (not box[3] >= box[1]): continue tokens = tokenizer.tokenize(word) tokens = tokenizer.convert_tokens_to_ids(tokens) new_token_ids = [] for token in tokens: if _layout_flag: ret.append([token] + box) else: ret.append(token) new_token_ids.append(new_token_index) new_token_index += 1 index_split[i] = new_token_ids return ret, index_split def tokenize_text_and_layout_tgt(_text, _layout, _index, _index_split, _layout_flag): ret = [] ret_index = [] words = _text.split() for word, box, i in zip(words, _layout, _index): if (not box[2] >= box[0]) or (not box[3] >= box[1]): continue tokens = tokenizer.tokenize(word) tokens = tokenizer.convert_tokens_to_ids(tokens) for token, ii in zip(tokens, _index_split[i]): if _layout_flag: ret.append([token] + box) else: ret.append(token) ii = min(ii, max_src_length - 1) ret_index.append(ii) return ret, ret_index for text, layout in tqdm.tqdm(examples): if 'bleu' in text: bleu = text['bleu'] else: bleu = 0 if random.random() < src_shuffle_rate: # print('Random!!!') # DONE: the random src! here has bug! index also need shuffle src_text = text['src'] src_layout = layout['src'] tgt_index = text['tgt_index'] src_text = src_text.split() source_length = len(src_text) shuffle_index = list(range(source_length)) random.shuffle(shuffle_index) shuffle_text = ['' for _ in range(source_length)] shuffle_layout = ['' for _ in range(source_length)] for i, j in enumerate(shuffle_index): # NOTE: map i-th token to j-th token shuffle_text[j] = src_text[i] shuffle_layout[j] = src_layout[i] shuffle_target_index = [shuffle_index[i] for i in tgt_index] text['src'] = ' '.join(shuffle_text) text['tgt_index'] = shuffle_target_index layout['src'] = shuffle_layout src_ids, src_index_split = tokenize_text_and_layout_src(text['src'], layout['src'], _layout_flag=layout_flag) tgt_ids, tgt_index = tokenize_text_and_layout_tgt(text['tgt'], layout['tgt'], text['tgt_index'], src_index_split, _layout_flag=layout_flag) feature = { "source_ids": src_ids, "target_ids": tgt_ids, "target_index": tgt_index, 'bleu': bleu } if file_info_flag: file_info = {'original_filename': text['original_filename'], 'filename': text['filename'], 'page_idx': text['page_idx']} feature['file_info'] = file_info features.append(feature) if shuffle: random.shuffle(features) if local_rank in [-1, 0] and cached_features_file is not None: if not os.path.exists(os.path.dirname(cached_features_file)): os.makedirs(os.path.dirname(cached_features_file)) logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank == 0: torch.distributed.barrier() return features def convert_src_layout_inputs_to_tokens(inputs, converter, max_src_length, layout_flag=True): ret = [] if not layout_flag: for line in inputs: ret.append(converter(line["source_ids"])[: max_src_length]) else: for line in inputs: raw_text_ids = [x[0] for x in line['source_ids']] raw_text = converter(raw_text_ids) new_line = [[t] + x[1:] for t, x in zip(raw_text, line['source_ids'])][: max_src_length] ret.append(new_line) return ret def convert_tgt_layout_inputs_to_tokens(inputs, converter, max_tgt_length, layout_flag=True): ret = [] if not layout_flag: for line in inputs: ret.append(converter(line["target_ids"])[: max_tgt_length]) else: for line in inputs: raw_text_ids = [x[0] for x in line['target_ids']] ret.append(converter(raw_text_ids)[: max_tgt_length]) return ret def get_tokens_from_src_and_index(src, index, modifier=None): result = [] for i in index: i = modifier(i) i = min(i, len(src) - 1) if isinstance(src[i], list): result.append(src[i][0]) else: result.append(src[i]) return result def get_layout_from_src_and_index(src, index, modifier=None): result = [] s = set() for i in index: i = modifier(i) i = min(i, len(src) - 1) layout = src[i][1:] if repr(layout) not in s: result.append(layout) s.add(repr(layout)) return result def get_everything_from_src_and_index(src, index, modifier=None): result = [] for i in index: i = modifier(i) i = min(i, len(src) - 1) result.append(src[i]) return result
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/utils.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Tokenization classes for MiniLM.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import unicodedata from io import open from transformers.tokenization_bert import BertTokenizer, whitespace_tokenize logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} PRETRAINED_VOCAB_FILES_MAP = { 'vocab_file': { 'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased-vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { 'minilm-l12-h384-uncased': 512, } class MinilmTokenizer(BertTokenizer): r""" Constructs a MinilmTokenizer. :class:`~transformers.MinilmTokenizer` is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text)
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/tokenization_minilm.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import os import torch from torch import nn from torch.nn.modules.loss import _Loss import torch.nn.functional as F from transformers import BertConfig from transformers.modeling_bert import \ BertPreTrainedModel, BertSelfOutput, BertIntermediate, BertOutput, BertPredictionHeadTransform from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_xlm_roberta import XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from s2s_ft.config import BertForSeq2SeqConfig from s2s_ft.convert_state_dict import get_checkpoint_from_transformer_cache, state_dict_convert logger = logging.getLogger(__name__) BertLayerNorm = torch.nn.LayerNorm UNILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased.bin" } MINILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased.bin", } LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/pytorch_model.bin', 'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/pytorch_model.bin' } LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/config.json', 'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/config.json' } class LayoutlmConfig(BertConfig): pretrained_config_archive_map = LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "bert" def __init__(self, max_2d_position_embeddings=1024, **kwargs): super().__init__(**kwargs) self.max_2d_position_embeddings = max_2d_position_embeddings class BertPreTrainedForSeq2SeqModel(BertPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = BertForSeq2SeqConfig supported_convert_pretrained_model_archive_map = { "bert": BERT_PRETRAINED_MODEL_ARCHIVE_MAP, "roberta": ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "xlm-roberta": XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "unilm": UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, "minilm": MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, "layoutlm": LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP, } base_model_prefix = "bert_for_seq2seq" pretrained_model_archive_map = { **ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **BERT_PRETRAINED_MODEL_ARCHIVE_MAP, **UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, **MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, **LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP, } def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name_or_path, reuse_position_embedding=None, *model_args, **kwargs): model_type = kwargs.pop('model_type', None) if model_type is not None and "state_dict" not in kwargs: if model_type in cls.supported_convert_pretrained_model_archive_map: pretrained_model_archive_map = cls.supported_convert_pretrained_model_archive_map[model_type] if pretrained_model_name_or_path in pretrained_model_archive_map: state_dict = get_checkpoint_from_transformer_cache( archive_file=pretrained_model_archive_map[pretrained_model_name_or_path], pretrained_model_name_or_path=pretrained_model_name_or_path, pretrained_model_archive_map=pretrained_model_archive_map, cache_dir=kwargs.get("cache_dir", None), force_download=kwargs.get("force_download", None), proxies=kwargs.get("proxies", None), resume_download=kwargs.get("resume_download", None), ) state_dict = state_dict_convert[model_type](state_dict) kwargs["state_dict"] = state_dict elif os.path.isfile(pretrained_model_name_or_path): kwargs["state_dict"] = torch.load(pretrained_model_name_or_path, map_location='cpu') if kwargs["state_dict"] is None: logger.info("s2s-ft does't support the model !") raise NotImplementedError() config = kwargs["config"] state_dict = kwargs["state_dict"] # initialize new position embeddings (From Microsoft/UniLM) _k = 'bert.embeddings.position_embeddings.weight' if _k in state_dict: if config.max_position_embeddings > state_dict[_k].shape[0]: logger.info("Resize > position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_position_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True) new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range) max_range = config.max_position_embeddings if reuse_position_embedding else old_vocab_size shift = 0 while shift < max_range: delta = min(old_vocab_size, max_range - shift) new_position_embedding.data[shift: shift + delta, :] = state_dict[_k][:delta, :] logger.info(" CP [%d ~ %d] into [%d ~ %d] " % (0, delta, shift, shift + delta)) shift += delta state_dict[_k] = new_position_embedding.data del new_position_embedding elif config.max_position_embeddings < state_dict[_k].shape[0]: logger.info("Resize < position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_position_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True) new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range) new_position_embedding.data.copy_(state_dict[_k][:config.max_position_embeddings, :]) state_dict[_k] = new_position_embedding.data del new_position_embedding return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) else: self.token_type_embeddings = None # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings if self.token_type_embeddings: embeddings = embeddings + self.token_type_embeddings(token_type_ids) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutlmEmbeddings(nn.Module): def __init__(self, config): super(LayoutlmEmbeddings, self).__init__() self.only_layout_flag = config.layoutlm_only_layout if not config.layoutlm_only_layout: self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=0 ) else: self.word_embeddings = None self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) self.x_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.y_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.h_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.w_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) else: self.token_type_embeddings = None # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, input_ids, bbox, token_type_ids=None, position_ids=None, inputs_embeds=None, ): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device ) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) h_position_embeddings = self.h_position_embeddings( bbox[:, :, 3] - bbox[:, :, 1] ) w_position_embeddings = self.w_position_embeddings( bbox[:, :, 2] - bbox[:, :, 0] ) position_embeddings = self.position_embeddings(position_ids) embeddings = ( left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + position_embeddings # + token_type_embeddings ) if not self.only_layout_flag: words_embeddings = self.word_embeddings(input_ids) embeddings = embeddings + words_embeddings if self.token_type_embeddings: embeddings = embeddings + self.token_type_embeddings(token_type_ids) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def multi_head_attention(self, query, key, value, attention_mask): query_layer = self.transpose_for_scores(query) key_layer = self.transpose_for_scores(key) value_layer = self.transpose_for_scores(value) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return (context_layer, attention_probs) if self.output_attentions else (context_layer,) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None): mixed_query_layer = self.query(hidden_states) if split_lengths: assert not self.output_attentions # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) if split_lengths: query_parts = torch.split(mixed_query_layer, split_lengths, dim=1) key_parts = torch.split(mixed_key_layer, split_lengths, dim=1) value_parts = torch.split(mixed_value_layer, split_lengths, dim=1) key = None value = None outputs = [] sum_length = 0 for (query, _key, _value, part_length) in zip(query_parts, key_parts, value_parts, split_lengths): key = _key if key is None else torch.cat((key, _key), dim=1) value = _value if value is None else torch.cat((value, _value), dim=1) sum_length += part_length outputs.append(self.multi_head_attention( query, key, value, attention_mask[:, :, sum_length - part_length: sum_length, :sum_length] )[0]) outputs = (torch.cat(outputs, dim=1), ) else: outputs = self.multi_head_attention( mixed_query_layer, mixed_key_layer, mixed_value_layer, attention_mask) return outputs class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None): self_outputs = self.self( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, split_lengths=split_lengths) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask=None, split_lengths=None): self_attention_outputs = self.attention( hidden_states, attention_mask, split_lengths=split_lengths) attention_output = self_attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + self_attention_outputs[1:] return outputs class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask=None, split_lengths=None): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, attention_mask, split_lengths=split_lengths) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class BertModel(BertPreTrainedForSeq2SeqModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(BertModel, self).__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, split_lengths=None, return_emb=False): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths) sequence_output = encoder_outputs[0] outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here if return_emb: outputs += (embedding_output,) return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class LayoutlmModel(BertPreTrainedForSeq2SeqModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(LayoutlmModel, self).__init__(config) self.config = config self.embeddings = LayoutlmEmbeddings(config) self.encoder = BertEncoder(config) def forward(self, input_ids=None, bbox=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, split_lengths=None, return_emb=False): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # embedding_output = self.embeddings( # input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds) embedding_output = self.embeddings( input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths) sequence_output = encoder_outputs[0] outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here if return_emb: outputs += (embedding_output,) return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class LabelSmoothingLoss(_Loss): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing=0, tgt_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__( size_average=size_average, reduce=reduce, reduction=reduction) assert label_smoothing > 0 assert tgt_size > 0 smoothing_value = label_smoothing / (tgt_size - 2) one_hot = torch.full((tgt_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing self.tgt_size = tgt_size def forward(self, output, target): """ output (FloatTensor): batch_size * num_pos * n_classes target (LongTensor): batch_size * num_pos """ assert self.tgt_size == output.size(2) batch_size, num_pos = target.size(0), target.size(1) output = output.view(-1, self.tgt_size) target = target.view(-1) model_prob = self.one_hot.float().repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2) class LayoutlmSPLMPredictionHead(nn.Module): def __init__(self, config, src_len): super(LayoutlmSPLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) self.bias = nn.Parameter(torch.zeros(src_len)) def forward(self, hidden_states, src_emb): hidden_states = self.transform(hidden_states) hidden_states = torch.einsum('btf,bsf->bts', hidden_states, src_emb) + self.bias # hidden_states = F.linear(hidden_states, weight=src_emb, bias=self.bias) return hidden_states class LayoutlmSPOnlyMLMHead(nn.Module): def __init__(self, config, src_len): super(LayoutlmSPOnlyMLMHead, self).__init__() self.predictions = LayoutlmSPLMPredictionHead(config, src_len=src_len) def forward(self, sequence_output, src_emb): prediction_scores = self.predictions(sequence_output, src_emb=src_emb) return prediction_scores class LayoutlmForSequenceToSequence(BertPreTrainedForSeq2SeqModel): def __init__(self, config): super(LayoutlmForSequenceToSequence, self).__init__(config) if config.base_model_type == 'layoutlm': self.bert = LayoutlmModel(config) else: self.bert = BertModel(config) self.cls = LayoutlmSPOnlyMLMHead(config, src_len=config.max_source_length) self.init_weights() self.log_softmax = nn.LogSoftmax() # setattr(config, 'label_smoothing', 0.1) self.source_type_id = config.source_type_id self.target_type_id = config.target_type_id if config.label_smoothing > 0: self.crit_mask_lm_smoothed = LabelSmoothingLoss( config.label_smoothing, config.max_source_length, ignore_index=0, reduction='none') self.crit_mask_lm = None else: self.crit_mask_lm_smoothed = None self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none', ignore_index=0) @staticmethod def create_mask_and_position_ids(num_tokens, max_len, offset=None): base_position_matrix = torch.arange( 0, max_len, dtype=num_tokens.dtype, device=num_tokens.device).view(1, -1) mask = (base_position_matrix < num_tokens.view(-1, 1)).type_as(num_tokens) if offset is not None: base_position_matrix = base_position_matrix + offset.view(-1, 1) position_ids = base_position_matrix * mask return mask, position_ids @staticmethod def create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids): weight = torch.cat((torch.zeros_like(source_position_ids), target_span_ids, -target_span_ids), dim=1) from_weight = weight.unsqueeze(-1) to_weight = weight.unsqueeze(1) true_tokens = (0 <= to_weight) & (torch.cat((source_mask, target_mask, target_mask), dim=1) == 1).unsqueeze(1) true_tokens_mask = (from_weight >= 0) & true_tokens & (to_weight <= from_weight) pseudo_tokens_mask = (from_weight < 0) & true_tokens & (-to_weight > from_weight) pseudo_tokens_mask = pseudo_tokens_mask | ((from_weight < 0) & (to_weight == from_weight)) return (true_tokens_mask | pseudo_tokens_mask).type_as(source_mask) def forward(self, source_idxys, target_idxys, target_index, pseudo_idxys, num_source_tokens, num_target_tokens, target_span_ids=None): source_len = source_idxys.size(1) target_len = target_idxys.size(1) pseudo_len = pseudo_idxys.size(1) assert target_len == pseudo_len assert source_len > 0 and target_len > 0 split_lengths = (source_len, target_len, pseudo_len) if self.config.base_model_type == 'layoutlm': source_xys = source_idxys[:, :, 1:] target_xys = target_idxys[:, :, 1:] pseudo_xys = pseudo_idxys[:, :, 1:] input_xys = torch.cat((source_xys, target_xys, pseudo_xys), dim=1) source_ids = source_idxys[:, :, 0] target_ids = target_idxys[:, :, 0] pseudo_ids = pseudo_idxys[:, :, 0] else: source_ids = source_idxys target_ids = target_idxys pseudo_ids = pseudo_idxys input_xys = None input_ids = torch.cat((source_ids, target_ids, pseudo_ids), dim=1) token_type_ids = torch.cat( (torch.ones_like(source_ids) * self.source_type_id, torch.ones_like(target_ids) * self.target_type_id, torch.ones_like(pseudo_ids) * self.target_type_id), dim=1) source_mask, source_position_ids = \ self.create_mask_and_position_ids(num_source_tokens, source_len) target_mask, target_position_ids = \ self.create_mask_and_position_ids(num_target_tokens, target_len, offset=num_source_tokens) position_ids = torch.cat((source_position_ids, target_position_ids, target_position_ids), dim=1) if target_span_ids is None: target_span_ids = target_position_ids attention_mask = self.create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids) if self.config.base_model_type == 'layoutlm': outputs = self.bert( input_ids, input_xys, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, split_lengths=split_lengths, return_emb=True) else: outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, split_lengths=split_lengths, return_emb=True) sequence_output = outputs[0] pseudo_sequence_output = sequence_output[:, source_len + target_len:, ] sequence_embedding = outputs[-1] source_embedding = sequence_embedding[:, :source_len, :] def loss_mask_and_normalize(loss, mask): mask = mask.type_as(loss) loss = loss * mask denominator = torch.sum(mask) + 1e-5 return (loss / denominator).sum() # TODO: do we need to mask the impossible pos with the real input length prediction_scores_masked = self.cls(pseudo_sequence_output, source_embedding) if self.crit_mask_lm_smoothed: masked_lm_loss = self.crit_mask_lm_smoothed( F.log_softmax(prediction_scores_masked.float(), dim=-1), target_index) else: masked_lm_loss = self.crit_mask_lm( prediction_scores_masked.transpose(1, 2).float(), target_index) pseudo_lm_loss = loss_mask_and_normalize( masked_lm_loss.float(), target_mask) return pseudo_lm_loss
EXA-1-master
exa/models/unilm-master/layoutreader/s2s_ft/modeling.py
"""BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import glob import logging import argparse import math from tqdm import tqdm import numpy as np import torch import random import pickle from s2s_ft.modeling_decoding import BertForSeq2SeqDecoder, BertConfig from transformers.tokenization_bert import whitespace_tokenize import s2s_ft.s2s_loader as seq2seq_loader from s2s_ft.utils import load_and_cache_examples from transformers import \ BertTokenizer, RobertaTokenizer, XLMRobertaTokenizer, ElectraTokenizer from s2s_ft.tokenization_unilm import UnilmTokenizer from s2s_ft.tokenization_minilm import MinilmTokenizer TOKENIZER_CLASSES = { 'bert': BertTokenizer, 'minilm': MinilmTokenizer, 'roberta': RobertaTokenizer, 'unilm': UnilmTokenizer, 'xlm-roberta': XLMRobertaTokenizer, 'electra': ElectraTokenizer, } class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def detokenize(tk_list): r_list = [] for tk in tk_list: if tk.startswith('##') and len(r_list) > 0: r_list[-1] = r_list[-1] + tk[2:] else: r_list.append(tk) return r_list def ascii_print(text): text = text.encode("ascii", "ignore") print(text) def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(TOKENIZER_CLASSES.keys())) parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model checkpoint.") parser.add_argument("--config_path", default=None, type=str, help="Path to config.json for the model.") # tokenizer_name parser.add_argument("--tokenizer_name", default=None, type=str, required=True, help="tokenizer name") parser.add_argument("--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") # decoding parameters parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--no_cuda', action='store_true', help="Whether to use CUDA for decoding") parser.add_argument("--input_file", type=str, help="Input file") parser.add_argument('--subset', type=int, default=0, help="Decode a subset of the input dataset.") parser.add_argument("--output_file", type=str, help="output file") parser.add_argument("--split", type=str, default="", help="Data split (train/val/test).") parser.add_argument('--tokenized_input', action='store_true', help="Whether the input is tokenized.") parser.add_argument('--seed', type=int, default=123, help="random seed for initialization") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--batch_size', type=int, default=4, help="Batch size for decoding.") parser.add_argument('--beam_size', type=int, default=1, help="Beam size for searching") parser.add_argument('--length_penalty', type=float, default=0, help="Length penalty for beam search") parser.add_argument('--forbid_duplicate_ngrams', action='store_true') parser.add_argument('--forbid_ignore_word', type=str, default=None, help="Forbid the word during forbid_duplicate_ngrams") parser.add_argument("--min_len", default=1, type=int) parser.add_argument('--need_score_traces', action='store_true') parser.add_argument('--ngram_size', type=int, default=3) parser.add_argument('--mode', default="s2s", choices=["s2s", "l2r", "both"]) parser.add_argument('--max_tgt_length', type=int, default=128, help="maximum length of target sequence") parser.add_argument('--s2s_special_token', action='store_true', help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.") parser.add_argument('--s2s_add_segment', action='store_true', help="Additional segmental for the encoder of S2S.") parser.add_argument('--s2s_share_segment', action='store_true', help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).") parser.add_argument('--pos_shift', action='store_true', help="Using position shift for fine-tuning.") parser.add_argument("--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3") args = parser.parse_args() if args.need_score_traces and args.beam_size <= 1: raise ValueError( "Score trace is only available for beam search with beam size > 1.") if args.max_tgt_length >= args.max_seq_length - 2: raise ValueError("Maximum tgt length exceeds max seq length - 2.") device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() if args.seed > 0: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) else: random_seed = random.randint(0, 10000) logger.info("Set random seed as: {}".format(random_seed)) random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) tokenizer = TOKENIZER_CLASSES[args.model_type].from_pretrained( args.tokenizer_name, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if args.model_type == "roberta": vocab = tokenizer.encoder elif args.model_type == "xlm-roberta": vocab = {} for tk_id in range(len(tokenizer)): tk = tokenizer._convert_id_to_token(tk_id) vocab[tk] = tk_id else: vocab = tokenizer.vocab if hasattr(tokenizer, 'model_max_length'): tokenizer.model_max_length = args.max_seq_length elif hasattr(tokenizer, 'max_len'): tokenizer.max_len = args.max_seq_length mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids( [tokenizer.mask_token, tokenizer.sep_token, tokenizer.sep_token]) forbid_ignore_set = None if args.forbid_ignore_word: w_list = [] for w in args.forbid_ignore_word.split('|'): if w.startswith('[') and w.endswith(']'): w_list.append(w.upper()) else: w_list.append(w) forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list)) print(args.model_path) found_checkpoint_flag = False for model_recover_path in glob.glob(args.model_path): if not os.path.isdir(model_recover_path): continue logger.info("***** Recover model: %s *****", model_recover_path) config_file = args.config_path if args.config_path else os.path.join(model_recover_path, "config.json") logger.info("Read decoding config from: %s" % config_file) config = BertConfig.from_json_file(config_file) bi_uni_pipeline = [] bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder( list(vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, max_tgt_length=args.max_tgt_length, pos_shift=args.pos_shift, source_type_id=config.source_type_id, target_type_id=config.target_type_id, cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token, pad_token=tokenizer.pad_token)) found_checkpoint_flag = True model = BertForSeq2SeqDecoder.from_pretrained( model_recover_path, config=config, mask_word_id=mask_word_id, search_beam_size=args.beam_size, length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id, forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set, ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode, max_position_embeddings=args.max_seq_length, pos_shift=args.pos_shift, ) if args.fp16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) torch.cuda.empty_cache() model.eval() next_i = 0 max_src_length = args.max_seq_length - 2 - args.max_tgt_length if args.pos_shift: max_src_length += 1 to_pred = load_and_cache_examples( args.input_file, tokenizer, local_rank=-1, cached_features_file=None, shuffle=False, eval_mode=True) input_lines = [] for line in to_pred: input_lines.append(tokenizer.convert_ids_to_tokens(line.source_ids)[:max_src_length]) if args.subset > 0: logger.info("Decoding subset: %d", args.subset) input_lines = input_lines[:args.subset] input_lines = sorted(list(enumerate(input_lines)), key=lambda x: -len(x[1])) output_lines = [""] * len(input_lines) score_trace_list = [None] * len(input_lines) total_batch = math.ceil(len(input_lines) / args.batch_size) with tqdm(total=total_batch) as pbar: batch_count = 0 first_batch = True while next_i < len(input_lines): _chunk = input_lines[next_i:next_i + args.batch_size] buf_id = [x[0] for x in _chunk] buf = [x[1] for x in _chunk] next_i += args.batch_size batch_count += 1 max_a_len = max([len(x) for x in buf]) instances = [] for instance in [(x, max_a_len) for x in buf]: for proc in bi_uni_pipeline: instances.append(proc(instance)) with torch.no_grad(): batch = seq2seq_loader.batch_list_to_batch_tensors( instances) batch = [ t.to(device) if t is not None else None for t in batch] input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch traces = model(input_ids, token_type_ids, position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv) if args.beam_size > 1: traces = {k: v.tolist() for k, v in traces.items()} output_ids = traces['pred_seq'] else: output_ids = traces.tolist() for i in range(len(buf)): w_ids = output_ids[i] output_buf = tokenizer.convert_ids_to_tokens(w_ids) output_tokens = [] for t in output_buf: if t in (tokenizer.sep_token, tokenizer.pad_token): break output_tokens.append(t) if args.model_type == "roberta" or args.model_type == "xlm-roberta": output_sequence = tokenizer.convert_tokens_to_string(output_tokens) else: output_sequence = ' '.join(detokenize(output_tokens)) if '\n' in output_sequence: output_sequence = " [X_SEP] ".join(output_sequence.split('\n')) output_lines[buf_id[i]] = output_sequence if first_batch or batch_count % 50 == 0: logger.info("{} = {}".format(buf_id[i], output_sequence)) if args.need_score_traces: score_trace_list[buf_id[i]] = { 'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]} pbar.update(1) first_batch = False if args.output_file: fn_out = args.output_file else: fn_out = model_recover_path+'.'+args.split with open(fn_out, "w", encoding="utf-8") as fout: for l in output_lines: fout.write(l) fout.write("\n") if args.need_score_traces: with open(fn_out + ".trace.pickle", "wb") as fout_trace: pickle.dump( {"version": 0.0, "num_samples": len(input_lines)}, fout_trace) for x in score_trace_list: pickle.dump(x, fout_trace) if not found_checkpoint_flag: logger.info("Not found the model checkpoint file!") if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/s2s-ft/decode_seq2seq.py
from io import open from setuptools import find_packages, setup extras = { 'serving': ['pydantic', 'uvicorn', 'fastapi'], 'serving-tf': ['pydantic', 'uvicorn', 'fastapi'], 'serving-torch': ['pydantic', 'uvicorn', 'fastapi', 'torch'] } extras['all'] = [package for package in extras.values()] setup( name="s2s-ft", version="0.0.1", author="UniLM Team", author_email="[email protected]", description="Fine-Tuning Bidirectional Transformers for Sequence-to-Sequence Learning", long_description=open("README.md", "r", encoding='utf-8').read(), long_description_content_type="text/markdown", keywords='Fine-Tuning Bidirectional Transformers for Sequence-to-Sequence Learning', license='Apache', url="https://github.com/microsoft/unilm/tree/master/s2s-ft", packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]), install_requires=['numpy', 'boto3', 'requests', 'tqdm', 'regex != 2019.12.17', 'sentencepiece', 'sacremoses', 'tensorboardX', 'transformers == 2.10.0'], extras_require=extras, python_requires='>=3.5.0', classifiers=[ 'Programming Language :: Python :: 3', ], )
EXA-1-master
exa/models/unilm-master/s2s-ft/setup.py
import pickle import math import argparse import glob import logging from pathlib import Path from tqdm import tqdm import unicodedata from transformers import BertTokenizer, RobertaTokenizer, XLMRobertaTokenizer from s2s_ft.tokenization_unilm import UnilmTokenizer from s2s_ft.tokenization_minilm import MinilmTokenizer logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) TOKENIZER_CLASSES = { 'bert': BertTokenizer, 'minilm': MinilmTokenizer, 'roberta': RobertaTokenizer, 'unilm': UnilmTokenizer, 'xlm-roberta': XLMRobertaTokenizer, } def read_traces_from_file(file_name): with open(file_name, "rb") as fin: meta = pickle.load(fin) num_samples = meta["num_samples"] samples = [] for _ in range(num_samples): samples.append(pickle.load(fin)) return samples def get_best_sequence(sample, eos_id, pad_id, length_penalty=None, alpha=None, expect=None, min_len=None): # if not any((length_penalty, alpha, expect, min_len)): # raise ValueError( # "You can only specify length penalty or alpha, but not both.") scores = sample["scores"] wids_list = sample["wids"] ptrs = sample["ptrs"] last_frame_id = len(scores) - 1 for i, wids in enumerate(wids_list): if all(wid in (eos_id, pad_id) for wid in wids): last_frame_id = i break while all(wid == pad_id for wid in wids_list[last_frame_id]): last_frame_id -= 1 max_score = -math.inf frame_id = -1 pos_in_frame = -1 for fid in range(last_frame_id + 1): for i, wid in enumerate(wids_list[fid]): if fid <= last_frame_id and scores[fid][i] >= 0: # skip paddings continue if (wid in (eos_id, pad_id)) or fid == last_frame_id: s = scores[fid][i] if length_penalty: if expect: s -= length_penalty * math.fabs(fid+1 - expect) else: s += length_penalty * (fid + 1) elif alpha: s = s / math.pow((5 + fid + 1) / 6.0, alpha) if s > max_score: # if (frame_id != -1) and min_len and (fid+1 < min_len): # continue max_score = s frame_id = fid pos_in_frame = i if frame_id == -1: seq = [] else: seq = [wids_list[frame_id][pos_in_frame]] for fid in range(frame_id, 0, -1): pos_in_frame = ptrs[fid][pos_in_frame] seq.append(wids_list[fid - 1][pos_in_frame]) seq.reverse() return seq def detokenize(tk_list): r_list = [] for tk in tk_list: if tk.startswith('##') and len(r_list) > 0: r_list[-1] = r_list[-1] + tk[2:] else: r_list.append(tk) return r_list def simple_postprocess(tk_list): # truncate duplicate punctuations while tk_list and len(tk_list) > 4 and len(tk_list[-1]) == 1 and unicodedata.category(tk_list[-1]).startswith('P') and all(it == tk_list[-1] for it in tk_list[-4:]): tk_list = tk_list[:-3] return tk_list # def include_unk(line): # return " UNK ".join(line.split('<unk>')).strip() def main(args): tokenizer = TOKENIZER_CLASSES[args.model_type].from_pretrained( args.tokenizer_name, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) eos_token = tokenizer.sep_token pad_token = tokenizer.pad_token eos_id, pad_id = tokenizer.convert_tokens_to_ids([eos_token, pad_token]) logger.info("*********************************************") logger.info(" EOS TOKEN = {}, ID = {}".format(eos_token, eos_id)) logger.info(" PAD TOKEN = {}, ID = {}".format(pad_token, pad_id)) logger.info("*********************************************") for input_file in tqdm(glob.glob(args.input)): if not Path(input_file+'.trace.pickle').exists(): continue print(input_file) samples = read_traces_from_file(input_file+'.trace.pickle') results = [] for s in samples: word_ids = get_best_sequence(s, eos_id, pad_id, alpha=args.alpha, length_penalty=args.length_penalty, expect=args.expect, min_len=args.min_len) tokens = tokenizer.convert_ids_to_tokens(word_ids) buf = [] for t in tokens: if t in (eos_token, pad_token): break else: buf.append(t) if args.model_type == "roberta" or args.model_type == "xlm-roberta": output_text = " ".join(simple_postprocess(tokenizer.convert_tokens_to_string(buf).split(' '))) if '\n' in output_text: output_text = " [X_SEP] ".join(output_text.split('\n')) else: output_text = " ".join(simple_postprocess(detokenize(buf))) results.append(output_text) fn_out = input_file + '.' if args.length_penalty: fn_out += 'lenp'+str(args.length_penalty) if args.expect: fn_out += 'exp'+str(args.expect) if args.alpha: fn_out += 'alp'+str(args.alpha) if args.min_len: fn_out += 'minl'+str(args.min_len) with open(fn_out, "w", encoding="utf-8") as fout: for line in results: fout.write(line) fout.write("\n") logger.info("Output file = [%s]" % fn_out) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input", type=str, help="Input file.") parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(TOKENIZER_CLASSES.keys())) parser.add_argument("--alpha", default=None, type=float) parser.add_argument("--length_penalty", default=None, type=float) parser.add_argument("--expect", default=None, type=float, help="Expectation of target length.") parser.add_argument("--min_len", default=None, type=int) # tokenizer_name parser.add_argument("--tokenizer_name", default=None, type=str, required=True, help="tokenizer name") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3") args = parser.parse_args() main(args)
EXA-1-master
exa/models/unilm-master/s2s-ft/gen_seq_from_trace.py
from __future__ import absolute_import, division, print_function import argparse import logging import os import json import random import numpy as np import torch from torch.utils.data import (DataLoader, SequentialSampler) from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter import tqdm from s2s_ft.modeling import BertForSequenceToSequenceWithPseudoMask, BertForSequenceToSequenceUniLMV1 from transformers import AdamW, get_linear_schedule_with_warmup from transformers import \ RobertaConfig, BertConfig, \ BertTokenizer, RobertaTokenizer, \ XLMRobertaConfig, XLMRobertaTokenizer, \ ElectraConfig, ElectraTokenizer from s2s_ft.configuration_unilm import UnilmConfig from s2s_ft.tokenization_unilm import UnilmTokenizer from s2s_ft.configuration_minilm import MinilmConfig from s2s_ft.tokenization_minilm import MinilmTokenizer from s2s_ft import utils from s2s_ft.config import BertForSeq2SeqConfig logger = logging.getLogger(__name__) MODEL_CLASSES = { 'bert': (BertConfig, BertTokenizer), 'minilm': (MinilmConfig, MinilmTokenizer), 'roberta': (RobertaConfig, RobertaTokenizer), 'xlm-roberta': (XLMRobertaConfig, XLMRobertaTokenizer), 'unilm': (UnilmConfig, UnilmTokenizer), 'electra': (ElectraConfig, ElectraTokenizer), } def prepare_for_training(args, model, checkpoint_state_dict, amp): no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) if checkpoint_state_dict: optimizer.load_state_dict(checkpoint_state_dict['optimizer']) model.load_state_dict(checkpoint_state_dict['model']) # then remove optimizer state to make amp happy # https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020 if amp: optimizer.state = {} if amp: model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if checkpoint_state_dict: amp.load_state_dict(checkpoint_state_dict['amp']) # Black Tech from https://github.com/NVIDIA/apex/issues/480#issuecomment-587154020 # forward, backward, optimizer step, zero_grad random_input = {'source_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), 'target_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), 'label_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), 'pseudo_ids': torch.ones(size=(2, 2), device=args.device, dtype=torch.long), 'num_source_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long), 'num_target_tokens': torch.zeros(size=(2,), device=args.device, dtype=torch.long)} loss = model(**random_input) print("Loss = %f" % loss.cpu().item()) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() model.zero_grad() # then load optimizer state_dict again (this time without removing optimizer.state) optimizer.load_state_dict(checkpoint_state_dict['optimizer']) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) return model, optimizer def train(args, training_features, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0] and args.log_dir: tb_writer = SummaryWriter(log_dir=args.log_dir) else: tb_writer = None if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") else: amp = None # model recover recover_step = utils.get_max_epoch_model(args.output_dir) if recover_step: checkpoint_state_dict = utils.get_checkpoint_state_dict(args.output_dir, recover_step) else: checkpoint_state_dict = None model.to(args.device) model, optimizer = prepare_for_training(args, model, checkpoint_state_dict, amp=amp) per_node_train_batch_size = args.per_gpu_train_batch_size * args.n_gpu * args.gradient_accumulation_steps train_batch_size = per_node_train_batch_size * (torch.distributed.get_world_size() if args.local_rank != -1 else 1) global_step = recover_step if recover_step else 0 if args.num_training_steps == -1: args.num_training_steps = args.num_training_epochs * len(training_features) / train_batch_size scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.num_training_steps, last_epoch=-1) if checkpoint_state_dict: scheduler.load_state_dict(checkpoint_state_dict["lr_scheduler"]) train_dataset = utils.Seq2seqDatasetForBert( features=training_features, max_source_len=args.max_source_seq_length, max_target_len=args.max_target_seq_length, vocab_size=tokenizer.vocab_size, cls_id=tokenizer.cls_token_id, sep_id=tokenizer.sep_token_id, pad_id=tokenizer.pad_token_id, mask_id=tokenizer.mask_token_id, random_prob=args.random_prob, keep_prob=args.keep_prob, offset=train_batch_size * global_step, num_training_instances=train_batch_size * args.num_training_steps, source_mask_prob=args.source_mask_prob, target_mask_prob=args.target_mask_prob, mask_way=args.mask_way, num_max_mask_token=args.num_max_mask_token, ) logger.info("Check dataset:") for i in range(5): source_ids, target_ids = train_dataset.__getitem__(i)[:2] logger.info("Instance-%d" % i) logger.info("Source tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(source_ids))) logger.info("Target tokens = %s" % " ".join(tokenizer.convert_ids_to_tokens(target_ids))) logger.info("Mode = %s" % str(model)) # Train! logger.info(" ***** Running training ***** *") logger.info(" Num examples = %d", len(training_features)) logger.info(" Num Epochs = %.2f", len(train_dataset) / len(training_features)) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Batch size per node = %d", per_node_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", train_batch_size) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", args.num_training_steps) if args.num_training_steps <= global_step: logger.info("Training is done. Please use a new dir or clean this dir!") else: # The training features are shuffled train_sampler = SequentialSampler(train_dataset) \ if args.local_rank == -1 else DistributedSampler(train_dataset, shuffle=False) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=per_node_train_batch_size // args.gradient_accumulation_steps, collate_fn=utils.batch_list_to_batch_tensors) train_iterator = tqdm.tqdm( train_dataloader, initial=global_step * args.gradient_accumulation_steps, desc="Iter (loss=X.XXX, lr=X.XXXXXXX)", disable=args.local_rank not in [-1, 0]) model.train() model.zero_grad() tr_loss, logging_loss = 0.0, 0.0 for step, batch in enumerate(train_iterator): if global_step > args.num_training_steps: break batch = tuple(t.to(args.device) for t in batch) if args.mask_way == 'v2': inputs = {'source_ids': batch[0], 'target_ids': batch[1], 'label_ids': batch[2], 'pseudo_ids': batch[3], 'num_source_tokens': batch[4], 'num_target_tokens': batch[5]} elif args.mask_way == 'v1' or args.mask_way == 'v0': inputs = {'source_ids': batch[0], 'target_ids': batch[1], 'masked_ids': batch[2], 'masked_pos': batch[3], 'masked_weight': batch[4], 'num_source_tokens': batch[5], 'num_target_tokens': batch[6]} loss = model(**inputs) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training train_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0])) if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() logging_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logger.info("") logger.info(" Step [%d ~ %d]: %.2f", global_step - args.logging_steps, global_step, logging_loss) logging_loss = 0.0 if args.local_rank in [-1, 0] and args.save_steps > 0 and \ (global_step % args.save_steps == 0 or global_step == args.num_training_steps): save_path = os.path.join(args.output_dir, "ckpt-%d" % global_step) os.makedirs(save_path, exist_ok=True) model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(save_path) optim_to_save = { "optimizer": optimizer.state_dict(), "lr_scheduler": scheduler.state_dict(), } if args.fp16: optim_to_save["amp"] = amp.state_dict() torch.save(optim_to_save, os.path.join(save_path, utils.OPTIM_NAME)) logger.info("Saving model checkpoint %d into %s", global_step, save_path) if args.local_rank in [-1, 0] and tb_writer: tb_writer.close() def get_args(): parser = argparse.ArgumentParser() # parser.add_argument("--train_source_file", default=None, type=str, required=True, # help="Training data contains source") # parser.add_argument("--train_target_file", default=None, type=str, required=True, # help="Training data contains target") parser.add_argument("--train_file", default=None, type=str, required=True, help="Training data (json format) for training. Keys: source and target") parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list:") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.") parser.add_argument("--log_dir", default=None, type=str, help="The output directory where the log will be written.") ## Other parameters parser.add_argument("--config_name", default=None, type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default=None, type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_source_seq_length", default=464, type=int, help="The maximum total source sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--max_target_seq_length", default=48, type=int, help="The maximum total target sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--cached_train_features_file", default=None, type=str, help="Cached training features file") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--label_smoothing", default=0.1, type=float, help="Max gradient norm.") parser.add_argument("--num_training_steps", default=-1, type=int, help="set total number of training steps to perform") parser.add_argument("--num_training_epochs", default=10, type=int, help="set total number of training epochs to perform (--num_training_steps has higher priority)") parser.add_argument("--num_warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--random_prob", default=0.1, type=float, help="prob to random replace a masked token") parser.add_argument("--keep_prob", default=0.1, type=float, help="prob to keep no change for a masked token") parser.add_argument("--fix_word_embedding", action='store_true', help="Set word embedding no grad when finetuning.") parser.add_argument('--logging_steps', type=int, default=500, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=1500, help="Save checkpoint every X updates steps.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--source_mask_prob', type=float, default=-1.0, help="Probability to mask source sequence in fine-tuning") parser.add_argument('--target_mask_prob', type=float, default=0.5, help="Probability to mask target sequence in fine-tuning") parser.add_argument('--num_max_mask_token', type=int, default=0, help="The number of the max masked tokens in target sequence") parser.add_argument('--mask_way', type=str, default='v2', help="Fine-tuning method (v0: position shift, v1: masked LM, v2: pseudo-masking)") parser.add_argument("--lmdb_cache", action='store_true', help="Use LMDB to cache training features") parser.add_argument("--lmdb_dtype", type=str, default='h', help="Data type for cached data type for LMDB") parser.add_argument args = parser.parse_args() return args def prepare(args): # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() os.makedirs(args.output_dir, exist_ok=True) json.dump(args.__dict__, open(os.path.join( args.output_dir, 'train_opt.json'), 'w'), sort_keys=True, indent=2) # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, 'einsum') except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") def get_model_and_tokenizer(args): config_class, tokenizer_class = MODEL_CLASSES[args.model_type] model_config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None) config = BertForSeq2SeqConfig.from_exist_config( config=model_config, label_smoothing=args.label_smoothing, fix_word_embedding=args.fix_word_embedding, max_position_embeddings=args.max_source_seq_length + args.max_target_seq_length) logger.info("Model config for seq2seq: %s", str(config)) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) model_class = \ BertForSequenceToSequenceWithPseudoMask if args.mask_way == 'v2' \ else BertForSequenceToSequenceUniLMV1 logger.info("Construct model %s" % model_class.MODEL_NAME) model = model_class.from_pretrained( args.model_name_or_path, config=config, model_type=args.model_type, reuse_position_embedding=True, cache_dir=args.cache_dir if args.cache_dir else None) return model, tokenizer def main(): args = get_args() prepare(args) if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab # Load pretrained model and tokenizer model, tokenizer = get_model_and_tokenizer(args) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab if args.cached_train_features_file is None: if not args.lmdb_cache: args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training.pt") else: args.cached_train_features_file = os.path.join(args.output_dir, "cached_features_for_training_lmdb") training_features = utils.load_and_cache_examples( example_file=args.train_file, tokenizer=tokenizer, local_rank=args.local_rank, cached_features_file=args.cached_train_features_file, shuffle=True, lmdb_cache=args.lmdb_cache, lmdb_dtype=args.lmdb_dtype, ) train(args, training_features, model, tokenizer) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/s2s-ft/run_seq2seq.py
"""BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import glob import json import argparse import math import string from multiprocessing import Pool, cpu_count from tqdm import tqdm, trange from pathlib import Path import numpy as np # pip install py-rouge import rouge import time import tempfile import shutil # pip install pyrouge from evaluations.bs_pyrouge import Rouge155 logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--gold", type=str, help="Gold output file.") parser.add_argument("--pred", type=str, help="Input prediction file.") parser.add_argument("--split", type=str, default="", help="Data split (train/dev/test).") parser.add_argument("--save_best", action='store_true', help="Save best epoch.") parser.add_argument("--only_eval_best", action='store_true', help="Only evaluate best epoch.") parser.add_argument("--trunc_len", type=int, default=0, help="Truncate line by the maximum length.") default_process_count = max(1, cpu_count() - 1) parser.add_argument("--processes", type=int, default=default_process_count, help="Number of processes to use (default %(default)s)") parser.add_argument("--perl", action='store_true', help="Using the perl script.") parser.add_argument('--lazy_eval', action='store_true', help="Skip evaluation if the .rouge file exists.") args = parser.parse_args() evaluator = rouge.Rouge(metrics=['rouge-n', 'rouge-l'], max_n=2, limit_length=False, apply_avg=True, weight_factor=1.2) def test_rouge(cand, ref): temp_dir = tempfile.mkdtemp() candidates = cand references = ref assert len(candidates) == len(references) cnt = len(candidates) current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time)) if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) os.mkdir(tmp_dir + "/candidate") os.mkdir(tmp_dir + "/reference") try: for i in range(cnt): if len(references[i]) < 1: continue with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(candidates[i]) with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(references[i]) r = Rouge155(temp_dir=temp_dir) r.model_dir = tmp_dir + "/reference/" r.system_dir = tmp_dir + "/candidate/" r.model_filename_pattern = 'ref.#ID#.txt' r.system_filename_pattern = r'cand.(\d+).txt' rouge_results = r.convert_and_evaluate() print(rouge_results) results_dict = r.output_to_dict(rouge_results) finally: if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) return results_dict def rouge_results_to_str(results_dict): return ">> ROUGE-F(1/2/l): {:.2f}/{:.2f}/{:.2f}\nROUGE-R(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\n".format( results_dict["rouge_1_f_score"] * 100, results_dict["rouge_2_f_score"] * 100, results_dict["rouge_l_f_score"] * 100, results_dict["rouge_1_recall"] * 100, results_dict["rouge_2_recall"] * 100, results_dict["rouge_l_recall"] * 100 ) def count_tokens(tokens): counter = {} for t in tokens: if t in counter.keys(): counter[t] += 1 else: counter[t] = 1 return counter def get_f1(text_a, text_b): tokens_a = text_a.lower().split() tokens_b = text_b.lower().split() if len(tokens_a) == 0 or len(tokens_b) == 0: return 1 if len(tokens_a) == len(tokens_b) else 0 set_a = count_tokens(tokens_a) set_b = count_tokens(tokens_b) match = 0 for token in set_a.keys(): if token in set_b.keys(): match += min(set_a[token], set_b[token]) p = match / len(tokens_a) r = match / len(tokens_b) return 2.0 * p * r / (p + r + 1e-5) _tok_dict = {} def _is_digit(w): for ch in w: if not(ch.isdigit() or ch == ','): return False return True def fix_tokenization(text): input_tokens = text.split() output_tokens = [] i = 0 prev_dash = False while i < len(input_tokens): tok = input_tokens[i] flag_prev_dash = False if tok in _tok_dict.keys(): output_tokens.append(_tok_dict[tok]) i += 1 elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t": output_tokens[-1] = output_tokens[-1][:-1] output_tokens.append("n't") i += 2 elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"): output_tokens.append("'"+input_tokens[i + 1]) i += 2 elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".": output_tokens.append("...") i += 3 elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]): # $ 3 , 000 -> $ 3,000 output_tokens[-1] += ','+input_tokens[i + 1] i += 2 elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit(): # 3 . 03 -> $ 3.03 output_tokens[-1] += '.'+input_tokens[i + 1] i += 2 elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.': # U . N . -> U.N. k = i+3 while k+2 < len(input_tokens): if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.': k += 2 else: break output_tokens[-1] += ''.join(input_tokens[i:k]) i += 2 elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation: output_tokens[-1] += tok i += 1 else: output_tokens.append(tok) i += 1 prev_dash = flag_prev_dash return " ".join(output_tokens) def process_eval(eval_fn): gold_list = [] with open(args.gold, "r", encoding="utf-8") as f_in: for l in f_in: line = l.strip() gold_list.append(line) pred_list = [] with open(eval_fn, "r", encoding="utf-8") as f_in: for l in f_in: buf = [] sentence = fix_tokenization(l.strip()).replace("(", " -LRB- ").replace(")", " -RRB- ") while " " in sentence: sentence = sentence.replace(" ", " ") buf.append(sentence) if args.trunc_len: num_left = args.trunc_len trunc_list = [] for bit in buf: tk_list = bit.split() n = min(len(tk_list), num_left) trunc_list.append(' '.join(tk_list[:n])) num_left -= n if num_left <= 0: break else: trunc_list = buf line = "\n".join(trunc_list) pred_list.append(line) with open(eval_fn+'.post', 'w', encoding='utf-8') as f_out: for l in pred_list: f_out.write(l.strip()) f_out.write('\n') # rouge scores if len(pred_list) < len(gold_list): # evaluate subset gold_list = gold_list[:len(pred_list)] assert len(pred_list) == len(gold_list) if args.perl: scores = test_rouge(pred_list, gold_list) else: scores = evaluator.get_scores(pred_list, [[it] for it in gold_list]) return eval_fn, scores def main(): if args.perl: eval_fn_list = list(glob.glob(args.pred)) else: eval_fn_list = [eval_fn for eval_fn in glob.glob(args.pred) if not( args.lazy_eval and Path(eval_fn+".rouge").exists())] eval_fn_list = list(filter(lambda fn: not(fn.endswith( '.post') or fn.endswith('.rouge')), eval_fn_list)) if args.only_eval_best: best_epoch_dict = {} for dir_path in set(Path(fn).parent for fn in eval_fn_list): fn_save = os.path.join(dir_path, 'save_best.dev') if Path(fn_save).exists(): with open(fn_save, 'r') as f_in: __, o_name, __ = f_in.read().strip().split('\n') epoch = o_name.split('.')[1] best_epoch_dict[dir_path] = epoch new_eval_fn_list = [] for fn in eval_fn_list: dir_path = Path(fn).parent if dir_path in best_epoch_dict: if Path(fn).name.split('.')[1] == best_epoch_dict[dir_path]: new_eval_fn_list.append(fn) eval_fn_list = new_eval_fn_list logger.info("***** Evaluation: %s *****", ','.join(eval_fn_list)) num_pool = min(args.processes, len(eval_fn_list)) p = Pool(num_pool) r_list = p.imap_unordered(process_eval, eval_fn_list) r_list = sorted([(fn, scores) for fn, scores in r_list], key=lambda x: x[0]) rg2_dict = {} for fn, scores in r_list: print(fn) if args.perl: print(rouge_results_to_str(scores)) else: rg2_dict[fn] = scores['rouge-2']['f'] print( "ROUGE-1: {}\tROUGE-2: {}\n".format(scores['rouge-1']['f'], scores['rouge-2']['f'])) with open(fn+".rouge", 'w') as f_out: f_out.write(json.dumps( {'rg1': scores['rouge-1']['f'], 'rg2': scores['rouge-2']['f']})) p.close() p.join() if args.save_best: # find best results group_dict = {} for k, v in rg2_dict.items(): d_name, o_name = Path(k).parent, Path(k).name if (d_name not in group_dict) or (v > group_dict[d_name][1]): group_dict[d_name] = (o_name, v) # compare and save the best result for k, v in group_dict.items(): fn = os.path.join(k, 'save_best.'+args.split) o_name_s, rst_s = v should_save = True if Path(fn).exists(): with open(fn, 'r') as f_in: rst_f = float(f_in.read().strip().split('\n')[-1]) if rst_s <= rst_f: should_save = False if should_save: with open(fn, 'w') as f_out: f_out.write('{0}\n{1}\n{2}\n'.format(k, o_name_s, rst_s)) logger.info("Should save: {}".format(json.dumps(v, indent=2))) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/s2s-ft/evaluations/eval_for_xsum.py
"""BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import glob import json import argparse import math import string from multiprocessing import Pool, cpu_count from tqdm import tqdm, trange from pathlib import Path import numpy as np # pip install py-rouge import rouge import time import tempfile import shutil # pip install pyrouge from evaluations.bs_pyrouge import Rouge155 logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--gold", type=str, help="Gold output file.") parser.add_argument("--pred", type=str, help="Input prediction file.") parser.add_argument("--split", type=str, default="", help="Data split (train/dev/test).") parser.add_argument("--save_best", action='store_true', help="Save best epoch.") parser.add_argument("--only_eval_best", action='store_true', help="Only evaluate best epoch.") parser.add_argument("--trunc_len", type=int, default=0, help="Truncate line by the maximum length.") default_process_count = max(1, cpu_count() - 1) parser.add_argument("--processes", type=int, default=default_process_count, help="Number of processes to use (default %(default)s)") parser.add_argument("--perl", action='store_true', help="Using the perl script.") parser.add_argument('--lazy_eval', action='store_true', help="Skip evaluation if the .rouge file exists.") args = parser.parse_args() evaluator = rouge.Rouge(metrics=['rouge-n', 'rouge-l'], max_n=2, limit_length=False, apply_avg=True, weight_factor=1.2) def test_rouge(cand, ref): temp_dir = tempfile.mkdtemp() candidates = cand references = ref assert len(candidates) == len(references) cnt = len(candidates) current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time)) if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) os.mkdir(tmp_dir + "/candidate") os.mkdir(tmp_dir + "/reference") try: for i in range(cnt): if len(references[i]) < 1: continue with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(candidates[i]) with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(references[i]) r = Rouge155(temp_dir=temp_dir) r.model_dir = tmp_dir + "/reference/" r.system_dir = tmp_dir + "/candidate/" r.model_filename_pattern = 'ref.#ID#.txt' r.system_filename_pattern = r'cand.(\d+).txt' rouge_results = r.convert_and_evaluate() print(rouge_results) results_dict = r.output_to_dict(rouge_results) finally: if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) return results_dict def rouge_results_to_str(results_dict): return ">> ROUGE-F(1/2/l): {:.2f}/{:.2f}/{:.2f}\nROUGE-R(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\n".format( results_dict["rouge_1_f_score"] * 100, results_dict["rouge_2_f_score"] * 100, results_dict["rouge_l_f_score"] * 100, results_dict["rouge_1_recall"] * 100, results_dict["rouge_2_recall"] * 100, results_dict["rouge_l_recall"] * 100 ) def count_tokens(tokens): counter = {} for t in tokens: if t in counter.keys(): counter[t] += 1 else: counter[t] = 1 return counter def get_f1(text_a, text_b): tokens_a = text_a.lower().split() tokens_b = text_b.lower().split() if len(tokens_a) == 0 or len(tokens_b) == 0: return 1 if len(tokens_a) == len(tokens_b) else 0 set_a = count_tokens(tokens_a) set_b = count_tokens(tokens_b) match = 0 for token in set_a.keys(): if token in set_b.keys(): match += min(set_a[token], set_b[token]) p = match / len(tokens_a) r = match / len(tokens_b) return 2.0 * p * r / (p + r + 1e-5) _tok_dict = {"(": "-lrb-", ")": "-rrb-", "[": "-lsb-", "]": "-rsb-", "{": "-lcb-", "}": "-rcb-", "[UNK]": "UNK", '&': '&amp;', '<': '&lt;', '>': '&gt;', "<unk>": "UNK", } def _is_digit(w): for ch in w: if not(ch.isdigit() or ch == ','): return False return True def fix_tokenization(text): input_tokens = text.split() output_tokens = [] has_left_quote = False has_left_single_quote = False i = 0 prev_dash = False while i < len(input_tokens): tok = input_tokens[i] flag_prev_dash = False if tok in _tok_dict.keys(): output_tokens.append(_tok_dict[tok]) i += 1 elif tok == "\"": if has_left_quote: output_tokens.append("''") else: output_tokens.append("``") has_left_quote = not has_left_quote i += 1 elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t": output_tokens[-1] = output_tokens[-1][:-1] output_tokens.append("n't") i += 2 elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"): output_tokens.append("'"+input_tokens[i + 1]) i += 2 elif tok == "'": if has_left_single_quote: output_tokens.append("'") else: output_tokens.append("`") has_left_single_quote = not has_left_single_quote i += 1 elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".": output_tokens.append("...") i += 3 elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]): # $ 3 , 000 -> $ 3,000 output_tokens[-1] += ','+input_tokens[i + 1] i += 2 elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit(): # 3 . 03 -> $ 3.03 output_tokens[-1] += '.'+input_tokens[i + 1] i += 2 elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.': # U . N . -> U.N. k = i+3 while k+2 < len(input_tokens): if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.': k += 2 else: break output_tokens[-1] += ''.join(input_tokens[i:k]) i += 2 elif tok == "-": if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-": output_tokens.append("--") i += 2 elif i == len(input_tokens) - 1 or i == 0: output_tokens.append("-") i += 1 elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation: output_tokens[-1] += "-" i += 1 flag_prev_dash = True else: output_tokens.append("-") i += 1 elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation: output_tokens[-1] += tok i += 1 else: output_tokens.append(tok) i += 1 prev_dash = flag_prev_dash return " ".join(output_tokens) def process_eval(eval_fn): gold_list = [] with open(args.gold, "r", encoding="utf-8") as f_in: for l in f_in: line = l.strip() gold_list.append(line) pred_list = [] with open(eval_fn, "r", encoding="utf-8") as f_in: for l in f_in: buf = [] sentence = fix_tokenization(l.strip()).replace('1', '#') buf.append(sentence) if args.trunc_len: num_left = args.trunc_len trunc_list = [] for bit in buf: tk_list = bit.split() n = min(len(tk_list), num_left) trunc_list.append(' '.join(tk_list[:n])) num_left -= n if num_left <= 0: break else: trunc_list = buf line = "\n".join(trunc_list) pred_list.append(line) with open(eval_fn+'.post', 'w', encoding='utf-8') as f_out: for l in pred_list: f_out.write(l.strip()) f_out.write('\n') # rouge scores if len(pred_list) < len(gold_list): # evaluate subset gold_list = gold_list[:len(pred_list)] assert len(pred_list) == len(gold_list) if args.perl: scores = test_rouge(pred_list, gold_list) else: scores = evaluator.get_scores(pred_list, [[it] for it in gold_list]) return eval_fn, scores def main(): if args.perl: eval_fn_list = list(glob.glob(args.pred)) else: eval_fn_list = [eval_fn for eval_fn in glob.glob(args.pred) if not( args.lazy_eval and Path(eval_fn+".rouge").exists())] eval_fn_list = list(filter(lambda fn: not(fn.endswith( '.post') or fn.endswith('.rouge')), eval_fn_list)) if args.only_eval_best: best_epoch_dict = {} for dir_path in set(Path(fn).parent for fn in eval_fn_list): fn_save = os.path.join(dir_path, 'save_best.dev') if Path(fn_save).exists(): with open(fn_save, 'r') as f_in: __, o_name, __ = f_in.read().strip().split('\n') epoch = o_name.split('.')[1] best_epoch_dict[dir_path] = epoch new_eval_fn_list = [] for fn in eval_fn_list: dir_path = Path(fn).parent if dir_path in best_epoch_dict: if Path(fn).name.split('.')[1] == best_epoch_dict[dir_path]: new_eval_fn_list.append(fn) eval_fn_list = new_eval_fn_list logger.info("***** Evaluation: %s *****", ','.join(eval_fn_list)) num_pool = min(args.processes, len(eval_fn_list)) p = Pool(num_pool) r_list = p.imap_unordered(process_eval, eval_fn_list) r_list = sorted([(fn, scores) for fn, scores in r_list], key=lambda x: x[0]) rg2_dict = {} for fn, scores in r_list: print(fn) if args.perl: print(rouge_results_to_str(scores)) else: rg2_dict[fn] = scores['rouge-2']['f'] print( "ROUGE-1: {}\tROUGE-2: {}\n".format(scores['rouge-1']['f'], scores['rouge-2']['f'])) with open(fn+".rouge", 'w') as f_out: f_out.write(json.dumps( {'rg1': scores['rouge-1']['f'], 'rg2': scores['rouge-2']['f']})) p.close() p.join() if args.save_best: # find best results group_dict = {} for k, v in rg2_dict.items(): d_name, o_name = Path(k).parent, Path(k).name if (d_name not in group_dict) or (v > group_dict[d_name][1]): group_dict[d_name] = (o_name, v) # compare and save the best result for k, v in group_dict.items(): fn = os.path.join(k, 'save_best.'+args.split) o_name_s, rst_s = v should_save = True if Path(fn).exists(): with open(fn, 'r') as f_in: rst_f = float(f_in.read().strip().split('\n')[-1]) if rst_s <= rst_f: should_save = False if should_save: with open(fn, 'w') as f_out: f_out.write('{0}\n{1}\n{2}\n'.format(k, o_name_s, rst_s)) logger.info("Should save: {}".format(json.dumps(v, indent=2))) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/s2s-ft/evaluations/eval_for_gigaword.py
from __future__ import print_function, unicode_literals, division import os import re import codecs import platform from subprocess import check_output from tempfile import mkdtemp from functools import partial try: from configparser import ConfigParser except ImportError: from ConfigParser import ConfigParser from pyrouge.utils import log from pyrouge.utils.file_utils import verify_dir REMAP = {"-lrb-": "(", "-rrb-": ")", "-lcb-": "{", "-rcb-": "}", "-lsb-": "[", "-rsb-": "]", "``": '"', "''": '"'} def clean(x): return re.sub( r"-lrb-|-rrb-|-lcb-|-rcb-|-lsb-|-rsb-|``|''", lambda m: REMAP.get(m.group()), x) class DirectoryProcessor: @staticmethod def process(input_dir, output_dir, function): """ Apply function to all files in input_dir and save the resulting ouput files in output_dir. """ if not os.path.exists(output_dir): os.makedirs(output_dir) logger = log.get_global_console_logger() logger.info("Processing files in {}.".format(input_dir)) input_file_names = os.listdir(input_dir) for input_file_name in input_file_names: input_file = os.path.join(input_dir, input_file_name) with codecs.open(input_file, "r", encoding="UTF-8") as f: input_string = f.read() output_string = function(input_string) output_file = os.path.join(output_dir, input_file_name) with codecs.open(output_file, "w", encoding="UTF-8") as f: f.write(clean(output_string.lower())) logger.info("Saved processed files to {}.".format(output_dir)) class Rouge155(object): """ This is a wrapper for the ROUGE 1.5.5 summary evaluation package. This class is designed to simplify the evaluation process by: 1) Converting summaries into a format ROUGE understands. 2) Generating the ROUGE configuration file automatically based on filename patterns. This class can be used within Python like this: rouge = Rouge155() rouge.system_dir = 'test/systems' rouge.model_dir = 'test/models' # The system filename pattern should contain one group that # matches the document ID. rouge.system_filename_pattern = 'SL.P.10.R.11.SL062003-(\d+).html' # The model filename pattern has '#ID#' as a placeholder for the # document ID. If there are multiple model summaries, pyrouge # will use the provided regex to automatically match them with # the corresponding system summary. Here, [A-Z] matches # multiple model summaries for a given #ID#. rouge.model_filename_pattern = 'SL.P.10.R.[A-Z].SL062003-#ID#.html' rouge_output = rouge.evaluate() print(rouge_output) output_dict = rouge.output_to_dict(rouge_ouput) print(output_dict) -> {'rouge_1_f_score': 0.95652, 'rouge_1_f_score_cb': 0.95652, 'rouge_1_f_score_ce': 0.95652, 'rouge_1_precision': 0.95652, [...] To evaluate multiple systems: rouge = Rouge155() rouge.system_dir = '/PATH/TO/systems' rouge.model_dir = 'PATH/TO/models' for system_id in ['id1', 'id2', 'id3']: rouge.system_filename_pattern = \ 'SL.P/.10.R.{}.SL062003-(\d+).html'.format(system_id) rouge.model_filename_pattern = \ 'SL.P.10.R.[A-Z].SL062003-#ID#.html' rouge_output = rouge.evaluate(system_id) print(rouge_output) """ def __init__(self, rouge_dir=None, rouge_args=None, temp_dir=None): """ Create a Rouge155 object. rouge_dir: Directory containing Rouge-1.5.5.pl rouge_args: Arguments to pass through to ROUGE if you don't want to use the default pyrouge arguments. """ self.temp_dir = temp_dir self.log = log.get_global_console_logger() self.__set_dir_properties() self._config_file = None self._settings_file = self.__get_config_path() self.__set_rouge_dir(rouge_dir) self.args = self.__clean_rouge_args(rouge_args) self._system_filename_pattern = None self._model_filename_pattern = None def save_home_dir(self): config = ConfigParser() section = 'pyrouge settings' config.add_section(section) config.set(section, 'home_dir', self._home_dir) with open(self._settings_file, 'w') as f: config.write(f) self.log.info("Set ROUGE home directory to {}.".format(self._home_dir)) @property def settings_file(self): """ Path of the setttings file, which stores the ROUGE home dir. """ return self._settings_file @property def bin_path(self): """ The full path of the ROUGE binary (although it's technically a script), i.e. rouge_home_dir/ROUGE-1.5.5.pl """ if self._bin_path is None: raise Exception( "ROUGE path not set. Please set the ROUGE home directory " "and ensure that ROUGE-1.5.5.pl exists in it.") return self._bin_path @property def system_filename_pattern(self): """ The regular expression pattern for matching system summary filenames. The regex string. E.g. "SL.P.10.R.11.SL062003-(\d+).html" will match the system filenames in the SPL2003/system folder of the ROUGE SPL example in the "sample-test" folder. Currently, there is no support for multiple systems. """ return self._system_filename_pattern @system_filename_pattern.setter def system_filename_pattern(self, pattern): self._system_filename_pattern = pattern @property def model_filename_pattern(self): """ The regular expression pattern for matching model summary filenames. The pattern needs to contain the string "#ID#", which is a placeholder for the document ID. E.g. "SL.P.10.R.[A-Z].SL062003-#ID#.html" will match the model filenames in the SPL2003/system folder of the ROUGE SPL example in the "sample-test" folder. "#ID#" is a placeholder for the document ID which has been matched by the "(\d+)" part of the system filename pattern. The different model summaries for a given document ID are matched by the "[A-Z]" part. """ return self._model_filename_pattern @model_filename_pattern.setter def model_filename_pattern(self, pattern): self._model_filename_pattern = pattern @property def config_file(self): return self._config_file @config_file.setter def config_file(self, path): config_dir, _ = os.path.split(path) verify_dir(config_dir, "configuration file") self._config_file = path def split_sentences(self): """ ROUGE requires texts split into sentences. In case the texts are not already split, this method can be used. """ from pyrouge.utils.sentence_splitter import PunktSentenceSplitter self.log.info("Splitting sentences.") ss = PunktSentenceSplitter() def sent_split_to_string(s): return "\n".join(ss.split(s)) process_func = partial( DirectoryProcessor.process, function=sent_split_to_string) self.__process_summaries(process_func) @staticmethod def convert_summaries_to_rouge_format(input_dir, output_dir): """ Convert all files in input_dir into a format ROUGE understands and saves the files to output_dir. The input files are assumed to be plain text with one sentence per line. input_dir: Path of directory containing the input files. output_dir: Path of directory in which the converted files will be saved. """ DirectoryProcessor.process( input_dir, output_dir, Rouge155.convert_text_to_rouge_format) @staticmethod def convert_text_to_rouge_format(text, title="dummy title"): """ Convert a text to a format ROUGE understands. The text is assumed to contain one sentence per line. text: The text to convert, containg one sentence per line. title: Optional title for the text. The title will appear in the converted file, but doesn't seem to have any other relevance. Returns: The converted text as string. """ sentences = text.split("\n") sent_elems = [ "<a name=\"{i}\">[{i}]</a> <a href=\"#{i}\" id={i}>" "{text}</a>".format(i=i, text=sent) for i, sent in enumerate(sentences, start=1)] html = """<html> <head> <title>{title}</title> </head> <body bgcolor="white"> {elems} </body> </html>""".format(title=title, elems="\n".join(sent_elems)) return html @staticmethod def write_config_static(system_dir, system_filename_pattern, model_dir, model_filename_pattern, config_file_path, system_id=None): """ Write the ROUGE configuration file, which is basically a list of system summary files and their corresponding model summary files. pyrouge uses regular expressions to automatically find the matching model summary files for a given system summary file (cf. docstrings for system_filename_pattern and model_filename_pattern). system_dir: Path of directory containing system summaries. system_filename_pattern: Regex string for matching system summary filenames. model_dir: Path of directory containing model summaries. model_filename_pattern: Regex string for matching model summary filenames. config_file_path: Path of the configuration file. system_id: Optional system ID string which will appear in the ROUGE output. """ system_filenames = [f for f in os.listdir(system_dir)] system_models_tuples = [] system_filename_pattern = re.compile(system_filename_pattern) for system_filename in sorted(system_filenames): match = system_filename_pattern.match(system_filename) if match: id = match.groups(0)[0] model_filenames = [model_filename_pattern.replace('#ID#', id)] # model_filenames = Rouge155.__get_model_filenames_for_id( # id, model_dir, model_filename_pattern) system_models_tuples.append( (system_filename, sorted(model_filenames))) if not system_models_tuples: raise Exception( "Did not find any files matching the pattern {} " "in the system summaries directory {}.".format( system_filename_pattern.pattern, system_dir)) with codecs.open(config_file_path, 'w', encoding='utf-8') as f: f.write('<ROUGE-EVAL version="1.55">') for task_id, (system_filename, model_filenames) in enumerate( system_models_tuples, start=1): eval_string = Rouge155.__get_eval_string( task_id, system_id, system_dir, system_filename, model_dir, model_filenames) f.write(eval_string) f.write("</ROUGE-EVAL>") def write_config(self, config_file_path=None, system_id=None): """ Write the ROUGE configuration file, which is basically a list of system summary files and their matching model summary files. This is a non-static version of write_config_file_static(). config_file_path: Path of the configuration file. system_id: Optional system ID string which will appear in the ROUGE output. """ if not system_id: system_id = 1 if (not config_file_path) or (not self._config_dir): self._config_dir = mkdtemp(dir=self.temp_dir) config_filename = "rouge_conf.xml" else: config_dir, config_filename = os.path.split(config_file_path) verify_dir(config_dir, "configuration file") self._config_file = os.path.join(self._config_dir, config_filename) Rouge155.write_config_static( self._system_dir, self._system_filename_pattern, self._model_dir, self._model_filename_pattern, self._config_file, system_id) self.log.info( "Written ROUGE configuration to {}".format(self._config_file)) def evaluate(self, system_id=1, rouge_args=None): """ Run ROUGE to evaluate the system summaries in system_dir against the model summaries in model_dir. The summaries are assumed to be in the one-sentence-per-line HTML format ROUGE understands. system_id: Optional system ID which will be printed in ROUGE's output. Returns: Rouge output as string. """ self.write_config(system_id=system_id) options = self.__get_options(rouge_args) command = [self._bin_path] + options self.log.info( "Running ROUGE with command {}".format(" ".join(command))) rouge_output = check_output(command).decode("UTF-8") return rouge_output def convert_and_evaluate(self, system_id=1, split_sentences=False, rouge_args=None): """ Convert plain text summaries to ROUGE format and run ROUGE to evaluate the system summaries in system_dir against the model summaries in model_dir. Optionally split texts into sentences in case they aren't already. This is just a convenience method combining convert_summaries_to_rouge_format() and evaluate(). split_sentences: Optional argument specifying if sentences should be split. system_id: Optional system ID which will be printed in ROUGE's output. Returns: ROUGE output as string. """ if split_sentences: self.split_sentences() self.__write_summaries() rouge_output = self.evaluate(system_id, rouge_args) return rouge_output def output_to_dict(self, output): """ Convert the ROUGE output into python dictionary for further processing. """ # 0 ROUGE-1 Average_R: 0.02632 (95%-conf.int. 0.02632 - 0.02632) pattern = re.compile( r"(\d+) (ROUGE-\S+) (Average_\w): (\d.\d+) " r"\(95%-conf.int. (\d.\d+) - (\d.\d+)\)") results = {} for line in output.split("\n"): match = pattern.match(line) if match: sys_id, rouge_type, measure, result, conf_begin, conf_end = \ match.groups() measure = { 'Average_R': 'recall', 'Average_P': 'precision', 'Average_F': 'f_score' }[measure] rouge_type = rouge_type.lower().replace("-", '_') key = "{}_{}".format(rouge_type, measure) results[key] = float(result) results["{}_cb".format(key)] = float(conf_begin) results["{}_ce".format(key)] = float(conf_end) return results ################################################################### # Private methods def __set_rouge_dir(self, home_dir=None): """ Verfify presence of ROUGE-1.5.5.pl and data folder, and set those paths. """ if not home_dir: self._home_dir = self.__get_rouge_home_dir_from_settings() else: self._home_dir = home_dir self.save_home_dir() self._bin_path = os.path.join(self._home_dir, 'ROUGE-1.5.5.pl') self.data_dir = os.path.join(self._home_dir, 'data') if not os.path.exists(self._bin_path): raise Exception( "ROUGE binary not found at {}. Please set the " "correct path by running pyrouge_set_rouge_path " "/path/to/rouge/home.".format(self._bin_path)) def __get_rouge_home_dir_from_settings(self): config = ConfigParser() with open(self._settings_file) as f: if hasattr(config, "read_file"): config.read_file(f) else: # use deprecated python 2.x method config.readfp(f) rouge_home_dir = config.get('pyrouge settings', 'home_dir') return rouge_home_dir @staticmethod def __get_eval_string( task_id, system_id, system_dir, system_filename, model_dir, model_filenames): """ ROUGE can evaluate several system summaries for a given text against several model summaries, i.e. there is an m-to-n relation between system and model summaries. The system summaries are listed in the <PEERS> tag and the model summaries in the <MODELS> tag. pyrouge currently only supports one system summary per text, i.e. it assumes a 1-to-n relation between system and model summaries. """ peer_elems = "<P ID=\"{id}\">{name}</P>".format( id=system_id, name=system_filename) model_elems = ["<M ID=\"{id}\">{name}</M>".format( id=chr(65 + i), name=name) for i, name in enumerate(model_filenames)] model_elems = "\n\t\t\t".join(model_elems) eval_string = """ <EVAL ID="{task_id}"> <MODEL-ROOT>{model_root}</MODEL-ROOT> <PEER-ROOT>{peer_root}</PEER-ROOT> <INPUT-FORMAT TYPE="SEE"> </INPUT-FORMAT> <PEERS> {peer_elems} </PEERS> <MODELS> {model_elems} </MODELS> </EVAL> """.format( task_id=task_id, model_root=model_dir, model_elems=model_elems, peer_root=system_dir, peer_elems=peer_elems) return eval_string def __process_summaries(self, process_func): """ Helper method that applies process_func to the files in the system and model folders and saves the resulting files to new system and model folders. """ temp_dir = mkdtemp(dir=self.temp_dir) new_system_dir = os.path.join(temp_dir, "system") os.mkdir(new_system_dir) new_model_dir = os.path.join(temp_dir, "model") os.mkdir(new_model_dir) self.log.info( "Processing summaries. Saving system files to {} and " "model files to {}.".format(new_system_dir, new_model_dir)) process_func(self._system_dir, new_system_dir) process_func(self._model_dir, new_model_dir) self._system_dir = new_system_dir self._model_dir = new_model_dir def __write_summaries(self): self.log.info("Writing summaries.") self.__process_summaries(self.convert_summaries_to_rouge_format) @staticmethod def __get_model_filenames_for_id(id, model_dir, model_filenames_pattern): pattern = re.compile(model_filenames_pattern.replace('#ID#', id)) model_filenames = [ f for f in os.listdir(model_dir) if pattern.match(f)] if not model_filenames: raise Exception( "Could not find any model summaries for the system" " summary with ID {}. Specified model filename pattern was: " "{}".format(id, model_filenames_pattern)) return model_filenames def __get_options(self, rouge_args=None): """ Get supplied command line arguments for ROUGE or use default ones. """ if self.args: options = self.args.split() elif rouge_args: options = rouge_args.split() else: options = [ '-e', self._data_dir, '-c', 95, # '-2', # '-1', # '-U', '-m', # '-v', '-r', 1000, '-n', 2, # '-w', 1.2, '-a', ] options = list(map(str, options)) options = self.__add_config_option(options) return options def __create_dir_property(self, dir_name, docstring): """ Generate getter and setter for a directory property. """ property_name = "{}_dir".format(dir_name) private_name = "_" + property_name setattr(self, private_name, None) def fget(self): return getattr(self, private_name) def fset(self, path): verify_dir(path, dir_name) setattr(self, private_name, path) p = property(fget=fget, fset=fset, doc=docstring) setattr(self.__class__, property_name, p) def __set_dir_properties(self): """ Automatically generate the properties for directories. """ directories = [ ("home", "The ROUGE home directory."), ("data", "The path of the ROUGE 'data' directory."), ("system", "Path of the directory containing system summaries."), ("model", "Path of the directory containing model summaries."), ] for (dirname, docstring) in directories: self.__create_dir_property(dirname, docstring) def __clean_rouge_args(self, rouge_args): """ Remove enclosing quotation marks, if any. """ if not rouge_args: return quot_mark_pattern = re.compile('"(.+)"') match = quot_mark_pattern.match(rouge_args) if match: cleaned_args = match.group(1) return cleaned_args else: return rouge_args def __add_config_option(self, options): return options + [self._config_file] def __get_config_path(self): if platform.system() == "Windows": parent_dir = os.getenv("APPDATA") config_dir_name = "pyrouge" elif os.name == "posix": parent_dir = os.path.expanduser("~") config_dir_name = ".pyrouge" else: parent_dir = os.path.dirname(__file__) config_dir_name = "" config_dir = os.path.join(parent_dir, config_dir_name) if not os.path.exists(config_dir): os.makedirs(config_dir) return os.path.join(config_dir, 'settings.ini') if __name__ == "__main__": import argparse from utils.argparsers import rouge_path_parser parser = argparse.ArgumentParser(parents=[rouge_path_parser]) args = parser.parse_args() rouge = Rouge155(args.rouge_home) rouge.save_home_dir()
EXA-1-master
exa/models/unilm-master/s2s-ft/evaluations/bs_pyrouge.py
"""BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import glob import json import argparse import math import string from multiprocessing import Pool, cpu_count from tqdm import tqdm, trange from pathlib import Path import numpy as np # pip install py-rouge import rouge import time import tempfile import shutil # pip install pyrouge from evaluations.bs_pyrouge import Rouge155 logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--gold", type=str, help="Gold output file.") parser.add_argument("--pred", type=str, help="Input prediction file.") parser.add_argument("--split", type=str, default="", help="Data split (train/dev/test).") parser.add_argument("--save_best", action='store_true', help="Save best epoch.") parser.add_argument("--only_eval_best", action='store_true', help="Only evaluate best epoch.") parser.add_argument("--trunc_len", type=int, default=60, help="Truncate line by the maximum length.") parser.add_argument("--duplicate_rate", type=float, default=0.7, help="If the duplicat rate (compared with history) is large, we can discard the current sentence.") default_process_count = max(1, cpu_count() - 1) parser.add_argument("--processes", type=int, default=default_process_count, help="Number of processes to use (default %(default)s)") parser.add_argument("--perl", action='store_true', help="Using the perl script.") parser.add_argument('--lazy_eval', action='store_true', help="Skip evaluation if the .rouge file exists.") args = parser.parse_args() SPECIAL_TOKEN = ["[UNK]", "[PAD]", "[CLS]", "[MASK]"] evaluator = rouge.Rouge(metrics=['rouge-n', 'rouge-l'], max_n=2, limit_length=False, apply_avg=True, weight_factor=1.2) def test_rouge(cand, ref): temp_dir = tempfile.mkdtemp() candidates = cand references = ref assert len(candidates) == len(references) cnt = len(candidates) current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time)) if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) os.mkdir(tmp_dir + "/candidate") os.mkdir(tmp_dir + "/reference") try: for i in range(cnt): if len(references[i]) < 1: continue with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(candidates[i]) with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(references[i]) r = Rouge155(temp_dir=temp_dir) r.model_dir = tmp_dir + "/reference/" r.system_dir = tmp_dir + "/candidate/" r.model_filename_pattern = 'ref.#ID#.txt' r.system_filename_pattern = r'cand.(\d+).txt' rouge_results = r.convert_and_evaluate() print(rouge_results) results_dict = r.output_to_dict(rouge_results) finally: if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) return results_dict def rouge_results_to_str(results_dict): return ">> ROUGE-F(1/2/l): {:.2f}/{:.2f}/{:.2f}\nROUGE-R(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\n".format( results_dict["rouge_1_f_score"] * 100, results_dict["rouge_2_f_score"] * 100, results_dict["rouge_l_f_score"] * 100, results_dict["rouge_1_recall"] * 100, results_dict["rouge_2_recall"] * 100, results_dict["rouge_l_recall"] * 100 ) def count_tokens(tokens): counter = {} for t in tokens: if t in counter.keys(): counter[t] += 1 else: counter[t] = 1 return counter def get_f1(text_a, text_b): tokens_a = text_a.lower().split() tokens_b = text_b.lower().split() if len(tokens_a) == 0 or len(tokens_b) == 0: return 1 if len(tokens_a) == len(tokens_b) else 0 set_a = count_tokens(tokens_a) set_b = count_tokens(tokens_b) match = 0 for token in set_a.keys(): if token in set_b.keys(): match += min(set_a[token], set_b[token]) p = match / len(tokens_a) r = match / len(tokens_b) return 2.0 * p * r / (p + r + 1e-5) _tok_dict = {"(": "-LRB-", ")": "-RRB-", "[": "-LSB-", "]": "-RSB-", "{": "-LCB-", "}": "-RCB-"} def _is_digit(w): for ch in w: if not(ch.isdigit() or ch == ','): return False return True def fix_tokenization(text): input_tokens = text.split() output_tokens = [] has_left_quote = False has_left_single_quote = False i = 0 prev_dash = False while i < len(input_tokens): tok = input_tokens[i] flag_prev_dash = False if tok in _tok_dict.keys(): output_tokens.append(_tok_dict[tok]) i += 1 elif tok == "\"": if has_left_quote: output_tokens.append("''") else: output_tokens.append("``") has_left_quote = not has_left_quote i += 1 elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t": output_tokens[-1] = output_tokens[-1][:-1] output_tokens.append("n't") i += 2 elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"): output_tokens.append("'"+input_tokens[i + 1]) i += 2 elif tok == "'": if has_left_single_quote: output_tokens.append("'") else: output_tokens.append("`") has_left_single_quote = not has_left_single_quote i += 1 elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".": output_tokens.append("...") i += 3 elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]): # $ 3 , 000 -> $ 3,000 output_tokens[-1] += ','+input_tokens[i + 1] i += 2 elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit(): # 3 . 03 -> $ 3.03 output_tokens[-1] += '.'+input_tokens[i + 1] i += 2 elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.': # U . N . -> U.N. k = i+3 while k+2 < len(input_tokens): if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.': k += 2 else: break output_tokens[-1] += ''.join(input_tokens[i:k]) i += 2 elif tok == "-": if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-": output_tokens.append("--") i += 2 elif i == len(input_tokens) - 1 or i == 0: output_tokens.append("-") i += 1 elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation: output_tokens[-1] += "-" i += 1 flag_prev_dash = True else: output_tokens.append("-") i += 1 elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation: output_tokens[-1] += tok i += 1 else: output_tokens.append(tok) i += 1 prev_dash = flag_prev_dash return " ".join(output_tokens) def remove_duplicate(l_list, duplicate_rate): tk_list = [l.lower().split() for l in l_list] r_list = [] history_set = set() for i, w_list in enumerate(tk_list): w_set = set(w_list) if len(w_set & history_set)/len(w_set) <= duplicate_rate: r_list.append(l_list[i]) history_set |= w_set return r_list def process_eval(eval_fn): gold_list = [] with open(args.gold, "r", encoding="utf-8") as f_in: for l in f_in: line = l.strip().replace(" <S_SEP> ", '\n') gold_list.append(line) pred_list = [] with open(eval_fn, "r", encoding="utf-8") as f_in: for l in f_in: buf = [] for sentence in l.strip().split("[X_SEP]"): sentence = fix_tokenization(sentence) sentence = sentence.replace("(", " -LRB- ").replace(")", " -RRB- ") sentence = sentence.replace("[", " -LSB- ").replace("]", " -RSB- ") while " " in sentence: sentence = sentence.replace(" ", " ") if any(get_f1(sentence, s) > 1.0 for s in buf): continue s_len = len(sentence.split()) if s_len <= 4: continue buf.append(sentence) if args.duplicate_rate and args.duplicate_rate < 1: buf = remove_duplicate(buf, args.duplicate_rate) if args.trunc_len: num_left = args.trunc_len trunc_list = [] for bit in buf: tk_list = bit.split() n = min(len(tk_list), num_left) trunc_list.append(' '.join(tk_list[:n])) num_left -= n if num_left <= 0: break else: trunc_list = buf line = "\n".join(trunc_list) pred_list.append(line) with open(eval_fn+'.post', 'w', encoding='utf-8') as f_out: for l in pred_list: f_out.write(l.replace('\n', ' [X_SEP] ').strip()) f_out.write('\n') # rouge scores if len(pred_list) < len(gold_list): # evaluate subset gold_list = gold_list[:len(pred_list)] assert len(pred_list) == len(gold_list) if args.perl: scores = test_rouge(pred_list, gold_list) else: scores = evaluator.get_scores(pred_list, [[it] for it in gold_list]) return eval_fn, scores def main(): if args.perl: eval_fn_list = list(glob.glob(args.pred)) else: eval_fn_list = [eval_fn for eval_fn in glob.glob(args.pred) if not( args.lazy_eval and Path(eval_fn+".rouge").exists())] eval_fn_list = list(filter(lambda fn: not(fn.endswith( '.post') or fn.endswith('.rouge')), eval_fn_list)) if args.only_eval_best: best_epoch_dict = {} for dir_path in set(Path(fn).parent for fn in eval_fn_list): fn_save = os.path.join(dir_path, 'save_best.dev') if Path(fn_save).exists(): with open(fn_save, 'r') as f_in: __, o_name, __ = f_in.read().strip().split('\n') epoch = o_name.split('.')[1] best_epoch_dict[dir_path] = epoch new_eval_fn_list = [] for fn in eval_fn_list: dir_path = Path(fn).parent if dir_path in best_epoch_dict: if Path(fn).name.split('.')[1] == best_epoch_dict[dir_path]: new_eval_fn_list.append(fn) eval_fn_list = new_eval_fn_list logger.info("***** Evaluation: %s *****", ','.join(eval_fn_list)) num_pool = min(args.processes, len(eval_fn_list)) p = Pool(num_pool) r_list = p.imap_unordered(process_eval, eval_fn_list) r_list = sorted([(fn, scores) for fn, scores in r_list], key=lambda x: x[0]) rg2_dict = {} for fn, scores in r_list: print(fn) if args.perl: print(rouge_results_to_str(scores)) else: rg2_dict[fn] = scores['rouge-2']['f'] print( "ROUGE-1: {}\tROUGE-2: {}\n".format(scores['rouge-1']['f'], scores['rouge-2']['f'])) with open(fn+".rouge", 'w') as f_out: f_out.write(json.dumps( {'rg1': scores['rouge-1']['f'], 'rg2': scores['rouge-2']['f']})) p.close() p.join() if args.save_best: # find best results group_dict = {} for k, v in rg2_dict.items(): d_name, o_name = Path(k).parent, Path(k).name if (d_name not in group_dict) or (v > group_dict[d_name][1]): group_dict[d_name] = (o_name, v) # compare and save the best result for k, v in group_dict.items(): fn = os.path.join(k, 'save_best.'+args.split) o_name_s, rst_s = v should_save = True if Path(fn).exists(): with open(fn, 'r') as f_in: rst_f = float(f_in.read().strip().split('\n')[-1]) if rst_s <= rst_f: should_save = False if should_save: with open(fn, 'w') as f_out: f_out.write('{0}\n{1}\n{2}\n'.format(k, o_name_s, rst_s)) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/s2s-ft/evaluations/eval_for_cnndm.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging from transformers import BertConfig, RobertaConfig from s2s_ft.configuration_unilm import UnilmConfig logger = logging.getLogger(__name__) class BertForSeq2SeqConfig(BertConfig): def __init__(self, label_smoothing=0.1, source_type_id=0, target_type_id=1, rel_pos_bins=0, max_rel_pos=0, fix_word_embedding=False, **kwargs): super(BertForSeq2SeqConfig, self).__init__(**kwargs) self.label_smoothing = label_smoothing self.source_type_id = source_type_id self.target_type_id = target_type_id self.max_rel_pos = max_rel_pos self.rel_pos_bins = rel_pos_bins self.fix_word_embedding = fix_word_embedding @classmethod def from_exist_config(cls, config, label_smoothing=0.1, max_position_embeddings=None, fix_word_embedding=False): required_keys = [ "vocab_size", "hidden_size", "num_hidden_layers", "num_attention_heads", "hidden_act", "intermediate_size", "hidden_dropout_prob", "attention_probs_dropout_prob", "max_position_embeddings", "type_vocab_size", "initializer_range", "layer_norm_eps", ] kwargs = {} for key in required_keys: assert hasattr(config, key) kwargs[key] = getattr(config, key) kwargs["vocab_size_or_config_json_file"] = kwargs["vocab_size"] if isinstance(config, RobertaConfig): kwargs["type_vocab_size"] = 0 kwargs["max_position_embeddings"] = kwargs["max_position_embeddings"] - 2 additional_keys = [ "source_type_id", "target_type_id", "rel_pos_bins", "max_rel_pos", ] for key in additional_keys: if hasattr(config, key): kwargs[key] = getattr(config, key) if max_position_embeddings is not None and max_position_embeddings > config.max_position_embeddings: kwargs["max_position_embeddings"] = max_position_embeddings logger.info(" ** Change max position embeddings to %d ** " % max_position_embeddings) return cls(label_smoothing=label_smoothing, fix_word_embedding=fix_word_embedding, **kwargs)
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/config.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ MiniLM model configuration """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import sys from io import open from transformers.configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) MINILM_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased-config.json", } class MinilmConfig(PretrainedConfig): r""" :class:`~transformers.MinilmConfig` is the configuration class to store the configuration of a `MinilmModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `MiniLMModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `MiniLMModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = MINILM_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size=28996, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=6, initializer_range=0.02, layer_norm_eps=1e-12, source_type_id=0, target_type_id=1, **kwargs): super(MinilmConfig, self).__init__(**kwargs) if isinstance(vocab_size, str) or (sys.version_info[0] == 2 and isinstance(vocab_size, unicode)): with open(vocab_size, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size, int): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.source_type_id = source_type_id self.target_type_id = target_type_id else: raise ValueError("First argument must be either a vocabulary size (int)" " or the path to a pretrained model config file (str)")
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/configuration_minilm.py
# coding=utf-8 """PyTorch BERT model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import json import math import logging import tarfile import tempfile import shutil import numpy as np from functools import partial import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss import torch.nn.functional as F from transformers.file_utils import cached_path from torch.nn.modules.loss import _Loss class LabelSmoothingLoss(_Loss): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing=0, tgt_vocab_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__( size_average=size_average, reduce=reduce, reduction=reduction) assert label_smoothing > 0 assert tgt_vocab_size > 0 smoothing_value = label_smoothing / (tgt_vocab_size - 2) one_hot = torch.full((tgt_vocab_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing self.tgt_vocab_size = tgt_vocab_size def forward(self, output, target): """ output (FloatTensor): batch_size * num_pos * n_classes target (LongTensor): batch_size * num_pos """ assert self.tgt_vocab_size == output.size(2) batch_size, num_pos = target.size(0), target.size(1) output = output.view(-1, self.tgt_vocab_size) target = target.view(-1) model_prob = self.one_hot.repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2) logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased.bin" } CONFIG_NAME = 'config.json' WEIGHTS_NAME = 'pytorch_model.bin' def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} class BertConfig(object): """Configuration class to store the configuration of a `BertModel`. """ def __init__(self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, relax_projection=0, new_pos_ids=False, initializer_range=0.02, task_idx=None, fp32_embedding=False, ffn_type=0, label_smoothing=None, num_qkv=0, seg_emb=False, source_type_id=0, target_type_id=1, rel_pos_bins=0, max_rel_pos=0, **kwargs): """Constructs BertConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.relax_projection = relax_projection self.new_pos_ids = new_pos_ids self.initializer_range = initializer_range self.task_idx = task_idx self.fp32_embedding = fp32_embedding self.ffn_type = ffn_type self.label_smoothing = label_smoothing self.num_qkv = num_qkv self.seg_emb = seg_emb self.source_type_id = source_type_id self.target_type_id = target_type_id self.max_rel_pos = max_rel_pos self.rel_pos_bins = rel_pos_bins else: raise ValueError("First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)") @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except ImportError: print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.") class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-5): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class PositionalEmbedding(nn.Module): def __init__(self, demb): super(PositionalEmbedding, self).__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer('inv_freq', inv_freq) def forward(self, pos_seq, bsz=None): sinusoid_inp = torch.ger(pos_seq, self.inv_freq) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) if bsz is not None: return pos_emb[:, None, :].expand(-1, bsz, -1) else: return pos_emb[:, None, :] class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size) if config.type_vocab_size == 0: self.token_type_embeddings = None else: self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size) if hasattr(config, 'fp32_embedding'): self.fp32_embedding = config.fp32_embedding else: self.fp32_embedding = False if hasattr(config, 'new_pos_ids') and config.new_pos_ids: self.num_pos_emb = 4 else: self.num_pos_emb = 1 self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size * self.num_pos_emb) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, position_ids=None, task_idx=None): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) if self.num_pos_emb > 1: num_batch = position_embeddings.size(0) num_pos = position_embeddings.size(1) position_embeddings = position_embeddings.view( num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :] embeddings = words_embeddings + position_embeddings if self.token_type_embeddings is not None: embeddings = embeddings + self.token_type_embeddings(token_type_ids) if self.fp32_embedding: embeddings = embeddings.half() embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int( config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size if hasattr(config, 'num_qkv') and (config.num_qkv > 1): self.num_qkv = config.num_qkv else: self.num_qkv = 1 self.query = nn.Linear( config.hidden_size, self.all_head_size * self.num_qkv) self.key = nn.Linear(config.hidden_size, self.all_head_size * self.num_qkv) self.value = nn.Linear( config.hidden_size, self.all_head_size * self.num_qkv) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.uni_debug_flag = True if os.getenv( 'UNI_DEBUG_FLAG', '') else False if self.uni_debug_flag: self.register_buffer('debug_attention_probs', torch.zeros((512, 512))) if hasattr(config, 'seg_emb') and config.seg_emb: self.b_q_s = nn.Parameter(torch.zeros( 1, self.num_attention_heads, 1, self.attention_head_size)) self.seg_emb = nn.Embedding( config.type_vocab_size, self.all_head_size) else: self.b_q_s = None self.seg_emb = None def transpose_for_scores(self, x, mask_qkv=None): if self.num_qkv > 1: sz = x.size()[:-1] + (self.num_qkv, self.num_attention_heads, self.all_head_size) # (batch, pos, num_qkv, head, head_hid) x = x.view(*sz) if mask_qkv is None: x = x[:, :, 0, :, :] elif isinstance(mask_qkv, int): x = x[:, :, mask_qkv, :, :] else: # mask_qkv: (batch, pos) if mask_qkv.size(1) > sz[1]: mask_qkv = mask_qkv[:, :sz[1]] # -> x: (batch, pos, head, head_hid) x = x.gather(2, mask_qkv.view(sz[0], sz[1], 1, 1, 1).expand( sz[0], sz[1], 1, sz[3], sz[4])).squeeze(2) else: sz = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) # (batch, pos, head, head_hid) x = x.view(*sz) # (batch, head, pos, head_hid) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, history_states=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None, key_cache=None, value_cache=None, rel_pos=None, ): if history_states is None: mixed_query_layer = self.query(hidden_states) # possible issue: https://github.com/NVIDIA/apex/issues/131 mixed_key_layer = F.linear(hidden_states, self.key.weight) mixed_value_layer = self.value(hidden_states) else: x_states = torch.cat((history_states, hidden_states), dim=1) mixed_query_layer = self.query(hidden_states) # possible issue: https://github.com/NVIDIA/apex/issues/131 mixed_key_layer = F.linear(x_states, self.key.weight) mixed_value_layer = self.value(x_states) if key_cache is not None and isinstance(key_cache, list): key_cache.append(mixed_key_layer) mixed_key_layer = torch.cat(key_cache, dim=1) if value_cache is not None and isinstance(value_cache, list): value_cache.append(mixed_value_layer) mixed_value_layer = torch.cat(value_cache, dim=1) query_layer = self.transpose_for_scores(mixed_query_layer, mask_qkv) key_layer = self.transpose_for_scores(mixed_key_layer, mask_qkv) value_layer = self.transpose_for_scores(mixed_value_layer, mask_qkv) if key_history is not None and not isinstance(key_history, list): key_layer = torch.cat((key_history, key_layer), dim=-2) value_layer = torch.cat((value_history, value_layer), dim=-2) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch, head, pos, pos) attention_scores = torch.matmul( query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2)) if rel_pos is not None: attention_scores = attention_scores + rel_pos if self.seg_emb is not None: seg_rep = self.seg_emb(seg_ids) # (batch, pos, head, head_hid) seg_rep = seg_rep.view(seg_rep.size(0), seg_rep.size( 1), self.num_attention_heads, self.attention_head_size) qs = torch.einsum('bnih,bjnh->bnij', query_layer + self.b_q_s, seg_rep) attention_scores = attention_scores + qs # attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) if self.uni_debug_flag: _pos = attention_probs.size(-1) self.debug_attention_probs[:_pos, :_pos].copy_( attention_probs[0].mean(0).view(_pos, _pos)) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[ :-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) if isinstance(key_history, list): key_history.append(key_layer) if isinstance(value_history, list): value_history.append(value_layer) return context_layer class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask, history_states=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None, rel_pos=None): self_output = self.self( input_tensor, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids, key_history=key_history, value_history=value_history, rel_pos=rel_pos) attention_output = self.output(self_output, input_tensor) return attention_output class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TransformerFFN(nn.Module): def __init__(self, config): super(TransformerFFN, self).__init__() self.ffn_type = config.ffn_type assert self.ffn_type in (1, 2) if self.ffn_type in (1, 2): self.wx0 = nn.Linear(config.hidden_size, config.hidden_size) if self.ffn_type in (2,): self.wx1 = nn.Linear(config.hidden_size, config.hidden_size) if self.ffn_type in (1, 2): self.output = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, x): if self.ffn_type in (1, 2): x0 = self.wx0(x) if self.ffn_type == 1: x1 = x elif self.ffn_type == 2: x1 = self.wx1(x) out = self.output(x0 * x1) out = self.dropout(out) out = self.LayerNorm(out + x) return out class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.ffn_type = config.ffn_type if self.ffn_type: self.ffn = TransformerFFN(config) else: self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask, history_states=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None, rel_pos=None): attention_output = self.attention( hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids, key_history=key_history, value_history=value_history, rel_pos=rel_pos) if self.ffn_type: layer_output = self.ffn(attention_output) else: intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() layer = BertLayer(config) self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, seg_ids=None, key_history=None, value_history=None, rel_pos=None): # history embedding and encoded layer must be simultanously given assert (prev_embedding is None) == (prev_encoded_layers is None) all_encoder_layers = [] if (prev_embedding is not None) and (prev_encoded_layers is not None): history_states = prev_embedding for i, layer_module in enumerate(self.layer): hidden_states = layer_module( hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids, rel_pos=rel_pos) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if prev_encoded_layers is not None: history_states = prev_encoded_layers[i] else: for i, layer_module in enumerate(self.layer): set_key = None if isinstance(key_history, list): set_key = key_history if len(key_history) < len(self.layer) else key_history[i] set_value = None if isinstance(value_history, list): set_value = value_history if len(key_history) < len(self.layer) else value_history[i] hidden_states = layer_module( hidden_states, attention_mask, mask_qkv=mask_qkv, seg_ids=seg_ids, key_history=set_key, value_history=set_value, rel_pos=rel_pos) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act hid_size = config.hidden_size if hasattr(config, 'relax_projection') and (config.relax_projection > 1): hid_size *= config.relax_projection self.dense = nn.Linear(config.hidden_size, hid_size) self.LayerNorm = BertLayerNorm(hid_size, eps=1e-5) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0), bias=False) self.decoder.weight = bert_model_embedding_weights self.bias = nn.Parameter(torch.zeros( bert_model_embedding_weights.size(0))) if hasattr(config, 'relax_projection') and (config.relax_projection > 1): self.relax_projection = config.relax_projection else: self.relax_projection = 0 self.fp32_embedding = config.fp32_embedding def convert_to_type(tensor): if self.fp32_embedding: return tensor.half() else: return tensor self.type_converter = convert_to_type self.converted = False def forward(self, hidden_states, task_idx=None): if not self.converted: self.converted = True if self.fp32_embedding: self.transform.half() hidden_states = self.transform(self.type_converter(hidden_states)) if self.relax_projection > 1: num_batch = hidden_states.size(0) num_pos = hidden_states.size(1) # (batch, num_pos, relax_projection*hid) -> (batch, num_pos, relax_projection, hid) -> (batch, num_pos, hid) hidden_states = hidden_states.view( num_batch, num_pos, self.relax_projection, -1)[torch.arange(0, num_batch).long(), :, task_idx, :] if self.fp32_embedding: hidden_states = F.linear(self.type_converter(hidden_states), self.type_converter( self.decoder.weight), self.type_converter(self.bias)) else: hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, bert_model_embedding_weights): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead( config, bert_model_embedding_weights) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super(BertOnlyNSPHead, self).__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config, bert_model_embedding_weights, num_labels=2): super(BertPreTrainingHeads, self).__init__() self.predictions = BertLMPredictionHead( config, bert_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, num_labels) def forward(self, sequence_output, pooled_output, task_idx=None): prediction_scores = self.predictions(sequence_output, task_idx) if pooled_output is None: seq_relationship_score = None else: seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class PreTrainedBertModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super(PreTrainedBertModel, self).__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_bert_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) # module.weight.data.copy_(torch.Tensor( # truncnorm.rvs(-1, 1, size=list(module.weight.data.shape)) * self.config.initializer_range)) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name, config, state_dict=None, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name: either: - a str with the name of a pre-trained model to load selected in the list of: . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` . `bert-base-multilingual` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance cache_dir: an optional path to a folder in which the pre-trained models will be cached. state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ logger.info("Model config {}".format(config)) # clean the arguments in kwargs for arg_clean in ('config_path', 'type_vocab_size', 'relax_projection', 'new_pos_ids', 'task_idx', 'max_position_embeddings', 'fp32_embedding', 'ffn_type', 'label_smoothing', 'hidden_dropout_prob', 'attention_probs_dropout_prob', 'num_qkv', 'seg_emb', 'word_emb_map', 'num_labels', 'num_rel', 'num_sentlvl_labels'): if arg_clean in kwargs: del kwargs[arg_clean] # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None: weights_path = os.path.join(pretrained_model_name, WEIGHTS_NAME) state_dict = torch.load(weights_path) old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix='' if hasattr(model, 'bert') else 'bert.') model.missing_keys = missing_keys if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: logger.info('\n'.join(error_msgs)) return model class BertModel(PreTrainedBertModel): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). ``` """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.config = config self.apply(self.init_bert_weights) def rescale_some_parameters(self): for layer_id, layer in enumerate(self.encoder.layer): layer.attention.output.dense.weight.data.div_( math.sqrt(2.0 * (layer_id + 1))) layer.output.dense.weight.data.div_(math.sqrt(2.0 * (layer_id + 1))) def get_extended_attention_mask(self, input_ids, token_type_ids, attention_mask): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. if attention_mask.dim() == 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) elif attention_mask.dim() == 3: extended_attention_mask = attention_mask.unsqueeze(1) else: raise NotImplementedError # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, mask_qkv=None, task_idx=None, key_history=None, value_history=None, position_ids=None): extended_attention_mask = self.get_extended_attention_mask( input_ids, token_type_ids, attention_mask) embedding_output = self.embeddings( input_ids, token_type_ids, task_idx=task_idx, position_ids=position_ids) encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids, key_history=key_history, value_history=value_history) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers, pooled_output class BertModelIncr(BertModel): def __init__(self, config): super(BertModelIncr, self).__init__(config) if self.config.rel_pos_bins > 0: self.rel_pos_bias = nn.Linear(self.config.rel_pos_bins, config.num_attention_heads, bias=False) else: self.rel_pos_bias = None def forward(self, input_ids, token_type_ids, position_ids, attention_mask, output_all_encoded_layers=True, prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, task_idx=None, rel_pos=None): extended_attention_mask = self.get_extended_attention_mask( input_ids, token_type_ids, attention_mask) embedding_output = self.embeddings( input_ids, token_type_ids, position_ids, task_idx=task_idx) if self.rel_pos_bias is not None: # print("Rel pos size = %s" % str(rel_pos.size())) rel_pos = F.one_hot(rel_pos, num_classes=self.config.rel_pos_bins).type_as(embedding_output) # print("Rel pos size = %s" % str(rel_pos.size())) rel_pos = self.rel_pos_bias(rel_pos).permute(0, 3, 1, 2) # print("Rel pos size = %s" % str(rel_pos.size())) else: rel_pos = None encoded_layers = self.encoder(embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv, seg_ids=token_type_ids, rel_pos=rel_pos) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return embedding_output, encoded_layers, pooled_output class BertForPreTraining(PreTrainedBertModel): """BERT model with pre-training heads. This module comprises the BERT model followed by the two pre-training heads: - the masked language modeling head, and - the next sentence classification head. Params: config: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] with indices selected in [0, 1]. 0 => next sentence is the continuation, 1 => next sentence is a random sentence. Outputs: if `masked_lm_labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `masked_lm_labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and - the next sentence classification logits of shape [batch_size, 2]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForPreTraining(config) masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertForPreTraining, self).__init__(config) self.bert = BertModel(config) self.cls = BertPreTrainingHeads( config, self.bert.embeddings.word_embeddings.weight) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, mask_qkv=None, task_idx=None): sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, mask_qkv=mask_qkv, task_idx=task_idx) prediction_scores, seq_relationship_score = self.cls( sequence_output, pooled_output) if masked_lm_labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) next_sentence_loss = loss_fct( seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss return total_loss else: return prediction_scores, seq_relationship_score class BertPreTrainingPairTransform(nn.Module): def __init__(self, config): super(BertPreTrainingPairTransform, self).__init__() self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act # self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5) def forward(self, pair_x, pair_y): hidden_states = torch.cat([pair_x, pair_y], dim=-1) hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) # hidden_states = self.LayerNorm(hidden_states) return hidden_states def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 """ ret = 0 if bidirectional: num_buckets //= 2 # mtf.to_int32(mtf.less(n, 0)) * num_buckets ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min( val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def get_div_func(): # a crude code fix floor div for multiple torch version # https://github.com/microsoft/unilm/issues/297 # Thanks github user @guijuzhejiang, @piskunow and @zengyan-97 x = torch.ones(size=(1,), dtype=torch.long) * 11 try: # for pytorch 1.8+ div_func = partial(torch.div, rounding_mode='floor') y = div_func(x, 4) return div_func except: pass try: # for pytorch 1.6 & 1.7 div_func = torch.floor_divide y = div_func(x, 4) return div_func except: pass div_func = torch.div y = div_func(x, 4) if y.dtype != torch.long: raise NotImplementedError("Can not found right floor div function !") return div_func class BertForSeq2SeqDecoder(PreTrainedBertModel): """refer to BertForPreTraining""" def __init__(self, config, mask_word_id=0, num_labels=2, num_rel=0, search_beam_size=1, length_penalty=1.0, eos_id=0, sos_id=0, forbid_duplicate_ngrams=False, forbid_ignore_set=None, ngram_size=3, min_len=0, mode="s2s", pos_shift=False): super(BertForSeq2SeqDecoder, self).__init__(config) self.bert = BertModelIncr(config) self.cls = BertPreTrainingHeads( config, self.bert.embeddings.word_embeddings.weight, num_labels=num_labels) self.apply(self.init_bert_weights) self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none') self.crit_next_sent = nn.CrossEntropyLoss(ignore_index=-1) self.mask_word_id = mask_word_id self.num_labels = num_labels self.search_beam_size = search_beam_size self.length_penalty = length_penalty self.eos_id = eos_id self.sos_id = sos_id self.forbid_duplicate_ngrams = forbid_duplicate_ngrams self.forbid_ignore_set = forbid_ignore_set self.ngram_size = ngram_size self.min_len = min_len assert mode in ("s2s", "l2r") self.mode = mode self.pos_shift = pos_shift self.div_func = get_div_func() def forward(self, input_ids, token_type_ids, position_ids, attention_mask, task_idx=None, mask_qkv=None): if self.search_beam_size > 1: return self.beam_search(input_ids, token_type_ids, position_ids, attention_mask, task_idx=task_idx, mask_qkv=mask_qkv) input_shape = list(input_ids.size()) batch_size = input_shape[0] input_length = input_shape[1] output_shape = list(token_type_ids.size()) output_length = output_shape[1] output_ids = [] prev_embedding = None prev_encoded_layers = None curr_ids = input_ids mask_ids = input_ids.new(batch_size, 1).fill_(self.mask_word_id) next_pos = input_length if self.pos_shift: sep_ids = input_ids.new(batch_size, 1).fill_(self.eos_id) if self.bert.rel_pos_bias is not None: rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = relative_position_bucket( rel_pos_mat, num_buckets=self.config.rel_pos_bins, max_distance=self.config.max_rel_pos) else: rel_pos = None while next_pos < output_length: curr_length = list(curr_ids.size())[1] if self.pos_shift: if next_pos == input_length: x_input_ids = torch.cat((curr_ids, sep_ids), dim=1) start_pos = 0 else: x_input_ids = curr_ids start_pos = next_pos else: start_pos = next_pos - curr_length x_input_ids = torch.cat((curr_ids, mask_ids), dim=1) curr_token_type_ids = token_type_ids[:, start_pos:next_pos + 1] curr_attention_mask = attention_mask[:, start_pos:next_pos + 1, :next_pos + 1] curr_position_ids = position_ids[:, start_pos:next_pos + 1] if rel_pos is not None: cur_rel_pos = rel_pos[:, start_pos:next_pos + 1, :next_pos + 1] else: cur_rel_pos = None new_embedding, new_encoded_layers, _ = \ self.bert(x_input_ids, curr_token_type_ids, curr_position_ids, curr_attention_mask, output_all_encoded_layers=True, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv, rel_pos=cur_rel_pos) last_hidden = new_encoded_layers[-1][:, -1:, :] prediction_scores, _ = self.cls( last_hidden, None, task_idx=task_idx) _, max_ids = torch.max(prediction_scores, dim=-1) output_ids.append(max_ids) if self.pos_shift: if prev_embedding is None: prev_embedding = new_embedding else: prev_embedding = torch.cat( (prev_embedding, new_embedding), dim=1) if prev_encoded_layers is None: prev_encoded_layers = [x for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1]), dim=1) for x in zip( prev_encoded_layers, new_encoded_layers)] else: if prev_embedding is None: prev_embedding = new_embedding[:, :-1, :] else: prev_embedding = torch.cat( (prev_embedding, new_embedding[:, :-1, :]), dim=1) if prev_encoded_layers is None: prev_encoded_layers = [x[:, :-1, :] for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1][:, :-1, :]), dim=1) for x in zip(prev_encoded_layers, new_encoded_layers)] curr_ids = max_ids next_pos += 1 return torch.cat(output_ids, dim=1) def beam_search(self, input_ids, token_type_ids, position_ids, attention_mask, task_idx=None, mask_qkv=None): input_shape = list(input_ids.size()) batch_size = input_shape[0] input_length = input_shape[1] output_shape = list(token_type_ids.size()) output_length = output_shape[1] output_ids = [] prev_embedding = None prev_encoded_layers = None curr_ids = input_ids mask_ids = input_ids.new(batch_size, 1).fill_(self.mask_word_id) next_pos = input_length if self.pos_shift: sep_ids = input_ids.new(batch_size, 1).fill_(self.eos_id) K = self.search_beam_size total_scores = [] beam_masks = [] step_ids = [] step_back_ptrs = [] partial_seqs = [] forbid_word_mask = None buf_matrix = None if self.bert.rel_pos_bias is not None: rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = relative_position_bucket( rel_pos_mat, num_buckets=self.config.rel_pos_bins, max_distance=self.config.max_rel_pos) else: rel_pos = None # print("Rel pos size = %s" % str(rel_pos.size())) while next_pos < output_length: curr_length = list(curr_ids.size())[1] if self.pos_shift: if next_pos == input_length: x_input_ids = torch.cat((curr_ids, sep_ids), dim=1) start_pos = 0 else: x_input_ids = curr_ids start_pos = next_pos else: start_pos = next_pos - curr_length x_input_ids = torch.cat((curr_ids, mask_ids), dim=1) curr_token_type_ids = token_type_ids[:, start_pos:next_pos + 1] curr_attention_mask = attention_mask[:, start_pos:next_pos + 1, :next_pos + 1] curr_position_ids = position_ids[:, start_pos:next_pos + 1] if rel_pos is not None: cur_rel_pos = rel_pos[:, start_pos:next_pos + 1, :next_pos + 1] else: cur_rel_pos = None new_embedding, new_encoded_layers, _ = \ self.bert(x_input_ids, curr_token_type_ids, curr_position_ids, curr_attention_mask, output_all_encoded_layers=True, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv, rel_pos=cur_rel_pos) last_hidden = new_encoded_layers[-1][:, -1:, :] prediction_scores, _ = self.cls( last_hidden, None, task_idx=task_idx) log_scores = torch.nn.functional.log_softmax( prediction_scores, dim=-1) if forbid_word_mask is not None: log_scores += (forbid_word_mask * -10000.0) if self.min_len and (next_pos - input_length + 1 <= self.min_len): log_scores[:, :, self.eos_id].fill_(-10000.0) kk_scores, kk_ids = torch.topk(log_scores, k=K) if len(total_scores) == 0: k_ids = torch.reshape(kk_ids, [batch_size, K]) back_ptrs = torch.zeros(batch_size, K, dtype=torch.long) k_scores = torch.reshape(kk_scores, [batch_size, K]) else: last_eos = torch.reshape( beam_masks[-1], [batch_size * K, 1, 1]) last_seq_scores = torch.reshape( total_scores[-1], [batch_size * K, 1, 1]) kk_scores += last_eos * (-10000.0) + last_seq_scores kk_scores = torch.reshape(kk_scores, [batch_size, K * K]) k_scores, k_ids = torch.topk(kk_scores, k=K) # back_ptrs = torch.div(k_ids, K) back_ptrs = self.div_func(k_ids, K) kk_ids = torch.reshape(kk_ids, [batch_size, K * K]) k_ids = torch.gather(kk_ids, 1, k_ids) step_back_ptrs.append(back_ptrs) step_ids.append(k_ids) beam_masks.append(torch.eq(k_ids, self.eos_id).type_as(kk_scores)) total_scores.append(k_scores) def first_expand(x): input_shape = list(x.size()) expanded_shape = input_shape[:1] + [1] + input_shape[1:] x = torch.reshape(x, expanded_shape) repeat_count = [1, K] + [1] * (len(input_shape) - 1) x = x.repeat(*repeat_count) x = torch.reshape(x, [input_shape[0] * K] + input_shape[1:]) return x def select_beam_items(x, ids): id_shape = list(ids.size()) id_rank = len(id_shape) assert len(id_shape) == 2 x_shape = list(x.size()) x = torch.reshape(x, [batch_size, K] + x_shape[1:]) x_rank = len(x_shape) + 1 assert x_rank >= 2 if id_rank < x_rank: ids = torch.reshape( ids, id_shape + [1] * (x_rank - id_rank)) ids = ids.expand(id_shape + x_shape[1:]) y = torch.gather(x, 1, ids) y = torch.reshape(y, x_shape) return y is_first = (prev_embedding is None) if self.pos_shift: if prev_embedding is None: prev_embedding = first_expand(new_embedding) else: prev_embedding = torch.cat( (prev_embedding, new_embedding), dim=1) prev_embedding = select_beam_items( prev_embedding, back_ptrs) if prev_encoded_layers is None: prev_encoded_layers = [first_expand( x) for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1]), dim=1) for x in zip( prev_encoded_layers, new_encoded_layers)] prev_encoded_layers = [select_beam_items( x, back_ptrs) for x in prev_encoded_layers] else: if prev_embedding is None: prev_embedding = first_expand(new_embedding[:, :-1, :]) else: prev_embedding = torch.cat( (prev_embedding, new_embedding[:, :-1, :]), dim=1) prev_embedding = select_beam_items( prev_embedding, back_ptrs) if prev_encoded_layers is None: prev_encoded_layers = [first_expand( x[:, :-1, :]) for x in new_encoded_layers] else: prev_encoded_layers = [torch.cat((x[0], x[1][:, :-1, :]), dim=1) for x in zip(prev_encoded_layers, new_encoded_layers)] prev_encoded_layers = [select_beam_items( x, back_ptrs) for x in prev_encoded_layers] curr_ids = torch.reshape(k_ids, [batch_size * K, 1]) if is_first: token_type_ids = first_expand(token_type_ids) position_ids = first_expand(position_ids) attention_mask = first_expand(attention_mask) if rel_pos is not None: rel_pos = first_expand(rel_pos) mask_ids = first_expand(mask_ids) if mask_qkv is not None: mask_qkv = first_expand(mask_qkv) if self.forbid_duplicate_ngrams: wids = step_ids[-1].tolist() ptrs = step_back_ptrs[-1].tolist() if is_first: partial_seqs = [] for b in range(batch_size): for k in range(K): partial_seqs.append([wids[b][k]]) else: new_partial_seqs = [] for b in range(batch_size): for k in range(K): new_partial_seqs.append( partial_seqs[ptrs[b][k] + b * K] + [wids[b][k]]) partial_seqs = new_partial_seqs def get_dup_ngram_candidates(seq, n): cands = set() if len(seq) < n: return [] tail = seq[-(n - 1):] if self.forbid_ignore_set and any(tk in self.forbid_ignore_set for tk in tail): return [] for i in range(len(seq) - (n - 1)): mismatch = False for j in range(n - 1): if tail[j] != seq[i + j]: mismatch = True break if (not mismatch) and not ( self.forbid_ignore_set and (seq[i + n - 1] in self.forbid_ignore_set)): cands.add(seq[i + n - 1]) return list(sorted(cands)) if len(partial_seqs[0]) >= self.ngram_size: dup_cands = [] for seq in partial_seqs: dup_cands.append( get_dup_ngram_candidates(seq, self.ngram_size)) if max(len(x) for x in dup_cands) > 0: if buf_matrix is None: vocab_size = list(log_scores.size())[-1] buf_matrix = np.zeros( (batch_size * K, vocab_size), dtype=float) else: buf_matrix.fill(0) for bk, cands in enumerate(dup_cands): for i, wid in enumerate(cands): buf_matrix[bk, wid] = 1.0 forbid_word_mask = torch.tensor( buf_matrix, dtype=log_scores.dtype) forbid_word_mask = torch.reshape( forbid_word_mask, [batch_size * K, 1, vocab_size]).cuda() else: forbid_word_mask = None next_pos += 1 # [(batch, beam)] total_scores = [x.tolist() for x in total_scores] step_ids = [x.tolist() for x in step_ids] step_back_ptrs = [x.tolist() for x in step_back_ptrs] # back tracking traces = {'pred_seq': [], 'scores': [], 'wids': [], 'ptrs': []} for b in range(batch_size): # [(beam,)] scores = [x[b] for x in total_scores] wids_list = [x[b] for x in step_ids] ptrs = [x[b] for x in step_back_ptrs] traces['scores'].append(scores) traces['wids'].append(wids_list) traces['ptrs'].append(ptrs) # first we need to find the eos frame where all symbols are eos # any frames after the eos frame are invalid last_frame_id = len(scores) - 1 for i, wids in enumerate(wids_list): if all(wid == self.eos_id for wid in wids): last_frame_id = i break max_score = -math.inf frame_id = -1 pos_in_frame = -1 for fid in range(last_frame_id + 1): for i, wid in enumerate(wids_list[fid]): if wid == self.eos_id or fid == last_frame_id: s = scores[fid][i] if self.length_penalty > 0: s /= math.pow((5 + fid + 1) / 6.0, self.length_penalty) if s > max_score: max_score = s frame_id = fid pos_in_frame = i if frame_id == -1: traces['pred_seq'].append([0]) else: seq = [wids_list[frame_id][pos_in_frame]] for fid in range(frame_id, 0, -1): pos_in_frame = ptrs[fid][pos_in_frame] seq.append(wids_list[fid - 1][pos_in_frame]) seq.reverse() traces['pred_seq'].append(seq) def _pad_sequence(sequences, max_len, padding_value=0): trailing_dims = sequences[0].size()[1:] out_dims = (len(sequences), max_len) + trailing_dims out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value) for i, tensor in enumerate(sequences): length = tensor.size(0) # use index notation to prevent duplicate references to the tensor out_tensor[i, :length, ...] = tensor return out_tensor # convert to tensors for DataParallel for k in ('pred_seq', 'scores', 'wids', 'ptrs'): ts_list = traces[k] if not isinstance(ts_list[0], torch.Tensor): dt = torch.float if k == 'scores' else torch.long ts_list = [torch.tensor(it, dtype=dt) for it in ts_list] traces[k] = _pad_sequence( ts_list, output_length, padding_value=0).to(input_ids.device) return traces
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/modeling_decoding.py
import numpy as np from random import randint, shuffle, choice from random import random as rand import math import logging import torch import torch.utils.data logger = logging.getLogger(__name__) def get_random_word(vocab_words): i = randint(0, len(vocab_words)-1) return vocab_words[i] def batch_list_to_batch_tensors(batch): batch_tensors = [] for x in zip(*batch): if x[0] is None: batch_tensors.append(None) elif isinstance(x[0], torch.Tensor): batch_tensors.append(torch.stack(x)) else: batch_tensors.append(torch.tensor(x, dtype=torch.long)) return batch_tensors def _get_word_split_index(tokens, st, end): split_idx = [] i = st while i < end: if (not tokens[i].startswith('##')) or (i == st): split_idx.append(i) i += 1 split_idx.append(end) return split_idx def _expand_whole_word(tokens, st, end): new_st, new_end = st, end while (new_st >= 0) and tokens[new_st].startswith('##'): new_st -= 1 while (new_end < len(tokens)) and tokens[new_end].startswith('##'): new_end += 1 return new_st, new_end class Pipeline(): """ Pre-process Pipeline Class : callable """ def __init__(self): super().__init__() self.skipgram_prb = None self.skipgram_size = None self.pre_whole_word = None self.mask_whole_word = None self.word_subsample_prb = None self.sp_prob = None self.pieces_dir = None self.vocab_words = None self.pieces_threshold = 10 self.call_count = 0 self.offline_mode = False self.skipgram_size_geo_list = None self.span_same_mask = False def __call__(self, instance): raise NotImplementedError class Preprocess4Seq2seqDecoder(Pipeline): """ Pre-processing steps for pretraining transformer """ def __init__(self, vocab_words, indexer, max_len=512, max_tgt_length=128, mode="s2s", pos_shift=False, source_type_id=0, target_type_id=1, cls_token='[CLS]', sep_token='[SEP]', pad_token='[PAD]'): super().__init__() self.max_len = max_len self.vocab_words = vocab_words # vocabulary (sub)words self.indexer = indexer # function from token to token index self.max_len = max_len self._tril_matrix = torch.tril(torch.ones((max_len, max_len), dtype=torch.long)) self.task_idx = 3 # relax projection layer for different tasks assert mode in ("s2s", "l2r") self.mode = mode self.max_tgt_length = max_tgt_length self.pos_shift = pos_shift self.delta = 1 if pos_shift else 2 self.cls_token = cls_token self.sep_token = sep_token self.pad_token = pad_token self.source_type_id = source_type_id self.target_type_id = target_type_id self.cc = 0 def __call__(self, instance): tokens_a, max_a_len = instance padded_tokens_a = [self.cls_token] + tokens_a if not self.pos_shift: padded_tokens_a = padded_tokens_a + [self.sep_token] assert len(padded_tokens_a) <= max_a_len + self.delta if max_a_len + self.delta > len(padded_tokens_a): padded_tokens_a += [self.pad_token] * \ (max_a_len + self.delta - len(padded_tokens_a)) assert len(padded_tokens_a) == max_a_len + self.delta max_len_in_batch = min(self.max_tgt_length + max_a_len + self.delta, self.max_len) tokens = padded_tokens_a segment_ids = [self.source_type_id] * (len(padded_tokens_a)) \ + [self.target_type_id] * (max_len_in_batch - len(padded_tokens_a)) mask_qkv = None position_ids = [] for i in range(len(tokens_a) + self.delta): position_ids.append(i) for i in range(len(tokens_a) + self.delta, max_a_len + self.delta): position_ids.append(0) for i in range(max_a_len + self.delta, max_len_in_batch): position_ids.append(i - (max_a_len + self.delta) + len(tokens_a) + self.delta) # Token Indexing input_ids = self.indexer(tokens) self.cc += 1 if self.cc < 20: # print("Vocab size = %d" % len(self.vocab_words)) # for tk_id in input_ids: # print(u"trans %d -> %s" % (tk_id, self.vocab_words[tk_id])) logger.info(u"Input src = %s" % " ".join((self.vocab_words[tk_id]) for tk_id in input_ids)) # Zero Padding input_mask = torch.zeros( max_len_in_batch, max_len_in_batch, dtype=torch.long) if self.mode == "s2s": input_mask[:, :len(tokens_a) + self.delta].fill_(1) else: st, end = 0, len(tokens_a) + self.delta input_mask[st:end, st:end].copy_( self._tril_matrix[:end, :end]) input_mask[end:, :len(tokens_a) + self.delta].fill_(1) second_st, second_end = len(padded_tokens_a), max_len_in_batch input_mask[second_st:second_end, second_st:second_end].copy_( self._tril_matrix[:second_end-second_st, :second_end-second_st]) return (input_ids, segment_ids, position_ids, input_mask, mask_qkv, self.task_idx)
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/s2s_loader.py
import torch import logging from transformers.modeling_utils import cached_path, WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME logger = logging.getLogger(__name__) def get_checkpoint_from_transformer_cache( archive_file, pretrained_model_name_or_path, pretrained_model_archive_map, cache_dir, force_download, proxies, resume_download, ): try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download) except EnvironmentError: if pretrained_model_name_or_path in pretrained_model_archive_map: msg = "Couldn't reach server at '{}' to download pretrained weights.".format( archive_file) else: msg = "Model name '{}' was not found in model name list ({}). " \ "We assumed '{}' was a path or url to model weight files named one of {} but " \ "couldn't find any such file at this path or url.".format( pretrained_model_name_or_path, ', '.join(pretrained_model_archive_map.keys()), archive_file, [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME]) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format( archive_file, resolved_archive_file)) return torch.load(resolved_archive_file, map_location='cpu') def hf_roberta_to_hf_bert(state_dict): logger.info(" * Convert Huggingface RoBERTa format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key == 'roberta.embeddings.position_embeddings.weight': value = value[2:] if key == 'roberta.embeddings.token_type_embeddings.weight': continue if key.startswith('roberta'): key = 'bert.' + key[8:] elif key.startswith('lm_head'): if 'layer_norm' in key or 'dense' in key: key = 'cls.predictions.transform.' + key[8:] else: key = 'cls.predictions.' + key[8:] key = key.replace('layer_norm', 'LayerNorm') new_state_dict[key] = value return new_state_dict def hf_electra_to_hf_bert(state_dict): logger.info(" * Convert Huggingface ELECTRA format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key.startswith('electra'): key = 'bert.' + key[8:] new_state_dict[key] = value return new_state_dict def hf_bert_to_hf_bert(state_dict): # keep no change return state_dict def unilm_to_hf_bert(state_dict): logger.info(" * Convert Fast QKV format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key.endswith("attention.self.q_bias"): new_state_dict[key.replace("attention.self.q_bias", "attention.self.query.bias")] = value.view(-1) elif key.endswith("attention.self.v_bias"): new_state_dict[key.replace("attention.self.v_bias", "attention.self.value.bias")] = value.view(-1) new_state_dict[key.replace("attention.self.v_bias", "attention.self.key.bias")] = torch.zeros_like(value.view(-1)) elif key.endswith("attention.self.qkv_linear.weight"): l, _ = value.size() assert l % 3 == 0 l = l // 3 q, k, v = torch.split(value, split_size_or_sections=(l, l, l), dim=0) new_state_dict[key.replace("attention.self.qkv_linear.weight", "attention.self.query.weight")] = q new_state_dict[key.replace("attention.self.qkv_linear.weight", "attention.self.key.weight")] = k new_state_dict[key.replace("attention.self.qkv_linear.weight", "attention.self.value.weight")] = v elif key == "bert.encoder.rel_pos_bias.weight": new_state_dict["bert.rel_pos_bias.weight"] = value else: new_state_dict[key] = value del state_dict return new_state_dict state_dict_convert = { 'bert': hf_bert_to_hf_bert, 'unilm': unilm_to_hf_bert, 'minilm': hf_bert_to_hf_bert, 'roberta': hf_roberta_to_hf_bert, 'xlm-roberta': hf_roberta_to_hf_bert, 'electra': hf_electra_to_hf_bert, }
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/convert_state_dict.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Tokenization classes for UniLM.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import unicodedata from io import open from transformers.tokenization_bert import BertTokenizer, whitespace_tokenize logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} PRETRAINED_VOCAB_FILES_MAP = { 'vocab_file': { 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-large-cased-vocab.txt", 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-base-cased-vocab.txt", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased-vocab.txt", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased-vocab.txt", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased-vocab.txt", 'unilm2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-base-uncased-vocab.txt", 'unilm2-large-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-large-uncased-vocab.txt", 'unilm2-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-large-cased-vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { 'unilm-large-cased': 512, 'unilm-base-cased': 512, 'unilm1-large-cased': 512, 'unilm1-base-cased': 512, 'unilm1.2-base-uncased': 512, 'unilm2-base-uncased': 512, 'unilm2-large-cased': 512, 'unilm2-large-uncased': 512, } class UnilmTokenizer(BertTokenizer): r""" Constructs a UnilmTokenizer. :class:`~transformers.UnilmTokenizer` is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text)
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/tokenization_unilm.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ UniLM model configuration """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import sys from io import open from transformers.configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-large-cased-config.json", 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm-base-cased-config.json", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased-config.json", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased-config.json", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased-config.json", 'unilm2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-base-uncased-config.json", 'unilm2-large-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-large-uncased-config.json", 'unilm2-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-large-cased-config.json", } class UnilmConfig(PretrainedConfig): r""" :class:`~transformers.UnilmConfig` is the configuration class to store the configuration of a `UnilmModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `UnilmModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `UnilmModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size=28996, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=6, initializer_range=0.02, layer_norm_eps=1e-12, source_type_id=0, target_type_id=1, **kwargs): super(UnilmConfig, self).__init__(**kwargs) if isinstance(vocab_size, str) or (sys.version_info[0] == 2 and isinstance(vocab_size, unicode)): with open(vocab_size, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size, int): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.source_type_id = source_type_id self.target_type_id = target_type_id else: raise ValueError("First argument must be either a vocabulary size (int)" " or the path to a pretrained model config file (str)")
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/configuration_unilm.py
from __future__ import absolute_import, division, print_function import logging import os import json import random import glob import torch import tqdm import array import collections import torch.utils.data from transformers.file_utils import WEIGHTS_NAME try: import lmdb except: pass OPTIM_NAME = "optimizer.bin" logger = logging.getLogger(__name__) class TrainingExample(object): def __init__(self, source_ids, target_ids, example_id): self.source_ids = source_ids self.target_ids = target_ids self.example_id = example_id class Seq2seqDatasetForBert(torch.utils.data.Dataset): def __init__( self, features, max_source_len, max_target_len, vocab_size, cls_id, sep_id, pad_id, mask_id, random_prob, keep_prob, offset, num_training_instances, mask_way='v1', target_mask_prob=-1.0, num_max_mask_token=0, source_mask_prob=-1.0, ): self.features = features self.max_source_len = max_source_len self.max_target_len = max_target_len self.offset = offset if offset > 0: logger.info(" **** Set offset %d in Seq2seqDatasetForBert **** ", offset) self.cls_id = cls_id self.sep_id = sep_id self.pad_id = pad_id self.random_prob = random_prob self.keep_prob = keep_prob self.mask_id = mask_id self.vocab_size = vocab_size self.num_training_instances = num_training_instances self.target_mask_prob = target_mask_prob if mask_way == 'v0': num_max_mask_token = self.max_target_len logger.info("Mask way v0: set num_max_mask_token = %d" % num_max_mask_token) self.num_max_mask_token = num_max_mask_token self.mask_way = mask_way assert mask_way in ('v0', 'v1', 'v2') self.source_mask_prob = source_mask_prob def __len__(self): return self.num_training_instances def __trunk(self, ids, max_len, append_sep=True): if append_sep: max_len -= 1 if len(ids) > max_len: ids = ids[:max_len] if append_sep: ids = ids + [self.sep_id] return ids def __pad(self, ids, max_len): if len(ids) < max_len: return ids + [self.pad_id] * (max_len - len(ids)) else: assert len(ids) == max_len return ids def get_masked_token(self, tk_id): p = random.random() if p < self.keep_prob: return tk_id elif p < self.keep_prob + self.random_prob: return random.randint(0, self.vocab_size - 1) else: return self.mask_id def __getitem__(self, _idx): idx = (self.offset + _idx) % len(self.features) # print("%d get %d" % (_idx, idx)) feature = self.features[idx] source_ids = self.__trunk([self.cls_id] + feature.source_ids, self.max_source_len, append_sep=self.mask_way != 'v0') target_ids = feature.target_ids if self.mask_way == 'v0': target_ids = [self.sep_id] + target_ids target_ids = self.__trunk(target_ids, self.max_target_len, append_sep=self.mask_way != 'v0') num_source_tokens = len(source_ids) num_target_tokens = len(target_ids) if self.source_mask_prob > 0: for i in range(num_source_tokens): tk_id = source_ids[i] if tk_id != self.cls_id and tk_id != self.sep_id: r = random.random() if r < self.source_mask_prob: source_ids[i] = self.get_masked_token(tk_id) source_ids = self.__pad(source_ids, self.max_source_len) target_ids = self.__pad(target_ids, self.max_target_len) if self.mask_way == 'v0': masked_pos = [] masked_ids = [] masked_weights = [] for pos in range(num_target_tokens): if pos + 1 != num_target_tokens: masked_ids.append(target_ids[pos + 1]) else: masked_ids.append(self.sep_id) masked_pos.append(pos) masked_weights.append(1) r = random.random() if r < self.target_mask_prob and pos > 0: target_ids[pos] = self.get_masked_token(target_ids[pos]) masked_ids = self.__pad(masked_ids, self.num_max_mask_token) masked_pos = self.__pad(masked_pos, self.num_max_mask_token) masked_weights = self.__pad(masked_weights, self.num_max_mask_token) return source_ids, target_ids, masked_ids, masked_pos, masked_weights, num_source_tokens, num_target_tokens elif self.mask_way == 'v1': masked_pos = list(range(num_target_tokens)) random.shuffle(masked_pos) num_masked_token = \ min(self.num_max_mask_token, int(self.target_mask_prob * num_target_tokens)) if num_masked_token <= 0: num_masked_token = 1 masked_pos = masked_pos[:num_masked_token] masked_ids = [] masked_weights = [] for pos in masked_pos: masked_ids.append(target_ids[pos]) target_ids[pos] = self.get_masked_token(target_ids[pos]) masked_weights.append(1) masked_ids = self.__pad(masked_ids, self.num_max_mask_token) masked_pos = self.__pad(masked_pos, self.num_max_mask_token) masked_weights = self.__pad(masked_weights, self.num_max_mask_token) return source_ids, target_ids, masked_ids, masked_pos, masked_weights, num_source_tokens, num_target_tokens elif self.mask_way == 'v2': pseudo_ids = [] label_ids = [] for pos in range(num_target_tokens): tk_id = target_ids[pos] masked_tk_id = self.get_masked_token(tk_id) pseudo_ids.append(masked_tk_id) label_ids.append(tk_id) r = random.random() if r < self.target_mask_prob: target_ids[pos] = masked_tk_id label_ids = self.__pad(label_ids, self.max_target_len) pseudo_ids = self.__pad(pseudo_ids, self.max_target_len) return source_ids, target_ids, label_ids, pseudo_ids, num_source_tokens, num_target_tokens def batch_list_to_batch_tensors(batch): batch_tensors = [] for x in zip(*batch): if isinstance(x[0], torch.Tensor): batch_tensors.append(torch.stack(x)) else: batch_tensors.append(torch.tensor(x, dtype=torch.long)) return batch_tensors def get_max_epoch_model(output_dir): fn_model_list = glob.glob(os.path.join(output_dir, "ckpt-*/%s" % WEIGHTS_NAME)) fn_optim_list = glob.glob(os.path.join(output_dir, "ckpt-*/%s" % OPTIM_NAME)) if (not fn_model_list) or (not fn_optim_list): return None both_set = set([int(os.path.dirname(fn).split('-')[-1]) for fn in fn_model_list] ) & set([int(os.path.dirname(fn).split('-')[-1]) for fn in fn_optim_list]) if both_set: return max(both_set) else: return None def get_checkpoint_state_dict(output_dir, ckpt): model_recover_checkpoint = os.path.join(output_dir, "ckpt-%d" % ckpt, WEIGHTS_NAME) logger.info(" ** Recover model checkpoint in %s ** ", model_recover_checkpoint) model_state_dict = torch.load(model_recover_checkpoint, map_location='cpu') optimizer_recover_checkpoint = os.path.join(output_dir, "ckpt-%d" % ckpt, OPTIM_NAME) checkpoint_state_dict = torch.load(optimizer_recover_checkpoint, map_location='cpu') checkpoint_state_dict['model'] = model_state_dict return checkpoint_state_dict def report_length(length_counter, total_count): max_len = max(length_counter.keys()) a = 0 tc = 0 while a < max_len: cc = 0 for i in range(16): cc += length_counter[a + i] tc += cc if cc > 0: logger.info("%d ~ %d = %d, %.2f%%" % (a, a + 16, cc, (tc * 100.0) / total_count)) a += 16 def serialize_str(x): return u"{}".format(x).encode('ascii') def serialize_array(x, dtype): data = array.array(dtype) data.fromlist(x) return data.tobytes() def write_to_lmdb(db, key, value): success = False while not success: txn = db.begin(write=True) try: txn.put(key, value) txn.commit() success = True except lmdb.MapFullError: txn.abort() # double the map_size curr_limit = db.info()['map_size'] new_limit = curr_limit*2 print('>>> Doubling LMDB map size to %sMB ...' % (new_limit >> 20,)) db.set_mapsize(new_limit) # double it def deserialize_str(x): return x.decode('ascii') class DocDB(object): def __init__(self, db_path): self.db_path = db_path self.env = lmdb.open(db_path, readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: self.start_key_index = int(deserialize_str(txn.get(b'__start__'))) self.size = int(deserialize_str(txn.get(b'__size__'))) self.dtype = deserialize_str(txn.get(b'__dtype__')) def _deserialize_array(self, x): data = array.array(self.dtype) data.frombytes(x) return data.tolist() def __getitem__(self, doc_id): with self.env.begin(write=False) as txn: # example = { # "source_ids": self._deserialize_array(txn.get(b"src_ids_%d" % doc_id)), # "target_ids": self._deserialize_array(txn.get(b"tgt_ids_%d" % doc_id)), # } example = TrainingExample( source_ids=self._deserialize_array(txn.get(b"src_ids_%d" % doc_id)), target_ids=self._deserialize_array(txn.get(b"tgt_ids_%d" % doc_id)), example_id=None, ) return example def __len__(self): return self.size def load_and_cache_examples( example_file, tokenizer, local_rank, cached_features_file, shuffle=True, lmdb_cache=None, lmdb_dtype='h', eval_mode=False): # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank not in [-1, 0]: torch.distributed.barrier() if cached_features_file is not None and os.path.isfile(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) elif cached_features_file is not None and os.path.isdir(cached_features_file) \ and os.path.exists(os.path.join(cached_features_file, 'lock.mdb')): logger.info("Loading features from cached LMDB %s", cached_features_file) features = DocDB(cached_features_file) else: logger.info("Creating features from dataset file at %s", example_file) examples = [] with open(example_file, mode="r", encoding="utf-8") as reader: for line in reader: examples.append(json.loads(line)) features = [] slc = collections.defaultdict(int) tlc = collections.defaultdict(int) for example in tqdm.tqdm(examples): if isinstance(example["src"], list): source_tokens = example["src"] target_tokens = [] if eval_mode else example["tgt"] else: source_tokens = tokenizer.tokenize(example["src"]) target_tokens = [] if eval_mode else tokenizer.tokenize(example["tgt"]) source_ids = tokenizer.convert_tokens_to_ids(source_tokens) target_ids = tokenizer.convert_tokens_to_ids(target_tokens) slc[len(source_ids)] += 1 tlc[len(target_ids)] += 1 # features.append({ # "source_ids": source_ids, # "target_ids": target_ids, # }) features.append( TrainingExample( source_ids=source_ids, target_ids=target_ids, example_id=len(features), ) ) if shuffle: random.shuffle(features) logger.info("Shuffle the features !") logger.info("Source length:") report_length(slc, total_count=len(examples)) logger.info("Target length:") report_length(tlc, total_count=len(examples)) if local_rank in [-1, 0] and cached_features_file is not None: if lmdb_cache: db = lmdb.open(cached_features_file, readonly=False, map_async=True) for idx, feature in enumerate(features): write_to_lmdb( db, b"src_ids_%d" % idx, serialize_array(feature.source_ids, dtype=lmdb_dtype)) write_to_lmdb( db, b"tgt_ids_%d" % idx, serialize_array(feature.target_ids, dtype=lmdb_dtype)) write_to_lmdb(db, b"__start__", serialize_str(0)) write_to_lmdb(db, b"__size__", serialize_str(len(features))) write_to_lmdb(db, b"__dtype__", serialize_str(lmdb_dtype)) db.sync() db.close() logger.info("db_key_idx = %d" % len(features)) del features features = cached_features_file logger.info("Saving features into cached lmdb dir %s", cached_features_file) else: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank == 0: torch.distributed.barrier() return features
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/utils.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Tokenization classes for MiniLM.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import unicodedata from io import open from transformers.tokenization_bert import BertTokenizer, whitespace_tokenize logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} PRETRAINED_VOCAB_FILES_MAP = { 'vocab_file': { 'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased-vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { 'minilm-l12-h384-uncased': 512, } class MinilmTokenizer(BertTokenizer): r""" Constructs a MinilmTokenizer. :class:`~transformers.MinilmTokenizer` is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text)
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/tokenization_minilm.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import os import torch from torch import nn from torch.nn.modules.loss import _Loss import torch.nn.functional as F from transformers.modeling_bert import \ BertPreTrainedModel, BertSelfOutput, BertIntermediate, \ BertOutput, BertPredictionHeadTransform, BertPooler from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_distilbert import DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_xlm_roberta import XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.file_utils import WEIGHTS_NAME from s2s_ft.config import BertForSeq2SeqConfig from s2s_ft.convert_state_dict import get_checkpoint_from_transformer_cache, state_dict_convert logger = logging.getLogger(__name__) BertLayerNorm = torch.nn.LayerNorm UNILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin", 'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin", 'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased.bin", 'unilm2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-base-uncased.bin", 'unilm2-large-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-large-uncased.bin", 'unilm2-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm2-large-cased.bin", } MINILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased.bin", } class BertPreTrainedForSeq2SeqModel(BertPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = BertForSeq2SeqConfig supported_convert_pretrained_model_archive_map = { "bert": BERT_PRETRAINED_MODEL_ARCHIVE_MAP, "roberta": ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "xlm-roberta": XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "unilm": UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, "minilm": MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, } base_model_prefix = "unilm_for_seq2seq" pretrained_model_archive_map = { **ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **BERT_PRETRAINED_MODEL_ARCHIVE_MAP, **UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, **MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, **ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP, } def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name_or_path, reuse_position_embedding=None, *model_args, **kwargs): model_type = kwargs.pop('model_type', 'unilm') if model_type is not None and "state_dict" not in kwargs: if model_type in cls.supported_convert_pretrained_model_archive_map: pretrained_model_archive_map = cls.supported_convert_pretrained_model_archive_map[model_type] if pretrained_model_name_or_path in pretrained_model_archive_map: state_dict = get_checkpoint_from_transformer_cache( archive_file=pretrained_model_archive_map[pretrained_model_name_or_path], pretrained_model_name_or_path=pretrained_model_name_or_path, pretrained_model_archive_map=pretrained_model_archive_map, cache_dir=kwargs.get("cache_dir", None), force_download=kwargs.get("force_download", None), proxies=kwargs.get("proxies", None), resume_download=kwargs.get("resume_download", None), ) state_dict = state_dict_convert[model_type](state_dict) kwargs["state_dict"] = state_dict logger.info("Load HF ckpts") elif os.path.isfile(pretrained_model_name_or_path): state_dict = torch.load(pretrained_model_name_or_path, map_location='cpu') kwargs["state_dict"] = state_dict_convert[model_type](state_dict) logger.info("Load local ckpts") elif os.path.isdir(pretrained_model_name_or_path): state_dict = torch.load(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME), map_location='cpu') kwargs["state_dict"] = state_dict_convert[model_type](state_dict) logger.info("Load local ckpts") else: raise RuntimeError("Not fined the pre-trained checkpoint !") if kwargs["state_dict"] is None: logger.info("s2s-ft does't support the model !") raise NotImplementedError() config = kwargs["config"] state_dict = kwargs["state_dict"] # initialize new position embeddings (From Microsoft/UniLM) _k = 'bert.embeddings.position_embeddings.weight' # if _k in state_dict and config.max_position_embeddings != state_dict[_k].shape[0]: # logger.info("config.max_position_embeddings != state_dict[bert.embeddings.position_embeddings.weight] ({0} - {1})".format( # config.max_position_embeddings, state_dict[_k].shape[0])) # if config.max_position_embeddings > state_dict[_k].shape[0]: # old_size = state_dict[_k].shape[0] # # state_dict[_k].data = state_dict[_k].data.resize_(config.max_position_embeddings, state_dict[_k].shape[1]) # state_dict[_k].resize_( # config.max_position_embeddings, state_dict[_k].shape[1]) # start = old_size # while start < config.max_position_embeddings: # chunk_size = min( # old_size, config.max_position_embeddings - start) # state_dict[_k].data[start:start+chunk_size, # :].copy_(state_dict[_k].data[:chunk_size, :]) # start += chunk_size # elif config.max_position_embeddings < state_dict[_k].shape[0]: # state_dict[_k].data = state_dict[_k].data[:config.max_position_embeddings, :] _k = 'bert.embeddings.position_embeddings.weight' if _k in state_dict: if config.max_position_embeddings > state_dict[_k].shape[0]: logger.info("Resize > position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_postion_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_postion_embedding = nn.Parameter(data=new_postion_embedding, requires_grad=True) new_postion_embedding.data.normal_(mean=0.0, std=config.initializer_range) max_range = config.max_position_embeddings if reuse_position_embedding else old_vocab_size shift = 0 while shift < max_range: delta = min(old_vocab_size, max_range - shift) new_postion_embedding.data[shift: shift + delta, :] = state_dict[_k][:delta, :] logger.info(" CP [%d ~ %d] into [%d ~ %d] " % (0, delta, shift, shift + delta)) shift += delta state_dict[_k] = new_postion_embedding.data del new_postion_embedding elif config.max_position_embeddings < state_dict[_k].shape[0]: logger.info("Resize < position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_postion_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_postion_embedding = nn.Parameter(data=new_postion_embedding, requires_grad=True) new_postion_embedding.data.normal_(mean=0.0, std=config.initializer_range) new_postion_embedding.data.copy_(state_dict[_k][:config.max_position_embeddings, :]) state_dict[_k] = new_postion_embedding.data del new_postion_embedding return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) fix_word_embedding = getattr(config, "fix_word_embedding", None) if fix_word_embedding: self.word_embeddings.weight.requires_grad = False self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) else: self.token_type_embeddings = None # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings if self.token_type_embeddings: embeddings = embeddings + self.token_type_embeddings(token_type_ids) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings, position_ids class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def multi_head_attention(self, query, key, value, attention_mask, rel_pos): query_layer = self.transpose_for_scores(query) key_layer = self.transpose_for_scores(key) value_layer = self.transpose_for_scores(value) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask if rel_pos is not None: attention_scores = attention_scores + rel_pos # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return (context_layer, attention_probs) if self.output_attentions else (context_layer,) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None, rel_pos=None): mixed_query_layer = self.query(hidden_states) if split_lengths: assert not self.output_attentions # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) if split_lengths: query_parts = torch.split(mixed_query_layer, split_lengths, dim=1) key_parts = torch.split(mixed_key_layer, split_lengths, dim=1) value_parts = torch.split(mixed_value_layer, split_lengths, dim=1) key = None value = None outputs = [] sum_length = 0 for (query, _key, _value, part_length) in zip(query_parts, key_parts, value_parts, split_lengths): key = _key if key is None else torch.cat((key, _key), dim=1) value = _value if value is None else torch.cat((value, _value), dim=1) sum_length += part_length outputs.append(self.multi_head_attention( query, key, value, attention_mask[:, :, sum_length - part_length: sum_length, :sum_length], rel_pos=None if rel_pos is None else rel_pos[:, :, sum_length - part_length: sum_length, :sum_length], )[0]) outputs = (torch.cat(outputs, dim=1), ) else: outputs = self.multi_head_attention( mixed_query_layer, mixed_key_layer, mixed_value_layer, attention_mask, rel_pos=rel_pos) return outputs class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None, rel_pos=None): self_outputs = self.self( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, split_lengths=split_lengths, rel_pos=rel_pos) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask=None, split_lengths=None, rel_pos=None): self_attention_outputs = self.attention( hidden_states, attention_mask, split_lengths=split_lengths, rel_pos=rel_pos) attention_output = self_attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + self_attention_outputs[1:] return outputs class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask=None, split_lengths=None, rel_pos=None): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, split_lengths=split_lengths, rel_pos=rel_pos) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 """ ret = 0 if bidirectional: num_buckets //= 2 # mtf.to_int32(mtf.less(n, 0)) * num_buckets ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) # now n is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = n < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min( val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret class BertModel(BertPreTrainedForSeq2SeqModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(BertModel, self).__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) if not isinstance(config, BertForSeq2SeqConfig): self.pooler = BertPooler(config) else: self.pooler = None if self.config.rel_pos_bins > 0: self.rel_pos_bias = nn.Linear(self.config.rel_pos_bins, config.num_attention_heads, bias=False) else: self.rel_pos_bias = None def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, split_lengths=None): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output, position_ids = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds) if self.config.rel_pos_bins > 0: rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = relative_position_bucket( rel_pos_mat, num_buckets=self.config.rel_pos_bins, max_distance=self.config.max_rel_pos) rel_pos = F.one_hot(rel_pos, num_classes=self.config.rel_pos_bins).type_as(embedding_output) rel_pos = self.rel_pos_bias(rel_pos).permute(0, 3, 1, 2) else: rel_pos = None encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths, rel_pos=rel_pos) sequence_output = encoder_outputs[0] outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here if self.pooler is None: return outputs # sequence_output, pooled_output, (hidden_states), (attentions) else: pooled_output = self.pooler(sequence_output) return sequence_output, pooled_output class LabelSmoothingLoss(_Loss): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing=0, tgt_vocab_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__( size_average=size_average, reduce=reduce, reduction=reduction) assert label_smoothing > 0 assert tgt_vocab_size > 0 smoothing_value = label_smoothing / (tgt_vocab_size - 2) one_hot = torch.full((tgt_vocab_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing self.tgt_vocab_size = tgt_vocab_size def forward(self, output, target): """ output (FloatTensor): batch_size * num_pos * n_classes target (LongTensor): batch_size * num_pos """ assert self.tgt_vocab_size == output.size(2) batch_size, num_pos = target.size(0), target.size(1) output = output.view(-1, self.tgt_vocab_size) target = target.view(-1) model_prob = self.one_hot.float().repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2) class BertLMPredictionHead(nn.Module): def __init__(self, config, decoder_weight): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder_weight = decoder_weight self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = F.linear(hidden_states, weight=self.decoder_weight, bias=self.bias) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, decoder_weight): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config, decoder_weight) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores def create_mask_and_position_ids(num_tokens, max_len, offset=None): base_position_matrix = torch.arange( 0, max_len, dtype=num_tokens.dtype, device=num_tokens.device).view(1, -1) mask = (base_position_matrix < num_tokens.view(-1, 1)).type_as(num_tokens) if offset is not None: base_position_matrix = base_position_matrix + offset.view(-1, 1) position_ids = base_position_matrix * mask return mask, position_ids class BertForSequenceToSequence(BertPreTrainedForSeq2SeqModel): MODEL_NAME = 'basic class' def __init__(self, config): super(BertForSequenceToSequence, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) self.init_weights() self.log_softmax = nn.LogSoftmax() self.source_type_id = config.source_type_id self.target_type_id = config.target_type_id if config.label_smoothing > 0: self.crit_mask_lm_smoothed = LabelSmoothingLoss( config.label_smoothing, config.vocab_size, ignore_index=0, reduction='none') self.crit_mask_lm = None else: self.crit_mask_lm_smoothed = None self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none') class BertForSequenceToSequenceWithPseudoMask(BertForSequenceToSequence): MODEL_NAME = "BertForSequenceToSequenceWithPseudoMask" @staticmethod def create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids): weight = torch.cat((torch.zeros_like(source_position_ids), target_span_ids, -target_span_ids), dim=1) from_weight = weight.unsqueeze(-1) to_weight = weight.unsqueeze(1) true_tokens = (0 <= to_weight) & (torch.cat((source_mask, target_mask, target_mask), dim=1) == 1).unsqueeze(1) true_tokens_mask = (from_weight >= 0) & true_tokens & (to_weight <= from_weight) pseudo_tokens_mask = (from_weight < 0) & true_tokens & (-to_weight > from_weight) pseudo_tokens_mask = pseudo_tokens_mask | ((from_weight < 0) & (to_weight == from_weight)) return (true_tokens_mask | pseudo_tokens_mask).type_as(source_mask) def forward( self, source_ids, target_ids, label_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_span_ids=None, target_no_offset=None): source_len = source_ids.size(1) target_len = target_ids.size(1) pseudo_len = pseudo_ids.size(1) assert target_len == pseudo_len assert source_len > 0 and target_len > 0 split_lengths = (source_len, target_len, pseudo_len) input_ids = torch.cat((source_ids, target_ids, pseudo_ids), dim=1) token_type_ids = torch.cat( (torch.ones_like(source_ids) * self.source_type_id, torch.ones_like(target_ids) * self.target_type_id, torch.ones_like(pseudo_ids) * self.target_type_id), dim=1) source_mask, source_position_ids = \ create_mask_and_position_ids(num_source_tokens, source_len) target_mask, target_position_ids = \ create_mask_and_position_ids( num_target_tokens, target_len, offset=None if target_no_offset else num_source_tokens) position_ids = torch.cat((source_position_ids, target_position_ids, target_position_ids), dim=1) if target_span_ids is None: target_span_ids = target_position_ids attention_mask = self.create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, split_lengths=split_lengths) sequence_output = outputs[0] pseudo_sequence_output = sequence_output[:, source_len + target_len:, ] def loss_mask_and_normalize(loss, mask): mask = mask.type_as(loss) loss = loss * mask denominator = torch.sum(mask) + 1e-5 return (loss / denominator).sum() prediction_scores_masked = self.cls(pseudo_sequence_output) if self.crit_mask_lm_smoothed: masked_lm_loss = self.crit_mask_lm_smoothed( F.log_softmax(prediction_scores_masked.float(), dim=-1), label_ids) else: masked_lm_loss = self.crit_mask_lm( prediction_scores_masked.transpose(1, 2).float(), label_ids) pseudo_lm_loss = loss_mask_and_normalize( masked_lm_loss.float(), target_mask) return pseudo_lm_loss class BertForSequenceToSequenceUniLMV1(BertForSequenceToSequence): MODEL_NAME = "BertForSequenceToSequenceUniLMV1" @staticmethod def create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids): weight = torch.cat((torch.zeros_like(source_position_ids), target_span_ids), dim=1) from_weight = weight.unsqueeze(-1) to_weight = weight.unsqueeze(1) true_tokens = torch.cat((source_mask, target_mask), dim=1).unsqueeze(1) return ((true_tokens == 1) & (to_weight <= from_weight)).type_as(source_mask) def forward(self, source_ids, target_ids, masked_ids, masked_pos, masked_weight, num_source_tokens, num_target_tokens): source_len = source_ids.size(1) target_len = target_ids.size(1) split_lengths = (source_len, target_len) input_ids = torch.cat((source_ids, target_ids), dim=1) token_type_ids = torch.cat( (torch.ones_like(source_ids) * self.source_type_id, torch.ones_like(target_ids) * self.target_type_id), dim=1) source_mask, source_position_ids = \ create_mask_and_position_ids(num_source_tokens, source_len) target_mask, target_position_ids = \ create_mask_and_position_ids( num_target_tokens, target_len, offset=num_source_tokens) position_ids = torch.cat((source_position_ids, target_position_ids), dim=1) attention_mask = self.create_attention_mask( source_mask, target_mask, source_position_ids, target_position_ids) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, split_lengths=split_lengths) def gather_seq_out_by_pos(seq, pos): return torch.gather(seq, 1, pos.unsqueeze(2).expand(-1, -1, seq.size(-1))) sequence_output = outputs[0] target_sequence_output = sequence_output[:, source_len:, ] masked_sequence_output = gather_seq_out_by_pos(target_sequence_output, masked_pos) def loss_mask_and_normalize(loss, mask): mask = mask.type_as(loss) loss = loss * mask denominator = torch.sum(mask) + 1e-5 return (loss / denominator).sum() prediction_scores_masked = self.cls(masked_sequence_output) if self.crit_mask_lm_smoothed: masked_lm_loss = self.crit_mask_lm_smoothed( F.log_softmax(prediction_scores_masked.float(), dim=-1), masked_ids) else: masked_lm_loss = self.crit_mask_lm( prediction_scores_masked.transpose(1, 2).float(), masked_ids) pseudo_lm_loss = loss_mask_and_normalize( masked_lm_loss.float(), masked_weight) return pseudo_lm_loss class UniLMForSequenceClassification(BertPreTrainedForSeq2SeqModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, # head_mask=head_mask, inputs_embeds=inputs_embeds, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = nn.MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions)
EXA-1-master
exa/models/unilm-master/s2s-ft/s2s_ft/modeling.py
import torch.nn as nn import torch from fairseq.modules.quant_noise import quant_noise from fairseq.modules import MultiheadAttention from fairseq.modules.transformer_layer import TransformerDecoderLayerBase from fairseq.models.transformer import TransformerDecoderBase, TransformerDecoder from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.distributed import fsdp_wrap from fairseq.models.transformer import TransformerConfig class UniLMMultiheadAttention(MultiheadAttention): def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0, qn_block_size=8): super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention, encoder_decoder_attention=encoder_decoder_attention, q_noise=q_noise, qn_block_size=qn_block_size) self.k_proj = quant_noise(nn.Linear(self.kdim, embed_dim, bias=True), q_noise, qn_block_size) self.k_proj.bias = nn.Parameter(torch.zeros_like(self.k_proj.bias, requires_grad=False)) class UniLMDecoderLayer(TransformerDecoderLayerBase): def build_self_attention( self, embed_dim, cfg, add_bias_kv=False, add_zero_attn=False ): return UniLMMultiheadAttention( embed_dim, cfg.decoder.attention_heads, dropout=cfg.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not cfg.cross_self_attention, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) class UniLMDecoderBase(TransformerDecoderBase): def build_decoder_layer(self, cfg, no_encoder_attn=False): layer = UniLMDecoderLayer(cfg, no_encoder_attn) checkpoint = cfg.checkpoint_activations if checkpoint: offload_to_cpu = cfg.offload_activations layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer class UniLMDecoder(UniLMDecoderBase): def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, output_projection=None, ): self.args = args super().__init__( TransformerConfig.from_namespace(args), dictionary, embed_tokens, no_encoder_attn=no_encoder_attn, output_projection=output_projection, ) def build_output_projection(self, args, dictionary, embed_tokens): super().build_output_projection( TransformerConfig.from_namespace(args), dictionary, embed_tokens ) def build_decoder_layer(self, args, no_encoder_attn=False): return super().build_decoder_layer( TransformerConfig.from_namespace(args), no_encoder_attn=no_encoder_attn )
EXA-1-master
exa/models/unilm-master/trocr/unilm_models.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import os import logging import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from timm.models.vision_transformer import VisionTransformer, _cfg from timm.models.vision_transformer import Attention, Block from timm.models.registry import register_model from timm.models.layers import trunc_normal_ logger = logging.getLogger(__name__) class Fp16FixedAttention(Attention): def cogview_attn(self, attention_scores, alpha=32): ''' https://arxiv.org/pdf/2105.13290.pdf Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores) Seems the new attention_probs will result in a slower speed and a little bias Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison The smaller atol (e.g., 1e-08), the better. ''' scaled_attention_scores = attention_scores / alpha max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) # max_value = scaled_attention_scores.amax(dim=(-2, -1)).unsqueeze(-1).unsqueeze(-1) new_attention_scores = (scaled_attention_scores - max_value) * alpha return nn.Softmax(dim=-1)(new_attention_scores) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale # attn = attn.softmax(dim=-1).type_as(x) attn = self.cogview_attn(attn).type_as(x) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Fp16FixedBlock(Block): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__(dim, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path, act_layer=act_layer, norm_layer=norm_layer) self.attn = Fp16FixedAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) class AdaptedVisionTransformer(VisionTransformer): def __init__(self, *args, **kwargs): self.ape = kwargs.pop('ape', 0) self.mask_ratio = kwargs.pop('mask_ratio', 0.0) self.patch_size = kwargs.get('patch_size') self.fp16fixed = kwargs.pop('fp16fixed', False) weight_init = kwargs.get('weight_init', '') super().__init__(*args, **kwargs) if self.ape: self.pos_embed = nn.Parameter(torch.zeros(1, self.ape + self.num_tokens, self.embed_dim)) if self.fp16fixed: # img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, # num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, # drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, # act_layer=None, weight_init='' embed_dim = kwargs.get('embed_dim', 768) num_heads = kwargs.get('num_heads', 12) mlp_ratio = kwargs.get('mlp_ratio', 4.) qkv_bias = kwargs.get('qkv_bias', True) drop_rate = kwargs.get('drop_rate', 0.) attn_drop_rate = kwargs.get('attn_drop_rate', 0.) drop_path_rate = kwargs.get('drop_path_rate', 0.) depth = kwargs.get('depth', 12) norm_layer = kwargs.get('norm_layer', partial(nn.LayerNorm, eps=1e-6)) act_layer = kwargs.get('act_layer', nn.GELU) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.Sequential(*[ Fp16FixedBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) for i in range(depth)]) self.init_weights(weight_init) def forward_features(self, x): _, _, H, W = x.shape Wh = H // self.patch_size Ww = W // self.patch_size x = self.patch_embed(x) if self.mask_ratio != 0: probability_matrix = torch.full(x.shape[:2], self.mask_ratio) masked_indices = torch.bernoulli(probability_matrix).bool() x[masked_indices] = 0 cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks if self.dist_token is None: x = torch.cat((cls_token, x), dim=1) else: x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) if self.ape: pos_embed_patch_num = int(self.pos_embed.size(1) ** 0.5) offset = self.num_tokens adapt_pos_embed = self.pos_embed[:, offset:, :].view(self.pos_embed.shape[0], pos_embed_patch_num, pos_embed_patch_num, self.pos_embed.shape[-1]) # B 24 24 768 adapt_pos_embed = adapt_pos_embed.permute(0, 3, 1, 2) pos_embed = F.interpolate(adapt_pos_embed, size=(Wh, Ww), mode='bicubic') pos_embed = pos_embed.flatten(2).transpose(1, 2) # B Wh*Ww C pos_embed = torch.cat((pos_embed, self.pos_embed[:, :offset, :]), dim=1) else: pos_embed = self.pos_embed input_embedding = x + pos_embed x = self.pos_drop(input_embedding) x = self.blocks(x) x = self.norm(x) return x, input_embedding @register_model def deit_tiny_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_distilled_patch16_224(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_small_distilled_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, img_size=384, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth", map_location="cpu", check_hash=True ) # adapt 224 model to 384 model_seq_len = model.state_dict()['pos_embed'].shape[1] ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1] logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape))) if not model.ape: if model_seq_len <= ckpt_seq_len: checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :] else: t = model.state_dict()['pos_embed'] t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed'] checkpoint['model']['pos_embed'] = t model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_224(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer(distilled=True, img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) return model @register_model def deit_base_distilled_patch16_custom_size(pretrained=False, img_size=384, **kwargs): model = AdaptedVisionTransformer(distilled=True, img_size=img_size, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", map_location="cpu", check_hash=True ) # checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :502, :] # ape torch.Size([1, 578, 768]) from checkpoint, the shape in current model is torch.Size([1, 1026, 768]). model_seq_len = model.state_dict()['pos_embed'].shape[1] ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1] logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape))) if not model.ape: if model_seq_len <= ckpt_seq_len: checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :] else: t = model.state_dict()['pos_embed'] t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed'] checkpoint['model']['pos_embed'] = t model.load_state_dict(checkpoint["model"]) return model @register_model def beit_base_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_384(pretrained=False, **kwargs): model = AdaptedVisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=False, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model
EXA-1-master
exa/models/unilm-master/trocr/deit.py
import os from fairseq import search from fairseq import scoring, utils, metrics from fairseq.data import Dictionary, encoders from fairseq.tasks import LegacyFairseqTask, register_task from fairseq.tasks.fairseq_task import FairseqTask try: from .data import SROIETextRecognitionDataset, Receipt53KDataset, SyntheticTextRecognitionDataset from .data_aug import build_data_aug, OptForDataAugment, DataAugment except ImportError: from data import SROIETextRecognitionDataset, Receipt53KDataset, SyntheticTextRecognitionDataset from data_aug import build_data_aug, OptForDataAugment, DataAugment import logging import torch logger = logging.getLogger(__name__) @register_task('text_recognition') class TextRecognitionTask(LegacyFairseqTask): @staticmethod def add_args(parser): parser.add_argument('data', metavar='DIR', help='the path to the data dir') parser.add_argument('--reset-dictionary', action='store_true', help='if reset dictionary and related parameters') parser.add_argument('--adapt-dictionary', action='store_true', help='if adapt dictionary and related parameters') parser.add_argument('--adapt-encoder-pos-embed', action='store_true', help='if adapt encoder pos embed') parser.add_argument('--add-empty-sample', action='store_true', help='add empty samples to the dataset (for multilingual dataset).') parser.add_argument('--preprocess', default='ResizeNormalize', type=str, help='the image preprocess methods (ResizeNormalize|DeiT)') parser.add_argument('--decoder-pretrained', default=None, type=str, help='seted to load the RoBERTa parameters to the decoder.') parser.add_argument('--decoder-pretrained-url', default=None, type=str, help='the ckpt url for decoder pretraining (only unilm for now)') parser.add_argument('--dict-path-or-url', default=None, type=str, help='the local path or url for dictionary file') parser.add_argument('--input-size', type=int, nargs='+', help='images input size', required=True) parser.add_argument('--data-type', type=str, default='SROIE', help='the dataset type used for the task (SROIE or Receipt53K)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + \ "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--repeated-aug', action='store_true') parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug') parser.set_defaults(repeated_aug=True) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') @classmethod def setup_task(cls, args, **kwargs): import urllib.request import io if getattr(args, "dict_path_or_url", None) is not None: if args.dict_path_or_url.startswith('http'): logger.info('Load dictionary from {}'.format(args.dict_path_or_url)) dict_content = urllib.request.urlopen(args.dict_path_or_url).read().decode() dict_file_like = io.StringIO(dict_content) target_dict = Dictionary.load(dict_file_like) else: target_dict = Dictionary.load(args.dict_path_or_url) elif getattr(args, "decoder_pretrained", None) is not None: if args.decoder_pretrained == 'unilm': url = 'https://layoutlm.blob.core.windows.net/trocr/dictionaries/unilm3.dict.txt' logger.info('Load unilm dictionary from {}'.format(url)) dict_content = urllib.request.urlopen(url).read().decode() dict_file_like = io.StringIO(dict_content) target_dict = Dictionary.load(dict_file_like) elif args.decoder_pretrained.startswith('roberta'): url = 'https://layoutlm.blob.core.windows.net/trocr/dictionaries/gpt2_with_mask.dict.txt' logger.info('Load gpt2 dictionary from {}'.format(url)) dict_content = urllib.request.urlopen(url).read().decode() dict_file_like = io.StringIO(dict_content) target_dict = Dictionary.load(dict_file_like) else: raise ValueError('Unknown decoder_pretrained: {}'.format(args.decoder_pretrained)) else: raise ValueError('Either dict_path_or_url or decoder_pretrained should be set.') logger.info('[label] load dictionary: {} types'.format(len(target_dict))) return cls(args, target_dict) def __init__(self, args, target_dict): super().__init__(args) self.args = args self.data_dir = args.data self.target_dict = target_dict if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0': torch.distributed.barrier() self.bpe = self.build_bpe(args) if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] == '0': torch.distributed.barrier() def load_dataset(self, split, **kwargs): input_size = self.args.input_size if isinstance(input_size, list): if len(input_size) == 1: input_size = (input_size[0], input_size[0]) else: input_size = tuple(input_size) elif isinstance(input_size, int): input_size = (input_size, input_size) logger.info('The input size is {}, the height is {} and the width is {}'.format(input_size, input_size[0], input_size[1])) if self.args.preprocess == 'DA2': tfm = build_data_aug(input_size, mode=split) elif self.args.preprocess == 'RandAugment': opt = OptForDataAugment(eval= (split != 'train'), isrand_aug=True, imgW=input_size[1], imgH=input_size[0], intact_prob=0.5, augs_num=3, augs_mag=None) tfm = DataAugment(opt) else: raise Exception('Undeined image preprocess method.') # load the dataset if self.args.data_type == 'SROIE': root_dir = os.path.join(self.data_dir, split) self.datasets[split] = SROIETextRecognitionDataset(root_dir, tfm, self.bpe, self.target_dict) elif self.args.data_type == 'Receipt53K': gt_path = os.path.join(self.data_dir, 'gt_{}.txt'.format(split)) self.datasets[split] = Receipt53KDataset(gt_path, tfm, self.bpe, self.target_dict) elif self.args.data_type == 'STR': gt_path = os.path.join(self.data_dir, 'gt_{}.txt'.format(split)) self.datasets[split] = SyntheticTextRecognitionDataset(gt_path, tfm, self.bpe, self.target_dict) else: raise Exception('Not defined dataset type: ' + self.args.data_type) @property def source_dictionary(self): return None @property def target_dictionary(self): return self.target_dict def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None ): if getattr(args, "score_reference", False): from fairseq.sequence_scorer import SequenceScorer return SequenceScorer( self.target_dictionary, compute_alignment=getattr(args, "print_alignment", False), ) from fairseq.sequence_generator import ( SequenceGenerator, SequenceGeneratorWithAlignment, ) try: from .generator import TextRecognitionGenerator except: from generator import TextRecognitionGenerator try: from fairseq.fb_sequence_generator import FBSequenceGenerator except ModuleNotFoundError: pass # Choose search strategy. Defaults to Beam Search. sampling = getattr(args, "sampling", False) sampling_topk = getattr(args, "sampling_topk", -1) sampling_topp = getattr(args, "sampling_topp", -1.0) diverse_beam_groups = getattr(args, "diverse_beam_groups", -1) diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5) match_source_len = getattr(args, "match_source_len", False) diversity_rate = getattr(args, "diversity_rate", -1) constrained = getattr(args, "constraints", False) prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None) if ( sum( int(cond) for cond in [ sampling, diverse_beam_groups > 0, match_source_len, diversity_rate > 0, ] ) > 1 ): raise ValueError("Provided Search parameters are mutually exclusive.") assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling" assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling" if sampling: search_strategy = search.Sampling( self.target_dictionary, sampling_topk, sampling_topp ) elif diverse_beam_groups > 0: search_strategy = search.DiverseBeamSearch( self.target_dictionary, diverse_beam_groups, diverse_beam_strength ) elif match_source_len: # this is useful for tagging applications where the output # length should match the input length, so we hardcode the # length constraints for simplicity search_strategy = search.LengthConstrainedBeamSearch( self.target_dictionary, min_len_a=1, min_len_b=0, max_len_a=1, max_len_b=0, ) elif diversity_rate > -1: search_strategy = search.DiverseSiblingsSearch( self.target_dictionary, diversity_rate ) elif constrained: search_strategy = search.LexicallyConstrainedBeamSearch( self.target_dictionary, args.constraints ) elif prefix_allowed_tokens_fn: search_strategy = search.PrefixConstrainedBeamSearch( self.target_dictionary, prefix_allowed_tokens_fn ) else: search_strategy = search.BeamSearch(self.target_dictionary) extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} if seq_gen_cls is None: if getattr(args, "print_alignment", False): seq_gen_cls = SequenceGeneratorWithAlignment extra_gen_cls_kwargs["print_alignment"] = args.print_alignment elif getattr(args, "fb_seq_gen", False): seq_gen_cls = FBSequenceGenerator else: seq_gen_cls = TextRecognitionGenerator return seq_gen_cls( models, self.target_dictionary, beam_size=getattr(args, "beam", 5), max_len_a=getattr(args, "max_len_a", 0), max_len_b=getattr(args, "max_len_b", 200), min_len=getattr(args, "min_len", 1), normalize_scores=(not getattr(args, "unnormalized", False)), len_penalty=getattr(args, "lenpen", 1), unk_penalty=getattr(args, "unkpen", 0), temperature=getattr(args, "temperature", 1.0), match_source_len=getattr(args, "match_source_len", False), no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), search_strategy=search_strategy, **extra_gen_cls_kwargs, ) def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False ): return indices
EXA-1-master
exa/models/unilm-master/trocr/task.py
from fairseq.models import FairseqEncoder, register_model, FairseqEncoderDecoderModel, register_model_architecture from fairseq.models.transformer import TransformerDecoder, Embedding, TransformerModel from fairseq.models.transformer import base_architecture as base_transformer from fairseq.models.fairseq_encoder import EncoderOut from torch.nn import Parameter from fairseq import utils from torch import Tensor import torch from torch.hub import load_state_dict_from_url from timm.models import create_model from functools import partial import logging import argparse from typing import Dict, Optional, Tuple from collections import OrderedDict import os logger = logging.getLogger(__name__) DEFAULT_MAX_TARGET_POSITIONS = 1024 from argparse import Namespace from omegaconf import DictConfig from fairseq.dataclass.utils import convert_namespace_to_omegaconf try: from .unilm_models import UniLMDecoder except: from unilm_models import UniLMDecoder @register_model('DeiT_TR') @register_model('TrOCR') class TrOCRModel(FairseqEncoderDecoderModel): def load_state_dict( self, state_dict, strict=True, model_cfg: Optional[DictConfig] = None, args: Optional[Namespace] = None, ): if model_cfg is None and args is not None: logger.warn("using 'args' is deprecated, please update your code to use dataclass config") model_cfg = convert_namespace_to_omegaconf(args).model self.upgrade_state_dict(state_dict) from fairseq.checkpoint_utils import prune_state_dict new_state_dict = prune_state_dict(state_dict, model_cfg) if not model_cfg.ape: model_seq_len = self.state_dict()['encoder.deit.pos_embed'].shape[1] ckpt_seq_len = new_state_dict['encoder.deit.pos_embed'].shape[1] if model_seq_len != ckpt_seq_len and getattr(args, "adapt_encoder_pos_embed", None): logger.warning('Load from encoder.deit {:d} seq len to {:d}'.format(ckpt_seq_len, model_seq_len)) if model_seq_len <= ckpt_seq_len: new_state_dict['encoder.deit.pos_embed'] = new_state_dict['encoder.deit.pos_embed'][:, :model_seq_len, :] else: t = self.state_dict()['encoder.deit.pos_embed'] t[:, :ckpt_seq_len, :] = new_state_dict['encoder.deit.pos_embed'] new_state_dict['encoder.deit.pos_embed'] = t # if hasattr(model_cfg, "reset_dictionary") and model_cfg.reset_dictionary: # logger.info('Reset token embed weights and output projection during loading pretrained models') # del new_state_dict['decoder.embed_tokens.weight'] # del new_state_dict['decoder.output_projection.weight'] return super().load_state_dict(new_state_dict, strict=False) @staticmethod def add_args(parser): TransformerModel.add_args(parser) parser.add_argument( '--deit-arch', type=str, help='the arch name for the DeiT encoder' ) parser.add_argument( '--ape', action='store_true', help='if use absolute_pos_embed' ) parser.set_defaults(ape=False) parser.add_argument( '--mask-ratio', default=0.0, type=float, help='the mask ratio for the encoder output masking.' ) parser.add_argument( '--only-keep-pretrained-decoder-structure', action='store_true', help='if only keep the pretrained decoder structure' ) parser.add_argument( '--only-keep-pretrained-encoder-structure', action='store_true', help='if only keep the pretrained encoder structure' ) @staticmethod def read_args_from_roberta(roberta_args: argparse.Namespace): # TODO: this would become easier if encoder/decoder where using a similar # TransformerConfig object args = argparse.Namespace(**vars(roberta_args)) attr_map = [ ("encoder_attention_heads", "decoder_attention_heads"), ("encoder_embed_dim", "decoder_embed_dim"), ("encoder_embed_dim", "decoder_output_dim"), ("encoder_normalize_before", "decoder_normalize_before"), ("encoder_layers_to_keep", "decoder_layers_to_keep"), ("encoder_ffn_embed_dim", "decoder_ffn_embed_dim"), ("encoder_layerdrop", "decoder_layerdrop"), ("encoder_layers", "decoder_layers"), ("encoder_learned_pos", "decoder_learned_pos"), # should this be set from here ? ("max_positions", "max_target_positions"), ] for k1, k2 in attr_map: setattr(args, k2, getattr(roberta_args, k1)) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = not roberta_args.untie_weights_roberta return args @classmethod def build_model(cls, args, task): encoder = TrOCREncoder( args = args, dictionary = task.source_dictionary ) args.encoder_embed_dim = encoder.deit.embed_dim if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS if getattr(args, "decoder_pretrained", None) == None or getattr(args, "decoder_pretrained", None).upper() == 'None': logger.info('Decoder is randomly initialized.') decoder_embed_tokens = cls.build_embedding( args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path ) decoder = TransformerDecoder( args = args, dictionary=task.target_dictionary, embed_tokens=decoder_embed_tokens, no_encoder_attn=False ) elif getattr(args, "decoder_pretrained", None).startswith('roberta2'): logger.info('Using the learned pos embedding version loading roberta.') decoder_embed_tokens = cls.build_embedding( args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path ) pretrained_model = getattr(args, "decoder_pretrained", None) specified = pretrained_model.find('-')!=-1 if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0': torch.distributed.barrier() if specified: pretrained_model = pretrained_model.replace('-', '.') logger.info('Load pre-trained decoder parameters from {}'.format(pretrained_model)) roberta = torch.hub.load('pytorch/fairseq:main', pretrained_model) elif args.decoder_layers == 6: logger.info('Load pre-trained decoder parameters from roberta.base') roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.base') elif args.decoder_layers == 12: logger.info('Load pre-trained decoder parameters from roberta.large') roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.large') else: raise AttributeError('Cannot determined the pre-trained model') if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] == '0': torch.distributed.barrier() roberta.model.args.encoder_layers = args.decoder_layers roberta.model.args.fp16 = args.fp16 roberta_args = TrOCRModel.read_args_from_roberta(roberta.model.args) roberta_args.encoder_embed_dim = args.encoder_embed_dim decoder = TransformerDecoder( roberta_args, task.target_dictionary, decoder_embed_tokens, no_encoder_attn=False, ) roberta_layers = roberta.model.encoder.sentence_encoder.layers decoder_layers = decoder.layers offset = len(roberta_layers) - len(decoder_layers) assert offset >= 0 decoder_dict = roberta.state_dict() new_decoder_dict = {} for key, val in decoder_dict.items(): if key.startswith('model.encoder.sentence_encoder.layers.'): layer_num = int(key[len('model.encoder.sentence_encoder.layers.'):].split('.')[0]) if layer_num - offset < 0: continue else: new_key = 'model.encoder.sentence_encoder.layers.{}.'.format( str(layer_num - offset)) + '.'.join( key[len('model.encoder.sentence_encoder.layers.'):].split('.')[1:]) new_decoder_dict[new_key] = val else: new_decoder_dict[key] = val decoder_dict = new_decoder_dict for k, w in list(decoder_dict.items()): if '.lm_head' in k: k_proj = "output_projection." + k[len('model.encoder.lm_head.'):] decoder_dict[k_proj] = w.detach().clone() del decoder_dict[k] del decoder_dict['_float_tensor'] del decoder_dict['output_projection.weight'] del decoder_dict['output_projection.bias'] del decoder_dict['output_projection.dense.weight'] del decoder_dict['output_projection.dense.bias'] del decoder_dict['output_projection.layer_norm.weight'] del decoder_dict['output_projection.layer_norm.bias'] new_decoder_dict = {} for key, val in decoder_dict.items(): if "sentence_encoder" in key: key = key[len('model.encoder.sentence_encoder.'):] elif "encoder" in key: key = key[len('model.encoder.'):] new_decoder_dict[key] = val if hasattr(args, 'only_keep_pretrained_decoder_structure') and args.only_keep_pretrained_decoder_structure: logger.info('Only keep the pretrained decoder structure.') pass else: missing_keys, unexpected_keys = decoder.load_state_dict( new_decoder_dict, strict=False ) elif getattr(args, "decoder_pretrained", None) == 'unilm': logger.info('Decoder is pretrained using the unilm.') prefix_of_parameter = 'bert' decoder_embed_tokens = cls.build_embedding( args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path ) decoder = UniLMDecoder( args, task.target_dictionary, decoder_embed_tokens, no_encoder_attn=False, ) if hasattr(args, 'decoder_pretrained_url') and args.decoder_pretrained_url != None and args.decoder_pretrained_url != '': unilm_url = args.decoder_pretrained_url logger.info('The unilm model url: {}.'.format(unilm_url[:unilm_url.find('?')])) unilm_state_dict = torch.hub.load_state_dict_from_url(unilm_url) unilm_layers = OrderedDict([(k, unilm_state_dict[k]) for k in unilm_state_dict.keys() if k.startswith(prefix_of_parameter + '.encoder.layer.')]) unilm_layers_num = [] for k in unilm_layers.keys(): t = k.replace(prefix_of_parameter + '.encoder.layer.', '') t = t[:t.find('.')] unilm_layers_num.append(int(t)) unilm_layers_num = max(unilm_layers_num) + 1 offset = unilm_layers_num - len(decoder.layers) assert offset == 0 decoder_dict = decoder.state_dict() # embedding new_pos_weight = torch.zeros_like(decoder_dict['embed_positions.weight']) # position padding will right offset padding idx + 1 new_pos_weight[task.target_dictionary.pad() + 1:, :] = unilm_state_dict[prefix_of_parameter + '.embeddings.position_embeddings.weight'] new_decoder_dict = { 'embed_tokens.weight': unilm_state_dict[prefix_of_parameter + '.embeddings.word_embeddings.weight'], 'embed_positions.weight': new_pos_weight, 'layernorm_embedding.weight': unilm_state_dict[prefix_of_parameter + '.embeddings.LayerNorm.weight'], 'layernorm_embedding.bias': unilm_state_dict[prefix_of_parameter + '.embeddings.LayerNorm.bias'] } # layers key_map = { 'self_attn.k_proj': 'attention.self.key', 'self_attn.v_proj': 'attention.self.value', 'self_attn.q_proj': 'attention.self.query', 'self_attn.out_proj': 'attention.output.dense', 'self_attn_layer_norm': 'attention.output.LayerNorm', 'fc1': 'intermediate.dense', 'fc2': 'output.dense', 'final_layer_norm': 'output.LayerNorm' } for layer_id in range(unilm_layers_num): unilm_prefix = prefix_of_parameter + '.encoder.layer.{}.'.format(layer_id) decoder_prefix = 'layers.{}.'.format(layer_id) for key in key_map: for suffix in ['.weight', '.bias']: decoder_key = decoder_prefix + key + suffix unilm_key = unilm_prefix + key_map[key] + suffix if decoder_key in decoder_dict and unilm_key in unilm_state_dict: new_decoder_dict[decoder_key] = unilm_state_dict[unilm_key] if hasattr(args, "reset_dictionary") and args.reset_dictionary: logger.info('Reset token embedding weights during decoder initialization.') del new_decoder_dict['embed_tokens.weight'] elif hasattr(args, "adapt_dictionary") and args.adapt_dictionary: unilm_embed_tokens_weight = new_decoder_dict['embed_tokens.weight'] logger.info('Adapt token embedding weights during decoder initialization from {} to {}'.format(unilm_embed_tokens_weight.shape[0], decoder_embed_tokens.weight.shape[0])) new_decoder_dict['embed_tokens.weight'] = torch.zeros_like(decoder_dict['embed_tokens.weight']) new_decoder_dict['embed_tokens.weight'][:min(unilm_embed_tokens_weight.shape[0], decoder_dict['embed_tokens.weight'].shape[0]), :] = unilm_embed_tokens_weight[:min(unilm_embed_tokens_weight.shape[0], decoder_dict['embed_tokens.weight'].shape[0]), :] if hasattr(args, 'only_keep_pretrained_decoder_structure') and args.only_keep_pretrained_decoder_structure: logger.info('Only keep the pretrained decoder structure.') pass else: missing_keys, unexpected_keys = decoder.load_state_dict( new_decoder_dict, strict=False ) else: logger.warning('You must specify the unilm model url or the decoder is randomly initialized.') # freeze k_proj bias for layer in decoder.layers: layer.self_attn.k_proj.bias.requires_grad = False elif getattr(args, "decoder_pretrained", None).startswith('roberta'): logger.info('Using the old version loading roberta.') decoder_embed_tokens = cls.build_embedding( args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path ) decoder = TransformerDecoder( args = args, dictionary=task.target_dictionary, embed_tokens=decoder_embed_tokens, no_encoder_attn=False ) pretrained_model = getattr(args, "decoder_pretrained", None) specified = pretrained_model.find('-')!=-1 if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0': torch.distributed.barrier() if specified: pretrained_model = pretrained_model.replace('-', '.') logger.info('Load pre-trained decoder parameters from {}'.format(pretrained_model)) roberta = torch.hub.load('pytorch/fairseq:main', pretrained_model) elif args.decoder_layers == 6: logger.info('Load pre-trained decoder parameters from roberta.base') roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.base') elif args.decoder_layers == 12: logger.info('Load pre-trained decoder parameters from roberta.large') roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.large') else: raise AttributeError('Cannot determined the pre-trained model') if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] == '0': torch.distributed.barrier() if hasattr(args, 'only_keep_pretrained_decoder_structure') and args.only_keep_pretrained_decoder_structure: logger.info('Only keep the pretrained decoder structure.') pass else: decoder.embed_tokens.load_state_dict(roberta.model.encoder.sentence_encoder.embed_tokens.state_dict()) roberta_layers = roberta.model.encoder.sentence_encoder.layers decoder_layers = decoder.layers offset = len(roberta_layers) - len(decoder_layers) assert offset >= 0 for i in range(len(decoder_layers)): roberta_i = i + offset decoder_layers[i].self_attn.load_state_dict(roberta_layers[roberta_i].self_attn.state_dict()) decoder_layers[i].self_attn_layer_norm.load_state_dict(roberta_layers[roberta_i].self_attn_layer_norm.state_dict()) else: raise Exception('Undefined decoder pretraining method.') model = cls(encoder, decoder) return model @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb def forward(self, imgs, prev_output_tokens, **kwargs): encoder_out = self.encoder(imgs, **kwargs) # (seq_len, batch, embed_dim) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) # (batch, seq_len, vocab_size) return decoder_out @register_model_architecture('DeiT_TR', 'deit_base_decoder_base') def deit_base_decoder_base(args): # DeiT Encoder deit_base_distilled_patch16_384 args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_384") # Transformer Decoder # args.encoder_embed_dim = 768 base_transformer(args) @register_model_architecture('DeiT_TR', 'deit_base_decoder_large') def deit_base_decoder_large(args): # DeiT Encoder deit_base_distilled_patch16_384 args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_384") # Transformer Decoder # args.encoder_embed_dim = 768 args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) base_transformer(args) @register_model_architecture('TrOCR', 'trocr_base') @register_model_architecture('DeiT_TR', 'beit_base_decoder_large') def beit_base_decoder_large(args): # DeiT Encoder deit_base_distilled_patch16_384 args.deit_arch = getattr(args, "deit_arch", "beit_base_patch16_384") # Transformer Decoder # args.encoder_embed_dim = 768 args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) base_transformer(args) @register_model_architecture('TrOCR', 'trocr_large') @register_model_architecture('DeiT_TR', 'beit_large_decoder_large') def beit_large_decoder_large(args): # DeiT Encoder deit_base_distilled_patch16_384 args.deit_arch = getattr(args, "deit_arch", "beit_large_patch16_384") # Transformer Decoder # args.encoder_embed_dim = 1024 args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) base_transformer(args) @register_model_architecture('DeiT_TR', 'deit_base_decoder_large_custom_size') def deit_base_decoder_large_custom_size(args): # DeiT Encoder deit_base_distilled_patch16_custom_size args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_custom_size") # Transformer Decoder # args.encoder_embed_dim = 768 args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) base_transformer(args) def nlrv4_compressed_tiny(args): args.decoder_learned_pos = True args.layernorm_embedding = True args.decoder_attention_heads = 8 args.decoder_embed_dim = 256 args.decoder_output_dim = 256 args.decoder_ffn_embed_dim = 1024 args.dropout = 0.1 args.decoder_layers = 6 args.max_target_positions = 512 @register_model_architecture('TrOCR', 'trocr_small_224') def trocr_small(args): # DeiT Encoder deit_base_distilled_patch16_384 args.deit_arch = getattr(args, "deit_arch", "deit_small_distilled_patch16_224") nlrv4_compressed_tiny(args) # Transformer Decoder base_transformer(args) @register_model_architecture('TrOCR', 'trocr_small') @register_model_architecture('TrOCR', 'trocr_small_384') def trocr_small_384(args): # DeiT Encoder deit_base_distilled_patch16_384 args.deit_arch = getattr(args, "deit_arch", "deit_small_distilled_patch16_384") nlrv4_compressed_tiny(args) # Transformer Decoder base_transformer(args) class TrOCREncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) if hasattr(args, 'only_keep_pretrained_encoder_structure') and args.only_keep_pretrained_encoder_structure: pretrained = False else: pretrained = True if 'custom_size' in args.deit_arch: self.deit = create_model(args.deit_arch, pretrained=pretrained, img_size=args.input_size, ape=args.ape, mask_ratio=args.mask_ratio) else: self.deit = create_model(args.deit_arch, pretrained=pretrained, ape=args.ape, mask_ratio=args.mask_ratio) self.fp16 = args.fp16 def forward(self, imgs): if self.fp16: imgs = imgs.half() x, encoder_embedding = self.deit.forward_features(imgs) # bs, n + 2, dim x = x.transpose(0, 1) # n + 2, bs, dim encoder_padding_mask = torch.zeros(*x.shape[:2]).transpose(0, 1).to(imgs.device) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": [], # List[T x B x C] "src_tokens": [], "src_lengths": [], } def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to `new_order`. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: `encoder_out` rearranged according to `new_order` """ _encoder_out = encoder_out['encoder_out'][0] _encoder_padding_mask = encoder_out['encoder_padding_mask'][0] _encoder_embedding = encoder_out['encoder_embedding'][0] return { "encoder_out": [_encoder_out.index_select(1, new_order)], "encoder_padding_mask": [_encoder_padding_mask.index_select(0, new_order)], # B x T "encoder_embedding": [_encoder_padding_mask.index_select(0, new_order)], # B x T x C "encoder_states": [], "src_tokens": [], "src_lengths": [], } if __name__ == '__main__': pass
EXA-1-master
exa/models/unilm-master/trocr/trocr_models.py
from fairseq.scoring import BaseScorer, register_scorer from nltk.metrics.distance import edit_distance from fairseq.dataclass import FairseqDataclass import fastwer from Levenshtein import distance import string @register_scorer("cer", dataclass=FairseqDataclass) class CERScorer(BaseScorer): def __init__(self, cfg): super().__init__(cfg) self.refs = [] self.preds = [] def add_string(self, ref, pred): self.refs.append(ref) self.preds.append(pred) def score(self): return fastwer.score(self.preds, self.refs, char_level=True) def result_string(self) -> str: return f"CER: {self.score():.2f}" @register_scorer("wpa", dataclass=FairseqDataclass) class WPAScorer(BaseScorer): def __init__(self, cfg): super().__init__(cfg) self.refs = [] self.preds = [] self.alphabet = string.digits + string.ascii_lowercase def filter(self, string): string = ''.join([i for i in string if i in self.alphabet]) return string def add_string(self, ref, pred): # print(f'[Pred] gt: "{ref}" | pred: "{pred}"') self.refs.append(self.filter(ref.lower())) self.preds.append(self.filter(pred.lower())) def score(self): length = len(self.refs) correct = 0 for i in range(length): if self.refs[i] == self.preds[i]: correct += 1 return round(correct / length * 100, 2) # return 100 - fastwer.score(self.preds, self.refs, char_level=False) def result_string(self) -> str: return f"WPA: {self.score():.2f}" @register_scorer("acc_ed", dataclass=FairseqDataclass) class AccEDScorer(BaseScorer): def __init__(self, args): super(AccEDScorer, self).__init__(args) self.n_data = 0 self.n_correct = 0 self.ed = 0 def add_string(self, ref, pred): self.n_data += 1 if ref == pred: self.n_correct += 1 self.ed += edit_distance(ref, pred) self.ref.append(ref) self.pred.append(pred) def score(self): return self.n_correct / float(self.n_data) * 100, self.ed / float(self.n_data) def result_string(self): acc, norm_ed = self.score() return f"Accuracy: {acc:.3f} Norm ED: {norm_ed:.2f}" @register_scorer("sroie", dataclass=FairseqDataclass) class SROIEScorer(BaseScorer): def __init__(self, args): super(SROIEScorer, self).__init__(args) self.n_detected_words = 0 self.n_gt_words = 0 self.n_match_words = 0 def add_string(self, ref, pred): pred_words = list(pred.split()) ref_words = list(ref.split()) self.n_gt_words += len(ref_words) self.n_detected_words += len(pred_words) for pred_w in pred_words: if pred_w in ref_words: self.n_match_words += 1 ref_words.remove(pred_w) self.ref.append(ref) self.pred.append(pred) def score(self): prec = self.n_match_words / float(self.n_detected_words) * 100 recall = self.n_match_words / float(self.n_gt_words) * 100 f1 = 2 * (prec * recall) / (prec + recall) return prec, recall, f1 def result_string(self): prec, recall, f1 = self.score() return f"Precision: {prec:.3f} Recall: {recall:.3f} F1: {f1:.3f}"
EXA-1-master
exa/models/unilm-master/trocr/scoring.py
import os from data import SROIETask2 from tqdm import tqdm import shutil import zipfile if __name__ == '__main__': test_dir = '../SROIE_Task2_Original/test' output_dir = 'temp' os.makedirs(output_dir, exist_ok=True) generate_txt_path = '../generate-test.txt' output_file = None output_fp = None with open(generate_txt_path, 'r', encoding='utf8') as fp: lines = list(fp.readlines()) while not lines[0].startswith('T-0'): lines = lines[1:] _, data = SROIETask2(test_dir, None, None) for t in tqdm(data): file_name = t['file_name'] image_id = int(t['image_id']) this_output_file = os.path.basename(file_name).replace('.jpg', '.txt') if this_output_file != output_file: if output_fp is not None: output_fp.close() output_file = this_output_file output_fp = open(os.path.join(output_dir, output_file), 'w', encoding='utf8') pred_line_id = image_id * 4 + 2 pred_line = lines[pred_line_id] assert pred_line.startswith('D-{:d}'.format(image_id)) pred_line = pred_line[pred_line.find('\t') + 1:] pred_str = pred_line[pred_line.find('\t') + 1:] for word in pred_str.split(): output_fp.write(word + '\n') if output_fp: output_fp.close() zip_fp = zipfile.ZipFile('predictions.zip', 'w') for txt_file in os.listdir(output_dir): zip_fp.write(os.path.join(output_dir, txt_file), txt_file) zip_fp.close() shutil.rmtree(output_dir)
EXA-1-master
exa/models/unilm-master/trocr/convert_to_SROIE_format.py
from .task import TextRecognitionTask from .vit_models import ViTTRModel, ViT_TR_base from .scoring import AccEDScorer from .deit import * from .trocr_models import TrOCRModel from .bpe import GPT2BPEEnhancedSpace
EXA-1-master
exa/models/unilm-master/trocr/__init__.py
import torch import math from typing import Dict, List, Optional from fairseq.sequence_generator import SequenceGenerator from torch import Tensor class TextRecognitionGenerator(SequenceGenerator): def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) net_input = sample["net_input"] device = sample["net_input"]["imgs"].device # compute the encoder output for each beam # "encoder_out": [x], # T x B x C # "encoder_padding_mask": [encoder_padding_mask], # B x T # "encoder_embedding": [encoder_embedding], # B x T x C # "encoder_states": [], # List[T x B x C] # "src_tokens": [], # "src_lengths": [], encoder_outs = self.model.forward_encoder(net_input) # T x B x C src_lengths = encoder_outs[0]['encoder_padding_mask'][0].eq(0).long().sum(dim=1) # B src_tokens = encoder_outs[0]['encoder_padding_mask'][0] # B x T # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, beam_size) max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), # exclude the EOS marker self.model.max_decoder_positions() - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step finished = [ False for i in range(bsz) ] # a boolean array indicating if the sentence at the index is finished or not num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) lprobs, avg_attn_scores = self.model.forward_decoder( tokens[:, : step + 1], encoder_outs, incremental_states, self.temperature, ) if self.lm_model is not None: lm_out = self.lm_model(tokens[:, : step + 1]) probs = self.lm_model.get_normalized_probs( lm_out, log_probs=True, sample=None ) probs = probs[:, -1, :] * self.lm_weight lprobs += probs lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): lprobs, tokens, scores = self._prefix_tokens( step, lprobs, scores, tokens, prefix_tokens, beam_size ) elif step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized
EXA-1-master
exa/models/unilm-master/trocr/generator.py
import torch.nn as nn from fairseq.models import FairseqEncoder, register_model, FairseqEncoderDecoderModel, register_model_architecture from fairseq.models.transformer import TransformerDecoder, Embedding, TransformerModel from fairseq.models.fairseq_encoder import EncoderOut from fairseq import utils # from timm.models.vision_transformer import HybridEmbed, PatchEmbed, Block from timm.models.layers import trunc_normal_ import torch from torch.hub import load_state_dict_from_url from functools import partial import logging logger = logging.getLogger(__name__) DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model('ViT_TR') class ViTTRModel(FairseqEncoderDecoderModel): @staticmethod def add_args(parser): TransformerModel.add_args(parser) # parser.add_argument('--decoder-embed-dim', type=int, metavar='N', # help='decoder embedding dimension') parser.add_argument( '--vit-img-size', type=int, metavar='N', help='the image size of h and w (h=w) of the ViT' ) parser.add_argument( '--vit-patch-size', type=int, metavar='N', help='the patch size of h and w (h=w) of the ViT' ) parser.add_argument( '--vit-dim', type=int, metavar='N', help='the hidden size of the ViT' ) parser.add_argument( '--vit-depth', type=int, metavar='N', help='the layer num of the ViT' ) parser.add_argument( '--vit-heads', type=int, metavar='N', help='the head num of the ViT' ) parser.add_argument( '--vit-channels', type=int, metavar='N', default=3, help='the input image channels of the ViT' ) parser.add_argument( '--vit-dropout', type=float, default=0.0, help='the dropout ratio of the ViT' ) parser.add_argument( '--vit-atten-dropout', type=float, default=0.0, help='the input embedding dropout ratio of the ViT' ) parser.add_argument( '--encoder-pretrained-url', type=str, help='the pretrained parameter url for the ViT encoder' ) @classmethod def build_model(cls, args, task): encoder = ViTTREncoder( args = args, dictionary = task.source_dictionary ) if args.encoder_pretrained_url: logger.info('load pretrianed encoder parameter from: {}'.format(args.encoder_pretrained_url)) encoder_state_dict = load_state_dict_from_url(args.encoder_pretrained_url) encoder.load_state_dict(encoder_state_dict, strict=False) if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS decoder_embed_tokens = cls.build_embedding( args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path ) decoder = TransformerDecoder( args = args, dictionary=task.target_dictionary, embed_tokens=decoder_embed_tokens, no_encoder_attn=False ) model = cls(encoder, decoder) return model @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb def forward(self, imgs, prev_output_tokens, **kwargs): encoder_out = self.encoder(imgs, **kwargs) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return decoder_out @register_model_architecture('ViT_TR', 'ViT_TR_base') def ViT_TR_base(args): # ViT Encoder vit_base_patch16_224 args.vit_img_size = getattr(args, "vit_img_size", 224) args.resize_img_size = args.vit_img_size args.vit_patch_size = getattr(args, "vit_patch_size", 16) args.vit_dim = getattr(args, "vit_dim", 768) args.vit_depth = getattr(args, "vit_depth", 12) args.vit_heads = getattr(args, "vit_heads", 12) args.encoder_pretrained_url = getattr(args, "encoder_pretrained_url", "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth") # Transformer Decoder args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) @register_model_architecture('ViT_TR', 'ViT_TR_large') def large_architecture(args): # ViT Encoder vit_base_patch16_224 args.vit_img_size = getattr(args, "vit_img_size", 384) args.resize_img_size = args.vit_img_size args.vit_patch_size = getattr(args, "vit_patch_size", 16) args.vit_dim = getattr(args, "vit_dim", 1024) args.vit_depth = getattr(args, "vit_depth", 24) args.vit_heads = getattr(args, "vit_heads", 16) args.encoder_pretrained_url = getattr(args, "encoder_pretrained_url", "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth") # Transformer Decoder args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) class ViTTREncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) img_size = args.vit_img_size patch_size = args.vit_patch_size in_chans = args.vit_channels embed_dim = args.vit_dim depth = args.vit_depth num_heads = args.vit_heads mlp_ratio=4. qkv_bias=True qk_scale=None drop_rate = args.vit_dropout attn_drop_rate = args.vit_atten_dropout drop_path_rate=0. hybrid_backbone=None norm_layer=None self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_features(self, x): B = x.shape[0] # bs, num_patches, dim x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed encoder_embedding = x # bs, n + 1, dim x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) # bs, n + 1, dim return x, encoder_embedding def forward(self, imgs): x, encoder_embedding = self.forward_features(imgs) # bs, n + 1, dim x = x.transpose(0, 1) # n + 1, bs, dim encoder_padding_mask = torch.zeros(*x.shape[:2]).transpose(0, 1).to(imgs.device) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": [], # List[T x B x C] "src_tokens": [], "src_lengths": [], } def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to `new_order`. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: `encoder_out` rearranged according to `new_order` """ _encoder_out = encoder_out['encoder_out'][0] _encoder_padding_mask = encoder_out['encoder_padding_mask'][0] _encoder_embedding = encoder_out['encoder_embedding'][0] return { "encoder_out": [_encoder_out.index_select(1, new_order)], "encoder_padding_mask": [_encoder_padding_mask.index_select(0, new_order)], # B x T "encoder_embedding": [_encoder_padding_mask.index_select(0, new_order)], # B x T x C "encoder_states": [], "src_tokens": [], "src_lengths": [], } if __name__ == '__main__': pass
EXA-1-master
exa/models/unilm-master/trocr/vit_models.py
import torchvision.transforms as transforms # from torchvision.transforms.functional import InterpolationMode from PIL import Image, ImageFilter import random import torch import numpy as np import logging from enum import Enum from .augmentation.warp import Curve, Distort, Stretch from .augmentation.geometry import Rotate, Perspective, Shrink, TranslateX, TranslateY from .augmentation.pattern import VGrid, HGrid, Grid, RectGrid, EllipseGrid from .augmentation.noise import GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise from .augmentation.blur import GaussianBlur, DefocusBlur, MotionBlur, GlassBlur, ZoomBlur from .augmentation.camera import Contrast, Brightness, JpegCompression, Pixelate from .augmentation.weather import Fog, Snow, Frost, Rain, Shadow from .augmentation.process import Posterize, Solarize, Invert, Equalize, AutoContrast, Sharpness, Color # 0: InterpolationMode.NEAREST, # 2: InterpolationMode.BILINEAR, # 3: InterpolationMode.BICUBIC, # 4: InterpolationMode.BOX, # 5: InterpolationMode.HAMMING, # 1: InterpolationMode.LANCZOS, class InterpolationMode(): NEAREST = 0 BILINEAR = 2 BICUBIC = 3 BOX = 4 HAMMING = 5 LANCZOS = 1 logger = logging.getLogger(__name__) class ResizePad(object): def __init__(self, imgH=64, imgW=3072, keep_ratio_with_pad=True): self.imgH = imgH self.imgW = imgW assert keep_ratio_with_pad == True self.keep_ratio_with_pad = keep_ratio_with_pad def __call__(self, im): old_size = im.size # old_size[0] is in (width, height) format ratio = float(self.imgH)/old_size[1] new_size = tuple([int(x*ratio) for x in old_size]) im = im.resize(new_size, Image.BICUBIC) new_im = Image.new("RGB", (self.imgW, self.imgH)) new_im.paste(im, (0, 0)) return new_im class WeightedRandomChoice: def __init__(self, trans, weights=None): self.trans = trans if not weights: self.weights = [1] * len(trans) else: assert len(trans) == len(weights) self.weights = weights def __call__(self, img): t = random.choices(self.trans, weights=self.weights, k=1)[0] try: tfm_img = t(img) except Exception as e: logger.warning('Error during data_aug: '+str(e)) return img return tfm_img def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class Dilation(torch.nn.Module): def __init__(self, kernel=3): super().__init__() self.kernel=kernel def forward(self, img): return img.filter(ImageFilter.MaxFilter(self.kernel)) def __repr__(self): return self.__class__.__name__ + '(kernel={})'.format(self.kernel) class Erosion(torch.nn.Module): def __init__(self, kernel=3): super().__init__() self.kernel=kernel def forward(self, img): return img.filter(ImageFilter.MinFilter(self.kernel)) def __repr__(self): return self.__class__.__name__ + '(kernel={})'.format(self.kernel) class Underline(torch.nn.Module): def __init__(self): super().__init__() def forward(self, img): img_np = np.array(img.convert('L')) black_pixels = np.where(img_np < 50) try: y1 = max(black_pixels[0]) x0 = min(black_pixels[1]) x1 = max(black_pixels[1]) except: return img for x in range(x0, x1): for y in range(y1, y1-3, -1): try: img.putpixel((x, y), (0, 0, 0)) except: continue return img class KeepOriginal(torch.nn.Module): def __init__(self): super().__init__() def forward(self, img): return img def build_data_aug(size, mode, resnet=False, resizepad=False): if resnet: norm_tfm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) else: norm_tfm = transforms.Normalize(0.5, 0.5) if resizepad: resize_tfm = ResizePad(imgH=size[0], imgW=size[1]) else: resize_tfm = transforms.Resize(size, interpolation=InterpolationMode.BICUBIC) if mode == 'train': return transforms.Compose([ WeightedRandomChoice([ # transforms.RandomHorizontalFlip(p=1), transforms.RandomRotation(degrees=(-10, 10), expand=True, fill=255), transforms.GaussianBlur(3), Dilation(3), Erosion(3), transforms.Resize((size[0] // 3, size[1] // 3), interpolation=InterpolationMode.NEAREST), Underline(), KeepOriginal(), ]), resize_tfm, transforms.ToTensor(), norm_tfm ]) else: return transforms.Compose([ resize_tfm, transforms.ToTensor(), norm_tfm ]) class OptForDataAugment: def __init__(self, **kwargs): self.__dict__.update(kwargs) def isless(prob=0.5): return np.random.uniform(0,1) < prob class DataAugment(object): ''' Supports with and without data augmentation ''' def __init__(self, opt): self.opt = opt if not opt.eval: self.process = [Posterize(), Solarize(), Invert(), Equalize(), AutoContrast(), Sharpness(), Color()] self.camera = [Contrast(), Brightness(), JpegCompression(), Pixelate()] self.pattern = [VGrid(), HGrid(), Grid(), RectGrid(), EllipseGrid()] self.noise = [GaussianNoise(), ShotNoise(), ImpulseNoise(), SpeckleNoise()] self.blur = [GaussianBlur(), DefocusBlur(), MotionBlur(), GlassBlur(), ZoomBlur()] self.weather = [Fog(), Snow(), Frost(), Rain(), Shadow()] self.noises = [self.blur, self.noise, self.weather] self.processes = [self.camera, self.process] self.warp = [Curve(), Distort(), Stretch()] self.geometry = [Rotate(), Perspective(), Shrink()] self.isbaseline_aug = False # rand augment if self.opt.isrand_aug: self.augs = [self.process, self.camera, self.noise, self.blur, self.weather, self.pattern, self.warp, self.geometry] # semantic augment elif self.opt.issemantic_aug: self.geometry = [Rotate(), Perspective(), Shrink()] self.noise = [GaussianNoise()] self.blur = [MotionBlur()] self.augs = [self.noise, self.blur, self.geometry] self.isbaseline_aug = True # pp-ocr augment elif self.opt.islearning_aug: self.geometry = [Rotate(), Perspective()] self.noise = [GaussianNoise()] self.blur = [MotionBlur()] self.warp = [Distort()] self.augs = [self.warp, self.noise, self.blur, self.geometry] self.isbaseline_aug = True # scatter augment elif self.opt.isscatter_aug: self.geometry = [Shrink()] self.warp = [Distort()] self.augs = [self.warp, self.geometry] self.baseline_aug = True # rotation augment elif self.opt.isrotation_aug: self.geometry = [Rotate()] self.augs = [self.geometry] self.isbaseline_aug = True def __call__(self, img): ''' Must call img.copy() if pattern, Rain or Shadow is used ''' img = img.resize((self.opt.imgW, self.opt.imgH), Image.BICUBIC) if self.opt.eval or isless(self.opt.intact_prob): pass elif self.opt.isrand_aug or self.isbaseline_aug: img = self.rand_aug(img) # individual augment can also be selected elif self.opt.issel_aug: img = self.sel_aug(img) img = transforms.ToTensor()(img) img = transforms.Normalize(0.5, 0.5)(img) return img def rand_aug(self, img): augs = np.random.choice(self.augs, self.opt.augs_num, replace=False) for aug in augs: index = np.random.randint(0, len(aug)) op = aug[index] mag = np.random.randint(0, 3) if self.opt.augs_mag is None else self.opt.augs_mag if type(op).__name__ == "Rain" or type(op).__name__ == "Grid": img = op(img.copy(), mag=mag) else: img = op(img, mag=mag) return img def sel_aug(self, img): prob = 1. if self.opt.process: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.process)) op = self.process[index] img = op(img, mag=mag, prob=prob) if self.opt.noise: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.noise)) op = self.noise[index] img = op(img, mag=mag, prob=prob) if self.opt.blur: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.blur)) op = self.blur[index] img = op(img, mag=mag, prob=prob) if self.opt.weather: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.weather)) op = self.weather[index] if type(op).__name__ == "Rain": #or "Grid" in type(op).__name__ : img = op(img.copy(), mag=mag, prob=prob) else: img = op(img, mag=mag, prob=prob) if self.opt.camera: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.camera)) op = self.camera[index] img = op(img, mag=mag, prob=prob) if self.opt.pattern: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.pattern)) op = self.pattern[index] img = op(img.copy(), mag=mag, prob=prob) iscurve = False if self.opt.warp: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.warp)) op = self.warp[index] if type(op).__name__ == "Curve": iscurve = True img = op(img, mag=mag, prob=prob) if self.opt.geometry: mag = np.random.randint(0, 3) index = np.random.randint(0, len(self.geometry)) op = self.geometry[index] if type(op).__name__ == "Rotate": img = op(img, iscurve=iscurve, mag=mag, prob=prob) else: img = op(img, mag=mag, prob=prob) return img
EXA-1-master
exa/models/unilm-master/trocr/data_aug.py
import task import deit import trocr_models import torch import fairseq from fairseq import utils from fairseq_cli import generate from PIL import Image import torchvision.transforms as transforms def init(model_path, beam=5): model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task( [model_path], arg_overrides={"beam": beam, "task": "text_recognition", "data": "", "fp16": False}) device = "cuda" if torch.cuda.is_available() else "cpu" model[0].to(device) img_transform = transforms.Compose([ transforms.Resize((384, 384), interpolation=3), transforms.ToTensor(), transforms.Normalize(0.5, 0.5) ]) generator = task.build_generator( model, cfg.generation, extra_gen_cls_kwargs={'lm_model': None, 'lm_weight': None} ) bpe = task.build_bpe(cfg.bpe) return model, cfg, task, generator, bpe, img_transform, device def preprocess(img_path, img_transform): im = Image.open(img_path).convert('RGB').resize((384, 384)) im = img_transform(im).unsqueeze(0).to(device).float() sample = { 'net_input': {"imgs": im}, } return sample def get_text(cfg, generator, model, sample, bpe): decoder_output = task.inference_step(generator, model, sample, prefix_tokens=None, constraints=None) decoder_output = decoder_output[0][0] #top1 hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=decoder_output["tokens"].int().cpu(), src_str="", alignment=decoder_output["alignment"], align_dict=None, tgt_dict=model[0].decoder.dictionary, remove_bpe=cfg.common_eval.post_process, extra_symbols_to_ignore=generate.get_symbols_to_strip_from_output(generator), ) detok_hypo_str = bpe.decode(hypo_str) return detok_hypo_str if __name__ == '__main__': model_path = 'path/to/model' jpg_path = "path/to/pic" beam = 5 model, cfg, task, generator, bpe, img_transform, device = init(model_path, beam) sample = preprocess(jpg_path, img_transform) text = get_text(cfg, generator, model, sample, bpe) print(text) print('done')
EXA-1-master
exa/models/unilm-master/trocr/pic_inference.py
import glob import logging import os import random import torch from fairseq.data import FairseqDataset, data_utils from natsort import natsorted from PIL import Image from tqdm import tqdm logger = logging.getLogger(__name__) def default_collater(target_dict, samples, dataset=None): if not samples: return None if any([sample is None for sample in samples]): if not dataset: return None len_batch = len(samples) while True: samples.append(dataset[random.choice(range(len(dataset)))]) samples =list(filter (lambda x:x is not None, samples)) if len(samples) == len_batch: break indices = [] imgs = [] # bs, c, h , w target_samples = [] target_ntokens = 0 for sample in samples: index = sample['id'] indices.append(index) imgs.append(sample['tfm_img']) target_samples.append(sample['label_ids'].long()) target_ntokens += len(sample['label_ids']) num_sentences = len(samples) target_batch = data_utils.collate_tokens(target_samples, pad_idx=target_dict.pad(), eos_idx=target_dict.eos(), move_eos_to_beginning=False) rotate_batch = data_utils.collate_tokens(target_samples, pad_idx=target_dict.pad(), eos_idx=target_dict.eos(), move_eos_to_beginning=True) indices = torch.tensor(indices, dtype=torch.long) imgs = torch.stack(imgs, dim=0) return { 'id': indices, 'net_input': { 'imgs': imgs, 'prev_output_tokens': rotate_batch }, 'ntokens': target_ntokens, 'nsentences': num_sentences, 'target': target_batch } def read_txt_and_tokenize(txt_path: str, bpe, target_dict): annotations = [] with open(txt_path, 'r', encoding='utf8') as fp: for line in fp.readlines(): line = line.rstrip() if not line: continue line_split = line.split(',', maxsplit=8) quadrangle = list(map(int, line_split[:8])) content = line_split[-1] if bpe: encoded_str = bpe.encode(content) else: encoded_str = content xs = [quadrangle[i] for i in range(0, 8, 2)] ys = [quadrangle[i] for i in range(1, 8, 2)] bbox = [min(xs), min(ys), max(xs), max(ys)] annotations.append({'bbox': bbox, 'encoded_str': encoded_str, 'category_id': 0, 'segmentation': [quadrangle]}) # 0 for text, 1 for background return annotations def SROIETask2(root_dir: str, bpe, target_dict, crop_img_output_dir=None): data = [] img_id = -1 crop_data = [] crop_img_id = -1 image_paths = natsorted(list(glob.glob(os.path.join(root_dir, '*.jpg')))) for jpg_path in tqdm(image_paths): im = Image.open(jpg_path).convert('RGB') img_w, img_h = im.size img_id += 1 txt_path = jpg_path.replace('.jpg', '.txt') annotations = read_txt_and_tokenize(txt_path, bpe, target_dict) img_dict = {'file_name': jpg_path, 'width': img_w, 'height': img_h, 'image_id':img_id, 'annotations':annotations} data.append(img_dict) for ann in annotations: crop_w = ann['bbox'][2] - ann['bbox'][0] crop_h = ann['bbox'][3] - ann['bbox'][1] if not (crop_w > 0 and crop_h > 0): logger.warning('Error occurs during image cropping: {} has a zero area bbox.'.format(os.path.basename(jpg_path))) continue crop_img_id += 1 crop_im = im.crop(ann['bbox']) if crop_img_output_dir: crop_im.save(os.path.join(crop_img_output_dir, '{:d}.jpg'.format(crop_img_id))) crop_img_dict = {'img':crop_im, 'file_name': jpg_path, 'width': crop_w, 'height': crop_h, 'image_id':crop_img_id, 'encoded_str':ann['encoded_str']} crop_data.append(crop_img_dict) return data, crop_data class SROIETextRecognitionDataset(FairseqDataset): def __init__(self, root_dir, tfm, bpe_parser, target_dict, crop_img_output_dir=None): self.root_dir = root_dir self.tfm = tfm self.target_dict = target_dict # self.bpe_parser = bpe_parser self.ori_data, self.data = SROIETask2(root_dir, bpe_parser, target_dict, crop_img_output_dir) def __len__(self): return len(self.data) def __getitem__(self, idx): img_dict = self.data[idx] image = img_dict['img'] encoded_str = img_dict['encoded_str'] input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False) tfm_img = self.tfm(image) # h, w, c return {'id': idx, 'tfm_img': tfm_img, 'label_ids': input_ids} def size(self, idx): img_dict = self.data[idx] encoded_str = img_dict['encoded_str'] input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False) return len(input_ids) def num_tokens(self, idx): return self.size(idx) def collater(self, samples): return default_collater(self.target_dict, samples) def STR(gt_path, bpe_parser): root_dir = os.path.dirname(gt_path) data = [] img_id = 0 with open(gt_path, 'r') as fp: for line in tqdm(list(fp.readlines()), desc='Loading STR:'): line = line.rstrip() temp = line.split('\t', 1) img_file = temp[0] text = temp[1] img_path = os.path.join(root_dir, 'image', img_file) if not bpe_parser: encoded_str = text else: encoded_str = bpe_parser.encode(text) data.append({'img_path': img_path, 'image_id':img_id, 'text':text, 'encoded_str':encoded_str}) img_id += 1 return data class SyntheticTextRecognitionDataset(FairseqDataset): def __init__(self, gt_path, tfm, bpe_parser, target_dict): self.gt_path = gt_path self.tfm = tfm self.target_dict = target_dict self.data = STR(gt_path, bpe_parser) def __len__(self): return len(self.data) def __getitem__(self, idx): img_dict = self.data[idx] image = Image.open(img_dict['img_path']).convert('RGB') encoded_str = img_dict['encoded_str'] input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False) tfm_img = self.tfm(image) # h, w, c return {'id': idx, 'tfm_img': tfm_img, 'label_ids': input_ids} def size(self, idx): img_dict = self.data[idx] encoded_str = img_dict['encoded_str'] input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False) return len(input_ids) def num_tokens(self, idx): return self.size(idx) def collater(self, samples): return default_collater(self.target_dict, samples) def Receipt53K(gt_path): root_dir = os.path.dirname(gt_path) data = [] with open(gt_path, 'r', encoding='utf8') as fp: for line in tqdm(list(fp.readlines()), desc='Loading Receipt53K:'): line = line.rstrip() temp = line.split('\t', 1) img_file = temp[0] text = temp[1] img_path = os.path.join(root_dir, img_file) data.append({'img_path': img_path, 'text':text}) return data class Receipt53KDataset(FairseqDataset): def __init__(self, gt_path, tfm, bpe_parser, target_dict): self.gt_path = gt_path self.tfm = tfm self.target_dict = target_dict self.bpe_parser = bpe_parser self.data = Receipt53K(gt_path) def __len__(self): return len(self.data) def __getitem__(self, idx): img_dict = self.data[idx] try: image = Image.open(img_dict['img_path']).convert('RGB') except Exception as e: logger.warning('Failed to load image: {}, since {}'.format(img_dict['img_path'], str(e))) return None encoded_str = self.bpe_parser.encode(img_dict['text']) input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False) tfm_img = self.tfm(image) # h, w, c return {'id': idx, 'tfm_img':tfm_img, 'label_ids':input_ids} def size(self, idx): img_dict = self.data[idx] return len(img_dict['text']) # item = self[idx] # return len(item['label_ids']) def num_tokens(self, idx): return self.size(idx) def collater(self, samples): return default_collater(self.target_dict, samples)
EXA-1-master
exa/models/unilm-master/trocr/data.py
from tempfile import tempdir from fairseq.data.encoders.gpt2_bpe import GPT2BPE, GPT2BPEConfig from fairseq.data.encoders import register_bpe import logging logger = logging.getLogger(__name__) INSERT_OR_REPLACE = 0 # 1 for replace and 0 for insert @register_bpe("gpt2es", dataclass=GPT2BPEConfig) # as stands for attention space class GPT2BPEEnhancedSpace(GPT2BPE): def __init__(self, cfg): logger.info('Using the GPT2BPEEnhancedSpace.') super().__init__(cfg) def encode(self, x: str) -> str: # only for sroie assert not x.startswith(' ') assert not x.endswith(' ') if INSERT_OR_REPLACE == 1: temp = [] word = '' for ch in x: if ch == ' ': if word: temp.append(word) word = '' temp.append('<s>') else: word += ch if word: temp.append(word) for i in range(len(temp)): if temp[i] != '<s>': temp[i] = ' '.join(map(str, self.bpe.encode(temp[i]))) return ' '.join(temp) elif INSERT_OR_REPLACE == 0: temp = [] word = '' for ch in x: if ch == ' ': if word: temp.append(word) word = ' ' temp.append('<s>') else: word += ch if word: temp.append(word) for i in range(len(temp)): if temp[i] != '<s>': temp[i] = ' '.join(map(str, self.bpe.encode(temp[i]))) return ' '.join(temp) def decode(self, x: str) -> str: if INSERT_OR_REPLACE == 1: return self.bpe.decode( [int(tok) if tok not in {"<unk>", "<mask>", "<s>"} else tok for tok in x.split()] ).replace('<s>', ' ') elif INSERT_OR_REPLACE == 0: return self.bpe.decode( [int(tok) if tok not in {"<unk>", "<mask>", "<s>"} else tok for tok in x.split()] ).replace('<s>', '') def is_beginning_of_word(self, x: str) -> bool: return self.decode(x).startswith(" ")
EXA-1-master
exa/models/unilm-master/trocr/bpe.py
import cv2 import numpy as np import math from PIL import Image, ImageOps, ImageDraw from skimage import color from scipy import interpolate from pkg_resources import resource_filename from io import BytesIO from .ops import plasma_fractal, clipped_zoom, MotionImage ''' PIL resize (W,H) ''' class Fog: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size c = [(1.5, 2), (2., 2), (2.5, 1.7)] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] n_channels = len(img.getbands()) isgray = n_channels == 1 img = np.array(img) / 255. max_val = img.max() fog = c[0] * plasma_fractal(wibbledecay=c[1])[:H, :W][..., np.newaxis] #x += c[0] * plasma_fractal(wibbledecay=c[1])[:224, :224][..., np.newaxis] #return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255 if isgray: fog = np.squeeze(fog) else: fog = np.repeat(fog, 3, axis=2) # print('img', img.shape) # print('fog', fog.shape) # print(H, W) # exit(0) fog = cv2.resize(fog, dsize=(H, W), interpolation=cv2.INTER_CUBIC) img += fog img = np.clip(img * max_val / (max_val + c[0]), 0, 1) * 255 return Image.fromarray(img.astype(np.uint8)) class Frost: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size c = [(1, 0.4), (0.8, 0.6), (0.7, 0.7)] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] filename = [resource_filename(__name__, 'frost/frost1.png'), resource_filename(__name__, 'frost/frost2.png'), resource_filename(__name__, 'frost/frost3.png'), resource_filename(__name__, 'frost/frost4.jpg'), resource_filename(__name__, 'frost/frost5.jpg'), resource_filename(__name__, 'frost/frost6.jpg') ] index = np.random.randint(0, len(filename)) filename = filename[index] frost = cv2.imread(filename) frost = cv2.resize(frost, dsize=(H, W), interpolation=cv2.INTER_CUBIC) #randomly crop and convert to rgb # x_start, y_start = np.random.randint(0, frost.shape[0] - H), np.random.randint(0, frost.shape[1] - W) x_start = 0 y_start = 0 frost = frost[x_start:x_start + H, y_start:y_start + W][..., [2, 1, 0]] n_channels = len(img.getbands()) isgray = n_channels == 1 img = np.array(img) if isgray: img = np.expand_dims(img, axis=2) img = np.repeat(img, 3, axis=2) img = img * c[0] frost = frost * c[1] img = np.clip(c[0] * img + c[1] * frost, 0, 255) img = Image.fromarray(img.astype(np.uint8)) if isgray: img = ImageOps.grayscale(img) return img class Snow: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8), (0.2, 0.3, 2, 0.5, 12, 4, 0.7), (0.55, 0.3, 4, 0.9, 12, 8, 0.7)] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] n_channels = len(img.getbands()) isgray = n_channels == 1 img = np.array(img, dtype=np.float32) / 255. if isgray: img = np.expand_dims(img, axis=2) img = np.repeat(img, 3, axis=2) snow_layer = np.random.normal(size=img.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome #snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2]) snow_layer[snow_layer < c[3]] = 0 snow_layer = Image.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L') output = BytesIO() snow_layer.save(output, format='PNG') snow_layer = MotionImage(blob=output.getvalue()) snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=np.random.uniform(-135, -45)) snow_layer = cv2.imdecode(np.fromstring(snow_layer.make_blob(), np.uint8), cv2.IMREAD_UNCHANGED) / 255. #snow_layer = cv2.cvtColor(snow_layer, cv2.COLOR_BGR2RGB) snow_layer = snow_layer[..., np.newaxis] img = c[6] * img gray_img = (1 - c[6]) * np.maximum(img, cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).reshape(H, W, 1) * 1.5 + 0.5) img += gray_img img = np.clip(img + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255 img = Image.fromarray(img.astype(np.uint8)) if isgray: img = ImageOps.grayscale(img) return img class Rain: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img img = img.copy() W, H = img.size n_channels = len(img.getbands()) isgray = n_channels == 1 line_width = np.random.randint(1, 2) c =[50, 70, 90] if mag<0 or mag>=len(c): index = 0 else: index = mag c = c[index] n_rains = np.random.randint(c, c+20) slant = np.random.randint(-60, 60) fillcolor = 200 if isgray else (200,200,200) draw = ImageDraw.Draw(img) for i in range(1, n_rains): length = np.random.randint(5, 10) x1 = np.random.randint(0, W-length) y1 = np.random.randint(0, H-length) x2 = x1 + length*math.sin(slant*math.pi/180.) y2 = y1 + length*math.cos(slant*math.pi/180.) x2 = int(x2) y2 = int(y2) draw.line([(x1,y1), (x2,y2)], width=line_width, fill=fillcolor) return img class Shadow: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img #img = img.copy() W, H = img.size n_channels = len(img.getbands()) isgray = n_channels == 1 c =[64, 96, 128] if mag<0 or mag>=len(c): index = 0 else: index = mag c = c[index] img = img.convert('RGBA') overlay = Image.new('RGBA', img.size, (255,255,255,0)) draw = ImageDraw.Draw(overlay) transparency = np.random.randint(c, c+32) x1 = np.random.randint(0, W//2) y1 = 0 x2 = np.random.randint(W//2, W) y2 = 0 x3 = np.random.randint(W//2, W) y3 = H - 1 x4 = np.random.randint(0, W//2) y4 = H - 1 draw.polygon([(x1,y1), (x2,y2), (x3,y3), (x4,y4)], fill=(0,0,0,transparency)) img = Image.alpha_composite(img, overlay) img = img.convert("RGB") if isgray: img = ImageOps.grayscale(img) return img
EXA-1-master
exa/models/unilm-master/trocr/augmentation/weather.py
EXA-1-master
exa/models/unilm-master/trocr/augmentation/__init__.py
import cv2 import numpy as np from PIL import Image, ImageOps, ImageDraw ''' PIL resize (W,H) Torch resize is (H,W) ''' class VGrid: def __init__(self): pass def __call__(self, img, copy=True, max_width=4, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img if copy: img = img.copy() W, H = img.size if mag<0 or mag>max_width: line_width = np.random.randint(1, max_width) image_stripe = np.random.randint(1, max_width) else: line_width = 1 image_stripe = 3 - mag n_lines = W // (line_width + image_stripe) + 1 draw = ImageDraw.Draw(img) for i in range(1, n_lines): x = image_stripe*i + line_width*(i-1) draw.line([(x,0), (x,H)], width=line_width, fill='black') return img class HGrid: def __init__(self): pass def __call__(self, img, copy=True, max_width=4, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img if copy: img = img.copy() W, H = img.size if mag<0 or mag>max_width: line_width = np.random.randint(1, max_width) image_stripe = np.random.randint(1, max_width) else: line_width = 1 image_stripe = 3 - mag n_lines = H // (line_width + image_stripe) + 1 draw = ImageDraw.Draw(img) for i in range(1, n_lines): y = image_stripe*i + line_width*(i-1) draw.line([(0,y), (W, y)], width=line_width, fill='black') return img class Grid: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img img = VGrid()(img, copy=True, mag=mag) img = HGrid()(img, copy=False, mag=mag) return img class RectGrid: def __init__(self): pass def __call__(self, img, isellipse=False, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img img = img.copy() W, H = img.size line_width = 1 image_stripe = 3 - mag #np.random.randint(2, 6) offset = 4 if isellipse else 1 n_lines = ((H//2) // (line_width + image_stripe)) + offset draw = ImageDraw.Draw(img) x_center = W // 2 y_center = H // 2 for i in range(1, n_lines): dx = image_stripe*i + line_width*(i-1) dy = image_stripe*i + line_width*(i-1) x1 = x_center - (dx * W//H) y1 = y_center - dy x2 = x_center + (dx * W/H) y2 = y_center + dy if isellipse: draw.ellipse([(x1,y1), (x2, y2)], width=line_width, outline='black') else: draw.rectangle([(x1,y1), (x2, y2)], width=line_width, outline='black') return img class EllipseGrid: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img img = RectGrid()(img, isellipse=True, mag=mag, prob=prob) return img
EXA-1-master
exa/models/unilm-master/trocr/augmentation/pattern.py
import os import cv2 from warp import Curve, Distort, Stretch from geometry import Rotate, Perspective, Shrink, TranslateX, TranslateY from pattern import VGrid, HGrid, Grid, RectGrid, EllipseGrid from noise import GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise from blur import GaussianBlur, DefocusBlur, MotionBlur, GlassBlur, ZoomBlur from camera import Contrast, Brightness, JpegCompression, Pixelate from weather import Fog, Snow, Frost, Rain, Shadow from process import Posterize, Solarize, Invert, Equalize, AutoContrast, Sharpness, Color from PIL import Image import PIL.ImageOps import numpy as np import argparse if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--image', default="images/delivery.png", help='Load image file') parser.add_argument('--results', default="results", help='Load image file') parser.add_argument('--gray', action='store_true', help='Convert to grayscale 1st') opt = parser.parse_args() os.makedirs(opt.results, exist_ok=True) img = Image.open(opt.image) img = img.resize( (100,32) ) ops = [Curve(), Rotate(), Perspective(), Distort(), Stretch(), Shrink(), TranslateX(), TranslateY(), VGrid(), HGrid(), Grid(), RectGrid(), EllipseGrid()] ops.extend([GaussianNoise(), ShotNoise(), ImpulseNoise(), SpeckleNoise()]) ops.extend([GaussianBlur(), DefocusBlur(), MotionBlur(), GlassBlur(), ZoomBlur()]) ops.extend([Contrast(), Brightness(), JpegCompression(), Pixelate()]) ops.extend([Fog(), Snow(), Frost(), Rain(), Shadow()]) ops.extend([Posterize(), Solarize(), Invert(), Equalize(), AutoContrast(), Sharpness(), Color()]) for op in ops: for mag in range(3): filename = type(op).__name__ + "-" + str(mag) + ".png" out_img = op(img, mag=mag) if opt.gray: out_img = PIL.ImageOps.grayscale(out_img) out_img.save(os.path.join(opt.results, filename))
EXA-1-master
exa/models/unilm-master/trocr/augmentation/test.py
import cv2 import numpy as np from wand.image import Image as WandImage from scipy.ndimage import zoom as scizoom from wand.api import library as wandlibrary class MotionImage(WandImage): def motion_blur(self, radius=0.0, sigma=0.0, angle=0.0): wandlibrary.MagickMotionBlurImage(self.wand, radius, sigma, angle) def clipped_zoom(img, zoom_factor): h = img.shape[1] # ceil crop height(= crop width) ch = int(np.ceil(h / float(zoom_factor))) top = (h - ch) // 2 img = scizoom(img[top:top + ch, top:top + ch], (zoom_factor, zoom_factor, 1), order=1) # trim off any extra pixels trim_top = (img.shape[0] - h) // 2 return img[trim_top:trim_top + h, trim_top:trim_top + h] def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py def plasma_fractal(mapsize=256, wibbledecay=3): """ Generate a heightmap using diamond-square algorithm. Return square 2d array, side length 'mapsize', of floats in range 0-255. 'mapsize' must be a power of two. """ assert (mapsize & (mapsize - 1) == 0) maparray = np.empty((mapsize, mapsize), dtype=np.float_) maparray[0, 0] = 0 stepsize = mapsize wibble = 100 def wibbledmean(array): return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape) def fillsquares(): """For each square of points stepsize apart, calculate middle value as mean of points + wibble""" cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) squareaccum += np.roll(squareaccum, shift=-1, axis=1) maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) def filldiamonds(): """For each diamond of points stepsize apart, calculate middle value as mean of points + wibble""" mapsize = maparray.shape[0] drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] ldrsum = drgrid + np.roll(drgrid, 1, axis=0) lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) ltsum = ldrsum + lulsum maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) tdrsum = drgrid + np.roll(drgrid, 1, axis=1) tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) ttsum = tdrsum + tulsum maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum) while stepsize >= 2: fillsquares() filldiamonds() stepsize //= 2 wibble /= wibbledecay maparray -= maparray.min() return maparray / maparray.max()
EXA-1-master
exa/models/unilm-master/trocr/augmentation/ops.py
import cv2 import numpy as np from PIL import Image, ImageOps import torchvision.transforms as transforms from wand.image import Image as WandImage from scipy.ndimage import zoom as scizoom from skimage.filters import gaussian from wand.api import library as wandlibrary from io import BytesIO #from skimage import color from .ops import MotionImage, clipped_zoom, disk, plasma_fractal ''' PIL resize (W,H) ''' class GaussianBlur: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size #kernel = [(31,31)] prev 1 level only kernel = (31, 31) sigmas = [.5, 1, 2] if mag<0 or mag>=len(kernel): index = np.random.randint(0, len(sigmas)) else: index = mag sigma = sigmas[index] return transforms.GaussianBlur(kernel_size=kernel, sigma=sigma)(img) class DefocusBlur: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img n_channels = len(img.getbands()) isgray = n_channels == 1 #c = [(3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5), (10, 0.5)] c = [(2, 0.1), (3, 0.1), (4, 0.1)] #, (6, 0.5)] #prev 2 levels only if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] img = np.array(img) / 255. if isgray: img = np.expand_dims(img, axis=2) img = np.repeat(img, 3, axis=2) n_channels = 3 kernel = disk(radius=c[0], alias_blur=c[1]) channels = [] for d in range(n_channels): channels.append(cv2.filter2D(img[:, :, d], -1, kernel)) channels = np.array(channels).transpose((1, 2, 0)) # 3x224x224 -> 224x224x3 #if isgray: # img = img[:,:,0] # img = np.squeeze(img) img = np.clip(channels, 0, 1) * 255 img = Image.fromarray(img.astype(np.uint8)) if isgray: img = ImageOps.grayscale(img) return img class MotionBlur: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img n_channels = len(img.getbands()) isgray = n_channels == 1 #c = [(10, 3), (15, 5), (15, 8), (15, 12), (20, 15)] c = [(10, 3), (12, 4), (14, 5)] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] output = BytesIO() img.save(output, format='PNG') img = MotionImage(blob=output.getvalue()) img.motion_blur(radius=c[0], sigma=c[1], angle=np.random.uniform(-45, 45)) img = cv2.imdecode(np.fromstring(img.make_blob(), np.uint8), cv2.IMREAD_UNCHANGED) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(img.astype(np.uint8)) if isgray: img = ImageOps.grayscale(img) return img class GlassBlur: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size #c = [(0.7, 1, 2), (0.9, 2, 1), (1, 2, 3), (1.1, 3, 2), (1.5, 4, 2)][severity - 1] c = [(0.7, 1, 2), (0.75, 1, 2), (0.8, 1, 2)] #, (1, 2, 3)] #prev 2 levels only if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] img = np.uint8(gaussian(np.array(img) / 255., sigma=c[0], multichannel=True) * 255) # locally shuffle pixels for i in range(c[2]): for h in range(H - c[1], c[1], -1): for w in range(W - c[1], c[1], -1): dx, dy = np.random.randint(-c[1], c[1], size=(2,)) h_prime, w_prime = h + dy, w + dx # swap img[h, w], img[h_prime, w_prime] = img[h_prime, w_prime], img[h, w] img = np.clip(gaussian(img / 255., sigma=c[0], multichannel=True), 0, 1) * 255 return Image.fromarray(img.astype(np.uint8)) class ZoomBlur: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size c = [np.arange(1, 1.11, .01), np.arange(1, 1.16, .01), np.arange(1, 1.21, .02)] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] n_channels = len(img.getbands()) isgray = n_channels == 1 uint8_img = img img = (np.array(img) / 255.).astype(np.float32) out = np.zeros_like(img) for zoom_factor in c: ZW = int(W*zoom_factor) ZH = int(H*zoom_factor) zoom_img = uint8_img.resize((ZW, ZH), Image.BICUBIC) x1 = (ZW - W) // 2 y1 = (ZH - H) // 2 x2 = x1 + W y2 = y1 + H zoom_img = zoom_img.crop((x1,y1,x2,y2)) out += (np.array(zoom_img) / 255.).astype(np.float32) img = (img + out) / (len(c) + 1) img = np.clip(img, 0, 1) * 255 img = Image.fromarray(img.astype(np.uint8)) return img
EXA-1-master
exa/models/unilm-master/trocr/augmentation/blur.py
import cv2 import numpy as np import skimage as sk from PIL import Image, ImageOps from io import BytesIO from skimage import color ''' PIL resize (W,H) cv2 image is BGR PIL image is RGB ''' class Contrast: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img #c = [0.4, .3, .2, .1, .05] c = [0.4, .3, .2] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] img = np.array(img) / 255. means = np.mean(img, axis=(0, 1), keepdims=True) img = np.clip((img - means) * c + means, 0, 1) * 255 return Image.fromarray(img.astype(np.uint8)) class Brightness: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img #W, H = img.size #c = [.1, .2, .3, .4, .5] c = [.1, .2, .3] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] n_channels = len(img.getbands()) isgray = n_channels == 1 img = np.array(img) / 255. if isgray: img = np.expand_dims(img, axis=2) img = np.repeat(img, 3, axis=2) img = sk.color.rgb2hsv(img) img[:, :, 2] = np.clip(img[:, :, 2] + c, 0, 1) img = sk.color.hsv2rgb(img) #if isgray: # img = img[:,:,0] # img = np.squeeze(img) img = np.clip(img, 0, 1) * 255 img = Image.fromarray(img.astype(np.uint8)) if isgray: img = ImageOps.grayscale(img) return img #if isgray: #if isgray: # img = color.rgb2gray(img) #return Image.fromarray(img.astype(np.uint8)) class JpegCompression: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img #c = [25, 18, 15, 10, 7] c = [25, 18, 15] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] output = BytesIO() img.save(output, 'JPEG', quality=c) return Image.open(output) class Pixelate: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size #c = [0.6, 0.5, 0.4, 0.3, 0.25] c = [0.6, 0.5, 0.4] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] img = img.resize((int(W* c), int(H * c)), Image.BOX) return img.resize((W, H), Image.BOX)
EXA-1-master
exa/models/unilm-master/trocr/augmentation/camera.py
import numpy as np import skimage as sk from PIL import Image ''' PIL resize (W,H) ''' class GaussianNoise: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size #c = np.random.uniform(.08, .38) b = [.08, 0.1, 0.12] if mag<0 or mag>=len(b): index = 0 else: index = mag a = b[index] c = np.random.uniform(a, a+0.03) img = np.array(img) / 255. img = np.clip(img + np.random.normal(size=img.shape, scale=c), 0, 1) * 255 return Image.fromarray(img.astype(np.uint8)) class ShotNoise: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size #c = np.random.uniform(3, 60) b = [13, 8, 3] if mag<0 or mag>=len(b): index = 2 else: index = mag a = b[index] c = np.random.uniform(a, a+7) img = np.array(img) / 255. img = np.clip(np.random.poisson(img * c) / float(c), 0, 1) * 255 return Image.fromarray(img.astype(np.uint8)) class ImpulseNoise: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size #c = np.random.uniform(.03, .27) b = [.03, .07, .11] if mag<0 or mag>=len(b): index = 0 else: index = mag a = b[index] c = np.random.uniform(a, a+.04) img = sk.util.random_noise(np.array(img) / 255., mode='s&p', amount=c) * 255 return Image.fromarray(img.astype(np.uint8)) class SpeckleNoise: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size # c = np.random.uniform(.15, .6) b = [.15, .2, .25] if mag<0 or mag>=len(b): index = 0 else: index = mag a = b[index] c = np.random.uniform(a, a+.05) img = np.array(img) / 255. img = np.clip(img + img * np.random.normal(size=img.shape, scale=c), 0, 1) * 255 return Image.fromarray(img.astype(np.uint8))
EXA-1-master
exa/models/unilm-master/trocr/augmentation/noise.py
import cv2 import numpy as np from PIL import Image, ImageOps ''' PIL resize (W,H) Torch resize is (H,W) ''' class Shrink: def __init__(self): self.tps = cv2.createThinPlateSplineShapeTransformer() self.translateXAbs = TranslateXAbs() self.translateYAbs = TranslateYAbs() def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size img = np.array(img) srcpt = list() dstpt = list() W_33 = 0.33 * W W_50 = 0.50 * W W_66 = 0.66 * W H_50 = 0.50 * H P = 0 #frac = 0.4 b = [.2, .3, .4] if mag<0 or mag>=len(b): index = 0 else: index = mag frac = b[index] # left-most srcpt.append([P, P]) srcpt.append([P, H-P]) x = np.random.uniform(frac-.1, frac)*W_33 y = np.random.uniform(frac-.1, frac)*H_50 dstpt.append([P+x, P+y]) dstpt.append([P+x, H-P-y]) # 2nd left-most srcpt.append([P+W_33, P]) srcpt.append([P+W_33, H-P]) dstpt.append([P+W_33, P+y]) dstpt.append([P+W_33, H-P-y]) # 3rd left-most srcpt.append([P+W_66, P]) srcpt.append([P+W_66, H-P]) dstpt.append([P+W_66, P+y]) dstpt.append([P+W_66, H-P-y]) # right-most srcpt.append([W-P, P]) srcpt.append([W-P, H-P]) dstpt.append([W-P-x, P+y]) dstpt.append([W-P-x, H-P-y]) N = len(dstpt) matches = [cv2.DMatch(i, i, 0) for i in range(N)] dst_shape = np.array(dstpt).reshape((-1, N, 2)) src_shape = np.array(srcpt).reshape((-1, N, 2)) self.tps.estimateTransformation(dst_shape, src_shape, matches) img = self.tps.warpImage(img) img = Image.fromarray(img) if np.random.uniform(0, 1) < 0.5: img = self.translateXAbs(img, val=x) else: img = self.translateYAbs(img, val=y) return img class Rotate: def __init__(self, square_side=224): self.side = square_side def __call__(self, img, iscurve=False, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size if H!=self.side or W!=self.side: img = img.resize((self.side, self.side), Image.BICUBIC) b = [20., 40, 60] if mag<0 or mag>=len(b): index = 1 else: index = mag rotate_angle = b[index] angle = np.random.uniform(rotate_angle-20, rotate_angle) if np.random.uniform(0, 1) < 0.5: angle = -angle #angle = np.random.normal(loc=0., scale=rotate_angle) #angle = min(angle, 2*rotate_angle) #angle = max(angle, -2*rotate_angle) expand = False if iscurve else True img = img.rotate(angle=angle, resample=Image.BICUBIC, expand=expand) img = img.resize((W, H), Image.BICUBIC) return img class Perspective: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size # upper-left, upper-right, lower-left, lower-right src = np.float32([[0, 0], [W, 0], [0, H], [W, H]]) #low = 0.3 b = [.1, .2, .3] if mag<0 or mag>=len(b): index = 2 else: index = mag low = b[index] high = 1 - low if np.random.uniform(0, 1) > 0.5: toprightY = np.random.uniform(low, low+.1)*H bottomrightY = np.random.uniform(high-.1, high)*H dest = np.float32([[0, 0], [W, toprightY], [0, H], [W, bottomrightY]]) else: topleftY = np.random.uniform(low, low+.1)*H bottomleftY = np.random.uniform(high-.1, high)*H dest = np.float32([[0, topleftY], [W, 0], [0, bottomleftY], [W, H]]) M = cv2.getPerspectiveTransform(src, dest) img = np.array(img) img = cv2.warpPerspective(img, M, (W, H) ) img = Image.fromarray(img) return img class TranslateX: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img b = [.03, .06, .09] if mag<0 or mag>=len(b): index = 2 else: index = mag v = b[index] v = np.random.uniform(v-0.03, v) v = v * img.size[0] if np.random.uniform(0,1) > 0.5: v = -v return img.transform(img.size, Image.AFFINE, (1, 0, v, 0, 1, 0)) class TranslateY: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img b = [.07, .14, .21] if mag<0 or mag>=len(b): index = 2 else: index = mag v = b[index] v = np.random.uniform(v-0.07, v) v = v * img.size[1] if np.random.uniform(0,1) > 0.5: v = -v return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, v)) class TranslateXAbs: def __init__(self): pass def __call__(self, img, val=0, prob=1.): if np.random.uniform(0,1) > prob: return img v = np.random.uniform(0, val) if np.random.uniform(0,1) > 0.5: v = -v return img.transform(img.size, Image.AFFINE, (1, 0, v, 0, 1, 0)) class TranslateYAbs: def __init__(self): pass def __call__(self, img, val=0, prob=1.): if np.random.uniform(0,1) > prob: return img v = np.random.uniform(0, val) if np.random.uniform(0,1) > 0.5: v = -v return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, v))
EXA-1-master
exa/models/unilm-master/trocr/augmentation/geometry.py
import cv2 import numpy as np from PIL import Image, ImageOps ''' PIL resize (W,H) Torch resize is (H,W) ''' class Stretch: def __init__(self): self.tps = cv2.createThinPlateSplineShapeTransformer() def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size img = np.array(img) srcpt = list() dstpt = list() W_33 = 0.33 * W W_50 = 0.50 * W W_66 = 0.66 * W H_50 = 0.50 * H P = 0 #frac = 0.4 b = [.2, .3, .4] if mag<0 or mag>=len(b): index = len(b)-1 else: index = mag frac = b[index] # left-most srcpt.append([P, P]) srcpt.append([P, H-P]) srcpt.append([P, H_50]) x = np.random.uniform(0, frac)*W_33 #if np.random.uniform(0,1) > 0.5 else 0 dstpt.append([P+x, P]) dstpt.append([P+x, H-P]) dstpt.append([P+x, H_50]) # 2nd left-most srcpt.append([P+W_33, P]) srcpt.append([P+W_33, H-P]) x = np.random.uniform(-frac, frac)*W_33 dstpt.append([P+W_33+x, P]) dstpt.append([P+W_33+x, H-P]) # 3rd left-most srcpt.append([P+W_66, P]) srcpt.append([P+W_66, H-P]) x = np.random.uniform(-frac, frac)*W_33 dstpt.append([P+W_66+x, P]) dstpt.append([P+W_66+x, H-P]) # right-most srcpt.append([W-P, P]) srcpt.append([W-P, H-P]) srcpt.append([W-P, H_50]) x = np.random.uniform(-frac, 0)*W_33 #if np.random.uniform(0,1) > 0.5 else 0 dstpt.append([W-P+x, P]) dstpt.append([W-P+x, H-P]) dstpt.append([W-P+x, H_50]) N = len(dstpt) matches = [cv2.DMatch(i, i, 0) for i in range(N)] dst_shape = np.array(dstpt).reshape((-1, N, 2)) src_shape = np.array(srcpt).reshape((-1, N, 2)) self.tps.estimateTransformation(dst_shape, src_shape, matches) img = self.tps.warpImage(img) img = Image.fromarray(img) return img class Distort: def __init__(self): self.tps = cv2.createThinPlateSplineShapeTransformer() def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size img = np.array(img) srcpt = list() dstpt = list() W_33 = 0.33 * W W_50 = 0.50 * W W_66 = 0.66 * W H_50 = 0.50 * H P = 0 #frac = 0.4 b = [.2, .3, .4] if mag<0 or mag>=len(b): index = len(b)-1 else: index = mag frac = b[index] # top pts srcpt.append([P, P]) x = np.random.uniform(0, frac)*W_33 y = np.random.uniform(0, frac)*H_50 dstpt.append([P+x, P+y]) srcpt.append([P+W_33, P]) x = np.random.uniform(-frac, frac)*W_33 y = np.random.uniform(0, frac)*H_50 dstpt.append([P+W_33+x, P+y]) srcpt.append([P+W_66, P]) x = np.random.uniform(-frac, frac)*W_33 y = np.random.uniform(0, frac)*H_50 dstpt.append([P+W_66+x, P+y]) srcpt.append([W-P, P]) x = np.random.uniform(-frac, 0)*W_33 y = np.random.uniform(0, frac)*H_50 dstpt.append([W-P+x, P+y]) # bottom pts srcpt.append([P, H-P]) x = np.random.uniform(0, frac)*W_33 y = np.random.uniform(-frac, 0)*H_50 dstpt.append([P+x, H-P+y]) srcpt.append([P+W_33, H-P]) x = np.random.uniform(-frac, frac)*W_33 y = np.random.uniform(-frac, 0)*H_50 dstpt.append([P+W_33+x, H-P+y]) srcpt.append([P+W_66, H-P]) x = np.random.uniform(-frac, frac)*W_33 y = np.random.uniform(-frac, 0)*H_50 dstpt.append([P+W_66+x, H-P+y]) srcpt.append([W-P, H-P]) x = np.random.uniform(-frac, 0)*W_33 y = np.random.uniform(-frac, 0)*H_50 dstpt.append([W-P+x, H-P+y]) N = len(dstpt) matches = [cv2.DMatch(i, i, 0) for i in range(N)] dst_shape = np.array(dstpt).reshape((-1, N, 2)) src_shape = np.array(srcpt).reshape((-1, N, 2)) self.tps.estimateTransformation(dst_shape, src_shape, matches) img = self.tps.warpImage(img) img = Image.fromarray(img) return img class Curve: def __init__(self, square_side=224): self.tps = cv2.createThinPlateSplineShapeTransformer() self.side = square_side def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img W, H = img.size if H!=self.side or W!=self.side: img = img.resize((self.side, self.side), Image.BICUBIC) isflip = np.random.uniform(0,1) > 0.5 if isflip: img = ImageOps.flip(img) #img = TF.vflip(img) img = np.array(img) w = self.side h = self.side w_25 = 0.25 * w w_50 = 0.50 * w w_75 = 0.75 * w b = [1.1, .95, .8] if mag<0 or mag>=len(b): index = 0 else: index = mag rmin = b[index] r = np.random.uniform(rmin, rmin+.1)*h x1 = (r**2 - w_50**2)**0.5 h1 = r - x1 t = np.random.uniform(0.4, 0.5)*h w2 = w_50*t/r hi = x1*t/r h2 = h1 + hi sinb_2 = ((1 - x1/r)/2)**0.5 cosb_2 = ((1 + x1/r)/2)**0.5 w3 = w_50 - r*sinb_2 h3 = r - r*cosb_2 w4 = w_50 - (r-t)*sinb_2 h4 = r - (r-t)*cosb_2 w5 = 0.5*w2 h5 = h1 + 0.5*hi h_50 = 0.50*h srcpt = [(0,0 ), (w,0 ), (w_50,0), (0,h ), (w,h ), (w_25,0), (w_75,0 ), (w_50,h), (w_25,h), (w_75,h ), (0,h_50), (w,h_50 )] dstpt = [(0,h1), (w,h1), (w_50,0), (w2,h2), (w-w2,h2), (w3, h3), (w-w3,h3), (w_50,t), (w4,h4 ), (w-w4,h4), (w5,h5 ), (w-w5,h5)] N = len(dstpt) matches = [cv2.DMatch(i, i, 0) for i in range(N)] dst_shape = np.array(dstpt).reshape((-1, N, 2)) src_shape = np.array(srcpt).reshape((-1, N, 2)) self.tps.estimateTransformation(dst_shape, src_shape, matches) img = self.tps.warpImage(img) img = Image.fromarray(img) if isflip: #img = TF.vflip(img) img = ImageOps.flip(img) rect = (0, self.side//2, self.side, self.side) else: rect = (0, 0, self.side, self.side//2) img = img.crop(rect) img = img.resize((W, H), Image.BICUBIC) return img
EXA-1-master
exa/models/unilm-master/trocr/augmentation/warp.py
from PIL import Image import PIL.ImageOps, PIL.ImageEnhance import numpy as np class Posterize: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img c = [1, 3, 6] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] bit = np.random.randint(c, c+2) img = PIL.ImageOps.posterize(img, bit) return img class Solarize: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img c = [64, 128, 192] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] thresh = np.random.randint(c, c+64) img = PIL.ImageOps.solarize(img, thresh) return img class Invert: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img img = PIL.ImageOps.invert(img) return img class Equalize: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img mg = PIL.ImageOps.equalize(img) return img class AutoContrast: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img mg = PIL.ImageOps.autocontrast(img) return img class Sharpness: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img c = [.1, .7, 1.3] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] magnitude = np.random.uniform(c, c+.6) img = PIL.ImageEnhance.Sharpness(img).enhance(magnitude) return img class Color: def __init__(self): pass def __call__(self, img, mag=-1, prob=1.): if np.random.uniform(0,1) > prob: return img c = [.1, .7, 1.3] if mag<0 or mag>=len(c): index = np.random.randint(0, len(c)) else: index = mag c = c[index] magnitude = np.random.uniform(c, c+.6) img = PIL.ImageEnhance.Color(img).enhance(magnitude) return img
EXA-1-master
exa/models/unilm-master/trocr/augmentation/process.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import sys from typing import Iterable, Optional import torch from timm.data import Mixup from timm.utils import accuracy, ModelEma import utils def train_class_batch(model, samples, target, criterion): outputs = model(samples) if not isinstance(outputs, torch.Tensor): # assume that the model outputs a tuple of [outputs, outputs_kd] outputs, outputs_kd = outputs loss = criterion(outputs, target) return loss, outputs def get_loss_scale_for_deepspeed(model): optimizer = model.optimizer return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, num_training_steps_per_epoch=None, update_freq=None): model.train(True) metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 if loss_scaler is None: model.zero_grad() model.micro_steps = 0 else: optimizer.zero_grad() for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): step = data_iter_step // update_freq if step >= num_training_steps_per_epoch: continue it = start_steps + step # global training iteration # Update LR & WD for the first acc if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples = samples.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) if loss_scaler is None: samples = samples.half() loss, output = train_class_batch( model, samples, targets, criterion) else: with torch.cuda.amp.autocast(): loss, output = train_class_batch( model, samples, targets, criterion) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) if loss_scaler is None: loss /= update_freq model.backward(loss) model.step() if (data_iter_step + 1) % update_freq == 0: # model.zero_grad() # Deepspeed will call step() & model.zero_grad() automatic if model_ema is not None: model_ema.update(model) grad_norm = None loss_scale_value = get_loss_scale_for_deepspeed(model) else: # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order loss /= update_freq grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order, update_grad=(data_iter_step + 1) % update_freq == 0) if (data_iter_step + 1) % update_freq == 0: optimizer.zero_grad() if model_ema is not None: model_ema.update(model) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() if mixup_fn is None: class_acc = (output.max(-1)[-1] == targets).float().mean() else: class_acc = None metric_logger.update(loss=loss_value) metric_logger.update(class_acc=class_acc) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(class_acc=class_acc, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
EXA-1-master
exa/models/unilm-master/dit/classification/engine_for_finetuning.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import math import random import warnings import torchvision.transforms.functional as F from timm.data.transforms import interp_mode_to_str, _RANDOM_INTERPOLATION, str_to_interp_mode class RandomResizedCropAndInterpolationWithTwoPic: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', second_interpolation='lanczos'): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if second_size is not None: if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = str_to_interp_mode(interpolation) self.second_interpolation = str_to_interp_mode(second_interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) else: interpolate_str = interp_mode_to_str(self.interpolation) format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0}'.format(interpolate_str) if self.second_size is not None: format_string += ', second_size={0}'.format(self.second_size) format_string += ', second_interpolation={0}'.format(interp_mode_to_str(self.second_interpolation)) format_string += ')' return format_string
EXA-1-master
exa/models/unilm-master/dit/classification/transforms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' from timm.data import create_transform from timm.data.constants import \ IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from timm.data.transforms import str_to_interp_mode from torchvision import transforms from dataset_folder import RvlcdipImageFolder def build_dataset(is_train, args): transform = build_transform(is_train, args) print("Transform = ") if isinstance(transform, tuple): for trans in transform: print(" - - - - - - - - - - ") for t in trans.transforms: print(t) else: for t in transform.transforms: print(t) print("---------------------------") if args.data_set == 'rvlcdip': root = args.data_path if is_train else args.eval_data_path split = "train" if is_train else "test" dataset = RvlcdipImageFolder(root, split=split, transform=transform) nb_classes = args.nb_classes assert len(dataset.class_to_idx) == nb_classes else: raise NotImplementedError() assert nb_classes == args.nb_classes print("Number of the class = %d" % args.nb_classes) return dataset, nb_classes def build_transform(is_train, args): resize_im = args.input_size > 32 imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation=args.train_interpolation, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop( args.input_size, padding=4) return transform t = [] if resize_im: if args.crop_pct is None: if args.input_size < 384: args.crop_pct = 224 / 256 else: args.crop_pct = 1.0 size = int(args.input_size / args.crop_pct) t.append( transforms.Resize(size, interpolation=str_to_interp_mode("bicubic")), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t)
EXA-1-master
exa/models/unilm-master/dit/classification/datasets.py