python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import glob import argparse from utils.dedup import deup import sys WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) def main(): parser = argparse.ArgumentParser() parser.add_argument("--from-folder", type=str, required=True, help="the data folder to be dedup") parser.add_argument("--to-folder", type=str, required=True, help="the data folder to save deduped data") parser.add_argument('--directions', type=str, default=None, required=False) args = parser.parse_args() if args.directions is None: raw_files = glob.glob(f'{args.from_folder}/train*') directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files] else: directions = args.directions.split(',') directions = sorted(set(directions)) for direction in directions: src, tgt = direction.split('-') src_file = f'{args.from_folder}/train.{src}-{tgt}.{src}' tgt_file = f'{args.from_folder}/train.{src}-{tgt}.{tgt}' src_file_out = f'{args.to_folder}/train.{src}-{tgt}.{src}' tgt_file_out = f'{args.to_folder}/train.{src}-{tgt}.{tgt}' assert src_file != src_file_out assert tgt_file != tgt_file_out print(f'deduping {src_file}, {tgt_file}') deup(src_file, tgt_file, src_file_out, tgt_file_out) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/dedup_all.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import argparse import pandas as pd import sys WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) def load_langs(path): with open(path) as fr: langs = [l.strip() for l in fr] return langs def load_sentences(raw_data, split, direction): src, tgt = direction.split('-') src_path = f"{raw_data}/{split}.{direction}.{src}" tgt_path = f"{raw_data}/{split}.{direction}.{tgt}" if os.path.exists(src_path) and os.path.exists(tgt_path): return [(src, open(src_path).read().splitlines()), (tgt, open(tgt_path).read().splitlines())] else: return [] def swap_direction(d): src, tgt = d.split('-') return f'{tgt}-{src}' def get_all_test_data(raw_data, directions, split='test'): test_data = [ x for dd in directions for d in [dd, swap_direction(dd)] for x in load_sentences(raw_data, split, d) ] # all_test_data = {s for _, d in test_data for s in d} all_test_data = {} for lang, d in test_data: for s in d: s = s.strip() lgs = all_test_data.get(s, set()) lgs.add(lang) all_test_data[s] = lgs return all_test_data, test_data def check_train_sentences(src_path, tgt_path, direction, all_test_data, mess_up_train={}): # src, tgt = direction.split('-') print(f'check training data for {direction} in {src_path} and {tgt_path}') size = 0 overlapped_size_counted_dup = 0 if not os.path.exists(tgt_path) or not os.path.exists(src_path): return mess_up_train, size, overlapped_size_counted_dup with open(src_path) as f, open(tgt_path) as g: for src_line, tgt_line in zip(f, g): s = src_line.strip() t = tgt_line.strip() size += 1 if s in all_test_data: langs = mess_up_train.get(s, set()) langs.add(direction) mess_up_train[s] = langs overlapped_size_counted_dup += 1 if t in all_test_data: langs = mess_up_train.get(t, set()) langs.add(direction) mess_up_train[t] = langs overlapped_size_counted_dup += 1 print(f'{direction}: size={size}, overlapped={overlapped_size_counted_dup}') return mess_up_train, size, overlapped_size_counted_dup def check_train_all(raw_data, directions, all_test_data): mess_up_train = {} data_sizes = {} # raw_data = '~chau/data-bin/MineBART/multilingual_mined_100M/en_XX/et_EE-en_XX/all.{en_XX, et_EE}' print(f'checking training data againsts # {len(all_test_data)} sentences') print(f'example test data: ', [s for i, s in enumerate(all_test_data.keys()) if i < 10]) for direction in directions: src, tgt = direction.split('-') path = f'{raw_data}/en_XX/{direction}/all' src_path = f'{path}.{src}' tgt_path = f'{path}.{tgt}' print(f'checking {src_path} {tgt_path}') _, size, overlapped_size_counted_dup = check_train_sentences(src_path, tgt_path, direction, all_test_data, mess_up_train) data_sizes[direction] = (size, overlapped_size_counted_dup) return mess_up_train, data_sizes def main(): parser = argparse.ArgumentParser() parser.add_argument("--folder", type=str, required=True, help="the data folder ") parser.add_argument("--test-data", type=str, required=True, help="the test data folder ") parser.add_argument('--directions', type=str, default=None, required=False) args = parser.parse_args() directions = args.directions.split(',') directions = sorted(set(directions)) results = [] # print(f'checking where {args.split} split data are in training') # print(f'direction\tcommon_count\tsrc common\ttgt common\tfrom_size\tto_size') raw_data = args.folder all_test_data, test_data = get_all_test_data(args.test_data, directions, split='test') mess_up_train, data_sizes = check_train_all(raw_data, directions, all_test_data) print(data_sizes) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/check_valid_test_overlaps.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os, sys import subprocess import re from subprocess import check_call, check_output WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) BLEU_REGEX = re.compile("^BLEU\\S* = (\\S+) ") def run_eval_bleu(cmd): output = check_output(cmd, shell=True, stderr=subprocess.STDOUT).decode("utf-8").strip() print(output) bleu = -1.0 for line in output.strip().split('\n'): m = BLEU_REGEX.search(line) if m is not None: bleu = m.groups()[0] bleu = float(bleu) break return bleu def check_data_test_bleu(raw_folder, data_lang_pairs): not_matchings = [] for sacrebleu_set, src_tgts in data_lang_pairs: for src_tgt in src_tgts: print(f'checking test bleus for: {src_tgt} at {sacrebleu_set}') src, tgt = src_tgt.split('-') ssrc, stgt = src[:2], tgt[:2] if os.path.exists(f'{raw_folder}/test.{tgt}-{src}.{src}'): # reversed direction may have different test set test_src = f'{raw_folder}/test.{tgt}-{src}.{src}' else: test_src = f'{raw_folder}/test.{src}-{tgt}.{src}' cmd1 = f'cat {test_src} | sacrebleu -t "{sacrebleu_set}" -l {stgt}-{ssrc}; [ $? -eq 0 ] || echo ""' test_tgt = f'{raw_folder}/test.{src}-{tgt}.{tgt}' cmd2 = f'cat {test_tgt} | sacrebleu -t "{sacrebleu_set}" -l {ssrc}-{stgt}; [ $? -eq 0 ] || echo ""' bleu1 = run_eval_bleu(cmd1) if bleu1 != 100.0: not_matchings.append(f'{sacrebleu_set}:{src_tgt} source side not matching: {test_src}') bleu2 = run_eval_bleu(cmd2) if bleu2 != 100.0: not_matchings.append(f'{sacrebleu_set}:{src_tgt} target side not matching: {test_tgt}') return not_matchings if __name__ == "__main__": to_data_path = f'{WORKDIR_ROOT}/iwsltv2' not_matching = check_data_test_bleu( f'{to_data_path}/raw', [ ('iwslt17', ['en_XX-ar_AR', 'en_XX-ko_KR', 'ar_AR-en_XX', 'ko_KR-en_XX']), ('iwslt17', ['en_XX-it_IT', 'en_XX-nl_XX', 'it_IT-en_XX', 'nl_XX-en_XX']), ('iwslt17/tst2015', ['en_XX-vi_VN', "vi_VN-en_XX"]), ] ) if len(not_matching) > 0: print('the following datasets do not have matching test datasets:\n\t', '\n\t'.join(not_matching))
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/check_iswlt_test_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import os import csv from collections import defaultdict from six.moves import zip import io import wget import sys from subprocess import check_call, check_output # scripts and data locations CWD = os.getcwd() UTILS = f"{CWD}/utils" MOSES = f"{UTILS}/mosesdecoder" WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) # please donwload mosesdecoder here: detok_cmd = f'{MOSES}/scripts/tokenizer/detokenizer.perl' def call(cmd): print(f"Executing: {cmd}") check_call(cmd, shell=True) class MultiLingualAlignedCorpusReader(object): """A class to read TED talk dataset """ def __init__(self, corpus_path, delimiter='\t', target_token=True, bilingual=True, corpus_type='file', lang_dict={'source': ['fr'], 'target': ['en']}, eval_lang_dict=None, zero_shot=False, detok=True, ): self.empty_line_flag = 'NULL' self.corpus_path = corpus_path self.delimiter = delimiter self.bilingual = bilingual self.lang_dict = lang_dict self.lang_set = set() self.target_token = target_token self.zero_shot = zero_shot self.eval_lang_dict = eval_lang_dict self.corpus_type = corpus_type self.detok = detok for list_ in self.lang_dict.values(): for lang in list_: self.lang_set.add(lang) self.data = dict() self.data['train'] = self.read_aligned_corpus(split_type='train') self.data['test'] = self.read_aligned_corpus(split_type='test') self.data['dev'] = self.read_aligned_corpus(split_type='dev') def read_data(self, file_loc_): data_list = list() with io.open(file_loc_, 'r', encoding='utf8') as fp: for line in fp: try: text = line.strip() except IndexError: text = self.empty_line_flag data_list.append(text) return data_list def filter_text(self, dict_): if self.target_token: field_index = 1 else: field_index = 0 data_dict = defaultdict(list) list1 = dict_['source'] list2 = dict_['target'] for sent1, sent2 in zip(list1, list2): try: src_sent = ' '.join(sent1.split()[field_index: ]) except IndexError: src_sent = 'NULL' if src_sent.find(self.empty_line_flag) != -1 or len(src_sent) == 0: continue elif sent2.find(self.empty_line_flag) != -1 or len(sent2) == 0: continue else: data_dict['source'].append(sent1) data_dict['target'].append(sent2) return data_dict def read_file(self, split_type, data_type): return self.data[split_type][data_type] def save_file(self, path_, split_type, data_type, lang): tok_file = tok_file_name(path_, lang) with io.open(tok_file, 'w', encoding='utf8') as fp: for line in self.data[split_type][data_type]: fp.write(line + '\n') if self.detok: de_tok(tok_file, lang) def add_target_token(self, list_, lang_id): new_list = list() token = '__' + lang_id + '__' for sent in list_: new_list.append(token + ' ' + sent) return new_list def read_from_single_file(self, path_, s_lang, t_lang): data_dict = defaultdict(list) with io.open(path_, 'r', encoding='utf8') as fp: reader = csv.DictReader(fp, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: data_dict['source'].append(row[s_lang]) data_dict['target'].append(row[t_lang]) if self.target_token: text = self.add_target_token(data_dict['source'], t_lang) data_dict['source'] = text return data_dict['source'], data_dict['target'] def read_aligned_corpus(self, split_type='train'): data_dict = defaultdict(list) iterable = [] s_list = [] t_list = [] if self.zero_shot: if split_type == "train": iterable = zip(self.lang_dict['source'], self.lang_dict['target']) else: iterable = zip(self.eval_lang_dict['source'], self.eval_lang_dict['target']) elif self.bilingual: iterable = itertools.product(self.lang_dict['source'], self.lang_dict['target']) for s_lang, t_lang in iterable: if s_lang == t_lang: continue if self.corpus_type == 'file': split_type_file_path = os.path.join(self.corpus_path, "all_talks_{}.tsv".format(split_type)) s_list, t_list = self.read_from_single_file(split_type_file_path, s_lang=s_lang, t_lang=t_lang) data_dict['source'] += s_list data_dict['target'] += t_list new_data_dict = self.filter_text(data_dict) return new_data_dict def read_langs(corpus_path): split_type_file_path = os.path.join(corpus_path, 'extracted', "all_talks_dev.tsv") with io.open(split_type_file_path, 'r', encoding='utf8') as fp: reader = csv.DictReader(fp, delimiter='\t', quoting=csv.QUOTE_NONE) header = next(reader) return [k for k in header.keys() if k != 'talk_name'] def extra_english(corpus_path, split): split_type_file_path = os.path.join(corpus_path, f"all_talks_{split}.tsv") output_split_type_file_path = os.path.join(corpus_path, f"all_talks_{split}.en") with io.open(split_type_file_path, 'r', encoding='utf8') as fp, io.open(output_split_type_file_path, 'w', encoding='utf8') as fw: reader = csv.DictReader(fp, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: line = row['en'] fw.write(line + '\n') de_tok(output_split_type_file_path, 'en') def tok_file_name(filename, lang): seps = filename.split('.') seps.insert(-1, 'tok') tok_file = '.'.join(seps) return tok_file def de_tok(tok_file, lang): # seps = tok_file.split('.') # seps.insert(-1, 'detok') # de_tok_file = '.'.join(seps) de_tok_file = tok_file.replace('.tok.', '.') cmd = 'perl {detok_cmd} -l {lang} < {tok_file} > {de_tok_file}'.format( detok_cmd=detok_cmd, tok_file=tok_file, de_tok_file=de_tok_file, lang=lang[:2]) call(cmd) def extra_bitex( ted_data_path, lsrc_lang, ltrg_lang, target_token, output_data_path, ): def get_ted_lang(lang): long_langs = ['pt-br', 'zh-cn', 'zh-tw', 'fr-ca'] if lang[:5] in long_langs: return lang[:5] elif lang[:4] =='calv': return lang[:5] elif lang in ['pt_BR', 'zh_CN', 'zh_TW', 'fr_CA']: return lang.lower().replace('_', '-') return lang[:2] src_lang = get_ted_lang(lsrc_lang) trg_lang = get_ted_lang(ltrg_lang) train_lang_dict={'source': [src_lang], 'target': [trg_lang]} eval_lang_dict = {'source': [src_lang], 'target': [trg_lang]} obj = MultiLingualAlignedCorpusReader(corpus_path=ted_data_path, lang_dict=train_lang_dict, target_token=target_token, corpus_type='file', eval_lang_dict=eval_lang_dict, zero_shot=False, bilingual=True) os.makedirs(output_data_path, exist_ok=True) lsrc_lang = lsrc_lang.replace('-', '_') ltrg_lang = ltrg_lang.replace('-', '_') obj.save_file(output_data_path + f"/train.{lsrc_lang}-{ltrg_lang}.{lsrc_lang}", split_type='train', data_type='source', lang=src_lang) obj.save_file(output_data_path + f"/train.{lsrc_lang}-{ltrg_lang}.{ltrg_lang}", split_type='train', data_type='target', lang=trg_lang) obj.save_file(output_data_path + f"/test.{lsrc_lang}-{ltrg_lang}.{lsrc_lang}", split_type='test', data_type='source', lang=src_lang) obj.save_file(output_data_path + f"/test.{lsrc_lang}-{ltrg_lang}.{ltrg_lang}", split_type='test', data_type='target', lang=trg_lang) obj.save_file(output_data_path + f"/valid.{lsrc_lang}-{ltrg_lang}.{lsrc_lang}", split_type='dev', data_type='source', lang=src_lang) obj.save_file(output_data_path + f"/valid.{lsrc_lang}-{ltrg_lang}.{ltrg_lang}", split_type='dev', data_type='target', lang=trg_lang) def bar_custom(current, total, width=80): print("Downloading: %d%% [%d / %d] Ks" % (current / total * 100, current / 1000, total / 1000), end='\r') def download_and_extract(download_to, extract_to): url = 'http://phontron.com/data/ted_talks.tar.gz' filename = f"{download_to}/ted_talks.tar.gz" if os.path.exists(filename): print(f'{filename} has already been downloaded so skip') else: filename = wget.download(url, filename, bar=bar_custom) if os.path.exists(f'{extract_to}/all_talks_train.tsv'): print(f'Already extracted so skip') else: extract_cmd = f'tar xzfv "{filename}" -C "{extract_to}"' call(extract_cmd) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--ted_data_path', type=str, default=WORKDIR_ROOT, required=False) parser.add_argument( '--direction-list', type=str, # default=None, #for ML50 default=( "bn_IN-en_XX,he_IL-en_XX,fa_IR-en_XX,id_ID-en_XX,sv_SE-en_XX,pt_XX-en_XX,ka_GE-en_XX,ka_GE-en_XX,th_TH-en_XX," "mr_IN-en_XX,hr_HR-en_XX,uk_UA-en_XX,az_AZ-en_XX,mk_MK-en_XX,gl_ES-en_XX,sl_SI-en_XX,mn_MN-en_XX," #non-english directions # "fr_XX-de_DE," # replaced with wmt20 # "ja_XX-ko_KR,es_XX-pt_XX,ru_RU-sv_SE,hi_IN-bn_IN,id_ID-ar_AR,cs_CZ-pl_PL,ar_AR-tr_TR" ), required=False) parser.add_argument('--target-token', action='store_true', default=False) parser.add_argument('--extract-all-english', action='store_true', default=False) args = parser.parse_args() import sys import json # TED Talks data directory ted_data_path = args.ted_data_path download_to = f'{ted_data_path}/downloads' extract_to = f'{ted_data_path}/extracted' #DESTDIR=${WORKDIR_ROOT}/ML50/raw/ output_path = f'{ted_data_path}/ML50/raw' os.makedirs(download_to, exist_ok=True) os.makedirs(extract_to, exist_ok=True) os.makedirs(output_path, exist_ok=True) download_and_extract(download_to, extract_to) if args.extract_all_english: for split in ['train', 'dev', 'test']: extra_english(ted_data_path, split) exit(0) if args.direction_list is not None: directions = args.direction_list.strip().split(',') directions = [tuple(d.strip().split('-', 1)) for d in directions if d] else: langs = read_langs(ted_data_path) # directions = [ # '{}.{}'.format(src, tgt) # for src in langs # for tgt in langs # if src < tgt # ] directions = [('en', tgt) for tgt in langs if tgt != 'en'] print(f'num directions={len(directions)}: {directions}') for src_lang, trg_lang in directions: print('--working on {}-{}'.format(src_lang, trg_lang)) extra_bitex( extract_to, src_lang, trg_lang, target_token=args.target_token, output_data_path=output_path )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/download_ted_and_extract.py
from typing import NamedTuple, List from urllib.parse import urlparse import os, sys import subprocess from subprocess import check_call, check_output import glob import wget import re import multiprocessing as mp from functools import partial import pathlib from collections import OrderedDict WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) # scripts and data locations CWD = os.getcwd() UTILS = f"{CWD}/utils" MOSES = f"{UTILS}/mosesdecoder" SGM_TOOL = f'{MOSES}/scripts/ems/support/input-from-sgm.perl' TMX2CORPUS = f"{UTILS}/tmx2corpus" TMX_TOOL = f'python {TMX2CORPUS}/tmx2corpus.py' to_data_path = f'{WORKDIR_ROOT}/wmt' download_to = f'{to_data_path}/downloads' manually_downloads = f'{to_data_path}/downloads' extract_to = f'{to_data_path}/extracted' #DESTDIR=${WORKDIR_ROOT}/ML50/raw/ raw_data = f'{WORKDIR_ROOT}/ML50/raw' #### class DLDataset(NamedTuple): name: str train_urls: List[str] valid_urls: List[str] test_urls: List[str] train_files_patterns: List[str] = [] valid_files_patterns: List[str] = [] test_files_patterns: List[str] = [] def bar_custom(current, total, width=80): print("Downloading: %d%% [%d / %d] Ks" % (current / total * 100, current / 1000, total / 1000), end='\r') def get_downloaded_file(dl_folder, url): if isinstance(url, tuple): url, f = url else: url_f = urlparse(url) # f = os.path.split(url_f.path)[-1] f = '_'.join(url_f.path.split('/')[1:]) return url, f"{dl_folder}/{f}" def download_parts_and_combine(dl_folder, urls, filename): parts = [] for url_record in urls: url, part_file = get_downloaded_file(dl_folder, url_record) if os.path.exists(part_file): print(f'{part_file} has already been downloaded so skip') else: part_file = wget.download(url, part_file, bar=bar_custom) parts.append(part_file) def get_combine_cmd(parts): #default as tar.gz.?? return f'cat {" ".join(parts)} > {filename}' combine_cmd = get_combine_cmd(parts) call(combine_cmd, debug=True) return filename def download_a_url(dl_folder, url): url, filename = get_downloaded_file(dl_folder, url) if os.path.exists(filename): print(f'{filename} has already been downloaded so skip') return filename print(f'downloading {url} to {filename}') if isinstance(url, list) or isinstance(url, tuple): download_parts_and_combine(dl_folder, url, filename) else: wget.download(url, filename, bar=bar_custom) print(f'dowloaded: {filename}') return filename def download_files(dl_folder, urls, completed_urls={}): for url_record in urls: url, _ = get_downloaded_file(dl_folder, url_record) filename = download_a_url(dl_folder, url_record) completed_urls[str(url)] = filename return completed_urls def check_need_manual_downalod(dl_folder, to_manually_download_urls): to_be_manually_dowloaded = [] manually_completed_urls = {} for url_record, instruction in to_manually_download_urls: url, filename = get_downloaded_file(dl_folder, url_record) if not os.path.exists(filename): print(f'{url} need to be download manually, please download it manually following {instruction}; and copy it to {filename}') to_be_manually_dowloaded.append((url, filename)) else: manually_completed_urls[url] = filename # if len(to_be_manually_dowloaded) > 0: # raise ValueError('Missing files that need to be downloaded manually; stop the process now.') return to_be_manually_dowloaded def download_dataset(to_folder, dl_dataset, completed_urls={}): download_files(to_folder, dl_dataset.train_urls, completed_urls) download_files(to_folder, dl_dataset.valid_urls, completed_urls) download_files(to_folder, dl_dataset.test_urls, completed_urls) print('completed downloading') return completed_urls def call(cmd, debug=False): if debug: print(cmd) check_call(cmd, shell=True) def get_extract_name(file_path): path = os.path.split(file_path) return path[-1] + '_extract' #.split('.')[0] def extract_file(downloaded_file, extract_folder, get_extract_name=get_extract_name, debug=False): extract_name = get_extract_name(downloaded_file) extract_to = f'{extract_folder}/{extract_name}' os.makedirs(extract_to, exist_ok=True) if os.path.exists(f'{extract_to}/DONE'): print(f'{downloaded_file} has already been extracted to {extract_to} so skip') return extract_to def get_extract_cmd(filename): if filename.endswith('.tgz') or filename.endswith('tar.gz'): return f'tar xzfv {filename} -C {extract_to}' elif filename.endswith('.gz.tar'): return f'tar xfv {filename} -C {extract_to}; (cd {extract_to}; gzip -d *.gz; [ $? -eq 0 ] || gzip -d */*.gz)' elif filename.endswith('.tar'): return f'tar xfv {filename} -C {extract_to}' elif filename.endswith('.gz'): return f'cp {filename} {extract_to}; (cd {extract_to}; gzip -d *.gz)' elif filename.endswith('.zip'): return f'unzip {filename} -d {extract_to}' extract_cmd = get_extract_cmd(downloaded_file) print(f'extracting {downloaded_file}') if isinstance(extract_cmd, list): for c in extract_cmd: call(c, debug=debug) else: call(extract_cmd, debug=debug) call(f'echo DONE > {extract_to}/DONE') return extract_to def extract_all_files( completed_urls, extract_folder, get_extract_name=get_extract_name, completed_extraction={}, debug=False): extracted_folders = OrderedDict() for url, downloaded_file in set(completed_urls.items()): if downloaded_file in completed_extraction: print(f'{downloaded_file} is already extracted; so skip') continue folder = extract_file(downloaded_file, extract_folder, get_extract_name, debug) extracted_folders[url] = folder return extracted_folders def my_glob(folder): for p in [f'{folder}/*', f'{folder}/*/*', f'{folder}/*/*/*']: for f in glob.glob(p): yield f def sgm2raw(sgm, debug): to_file = sgm[0:len(sgm) - len('.sgm')] if os.path.exists(to_file): debug and print(f'{sgm} already converted to {to_file}; so skip') return to_file cmd = f'{SGM_TOOL} < {sgm} > {to_file}' call(cmd, debug) return to_file def tmx2raw(tmx, debug): to_file = tmx[0:len(tmx) - len('.tmx')] to_folder = os.path.join(*os.path.split(tmx)[:-1]) if os.path.exists(f'{to_folder}/bitext.en'): debug and print(f'{tmx} already extracted to {to_file}; so skip') return to_file cmd = f'(cd {to_folder}; {TMX_TOOL} {tmx})' call(cmd, debug) return to_file CZENG16_REGEX = re.compile(r'.*?data.plaintext-format/0[0-9]train$') WMT19_WIKITITLES_REGEX = re.compile(r'.*?wikititles-v1.(\w\w)-en.tsv.gz') TSV_REGEX = re.compile(r'.*?(\w\w)-(\w\w).tsv$') def cut_wikitles(wiki_file, debug): # different languages have different file names: if wiki_file.endswith('wiki/fi-en/titles.fi-en'): to_file1 = f'{wiki_file}.fi' to_file2 = f'{wiki_file}.en' BACKSLASH = '\\' cmd1 = f"cat {wiki_file} | sed 's/|||/{BACKSLASH}t/g' |cut -f1 |awk '{{$1=$1}};1' > {to_file1}" cmd2 = f"cat {wiki_file} | sed 's/|||/{BACKSLASH}t/g' |cut -f2 |awk '{{$1=$1}};1' > {to_file2}" # elif WMT19_WIKITITLES_REGEX.match(wiki_file): # src = WMT19_WIKITITLES_REGEX.match(wiki_file).groups()[0] # to_file1 = f'{wiki_file}.{src}' # to_file2 = f'{wiki_file}.en' # cmd1 = f"cat {wiki_file} | cut -f1 |awk '{{$1=$1}};1' > {to_file1}" # cmd2 = f"cat {wiki_file} | cut -f2 |awk '{{$1=$1}};1' > {to_file2}" else: return None if os.path.exists(to_file1) and os.path.exists(to_file2): debug and print(f'{wiki_file} already processed to {to_file1} and {to_file2}; so skip') return wiki_file call(cmd1, debug=debug) call(cmd2, debug=debug) return wiki_file def cut_tsv(file, debug): m = TSV_REGEX.match(file) if m is None: raise ValueError(f'{file} is not matching tsv pattern') src = m.groups()[0] tgt = m.groups()[1] to_file1 = f'{file}.{src}' to_file2 = f'{file}.{tgt}' cmd1 = f"cat {file} | cut -f1 |awk '{{$1=$1}};1' > {to_file1}" cmd2 = f"cat {file} | cut -f2 |awk '{{$1=$1}};1' > {to_file2}" if os.path.exists(to_file1) and os.path.exists(to_file2): debug and print(f'{file} already processed to {to_file1} and {to_file2}; so skip') return file call(cmd1, debug=debug) call(cmd2, debug=debug) return file def convert_file_if_needed(file, debug): if file.endswith('.sgm'): return sgm2raw(file, debug) elif file.endswith('.tmx'): return tmx2raw(file, debug) elif file.endswith('wiki/fi-en/titles.fi-en'): return cut_wikitles(file, debug) # elif WMT19_WIKITITLES_REGEX.match(file): # return cut_wikitles(file, debug) elif file.endswith('.tsv'): return cut_tsv(file, debug) elif CZENG16_REGEX.match(file): return convert2czeng17(file, debug) else: return file def convert_files_if_needed(extracted_foldrs, my_glob=my_glob, debug=False): return { url: list(sorted(set(convert_file_if_needed(f, debug)) for f in sorted(set(my_glob(folder))))) for url, folder in extracted_foldrs.items() } def match_patt(file_path, file_pattern, src, tgt, lang): return file_pattern.format(src=src, tgt=tgt, lang=lang) in file_path def match_patts(file_path, file_patterns, src, tgt, lang): for file_pattern in file_patterns: params = { k: v for k, v in [('src', src), ('tgt', tgt), ('lang', lang)] if k in file_pattern} matching = file_pattern.format(**params) if isinstance(file_pattern, tuple): pattern, directions = file_pattern if f'{src}-{tgt}' in directions and matching in file_path: return True else: if matching in file_path: return True return False def extracted_glob(extracted_folder, file_patterns, src, tgt, lang): def get_matching_pattern(file_pattern): params = { k: v for k, v in [('src', src), ('tgt', tgt), ('lang', lang)] if '{' + k + '}' in file_pattern } file_pattern = re.sub(r'{src:(.*?)}', r'\1' if lang == src else '', file_pattern) file_pattern = re.sub(r'{tgt:(.*?)}', r'\1' if lang == tgt else '', file_pattern) file_pattern = file_pattern.format(**params) return file_pattern for file_pattern in file_patterns: if isinstance(file_pattern, tuple): file_pattern, lang_pairs = file_pattern if f'{src}-{tgt}' not in lang_pairs: continue # print('working on pattern: ', file_pattern, lang_pairs ) matching_pattern = get_matching_pattern(file_pattern) if matching_pattern is None: continue glob_patterns = f'{extracted_folder}/{matching_pattern}' # print('glob_patterns: ', glob_patterns) for f in glob.glob(glob_patterns): yield f # for debug usage def all_extracted_files(split, src, tgt, extracted_folders, split_urls): def get_url(url): if isinstance(url, tuple): url, downloaded_file = url return url return [ f for url in split_urls for f in my_glob(extracted_folders[str(get_url(url))]) ] def concat_files(split, src, tgt, extracted_folders, split_urls, path_patterns, to_folder, debug=False): # if debug: # print('extracted files to be filtered by patterns: ', # '\n\t'.join(sorted(all_extracted_files(split, src, tgt, extracted_folders, split_urls)))) for lang in [src, tgt]: to_file = f'{to_folder}/{split}.{src}-{tgt}.{lang}' s_src, s_tgt, s_lang = src.split('_')[0], tgt.split('_')[0], lang.split('_')[0] files = [] for url in split_urls: if isinstance(url, tuple): url, downloaded_file = url if str(url) not in extracted_folders: print(f'warning: {url} not in extracted files') for extracted_file in set( extracted_glob( extracted_folders[str(url)], path_patterns, s_src, s_tgt, s_lang)): files.append(extracted_file) if len(files) == 0: print('warning: ', f'No files found for split {to_file}') continue files = sorted(set(files)) print(f'concating {len(files)} files into {to_file}') cmd = ['cat'] + [f'"{f}"' for f in files] + [f'>{to_file}'] cmd = " ".join(cmd) call(cmd, debug=debug) UTILS = os.path.join(pathlib.Path(__file__).parent, 'utils') LID_MODEL = f'{download_to}/lid.176.bin' LID_MULTI = f'{UTILS}/fasttext_multi_filter.py' def lid_filter(split, src, tgt, from_folder, to_folder, debug=False): if not os.path.exists(LID_MODEL): call(f'wget -nc https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin -O {LID_MODEL}') from_prefix = f'{from_folder}/{split}.{src}-{tgt}' to_prefix = f'{to_folder}/{split}.{src}-{tgt}' if os.path.exists(f'{from_prefix}.{src}') and os.path.exists(f'{from_prefix}.{tgt}'): s_src, s_tgt = src.split('_')[0], tgt.split('_')[0] cmd = ( f'python {LID_MULTI} --model {LID_MODEL} --inputs {from_prefix}.{src} {from_prefix}.{tgt} ' f'--langs {s_src} {s_tgt} --outputs {to_prefix}.{src} {to_prefix}.{tgt}' ) print(f'filtering {from_prefix}') call(cmd, debug=debug) def concat_into_splits(dl_dataset, src, tgt, extracted_folders, to_folder, debug): to_folder_tmp = f"{to_folder}_tmp" os.makedirs(to_folder_tmp, exist_ok=True) concat_files('train', src, tgt, extracted_folders, split_urls=dl_dataset.train_urls, path_patterns=dl_dataset.train_files_patterns, to_folder=to_folder_tmp, debug=debug) lid_filter('train', src, tgt, to_folder_tmp, to_folder, debug) concat_files('valid', src, tgt, extracted_folders, split_urls=dl_dataset.valid_urls, path_patterns=dl_dataset.valid_files_patterns, to_folder=to_folder, debug=debug) concat_files('test', src, tgt, extracted_folders, split_urls=dl_dataset.test_urls, path_patterns=dl_dataset.test_files_patterns, to_folder=to_folder, debug=debug) def download_multi(dl_folder, extract_folder, urls, num_processes=8, debug=False): pool = mp.Pool(processes=num_processes) download_f = partial(download_a_url, dl_folder) downloaded_files = pool.imap_unordered(download_f, urls) pool.close() pool.join() BLEU_REGEX = re.compile("^BLEU\\S* = (\\S+) ") def run_eval_bleu(cmd): output = check_output(cmd, shell=True, stderr=subprocess.STDOUT).decode("utf-8").strip() print(output) bleu = -1.0 for line in output.strip().split('\n'): m = BLEU_REGEX.search(line) if m is not None: bleu = m.groups()[0] bleu = float(bleu) break return bleu def check_wmt_test_bleu(raw_folder, wmt_lang_pairs): not_matchings = [] for wmt, src_tgts in wmt_lang_pairs: for src_tgt in src_tgts: print(f'checking test bleus for: {src_tgt} at {wmt}') src, tgt = src_tgt.split('-') ssrc, stgt = src[:2], tgt[:2] if os.path.exists(f'{raw_folder}/test.{tgt}-{src}.{src}'): # reversed direction may have different test set test_src = f'{raw_folder}/test.{tgt}-{src}.{src}' else: test_src = f'{raw_folder}/test.{src}-{tgt}.{src}' cmd1 = f'cat {test_src} | sacrebleu -t "{wmt}" -l {stgt}-{ssrc}; [ $? -eq 0 ] || echo ""' test_tgt = f'{raw_folder}/test.{src}-{tgt}.{tgt}' cmd2 = f'cat {test_tgt} | sacrebleu -t "{wmt}" -l {ssrc}-{stgt}; [ $? -eq 0 ] || echo ""' bleu1 = run_eval_bleu(cmd1) if bleu1 != 100.0: not_matchings.append(f'{wmt}:{src_tgt} source side not matching: {test_src}') bleu2 = run_eval_bleu(cmd2) if bleu2 != 100.0: not_matchings.append(f'{wmt}:{src_tgt} target side not matching: {test_tgt}') return not_matchings def download_and_extract( to_folder, lang_pairs, dl_dataset, to_manually_download_urls, completed_urls={}, completed_extraction={}, debug=False): dl_folder = f'{to_folder}/downloads' extract_folder = f'{to_folder}/extracted' raw_folder = f'{to_folder}/raw' lid_filtered = f'{to_folder}/lid_filtered' os.makedirs(extract_folder, exist_ok=True) os.makedirs(raw_folder, exist_ok=True) os.makedirs(lid_filtered, exist_ok=True) to_be_manually_dowloaded = check_need_manual_downalod(dl_folder, to_manually_download_urls) completed_urls = download_dataset( dl_folder, dl_dataset, completed_urls) if debug: print('completed urls: ', completed_urls) extracted_folders = extract_all_files( completed_urls, extract_folder=extract_folder, completed_extraction=completed_extraction, debug=debug) if debug: print('download files have been extracted to folders: ', extracted_folders) converted_files = convert_files_if_needed(extracted_folders, debug=False) for src_tgt in lang_pairs: print(f'working on {dl_dataset.name}: {src_tgt}') src, tgt = src_tgt.split('-') concat_into_splits(dl_dataset, src=src, tgt=tgt, extracted_folders=extracted_folders, to_folder=raw_folder, debug=debug) print('completed data into: ', raw_folder) def download_czang16(download_to, username=None): wgets = [ f'wget --user={username} --password=czeng -P {download_to} http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar' for i in range(10)] cmds = [] for i, cmd in enumerate(wgets): filename = f'{download_to}/data-plaintext-format.{i}.tar' if os.path.exists(filename): print(f'{filename} has already been downloaded; so skip') continue cmds.append(cmd) if cmds and username is None: raise ValueError('No czeng username is given; please register at http://ufal.mff.cuni.cz/czeng/czeng16 to obtain username to download') for cmd in cmds: call(cmd) print('done with downloading czeng1.6') def download_czeng17_script(download_to, extract_folder, debug=False): url = 'http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip' filename = f'{download_to}/convert_czeng16_to_17.pl.zip' extract_to = f'{extract_folder}/{get_extract_name(filename)}' script_path = f'{extract_to}/convert_czeng16_to_17.pl' if not os.path.exists(script_path): wget.download(url, filename, bar=bar_custom) extract_to = extract_file(f'{download_to}/convert_czeng16_to_17.pl.zip', extract_folder, get_extract_name=get_extract_name, debug=debug) return script_path czeng17_script_path = "" def convert2czeng17(file, debug): en_file = f'{file}.en' cs_file = f'{file}.cs' if not os.path.exists(en_file) or not os.path.exists(cs_file): cs_cmd = f'cat {file} | perl {czeng17_script_path} | cut -f3 > {cs_file}' en_cmd = f'cat {file} | perl {czeng17_script_path} | cut -f4 > {en_file}' call(cs_cmd, debug) call(en_cmd, debug) else: print(f'already extracted: {en_file} and {cs_file}') return file def extract_czeng17(extract_folder, debug=False): url = 'http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip' filename = f'{download_to}/convert_czeng16_to_17.pl.zip' extract_to = f'{extract_folder}/{get_extract_name(filename)}' script_path = f'{extract_to}/convert_czeng16_to_17.pl' if not os.path.exists(script_path): wget.download(url, filename, bar=bar_custom) extract_to = extract_file(f'{download_to}/convert_czeng16_to_17.pl.zip', extract_folder, get_extract_name=get_extract_name, debug=debug) return script_path ######### # definitions of wmt data sources # for es-en # Punctuation in the official test sets will be encoded with ASCII characters (not complex Unicode characters) as much as possible. You may want to normalize your system's output before submission. You are able able to use a rawer version of the test sets that does not have this normalization. # script to normalize punctuation: http://www.statmt.org/wmt11/normalize-punctuation.perl wmt13_es_en = DLDataset( name='wmt13_es-en', train_urls=[ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://www.statmt.org/wmt13/training-parallel-un.tgz', 'http://www.statmt.org/wmt13/training-parallel-nc-v8.tgz', ], valid_urls=[ ('http://www.statmt.org/wmt13/dev.tgz', 'wmt13_dev.tgz') ], test_urls=[ ('http://www.statmt.org/wmt13/test.tgz', 'wmt13_test.tgz') ], train_files_patterns=[ ('*/europarl-v7.{src}-{tgt}.{lang}', ['es-en']), ('*commoncrawl.{src}-{tgt}.{lang}', ['es-en']), ('*/news-commentary-v8.{src}-{tgt}.{lang}', ['es-en']), ('un/*undoc.2000.{src}-{tgt}.{lang}', ['es-en']), ] , valid_files_patterns=[ ('dev/newstest2012.{lang}', ['es-en']) ], test_files_patterns=[ ('test/newstest*.{lang}', ['es-en']) ], ) wmt14_de_fr_en = DLDataset( name='wmt14_de_fr_en', train_urls=[ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://www.statmt.org/wmt13/training-parallel-un.tgz', 'http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz', ('http://www.statmt.org/wmt10/training-giga-fren.tar', 'training-giga-fren.gz.tar'), #it is actuall a gz.tar ], valid_urls=[ ('http://www.statmt.org/wmt14/dev.tgz', 'wmt14_dev.tgz'), ], test_urls=[ ('http://www.statmt.org/wmt14/test-full.tgz', 'wmt14_test_full.tgz'), # cleaned test sets ], train_files_patterns=[ ('*/europarl-v7.{src}-{tgt}.{lang}', ['fr-en', 'de-en']), ('*commoncrawl.{src}-{tgt}.{lang}', ['fr-en', 'de-en']), ('*/*news-commentary-v9.{src}-{tgt}.{lang}', ['fr-en', 'de-en']), ('un/undoc.2000.{src}-{tgt}.{lang}', ['fr-en']), ('*giga-{src}{tgt}*{lang}', ['fr-en']) ], valid_files_patterns=[ ('dev/newstest2013.{lang}', ['fr-en', 'de-en']) ], test_files_patterns=[ ('test-full/newstest*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['en-de', 'de-en', 'fr-en', 'en-fr']), ], ) # pip install git+https://github.com/amake/tmx2corpus.git wmt16_ro_en = DLDataset( name='wmt16_ro-en', train_urls=[ ('http://data.statmt.org/wmt16/translation-task/training-parallel-ep-v8.tgz', 'wmt16_training-parallel-ep-v8.tgz'), ('http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-ro.tmx.gz', 'en-ro.tmx.gz'), ], valid_urls=[ ('http://data.statmt.org/wmt16/translation-task/dev-romanian-updated.tgz', 'wmt16_dev.tgz') ], test_urls=[ ('http://data.statmt.org/wmt16/translation-task/test.tgz', 'wmt16_test.tgz') ], train_files_patterns=[ ('*/*europarl-v8.{src}-{tgt}.{lang}', ['ro-en']), ('bitext.{lang}', ['ro-en']) #setimes from tmux ] , valid_files_patterns=[ ('dev/newsdev2016*{src}{tgt}*.{lang}', ['ro-en', 'ro-en']) ], test_files_patterns=[ ('test/newstest*{src}{tgt}*.{lang}', ['ro-en', 'en-ro']) ], ) cwmt_wmt_instruction = 'cwmt download instruction at: http://nlp.nju.edu.cn/cwmt-wmt' wmt17_fi_lv_tr_zh_en_manual_downloads = [ # fake urls to have unique keys for the data ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASIA2015.zip', 'CASIA2015.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2011.zip', 'CASICT2011.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2015.zip', 'CASICT2015.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2015.zip', 'Datum2015.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2017.zip', 'Datum2017.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/NEU2017.zip', 'NEU2017.zip'), cwmt_wmt_instruction), ] wmt17_fi_lv_tr_zh_en = DLDataset( name='wmt17_fi_lv_tr_zh_en', train_urls=[ ('http://data.statmt.org/wmt17/translation-task/training-parallel-ep-v8.tgz', 'wmt17_training-parallel-ep-v8.tgz'), 'http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz', 'http://www.statmt.org/wmt15/wiki-titles.tgz', ('http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-tr.tmx.gz', 'en-tr.tmx.gz'), ('http://data.statmt.org/wmt17/translation-task/rapid2016.tgz', 'wmt17_rapid2016.tgz'), 'http://data.statmt.org/wmt17/translation-task/leta.v1.tgz', 'http://data.statmt.org/wmt17/translation-task/dcep.lv-en.v1.tgz', 'http://data.statmt.org/wmt17/translation-task/books.lv-en.v1.tgz', (('https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.00', 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.01',), 'UNv1.0.en-zh.tar.gz'), #manually download files: ('http://nlp.nju.edu.cn/cwmt-wmt/CASIA2015.zip', 'CASIA2015.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2011.zip', 'CASICT2011.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2015.zip', 'CASICT2015.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2015.zip', 'Datum2015.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2017.zip', 'Datum2017.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/NEU2017.zip', 'NEU2017.zip'), ], valid_urls=[ ('http://data.statmt.org/wmt17/translation-task/dev.tgz', 'wmt17_dev.tgz'), ], test_urls=[ #NEW: Improved translations for zh test sets ('http://data.statmt.org/wmt17/translation-task/test-update-1.tgz', 'wmt17_test_zh_en.tgz'), ('http://data.statmt.org/wmt17/translation-task/test.tgz', 'wmt17_test_others.tgz') ], train_files_patterns=[ ('casict*/cas*{src:ch}{tgt:en}.txt', ['zh-en', 'zh-en'] ), ('casia*/cas*{src:ch}{tgt:en}.txt', ['zh-en', 'zh-en'] ), ('dataum*/Book*{src:cn}{tgt:en}.txt', ['zh-en', 'zh-en']), ('neu*/NEU*{src:cn}{tgt:en}.txt', ['zh-en', 'zh-en'] ), ('*/*UNv1.0.en-zh.{src:zh}{tgt:en}', ['zh-en']), ('training/*news-commentary-v12.{src}-{tgt}.{lang}', ['zh-en', ]), ('*/*europarl-v8.{src}-{tgt}.{lang}', ['fi-en', 'lv-en']), ('wiki/fi-en/titles.{src}-{tgt}.{lang}', ['fi-en', ]), ('rapid2016.{tgt}-{src}.{lang}', ['fi-en', 'lv-en']), ('*/leta.{lang}', ['lv-en']), ('*/dcep.{lang}', ['lv-en']), ('*/farewell.{lang}', ['lv-en']), ('bitext.{lang}', ['tr-en']), ] , valid_files_patterns=[ ('dev/newsdev2017*{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'fi-en', 'lv-en', 'tr-en', 'zh-en', 'en-fi', 'en-lv', 'en-tr', 'en-zh' ]), ('dev/newstest2016*{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'fi-en', 'tr-en', 'en-fi', 'en-tr', ]), ], test_files_patterns=[ ('test/newstest2017-{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'fi-en', 'lv-en', 'tr-en', 'en-fi', 'en-lv', 'en-tr', ]), ('newstest2017-{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'zh-en', 'en-zh' ]), ], ) czeng_instruction = 'download instruction at: http://ufal.mff.cuni.cz/czeng/czeng16' #alternative: use the prepared data but detokenize it? wmt18_cs_et_en_manual_downloads = [ #for cs, need to register and download; Register and download CzEng 1.6. #Better results can be obtained by using a subset of sentences, released under a new version name CzEng 1.7. # ((f'http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar', # f'data-plaintext-format.{i}.tar'), czeng_instruction) # for i in range(10) ] wmt18_cs_et_en = DLDataset( name='wmt18_cs_et_en', train_urls=[ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz', 'http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-et.zipporah0-dedup-clean.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz', ('http://data.statmt.org/wmt18/translation-task/rapid2016.tgz', 'wmt18_rapid2016.tgz'), # (tuple( # (f'http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar', # f'data-plaintext-format.{i}.tar') # for i in range(10) # ), # 'czeng16_data_plaintext.gz.tar'), ], valid_urls=[ ('http://data.statmt.org/wmt18/translation-task/dev.tgz', 'wmt18_dev.tgz'), ], test_urls=[ ('http://data.statmt.org/wmt18/translation-task/test.tgz', 'wmt18_test.tgz'), ], train_files_patterns=[ # ('*/*europarl-v7.{src}-{tgt}.{lang}', ['cs-en']), ('*/*europarl-v8.{src}-{tgt}.{lang}', ['et-en']), # ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['cs-en', 'et-en']), ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['et-en']), # ('*commoncrawl.{src}-{tgt}.{lang}', ['cs-en']), # ('*/news-commentary-v13.{src}-{tgt}.{lang}', ['cs-en']), # ('data.plaintext-format/*train.{lang}', ['cs-en']), ('rapid2016.{tgt}-{src}.{lang}', ['et-en']), ] , valid_files_patterns=[ ('dev/newsdev2018*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['et-en']), # ('dev/newstest2017*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['cs-en']) ], test_files_patterns=[ ('test/newstest2018-{src}{tgt}-{src:src}{tgt:ref}.{lang}', # ['cs-en', 'et-en']), ['et-en']), ] ) ru_en_yandex_instruction = 'Yandex Corpus download instruction at: https://translate.yandex.ru/corpus?lang=en' wmt19_ru_gu_kk_lt_manual_downloads = [ (('https://translate.yandex.ru/corpus?lang=en', 'wmt19_1mcorpus.zip'), ru_en_yandex_instruction) ] wmt19_ru_gu_kk_lt = DLDataset( name='wmt19_ru_gu_kk_lt', train_urls=[ 'http://www.statmt.org/europarl/v9/training/europarl-v9.lt-en.tsv.gz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-lt.bicleaner07.tmx.gz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://data.statmt.org/news-commentary/v14/training/news-commentary-v14-wmt19.en-kk.tsv.gz', 'http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.en-ru.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.kk-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.ru-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.kk-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.lt-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.gu-en.tsv.gz', (('https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.00', 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.01', 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.02',), 'wmt19_UNv1.0.en-ru.tar.gz'), 'https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-lt.tmx.zip', ('https://translate.yandex.ru/corpus?lang=en', 'wmt19_1mcorpus.zip'), ], valid_urls=[ ('http://data.statmt.org/wmt19/translation-task/dev.tgz', 'wmt19_dev.tgz'), ], test_urls=[ ('http://data.statmt.org/wmt19/translation-task/test.tgz', 'wmt19_test.tgz'), ], train_files_patterns=[ ('*europarl-v9.{src}-{tgt}.tsv.{lang}', ['lt-en']), #paracrawl ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['ru-en']), ('bitext.{lang}', ['lt-en',]), ('*commoncrawl.{src}-{tgt}.{lang}', ['ru-en',]), ('*news-commentary-v14-wmt19.{tgt}-{src}.tsv.{lang}', ['kk-en', ]), ('*news-commentary-v14.{tgt}-{src}.tsv.{lang}', ['ru-en']), #yandex ('corpus.{tgt}_{src}.1m.{lang}', ['ru-en']), ('wikititles_v1_wikititles-v1.{src}-{tgt}.tsv.{lang}', ['ru-en', 'kk-en', 'lt-en', 'gu-en']), ('*/UNv1.0.{tgt}-{src}.{lang}', ['ru-en']), #rapid ('bitext.{lang}', ['lt-en']) ], valid_files_patterns=[ ('dev/newsdev2019*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['gu-en', 'kk-en', 'lt-en']), ('dev/newstest2018*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['ru-en']), ], test_files_patterns=[ ('sgm/newstest2019-{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['ru-en', 'gu-en', 'kk-en', 'lt-en', 'en-ru', 'en-gu', 'en-kk', 'en-lt']), ] ) ######### if __name__ == "__main__": # speed up the downloads with multiple processing dl_folder = f'{to_data_path}/downloads' extract_folder = f'{to_data_path}/extracted' urls = [ url for dataset in [wmt13_es_en, wmt14_de_fr_en, wmt16_ro_en, wmt18_cs_et_en, wmt19_ru_gu_kk_lt] for urls in [dataset.train_urls, dataset.valid_urls, dataset.test_urls] for url in urls ] urls = set(urls) download_multi(dl_folder, extract_folder, urls, num_processes=8, debug=True) # check manually downlaods to_manually_download_urls = ( wmt17_fi_lv_tr_zh_en_manual_downloads + wmt18_cs_et_en_manual_downloads + wmt19_ru_gu_kk_lt_manual_downloads ) to_be_manually_dowloaded = check_need_manual_downalod(dl_folder, to_manually_download_urls) if len(to_be_manually_dowloaded) > 0: print('Missing files that need to be downloaded manually; stop the process now.') exit(-1) completed_urls = {} completed_extraction = {} def work_on_wmt(directions, wmt_data): download_and_extract( to_data_path, directions, wmt_data, to_manually_download_urls=to_manually_download_urls, completed_urls=completed_urls, completed_extraction=completed_extraction, debug=True) work_on_wmt( ['es_XX-en_XX'], wmt13_es_en,) work_on_wmt( [ 'fr_XX-en_XX', 'en_XX-fr_XX', # 'en_XX-de_DE', 'de_DE-en_XX', ], wmt14_de_fr_en,) work_on_wmt( ['ro_RO-en_XX', 'en_XX-ro_XX'], wmt16_ro_en,) work_on_wmt( [ # 'zh_CN-en_XX', 'lv_LV-en_XX', 'fi_FI-en_XX', 'tr_TR-en_XX', #in case the reversed directions have different train/valid/test data # 'en_XX-zh_CN', 'en_XX-lv_LV', 'en_XX-fi_FI', 'en_XX-tr_TR', ], wmt17_fi_lv_tr_zh_en, ) # czeng17_script_path = download_czeng17_script(download_to, extract_to, debug=False) # cz_username = None work_on_wmt( [ # 'cs_CZ-en_XX', 'et_EE-en_XX'], wmt18_cs_et_en,) work_on_wmt( [ # 'ru_RU-en_XX', 'en_XX-ru_RU', 'gu_IN-en_XX', 'kk_KZ-en_XX', 'lt_LT-en_XX', #in case the reversed directions have different train/valid/test data 'en_XX-gu_IN', 'en_XX-kk_KZ', 'en_XX-lt_LT' ], wmt19_ru_gu_kk_lt,) not_matching = check_wmt_test_bleu( f'{to_data_path}/raw', [ ('wmt13', ['es_XX-en_XX']), ('wmt14/full', ['fr_XX-en_XX',]), ('wmt16', ['ro_RO-en_XX',]), # ('wmt17/improved', ['zh_CN-en_XX']), ('wmt17', [ 'lv_LV-en_XX', 'fi_FI-en_XX', 'tr_TR-en_XX']), ('wmt18', ['cs_CZ-en_XX', 'et_EE-en_XX']), ('wmt19', ['gu_IN-en_XX', 'kk_KZ-en_XX', 'lt_LT-en_XX']), #'ru_RU-en_XX', ] ) if len(not_matching) > 0: print('the following datasets do not have matching test datasets:\n\t', '\n\t'.join(not_matching))
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/download_wmt19_and_before.py
import os, sys import glob, itertools import pandas as pd WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) def load_langs(path): with open(path) as fr: langs = [l.strip() for l in fr] return langs def load_sentences(raw_data, split, direction): src, tgt = direction.split('-') src_path = f"{raw_data}/{split}.{direction}.{src}" tgt_path = f"{raw_data}/{split}.{direction}.{tgt}" if os.path.exists(src_path) and os.path.exists(tgt_path): return [(src, open(src_path).read().splitlines()), (tgt, open(tgt_path).read().splitlines())] else: return [] def swap_direction(d): src, tgt = d.split('-') return f'{tgt}-{src}' def get_all_test_data(raw_data, directions, split='test'): test_data = [ x for dd in directions for d in [dd, swap_direction(dd)] for x in load_sentences(raw_data, split, d) ] # all_test_data = {s for _, d in test_data for s in d} all_test_data = {} for lang, d in test_data: for s in d: s = s.strip() lgs = all_test_data.get(s, set()) lgs.add(lang) all_test_data[s] = lgs return all_test_data, test_data def check_train_sentences(raw_data, direction, all_test_data, mess_up_train={}): src, tgt = direction.split('-') tgt_path = f"{raw_data}/train.{direction}.{tgt}" src_path = f"{raw_data}/train.{direction}.{src}" print(f'check training data in {raw_data}/train.{direction}') size = 0 if not os.path.exists(tgt_path) or not os.path.exists(src_path): return mess_up_train, size with open(src_path) as f, open(tgt_path) as g: for src_line, tgt_line in zip(f, g): s = src_line.strip() t = tgt_line.strip() size += 1 if s in all_test_data: langs = mess_up_train.get(s, set()) langs.add(direction) mess_up_train[s] = langs if t in all_test_data: langs = mess_up_train.get(t, set()) langs.add(direction) mess_up_train[t] = langs return mess_up_train, size def check_train_all(raw_data, directions, all_test_data): mess_up_train = {} data_sizes = {} for direction in directions: _, size = check_train_sentences(raw_data, direction, all_test_data, mess_up_train) data_sizes[direction] = size return mess_up_train, data_sizes def count_train_in_other_set(mess_up_train): train_in_others = [(direction, s) for s, directions in mess_up_train.items() for direction in directions] counts = {} for direction, s in train_in_others: counts[direction] = counts.get(direction, 0) + 1 return counts def train_size_if_remove_in_otherset(data_sizes, mess_up_train): counts_in_other = count_train_in_other_set(mess_up_train) remain_sizes = [] for direction, count in counts_in_other.items(): remain_sizes.append((direction, data_sizes[direction] - count, data_sizes[direction], count, 100 * count / data_sizes[direction] )) return remain_sizes def remove_messed_up_sentences(raw_data, direction, mess_up_train, mess_up_train_pairs, corrected_langs): split = 'train' src_lang, tgt_lang = direction.split('-') tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}" src = f"{raw_data}/{split}.{direction}.{src_lang}" print(f'working on {direction}: ', src, tgt) if not os.path.exists(tgt) or not os.path.exists(src) : return corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}" corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}" line_num = 0 keep_num = 0 with open(src, encoding='utf8',) as fsrc, \ open(tgt, encoding='utf8',) as ftgt, \ open(corrected_src, 'w', encoding='utf8') as fsrc_corrected, \ open(corrected_tgt, 'w', encoding='utf8') as ftgt_corrected: for s, t in zip(fsrc, ftgt): s = s.strip() t = t.strip() if t not in mess_up_train \ and s not in mess_up_train \ and (s, t) not in mess_up_train_pairs \ and (t, s) not in mess_up_train_pairs: corrected_langs.add(direction) print(s, file=fsrc_corrected) print(t, file=ftgt_corrected) keep_num += 1 line_num += 1 if line_num % 1000 == 0: print(f'completed {line_num} lines', end='\r') return line_num, keep_num ########## def merge_valid_test_messup(mess_up_train_valid, mess_up_train_test): merged_mess = [] for s in set(list(mess_up_train_valid.keys()) + list(mess_up_train_test.keys())): if not s: continue valid = mess_up_train_valid.get(s, set()) test = mess_up_train_test.get(s, set()) merged_mess.append((s, valid | test)) return dict(merged_mess) ######### def check_train_pairs(raw_data, direction, all_test_data, mess_up_train={}): src, tgt = direction.split('-') #a hack; TODO: check the reversed directions path1 = f"{raw_data}/train.{src}-{tgt}.{src}" path2 = f"{raw_data}/train.{src}-{tgt}.{tgt}" if not os.path.exists(path1) or not os.path.exists(path2) : return with open(path1) as f1, open(path2) as f2: for src_line, tgt_line in zip(f1, f2): s = src_line.strip() t = tgt_line.strip() if (s, t) in all_test_data or (t, s) in all_test_data: langs = mess_up_train.get( (s, t), set()) langs.add(src) langs.add(tgt) mess_up_train[(s, t)] = langs def load_pairs(raw_data, split, direction): src, tgt = direction.split('-') src_f = f"{raw_data}/{split}.{direction}.{src}" tgt_f = f"{raw_data}/{split}.{direction}.{tgt}" if tgt != 'en_XX': src_f, tgt_f = tgt_f, src_f if os.path.exists(src_f) and os.path.exists(tgt_f): return list(zip(open(src_f).read().splitlines(), open(tgt_f).read().splitlines(), )) else: return [] # skip_langs = ['cs_CZ', 'en_XX', 'tl_XX', 'tr_TR'] def get_messed_up_test_pairs(split, directions): test_pairs = [ (d, load_pairs(raw_data, split, d)) for d in directions ] # all_test_data = {s for _, d in test_data for s in d} all_test_pairs = {} for direction, d in test_pairs: src, tgt = direction.split('-') for s in d: langs = all_test_pairs.get(s, set()) langs.add(src) langs.add(tgt) all_test_pairs[s] = langs mess_up_train_pairs = {} for direction in directions: check_train_pairs(raw_data, direction, all_test_pairs, mess_up_train_pairs) return all_test_pairs, mess_up_train_pairs if __name__ == "__main__": ####### import argparse parser = argparse.ArgumentParser() parser.add_argument( '--from-folder', required=True, type=str) parser.add_argument( '--to-folder', required=True, type=str) parser.add_argument( '--directions', default=None, type=str) args = parser.parse_args() raw_data = args.from_folder to_folder = args.to_folder os.makedirs(to_folder, exist_ok=True) if args.directions: directions = args.directions.split(',') else: raw_files = itertools.chain( glob.glob(f'{raw_data}/train*'), glob.glob(f'{raw_data}/valid*'), glob.glob(f'{raw_data}/test*'), ) directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files] print('working on directions: ', directions) ########## all_test_data, test_data = get_all_test_data(raw_data, directions, 'test') print('==loaded test data==') all_valid_data, valid_data = get_all_test_data(raw_data, directions, 'valid') print('==loaded valid data==') all_valid_test_data = merge_valid_test_messup(all_test_data, all_valid_data) mess_up_train, data_sizes = check_train_all(raw_data, directions, all_valid_test_data) print('training messing up with valid, test data:', len(mess_up_train)) data_situation = train_size_if_remove_in_otherset(data_sizes, mess_up_train) df = pd.DataFrame(data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent']) df.sort_values('remove_percent', ascending=False) df.to_csv(f'{raw_data}/clean_summary.tsv', sep='\t') print(f'projected data clean summary in: {raw_data}/clean_summary.tsv') # correct the dataset: all_test_pairs, mess_up_test_train_pairs = get_messed_up_test_pairs('test', directions) all_valid_pairs, mess_up_valid_train_pairs = get_messed_up_test_pairs('valid', directions) all_messed_pairs = set(mess_up_test_train_pairs.keys()).union(set(mess_up_valid_train_pairs.keys())) corrected_directions = set() real_data_situation = [] for direction in directions: org_size, new_size = remove_messed_up_sentences(raw_data, direction, mess_up_train, all_messed_pairs, corrected_directions) if org_size == 0: print(f"{direction} has size 0") continue real_data_situation.append( (direction, new_size, org_size, org_size - new_size, (org_size - new_size) / org_size * 100) ) print('corrected directions: ', corrected_directions) df = pd.DataFrame(real_data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent']) df.sort_values('remove_percent', ascending=False) df.to_csv(f'{raw_data}/actual_clean_summary.tsv', sep='\t') print(f'actual data clean summary (which can be different from the projected one because of duplications) in: {raw_data}/actual_clean_summary.tsv') import shutil for direction in directions: src_lang, tgt_lang = direction.split('-') for split in ['train', 'valid', 'test']: # copying valid, test and uncorrected train if direction in corrected_directions and split == 'train': continue tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}" src = f"{raw_data}/{split}.{direction}.{src_lang}" if not (os.path.exists(src) and os.path.exists(tgt)): continue corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}" corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}" print(f'copying {src} to {corrected_src}') shutil.copyfile(src, corrected_src) print(f'copying {tgt} to {corrected_tgt}') shutil.copyfile(tgt, corrected_tgt) print('completed')
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/remove_valid_test_in_train.py
import shutil import os, sys from subprocess import check_call, check_output import glob import argparse import shutil import pathlib import itertools def call_output(cmd): print(f"Executing: {cmd}") ret = check_output(cmd, shell=True) print(ret) return ret def call(cmd): print(cmd) check_call(cmd, shell=True) WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) SPM_PATH = os.environ.get('SPM_PATH', None) if SPM_PATH is None or not SPM_PATH.strip(): print("Please install sentence piecence from https://github.com/google/sentencepiece and set SPM_PATH pointing to the installed spm_encode.py. Exitting...") sys.exit(-1) SPM_MODEL = f'{WORKDIR_ROOT}/sentence.bpe.model' SPM_VOCAB = f'{WORKDIR_ROOT}/dict_250k.txt' SPM_ENCODE = f'{SPM_PATH}' if not os.path.exists(SPM_MODEL): call(f"wget https://dl.fbaipublicfiles.com/fairseq/models/mbart50/sentence.bpe.model -O {SPM_MODEL}") if not os.path.exists(SPM_VOCAB): call(f"wget https://dl.fbaipublicfiles.com/fairseq/models/mbart50/dict_250k.txt -O {SPM_VOCAB}") def get_data_size(raw): cmd = f'wc -l {raw}' ret = call_output(cmd) return int(ret.split()[0]) def encode_spm(model, direction, prefix='', splits=['train', 'test', 'valid'], pairs_per_shard=None): src, tgt = direction.split('-') for split in splits: src_raw, tgt_raw = f'{RAW_DIR}/{split}{prefix}.{direction}.{src}', f'{RAW_DIR}/{split}{prefix}.{direction}.{tgt}' if os.path.exists(src_raw) and os.path.exists(tgt_raw): cmd = f"""python {SPM_ENCODE} \ --model {model}\ --output_format=piece \ --inputs {src_raw} {tgt_raw} \ --outputs {BPE_DIR}/{direction}{prefix}/{split}.bpe.{src} {BPE_DIR}/{direction}{prefix}/{split}.bpe.{tgt} """ print(cmd) call(cmd) def binarize_( bpe_dir, databin_dir, direction, spm_vocab=SPM_VOCAB, splits=['train', 'test', 'valid'], ): src, tgt = direction.split('-') try: shutil.rmtree(f'{databin_dir}', ignore_errors=True) os.mkdir(f'{databin_dir}') except OSError as error: print(error) cmds = [ "fairseq-preprocess", f"--source-lang {src} --target-lang {tgt}", f"--destdir {databin_dir}/", f"--workers 8", ] if isinstance(spm_vocab, tuple): src_vocab, tgt_vocab = spm_vocab cmds.extend( [ f"--srcdict {src_vocab}", f"--tgtdict {tgt_vocab}", ] ) else: cmds.extend( [ f"--joined-dictionary", f"--srcdict {spm_vocab}", ] ) input_options = [] if 'train' in splits and glob.glob(f"{bpe_dir}/train.bpe*"): input_options.append( f"--trainpref {bpe_dir}/train.bpe", ) if 'valid' in splits and glob.glob(f"{bpe_dir}/valid.bpe*"): input_options.append(f"--validpref {bpe_dir}/valid.bpe") if 'test' in splits and glob.glob(f"{bpe_dir}/test.bpe*"): input_options.append(f"--testpref {bpe_dir}/test.bpe") if len(input_options) > 0: cmd = " ".join(cmds + input_options) print(cmd) call(cmd) def binarize( databin_dir, direction, spm_vocab=SPM_VOCAB, prefix='', splits=['train', 'test', 'valid'], pairs_per_shard=None, ): def move_databin_files(from_folder, to_folder): for bin_file in glob.glob(f"{from_folder}/*.bin") \ + glob.glob(f"{from_folder}/*.idx") \ + glob.glob(f"{from_folder}/dict*"): try: shutil.move(bin_file, to_folder) except OSError as error: print(error) bpe_databin_dir = f"{BPE_DIR}/{direction}{prefix}_databin" bpe_dir = f"{BPE_DIR}/{direction}{prefix}" if pairs_per_shard is None: binarize_(bpe_dir, bpe_databin_dir, direction, spm_vocab=spm_vocab, splits=splits) move_databin_files(bpe_databin_dir, databin_dir) else: # binarize valid and test which will not be sharded binarize_( bpe_dir, bpe_databin_dir, direction, spm_vocab=spm_vocab, splits=[s for s in splits if s != "train"]) for shard_bpe_dir in glob.glob(f"{bpe_dir}/shard*"): path_strs = os.path.split(shard_bpe_dir) shard_str = path_strs[-1] shard_folder = f"{bpe_databin_dir}/{shard_str}" databin_shard_folder = f"{databin_dir}/{shard_str}" print(f'working from {shard_folder} to {databin_shard_folder}') os.makedirs(databin_shard_folder, exist_ok=True) binarize_( shard_bpe_dir, shard_folder, direction, spm_vocab=spm_vocab, splits=["train"]) for test_data in glob.glob(f"{bpe_databin_dir}/valid.*") + glob.glob(f"{bpe_databin_dir}/test.*"): filename = os.path.split(test_data)[-1] try: os.symlink(test_data, f"{databin_shard_folder}/{filename}") except OSError as error: print(error) move_databin_files(shard_folder, databin_shard_folder) def load_langs(path): with open(path) as fr: langs = [l.strip() for l in fr] return langs if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--data_root", default=f"{WORKDIR_ROOT}/ML50") parser.add_argument("--raw-folder", default='raw') parser.add_argument("--bpe-folder", default='bpe') parser.add_argument("--databin-folder", default='databin') args = parser.parse_args() DATA_PATH = args.data_root #'/private/home/yuqtang/public_data/ML50' RAW_DIR = f'{DATA_PATH}/{args.raw_folder}' BPE_DIR = f'{DATA_PATH}/{args.bpe_folder}' DATABIN_DIR = f'{DATA_PATH}/{args.databin_folder}' os.makedirs(BPE_DIR, exist_ok=True) raw_files = itertools.chain( glob.glob(f'{RAW_DIR}/train*'), glob.glob(f'{RAW_DIR}/valid*'), glob.glob(f'{RAW_DIR}/test*'), ) directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files] for direction in directions: prefix = "" splits = ['train', 'valid', 'test'] try: shutil.rmtree(f'{BPE_DIR}/{direction}{prefix}', ignore_errors=True) os.mkdir(f'{BPE_DIR}/{direction}{prefix}') os.makedirs(DATABIN_DIR, exist_ok=True) except OSError as error: print(error) spm_model, spm_vocab = SPM_MODEL, SPM_VOCAB encode_spm(spm_model, direction=direction, splits=splits) binarize(DATABIN_DIR, direction, spm_vocab=spm_vocab, splits=splits)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/binarize.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import glob import argparse from utils.dedup import deup import sys WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) def get_directions(folder): raw_files = glob.glob(f'{folder}/train*') directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files] return directions def diff_list(lhs, rhs): return set(lhs).difference(set(rhs)) def check_diff( from_src_file, from_tgt_file, to_src_file, to_tgt_file, ): seen_in_from = set() seen_src_in_from = set() seen_tgt_in_from = set() from_count = 0 with open(from_src_file, encoding='utf-8') as fsrc, \ open(from_tgt_file, encoding='utf-8') as ftgt: for s, t in zip(fsrc, ftgt): seen_in_from.add((s, t)) seen_src_in_from.add(s) seen_tgt_in_from.add(t) from_count += 1 common = 0 common_src = 0 common_tgt = 0 to_count = 0 seen = set() with open(to_src_file, encoding='utf-8') as fsrc, \ open(to_tgt_file, encoding='utf-8') as ftgt: for s, t in zip(fsrc, ftgt): to_count += 1 if (s, t) not in seen: if (s, t) in seen_in_from: common += 1 if s in seen_src_in_from: common_src += 1 seen_src_in_from.remove(s) if t in seen_tgt_in_from: common_tgt += 1 seen_tgt_in_from.remove(t) seen.add((s, t)) return common, common_src, common_tgt, from_count, to_count def main(): parser = argparse.ArgumentParser() parser.add_argument("--folder", type=str, required=True, help="the data folder ") parser.add_argument("--split", type=str, default='test', help="split (valid, test) to check against training data") parser.add_argument('--directions', type=str, default=None, required=False) args = parser.parse_args() if args.directions is None: directions = set(get_directions(args.folder)) directions = sorted(directions) else: directions = args.directions.split(',') directions = sorted(set(directions)) results = [] print(f'checking where {args.split} split data are in training') print(f'direction\tcommon_count\tsrc common\ttgt common\tfrom_size\tto_size') for direction in directions: src, tgt = direction.split('-') from_src_file = f'{args.folder}/{args.split}.{src}-{tgt}.{src}' from_tgt_file = f'{args.folder}/{args.split}.{src}-{tgt}.{tgt}' if not os.path.exists(from_src_file): # some test/valid data might in reverse directinos: from_src_file = f'{args.folder}/{args.split}.{tgt}-{src}.{src}' from_tgt_file = f'{args.folder}/{args.split}.{tgt}-{src}.{tgt}' to_src_file = f'{args.folder}/train.{src}-{tgt}.{src}' to_tgt_file = f'{args.folder}/train.{src}-{tgt}.{tgt}' if not os.path.exists(to_src_file) or not os.path.exists(from_src_file): continue r = check_diff(from_src_file, from_tgt_file, to_src_file, to_tgt_file) results.append(r) print(f'{direction}\t', '\t'.join(map(str, r))) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/check_self_overlaps.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. #!/bin/python import fasttext from multiprocessing import Pool import contextlib import sys import argparse from functools import partial import io model = None def init(model_path): global model model = fasttext.load_model(model_path) def pred(lines): return lines, [model.predict(line.strip())[0][0][9:] for line in lines] def main(): parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, required=True, help="model to load") parser.add_argument("--inputs", nargs="+", default=['-'], help="input files to filter") parser.add_argument("--langs", nargs="+", required=True, help="lang ids of each input file") parser.add_argument("--outputs", nargs="+", default=['-'], help="path to save lid filtered outputs") parser.add_argument("--num-workers", type=int, metavar="N", default=10, help="number of processes in parallel") args = parser.parse_args() assert len(args.inputs) == len(args.langs) and len(args.inputs) == len(args.outputs) with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8", newline="\n", errors="replace")) if input != "-" else io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8', errors="replace") for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8", newline="\n")) if output != "-" else sys.stdout for output in args.outputs ] with Pool(args.num_workers, initializer=partial(init, args.model)) as p: skip_cnt = 0 for lines, preds in p.imap(pred, list(zip(*inputs)), chunksize=500): if not all(a == b for a, b in zip(preds, args.langs)): skip_cnt += 1 continue for line, output_h in zip(lines, outputs): print(line.strip(), file=output_h) print(f"Skipped {skip_cnt} lines.") if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/utils/fasttext_multi_filter.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse def deup(src_file, tgt_file, src_file_out, tgt_file_out): seen = set() dup_count = 0 with open(src_file, encoding='utf-8') as fsrc, \ open(tgt_file, encoding='utf-8') as ftgt, \ open(src_file_out, 'w', encoding='utf-8') as fsrc_out, \ open(tgt_file_out, 'w', encoding='utf-8') as ftgt_out: for s, t in zip(fsrc, ftgt): if (s, t) not in seen: fsrc_out.write(s) ftgt_out.write(t) seen.add((s, t)) else: dup_count += 1 print(f'number of duplication: {dup_count}') def main(): parser = argparse.ArgumentParser() parser.add_argument("--src-file", type=str, required=True, help="src file") parser.add_argument("--tgt-file", type=str, required=True, help="tgt file") parser.add_argument("--src-file-out", type=str, required=True, help="src ouptut file") parser.add_argument("--tgt-file-out", type=str, required=True, help="tgt ouput file") args = parser.parse_args() deup(args.src_file, args.tgt_file, args.src_file_out, args.tgt_file_out) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/multilingual/data_scripts/utils/dedup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import rxf_src # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/rxf/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import label_smoothed_cross_entropy_r3f, sentence_prediction_r3f # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/rxf/rxf_src/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("sentence_prediction_r3f") class SentencePredictionR3F(FairseqCriterion): def __init__( self, task, eps, r3f_lambda, noise_type, classification_head_name, regression_target, ): super().__init__(task) self.eps = eps self.r3f_lambda = r3f_lambda self.noise_type = noise_type self.classification_head_name = classification_head_name self.regression_target = regression_target if self.noise_type in {"normal"}: self.noise_sampler = torch.distributions.normal.Normal( loc=0.0, scale=self.eps ) elif self.noise_type == "uniform": self.noise_sampler = torch.distributions.uniform.Uniform( low=-self.eps, high=self.eps ) else: raise Exception(f"unrecognized noise type {self.noise_type}") @staticmethod def add_args(parser): # fmt: off parser.add_argument('--eps', type=float, default=1e-5, help='noise eps') parser.add_argument('--r3f-lambda', type=float, default=1.0, help='lambda for combining logistic loss and noisy KL loss') parser.add_argument('--noise-type', type=str, default='uniform', choices=['normal', 'uniform'], help='type of noises for RXF methods') parser.add_argument('--classification-head-name', default='sentence_classification_head', help='name of the classification head to use') # fmt: on def _get_symm_kl(self, noised_logits, input_logits): return ( F.kl_div( F.log_softmax(noised_logits, dim=-1, dtype=torch.float32), F.softmax(input_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) + F.kl_div( F.log_softmax(input_logits, dim=-1, dtype=torch.float32), F.softmax(noised_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) ) / noised_logits.size(0) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert ( hasattr(model, "classification_heads") and self.classification_head_name in model.classification_heads ), "model must provide sentence classification head for --criterion=sentence_prediction" token_embeddings = model.encoder.sentence_encoder.embed_tokens( sample["net_input"]["src_tokens"] ) input_logits, _ = model( **sample["net_input"], features_only=True, classification_head_name=self.classification_head_name, token_embeddings=token_embeddings, ) if model.training and self.noise_sampler: noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to( token_embeddings ) noised_embeddings = token_embeddings.detach().clone() + noise noised_logits, _ = model( **sample["net_input"], features_only=True, classification_head_name=self.classification_head_name, token_embeddings=noised_embeddings, ) symm_kl = self._get_symm_kl(noised_logits, input_logits) else: symm_kl = 0 targets = model.get_targets(sample, [input_logits]).view(-1) sample_size = targets.numel() if not self.regression_target: loss = F.nll_loss( F.log_softmax(input_logits, dim=-1, dtype=torch.float32), targets, reduction="sum", ) if model.training: symm_kl = symm_kl * sample_size loss = loss + self.r3f_lambda * symm_kl else: logits = input_logits.squeeze().float() targets = targets.float() loss = F.mse_loss(logits, targets, reduction="sum") logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample_size, "sample_size": sample_size, } if not self.regression_target: preds = input_logits.max(dim=1)[1] logging_output.update(ncorrect=(preds == targets).sum().item()) if model.training and self.noise_sampler: logging_output.update( symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data ) return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / sample_size / math.log(2), "symm_kl": symm_kl_sum / sample_size, "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]: ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) agg_output.update(accuracy=ncorrect / nsentences) if sample_size != ntokens: agg_output["nll_loss"] = loss_sum / ntokens / math.log(2) return agg_output
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/rxf/rxf_src/sentence_prediction_r3f.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss @register_criterion("label_smoothed_cross_entropy_r3f") class LabelSmoothedCrossEntropyR3FCriterion(FairseqCriterion): def __init__( self, task, sentence_avg, label_smoothing, eps, r3f_lambda, noise_type ): super().__init__(task) self.sentence_avg = sentence_avg self.label_smoothing = label_smoothing self.eps = eps self.r3f_lambda = r3f_lambda self.noise_type = noise_type if self.noise_type in {"normal"}: self.noise_sampler = torch.distributions.normal.Normal( loc=0.0, scale=self.eps ) elif self.noise_type == "uniform": self.noise_sampler = torch.distributions.uniform.Uniform( low=-self.eps, high=self.eps ) else: raise Exception(f"unrecognized noise type {self.noise_type}") @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" # fmt: off parser.add_argument('--label-smoothing', default=0., type=float, metavar='D', help='epsilon for label smoothing, 0 means no label smoothing') parser.add_argument('--eps', type=float, default=1e-5, help='noise eps') parser.add_argument('--r3f-lambda', type=float, default=1.0, help='lambda for combining logistic loss and noisy KL loss') parser.add_argument('--noise-type', type=str, default='normal', choices=['normal', 'uniform'], help='type of noises') # fmt: on def _get_symm_kl(self, noised_logits, input_logits): return ( F.kl_div( F.log_softmax(noised_logits, dim=-1, dtype=torch.float32), F.softmax(input_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) + F.kl_div( F.log_softmax(input_logits, dim=-1, dtype=torch.float32), F.softmax(noised_logits, dim=-1, dtype=torch.float32), None, None, "sum", ) ) / noised_logits.size(0) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ token_embeddings = model.encoder.embed_tokens(sample["net_input"]["src_tokens"]) input_logits, extra = model(**sample["net_input"]) loss, nll_loss = self.compute_loss( model, (input_logits, extra), sample, reduce=reduce ) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) if model.training: noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to( token_embeddings ) noised_embeddings = token_embeddings.clone() + noise noised_logits, _ = model( **sample["net_input"], token_embeddings=noised_embeddings ) symm_kl = self._get_symm_kl(noised_logits, input_logits) if model.training: symm_kl = symm_kl * sample_size loss = loss + self.r3f_lambda * symm_kl logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } if model.training: logging_output.update( symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data ) return loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output).view(-1, 1) loss, nll_loss = label_smoothed_nll_loss( lprobs, target, self.label_smoothing, ignore_index=self.padding_idx, reduce=reduce, ) return loss, nll_loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs) metrics.log_scalar("symm_kl", symm_kl_sum / sample_size, sample_size, round=3) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/rxf/rxf_src/label_smoothed_cross_entropy_r3f.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import transformer_xl_model, truncated_bptt_lm_task # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/truncated_bptt/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import List, Optional, Tuple import torch from fairseq import distributed_utils as dist_utils, utils from fairseq.data import ( Dictionary, TokenBlockDataset, data_utils, iterators, ) from fairseq.dataclass import FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II logger = logging.getLogger(__name__) @dataclass class TruncatedBPTTLMConfig(FairseqDataclass): data: str = field(default="???", metadata={"help": "path to data directory"}) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sequence"}, ) batch_size: int = II("dataset.batch_size") # Some models use *max_target_positions* to know how many positional # embeddings to learn. We use II(...) to make it default to # *tokens_per_sample*, but in principle there could be more positional # embeddings than tokens in a single batch. This may also be irrelevant for # custom model implementations. max_target_positions: int = II("task.tokens_per_sample") # these will be populated automatically if not provided data_parallel_rank: Optional[int] = None data_parallel_size: Optional[int] = None @register_task("truncated_bptt_lm", dataclass=TruncatedBPTTLMConfig) class TruncatedBPTTLMTask(FairseqTask): def __init__(self, cfg: TruncatedBPTTLMConfig): super().__init__(cfg) if cfg.data_parallel_rank is None or cfg.data_parallel_size is None: if torch.distributed.is_initialized(): cfg.data_parallel_rank = dist_utils.get_data_parallel_rank() cfg.data_parallel_size = dist_utils.get_data_parallel_world_size() else: cfg.data_parallel_rank = 0 cfg.data_parallel_size = 1 # load the dictionary paths = utils.split_paths(cfg.data) assert len(paths) > 0 self.dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(self.dictionary))) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test)""" # support sharded datasets paths = utils.split_paths(self.cfg.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) # each element of *data* will be a tensorized line from the original # text dataset, similar to ``open(split_path).readlines()`` data = data_utils.load_indexed_dataset( split_path, self.dictionary, combine=combine ) if data is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) # this is similar to ``data.view(-1).split(tokens_per_sample)`` data = TokenBlockDataset( data, data.sizes, block_size=self.cfg.tokens_per_sample, pad=None, # unused eos=None, # unused break_mode="none", ) self.datasets[split] = TruncatedBPTTDataset( data=data, bsz_per_shard=self.cfg.batch_size, shard_id=self.cfg.data_parallel_rank, num_shards=self.cfg.data_parallel_size, ) def dataset(self, split): return self.datasets[split] def get_batch_iterator( self, dataset, num_workers=0, epoch=1, data_buffer_size=0, **kwargs ): return iterators.EpochBatchIterator( dataset=dataset, collate_fn=self._collate_fn, num_workers=num_workers, epoch=epoch, buffer_size=data_buffer_size, # we don't use the batching functionality from EpochBatchIterator; # instead every item in *dataset* is a whole batch batch_sampler=[[i] for i in range(len(dataset))], disable_shuffling=True, ) def _collate_fn(self, items: List[List[torch.Tensor]]): # we don't use fairseq's batching functionality, so we expect a single # Tensor of type List[torch.Tensor] assert len(items) == 1 # item will have shape B x T (the last batch may have length < T) id, item = items[0] item = data_utils.collate_tokens(item, pad_idx=self.source_dictionary.pad()) B, T = item.size() # shift item one position over and append a padding token for the target target = torch.nn.functional.pad( item[:, 1:], (0, 1, 0, 0), value=self.target_dictionary.pad() ) # fairseq expects batches to have the following structure return { "id": torch.tensor([id]*item.size(0)), "net_input": { "src_tokens": item, }, "target": target, "nsentences": item.size(0), "ntokens": item.numel(), } def build_dataset_for_inference( self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs ) -> torch.utils.data.Dataset: eos = self.source_dictionary.eos() dataset = TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=eos, break_mode="eos", ) class Dataset(torch.utils.data.Dataset): def __getitem__(self, i): item = dataset[i] if item[-1] == eos: # remove eos to support generating with a prefix item = item[:-1] return (i, [item]) def __len__(self): return len(dataset) return Dataset() def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): if constraints is not None: raise NotImplementedError # SequenceGenerator doesn't use *src_tokens* directly, we need to # pass the *prefix_tokens* argument instead. if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] # begin generation with the end-of-sentence token bos_token = self.source_dictionary.eos() return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token ) def eval_lm_dataloader( self, dataset, max_tokens: Optional[int] = 36000, batch_size: Optional[int] = None, max_positions: Optional[int] = None, num_shards: int = 1, shard_id: int = 0, num_workers: int = 1, data_buffer_size: int = 10, context_window: int = 0, ): if context_window > 0: raise NotImplementedError( "Transformer-XL doesn't need --context-window, try " "--model-overrides '{\"mem_len\":42}' instead " ) return self.get_batch_iterator( dataset=dataset, max_tokens=max_tokens, max_sentences=batch_size, max_positions=max_positions, ignore_invalid_inputs=True, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, data_buffer_size=data_buffer_size, ).next_epoch_itr(shuffle=False) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class TruncatedBPTTDataset(torch.utils.data.Dataset): def __init__( self, data: List[torch.Tensor], # ordered list of items bsz_per_shard, # number of items processed per GPUs per forward shard_id, # current GPU ID num_shards, # number of GPUs ): super().__init__() self.data = data def batchify(data, bsz): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).contiguous() return data # total number of sequences processed by all GPUs in each forward pass global_batch_size = bsz_per_shard * num_shards """ With a 16 item dataset, bsz_per_shard=2 and num_shards=3, *indices* might look like: indices = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]] The size of the TruncatedBPTTDataset instance will be 2, and shard 1 will see items: [(0, [data[4], data[6]]), (1, [data[5], data[7]])] """ indices = batchify(torch.arange(len(data)), global_batch_size) assert indices.size(0) == global_batch_size self.my_indices = indices[ shard_id * bsz_per_shard : (shard_id + 1) * bsz_per_shard ] assert self.my_indices.size(0) == bsz_per_shard def __len__(self): return self.my_indices.size(1) def __getitem__(self, i) -> Tuple[int, List[torch.Tensor]]: return (i, [self.data[idx] for idx in self.my_indices[:, i]])
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/truncated_bptt/truncated_bptt_lm_task.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Dict, List, Optional import torch from fairseq.dataclass import FairseqDataclass from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from omegaconf import II logger = logging.getLogger(__name__) @dataclass class TransformerXLConfig(FairseqDataclass): # defaults come from the original Transformer-XL code cutoffs: List[int] = field(default_factory=lambda: [20000, 40000, 200000]) d_model: int = 500 n_head: int = 10 d_head: int = 50 d_inner: int = 1000 div_val: int = 1 n_layer: int = 12 mem_len: int = 0 clamp_len: int = -1 same_length: bool = False dropout: float = 0.0 dropatt: float = 0.0 checkpoint_activations: bool = False max_target_positions: int = II("task.max_target_positions") @register_model("transformer_xl", dataclass=TransformerXLConfig) class TransformerXLLanguageModel(FairseqLanguageModel): @classmethod def build_model(cls, cfg: TransformerXLConfig, task): return cls(TransformerXLDecoder(cfg, task)) class TransformerXLDecoder(FairseqIncrementalDecoder): def __init__(self, cfg, task): try: from transformers.models.transfo_xl import ( TransfoXLConfig, TransfoXLLMHeadModel ) except ImportError: from transformers.configuration_transfo_xl import TransfoXLConfig from transformers.modeling_transfo_xl import TransfoXLLMHeadModel super().__init__(task.target_dictionary) self.cfg = cfg # remove any cutoffs larger than the vocab size cutoffs = [ cutoff for cutoff in cfg.cutoffs if cutoff < len(task.target_dictionary) ] config = TransfoXLConfig( vocab_size=len(task.target_dictionary), cutoffs=cutoffs, d_model=cfg.d_model, d_embed=cfg.d_model, n_head=cfg.n_head, d_head=cfg.d_head, d_inner=cfg.d_inner, div_val=cfg.div_val, n_layer=cfg.n_layer, mem_len=cfg.mem_len, clamp_len=cfg.clamp_len, same_length=cfg.same_length, dropout=cfg.dropout, dropatt=cfg.dropatt, ) logger.info(config) self.model = TransfoXLLMHeadModel(config) # Workaround a bug in huggingface's ``ProjectedAdaptiveLogSoftmax`` # which adds ``None`` values to an ``nn.ParameterList``, which is not # supported in PyTorch. Instead we can replace this with an # ``nn.ModuleList``, which does support ``None`` values. try: if all(p is None for p in self.model.crit.out_projs._parameters.values()): self.model.crit.out_projs = torch.nn.ModuleList( [None] * len(self.model.crit.out_projs._parameters) ) except Exception: pass if cfg.checkpoint_activations: for i in range(len(self.model.transformer.layers)): self.model.transformer.layers[i] = checkpoint_wrapper( self.model.transformer.layers[i] ) self._mems = None def forward( self, src_tokens, src_lengths=None, # unused incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, encoder_out=None, ): if incremental_state is not None: # used during inference mems = self.get_incremental_state(incremental_state, "mems") src_tokens = src_tokens[:, -1:] # only keep the most recent token else: mems = self._mems output = self.model( input_ids=src_tokens, mems=mems, return_dict=False, ) if len(output) >= 2: if incremental_state is not None: self.set_incremental_state(incremental_state, "mems", output[1]) else: self._mems = output[1] return (output[0],) def max_positions(self): return self.cfg.max_target_positions def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]], new_order: torch.Tensor, ): """Reorder incremental state. This will be called when the order of the input has changed from the previous time step. A typical use case is beam search, where the input order changes between time steps based on the selection of beams. """ mems = self.get_incremental_state(incremental_state, "mems") if mems is not None: new_mems = [mems_i.index_select(1, new_order) for mems_i in mems] self.set_incremental_state(incremental_state, "mems", new_mems)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/truncated_bptt/transformer_xl_model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Helper script to pre-compute embeddings for a flashlight (previously called wav2letter++) dataset """ import argparse import glob import os from shutil import copy import h5py import numpy as np import soundfile as sf import torch import tqdm import fairseq from torch import nn def read_audio(fname): """ Load an audio file and return PCM along with the sample rate """ wav, sr = sf.read(fname) assert sr == 16e3 return wav, 16e3 class PretrainedWav2VecModel(nn.Module): def __init__(self, fname): super().__init__() model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([fname]) model = model[0] model.eval() self.model = model def forward(self, x): with torch.no_grad(): z = self.model.feature_extractor(x) if isinstance(z, tuple): z = z[0] c = self.model.feature_aggregator(z) return z, c class EmbeddingWriterConfig(argparse.ArgumentParser): def __init__(self): super().__init__("Pre-compute embeddings for flashlight datasets") kwargs = {"action": "store", "type": str, "required": True} self.add_argument("--input", "-i", help="Input Directory", **kwargs) self.add_argument("--output", "-o", help="Output Directory", **kwargs) self.add_argument("--model", help="Path to model checkpoint", **kwargs) self.add_argument("--split", help="Dataset Splits", nargs="+", **kwargs) self.add_argument( "--ext", default="wav", required=False, help="Audio file extension" ) self.add_argument( "--no-copy-labels", action="store_true", help="Do not copy label files. Useful for large datasets, use --targetdir in flashlight then.", ) self.add_argument( "--use-feat", action="store_true", help="Use the feature vector ('z') instead of context vector ('c') for features", ) self.add_argument("--gpu", help="GPU to use", default=0, type=int) class Prediction: """ Lightweight wrapper around a fairspeech embedding model """ def __init__(self, fname, gpu=0): self.gpu = gpu self.model = PretrainedWav2VecModel(fname).cuda(gpu) def __call__(self, x): x = torch.from_numpy(x).float().cuda(self.gpu) with torch.no_grad(): z, c = self.model(x.unsqueeze(0)) return z.squeeze(0).cpu().numpy(), c.squeeze(0).cpu().numpy() class H5Writer: """ Write features as hdf5 file in flashlight compatible format """ def __init__(self, fname): self.fname = fname os.makedirs(os.path.dirname(self.fname), exist_ok=True) def write(self, data): channel, T = data.shape with h5py.File(self.fname, "w") as out_ds: data = data.T.flatten() out_ds["features"] = data out_ds["info"] = np.array([16e3 // 160, T, channel]) class EmbeddingDatasetWriter(object): """Given a model and a flashlight dataset, pre-compute and store embeddings Args: input_root, str : Path to the flashlight dataset output_root, str : Desired output directory. Will be created if non-existent split, str : Dataset split """ def __init__( self, input_root, output_root, split, model_fname, extension="wav", gpu=0, verbose=False, use_feat=False, ): assert os.path.exists(model_fname) self.model_fname = model_fname self.model = Prediction(self.model_fname, gpu) self.input_root = input_root self.output_root = output_root self.split = split self.verbose = verbose self.extension = extension self.use_feat = use_feat assert os.path.exists(self.input_path), "Input path '{}' does not exist".format( self.input_path ) def _progress(self, iterable, **kwargs): if self.verbose: return tqdm.tqdm(iterable, **kwargs) return iterable def require_output_path(self, fname=None): path = self.get_output_path(fname) os.makedirs(path, exist_ok=True) @property def input_path(self): return self.get_input_path() @property def output_path(self): return self.get_output_path() def get_input_path(self, fname=None): if fname is None: return os.path.join(self.input_root, self.split) return os.path.join(self.get_input_path(), fname) def get_output_path(self, fname=None): if fname is None: return os.path.join(self.output_root, self.split) return os.path.join(self.get_output_path(), fname) def copy_labels(self): self.require_output_path() labels = list( filter( lambda x: self.extension not in x, glob.glob(self.get_input_path("*")) ) ) for fname in tqdm.tqdm(labels): copy(fname, self.output_path) @property def input_fnames(self): return sorted(glob.glob(self.get_input_path("*.{}".format(self.extension)))) def __len__(self): return len(self.input_fnames) def write_features(self): paths = self.input_fnames fnames_context = map( lambda x: os.path.join( self.output_path, x.replace("." + self.extension, ".h5context") ), map(os.path.basename, paths), ) for name, target_fname in self._progress( zip(paths, fnames_context), total=len(self) ): wav, sr = read_audio(name) z, c = self.model(wav) feat = z if self.use_feat else c writer = H5Writer(target_fname) writer.write(feat) def __repr__(self): return "EmbeddingDatasetWriter ({n_files} files)\n\tinput:\t{input_root}\n\toutput:\t{output_root}\n\tsplit:\t{split})".format( n_files=len(self), **self.__dict__ ) if __name__ == "__main__": args = EmbeddingWriterConfig().parse_args() for split in args.split: writer = EmbeddingDatasetWriter( input_root=args.input, output_root=args.output, split=split, model_fname=args.model, gpu=args.gpu, extension=args.ext, use_feat=args.use_feat, ) print(writer) writer.require_output_path() print("Writing Features...") writer.write_features() print("Done.") if not args.no_copy_labels: print("Copying label data...") writer.copy_labels() print("Done.")
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/wav2vec/wav2vec_featurize.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Data pre-processing: build vocabularies and binarize training data. """ import argparse import glob import os import random import soundfile def get_parser(): parser = argparse.ArgumentParser() parser.add_argument( "root", metavar="DIR", help="root directory containing flac files to index" ) parser.add_argument( "--valid-percent", default=0.01, type=float, metavar="D", help="percentage of data to use as validation set (between 0 and 1)", ) parser.add_argument( "--dest", default=".", type=str, metavar="DIR", help="output directory" ) parser.add_argument( "--ext", default="flac", type=str, metavar="EXT", help="extension to look for" ) parser.add_argument("--seed", default=42, type=int, metavar="N", help="random seed") parser.add_argument( "--path-must-contain", default=None, type=str, metavar="FRAG", help="if set, path must contain this substring for a file to be included in the manifest", ) return parser def main(args): assert args.valid_percent >= 0 and args.valid_percent <= 1.0 if not os.path.exists(args.dest): os.makedirs(args.dest) dir_path = os.path.realpath(args.root) search_path = os.path.join(dir_path, "**/*." + args.ext) rand = random.Random(args.seed) with open(os.path.join(args.dest, "train.tsv"), "w") as train_f, open( os.path.join(args.dest, "valid.tsv"), "w" ) as valid_f: print(dir_path, file=train_f) print(dir_path, file=valid_f) for fname in glob.iglob(search_path, recursive=True): file_path = os.path.realpath(fname) if args.path_must_contain and args.path_must_contain not in file_path: continue frames = soundfile.info(fname).frames dest = train_f if rand.random() > args.valid_percent else valid_f print( "{}\t{}".format(os.path.relpath(file_path, dir_path), frames), file=dest ) if __name__ == "__main__": parser = get_parser() args = parser.parse_args() main(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/wav2vec/wav2vec_manifest.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Helper script to pre-compute embeddings for a flashlight (previously called wav2letter++) dataset """ import argparse import os def main(): parser = argparse.ArgumentParser() parser.add_argument("tsv") parser.add_argument("--output-dir", required=True) parser.add_argument("--output-name", required=True) args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) transcriptions = {} with open(args.tsv, "r") as tsv, open( os.path.join(args.output_dir, args.output_name + ".ltr"), "w" ) as ltr_out, open( os.path.join(args.output_dir, args.output_name + ".wrd"), "w" ) as wrd_out: root = next(tsv).strip() for line in tsv: line = line.strip() dir = os.path.dirname(line) if dir not in transcriptions: parts = dir.split(os.path.sep) trans_path = f"{parts[-2]}-{parts[-1]}.trans.txt" path = os.path.join(root, dir, trans_path) assert os.path.exists(path) texts = {} with open(path, "r") as trans_f: for tline in trans_f: items = tline.strip().split() texts[items[0]] = " ".join(items[1:]) transcriptions[dir] = texts part = os.path.basename(line).split(".")[0] assert part in transcriptions[dir] print(transcriptions[dir][part], file=wrd_out) print( " ".join(list(transcriptions[dir][part].replace(" ", "|"))) + " |", file=ltr_out, ) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/wav2vec/libri_labels.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Helper script to pre-compute embeddings for a flashlight (previously called wav2letter++) dataset """ import argparse import glob import os import os.path as osp import pprint import soundfile as sf import torch import fairseq from torch import nn from torch.utils.data import DataLoader try: import tqdm except: print("Install tqdm to use --log-format=tqdm") class FilesDataset: def __init__(self, files, labels): self.files = files if labels and osp.exists(labels): with open(labels, "r") as lbl_f: self.labels = [line.rstrip() for line in lbl_f] else: self.labels = labels def __len__(self): return len(self.files) def __getitem__(self, index): fname = self.files[index] wav, sr = sf.read(fname) assert sr == 16000 wav = torch.from_numpy(wav).float() lbls = None if self.labels: if isinstance(self.labels, str): lbl_file = osp.splitext(fname)[0] + "." + self.labels with open(lbl_file, "r") as lblf: lbls = lblf.readline() assert lbls is not None else: lbls = self.labels[index] return wav, lbls def collate(self, batch): return batch class ArgTypes: @staticmethod def existing_path(arg): arg = str(arg) assert osp.exists(arg), f"File {arg} does not exist" return arg @staticmethod def mkdir(arg): arg = str(arg) os.makedirs(arg, exist_ok=True) return arg class DatasetWriter: def __init__(self): self.args = self.load_config() pprint.pprint(self.args.__dict__) self.model = self.load_model() def __getattr__(self, attr): return getattr(self.args, attr) def read_manifest(self, fname): with open(fname, "r") as fp: lines = fp.read().split("\n") root = lines.pop(0).strip() fnames = [ osp.join(root, line.split("\t")[0]) for line in lines if len(line) > 0 ] return fnames def process_splits(self): if self.args.shard is not None or self.args.num_shards is not None: assert self.args.shard is not None and self.args.num_shards is not None for split in self.splits: print(split) if self.extension == "tsv": datadir = osp.join(self.data_dir, f"{split}.{self.extension}") print("Reading manifest file: ", datadir) files = self.read_manifest(datadir) else: datadir = osp.join(self.data_dir, split, f"**/*.{self.extension}") files = glob.glob(datadir, recursive=True) assert len(files) > 0 if self.args.shard is not None: files = files[self.args.shard :: self.args.num_shards] lbls = [] with open(self.data_file(split), "w") as srcf: for line, lbl in self.iterate(files): print(line, file=srcf) if self.args.labels: lbls.append(lbl + "\n") if self.args.labels: assert all(a is not None for a in lbls) with open(self.lbl_file(split), "w") as lblf: lblf.writelines(lbls) def iterate(self, files): data = self.load_data(files) for samples in tqdm.tqdm(data, total=len(files) // 32): for wav, lbl in samples: x = wav.unsqueeze(0).float().cuda() div = 1 while x.size(-1) // div > self.args.max_size: div += 1 xs = x.chunk(div, dim=-1) result = [] for x in xs: torch.cuda.empty_cache() x = self.model.feature_extractor(x) if self.quantize_location == "encoder": with torch.no_grad(): _, idx = self.model.vector_quantizer.forward_idx(x) idx = idx.squeeze(0).cpu() else: with torch.no_grad(): z = self.model.feature_aggregator(x) _, idx = self.model.vector_quantizer.forward_idx(z) idx = idx.squeeze(0).cpu() result.append(idx) idx = torch.cat(result, dim=0) yield " ".join("-".join(map(str, a.tolist())) for a in idx), lbl def lbl_file(self, name): shard_part = "" if self.args.shard is None else f".{self.args.shard}" return osp.join(self.output_dir, f"{name}.lbl{shard_part}") def data_file(self, name): shard_part = "" if self.args.shard is None else f".{self.args.shard}" return osp.join(self.output_dir, f"{name}.src{shard_part}") def var_file(self): return osp.join(self.output_dir, f"vars.pt") def load_config(self): parser = argparse.ArgumentParser("Vector Quantized wav2vec features") # Model Arguments parser.add_argument("--checkpoint", type=ArgTypes.existing_path, required=True) parser.add_argument("--data-parallel", action="store_true") # Output Arguments parser.add_argument("--output-dir", type=ArgTypes.mkdir, required=True) # Data Arguments parser.add_argument("--data-dir", type=ArgTypes.existing_path, required=True) parser.add_argument("--splits", type=str, nargs="+", required=True) parser.add_argument("--extension", type=str, required=True) parser.add_argument("--labels", type=str, required=False) parser.add_argument("--shard", type=int, default=None) parser.add_argument("--num-shards", type=int, default=None) parser.add_argument("--max-size", type=int, default=1300000) # Logger Arguments parser.add_argument( "--log-format", type=str, choices=["none", "simple", "tqdm"] ) return parser.parse_args() def load_data(self, fnames): dataset = FilesDataset(fnames, self.args.labels) loader = DataLoader( dataset, batch_size=32, collate_fn=dataset.collate, num_workers=8 ) return loader def load_model(self): model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([self.checkpoint]) model = model[0] self.quantize_location = getattr(cfg.model, "vq", "encoder") model.eval().float() model.cuda() if self.data_parallel: model = nn.DataParallel(model) return model def __call__(self): self.process_splits() if hasattr(self.model.feature_extractor, "vars") and ( self.args.shard is None or self.args.shard == 0 ): vars = ( self.model.feature_extractor.vars.view( self.model.feature_extractor.banks, self.model.feature_extractor.num_vars, -1, ) .cpu() .detach() ) print("writing learned latent variable embeddings: ", vars.shape) torch.save(vars, self.var_file()) if __name__ == "__main__": write_data = DatasetWriter() write_data() print("Done.")
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/wav2vec/vq-wav2vec_featurize.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import contextlib import sys from collections import Counter from multiprocessing import Pool from fairseq.data.encoders.gpt2_bpe import get_encoder def main(): """ Helper script to encode raw text with the GPT-2 BPE using multiple processes. The encoder.json and vocab.bpe files can be obtained here: - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe """ parser = argparse.ArgumentParser() parser.add_argument( "--encoder-json", help="path to encoder.json", ) parser.add_argument( "--vocab-bpe", type=str, help="path to vocab.bpe", ) parser.add_argument( "--inputs", nargs="+", default=["-"], help="input files to filter/encode", ) parser.add_argument( "--outputs", nargs="+", default=["-"], help="path to save encoded outputs", ) parser.add_argument( "--keep-empty", action="store_true", help="keep empty lines", ) parser.add_argument("--workers", type=int, default=20) args = parser.parse_args() assert len(args.inputs) == len( args.outputs ), "number of input and output paths should match" with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8")) if input != "-" else sys.stdin for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8")) if output != "-" else sys.stdout for output in args.outputs ] encoder = MultiprocessingEncoder(args) pool = Pool(args.workers, initializer=encoder.initializer) encoded_lines = pool.imap(encoder.encode_lines, zip(*inputs), 100) stats = Counter() for i, (filt, enc_lines) in enumerate(encoded_lines, start=1): if filt == "PASS": for enc_line, output_h in zip(enc_lines, outputs): print(enc_line, file=output_h) else: stats["num_filtered_" + filt] += 1 if i % 10000 == 0: print("processed {} lines".format(i), file=sys.stderr) for k, v in stats.most_common(): print("[{}] filtered {} lines".format(k, v), file=sys.stderr) class MultiprocessingEncoder(object): def __init__(self, args): self.args = args def initializer(self): global bpe bpe = get_encoder(self.args.encoder_json, self.args.vocab_bpe) def encode(self, line): global bpe ids = bpe.encode(line) return list(map(str, ids)) def decode(self, tokens): global bpe return bpe.decode(tokens) def encode_lines(self, lines): """ Encode a set of lines. All lines will be encoded together. """ enc_lines = [] for line in lines: line = line.strip() if len(line) == 0 and not self.args.keep_empty: return ["EMPTY", None] tokens = self.encode(line) enc_lines.append(" ".join(tokens)) return ["PASS", enc_lines] def decode_lines(self, lines): dec_lines = [] for line in lines: tokens = map(int, line.strip().split()) dec_lines.append(self.decode(tokens)) return ["PASS", dec_lines] if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/multiprocessing_bpe_encoder.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import re class InputExample: def __init__(self, paragraph, qa_list, label): self.paragraph = paragraph self.qa_list = qa_list self.label = label def get_examples(data_dir, set_type): """ Extract paragraph and question-answer list from each json file """ examples = [] levels = ["middle", "high"] set_type_c = set_type.split("-") if len(set_type_c) == 2: levels = [set_type_c[1]] set_type = set_type_c[0] for level in levels: cur_dir = os.path.join(data_dir, set_type, level) for filename in os.listdir(cur_dir): cur_path = os.path.join(cur_dir, filename) with open(cur_path, "r") as f: cur_data = json.load(f) answers = cur_data["answers"] options = cur_data["options"] questions = cur_data["questions"] context = cur_data["article"].replace("\n", " ") context = re.sub(r"\s+", " ", context) for i in range(len(answers)): label = ord(answers[i]) - ord("A") qa_list = [] question = questions[i] for j in range(4): option = options[i][j] if "_" in question: qa_cat = question.replace("_", option) else: qa_cat = " ".join([question, option]) qa_cat = re.sub(r"\s+", " ", qa_cat) qa_list.append(qa_cat) examples.append(InputExample(context, qa_list, label)) return examples def main(): """ Helper script to extract paragraphs questions and answers from RACE datasets. """ parser = argparse.ArgumentParser() parser.add_argument( "--input-dir", help="input directory for downloaded RACE dataset", ) parser.add_argument( "--output-dir", help="output directory for extracted data", ) args = parser.parse_args() if not os.path.exists(args.output_dir): os.makedirs(args.output_dir, exist_ok=True) for set_type in ["train", "dev", "test-middle", "test-high"]: examples = get_examples(args.input_dir, set_type) qa_file_paths = [ os.path.join(args.output_dir, set_type + ".input" + str(i + 1)) for i in range(4) ] qa_files = [open(qa_file_path, "w") for qa_file_path in qa_file_paths] outf_context_path = os.path.join(args.output_dir, set_type + ".input0") outf_label_path = os.path.join(args.output_dir, set_type + ".label") outf_context = open(outf_context_path, "w") outf_label = open(outf_label_path, "w") for example in examples: outf_context.write(example.paragraph + "\n") for i in range(4): qa_files[i].write(example.qa_list[i] + "\n") outf_label.write(str(example.label) + "\n") for f in qa_files: f.close() outf_label.close() outf_context.close() if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/preprocess_RACE.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json from functools import lru_cache def convert_sentence_to_json(sentence): if "_" in sentence: prefix, rest = sentence.split("_", 1) query, rest = rest.split("_", 1) query_index = len(prefix.rstrip().split(" ")) else: query, query_index = None, None prefix, rest = sentence.split("[", 1) pronoun, rest = rest.split("]", 1) pronoun_index = len(prefix.rstrip().split(" ")) sentence = sentence.replace("_", "").replace("[", "").replace("]", "") return { "idx": 0, "text": sentence, "target": { "span1_index": query_index, "span1_text": query, "span2_index": pronoun_index, "span2_text": pronoun, }, } def extended_noun_chunks(sentence): noun_chunks = {(np.start, np.end) for np in sentence.noun_chunks} np_start, cur_np = 0, "NONE" for i, token in enumerate(sentence): np_type = token.pos_ if token.pos_ in {"NOUN", "PROPN"} else "NONE" if np_type != cur_np: if cur_np != "NONE": noun_chunks.add((np_start, i)) if np_type != "NONE": np_start = i cur_np = np_type if cur_np != "NONE": noun_chunks.add((np_start, len(sentence))) return [sentence[s:e] for (s, e) in sorted(noun_chunks)] def find_token(sentence, start_pos): found_tok = None for tok in sentence: if tok.idx == start_pos: found_tok = tok break return found_tok def find_span(sentence, search_text, start=0): search_text = search_text.lower() for tok in sentence[start:]: remainder = sentence[tok.i :].text.lower() if remainder.startswith(search_text): len_to_consume = len(search_text) start_idx = tok.idx for next_tok in sentence[tok.i :]: end_idx = next_tok.idx + len(next_tok.text) if end_idx - start_idx == len_to_consume: span = sentence[tok.i : next_tok.i + 1] return span return None @lru_cache(maxsize=1) def get_detokenizer(): from sacremoses import MosesDetokenizer detok = MosesDetokenizer(lang="en") return detok @lru_cache(maxsize=1) def get_spacy_nlp(): import en_core_web_lg nlp = en_core_web_lg.load() return nlp def jsonl_iterator(input_fname, positive_only=False, ngram_order=3, eval=False): detok = get_detokenizer() nlp = get_spacy_nlp() with open(input_fname) as fin: for line in fin: sample = json.loads(line.strip()) if positive_only and "label" in sample and not sample["label"]: # only consider examples where the query is correct continue target = sample["target"] # clean up the query query = target["span1_text"] if query is not None: if "\n" in query: continue if query.endswith(".") or query.endswith(","): query = query[:-1] # split tokens tokens = sample["text"].split(" ") def strip_pronoun(x): return x.rstrip('.,"') # find the pronoun pronoun_idx = target["span2_index"] pronoun = strip_pronoun(target["span2_text"]) if strip_pronoun(tokens[pronoun_idx]) != pronoun: # hack: sometimes the index is misaligned if strip_pronoun(tokens[pronoun_idx + 1]) == pronoun: pronoun_idx += 1 else: raise Exception("Misaligned pronoun!") assert strip_pronoun(tokens[pronoun_idx]) == pronoun # split tokens before and after the pronoun before = tokens[:pronoun_idx] after = tokens[pronoun_idx + 1 :] # the GPT BPE attaches leading spaces to tokens, so we keep track # of whether we need spaces before or after the pronoun leading_space = " " if pronoun_idx > 0 else "" trailing_space = " " if len(after) > 0 else "" # detokenize before = detok.detokenize(before, return_str=True) pronoun = detok.detokenize([pronoun], return_str=True) after = detok.detokenize(after, return_str=True) # hack: when the pronoun ends in a period (or comma), move the # punctuation to the "after" part if pronoun.endswith(".") or pronoun.endswith(","): after = pronoun[-1] + trailing_space + after pronoun = pronoun[:-1] # hack: when the "after" part begins with a comma or period, remove # the trailing space if after.startswith(".") or after.startswith(","): trailing_space = "" # parse sentence with spacy sentence = nlp(before + leading_space + pronoun + trailing_space + after) # find pronoun span start = len(before + leading_space) first_pronoun_tok = find_token(sentence, start_pos=start) pronoun_span = find_span(sentence, pronoun, start=first_pronoun_tok.i) assert pronoun_span.text == pronoun if eval: # convert to format where pronoun is surrounded by "[]" and # query is surrounded by "_" query_span = find_span(sentence, query) query_with_ws = "_{}_{}".format( query_span.text, (" " if query_span.text_with_ws.endswith(" ") else ""), ) pronoun_with_ws = "[{}]{}".format( pronoun_span.text, (" " if pronoun_span.text_with_ws.endswith(" ") else ""), ) if query_span.start < pronoun_span.start: first = (query_span, query_with_ws) second = (pronoun_span, pronoun_with_ws) else: first = (pronoun_span, pronoun_with_ws) second = (query_span, query_with_ws) sentence = ( sentence[: first[0].start].text_with_ws + first[1] + sentence[first[0].end : second[0].start].text_with_ws + second[1] + sentence[second[0].end :].text ) yield sentence, sample.get("label", None) else: yield sentence, pronoun_span, query, sample.get("label", None) def winogrande_jsonl_iterator(input_fname, eval=False): with open(input_fname) as fin: for line in fin: sample = json.loads(line.strip()) sentence, option1, option2 = ( sample["sentence"], sample["option1"], sample["option2"], ) pronoun_span = (sentence.index("_"), sentence.index("_") + 1) if eval: query, cand = option1, option2 else: query = option1 if sample["answer"] == "1" else option2 cand = option2 if sample["answer"] == "1" else option1 yield sentence, pronoun_span, query, cand def filter_noun_chunks( chunks, exclude_pronouns=False, exclude_query=None, exact_match=False ): if exclude_pronouns: chunks = [ np for np in chunks if (np.lemma_ != "-PRON-" and not all(tok.pos_ == "PRON" for tok in np)) ] if exclude_query is not None: excl_txt = [exclude_query.lower()] filtered_chunks = [] for chunk in chunks: lower_chunk = chunk.text.lower() found = False for excl in excl_txt: if ( not exact_match and (lower_chunk in excl or excl in lower_chunk) ) or lower_chunk == excl: found = True break if not found: filtered_chunks.append(chunk) chunks = filtered_chunks return chunks
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/wsc/wsc_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import LegacyFairseqCriterion, register_criterion from fairseq.data import encoders @register_criterion("wsc") class WSCCriterion(LegacyFairseqCriterion): def __init__(self, args, task): super().__init__(args, task) if self.args.save_predictions is not None: self.prediction_h = open(self.args.save_predictions, "w") else: self.prediction_h = None self.bpe = encoders.build_bpe(args.bpe) self.tokenizer = encoders.build_tokenizer(args.tokenizer) def __del__(self): if self.prediction_h is not None: self.prediction_h.close() @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" parser.add_argument("--wsc-margin-alpha", type=float, metavar="A", default=1.0) parser.add_argument("--wsc-margin-beta", type=float, metavar="B", default=0.0) parser.add_argument( "--wsc-cross-entropy", action="store_true", help="use cross entropy formulation instead of margin loss", ) parser.add_argument( "--save-predictions", metavar="FILE", help="file to save predictions to" ) def get_masked_input(self, tokens, mask): masked_tokens = tokens.clone() masked_tokens[mask] = self.task.mask return masked_tokens def get_lprobs(self, model, tokens, mask): logits, _ = model(src_tokens=self.get_masked_input(tokens, mask)) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float) scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1) mask = mask.type_as(scores) scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1) return scores def get_loss(self, query_lprobs, cand_lprobs): if self.args.wsc_cross_entropy: return F.cross_entropy( torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0), query_lprobs.new([0]).long(), ) else: return ( -query_lprobs + self.args.wsc_margin_alpha * (cand_lprobs - query_lprobs + self.args.wsc_margin_beta).clamp(min=0) ).sum() def forward(self, model, sample, reduce=True): # compute loss and accuracy loss, nloss = 0.0, 0 ncorrect, nqueries = 0, 0 for i, label in enumerate(sample["labels"]): query_lprobs = self.get_lprobs( model, sample["query_tokens"][i].unsqueeze(0), sample["query_masks"][i].unsqueeze(0), ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"][i], sample["candidate_masks"][i], ) pred = (query_lprobs >= cand_lprobs).all().item() if label is not None: label = 1 if label else 0 ncorrect += 1 if pred == label else 0 nqueries += 1 if label: # only compute a loss for positive instances nloss += 1 loss += self.get_loss(query_lprobs, cand_lprobs) id = sample["id"][i].item() if self.prediction_h is not None: print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h) if nloss == 0: loss = torch.tensor(0.0, requires_grad=True) sample_size = nqueries if nqueries > 0 else 1 logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": nqueries, } return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / sample_size / math.log(2), "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) nqueries = sum(log.get("nqueries", 0) for log in logging_outputs) if nqueries > 0: agg_output["accuracy"] = ncorrect / float(nqueries) return agg_output @register_criterion("winogrande") class WinograndeCriterion(WSCCriterion): def forward(self, model, sample, reduce=True): # compute loss and accuracy query_lprobs = self.get_lprobs( model, sample["query_tokens"], sample["query_masks"], ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"], sample["candidate_masks"], ) pred = query_lprobs >= cand_lprobs loss = self.get_loss(query_lprobs, cand_lprobs) sample_size = sample["query_tokens"].size(0) ncorrect = pred.sum().item() logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": sample_size, } return loss, sample_size, logging_output
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/wsc/wsc_criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import wsc_criterion # noqa from . import wsc_task # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/wsc/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import tempfile import numpy as np import torch import torch.nn.functional as F from fairseq import utils from fairseq.data import ( Dictionary, IdDataset, ListDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PadDataset, SortDataset, data_utils, encoders, ) from fairseq.tasks import LegacyFairseqTask, register_task from . import wsc_utils @register_task("wsc") class WSCTask(LegacyFairseqTask): """Task to finetune RoBERTa for Winograd Schemas.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", metavar="DIR", help="path to data directory; we load <split>.jsonl" ) parser.add_argument( "--init-token", type=int, default=None, help="add token at the beginning of each batch item", ) def __init__(self, args, vocab): super().__init__(args) self.vocab = vocab self.mask = vocab.add_symbol("<mask>") self.bpe = encoders.build_bpe(args) self.tokenizer = encoders.build_tokenizer(args) # hack to handle GPT-2 BPE, which includes leading spaces if args.bpe == "gpt2": self.leading_space = True self.trailing_space = False else: self.leading_space = False self.trailing_space = True @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert args.criterion == "wsc", "Must set --criterion=wsc" # load data and label dictionaries vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) print("| dictionary: {} types".format(len(vocab))) return cls(args, vocab) def binarize(self, s: str, append_eos: bool = False): if self.tokenizer is not None: s = self.tokenizer.encode(s) if self.bpe is not None: s = self.bpe.encode(s) tokens = self.vocab.encode_line( s, append_eos=append_eos, add_if_not_exist=False, ).long() if self.args.init_token is not None: tokens = torch.cat([tokens.new([self.args.init_token]), tokens]) return tokens def binarize_with_mask(self, txt, prefix, suffix, leading_space, trailing_space): toks = self.binarize( prefix + leading_space + txt + trailing_space + suffix, append_eos=True, ) mask = torch.zeros_like(toks, dtype=torch.bool) mask_start = len(self.binarize(prefix)) mask_size = len(self.binarize(leading_space + txt)) mask[mask_start : mask_start + mask_size] = 1 return toks, mask def load_dataset( self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if data_path is None: data_path = os.path.join(self.args.data, split + ".jsonl") if not os.path.exists(data_path): raise FileNotFoundError("Cannot find data: {}".format(data_path)) query_tokens = [] query_masks = [] query_lengths = [] candidate_tokens = [] candidate_masks = [] candidate_lengths = [] labels = [] for sentence, pronoun_span, query, label in wsc_utils.jsonl_iterator(data_path): prefix = sentence[: pronoun_span.start].text suffix = sentence[pronoun_span.end :].text_with_ws # spaCy spans include trailing spaces, but we need to know about # leading spaces for the GPT-2 BPE leading_space = ( " " if sentence[: pronoun_span.start].text_with_ws.endswith(" ") else "" ) trailing_space = " " if pronoun_span.text_with_ws.endswith(" ") else "" # get noun phrases, excluding pronouns and anything overlapping with the query cand_spans = wsc_utils.filter_noun_chunks( wsc_utils.extended_noun_chunks(sentence), exclude_pronouns=True, exclude_query=query, exact_match=False, ) if query is not None: query_toks, query_mask = self.binarize_with_mask( query, prefix, suffix, leading_space, trailing_space ) query_len = len(query_toks) else: query_toks, query_mask, query_len = None, None, 0 query_tokens.append(query_toks) query_masks.append(query_mask) query_lengths.append(query_len) cand_toks, cand_masks = [], [] for cand_span in cand_spans: toks, mask = self.binarize_with_mask( cand_span.text, prefix, suffix, leading_space, trailing_space, ) cand_toks.append(toks) cand_masks.append(mask) # collate candidates cand_toks = data_utils.collate_tokens(cand_toks, pad_idx=self.vocab.pad()) cand_masks = data_utils.collate_tokens(cand_masks, pad_idx=0) assert cand_toks.size() == cand_masks.size() candidate_tokens.append(cand_toks) candidate_masks.append(cand_masks) candidate_lengths.append(cand_toks.size(1)) labels.append(label) query_lengths = np.array(query_lengths) query_tokens = ListDataset(query_tokens, query_lengths) query_masks = ListDataset(query_masks, query_lengths) candidate_lengths = np.array(candidate_lengths) candidate_tokens = ListDataset(candidate_tokens, candidate_lengths) candidate_masks = ListDataset(candidate_masks, candidate_lengths) labels = ListDataset(labels, [1] * len(labels)) dataset = { "id": IdDataset(), "query_tokens": query_tokens, "query_masks": query_masks, "candidate_tokens": candidate_tokens, "candidate_masks": candidate_masks, "labels": labels, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(query_tokens, reduce=True), } nested_dataset = NestedDictionaryDataset( dataset, sizes=[query_lengths], ) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(query_tokens)) dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) if return_only: return dataset self.datasets[split] = dataset return self.datasets[split] def build_dataset_for_inference(self, sample_json): with tempfile.NamedTemporaryFile(buffering=0) as h: h.write((json.dumps(sample_json) + "\n").encode("utf-8")) dataset = self.load_dataset( "disambiguate_pronoun", data_path=h.name, return_only=True, ) return dataset def disambiguate_pronoun(self, model, sentence, use_cuda=False): sample_json = wsc_utils.convert_sentence_to_json(sentence) dataset = self.build_dataset_for_inference(sample_json) sample = dataset.collater([dataset[0]]) if use_cuda: sample = utils.move_to_cuda(sample) def get_masked_input(tokens, mask): masked_tokens = tokens.clone() masked_tokens[mask.bool()] = self.mask return masked_tokens def get_lprobs(tokens, mask): logits, _ = model(src_tokens=get_masked_input(tokens, mask)) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float) scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1) mask = mask.type_as(scores) scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1) return scores cand_lprobs = get_lprobs( sample["candidate_tokens"][0], sample["candidate_masks"][0], ) if sample["query_tokens"][0] is not None: query_lprobs = get_lprobs( sample["query_tokens"][0].unsqueeze(0), sample["query_masks"][0].unsqueeze(0), ) return (query_lprobs >= cand_lprobs).all().item() == 1 else: best_idx = cand_lprobs.argmax().item() full_cand = sample["candidate_tokens"][0][best_idx] mask = sample["candidate_masks"][0][best_idx] toks = full_cand[mask.bool()] return self.bpe.decode(self.source_dictionary.string(toks)).strip() @property def source_dictionary(self): return self.vocab @property def target_dictionary(self): return self.vocab @register_task("winogrande") class WinograndeTask(WSCTask): """ Task for WinoGrande dataset. Efficient implementation for Winograd schema tasks with exactly two candidates, one of which is correct. """ @classmethod def setup_task(cls, args, **kwargs): assert args.criterion == "winogrande", "Must set --criterion=winogrande" # load data and label dictionaries vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) print("| dictionary: {} types".format(len(vocab))) return cls(args, vocab) def load_dataset( self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if data_path is None: data_path = os.path.join(self.args.data, split + ".jsonl") if not os.path.exists(data_path): raise FileNotFoundError("Cannot find data: {}".format(data_path)) query_tokens = [] query_masks = [] query_lengths = [] candidate_tokens = [] candidate_masks = [] candidate_lengths = [] itr = wsc_utils.winogrande_jsonl_iterator(data_path, eval=(split == "test")) for sample in itr: sentence, pronoun_span, query, cand_text = sample prefix = sentence[: pronoun_span[0]].rstrip() suffix = sentence[pronoun_span[1] :] leading_space = " " if sentence[: pronoun_span[0]].endswith(" ") else "" trailing_space = "" if query is not None: query_toks, query_mask = self.binarize_with_mask( query, prefix, suffix, leading_space, trailing_space, ) query_len = len(query_toks) else: query_toks, query_mask, query_len = None, None, 0 query_tokens.append(query_toks) query_masks.append(query_mask) query_lengths.append(query_len) cand_toks, cand_mask = self.binarize_with_mask( cand_text, prefix, suffix, leading_space, trailing_space, ) candidate_tokens.append(cand_toks) candidate_masks.append(cand_mask) candidate_lengths.append(cand_toks.size(0)) query_lengths = np.array(query_lengths) def get_pad_dataset_fn(tokens, length, pad_idx): return PadDataset( ListDataset(tokens, length), pad_idx=pad_idx, left_pad=False, ) query_tokens = get_pad_dataset_fn(query_tokens, query_lengths, self.vocab.pad()) query_masks = get_pad_dataset_fn(query_masks, query_lengths, 0) candidate_lengths = np.array(candidate_lengths) candidate_tokens = get_pad_dataset_fn( candidate_tokens, candidate_lengths, self.vocab.pad() ) candidate_masks = get_pad_dataset_fn(candidate_masks, candidate_lengths, 0) dataset = { "id": IdDataset(), "query_tokens": query_tokens, "query_masks": query_masks, "candidate_tokens": candidate_tokens, "candidate_masks": candidate_masks, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(query_tokens, reduce=True), } nested_dataset = NestedDictionaryDataset( dataset, sizes=[query_lengths], ) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(query_tokens)) dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) if return_only: return dataset self.datasets[split] = dataset return self.datasets[split]
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/wsc/wsc_task.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import commonsense_qa_task # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/commonsense_qa/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import numpy as np import torch from fairseq.data import ( Dictionary, IdDataset, ListDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, RawLabelDataset, RightPadDataset, SortDataset, data_utils, encoders, ) from fairseq.tasks import LegacyFairseqTask, register_task @register_task("commonsense_qa") class CommonsenseQATask(LegacyFairseqTask): """Task to finetune RoBERTa for Commonsense QA.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", metavar="DIR", help="path to data directory; we load <split>.jsonl" ) parser.add_argument( "--init-token", type=int, default=None, help="add token at the beginning of each batch item", ) parser.add_argument("--num-classes", type=int, default=5) def __init__(self, args, vocab): super().__init__(args) self.vocab = vocab self.mask = vocab.add_symbol("<mask>") self.bpe = encoders.build_bpe(args) @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert ( args.criterion == "sentence_ranking" ), "Must set --criterion=sentence_ranking" # load data and label dictionaries vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt")) print("| dictionary: {} types".format(len(vocab))) return cls(args, vocab) def load_dataset( self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ def binarize(s, append_bos=False): if self.bpe is not None: s = self.bpe.encode(s) tokens = self.vocab.encode_line( s, append_eos=True, add_if_not_exist=False, ).long() if append_bos and self.args.init_token is not None: tokens = torch.cat([tokens.new([self.args.init_token]), tokens]) return tokens if data_path is None: data_path = os.path.join(self.args.data, split + ".jsonl") if not os.path.exists(data_path): raise FileNotFoundError("Cannot find data: {}".format(data_path)) src_tokens = [[] for i in range(self.args.num_classes)] src_lengths = [[] for i in range(self.args.num_classes)] labels = [] with open(data_path) as h: for line in h: example = json.loads(line.strip()) if "answerKey" in example: label = ord(example["answerKey"]) - ord("A") labels.append(label) question = example["question"]["stem"] assert len(example["question"]["choices"]) == self.args.num_classes # format: `<s> Q: Where would I not want a fox? </s> A: hen house </s>` question = "Q: " + question question_toks = binarize(question, append_bos=True) for i, choice in enumerate(example["question"]["choices"]): src = "A: " + choice["text"] src_bin = torch.cat([question_toks, binarize(src)]) src_tokens[i].append(src_bin) src_lengths[i].append(len(src_bin)) assert all( len(src_tokens[0]) == len(src_tokens[i]) for i in range(self.args.num_classes) ) assert len(src_tokens[0]) == len(src_lengths[0]) assert len(labels) == 0 or len(labels) == len(src_tokens[0]) for i in range(self.args.num_classes): src_lengths[i] = np.array(src_lengths[i]) src_tokens[i] = ListDataset(src_tokens[i], src_lengths[i]) src_lengths[i] = ListDataset(src_lengths[i]) dataset = { "id": IdDataset(), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens[0], reduce=True), } for i in range(self.args.num_classes): dataset.update( { "net_input{}".format(i + 1): { "src_tokens": RightPadDataset( src_tokens[i], pad_idx=self.source_dictionary.pad(), ), "src_lengths": src_lengths[i], } } ) if len(labels) > 0: dataset.update({"target": RawLabelDataset(labels)}) dataset = NestedDictionaryDataset( dataset, sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])], ) with data_utils.numpy_seed(self.args.seed): dataset = SortDataset( dataset, # shuffle sort_order=[np.random.permutation(len(dataset))], ) print("| Loaded {} with {} samples".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args): from fairseq import models model = models.build_model(args, self) model.register_classification_head( "sentence_classification_head", num_classes=1, ) return model @property def source_dictionary(self): return self.vocab @property def target_dictionary(self): return self.vocab
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/roberta/commonsense_qa/commonsense_qa_task.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import fileinput import sacremoses def main(): parser = argparse.ArgumentParser(description="") parser.add_argument("files", nargs="*", help="input files") args = parser.parse_args() detok = sacremoses.MosesDetokenizer() for line in fileinput.input(args.files, openhook=fileinput.hook_compressed): print( detok.detokenize(line.strip().split(" ")) .replace(" @", "") .replace("@ ", "") .replace(" =", "=") .replace("= ", "=") .replace(" – ", "–") ) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/megatron_11b/detok.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate pre-processed data with a trained model. """ import numpy as np import torch from fairseq import checkpoint_utils, options, progress_bar, tasks, utils from fairseq.sequence_generator import EnsembleModel def get_avg_pool( models, sample, prefix_tokens, src_dict, remove_bpe, has_langtok=False ): model = EnsembleModel(models) # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens" } # compute the encoder output for each beam encoder_outs = model.forward_encoder(encoder_input) np_encoder_outs = encoder_outs[0].encoder_out.cpu().numpy().astype(np.float32) encoder_mask = 1 - encoder_outs[0].encoder_padding_mask.cpu().numpy().astype( np.float32 ) encoder_mask = np.expand_dims(encoder_mask.T, axis=2) if has_langtok: encoder_mask = encoder_mask[1:, :, :] np_encoder_outs = np_encoder_outs[1, :, :] masked_encoder_outs = encoder_mask * np_encoder_outs avg_pool = (masked_encoder_outs / encoder_mask.sum(axis=0)).sum(axis=0) return avg_pool def main(args): assert args.path is not None, "--path required for generation!" assert ( not args.sampling or args.nbest == args.beam ), "--sampling requires --nbest to be equal to --beam" assert ( args.replace_unk is None or args.raw_text ), "--replace-unk requires a raw text dataset (--raw-text)" args.beam = 1 utils.import_user_module(args) if args.max_tokens is None: args.max_tokens = 12000 print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) # Set dictionaries try: src_dict = getattr(task, "source_dictionary", None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary # Load ensemble print("| loading model(s) from {}".format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(":"), arg_overrides=eval(args.model_overrides), task=task, ) # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_positions=utils.resolve_max_positions( task.max_positions(), ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) num_sentences = 0 source_sentences = [] shard_id = 0 all_avg_pool = None encoder_has_langtok = ( hasattr(task.args, "encoder_langtok") and task.args.encoder_langtok is not None and hasattr(task.args, "lang_tok_replacing_bos_eos") and not task.args.lang_tok_replacing_bos_eos ) with progress_bar.build_progress_bar(args, itr) as t: for sample in t: if sample is None: print("Skipping None") continue sample = utils.move_to_cuda(sample) if use_cuda else sample if "net_input" not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample["target"][:, : args.prefix_size] with torch.no_grad(): avg_pool = get_avg_pool( models, sample, prefix_tokens, src_dict, args.post_process, has_langtok=encoder_has_langtok, ) if all_avg_pool is not None: all_avg_pool = np.concatenate((all_avg_pool, avg_pool)) else: all_avg_pool = avg_pool if not isinstance(sample["id"], list): sample_ids = sample["id"].tolist() else: sample_ids = sample["id"] for i, sample_id in enumerate(sample_ids): # Remove padding src_tokens = utils.strip_pad( sample["net_input"]["src_tokens"][i, :], tgt_dict.pad() ) # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(args.gen_subset).src.get_original_text( sample_id ) else: if src_dict is not None: src_str = src_dict.string(src_tokens, args.post_process) else: src_str = "" if not args.quiet: if src_dict is not None: print("S-{}\t{}".format(sample_id, src_str)) source_sentences.append(f"{sample_id}\t{src_str}") num_sentences += sample["nsentences"] if all_avg_pool.shape[0] >= 1000000: with open( f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w", ) as avg_pool_file: all_avg_pool.tofile(avg_pool_file) with open( f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w", ) as sentence_file: sentence_file.writelines(f"{line}\n" for line in source_sentences) all_avg_pool = None source_sentences = [] shard_id += 1 if all_avg_pool is not None: with open( f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w" ) as avg_pool_file: all_avg_pool.tofile(avg_pool_file) with open( f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w" ) as sentence_file: sentence_file.writelines(f"{line}\n" for line in source_sentences) return None def cli_main(): parser = options.get_generation_parser() parser.add_argument( "--encoder-save-dir", default="", type=str, metavar="N", help="directory to save encoder outputs", ) args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/criss/save_encoder.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import glob from subprocess import check_call try: import faiss has_faiss = True except ImportError: has_faiss = False import numpy as np GB = 1024 * 1024 * 1024 def call(cmd): print(cmd) check_call(cmd, shell=True) def get_batches(directory, lang, prefix="all_avg_pool"): print(f"Finding in {directory}/{prefix}.{lang}*") files = glob.glob(f"{directory}/{prefix}.{lang}*") emb_files = [] txt_files = [] for emb_fi in files: emb_files.append(emb_fi) txt_fi = emb_fi.replace(prefix, "sentences") txt_files.append(txt_fi) return emb_files, txt_files def load_batch(emb_file, dim): embeddings = np.fromfile(emb_file, dtype=np.float32) num_rows = int(embeddings.shape[0] / dim) embeddings = embeddings.reshape((num_rows, dim)) faiss.normalize_L2(embeddings) return embeddings def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"): if not has_faiss: raise ImportError("Please install Faiss") sims = [] inds = [] xfrom = 0 xto = 0 for x_batch_f in x_batches_f: yfrom = 0 yto = 0 x_batch = load_batch(x_batch_f, dim) xto = xfrom + x_batch.shape[0] bsims, binds = [], [] for y_batch_f in y_batches_f: y_batch = load_batch(y_batch_f, dim) neighbor_size = min(k, y_batch.shape[0]) yto = yfrom + y_batch.shape[0] print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto)) idx = faiss.IndexFlatIP(dim) idx = faiss.index_cpu_to_all_gpus(idx) idx.add(y_batch) bsim, bind = idx.search(x_batch, neighbor_size) bsims.append(bsim) binds.append(bind + yfrom) yfrom += y_batch.shape[0] del idx del y_batch bsims = np.concatenate(bsims, axis=1) binds = np.concatenate(binds, axis=1) aux = np.argsort(-bsims, axis=1) sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32) ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64) for i in range(x_batch.shape[0]): for j in range(k): sim_batch[i, j] = bsims[i, aux[i, j]] ind_batch[i, j] = binds[i, aux[i, j]] sims.append(sim_batch) inds.append(ind_batch) xfrom += x_batch.shape[0] del x_batch sim = np.concatenate(sims, axis=0) ind = np.concatenate(inds, axis=0) return sim, ind def score(sim, fwd_mean, bwd_mean, margin): return margin(sim, (fwd_mean + bwd_mean) / 2) def score_candidates( sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False ): print(" - scoring {:d} candidates".format(sim_mat.shape[0])) scores = np.zeros(candidate_inds.shape) for i in range(scores.shape[0]): for j in range(scores.shape[1]): k = int(candidate_inds[i, j]) scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin) return scores def load_text(files): all_sentences = [] for fi in files: with open(fi) as sentence_fi: for line in sentence_fi: all_sentences.append(line.strip()) print(f"Read {len(all_sentences)} sentences") return all_sentences if __name__ == "__main__": parser = argparse.ArgumentParser(description="Mine bitext") parser.add_argument("--src-lang", help="Source language") parser.add_argument("--tgt-lang", help="Target language") parser.add_argument( "--dict-path", help="Path to dictionary file", default="dict.txt" ) parser.add_argument( "--spm-path", help="Path to SPM model file", default="sentence.bpe.model" ) parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension") parser.add_argument("--mem", type=int, default=5, help="Memory in GB") parser.add_argument("--src-dir", help="Source directory") parser.add_argument("--tgt-dir", help="Target directory") parser.add_argument("--output", help="Output path") parser.add_argument( "--neighborhood", type=int, default=4, help="Embedding dimension" ) parser.add_argument( "--threshold", type=float, default=1.06, help="Threshold on mined bitext" ) parser.add_argument( "--valid-size", type=int, default=2000, help="Number of sentences used for validation set", ) parser.add_argument( "--min-count", type=int, default=50000, help="Min num sentences used for each language", ) args = parser.parse_args() x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang) y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang) margin = lambda a, b: a / b y2x_sim, y2x_ind = knnGPU_sharded( y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x" ) x2y_sim, x2y_ind = knnGPU_sharded( x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y" ) x2y_mean = x2y_sim.mean(axis=1) y2x_mean = y2x_sim.mean(axis=1) fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin) bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin) fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)] bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)] indices = np.stack( ( np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)), np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))), ), axis=1, ) scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1))) x_sentences = load_text(x_sents_f) y_sentences = load_text(y_sents_f) threshold = args.threshold min_count = args.min_count seen_src, seen_trg = set(), set() directory = args.output call(f"mkdir -p {directory}") src_out = open( f"{directory}/all.{args.src_lang}", mode="w", encoding="utf-8", errors="surrogateescape", ) tgt_out = open( f"{directory}/all.{args.tgt_lang}", mode="w", encoding="utf-8", errors="surrogateescape", ) scores_out = open( f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape" ) count = 0 for i in np.argsort(-scores): src_ind, trg_ind = indices[i] if src_ind not in seen_src and trg_ind not in seen_trg: seen_src.add(src_ind) seen_trg.add(trg_ind) if scores[i] > threshold or count < min_count: if x_sentences[src_ind]: print(scores[i], file=scores_out) print(x_sentences[src_ind], file=src_out) print(y_sentences[trg_ind], file=tgt_out) count += 1 else: print(f"Ignoring sentence: {x_sentences[src_ind]}") src_out.close() tgt_out.close() scores_out.close() print(f"Found {count} pairs for threshold={threshold}") with open(f"{directory}/all.{args.src_lang}") as all_s, open( f"{directory}/all.{args.tgt_lang}" ) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open( f"{directory}/valid.{args.tgt_lang}", "w" ) as valid_t, open( f"{directory}/train.{args.src_lang}", "w" ) as train_s, open( f"{directory}/train.{args.tgt_lang}", "w" ) as train_t: count = 0 for s_line, t_line in zip(all_s, all_t): s_line = s_line.split("\t")[1] t_line = t_line.split("\t")[1] if count >= args.valid_size: train_s.write(s_line) train_t.write(t_line) else: valid_s.write(s_line) valid_t.write(t_line) count += 1
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/criss/mining/mine.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import glob import numpy as np DIM = 1024 def compute_dist(source_embs, target_embs, k=5, return_sim_mat=False): target_ids = [tid for tid in target_embs] source_mat = np.stack(source_embs.values(), axis=0) normalized_source_mat = source_mat / np.linalg.norm( source_mat, axis=1, keepdims=True ) target_mat = np.stack(target_embs.values(), axis=0) normalized_target_mat = target_mat / np.linalg.norm( target_mat, axis=1, keepdims=True ) sim_mat = normalized_source_mat.dot(normalized_target_mat.T) if return_sim_mat: return sim_mat neighbors_map = {} for i, sentence_id in enumerate(source_embs): idx = np.argsort(sim_mat[i, :])[::-1][:k] neighbors_map[sentence_id] = [target_ids[tid] for tid in idx] return neighbors_map def load_embeddings(directory, LANGS): sentence_embeddings = {} sentence_texts = {} for lang in LANGS: sentence_embeddings[lang] = {} sentence_texts[lang] = {} lang_dir = f"{directory}/{lang}" embedding_files = glob.glob(f"{lang_dir}/all_avg_pool.{lang}.*") for embed_file in embedding_files: shard_id = embed_file.split(".")[-1] embeddings = np.fromfile(embed_file, dtype=np.float32) num_rows = embeddings.shape[0] // DIM embeddings = embeddings.reshape((num_rows, DIM)) with open(f"{lang_dir}/sentences.{lang}.{shard_id}") as sentence_file: for idx, line in enumerate(sentence_file): sentence_id, sentence = line.strip().split("\t") sentence_texts[lang][sentence_id] = sentence sentence_embeddings[lang][sentence_id] = embeddings[idx, :] return sentence_embeddings, sentence_texts def compute_accuracy(directory, LANGS): sentence_embeddings, sentence_texts = load_embeddings(directory, LANGS) top_1_accuracy = {} top1_str = " ".join(LANGS) + "\n" for source_lang in LANGS: top_1_accuracy[source_lang] = {} top1_str += f"{source_lang} " for target_lang in LANGS: top1 = 0 top5 = 0 neighbors_map = compute_dist( sentence_embeddings[source_lang], sentence_embeddings[target_lang] ) for sentence_id, neighbors in neighbors_map.items(): if sentence_id == neighbors[0]: top1 += 1 if sentence_id in neighbors[:5]: top5 += 1 n = len(sentence_embeddings[target_lang]) top1_str += f"{top1/n} " top1_str += "\n" print(top1_str) print(top1_str, file=open(f"{directory}/accuracy", "w")) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Analyze encoder outputs") parser.add_argument("directory", help="Source language corpus") parser.add_argument("--langs", help="List of langs") args = parser.parse_args() langs = args.langs.split(",") compute_accuracy(args.directory, langs)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/criss/sentence_retrieval/encoder_analysis.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq.search import Search class NoisyChannelBeamSearch(Search): def __init__(self, tgt_dict): super().__init__(tgt_dict) self.fw_scores_buf = None self.lm_scores_buf = None def _init_buffers(self, t): # super()._init_buffers(t) if self.fw_scores_buf is None: self.scores_buf = t.new() self.indices_buf = torch.LongTensor().to(device=t.device) self.beams_buf = torch.LongTensor().to(device=t.device) self.fw_scores_buf = t.new() self.lm_scores_buf = t.new() def combine_fw_bw(self, combine_method, fw_cum, bw, step): if combine_method == "noisy_channel": fw_norm = fw_cum.div(step + 1) lprobs = bw + fw_norm elif combine_method == "lm_only": lprobs = bw + fw_cum return lprobs def step(self, step, fw_lprobs, scores, bw_lprobs, lm_lprobs, combine_method): self._init_buffers(fw_lprobs) bsz, beam_size, vocab_size = fw_lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam fw_lprobs = fw_lprobs[:, ::beam_size, :].contiguous() bw_lprobs = bw_lprobs[:, ::beam_size, :].contiguous() # nothing to add since we are at the first step fw_lprobs_cum = fw_lprobs else: # make probs contain cumulative scores for each hypothesis raw_scores = (scores[:, :, step - 1].unsqueeze(-1)) fw_lprobs_cum = (fw_lprobs.add(raw_scores)) combined_lprobs = self.combine_fw_bw(combine_method, fw_lprobs_cum, bw_lprobs, step) # choose the top k according to the combined noisy channel model score torch.topk( combined_lprobs.view(bsz, -1), k=min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, combined_lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad ), out=(self.scores_buf, self.indices_buf), ) # save corresponding fw and lm scores self.fw_scores_buf = torch.gather(fw_lprobs_cum.view(bsz, -1), 1, self.indices_buf) self.lm_scores_buf = torch.gather(lm_lprobs.view(bsz, -1), 1, self.indices_buf) # Project back into relative indices and beams self.beams_buf = self.indices_buf // vocab_size self.indices_buf.fmod_(vocab_size) return self.scores_buf, self.fw_scores_buf, self.lm_scores_buf, self.indices_buf, self.beams_buf
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/fast_noisy_channel/noisy_channel_beam_search.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import noisy_channel_translation # noqa from . import noisy_channel_sequence_generator # noqa from . import noisy_channel_beam_search # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/fast_noisy_channel/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional import math import numpy as np import torch import torch.nn.functional as F from torch import Tensor from .noisy_channel_beam_search import NoisyChannelBeamSearch from fairseq.sequence_generator import EnsembleModel class NoisyChannelSequenceGenerator(object): def __init__( self, combine_method, tgt_dict, src_dict=None, beam_size=1, max_len_a=0, max_len_b=200, min_len=1, len_penalty=1.0, unk_penalty=0.0, retain_dropout=False, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, normalize_scores=True, channel_models=None, k2=10, ch_weight=1.0, channel_scoring_type='log_norm', top_k_vocab=0, lm_models=None, lm_dict=None, lm_weight=1.0, normalize_lm_scores_by_tgt_len=False, ): """Generates translations of a given source sentence, using beam search with noisy channel decoding. Args: combine_method (string, optional): Method to combine direct, LM and channel model scores (default: None) tgt_dict (~fairseq.data.Dictionary): target dictionary src_dict (~fairseq.data.Dictionary): source dictionary beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) retain_dropout (bool, optional): use dropout when generating (default: False) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) no_repeat_ngram_size (int, optional): Size of n-grams that we avoid repeating in the generation (default: 0) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) channel_models (List[~fairseq.models.FairseqModel]): ensemble of models translating from the target to the source k2 (int, optional): Top K2 candidates to score per beam at each step (default:10) ch_weight (int, optional): Weight associated with the channel model score assuming that the direct model score has weight 1.0 (default: 1.0) channel_scoring_type (str, optional): String specifying how to score the channel model (default: 'log_norm') top_k_vocab (int, optional): If `channel_scoring_type` is `'src_vocab'` or `'src_vocab_batched'`, then this parameter specifies the number of most frequent tokens to include in the channel model output vocabulary, in addition to the source tokens in the input batch (default: 0) lm_models (List[~fairseq.models.FairseqModel]): ensemble of models generating text in the target language lm_dict (~fairseq.data.Dictionary): LM Model dictionary lm_weight (int, optional): Weight associated with the LM model score assuming that the direct model score has weight 1.0 (default: 1.0) normalize_lm_scores_by_tgt_len (bool, optional): Should we normalize LM scores by the target length? By default, we normalize the combination of LM and channel model scores by the source length """ self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.retain_dropout = retain_dropout self.temperature = temperature self.match_source_len = match_source_len self.no_repeat_ngram_size = no_repeat_ngram_size self.channel_models = channel_models self.src_dict = src_dict self.tgt_dict = tgt_dict self.combine_method = combine_method self.k2 = k2 self.ch_weight = ch_weight self.channel_scoring_type = channel_scoring_type self.top_k_vocab = top_k_vocab self.lm_models = lm_models self.lm_dict = lm_dict self.lm_weight = lm_weight self.log_softmax_fn = torch.nn.LogSoftmax(dim=1) self.normalize_lm_scores_by_tgt_len = normalize_lm_scores_by_tgt_len self.share_tgt_dict = (self.lm_dict == self.tgt_dict) self.tgt_to_lm = make_dict2dict(tgt_dict, lm_dict) self.ch_scoring_bsz = 3072 assert temperature > 0, '--temperature must be greater than 0' self.search = NoisyChannelBeamSearch(tgt_dict) @torch.no_grad() def generate( self, models, sample, prefix_tokens=None, bos_token=None, **kwargs ): """Generate a batch of translations. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens """ model = EnsembleModel(models) incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(model.models_size) ], ) if not self.retain_dropout: model.eval() # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in sample['net_input'].items() if k != 'prev_output_tokens' } src_tokens = encoder_input['src_tokens'] src_lengths_no_eos = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) input_size = src_tokens.size() # batch dimension goes first followed by source lengths bsz = input_size[0] src_len = input_size[1] beam_size = self.beam_size if self.match_source_len: max_len = src_lengths_no_eos.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), # exclude the EOS marker model.max_decoder_positions() - 1, ) # compute the encoder output for each beam encoder_outs = model.forward_encoder(encoder_input) new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = model.reorder_encoder_out(encoder_outs, new_order) src_lengths = encoder_input['src_lengths'] # initialize buffers scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0) lm_prefix_scores = src_tokens.new(bsz * beam_size).float().fill_(0) scores_buf = scores.clone() tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad) tokens_buf = tokens.clone() tokens[:, 0] = self.eos if bos_token is None else bos_token # reorder source tokens so they may be used as a reference in generating P(S|T) src_tokens = reorder_all_tokens(src_tokens, src_lengths, self.src_dict.eos_index) src_tokens = src_tokens.repeat(1, beam_size).view(-1, src_len) src_lengths = src_lengths.view(bsz, -1).repeat(1, beam_size).view(bsz*beam_size, -1) attn, attn_buf = None, None nonpad_idxs = None # The cands_to_ignore indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then the cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = src_tokens.new_zeros(bsz, beam_size).eq(-1) # forward and backward-compatible False mask # list of completed sentences finalized = [[] for i in range(bsz)] finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens) cand_offsets = torch.arange(0, cand_size).type_as(tokens) # helper function for allocating buffers on the fly buffers = {} def buffer(name, type_of=tokens): # noqa if name not in buffers: buffers[name] = type_of.new() return buffers[name] def is_finished(sent, step, unfin_idx): """ Check whether we've finished generation for a given sentence, by comparing the worst score among finalized hypotheses to the best possible score among unfinalized hypotheses. """ assert len(finalized[sent]) <= beam_size if len(finalized[sent]) == beam_size: return True return False def finalize_hypos(step, bbsz_idx, eos_scores, combined_noisy_channel_eos_scores): """ Finalize the given hypotheses at this step, while keeping the total number of finalized hypotheses per sentence <= beam_size. Note: the input must be in the desired finalization order, so that hypotheses that appear earlier in the input are preferred to those that appear later. Args: step: current time step bbsz_idx: A vector of indices in the range [0, bsz*beam_size), indicating which hypotheses to finalize eos_scores: A vector of the same size as bbsz_idx containing fw scores for each hypothesis combined_noisy_channel_eos_scores: A vector of the same size as bbsz_idx containing combined noisy channel scores for each hypothesis """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors tokens_clone = tokens.index_select(0, bbsz_idx) tokens_clone = tokens_clone[:, 1:step + 2] # skip the first index, which is EOS assert not tokens_clone.eq(self.eos).any() tokens_clone[:, step] = self.eos attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: combined_noisy_channel_eos_scores /= (step + 1) ** self.len_penalty cum_unfin = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) sents_seen = set() for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), combined_noisy_channel_eos_scores.tolist())): unfin_idx = idx // beam_size sent = unfin_idx + cum_unfin[unfin_idx] sents_seen.add((sent, unfin_idx)) if self.match_source_len and step > src_lengths_no_eos[unfin_idx]: score = -math.inf def get_hypo(): if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i][nonpad_idxs[sent]] _, alignment = hypo_attn.max(dim=0) else: hypo_attn = None alignment = None return { 'tokens': tokens_clone[i], 'score': score, 'attention': hypo_attn, # src_len x tgt_len 'alignment': alignment, 'positional_scores': pos_scores[i], } if len(finalized[sent]) < beam_size: finalized[sent].append(get_hypo()) newly_finished = [] for sent, unfin_idx in sents_seen: # check termination conditions for this sentence if not finished[sent] and is_finished(sent, step, unfin_idx): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished def noisy_channel_rescoring(lprobs, beam_size, bsz, src_tokens, tokens, k): """Rescore the top k hypothesis from each beam using noisy channel modeling Returns: new_fw_lprobs: the direct model probabilities after pruning the top k new_ch_lm_lprobs: the combined channel and language model probabilities new_lm_lprobs: the language model probabilities after pruning the top k """ with torch.no_grad(): lprobs_size = lprobs.size() if prefix_tokens is not None and step < prefix_tokens.size(1): probs_slice = lprobs.view(bsz, -1, lprobs.size(-1))[:, 0, :] cand_scores = torch.gather( probs_slice, dim=1, index=prefix_tokens[:, step].view(-1, 1).data ).expand(-1, beam_size).contiguous().view(bsz*beam_size, 1) cand_indices = prefix_tokens[:, step].view(-1, 1).expand(bsz, beam_size).data.contiguous().view(bsz*beam_size, 1) # need to calculate and save fw and lm probs for prefix tokens fw_top_k = cand_scores fw_top_k_idx = cand_indices k = 1 else: # take the top k best words for every sentence in batch*beam fw_top_k, fw_top_k_idx = torch.topk(lprobs.view(beam_size*bsz, -1), k=k) eos_idx = torch.nonzero(fw_top_k_idx.view(bsz*beam_size*k, -1) == self.eos)[:, 0] ch_scores = fw_top_k.new_full((beam_size*bsz*k, ), 0) src_size = torch.sum(src_tokens[:, :] != self.src_dict.pad_index, dim=1, keepdim=True, dtype=fw_top_k.dtype) if self.combine_method != "lm_only": temp_src_tokens_full = src_tokens[:, :].repeat(1, k).view(bsz*beam_size*k, -1) not_padding = temp_src_tokens_full[:, 1:] != self.src_dict.pad_index cur_tgt_size = step+2 # add eos to all candidate sentences except those that already end in eos eos_tokens = tokens[:, 0].repeat(1, k).view(-1, 1) eos_tokens[eos_idx] = self.tgt_dict.pad_index if step == 0: channel_input = torch.cat((fw_top_k_idx.view(-1, 1), eos_tokens), 1) else: # move eos from beginning to end of target sentence channel_input = torch.cat((tokens[:, 1:step + 1].repeat(1, k).view(-1, step), fw_top_k_idx.view(-1, 1), eos_tokens), 1) ch_input_lengths = torch.tensor(np.full(channel_input.size(0), cur_tgt_size)) ch_input_lengths[eos_idx] = cur_tgt_size-1 if self.channel_scoring_type == "unnormalized": ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths) ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True) del ch_encoder_output ch_intermed_scores = channel_model.decoder.unnormalized_scores_given_target(ch_decoder_output, target_ids=temp_src_tokens_full[:, 1:]) ch_intermed_scores = ch_intermed_scores.float() ch_intermed_scores *= not_padding.float() ch_scores = torch.sum(ch_intermed_scores, dim=1) elif self.channel_scoring_type == "k2_separate": for k_idx in range(k): k_eos_tokens = eos_tokens[k_idx::k, :] if step == 0: k_ch_input = torch.cat((fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1) else: # move eos from beginning to end of target sentence k_ch_input = torch.cat((tokens[:, 1:step + 1], fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1) k_ch_input_lengths = ch_input_lengths[k_idx::k] k_ch_output = channel_model(k_ch_input, k_ch_input_lengths, src_tokens) k_ch_lprobs = channel_model.get_normalized_probs(k_ch_output, log_probs=True) k_ch_intermed_scores = torch.gather(k_ch_lprobs[:, :-1, :], 2, src_tokens[:, 1:].unsqueeze(2)).squeeze(2) k_ch_intermed_scores *= not_padding.float() ch_scores[k_idx::k] = torch.sum(k_ch_intermed_scores, dim=1) elif self.channel_scoring_type == "src_vocab": ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths) ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True) del ch_encoder_output ch_lprobs = normalized_scores_with_batch_vocab( channel_model.decoder, ch_decoder_output, src_tokens, k, bsz, beam_size, self.src_dict.pad_index, top_k=self.top_k_vocab) ch_scores = torch.sum(ch_lprobs, dim=1) elif self.channel_scoring_type == "src_vocab_batched": ch_bsz_size = temp_src_tokens_full.shape[0] ch_lprobs_list = [None] * len(range(0, ch_bsz_size, self.ch_scoring_bsz)) for i, start_idx in enumerate(range(0, ch_bsz_size, self.ch_scoring_bsz)): end_idx = min(start_idx + self.ch_scoring_bsz, ch_bsz_size) temp_src_tokens_full_batch = temp_src_tokens_full[start_idx:end_idx, :] channel_input_batch = channel_input[start_idx:end_idx, :] ch_input_lengths_batch = ch_input_lengths[start_idx:end_idx] ch_encoder_output_batch = channel_model.encoder(channel_input_batch, src_lengths=ch_input_lengths_batch) ch_decoder_output_batch, _ = channel_model.decoder(temp_src_tokens_full_batch, encoder_out=ch_encoder_output_batch, features_only=True) ch_lprobs_list[i] = normalized_scores_with_batch_vocab( channel_model.decoder, ch_decoder_output_batch, src_tokens, k, bsz, beam_size, self.src_dict.pad_index, top_k=self.top_k_vocab, start_idx=start_idx, end_idx=end_idx) ch_lprobs = torch.cat(ch_lprobs_list, dim=0) ch_scores = torch.sum(ch_lprobs, dim=1) else: ch_output = channel_model(channel_input, ch_input_lengths, temp_src_tokens_full) ch_lprobs = channel_model.get_normalized_probs(ch_output, log_probs=True) ch_intermed_scores = torch.gather(ch_lprobs[:, :-1, :], 2, temp_src_tokens_full[:, 1:].unsqueeze(2)).squeeze().view(bsz*beam_size*k, -1) ch_intermed_scores *= not_padding.float() ch_scores = torch.sum(ch_intermed_scores, dim=1) else: cur_tgt_size = 0 ch_scores = ch_scores.view(bsz*beam_size, k) expanded_lm_prefix_scores = lm_prefix_scores.unsqueeze(1).expand(-1, k).flatten() if self.share_tgt_dict: lm_scores = get_lm_scores(lm, tokens[:, :step + 1].view(-1, step+1), lm_incremental_states, fw_top_k_idx.view(-1, 1), torch.tensor(np.full(tokens.size(0), step+1)), k) else: new_lm_input = dict2dict(tokens[:, :step + 1].view(-1, step+1), self.tgt_to_lm) new_cands = dict2dict(fw_top_k_idx.view(-1, 1), self.tgt_to_lm) lm_scores = get_lm_scores(lm, new_lm_input, lm_incremental_states, new_cands, torch.tensor(np.full(tokens.size(0), step+1)), k) lm_scores.add_(expanded_lm_prefix_scores) ch_lm_scores = combine_ch_lm(self.combine_method, ch_scores, lm_scores, src_size, cur_tgt_size) # initialize all as min value new_fw_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) new_ch_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) new_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1) new_fw_lprobs[:, self.pad] = -math.inf new_ch_lm_lprobs[:, self.pad] = -math.inf new_lm_lprobs[:, self.pad] = -math.inf new_fw_lprobs.scatter_(1, fw_top_k_idx, fw_top_k) new_ch_lm_lprobs.scatter_(1, fw_top_k_idx, ch_lm_scores) new_lm_lprobs.scatter_(1, fw_top_k_idx, lm_scores.view(-1, k)) return new_fw_lprobs, new_ch_lm_lprobs, new_lm_lprobs def combine_ch_lm(combine_type, ch_scores, lm_scores1, src_size, tgt_size): if self.channel_scoring_type == "unnormalized": ch_scores = self.log_softmax_fn( ch_scores.view(-1, self.beam_size * self.k2) ).view(ch_scores.shape) ch_scores = ch_scores * self.ch_weight lm_scores1 = lm_scores1 * self.lm_weight if combine_type == "lm_only": # log P(T|S) + log P(T) ch_scores = lm_scores1.view(ch_scores.size()) elif combine_type == "noisy_channel": # 1/t log P(T|S) + 1/s log P(S|T) + 1/t log P(T) if self.normalize_lm_scores_by_tgt_len: ch_scores.div_(src_size) lm_scores_norm = lm_scores1.view(ch_scores.size()).div(tgt_size) ch_scores.add_(lm_scores_norm) # 1/t log P(T|S) + 1/s log P(S|T) + 1/s log P(T) else: ch_scores.add_(lm_scores1.view(ch_scores.size())) ch_scores.div_(src_size) return ch_scores if self.channel_models is not None: channel_model = self.channel_models[0] # assume only one channel_model model else: channel_model = None lm = EnsembleModel(self.lm_models) lm_incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(lm.models_size) ], ) reorder_state = None batch_idxs = None for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs) reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size) model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state) lm.reorder_incremental_state(lm_incremental_states, reorder_state) fw_lprobs, avg_attn_scores = model.forward_decoder( tokens[:, :step + 1], encoder_outs, incremental_states, temperature=self.temperature, ) fw_lprobs[:, self.pad] = -math.inf # never select pad fw_lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty fw_lprobs, ch_lm_lprobs, lm_lprobs = noisy_channel_rescoring(fw_lprobs, beam_size, bsz, src_tokens, tokens, self.k2) # handle min and max length constraints if step >= max_len: fw_lprobs[:, :self.eos] = -math.inf fw_lprobs[:, self.eos + 1:] = -math.inf elif step < self.min_len: fw_lprobs[:, self.eos] = -math.inf # handle prefix tokens (possibly with different lengths) if prefix_tokens is not None and step < prefix_tokens.size(1): prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_mask = prefix_toks.ne(self.pad) prefix_fw_lprobs = fw_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) fw_lprobs[prefix_mask] = -math.inf fw_lprobs[prefix_mask] = fw_lprobs[prefix_mask].scatter_( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_fw_lprobs ) prefix_ch_lm_lprobs = ch_lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) ch_lm_lprobs[prefix_mask] = -math.inf ch_lm_lprobs[prefix_mask] = ch_lm_lprobs[prefix_mask].scatter_( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_ch_lm_lprobs ) prefix_lm_lprobs = lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1)) lm_lprobs[prefix_mask] = -math.inf lm_lprobs[prefix_mask] = lm_lprobs[prefix_mask].scatter_( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lm_lprobs ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() def replicate_first_beam(tensor, mask): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) # copy tokens, scores and lprobs from the first beam to all beams tokens = replicate_first_beam(tokens, eos_mask_batch_dim) scores = replicate_first_beam(scores, eos_mask_batch_dim) fw_lprobs = replicate_first_beam(fw_lprobs, eos_mask_batch_dim) ch_lm_lprobs = replicate_first_beam(ch_lm_lprobs, eos_mask_batch_dim) lm_lprobs = replicate_first_beam(lm_lprobs, eos_mask_batch_dim) if self.no_repeat_ngram_size > 0: # for each beam and batch sentence, generate a list of previous ngrams gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)] for bbsz_idx in range(bsz * beam_size): gen_tokens = tokens[bbsz_idx].tolist() for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]): gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \ gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]] # Record attention scores if avg_attn_scores is not None: if attn is None: attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2) attn_buf = attn.clone() nonpad_idxs = src_tokens.ne(self.pad) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(fw_lprobs) scores_buf = scores_buf.type_as(fw_lprobs) self.search.set_src_lengths(src_lengths_no_eos) if self.no_repeat_ngram_size > 0: def calculate_banned_tokens(bbsz_idx): # before decoding the next token, prevent decoding of ngrams that have already appeared ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist()) return gen_ngrams[bbsz_idx].get(ngram_index, []) if step + 2 - self.no_repeat_ngram_size >= 0: # no banned tokens if we haven't generated no_repeat_ngram_size tokens yet banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)] else: banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)] for bbsz_idx in range(bsz * beam_size): fw_lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf combined_noisy_channel_scores, fw_lprobs_top_k, lm_lprobs_top_k, cand_indices, cand_beams = self.search.step( step, fw_lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], ch_lm_lprobs.view(bsz, -1, self.vocab_size), lm_lprobs.view(bsz, -1, self.vocab_size), self.combine_method ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos (except for candidates to be ignored) eos_mask = cand_indices.eq(self.eos) eos_mask[:, :beam_size] &= ~cands_to_ignore # only consider eos when it's among the top beam_size indices eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = set() if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( fw_lprobs_top_k[:, :beam_size], mask=eos_mask[:, :beam_size] ) combined_noisy_channel_eos_scores = torch.masked_select( combined_noisy_channel_scores[:, :beam_size], mask=eos_mask[:, :beam_size], ) # finalize hypo using channel model score finalized_sents = finalize_hypos( step, eos_bbsz_idx, eos_scores, combined_noisy_channel_eos_scores) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = cand_indices.new_ones(bsz) batch_mask[cand_indices.new(finalized_sents)] = 0 batch_idxs = torch.nonzero(batch_mask).squeeze(-1) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) lm_lprobs_top_k = lm_lprobs_top_k[batch_idxs] fw_lprobs_top_k = fw_lprobs_top_k[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths_no_eos = src_lengths_no_eos[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) scores_buf.resize_as_(scores) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens_buf.resize_as_(tokens) src_tokens = src_tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) src_lengths = src_lengths.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) lm_prefix_scores = lm_prefix_scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1).squeeze() if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1) attn_buf.resize_as_(attn) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos or # ignored hypos and values < cand_size indicate candidate # active hypos. After this, the min values per row are the top # candidate active hypos. eos_mask[:, :beam_size] |= cands_to_ignore active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just the hypos # with the smallest values in active_mask active_hypos, new_cands_to_ignore = buffer('active_hypos'), buffer('new_cands_to_ignore') torch.topk( active_mask, k=beam_size, dim=1, largest=False, out=(new_cands_to_ignore, active_hypos) ) # update cands_to_ignore to ignore any finalized hypos cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] assert (~cands_to_ignore).any(dim=1).all() active_bbsz_idx = buffer('active_bbsz_idx') torch.gather( cand_bbsz_idx, dim=1, index=active_hypos, out=active_bbsz_idx, ) active_scores = torch.gather( fw_lprobs_top_k, dim=1, index=active_hypos, out=scores[:, step].view(bsz, beam_size), ) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses torch.index_select( tokens[:, :step + 1], dim=0, index=active_bbsz_idx, out=tokens_buf[:, :step + 1], ) torch.gather( cand_indices, dim=1, index=active_hypos, out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1], ) if step > 0: torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx, out=scores_buf[:, :step], ) torch.gather( fw_lprobs_top_k, dim=1, index=active_hypos, out=scores_buf.view(bsz, beam_size, -1)[:, :, step], ) torch.gather( lm_lprobs_top_k, dim=1, index=active_hypos, out=lm_prefix_scores.view(bsz, beam_size) ) # copy attention for active hypotheses if attn is not None: torch.index_select( attn[:, :, :step + 2], dim=0, index=active_bbsz_idx, out=attn_buf[:, :, :step + 2], ) # swap buffers tokens, tokens_buf = tokens_buf, tokens scores, scores_buf = scores_buf, scores if attn is not None: attn, attn_buf = attn_buf, attn # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True) return finalized def get_lm_scores(model, input_tokens, incremental_states, cand_tokens, input_len, k): with torch.no_grad(): lm_lprobs, avg_attn_scores = model.forward_decoder( input_tokens, encoder_outs=None, incremental_states=incremental_states, ) lm_lprobs_size = lm_lprobs.size(0) probs_next_wrd = torch.gather(lm_lprobs.repeat(1, k).view(lm_lprobs_size*k, -1), 1, cand_tokens).squeeze().view(-1) return probs_next_wrd def make_dict2dict(old_dict, new_dict): dict2dict_map = {} for sym in old_dict.symbols: dict2dict_map[old_dict.index(sym)] = new_dict.index(sym) return dict2dict_map def dict2dict(tokens, dict2dict_map): if tokens.device == torch.device('cpu'): tokens_tmp = tokens else: tokens_tmp = tokens.cpu() return tokens_tmp.map_( tokens_tmp, lambda _, val, dict2dict_map=dict2dict_map : dict2dict_map[float(val)] ).to(tokens.device) def reorder_tokens(tokens, lengths, eos): # reorder source tokens so they may be used as reference for P(S|T) return torch.cat((tokens.new([eos]), tokens[-lengths:-1], tokens[:-lengths]), 0) def reorder_all_tokens(tokens, lengths, eos): # used to reorder src tokens from [<pad> <w1> <w2> .. <eos>] to [<eos> <w1> <w2>...<pad>] # so source tokens can be used to predict P(S|T) return torch.stack([reorder_tokens(token, length, eos) for token, length in zip(tokens, lengths)]) def normalized_scores_with_batch_vocab( model_decoder, features, target_ids, k, bsz, beam_size, pad_idx, top_k=0, vocab_size_meter=None, start_idx=None, end_idx=None, **kwargs): """ Get normalized probabilities (or log probs) from a net's output w.r.t. vocab consisting of target IDs in the batch """ if model_decoder.adaptive_softmax is None: weight = model_decoder.output_projection.weight vocab_ids = torch.unique( torch.cat( (torch.unique(target_ids), torch.arange(top_k, device=target_ids.device)) ) ) id_map = dict(zip(vocab_ids.tolist(), range(len(vocab_ids)))) mapped_target_ids = target_ids.cpu().apply_( lambda x, id_map=id_map: id_map[x] ).to(target_ids.device) expanded_target_ids = mapped_target_ids[:, :].repeat(1, k).view(bsz*beam_size*k, -1) if start_idx is not None and end_idx is not None: expanded_target_ids = expanded_target_ids[start_idx:end_idx, :] logits = F.linear(features, weight[vocab_ids, :]) log_softmax = F.log_softmax(logits, dim=-1, dtype=torch.float32) intermed_scores = torch.gather( log_softmax[:, :-1, :], 2, expanded_target_ids[:, 1:].unsqueeze(2), ).squeeze() not_padding = expanded_target_ids[:, 1:] != pad_idx intermed_scores *= not_padding.float() return intermed_scores else: raise ValueError("adaptive softmax doesn't work with " + "`normalized_scores_with_batch_vocab()`")
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/fast_noisy_channel/noisy_channel_sequence_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.tasks.translation import TranslationTask from fairseq.tasks.language_modeling import LanguageModelingTask from fairseq import checkpoint_utils import argparse from fairseq.tasks import register_task import torch @register_task("noisy_channel_translation") class NoisyChannelTranslation(TranslationTask): """ Rescore the top k candidates from each beam using noisy channel modeling """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" TranslationTask.add_args(parser) # fmt: off parser.add_argument('--channel-model', metavar='FILE', help='path to P(S|T) model. P(S|T) and P(T|S) must share source and target dictionaries.') parser.add_argument('--combine-method', default='lm_only', choices=['lm_only', 'noisy_channel'], help="""method for combining direct and channel model scores. lm_only: decode with P(T|S)P(T) noisy_channel: decode with 1/t P(T|S) + 1/s(P(S|T)P(T))""") parser.add_argument('--normalize-lm-scores-by-tgt-len', action='store_true', default=False, help='normalize lm score by target length instead of source length') parser.add_argument('--channel-scoring-type', default='log_norm', choices=['unnormalized', 'log_norm', 'k2_separate', 'src_vocab', 'src_vocab_batched'], help="Normalize bw scores with log softmax or return bw scores without log softmax") parser.add_argument('--top-k-vocab', default=0, type=int, help='top k vocab IDs to use with `src_vocab` in channel model scoring') parser.add_argument('--k2', default=50, type=int, help='the top k2 candidates to rescore with the noisy channel model for each beam') parser.add_argument('--ch-wt', default=1, type=float, help='weight for the channel model') parser.add_argument('--lm-model', metavar='FILE', help='path to lm model file, to model P(T). P(T) must share the same vocab as the direct model on the target side') parser.add_argument('--lm-data', metavar='FILE', help='path to lm model training data for target language, used to properly load LM with correct dictionary') parser.add_argument('--lm-wt', default=1, type=float, help='the weight of the lm in joint decoding') # fmt: on def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None ): if getattr(args, "score_reference", False): raise NotImplementedError() else: from .noisy_channel_sequence_generator import NoisyChannelSequenceGenerator use_cuda = torch.cuda.is_available() and not self.args.cpu assert self.args.lm_model is not None, '--lm-model required for noisy channel generation!' assert self.args.lm_data is not None, '--lm-data required for noisy channel generation to map between LM and bitext vocabs' if self.args.channel_model is not None: import copy ch_args_task = copy.deepcopy(self.args) tmp = ch_args_task.source_lang ch_args_task.source_lang = ch_args_task.target_lang ch_args_task.target_lang = tmp ch_args_task._name = 'translation' channel_task = TranslationTask.setup_task(ch_args_task) arg_dict = {} arg_dict['task'] = 'language_modeling' arg_dict['sample_break_mode'] = 'eos' arg_dict['data'] = self.args.lm_data arg_dict['output_dictionary_size'] = -1 lm_args = argparse.Namespace(**arg_dict) lm_task = LanguageModelingTask.setup_task(lm_args) lm_dict = lm_task.output_dictionary if self.args.channel_model is not None: channel_models, _ = checkpoint_utils.load_model_ensemble(self.args.channel_model.split(':'), task=channel_task) for model in channel_models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if self.args.fp16: model.half() if use_cuda: model.cuda() else: channel_models = None lm_models, _ = checkpoint_utils.load_model_ensemble(self.args.lm_model.split(':'), task=lm_task) for model in lm_models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if self.args.fp16: model.half() if use_cuda: model.cuda() return NoisyChannelSequenceGenerator( combine_method=self.args.combine_method, tgt_dict=self.target_dictionary, src_dict=self.source_dictionary, beam_size=getattr(args, 'beam', 5), max_len_a=getattr(args, 'max_len_a', 0), max_len_b=getattr(args, 'max_len_b', 200), min_len=getattr(args, 'min_len', 1), len_penalty=getattr(args, 'lenpen', 1), unk_penalty=getattr(args, 'unkpen', 0), temperature=getattr(args, 'temperature', 1.), match_source_len=getattr(args, 'match_source_len', False), no_repeat_ngram_size=getattr(args, 'no_repeat_ngram_size', 0), normalize_scores=(not getattr(args, 'unnormalized', False)), channel_models=channel_models, k2=getattr(self.args, 'k2', 50), ch_weight=getattr(self.args, 'ch_wt', 1), channel_scoring_type=self.args.channel_scoring_type, top_k_vocab=self.args.top_k_vocab, lm_models=lm_models, lm_dict=lm_dict, lm_weight=getattr(self.args, 'lm_wt', 1), normalize_lm_scores_by_tgt_len=getattr(self.args, 'normalize_lm_scores_by_tgt_len', False), )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/fast_noisy_channel/noisy_channel_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import os.path as op from collections import namedtuple from multiprocessing import cpu_count from typing import List, Optional import sentencepiece as sp from fairseq.data.encoders.byte_bpe import ByteBPE from fairseq.data.encoders.byte_utils import byte_encode from fairseq.data.encoders.bytes import Bytes from fairseq.data.encoders.characters import Characters from fairseq.data.encoders.moses_tokenizer import MosesTokenizer from fairseq.data.encoders.sentencepiece_bpe import SentencepieceBPE SPLITS = ["train", "valid", "test"] def _convert_xml(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: ss = s.strip() if not ss.startswith("<seg"): continue ss = ss.replace("</seg>", "").split('">') assert len(ss) == 2 f_o.write(ss[1].strip() + "\n") def _convert_train(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: ss = s.strip() if ss.startswith("<"): continue f_o.write(ss.strip() + "\n") def _get_bytes(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(Bytes.encode(s.strip()) + "\n") def _get_chars(in_path: str, out_path: str): with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(Characters.encode(s.strip()) + "\n") def pretokenize(in_path: str, out_path: str, src: str, tgt: str): Args = namedtuple( "Args", [ "moses_source_lang", "moses_target_lang", "moses_no_dash_splits", "moses_no_escape", ], ) args = Args( moses_source_lang=src, moses_target_lang=tgt, moses_no_dash_splits=False, moses_no_escape=False, ) pretokenizer = MosesTokenizer(args) with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(pretokenizer.encode(s.strip()) + "\n") def _convert_to_bchar(in_path_prefix: str, src: str, tgt: str, out_path: str): with open(out_path, "w") as f_o: for lang in [src, tgt]: with open(f"{in_path_prefix}.{lang}") as f: for s in f: f_o.write(byte_encode(s.strip()) + "\n") def _get_bpe(in_path: str, model_prefix: str, vocab_size: int): arguments = [ f"--input={in_path}", f"--model_prefix={model_prefix}", f"--model_type=bpe", f"--vocab_size={vocab_size}", "--character_coverage=1.0", "--normalization_rule_name=identity", f"--num_threads={cpu_count()}", ] sp.SentencePieceTrainer.Train(" ".join(arguments)) def _apply_bbpe(model_path: str, in_path: str, out_path: str): Args = namedtuple("Args", ["sentencepiece_model_path"]) args = Args(sentencepiece_model_path=model_path) tokenizer = ByteBPE(args) with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(tokenizer.encode(s.strip()) + "\n") def _apply_bpe(model_path: str, in_path: str, out_path: str): Args = namedtuple("Args", ["sentencepiece_model"]) args = Args(sentencepiece_model=model_path) tokenizer = SentencepieceBPE(args) with open(in_path) as f, open(out_path, "w") as f_o: for s in f: f_o.write(tokenizer.encode(s.strip()) + "\n") def _concat_files(in_paths: List[str], out_path: str): with open(out_path, "w") as f_o: for p in in_paths: with open(p) as f: for r in f: f_o.write(r) def preprocess_iwslt17( root: str, src: str, tgt: str, bpe_size: Optional[int], need_chars: bool, bbpe_size: Optional[int], need_bytes: bool, ): # extract bitext in_root = op.join(root, f"{src}-{tgt}") for lang in [src, tgt]: _convert_train( op.join(in_root, f"train.tags.{src}-{tgt}.{lang}"), op.join(root, f"train.{lang}"), ) _convert_xml( op.join(in_root, f"IWSLT17.TED.dev2010.{src}-{tgt}.{lang}.xml"), op.join(root, f"valid.{lang}"), ) _convert_xml( op.join(in_root, f"IWSLT17.TED.tst2015.{src}-{tgt}.{lang}.xml"), op.join(root, f"test.{lang}"), ) # pre-tokenize for lang in [src, tgt]: for split in SPLITS: pretokenize( op.join(root, f"{split}.{lang}"), op.join(root, f"{split}.moses.{lang}"), src, tgt, ) # tokenize with BPE vocabulary if bpe_size is not None: # learn vocabulary concated_train_path = op.join(root, "train.all") _concat_files( [op.join(root, "train.moses.fr"), op.join(root, "train.moses.en")], concated_train_path, ) bpe_model_prefix = op.join(root, f"spm_bpe{bpe_size}") _get_bpe(concated_train_path, bpe_model_prefix, bpe_size) os.remove(concated_train_path) # apply for lang in [src, tgt]: for split in SPLITS: _apply_bpe( bpe_model_prefix + ".model", op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.bpe{bpe_size}.{lang}"), ) # tokenize with bytes vocabulary if need_bytes: for lang in [src, tgt]: for split in SPLITS: _get_bytes( op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.bytes.{lang}"), ) # tokenize with characters vocabulary if need_chars: for lang in [src, tgt]: for split in SPLITS: _get_chars( op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.chars.{lang}"), ) # tokenize with byte-level BPE vocabulary if bbpe_size is not None: # learn vocabulary bchar_path = op.join(root, "train.bchar") _convert_to_bchar(op.join(root, "train.moses"), src, tgt, bchar_path) bbpe_model_prefix = op.join(root, f"spm_bbpe{bbpe_size}") _get_bpe(bchar_path, bbpe_model_prefix, bbpe_size) os.remove(bchar_path) # apply for lang in [src, tgt]: for split in SPLITS: _apply_bbpe( bbpe_model_prefix + ".model", op.join(root, f"{split}.moses.{lang}"), op.join(root, f"{split}.moses.bbpe{bbpe_size}.{lang}"), ) def main(): parser = argparse.ArgumentParser() parser.add_argument("--root", type=str, default="data") parser.add_argument( "--bpe-vocab", default=None, type=int, help="Generate tokenized bitext with BPE of size K." "Default to None (disabled).", ) parser.add_argument( "--bbpe-vocab", default=None, type=int, help="Generate tokenized bitext with BBPE of size K." "Default to None (disabled).", ) parser.add_argument( "--byte-vocab", action="store_true", help="Generate tokenized bitext with bytes vocabulary", ) parser.add_argument( "--char-vocab", action="store_true", help="Generate tokenized bitext with chars vocabulary", ) args = parser.parse_args() preprocess_iwslt17( args.root, "fr", "en", args.bpe_vocab, args.char_vocab, args.bbpe_vocab, args.byte_vocab, ) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/byte_level_bpe/get_bitext.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch.nn.functional as F from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import TransformerEncoder, TransformerModel @register_model("gru_transformer") class GRUTransformerModel(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return GRUTransformerEncoder(args, src_dict, embed_tokens) class GRUTransformerEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) self.emb_ctx = nn.GRU( input_size=embed_tokens.embedding_dim, hidden_size=embed_tokens.embedding_dim // 2, num_layers=1, bidirectional=True, ) def forward_embedding(self, src_tokens): # embed tokens and positions x = embed = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) # contextualize embeddings x = x.transpose(0, 1) x = self.dropout_module(x) x, _ = self.emb_ctx.forward(x) x = x.transpose(0, 1) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed @register_model_architecture("gru_transformer", "gru_transformer") def gru_transformer_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.layer_wise_attention = getattr(args, "layer_wise_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) @register_model_architecture("gru_transformer", "gru_transformer_big") def gru_transformer_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) gru_transformer_base_architecture(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/byte_level_bpe/gru_transformer.py
#!/usr/bin/env python """Helper script to compare two argparse.Namespace objects.""" from argparse import Namespace # noqa def main(): ns1 = eval(input("Namespace 1: ")) ns2 = eval(input("Namespace 2: ")) def keys(ns): ks = set() for k in dir(ns): if not k.startswith("_"): ks.add(k) return ks k1 = keys(ns1) k2 = keys(ns2) def print_keys(ks, ns1, ns2=None): for k in ks: if ns2 is None: print("{}\t{}".format(k, getattr(ns1, k, None))) else: print( "{}\t{}\t{}".format(k, getattr(ns1, k, None), getattr(ns2, k, None)) ) print("Keys unique to namespace 1:") print_keys(k1 - k2, ns1) print() print("Keys unique to namespace 2:") print_keys(k2 - k1, ns2) print() print("Overlapping keys with different values:") ks = [k for k in k1 & k2 if getattr(ns1, k, "None") != getattr(ns2, k, "None")] print_keys(ks, ns1, ns2) print() if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/compare_namespaces.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Split a large file into a train and valid set while respecting document boundaries. Documents should be separated by a single empty line. """ import argparse import random import sys def main(): parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("sample_output", help="train output file") parser.add_argument("remainder_output", help="valid output file") parser.add_argument("-k", type=int, help="remainder size") parser.add_argument( "--lines", action="store_true", help="split lines instead of docs" ) args = parser.parse_args() assert args.k is not None sample = [] remainder = [] num_docs = [0] def update_sample(doc): if len(sample) < args.k: sample.append(doc.copy()) else: i = num_docs[0] j = random.randrange(i + 1) if j < args.k: remainder.append(sample[j]) sample[j] = doc.copy() else: remainder.append(doc.copy()) num_docs[0] += 1 doc.clear() with open(args.input, "r", encoding="utf-8") as h: doc = [] for i, line in enumerate(h): if line.strip() == "": # empty line indicates new document update_sample(doc) else: doc.append(line) if args.lines: update_sample(doc) if i % 1000000 == 0: print(i, file=sys.stderr, end="", flush=True) elif i % 100000 == 0: print(".", file=sys.stderr, end="", flush=True) if len(doc) > 0: update_sample(doc) print(file=sys.stderr, flush=True) assert len(sample) == args.k with open(args.sample_output, "w", encoding="utf-8") as out: first = True for doc in sample: if not first and not args.lines: out.write("\n") first = False for line in doc: out.write(line) with open(args.remainder_output, "w", encoding="utf-8") as out: first = True for doc in remainder: if not first and not args.lines: out.write("\n") first = False for line in doc: out.write(line) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/split_train_valid_docs.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Use this script in order to build symmetric alignments for your translation dataset. This script depends on fast_align and mosesdecoder tools. You will need to build those before running the script. fast_align: github: http://github.com/clab/fast_align instructions: follow the instructions in README.md mosesdecoder: github: http://github.com/moses-smt/mosesdecoder instructions: http://www.statmt.org/moses/?n=Development.GetStarted The script produces the following files under --output_dir: text.joined - concatenation of lines from the source_file and the target_file. align.forward - forward pass of fast_align. align.backward - backward pass of fast_align. aligned.sym_heuristic - symmetrized alignment. """ import argparse import os from itertools import zip_longest def main(): parser = argparse.ArgumentParser(description="symmetric alignment builer") # fmt: off parser.add_argument('--fast_align_dir', help='path to fast_align build directory') parser.add_argument('--mosesdecoder_dir', help='path to mosesdecoder root directory') parser.add_argument('--sym_heuristic', help='heuristic to use for symmetrization', default='grow-diag-final-and') parser.add_argument('--source_file', help='path to a file with sentences ' 'in the source language') parser.add_argument('--target_file', help='path to a file with sentences ' 'in the target language') parser.add_argument('--output_dir', help='output directory') # fmt: on args = parser.parse_args() fast_align_bin = os.path.join(args.fast_align_dir, "fast_align") symal_bin = os.path.join(args.mosesdecoder_dir, "bin", "symal") sym_fast_align_bin = os.path.join( args.mosesdecoder_dir, "scripts", "ems", "support", "symmetrize-fast-align.perl" ) # create joined file joined_file = os.path.join(args.output_dir, "text.joined") with open(args.source_file, "r", encoding="utf-8") as src, open( args.target_file, "r", encoding="utf-8" ) as tgt: with open(joined_file, "w", encoding="utf-8") as joined: for s, t in zip_longest(src, tgt): print("{} ||| {}".format(s.strip(), t.strip()), file=joined) bwd_align_file = os.path.join(args.output_dir, "align.backward") # run forward alignment fwd_align_file = os.path.join(args.output_dir, "align.forward") fwd_fast_align_cmd = "{FASTALIGN} -i {JOINED} -d -o -v > {FWD}".format( FASTALIGN=fast_align_bin, JOINED=joined_file, FWD=fwd_align_file ) assert os.system(fwd_fast_align_cmd) == 0 # run backward alignment bwd_align_file = os.path.join(args.output_dir, "align.backward") bwd_fast_align_cmd = "{FASTALIGN} -i {JOINED} -d -o -v -r > {BWD}".format( FASTALIGN=fast_align_bin, JOINED=joined_file, BWD=bwd_align_file ) assert os.system(bwd_fast_align_cmd) == 0 # run symmetrization sym_out_file = os.path.join(args.output_dir, "aligned") sym_cmd = "{SYMFASTALIGN} {FWD} {BWD} {SRC} {TGT} {OUT} {HEURISTIC} {SYMAL}".format( SYMFASTALIGN=sym_fast_align_bin, FWD=fwd_align_file, BWD=bwd_align_file, SRC=args.source_file, TGT=args.target_file, OUT=sym_out_file, HEURISTIC=args.sym_heuristic, SYMAL=symal_bin, ) assert os.system(sym_cmd) == 0 if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/build_sym_alignment.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import argparse import sentencepiece as spm def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="sentencepiece model to use for decoding" ) parser.add_argument("--input", required=True, help="input file to decode") parser.add_argument("--input_format", choices=["piece", "id"], default="piece") args = parser.parse_args() sp = spm.SentencePieceProcessor() sp.Load(args.model) if args.input_format == "piece": def decode(l): return "".join(sp.DecodePieces(l)) elif args.input_format == "id": def decode(l): return "".join(sp.DecodeIds(l)) else: raise NotImplementedError def tok2int(tok): # remap reference-side <unk> (represented as <<unk>>) to 0 return int(tok) if tok != "<<unk>>" else 0 with open(args.input, "r", encoding="utf-8") as h: for line in h: if args.input_format == "id": print(decode(list(map(tok2int, line.rstrip().split())))) elif args.input_format == "piece": print(decode(line.rstrip().split())) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/spm_decode.py
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import re import shutil import sys pt_regexp = re.compile(r"checkpoint(\d+|_\d+_\d+|_[a-z]+)\.pt") pt_regexp_epoch_based = re.compile(r"checkpoint(\d+)\.pt") pt_regexp_update_based = re.compile(r"checkpoint_\d+_(\d+)\.pt") def parse_checkpoints(files): entries = [] for f in files: m = pt_regexp_epoch_based.fullmatch(f) if m is not None: entries.append((int(m.group(1)), m.group(0))) else: m = pt_regexp_update_based.fullmatch(f) if m is not None: entries.append((int(m.group(1)), m.group(0))) return entries def last_n_checkpoints(files, n): entries = parse_checkpoints(files) return [x[1] for x in sorted(entries, reverse=True)[:n]] def every_n_checkpoints(files, n): entries = parse_checkpoints(files) return [x[1] for x in sorted(sorted(entries)[::-n])] def main(): parser = argparse.ArgumentParser( description=( "Recursively delete checkpoint files from `root_dir`, " "but preserve checkpoint_best.pt and checkpoint_last.pt" ) ) parser.add_argument("root_dirs", nargs="*") parser.add_argument( "--save-last", type=int, default=0, help="number of last checkpoints to save" ) parser.add_argument( "--save-every", type=int, default=0, help="interval of checkpoints to save" ) parser.add_argument( "--preserve-test", action="store_true", help="preserve checkpoints in dirs that start with test_ prefix (default: delete them)", ) parser.add_argument( "--delete-best", action="store_true", help="delete checkpoint_best.pt" ) parser.add_argument( "--delete-last", action="store_true", help="delete checkpoint_last.pt" ) parser.add_argument( "--no-dereference", action="store_true", help="don't dereference symlinks" ) args = parser.parse_args() files_to_desymlink = [] files_to_preserve = [] files_to_delete = [] for root_dir in args.root_dirs: for root, _subdirs, files in os.walk(root_dir): if args.save_last > 0: to_save = last_n_checkpoints(files, args.save_last) else: to_save = [] if args.save_every > 0: to_save += every_n_checkpoints(files, args.save_every) for file in files: if not pt_regexp.fullmatch(file): continue full_path = os.path.join(root, file) if ( not os.path.basename(root).startswith("test_") or args.preserve_test ) and ( (file == "checkpoint_last.pt" and not args.delete_last) or (file == "checkpoint_best.pt" and not args.delete_best) or file in to_save ): if os.path.islink(full_path) and not args.no_dereference: files_to_desymlink.append(full_path) else: files_to_preserve.append(full_path) else: files_to_delete.append(full_path) if len(files_to_desymlink) == 0 and len(files_to_delete) == 0: print("Nothing to do.") sys.exit(0) files_to_desymlink = sorted(files_to_desymlink) files_to_preserve = sorted(files_to_preserve) files_to_delete = sorted(files_to_delete) print("Operations to perform (in order):") if len(files_to_desymlink) > 0: for file in files_to_desymlink: print(" - preserve (and dereference symlink): " + file) if len(files_to_preserve) > 0: for file in files_to_preserve: print(" - preserve: " + file) if len(files_to_delete) > 0: for file in files_to_delete: print(" - delete: " + file) while True: resp = input("Continue? (Y/N): ") if resp.strip().lower() == "y": break elif resp.strip().lower() == "n": sys.exit(0) print("Executing...") if len(files_to_desymlink) > 0: for file in files_to_desymlink: realpath = os.path.realpath(file) print("rm " + file) os.remove(file) print("cp {} {}".format(realpath, file)) shutil.copyfile(realpath, file) if len(files_to_delete) > 0: for file in files_to_delete: print("rm " + file) os.remove(file) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/rm_pt.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Count the number of documents and average number of lines and tokens per document in a large file. Documents should be separated by a single empty line. """ import argparse import gzip import sys import numpy as np def main(): parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("--gzip", action="store_true") args = parser.parse_args() def gopen(): if args.gzip: return gzip.open(args.input, "r") else: return open(args.input, "r", encoding="utf-8") num_lines = [] num_toks = [] with gopen() as h: num_docs = 1 num_lines_in_doc = 0 num_toks_in_doc = 0 for i, line in enumerate(h): if len(line.strip()) == 0: # empty line indicates new document num_docs += 1 num_lines.append(num_lines_in_doc) num_toks.append(num_toks_in_doc) num_lines_in_doc = 0 num_toks_in_doc = 0 else: num_lines_in_doc += 1 num_toks_in_doc += len(line.rstrip().split()) if i % 1000000 == 0: print(i, file=sys.stderr, end="", flush=True) elif i % 100000 == 0: print(".", file=sys.stderr, end="", flush=True) print(file=sys.stderr, flush=True) print("found {} docs".format(num_docs)) print("average num lines per doc: {}".format(np.mean(num_lines))) print("average num toks per doc: {}".format(np.mean(num_toks))) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/count_docs.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import argparse import contextlib import sys import sentencepiece as spm def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="sentencepiece model to use for encoding" ) parser.add_argument( "--inputs", nargs="+", default=["-"], help="input files to filter/encode" ) parser.add_argument( "--outputs", nargs="+", default=["-"], help="path to save encoded outputs" ) parser.add_argument("--output_format", choices=["piece", "id"], default="piece") parser.add_argument( "--min-len", type=int, metavar="N", help="filter sentence pairs with fewer than N tokens", ) parser.add_argument( "--max-len", type=int, metavar="N", help="filter sentence pairs with more than N tokens", ) args = parser.parse_args() assert len(args.inputs) == len( args.outputs ), "number of input and output paths should match" sp = spm.SentencePieceProcessor() sp.Load(args.model) if args.output_format == "piece": def encode(l): return sp.EncodeAsPieces(l) elif args.output_format == "id": def encode(l): return list(map(str, sp.EncodeAsIds(l))) else: raise NotImplementedError if args.min_len is not None or args.max_len is not None: def valid(line): return (args.min_len is None or len(line) >= args.min_len) and ( args.max_len is None or len(line) <= args.max_len ) else: def valid(lines): return True with contextlib.ExitStack() as stack: inputs = [ stack.enter_context(open(input, "r", encoding="utf-8")) if input != "-" else sys.stdin for input in args.inputs ] outputs = [ stack.enter_context(open(output, "w", encoding="utf-8")) if output != "-" else sys.stdout for output in args.outputs ] stats = { "num_empty": 0, "num_filtered": 0, } def encode_line(line): line = line.strip() if len(line) > 0: line = encode(line) if valid(line): return line else: stats["num_filtered"] += 1 else: stats["num_empty"] += 1 return None for i, lines in enumerate(zip(*inputs), start=1): enc_lines = list(map(encode_line, lines)) if not any(enc_line is None for enc_line in enc_lines): for enc_line, output_h in zip(enc_lines, outputs): print(" ".join(enc_line), file=output_h) if i % 10000 == 0: print("processed {} lines".format(i), file=sys.stderr) print("skipped {} empty lines".format(stats["num_empty"]), file=sys.stderr) print("filtered {} lines".format(stats["num_filtered"]), file=sys.stderr) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/spm_encode.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Split a large file into shards while respecting document boundaries. Documents should be separated by a single empty line. """ import argparse import contextlib def main(): parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("--num-shards", type=int) args = parser.parse_args() assert args.num_shards is not None and args.num_shards > 1 with open(args.input, "r", encoding="utf-8") as h: with contextlib.ExitStack() as stack: outputs = [ stack.enter_context( open(args.input + ".shard" + str(i), "w", encoding="utf-8") ) for i in range(args.num_shards) ] doc = [] first_doc = [True] * args.num_shards def output_doc(i): if not first_doc[i]: outputs[i].write("\n") first_doc[i] = False for line in doc: outputs[i].write(line) doc.clear() num_docs = 0 for line in h: if line.strip() == "": # empty line indicates new document output_doc(num_docs % args.num_shards) num_docs += 1 else: doc.append(line) output_doc(num_docs % args.num_shards) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/shard_docs.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import sys import sentencepiece as spm if __name__ == "__main__": spm.SentencePieceTrainer.Train(" ".join(sys.argv[1:]))
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/spm_train.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import collections import os import re import torch from fairseq.file_io import PathManager def average_checkpoints(inputs): """Loads checkpoints from inputs and returns a model with averaged weights. Args: inputs: An iterable of string paths of checkpoints to load from. Returns: A dict of string keys mapping to various values. The 'model' key from the returned dict should correspond to an OrderedDict mapping string parameter names to torch Tensors. """ params_dict = collections.OrderedDict() params_keys = None new_state = None num_models = len(inputs) for fpath in inputs: with PathManager.open(fpath, "rb") as f: state = torch.load( f, map_location=( lambda s, _: torch.serialization.default_restore_location(s, "cpu") ), ) # Copies over the settings from the first checkpoint if new_state is None: new_state = state model_params = state["model"] model_params_keys = list(model_params.keys()) if params_keys is None: params_keys = model_params_keys elif params_keys != model_params_keys: raise KeyError( "For checkpoint {}, expected list of params: {}, " "but found: {}".format(f, params_keys, model_params_keys) ) for k in params_keys: p = model_params[k] if isinstance(p, torch.HalfTensor): p = p.float() if k not in params_dict: params_dict[k] = p.clone() # NOTE: clone() is needed in case of p is a shared parameter else: params_dict[k] += p averaged_params = collections.OrderedDict() for k, v in params_dict.items(): averaged_params[k] = v if averaged_params[k].is_floating_point(): averaged_params[k].div_(num_models) else: averaged_params[k] //= num_models new_state["model"] = averaged_params return new_state def last_n_checkpoints(paths, n, update_based, upper_bound=None): assert len(paths) == 1 path = paths[0] if update_based: pt_regexp = re.compile(r"checkpoint_\d+_(\d+)\.pt") else: pt_regexp = re.compile(r"checkpoint(\d+)\.pt") files = PathManager.ls(path) entries = [] for f in files: m = pt_regexp.fullmatch(f) if m is not None: sort_key = int(m.group(1)) if upper_bound is None or sort_key <= upper_bound: entries.append((sort_key, m.group(0))) if len(entries) < n: raise Exception( "Found {} checkpoint files but need at least {}", len(entries), n ) return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)[:n]] def main(): parser = argparse.ArgumentParser( description="Tool to average the params of input checkpoints to " "produce a new checkpoint", ) # fmt: off parser.add_argument('--inputs', required=True, nargs='+', help='Input checkpoint file paths.') parser.add_argument('--output', required=True, metavar='FILE', help='Write the new checkpoint containing the averaged weights to this path.') num_group = parser.add_mutually_exclusive_group() num_group.add_argument('--num-epoch-checkpoints', type=int, help='if set, will try to find checkpoints with names checkpoint_xx.pt in the path specified by input, ' 'and average last this many of them.') num_group.add_argument('--num-update-checkpoints', type=int, help='if set, will try to find checkpoints with names checkpoint_ee_xx.pt in the path specified by input, ' 'and average last this many of them.') parser.add_argument('--checkpoint-upper-bound', type=int, help='when using --num-epoch-checkpoints, this will set an upper bound on which epoch to use, ' 'when using --num-update-checkpoints, this will set an upper bound on which update to use' 'e.g., with --num-epoch-checkpoints=10 --checkpoint-upper-bound=50, checkpoints 41-50 would be averaged.' 'e.g., with --num-update-checkpoints=10 --checkpoint-upper-bound=50000, checkpoints 40500-50000 would be averaged assuming --save-interval-updates 500' ) # fmt: on args = parser.parse_args() print(args) num = None is_update_based = False if args.num_update_checkpoints is not None: num = args.num_update_checkpoints is_update_based = True elif args.num_epoch_checkpoints is not None: num = args.num_epoch_checkpoints assert args.checkpoint_upper_bound is None or ( args.num_epoch_checkpoints is not None or args.num_update_checkpoints is not None ), "--checkpoint-upper-bound requires --num-epoch-checkpoints or --num-update-checkpoints" assert ( args.num_epoch_checkpoints is None or args.num_update_checkpoints is None ), "Cannot combine --num-epoch-checkpoints and --num-update-checkpoints" if num is not None: args.inputs = last_n_checkpoints( args.inputs, num, is_update_based, upper_bound=args.checkpoint_upper_bound, ) print("averaging checkpoints: ", args.inputs) new_state = average_checkpoints(args.inputs) with PathManager.open(args.output, "wb") as f: torch.save(new_state, f) print("Finished writing averaged checkpoint to {}".format(args.output)) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/average_checkpoints.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from fairseq.data import Dictionary, data_utils, indexed_dataset def get_parser(): parser = argparse.ArgumentParser( description="writes text from binarized file to stdout" ) # fmt: off parser.add_argument('--dataset-impl', help='dataset implementation', choices=indexed_dataset.get_available_dataset_impl()) parser.add_argument('--dict', metavar='FP', help='dictionary containing known words', default=None) parser.add_argument('--input', metavar='FP', required=True, help='binarized file to read') # fmt: on return parser def main(): parser = get_parser() args = parser.parse_args() dictionary = Dictionary.load(args.dict) if args.dict is not None else None dataset = data_utils.load_indexed_dataset( args.input, dictionary, dataset_impl=args.dataset_impl, default="lazy", ) for tensor_line in dataset: if dictionary is None: line = " ".join([str(int(x)) for x in tensor_line]) else: line = dictionary.string(tensor_line) print(line) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/read_binarized.py
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys """Reads in a fairseq output file, and verifies that the constraints (C- lines) are present in the output (the first H- line). Assumes that constraints are listed prior to the first hypothesis. """ constraints = [] found = 0 total = 0 for line in sys.stdin: if line.startswith("C-"): constraints.append(line.rstrip().split("\t")[1]) elif line.startswith("H-"): text = line.split("\t")[2] for constraint in constraints: total += 1 if constraint in text: found += 1 else: print(f"No {constraint} in {text}", file=sys.stderr) constraints = [] print(f"Found {found} / {total} = {100 * found / total:.1f}%")
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/constraints/validate.py
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Extracts random constraints from reference files.""" import argparse import random import sys from sacrebleu import extract_ngrams def get_phrase(words, index, length): assert index < len(words) - length + 1 phr = " ".join(words[index : index + length]) for i in range(index, index + length): words.pop(index) return phr def main(args): if args.seed: random.seed(args.seed) for line in sys.stdin: constraints = [] def add_constraint(constraint): constraints.append(constraint) source = line.rstrip() if "\t" in line: source, target = line.split("\t") if args.add_sos: target = f"<s> {target}" if args.add_eos: target = f"{target} </s>" if len(target.split()) >= args.len: words = [target] num = args.number choices = {} for i in range(num): if len(words) == 0: break segmentno = random.choice(range(len(words))) segment = words.pop(segmentno) tokens = segment.split() phrase_index = random.choice(range(len(tokens))) choice = " ".join( tokens[phrase_index : min(len(tokens), phrase_index + args.len)] ) for j in range( phrase_index, min(len(tokens), phrase_index + args.len) ): tokens.pop(phrase_index) if phrase_index > 0: words.append(" ".join(tokens[0:phrase_index])) if phrase_index + 1 < len(tokens): words.append(" ".join(tokens[phrase_index:])) choices[target.find(choice)] = choice # mask out with spaces target = target.replace(choice, " " * len(choice), 1) for key in sorted(choices.keys()): add_constraint(choices[key]) print(source, *constraints, sep="\t") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--number", "-n", type=int, default=1, help="number of phrases") parser.add_argument("--len", "-l", type=int, default=1, help="phrase length") parser.add_argument( "--add-sos", default=False, action="store_true", help="add <s> token" ) parser.add_argument( "--add-eos", default=False, action="store_true", help="add </s> token" ) parser.add_argument("--seed", "-s", default=0, type=int) args = parser.parse_args() main(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/scripts/constraints/extract.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import sys from typing import Iterable, Optional import torch from timm.data import Mixup from timm.utils import accuracy, ModelEma import utils def train_class_batch(model, samples, target, criterion): outputs = model(samples) loss = criterion(outputs, target) return loss, outputs def get_loss_scale_for_deepspeed(model): optimizer = model.optimizer return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, num_training_steps_per_epoch=None, update_freq=None): model.train(True) metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 if loss_scaler is None: model.zero_grad() model.micro_steps = 0 else: optimizer.zero_grad() for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): step = data_iter_step // update_freq if step >= num_training_steps_per_epoch: continue it = start_steps + step # global training iteration # Update LR & WD for the first acc if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group.get("lr_scale", 1.0) if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples = samples.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) if loss_scaler is None: samples = samples.half() loss, output = train_class_batch( model, samples, targets, criterion) else: with torch.cuda.amp.autocast(): loss, output = train_class_batch( model, samples, targets, criterion) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) if loss_scaler is None: loss /= update_freq model.backward(loss) model.step() if (data_iter_step + 1) % update_freq == 0: # model.zero_grad() # Deepspeed will call step() & model.zero_grad() automatic if model_ema is not None: model_ema.update(model) grad_norm = None loss_scale_value = get_loss_scale_for_deepspeed(model) else: # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order loss /= update_freq grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order, update_grad=(data_iter_step + 1) % update_freq == 0) if (data_iter_step + 1) % update_freq == 0: optimizer.zero_grad() if model_ema is not None: model_ema.update(model) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() if mixup_fn is None: class_acc = (output.max(-1)[-1] == targets).float().mean() else: class_acc = None metric_logger.update(loss=loss_value) metric_logger.update(class_acc=class_acc) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(class_acc=class_acc, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() for step, batch in enumerate(metric_logger.log_every(data_loader, 10, header)): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
EXA-1-master
exa/models/unilm-master/beit2/engine_for_finetuning.py
""" Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 Copyright Zhun Zhong & Liang Zheng Hacked together by / Copyright 2020 Ross Wightman Modified by Hangbo Bao, for generating the masked position for visual image transformer """ # -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 # Copyright Zhun Zhong & Liang Zheng # # Hacked together by / Copyright 2020 Ross Wightman # # Modified by Hangbo Bao, for generating the masked position for visual image transformer # --------------------------------------------------------' import random import math import numpy as np class MaskingGenerator: def __init__( self, input_size, num_masking_patches, min_num_patches=4, max_num_patches=None, min_aspect=0.3, max_aspect=None): if not isinstance(input_size, tuple): input_size = (input_size, ) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.num_masking_patches = num_masking_patches self.min_num_patches = min_num_patches self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self): repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( self.height, self.width, self.min_num_patches, self.max_num_patches, self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1]) return repr_str def get_shape(self): return self.height, self.width def _mask(self, mask, max_mask_patches): delta = 0 for attempt in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top: top + h, left: left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self): mask = np.zeros(shape=self.get_shape(), dtype=np.int32) mask_count = 0 while mask_count < self.num_masking_patches: max_mask_patches = self.num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._mask(mask, max_mask_patches) if delta == 0: break else: mask_count += delta # maintain a fix number {self.num_masking_patches} if mask_count > self.num_masking_patches: delta = mask_count - self.num_masking_patches mask_x, mask_y = mask.nonzero() to_vis = np.random.choice(mask_x.shape[0], delta, replace=False) mask[mask_x[to_vis], mask_y[to_vis]] = 0 elif mask_count < self.num_masking_patches: delta = self.num_masking_patches - mask_count mask_x, mask_y = (mask == 0).nonzero() to_mask = np.random.choice(mask_x.shape[0], delta, replace=False) mask[mask_x[to_mask], mask_y[to_mask]] = 1 assert mask.sum() == self.num_masking_patches, f"mask: {mask}, mask count {mask.sum()}" return mask if __name__ == '__main__': import pdb generator = MaskingGenerator(input_size=14, num_masking_patches=118, min_num_patches=16,) for i in range(10000000): mask = generator() if mask.sum() != 118: pdb.set_trace() print(mask) print(mask.sum())
EXA-1-master
exa/models/unilm-master/beit2/masking_generator.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import torch import torchvision.transforms.functional as F from PIL import Image import warnings import math import random import numpy as np class ToNumpy: def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return np_img class ToTensor: def __init__(self, dtype=torch.float32): self.dtype = dtype def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return torch.from_numpy(np_img).to(dtype=self.dtype) _pil_interpolation_to_str = { Image.NEAREST: 'PIL.Image.NEAREST', Image.BILINEAR: 'PIL.Image.BILINEAR', Image.BICUBIC: 'PIL.Image.BICUBIC', Image.LANCZOS: 'PIL.Image.LANCZOS', Image.HAMMING: 'PIL.Image.HAMMING', Image.BOX: 'PIL.Image.BOX', } def _pil_interp(method): if method == 'bicubic': return Image.BICUBIC elif method == 'lanczos': return Image.LANCZOS elif method == 'hamming': return Image.HAMMING else: # default bilinear, do we want to allow nearest? return Image.BILINEAR _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) class RandomResizedCropAndInterpolationWithTwoPic: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', second_interpolation='lanczos'): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if second_size is not None: if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = _pil_interp(interpolation) self.second_interpolation = _pil_interp(second_interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation]) else: interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0}'.format(interpolate_str) if self.second_size is not None: format_string += ', second_size={0}'.format(self.second_size) format_string += ', second_interpolation={0}'.format(_pil_interpolation_to_str[self.second_interpolation]) format_string += ')' return format_string
EXA-1-master
exa/models/unilm-master/beit2/transforms.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' from cgitb import enable import math import sys from typing import Iterable import torch import torch.nn as nn import torch.nn.functional as F import utils def train_one_epoch(model: torch.nn.Module, vqkd: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, args=None): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 loss_fn = nn.CrossEntropyLoss() for step, (batch, extra_info) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # assign learning rate & weight decay for each step it = start_steps + step # global training iteration if lr_schedule_values is not None or wd_schedule_values is not None: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples, images, bool_masked_pos = batch images = images.to(device, non_blocking=True) samples = samples.to(device, non_blocking=True) bool_masked_pos = bool_masked_pos.to(device, non_blocking=True) with torch.no_grad(): with torch.cuda.amp.autocast(): input_ids = vqkd.get_codebook_indices(images) bool_masked_pos = bool_masked_pos.flatten(1).to(torch.bool) labels = input_ids[bool_masked_pos] with torch.cuda.amp.autocast(): # enabled=False outputs = model(samples, bool_masked_pos=bool_masked_pos) if isinstance(outputs, list): loss_1 = loss_fn(input=outputs[0], target=labels) loss_2 = loss_fn(input=outputs[1], target=labels) loss = loss_1 + loss_2 else: loss = loss_fn(input=outputs, target=labels) loss_value = loss.item() if not math.isfinite(loss_value): print(f"Loss is {loss_value}, stopping training at rank {utils.get_rank()}", force=True) sys.exit(1) optimizer.zero_grad() # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() if isinstance(outputs, list): mlm_acc_1 = (outputs[0].max(-1)[1] == labels).float().mean().item() mlm_acc_2 = (outputs[1].max(-1)[1] == labels).float().mean().item() metric_logger.update(mlm_acc_1=mlm_acc_1) metric_logger.update(mlm_acc_2=mlm_acc_2) metric_logger.update(loss_1=loss_1.item()) metric_logger.update(loss_2=loss_2.item()) if log_writer is not None: log_writer.update(mlm_acc_1=mlm_acc_1, head="loss") log_writer.update(mlm_acc_2=mlm_acc_2, head="loss") log_writer.update(loss_1=loss_1.item(), head="loss") log_writer.update(loss_2=loss_2.item(), head="loss") else: mlm_acc = (outputs.max(-1)[1] == labels).float().mean().item() metric_logger.update(mlm_acc=mlm_acc) if log_writer is not None: log_writer.update(mlm_acc=mlm_acc, head="loss") metric_logger.update(loss=loss_value) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() if lr_scheduler is not None: lr_scheduler.step_update(start_steps + step) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
EXA-1-master
exa/models/unilm-master/beit2/engine_for_pretraining.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import torch import torch.nn as nn from functools import partial from modeling_finetune import Block, _cfg, PatchEmbed, RelativePositionBias from timm.models.registry import register_model from timm.models.layers import trunc_normal_ as __call_trunc_normal_ def trunc_normal_(tensor, mean=0., std=1.): __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) class VisionTransformerForMaskedImageModeling(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, vocab_size=8192, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, init_values=None, attn_head_dim=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02): super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.num_heads = num_heads self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, attn_head_dim=attn_head_dim, ) for i in range(depth)]) self.norm = norm_layer(embed_dim) self.init_std = init_std self.lm_head = nn.Linear(embed_dim, vocab_size) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=self.init_std) trunc_normal_(self.cls_token, std=self.init_std) trunc_normal_(self.mask_token, std=self.init_std) trunc_normal_(self.lm_head.weight, std=self.init_std) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=self.init_std) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=self.init_std) if m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_num_layers(self): return len(self.blocks) def forward_features(self, x, bool_masked_pos): x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias=rel_pos_bias) return self.norm(x) def forward(self, x, bool_masked_pos=None, return_all_tokens=False, return_patch_tokens=False): if bool_masked_pos is None: bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device) x = self.forward_features(x, bool_masked_pos=bool_masked_pos) x = x[:, 1:] if return_patch_tokens: return x if return_all_tokens: return self.lm_head(x) else: # return the masked tokens return self.lm_head(x[bool_masked_pos]) def forward_return_qkv(self, x, bool_masked_pos=None, split_out_as_qkv=False): if bool_masked_pos is None: bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device) x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x, rel_pos_bias=rel_pos_bias) else: # with torch.cuda.amp.autocast(enabled=False): x, qkv = blk(x, rel_pos_bias=rel_pos_bias, return_qkv=True) if split_out_as_qkv: x = self.norm(x) x = self.lm_head(x) # [b, n+1, 3*c] q, k, v = x.chunk(3, dim=-1) # [b, n+1, c] b, n, c =q.shape q = q.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3) k = k.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3) v = v.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3) return x, q, k, v else: x = self.norm(x) x = x[:, 1:] x = self.lm_head(x[bool_masked_pos]) q, k, v = qkv[0], qkv[1], qkv[2] return x, q, k, v def forward_intermediate(self, x, bool_masked_pos=None, layer_id=12): if bool_masked_pos is None: bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device) x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None if isinstance(layer_id, list): output_list = [] for l, blk in enumerate(self.blocks): x = blk(x, rel_pos_bias=rel_pos_bias) if l in layer_id: output_list.append(x[:, 1:]) return output_list elif isinstance(layer_id, int): for l, blk in enumerate(self.blocks): if l < layer_id: x = blk(x, rel_pos_bias=rel_pos_bias) elif l == layer_id: x = blk.norm1(x) else: break return x[:, 1:] else: raise NotImplementedError(f"Not support for layer id is {layer_id} now!") def get_last_selfattention(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x, rel_pos_bias=rel_pos_bias) else: # return attention of the last block return blk(x, rel_pos_bias=rel_pos_bias, return_attention=True) class VisionTransformerForMaskedImageModelingCLS(VisionTransformerForMaskedImageModeling): def __init__(self, img_size=224, patch_size=16, in_chans=3, vocab_size=8192, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, init_values=None, attn_head_dim=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02, early_layers=6, head_layers=2, shared_lm_head=True): super().__init__(img_size=img_size, patch_size=patch_size, in_chans=in_chans, vocab_size=vocab_size, embed_dim=embed_dim, depth=depth, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate, norm_layer=norm_layer, init_values=init_values, attn_head_dim=attn_head_dim, use_abs_pos_emb=use_abs_pos_emb, use_rel_pos_bias=use_rel_pos_bias, use_shared_rel_pos_bias=use_shared_rel_pos_bias, init_std=init_std) self.early_layers = early_layers print(f'early layer {early_layers}, late layer {depth - early_layers}, condenser head layers {head_layers}, shared_lm_head {shared_lm_head}') dpr = [x.item() for x in torch.linspace(0, drop_path_rate, max(depth, early_layers + head_layers))] # stochastic depth decay rule self.cls_pt_layers = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, attn_head_dim=attn_head_dim, ) for i in range(early_layers, early_layers + head_layers)]) self.fix_init_cls_pt_weight() self.shared_lm_head = shared_lm_head if not shared_lm_head: self.cls_pt_norm = norm_layer(embed_dim) self.cls_pt_lm_head = nn.Linear(embed_dim, vocab_size) self.cls_pt_norm.apply(self._init_weights) self.cls_pt_lm_head.apply(self._init_weights) def fix_init_cls_pt_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.cls_pt_layers): rescale(layer.attn.proj.weight.data, self.early_layers + layer_id + 1) rescale(layer.mlp.fc2.weight.data, self.early_layers + layer_id + 1) def forward_features(self, x, bool_masked_pos): x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for i, blk in enumerate(self.blocks): x = blk(x, rel_pos_bias=rel_pos_bias) if i + 1 == self.early_layers: early_states = x[:, 1:] x_cls_pt = torch.cat([x[:, [0]], early_states], dim=1) for blk in self.cls_pt_layers: x_cls_pt = blk(x_cls_pt, rel_pos_bias=rel_pos_bias) return self.norm(x), self.norm(x_cls_pt) if self.shared_lm_head else self.cls_pt_norm(x_cls_pt) def forward(self, x, bool_masked_pos=None, return_all_tokens=False, return_patch_tokens=False): if bool_masked_pos is None: bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device) x, x_cls_pt = self.forward_features(x, bool_masked_pos=bool_masked_pos) x = x[:, 1:] x_cls_pt = x_cls_pt[:, 1:] if return_patch_tokens: return [x, x_cls_pt] if return_all_tokens: return [self.lm_head(x), self.lm_head(x_cls_pt) if self.shared_lm_head else self.cls_pt_lm_head(x_cls_pt)] else: # return the masked tokens return [self.lm_head(x[bool_masked_pos]), self.lm_head(x_cls_pt[bool_masked_pos]) if self.shared_lm_head else self.cls_pt_lm_head(x_cls_pt[bool_masked_pos])] @register_model def beit_base_patch16_224_8k_vocab_cls_pt(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModelingCLS( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_base_patch16_224_8k_vocab(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModeling( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_base_patch16_192_8k_vocab(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModeling( img_size=192, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_base_patch16_256_8k_vocab(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModeling( img_size=256, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_24x544_patch16_224_8k_vocab(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModeling( img_size=224, patch_size=16, embed_dim=544, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_24x544_patch16_224_8k_vocab_cls_pt(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModelingCLS( img_size=224, patch_size=16, embed_dim=544, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_large_patch16_224_8k_vocab(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModeling( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_large_patch16_224_8k_vocab_cls_pt(pretrained=False, **kwargs): if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModelingCLS( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_huge_patch14_224_8k_vocab(pretrained=False, **kwargs): # patch_size=14, embed_dim=1280, depth=32, num_heads=16 if "num_classes" in kwargs: _ = kwargs.pop("num_classes") if 'vocab_size' in kwargs: vocab_size = kwargs['vocab_size'] _ = kwargs.pop("vocab_size") else: vocab_size = 8192 model = VisionTransformerForMaskedImageModeling( patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model
EXA-1-master
exa/models/unilm-master/beit2/modeling_pretrain.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on VQGAN code bases # https://github.com/CompVis/taming-transformers # --------------------------------------------------------' import torch import numpy as np from torch import nn, einsum import torch.nn.functional as F import math from collections import OrderedDict from functools import partial, reduce from einops import rearrange from timm.models.layers import trunc_normal_ from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.registry import register_model from modeling_finetune import VisionTransformer from norm_ema_quantizer import NormEMAVectorQuantizer import utils from vqkd_teacher import clip, get_dino_vit_base class VQKD(nn.Module): def __init__(self, encoder_config, decoder_config, n_embed=8192, embed_dim=32, decay=0.99, process_type='default', quantize_kmeans_init=True, teacher_model_type='clip', decoder_out_dim=512, rec_loss_type='cosine', **kwargs ): super().__init__() print(kwargs) if decoder_config['in_chans'] != embed_dim: print(f"Rewrite the in_chans in decoder from {decoder_config['in_chans']} to {embed_dim}") decoder_config['in_chans'] = embed_dim # encoder & decode params print('Final encoder config', encoder_config) self.encoder = VisionTransformer(**encoder_config) print('Final decoder config', decoder_config) self.decoder = VisionTransformer(**decoder_config) self.quantize = NormEMAVectorQuantizer( n_embed=n_embed, embedding_dim=embed_dim, beta=1.0, kmeans_init=quantize_kmeans_init, decay=decay, ) self.patch_size = encoder_config['patch_size'] self.token_shape = (encoder_config['img_size'] // self.patch_size, encoder_config['img_size'] // self.patch_size) ## Teacher model setting self.teacher_model_type = teacher_model_type self.decoder_out_dim = decoder_out_dim if self.teacher_model_type == 'clip': self.scaling_layer = ScalingLayerForClip() self.teacher_model, _ = clip.load("ViT-B/16", device='cpu', jit=False) self.decoder_out_dim = 512 elif self.teacher_model_type == 'dino': self.scaling_layer = ScalingLayerForIM() self.teacher_model = get_dino_vit_base() self.decoder_out_dim = 768 else: self.teacher_model = None if self.teacher_model is not None: for param in self.teacher_model.parameters(): param.requires_grad = False # fix teacher_model model self.teacher_model.eval() self.teacher_input_size = kwargs.get('teacher_input_size', 224) # task layer self.encode_task_layer = nn.Sequential( nn.Linear(encoder_config['embed_dim'], encoder_config['embed_dim']), nn.Tanh(), nn.Linear(encoder_config['embed_dim'], embed_dim) # for quantize ) self.decode_task_layer = nn.Sequential( nn.Linear(decoder_config['embed_dim'], decoder_config['embed_dim']), nn.Tanh(), nn.Linear(decoder_config['embed_dim'], self.decoder_out_dim), ) self.rec_loss_type = rec_loss_type print(f"process type for VQKD: {process_type}") self.process_type = process_type # in ['default', 'dall-e'] self.logit_laplace_eps = 0.1 self.kwargs = kwargs self.encode_task_layer.apply(self._init_weights) self.decode_task_layer.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'quantize.embedding.weight', 'decoder.cls_token', 'decoder.pos_embed', 'encoder.cls_token', 'encoder.pos_embed'} @property def device(self): return self.decoder.cls_token.device def pre_process(self, data): if self.process_type == 'default': # TODO: modify for adapt data = data.to(self.device) if data.max() <= 1.: data = data * 255. data = data / 127.5 - 1.0 elif self.process_type == 'imagenet_norm': mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(self.device)[None, :, None, None] std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(self.device)[None, :, None, None] data = (data - mean) / std return data def get_number_of_tokens(self): return self.quantize.n_e def get_tokens(self, data, **kwargs): data = self.pre_process(data) quantize, embed_ind, loss = self.encode(data) output = {} output['token'] = embed_ind.view(data.shape[0], -1) output['input_img'] = data return output def encode(self, x): encoder_features = self.encoder(x, return_patch_tokens=True) with torch.cuda.amp.autocast(enabled=False): to_quantizer_features = self.encode_task_layer(encoder_features.type_as(self.encode_task_layer[-1].weight)) N = to_quantizer_features.shape[1] h, w = int(math.sqrt(N)), int(math.sqrt(N)) to_quantizer_features = rearrange(to_quantizer_features, 'b (h w) c -> b c h w', h=h, w=w) # reshape for quantizer quantize, loss, embed_ind = self.quantize(to_quantizer_features) return quantize, embed_ind, loss def decode(self, quantize, **kwargs): # reshape tokens to feature maps for patch embed in decoder # quantize = rearrange(quantize, 'b (h w) c -> b c h w', h=self.token_shape[0], w=self.token_shape[1]) decoder_features = self.decoder(quantize, return_patch_tokens=True) rec = self.decode_task_layer(decoder_features) return rec def get_codebook_indices(self, x, **kwargs): # for beit pre-training return self.get_tokens(x, **kwargs)['token'] @torch.no_grad() def get_regress_target(self, x, **kwargs): norm_imgs = self.scaling_layer(x) if self.teacher_model_type == 'clip': target = self.teacher_model.encode_image(norm_imgs, return_all_tokens=True) @ self.teacher_model.visual.proj elif self.teacher_model_type == 'dino': target = self.teacher_model.forward(norm_imgs, return_patch_tokens=True) else: raise NotImplementedError return target def calculate_rec_loss(self, rec, target): if self.rec_loss_type == 'cosine': target = target / target.norm(dim=-1, keepdim=True) rec = rec / rec.norm(dim=-1, keepdim=True) rec_loss = (1 - (target * rec).sum(-1)).mean() else: raise NotImplementedError return rec_loss def forward(self, x, **kwargs): """ x: shape [B, 3, H, W] in [0, 1] """ x = self.pre_process(x) # rescale to [-1, 1] target = self.get_regress_target(x, **kwargs) quantize, embed_ind, emb_loss = self.encode(x) xrec = self.decode(quantize) rec_loss = self.calculate_rec_loss(xrec, target) loss = emb_loss + rec_loss log = {} split="train" if self.training else "val" log[f'{split}/quant_loss'] = emb_loss.detach().mean() log[f'{split}/rec_loss'] = rec_loss.detach().mean() log[f'{split}/total_loss'] = loss.detach().mean() return loss, log class ScalingLayerForClip(nn.Module): def __init__(self): super(ScalingLayerForClip, self).__init__() self.register_buffer('shift', torch.Tensor([0.48145466, 0.4578275, 0.40821073])[None, :, None, None]) self.register_buffer('scale', torch.Tensor([0.26862954, 0.26130258, 0.27577711])[None, :, None, None]) def forward(self, inp): inp = ((inp + 1.) * 127.5).clamp(0, 255.) / 255. # rescale to [0, 1.] return (inp - self.shift) / self.scale class ScalingLayerForIM(nn.Module): def __init__(self): super(ScalingLayerForIM, self).__init__() self.register_buffer('shift', torch.Tensor([0.485, 0.456, 0.406])[None, :, None, None]) # scale for tokenizer with default prosscess type \in [-1, 1] self.register_buffer('scale', torch.Tensor([0.229, 0.224, 0.225])[None, :, None, None]) def forward(self, inp): inp = ((inp + 1.) * 127.5).clamp(0, 255.) / 255. # rescale to [0, 1.] return (inp - self.shift) / self.scale def get_model_default_params(): return dict(img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0., use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001) @register_model def vqkd_encoder_base_decoder_1x768x12_clip(pretrained=False, pretrained_weight=None, as_tokenzer=False, img_size=224, n_code=8192, code_dim=32, **kwargs): encoder_config, decoder_config = get_model_default_params(), get_model_default_params() # encoder settings encoder_config['img_size'] = img_size encoder_config['num_classes'] = 0 # decoder settings decoder_config['img_size'] = img_size // decoder_config['patch_size'] decoder_config['patch_size'] = 1 decoder_config['in_chans'] = code_dim decoder_config['num_classes'] = 0 decoder_config['depth'] = 1 # teacher settings _ = kwargs.pop("teacher_model_type", "clip") teacher_model_type = 'clip' if not as_tokenzer else 'None' decoder_out_dim = 512 model = VQKD(encoder_config, decoder_config, n_code, code_dim, teacher_model_type=teacher_model_type, decoder_out_dim=decoder_out_dim, **kwargs) if as_tokenzer: assert pretrained assert pretrained_weight is not None if pretrained_weight.startswith('https'): weights = torch.hub.load_state_dict_from_url(pretrained_weight, map_location='cpu', check_hash=True) else: weights = torch.load(pretrained_weight, map_location='cpu') if 'model' in weights: weights = weights['model'] else: weights = weights["state_dict"] keys = list(weights.keys()) for k in keys: if k.startswith("loss") or k.startswith("teacher") or k.startswith("scaling"): del weights[k] model.load_state_dict(weights) return model @register_model def vqkd_encoder_base_decoder_3x768x12_clip(pretrained=False, pretrained_weight=None, as_tokenzer=False, img_size=224, n_code=8192, code_dim=32, **kwargs): encoder_config, decoder_config = get_model_default_params(), get_model_default_params() # encoder settings encoder_config['img_size'] = img_size encoder_config['num_classes'] = 0 # decoder settings decoder_config['img_size'] = img_size // decoder_config['patch_size'] decoder_config['patch_size'] = 1 decoder_config['in_chans'] = code_dim decoder_config['num_classes'] = 0 decoder_config['depth'] = 3 # teacher settings _ = kwargs.pop("teacher_model_type", "clip") teacher_model_type = 'clip' if not as_tokenzer else 'None' decoder_out_dim = 512 model = VQKD(encoder_config, decoder_config, n_code, code_dim, teacher_model_type=teacher_model_type, decoder_out_dim=decoder_out_dim, **kwargs) if as_tokenzer: assert pretrained assert pretrained_weight is not None if pretrained_weight.startswith('https'): weights = torch.hub.load_state_dict_from_url(pretrained_weight, map_location='cpu', check_hash=True) else: weights = torch.load(pretrained_weight, map_location='cpu') if 'model' in weights: weights = weights['model'] else: weights = weights["state_dict"] keys = list(weights.keys()) for k in keys: if k.startswith("loss") or k.startswith("teacher") or k.startswith("scaling"): del weights[k] model.load_state_dict(weights) return model @register_model def vqkd_encoder_base_decoder_1x768x12_dino(pretrained=False, pretrained_weight=None, as_tokenzer=False, img_size=224, n_code=8192, code_dim=32, **kwargs): encoder_config, decoder_config = get_model_default_params(), get_model_default_params() # encoder settings encoder_config['img_size'] = img_size encoder_config['num_classes'] = 0 # decoder settings decoder_config['img_size'] = img_size // decoder_config['patch_size'] decoder_config['patch_size'] = 1 decoder_config['in_chans'] = code_dim decoder_config['num_classes'] = 0 decoder_config['depth'] = 1 # teacher settings _ = kwargs.pop("teacher_model_type", "dino") teacher_model_type = 'dino' if not as_tokenzer else 'None' decoder_out_dim = 768 model = VQKD(encoder_config, decoder_config, n_code, code_dim, teacher_model_type=teacher_model_type, decoder_out_dim=decoder_out_dim, **kwargs) if as_tokenzer: assert pretrained assert pretrained_weight is not None if pretrained_weight.startswith('https'): weights = torch.hub.load_state_dict_from_url(pretrained_weight, map_location='cpu', check_hash=True) else: weights = torch.load(pretrained_weight, map_location='cpu') if 'model' in weights: weights = weights['model'] else: weights = weights["state_dict"] keys = list(weights.keys()) for k in keys: if k.startswith("loss") or k.startswith("teacher") or k.startswith("scaling"): del weights[k] model.load_state_dict(weights) return model if __name__ == '__main__': pass
EXA-1-master
exa/models/unilm-master/beit2/modeling_vqkd.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on VQGAN code bases # https://github.com/CompVis/taming-transformers # --------------------------------------------------------' import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as distributed from einops import rearrange, repeat def l2norm(t): return F.normalize(t, p = 2, dim = -1) def ema_inplace(moving_avg, new, decay): moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) def sample_vectors(samples, num): num_samples, device = samples.shape[0], samples.device if num_samples >= num: indices = torch.randperm(num_samples, device = device)[:num] else: indices = torch.randint(0, num_samples, (num,), device = device) return samples[indices] def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False): dim, dtype, device = samples.shape[-1], samples.dtype, samples.device means = sample_vectors(samples, num_clusters) for _ in range(num_iters): if use_cosine_sim: dists = samples @ means.t() else: diffs = rearrange(samples, 'n d -> n () d') \ - rearrange(means, 'c d -> () c d') dists = -(diffs ** 2).sum(dim = -1) buckets = dists.max(dim = -1).indices bins = torch.bincount(buckets, minlength = num_clusters) zero_mask = bins == 0 bins_min_clamped = bins.masked_fill(zero_mask, 1) new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype) new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples) new_means = new_means / bins_min_clamped[..., None] if use_cosine_sim: new_means = l2norm(new_means) means = torch.where(zero_mask[..., None], means, new_means) return means, bins class EmbeddingEMA(nn.Module): def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5, kmeans_init=True, codebook_init_path=''): super().__init__() self.num_tokens = num_tokens self.codebook_dim = codebook_dim self.decay = decay self.eps = eps if codebook_init_path == '': if not kmeans_init: weight = torch.randn(num_tokens, codebook_dim) weight = l2norm(weight) else: weight = torch.zeros(num_tokens, codebook_dim) self.register_buffer('initted', torch.Tensor([not kmeans_init])) else: print(f"load init codebook weight from {codebook_init_path}") codebook_ckpt_weight = torch.load(codebook_init_path, map_location='cpu') weight = codebook_ckpt_weight.clone() self.register_buffer('initted', torch.Tensor([True])) self.weight = nn.Parameter(weight, requires_grad = False) self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False) self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False) # self.register_buffer('initted', torch.Tensor([not kmeans_init])) self.update = True @torch.jit.ignore def init_embed_(self, data): if self.initted: return print("Performing Kemans init for codebook") embed, cluster_size = kmeans(data, self.num_tokens, 10, use_cosine_sim = True) self.weight.data.copy_(embed) self.cluster_size.data.copy_(cluster_size) self.initted.data.copy_(torch.Tensor([True])) def forward(self, embed_id): return F.embedding(embed_id, self.weight) def cluster_size_ema_update(self, new_cluster_size): self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay) def embed_avg_ema_update(self, new_embed_avg): self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay) def weight_update(self, num_tokens): n = self.cluster_size.sum() smoothed_cluster_size = ( (self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n ) #normalize embedding average with smoothed cluster size embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1) # embed_normalized = l2norm(self.embed_avg / smoothed_cluster_size.unsqueeze(1)) self.weight.data.copy_(embed_normalized) def norm_ema_inplace(moving_avg, new, decay): moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) moving_avg.data.copy_(l2norm(moving_avg.data)) class NormEMAVectorQuantizer(nn.Module): def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5, statistic_code_usage=True, kmeans_init=False, codebook_init_path=''): super().__init__() self.codebook_dim = embedding_dim self.num_tokens = n_embed self.beta = beta self.decay = decay # learnable = True if orthogonal_reg_weight > 0 else False self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps, kmeans_init, codebook_init_path) self.statistic_code_usage = statistic_code_usage if statistic_code_usage: self.register_buffer('cluster_size', torch.zeros(n_embed)) if distributed.is_available() and distributed.is_initialized(): print("ddp is enable, so use ddp_reduce to sync the statistic_code_usage for each gpu!") self.all_reduce_fn = distributed.all_reduce else: self.all_reduce_fn = nn.Identity() def reset_cluster_size(self, device): if self.statistic_code_usage: self.register_buffer('cluster_size', torch.zeros(self.num_tokens)) self.cluster_size = self.cluster_size.to(device) def forward(self, z): # reshape z -> (batch, height, width, channel) and flatten #z, 'b c h w -> b h w c' z = rearrange(z, 'b c h w -> b h w c') z = l2norm(z) z_flattened = z.reshape(-1, self.codebook_dim) self.embedding.init_embed_(z_flattened) d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \ self.embedding.weight.pow(2).sum(dim=1) - 2 * \ torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n' encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(encoding_indices).view(z.shape) encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype) if not self.training: with torch.no_grad(): cluster_size = encodings.sum(0) self.all_reduce_fn(cluster_size) ema_inplace(self.cluster_size, cluster_size, self.decay) if self.training and self.embedding.update: #EMA cluster size bins = encodings.sum(0) self.all_reduce_fn(bins) # self.embedding.cluster_size_ema_update(bins) ema_inplace(self.cluster_size, bins, self.decay) zero_mask = (bins == 0) bins = bins.masked_fill(zero_mask, 1.) embed_sum = z_flattened.t() @ encodings self.all_reduce_fn(embed_sum) embed_normalized = (embed_sum / bins.unsqueeze(0)).t() embed_normalized = l2norm(embed_normalized) embed_normalized = torch.where(zero_mask[..., None], self.embedding.weight, embed_normalized) norm_ema_inplace(self.embedding.weight, embed_normalized, self.decay) # compute loss for embedding loss = self.beta * F.mse_loss(z_q.detach(), z) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape #z_q, 'b h w c -> b c h w' z_q = rearrange(z_q, 'b h w c -> b c h w') return z_q, loss, encoding_indices
EXA-1-master
exa/models/unilm-master/beit2/norm_ema_quantizer.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import os import torch import random from torchvision import datasets, transforms from timm.data.constants import \ IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from transforms import RandomResizedCropAndInterpolationWithTwoPic, _pil_interp from timm.data import create_transform, ImageDataset from masking_generator import MaskingGenerator from dataset_folder import ImageFolder class DataAugmentationForBEiT(object): def __init__(self, args): imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD # oringinal beit data augmentation self.common_transform = transforms.Compose([ transforms.ColorJitter(0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(p=0.5), RandomResizedCropAndInterpolationWithTwoPic( size=args.input_size, second_size=args.second_input_size, scale=(args.min_crop_scale, 1.0), interpolation=args.train_interpolation, second_interpolation=args.second_interpolation, ), ]) self.patch_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=torch.tensor(mean), std=torch.tensor(std)) ]) self.visual_token_transform = transforms.Compose([ transforms.ToTensor(),]) self.masked_position_generator = MaskingGenerator( args.window_size, num_masking_patches=args.num_mask_patches, max_num_patches=args.max_mask_patches_per_block, min_num_patches=args.min_mask_patches_per_block, ) def __call__(self, image): for_patches, for_visual_tokens = self.common_transform(image) return \ self.patch_transform(for_patches), self.visual_token_transform(for_visual_tokens), \ self.masked_position_generator() def __repr__(self): repr = "(DataAugmentationForBEiT,\n" repr += " common_transform = %s,\n" % str(self.common_transform) repr += " patch_transform = %s,\n" % str(self.patch_transform) repr += " visual_tokens_transform = %s,\n" % str(self.visual_token_transform) repr += " Masked position generator = %s,\n" % str(self.masked_position_generator) repr += ")" return repr def build_beit_pretraining_dataset(args): transform = DataAugmentationForBEiT(args) print("Data Aug = %s" % str(transform)) return ImageFolder(args.data_path, transform=transform) ############################################### Dataset and Transforms for Tokenizer Training ######################################################### def build_vqkd_dataset(is_train, args): if is_train: t = [] if args.color_jitter > 0.: t.append(transforms.ColorJitter(args.color_jitter, args.color_jitter, args.color_jitter)) t.append(transforms.RandomResizedCrop(args.input_size, scale=(args.min_crop_scale, 1.0), interpolation=_pil_interp(args.train_interpolation))) t.append(transforms.RandomHorizontalFlip(0.5)) t.append(transforms.ToTensor()) transform = transforms.Compose(t) else: t = [] if args.input_size < 384: args.crop_pct = 224 / 256 else: args.crop_pct = 1.0 size = int(args.input_size / args.crop_pct) t.append( transforms.Resize(size, interpolation=_pil_interp(args.train_interpolation)), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) transform = transforms.Compose(t) print(f"{'Train' if is_train else 'Test'} Data Aug: {str(transform)}") if args.data_set == 'image_folder': if is_train: return ImageFolder(args.data_path, transform=transform) else: if args.eval_data_path == '': return ImageFolder(args.data_path, transform=transform) else: return ImageFolder(args.eval_data_path, transform=transform) else: raise NotImplementedError() ############################################### Dataset and Transforms for Ft ######################################################### def build_dataset(is_train, args): transform = build_transform(is_train, args) print("Transform = ") if isinstance(transform, tuple): for trans in transform: print(" - - - - - - - - - - ") for t in trans.transforms: print(t) else: for t in transform.transforms: print(t) print("---------------------------") if args.data_set == 'CIFAR': dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform) nb_classes = 100 elif args.data_set == 'IMNET': root = os.path.join(args.data_path, 'train' if is_train else 'val') dataset = datasets.ImageFolder(root, transform=transform) nb_classes = 1000 elif args.data_set == "image_folder": root = args.data_path if is_train else args.eval_data_path index_file = args.image_folder_class_index_file dataset = ImageFolder(root, transform=transform, index_file=index_file) nb_classes = args.nb_classes assert len(dataset.class_to_idx) == nb_classes else: raise NotImplementedError() assert nb_classes == args.nb_classes print("Number of the class = %d" % args.nb_classes) return dataset, nb_classes def build_transform(is_train, args): resize_im = args.input_size > 32 imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation=args.train_interpolation, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop( args.input_size, padding=4) return transform t = [] if resize_im: if args.crop_pct is None: if args.input_size < 384: args.crop_pct = 224 / 256 else: args.crop_pct = 1.0 size = int(args.input_size / args.crop_pct) t.append( transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t)
EXA-1-master
exa/models/unilm-master/beit2/datasets.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime from pyexpat import model import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from collections import OrderedDict from timm.data.mixup import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import ModelEma from optim_factory import create_optimizer, get_parameter_groups, LayerDecayValueAssigner from datasets import build_dataset from engine_for_finetuning import train_one_epoch, evaluate from utils import NativeScalerWithGradNormCount as NativeScaler import utils from scipy import interpolate import modeling_finetune import imagenet_a_r_indices def get_args(): parser = argparse.ArgumentParser('BEiT fine-tuning and evaluation script for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=30, type=int) parser.add_argument('--update_freq', default=1, type=int) parser.add_argument('--save_ckpt_freq', default=5, type=int) # robust evaluation parser.add_argument('--robust_test', default=None, type=str, help='robust evaluation dataset') # Model parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--qkv_bias', action='store_true') parser.add_argument('--disable_qkv_bias', action='store_false', dest='qkv_bias') parser.set_defaults(qkv_bias=True) parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.set_defaults(abs_pos_emb=False) parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', help='Attention dropout rate (default: 0.)') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) parser.add_argument('--model_ema', action='store_true', default=False) parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD and using a larger decay by the end of training improves performance for ViTs.""") parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--layer_decay', type=float, default=0.9) parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='num of steps to warmup LR, will overload warmup_epochs if set > 0') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') # Evaluation parameters parser.add_argument('--crop_pct', type=float, default=None) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--model_key', default='model|module', type=str) parser.add_argument('--model_prefix', default='', type=str) parser.add_argument('--model_filter_name', default='', type=str) parser.add_argument('--init_scale', default=0.001, type=float) parser.add_argument('--use_mean_pooling', action='store_true') parser.set_defaults(use_mean_pooling=True) parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') parser.add_argument('--disable_weight_decay_on_rel_pos_bias', action='store_true', default=False) # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--image_folder_class_index_file', default=None, type=str, help='in22k data path, used with turing in22k label data') parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') parser.add_argument('--nb_classes', default=0, type=int, help='number of the classification types') parser.add_argument('--load-tar', action='store_true', help='Loading *.tar files for dataset') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'], type=str, help='ImageNet dataset path') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--save_ckpt', action='store_true') parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') parser.set_defaults(save_ckpt=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--enable_deepspeed', action='store_true', default=False) known_args, _ = parser.parse_known_args() if known_args.enable_deepspeed: try: import deepspeed from deepspeed import DeepSpeedConfig parser = deepspeed.add_config_arguments(parser) ds_init = deepspeed.initialize except: print("Please 'pip install deepspeed==0.4.0'") exit(0) else: ds_init = None return parser.parse_args(), ds_init def get_models(args): model = create_model( args.model, pretrained=False, num_classes=args.nb_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, attn_drop_rate=args.attn_drop_rate, drop_block_rate=None, use_mean_pooling=args.use_mean_pooling, init_scale=args.init_scale, use_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, qkv_bias=args.qkv_bias, ) return model def main(args, ds_init): utils.init_distributed_mode(args) if ds_init is not None: utils.create_ds_config(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) if args.disable_eval_during_finetuning: dataset_val = None else: dataset_val, _ = build_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if dataset_val is not None: data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) else: data_loader_val = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = get_models(args) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.finetune, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in args.model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint if (checkpoint_model is not None) and (args.model_filter_name != ''): all_keys = list(checkpoint_model.keys()) new_dict = OrderedDict() for key in all_keys: if key.startswith('encoder.'): new_dict[key[8:]] = checkpoint_model[key] else: pass checkpoint_model = new_dict state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: if args.robust_test == 'imagenet_r': mask = torch.tensor(imagenet_a_r_indices.imagenet_r_mask) checkpoint_model[k] = checkpoint_model[k][mask] elif args.robust_test == 'imagenet_a': mask = torch.tensor(imagenet_a_r_indices.imagenet_a_mask) checkpoint_model[k] = checkpoint_model[k][mask] else: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] if getattr(model, 'use_rel_pos_bias', False) and "rel_pos_bias.relative_position_bias_table" in checkpoint_model: print("Expand the shared relative position embedding to each transformer block. ") num_layers = model.get_num_layers() rel_pos_bias = checkpoint_model["rel_pos_bias.relative_position_bias_table"] for i in range(num_layers): checkpoint_model["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() checkpoint_model.pop("rel_pos_bias.relative_position_bias_table") all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) checkpoint_model[key] = new_rel_pos_bias # interpolate position embedding if ('pos_embed' in checkpoint_model) and (model.pos_embed is not None): pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # model.load_state_dict(checkpoint_model, strict=False) model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') print("Using EMA with decay = %.8f" % args.model_ema_decay) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() num_training_steps_per_epoch = len(dataset_train) // total_batch_size print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Update frequent = %d" % args.update_freq) print("Number of training examples = %d" % len(dataset_train)) print("Number of training training per epoch = %d" % num_training_steps_per_epoch) num_layers = model_without_ddp.get_num_layers() if args.layer_decay < 1.0: assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))) else: assigner = None if assigner is not None: print("Assigned values = %s" % str(assigner.values)) skip_weight_decay_list = model.no_weight_decay() if args.disable_weight_decay_on_rel_pos_bias: for i in range(num_layers): skip_weight_decay_list.add("blocks.%d.attn.relative_position_bias_table" % i) if args.enable_deepspeed: loss_scaler = None optimizer_params = get_parameter_groups( model, args.weight_decay, skip_weight_decay_list, assigner.get_layer_id if assigner is not None else None, assigner.get_scale if assigner is not None else None) model, optimizer, _, _ = ds_init( args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, ) print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) assert model.gradient_accumulation_steps() == args.update_freq else: if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp, skip_list=skip_weight_decay_list, get_num_layer=assigner.get_layer_id if assigner is not None else None, get_layer_scale=assigner.get_scale if assigner is not None else None) loss_scaler = NativeScaler() print("Use step level LR scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") exit(0) print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq ) if args.output_dir and args.save_ckpt: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema, save_ckpt_freq=args.save_ckpt_freq) if data_loader_val is not None: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir and args.save_ckpt: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch) log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch) log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} else: log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, # **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts, ds_init = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts, ds_init)
EXA-1-master
exa/models/unilm-master/beit2/run_class_finetuning.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Modified on torchvision code bases # https://github.com/pytorch/vision # --------------------------------------------------------' from torchvision.datasets.vision import VisionDataset from PIL import Image import os import os.path import random import json from typing import Any, Callable, cast, Dict, List, Optional, Tuple def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return filename.lower().endswith(extensions) def is_image_file(filename: str) -> bool: """Checks if a file is an allowed image extension. Args: filename (string): path to a file Returns: bool: True if the filename ends with a known image extension """ return has_file_allowed_extension(filename, IMG_EXTENSIONS) def make_dataset( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: instances = [] directory = os.path.expanduser(directory) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): item = path, class_index instances.append(item) return instances class DatasetFolder(VisionDataset): """A generic data loader where the samples are arranged in this way: :: root/class_x/xxx.ext root/class_x/xxy.ext root/class_x/xxz.ext root/class_y/123.ext root/class_y/nsdf3.ext root/class_y/asd932_.ext Args: root (string): Root directory path. loader (callable): A function to load a sample given its path. extensions (tuple[string]): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. target_transform (callable, optional): A function/transform that takes in the target and transforms it. is_valid_file (callable, optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__( self, root: str, loader: Callable[[str], Any], extensions: Optional[Tuple[str, ...]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, index_file: Optional[str] = None, ) -> None: super(DatasetFolder, self).__init__(root, transform=transform, target_transform=target_transform) if index_file is None: classes, class_to_idx = self._find_classes(self.root) samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file) if len(samples) == 0: msg = "Found 0 files in subfolders of: {}\n".format(self.root) if extensions is not None: msg += "Supported extensions are: {}".format(",".join(extensions)) raise RuntimeError(msg) else: with open(index_file, mode="r", encoding="utf-8") as reader: classes = [] index_data = {} for line in reader: data = json.loads(line) class_name = data["class"] classes.append(class_name) index_data[class_name] = data["files"] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} samples = [] for class_name in index_data: class_index = class_to_idx[class_name] for each_file in index_data[class_name]: samples.append( (os.path.join(root, class_name, each_file), class_index) ) self.loader = loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] print("Find %d classes and %d samples in root!" % (len(classes), len(samples))) def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. Ensures: No class is a subdirectory of another. """ classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ while True: try: path, target = self.samples[index] sample = self.loader(path) break except Exception as e: print(e) index = random.randint(0, len(self.samples) - 1) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self) -> int: return len(self.samples) def filenames(self, indices=[], basename=False): if indices: if basename: return [os.path.basename(self.samples[i][0]) for i in indices] else: return [self.samples[i][0] for i in indices] else: if basename: return [os.path.basename(x[0]) for x in self.samples] else: return [x[0] for x in self.samples] IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') # TODO: specify the return type def accimage_loader(path: str) -> Any: import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path: str) -> Any: from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) class ImageFolder(DatasetFolder): """A generic data loader where the images are arranged in this way: :: root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png Args: root (string): Root directory path. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. is_valid_file (callable, optional): A function that takes path of an Image file and check if the file is a valid file (used to check of corrupt files) Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples """ def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, is_valid_file: Optional[Callable[[str], bool]] = None, index_file: Optional[str] = None, ): super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None, transform=transform, target_transform=target_transform, is_valid_file=is_valid_file, index_file=index_file) self.imgs = self.samples
EXA-1-master
exa/models/unilm-master/beit2/dataset_folder.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.models import create_model from optim_factory import create_optimizer from datasets import build_vqkd_dataset from engine_for_vqkd import evaluate, train_one_epoch, calculate_codebook_usage from utils import NativeScalerWithGradNormCount as NativeScaler import utils import modeling_vqkd def get_args(): parser = argparse.ArgumentParser('BEiT pre-training script', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=100, type=int) parser.add_argument('--save_ckpt_freq', default=20, type=int) # Model parameters parser.add_argument('--model', default='vqkd_encoder_base_decoder_3x768x12_clip', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rec_loss_type', default='cosine', type=str, metavar='MODEL', help='type of loss to calculate reconstruction distance') parser.add_argument('--codebook_n_emd', default=8192, type=int, metavar='MODEL', help='number of codebook') parser.add_argument('--codebook_emd_dim', default=32, type=int, metavar='MODEL', help='number of codebook') parser.add_argument('--ema_decay', default=0.99, type=float, metavar='MODEL', help='ema decay for quantizer') parser.add_argument('--quantize_kmeans_init', action='store_true', help='enable kmeans_init for quantizer') parser.add_argument('--process_type', default='default', type=str, choices=['default', 'dall-e', 'imagenet_norm'], help='Image process type (default, dall-e)') parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone') # regress feature parser.add_argument('--teacher_model_type', default='clip', type=str, help='teacher_model_type during training') parser.add_argument('--teacher_input_size', default=224, type=int, help='teacher_input_size for clip-large p14') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay (default: 1e-4)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD. (Set the same value with args.weight_decay to keep weight decay no change)""") parser.add_argument('--lr', type=float, default=5e-5, metavar='LR', help='learning rate (default: 5e-5)') parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='epochs to warmup LR, if scheduler supports') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0., metavar='PCT', help='Color jitter factor (default: 0.)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic, lanczos default: "bicubic")') parser.add_argument('--min_crop_scale', type=float, default=0.08, metavar='PCT', help='min_crop_scale (default: 0.08)') # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default='', type=str, help='dataset path') parser.add_argument('--data_set', default='image_folder', type=str, help='dataset path') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--dist_eval', action='store_true', default=True, help='Enabling distributed evaluation') parser.add_argument('--disable_eval', action='store_true', default=False) parser.add_argument('--eval', action='store_true', default=False, help="Perform evaluation only") parser.add_argument('--calculate_codebook_usage', action='store_true', default=False) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser.parse_args() def get_model(args, **kwargs): model = create_model( args.model, pretrained=False, as_tokenzer=False, n_code=args.codebook_n_emd, code_dim=args.codebook_emd_dim, img_size=args.input_size, rec_loss_type=args.rec_loss_type, teacher_model_type=args.teacher_model_type, teacher_input_size=args.teacher_input_size, decay=args.ema_decay, quantize_kmeans_init=args.quantize_kmeans_init, process_type=args.process_type ) return model def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True model = get_model(args) # get dataset dataset_train = build_vqkd_dataset(is_train=True, args=args) if args.disable_eval: dataset_val = None else: dataset_val = build_vqkd_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_rank = global_rank num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if dataset_val is not None: data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) else: data_loader_val = None model.to(device) model_without_ddp = model if not args.eval: print("Model = %s" % str(model_without_ddp)) for part in ['encoder', 'decoder']: model_part = eval(f"model.{part}") n_learnable_parameters = sum(p.numel() for p in model_part.parameters() if p.requires_grad) n_fix_parameters = sum(p.numel() for p in model_part.parameters() if not p.requires_grad) print(f'number of learnable params in model.{part}: {n_learnable_parameters / 1e6} M') print(f'number of fixed params in model.{part}: {n_fix_parameters / 1e6} M') n_learnable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) n_fix_parameters = sum(p.numel() for p in model.parameters() if not p.requires_grad) print(f'total number of learnable params: {n_learnable_parameters / 1e6} M') print(f'total number of fixed params in : {n_fix_parameters / 1e6} M') total_batch_size = args.batch_size * utils.get_world_size() args.lr = total_batch_size / 128 * args.lr print("LR = %.8f" % args.lr) print("Min LR = %.8f" % args.min_lr) print("Weigth Decay = %.8f" % args.weight_decay) print("Batch size = %d" % total_batch_size) print("Number of training steps = %d" % num_training_steps_per_epoch) print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) optimizer = create_optimizer(args, model_without_ddp) loss_scaler = NativeScaler() if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module print("Use step level LR & WD scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) if args.eval: test_stats = evaluate(data_loader_val, model, device, log_writer, 0, args=args) exit(0) if args.calculate_codebook_usage: test_stats = calculate_codebook_usage(data_loader_val, model, device, log_writer, 0, args=args) exit(0) print(f"Start training for {args.epochs} epochs") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch) train_stats = train_one_epoch( model, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, args=args ) if args.output_dir: # if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq) if data_loader_val is not None: test_stats = evaluate(data_loader_val, model, device, log_writer, epoch, args=args) print(f"Validation loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.4f}") if log_writer is not None: log_writer.update(**test_stats, head="val/loss") log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_learnable_parameters} else: log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_learnable_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts)
EXA-1-master
exa/models/unilm-master/beit2/run_vqkd_training.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import io import os import math import time import json import glob from collections import defaultdict, deque import datetime import numpy as np from timm.utils import get_state_dict from pathlib import Path import argparse import torch import torch.distributed as dist from torch._six import inf from tensorboardX import SummaryWriter def bool_flag(s): """ Parse boolean arguments from the command line. """ FALSY_STRINGS = {"off", "false", "0"} TRUTHY_STRINGS = {"on", "true", "1"} if s.lower() in FALSY_STRINGS: return False elif s.lower() in TRUTHY_STRINGS: return True else: raise argparse.ArgumentTypeError("invalid value for a boolean flag") def get_model(model): if isinstance(model, torch.nn.DataParallel) \ or isinstance(model, torch.nn.parallel.DistributedDataParallel): return model.module else: return model class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) class TensorboardLogger(object): def __init__(self, log_dir): self.writer = SummaryWriter(logdir=log_dir) self.step = 0 def set_step(self, step=None): if step is not None: self.step = step else: self.step += 1 def update(self, head='scalar', step=None, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step) def update_image(self, head='images', step=None, **kwargs): for k, v in kwargs.items(): if v is None: continue self.writer.add_image(head + "/" + k, v, self.step if step is None else step) def flush(self): self.writer.flush() def _load_checkpoint_for_ema(model_ema, checkpoint): """ Workaround for ModelEma._load_checkpoint to accept an already-loaded object """ mem_file = io.BytesIO() torch.save(checkpoint, mem_file) mem_file.seek(0) model_ema._load_checkpoint(mem_file) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def all_reduce(tensor, op=dist.ReduceOp.SUM, async_op=False): world_size = get_world_size() if world_size == 1: return tensor dist.all_reduce(tensor, op=op, async_op=async_op) return tensor def all_gather_batch(tensors): """ Performs all_gather operation on the provided tensors. """ # Queue the gathered tensors world_size = get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors tensor_list = [] output_tensor = [] for tensor in tensors: tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] dist.all_gather( tensor_all, tensor, async_op=False # performance opt ) tensor_list.append(tensor_all) for tensor_all in tensor_list: output_tensor.append(torch.cat(tensor_all, dim=0)) return output_tensor class GatherLayer(torch.autograd.Function): """ Gather tensors from all workers with support for backward propagation: This implementation does not cut the gradients as torch.distributed.all_gather does. """ @staticmethod def forward(ctx, x): output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] dist.all_gather(output, x) return tuple(output) @staticmethod def backward(ctx, *grads): all_gradients = torch.stack(grads) dist.all_reduce(all_gradients) return all_gradients[dist.get_rank()] def all_gather_batch_with_grad(tensors): """ Performs all_gather operation on the provided tensors. Graph remains connected for backward grad computation. """ # Queue the gathered tensors world_size = get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors tensor_list = [] output_tensor = [] for tensor in tensors: tensor_all = GatherLayer.apply(tensor) tensor_list.append(tensor_all) for tensor_all in tensor_list: output_tensor.append(torch.cat(tensor_all, dim=0)) return output_tensor def _get_rank_env(): if "RANK" in os.environ: return int(os.environ["RANK"]) else: return int(os.environ['OMPI_COMM_WORLD_RANK']) def _get_local_rank_env(): if "LOCAL_RANK" in os.environ: return int(os.environ["LOCAL_RANK"]) else: return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) def _get_world_size_env(): if "WORLD_SIZE" in os.environ: return int(os.environ["WORLD_SIZE"]) else: return int(os.environ['OMPI_COMM_WORLD_SIZE']) def init_distributed_mode(args): if args.dist_on_itp: args.rank = _get_rank_env() args.world_size = _get_world_size_env() # int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = _get_local_rank_env() args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix=prefix) warn_missing_keys = [] ignore_missing_keys = [] for key in missing_keys: keep_flag = True for ignore_key in ignore_missing.split('|'): if ignore_key in key: keep_flag = False break if keep_flag: warn_missing_keys.append(key) else: ignore_missing_keys.append(key) missing_keys = warn_missing_keys if len(missing_keys) > 0: print("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: print("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(ignore_missing_keys) > 0: print("Ignored weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, ignore_missing_keys)) if len(error_msgs) > 0: print('\n'.join(error_msgs)) def get_grad_norm(parameters, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1. / norm_type) return total_norm class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True, layer_names=None): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters, layer_names=layer_names) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0, layer_names=None) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: # total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) layer_norm = torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]) total_norm = torch.norm(layer_norm, norm_type) # print(layer_norm.max(dim=0)) if layer_names is not None: if torch.isnan(total_norm) or torch.isinf(total_norm) or total_norm > 1.0: value_top, name_top = torch.topk(layer_norm, k=5) print(f"Top norm value: {value_top}") print(f"Top norm name: {[layer_names[i][7:] for i in name_top.tolist()]}") return total_norm def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None, save_ckpt_freq=1): output_dir = Path(args.output_dir) epoch_name = str(epoch) if not getattr(args, 'enable_deepspeed', False): checkpoint_paths = [output_dir / 'checkpoint.pth'] if epoch == 'best': checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name),] elif (epoch + 1) % save_ckpt_freq == 0: checkpoint_paths.append(output_dir / ('checkpoint-%s.pth' % epoch_name)) for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, # 'scaler': loss_scaler.state_dict(), 'args': args, } if loss_scaler is not None: to_save['scaler'] = loss_scaler.state_dict() if model_ema is not None: to_save['model_ema'] = get_state_dict(model_ema) if optimizer_disc is not None: to_save['optimizer_disc'] = optimizer_disc.state_dict() save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch} if model_ema is not None: client_state['model_ema'] = get_state_dict(model_ema) model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None): output_dir = Path(args.output_dir) if not getattr(args, 'enable_deepspeed', False): # torch.amp if args.auto_resume and len(args.resume) == 0: all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint.pth')) if len(all_checkpoints) > 0: args.resume = os.path.join(output_dir, 'checkpoint.pth') else: all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) print("Auto resume checkpoint: %s" % args.resume) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) # strict: bool=True, , strict=False print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) print(f"Resume checkpoint at epoch {checkpoint['epoch']}") args.start_epoch = checkpoint['epoch'] + 1 if hasattr(args, 'model_ema') and args.model_ema: _load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") if 'optimizer_disc' in checkpoint: optimizer_disc.load_state_dict(checkpoint['optimizer_disc']) else: # deepspeed, only support '--auto_resume'. if args.auto_resume: all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) print("Auto resume checkpoint: %d" % latest_ckpt) _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) args.start_epoch = client_states['epoch'] + 1 if model_ema is not None: if args.model_ema: _load_checkpoint_for_ema(model_ema, client_states['model_ema']) def create_ds_config(args): Path(args.output_dir).mkdir(parents=True, exist_ok=True) with open(os.path.join(args.output_dir, "latest"), mode="w") as f: pass args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") with open(args.deepspeed_config, mode="w") as writer: ds_config = { "train_batch_size": args.batch_size * args.update_freq * get_world_size(), "train_micro_batch_size_per_gpu": args.batch_size, "steps_per_print": 1000, "optimizer": { "type": "Adam", "adam_w_mode": True, "params": { "lr": args.lr, "weight_decay": args.weight_decay, "bias_correction": True, "betas": [ 0.9, 0.999 ], "eps": 1e-8 } }, "fp16": { "enabled": True, "loss_scale": 0, "initial_scale_power": 7, "loss_scale_window": 128 } } writer.write(json.dumps(ds_config, indent=2))
EXA-1-master
exa/models/unilm-master/beit2/utils.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import os import sys import argparse import torch from torch import nn from torchvision import transforms as pth_transforms from timm.models import create_model from PIL import Image import utils import modeling_vqkd def get_code(args): # ============ preparing data ... ============ transform = pth_transforms.Compose([ pth_transforms.Resize(256, interpolation=3), pth_transforms.CenterCrop(224), pth_transforms.ToTensor(), # pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), # Normalize in pre-process of vqkd ]) print(f"Image transforms: {transform}") images = transform(Image.open(args.img_path)).unsqueeze(0) # ============ building network ... ============ model = create_model( args.model, pretrained=True, pretrained_weight=args.pretrained_weights, as_tokenzer=True, ).eval() input_ids = model.get_codebook_indices(images) print(input_ids) if __name__ == '__main__': parser = argparse.ArgumentParser('Get code for VQ-KD') parser.add_argument('--model', default='vqkd_encoder_base_decoder_1x768x12_clip', type=str, help="model") parser.add_argument('--pretrained_weights', default='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/vqkd_encoder_base_decoder_1x768x12_clip-d93179da.pth', type=str, help="Path to pretrained weights to evaluate.") parser.add_argument('--img_path', default='demo/ILSVRC2012_val_00031649.JPEG', type=str, help="image path.") args = parser.parse_args() get_code(args) # tensor([[3812, 7466, 1913, 1913, 1903, 1913, 1903, 1913, 3812, 7820, 6337, 2189, # 7466, 7466, 2492, 3743, 5268, 3481, 5268, 4987, 445, 8009, 3501, 5268, # 7820, 7831, 4816, 2189, 7549, 7549, 5548, 4987, 445, 4198, 445, 5216, # 4987, 5268, 3278, 5203, 6337, 1799, 847, 6454, 4527, 5302, 8009, 3743, # 5216, 4678, 3743, 4858, 5203, 4816, 7831, 2189, 7549, 5386, 6628, 5004, # 2779, 7131, 7131, 7131, 4928, 3743, 119, 445, 1903, 7466, 4527, 5386, # 5398, 5704, 2104, 5398, 2779, 7258, 7989, 624, 7131, 1186, 5216, 7466, # 8015, 5004, 452, 7243, 3145, 6690, 7017, 2104, 5398, 4198, 7989, 7131, # 3717, 7466, 580, 5004, 5004, 6202, 6202, 6202, 1826, 7521, 1473, 5722, # 2486, 5663, 4928, 3941, 580, 5548, 7983, 7983, 7983, 2104, 5004, 2063, # 2637, 1822, 3100, 3100, 1405, 1637, 8187, 5433, 2779, 5398, 5004, 5004, # 1107, 3469, 3469, 5302, 2590, 6381, 3100, 4194, 3717, 356, 7131, 7688, # 5104, 3081, 3812, 3950, 1186, 7131, 7131, 3717, 4399, 1186, 2221, 6501, # 7131, 5433, 3014, 3950, 3278, 2812, 7131, 1186, 7036, 6947, 7036, 4648, # 2812, 7131, 3014, 5295, 7266, 5180, 4123, 3792, 4648, 8009, 4648, 4816, # 1511, 7036, 375, 2221, 5813, 5698, 168, 7131, 3792, 5698, 5698, 2667, # 5698, 4648, 4171, 6501]], device='cuda:0')
EXA-1-master
exa/models/unilm-master/beit2/test_get_code.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.models import create_model from optim_factory import create_optimizer from datasets import build_beit_pretraining_dataset from engine_for_pretraining import train_one_epoch from utils import NativeScalerWithGradNormCount as NativeScaler import utils import modeling_pretrain import modeling_vqkd def get_args(): parser = argparse.ArgumentParser('BEiT pre-training script', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--save_ckpt_freq', default=20, type=int) # tokenizer settings parser.add_argument("--tokenizer_weight", type=str) parser.add_argument("--tokenizer_model", type=str, default="vqkd_encoder_base_decoder_3x768x12_clip") # Model parameters parser.add_argument('--model', default='beit_base_patch16_224_8k_vocab', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.set_defaults(abs_pos_emb=False) parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--num_mask_patches', default=75, type=int, help='number of the visual tokens/patches need be masked') parser.add_argument('--max_mask_patches_per_block', type=int, default=None) parser.add_argument('--min_mask_patches_per_block', type=int, default=16) parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone') parser.add_argument('--second_input_size', default=224, type=int, help='images input size for discrete vae') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') # cls-pretraining settings parser.add_argument('--early_layers', default=9, type=int, help='early_layers, default 9 for base and 21 for large') parser.add_argument('--head_layers', default=2, type=int, help='head_layers') parser.add_argument('--shared_lm_head', default=True, type=utils.bool_flag, help='head_layers') # Tokenizer parameters parser.add_argument('--codebook_size', default=8192, type=int, help='number of codebook') parser.add_argument('--codebook_dim', default=32, type=int, help='number of codebook') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD. (Set the same value with args.weight_decay to keep weight decay no change)""") parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='epochs to warmup LR, if scheduler supports') # Augmentation parameters parser.add_argument('--decoupling_aug', default=False, type=utils.bool_flag, help="use decoupling aug for tokenizer and vit") parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--second_interpolation', type=str, default='lanczos', help='Interpolation for discrete vae (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--min_crop_scale', type=float, default=0.08, metavar='PCT', help='min_crop_scale (default: 0.08)') # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default='', type=str, help='dataset path') parser.add_argument('--data_set', default='image_folder', type=str, help='dataset path') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser.parse_args() def get_model(args): print(f"Creating model: {args.model}") if 'cls_pt' in args.model: model = create_model( args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, vocab_size=args.codebook_size, early_layers=args.early_layers, head_layers=args.head_layers, shared_lm_head=args.shared_lm_head, ) else: model = create_model( args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, vocab_size=args.codebook_size ) return model def get_visual_tokenizer(args): print(f"Creating visual tokenizer: {args.tokenizer_model}") model = create_model( args.tokenizer_model, pretrained=True, pretrained_weight=args.tokenizer_weight, as_tokenzer=True, n_code=args.codebook_size, code_dim=args.codebook_dim, ).eval() return model def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True model = get_model(args) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size # get dataset dataset_train = build_beit_pretraining_dataset(args) # prepare visual tokenizer vqkd = get_visual_tokenizer(args).to(device) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_rank = global_rank num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) print("Tokenizer = %s" % str(vqkd)) total_batch_size = args.batch_size * utils.get_world_size() print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Number of training steps = %d" % num_training_steps_per_epoch) print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp) loss_scaler = NativeScaler() print("Use step level LR & WD scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) print(f"Start training for {args.epochs} epochs") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch) train_stats = train_one_epoch( model, vqkd, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, args=args, ) if args.output_dir: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts)
EXA-1-master
exa/models/unilm-master/beit2/run_beitv2_pretraining.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import sys from typing import Iterable import torch import torch.nn as nn import utils def train_one_epoch(model: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, clip_grad: float = 0, log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, args=None, ): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 if hasattr(model.module, 'quantize'): try: model.module.quantize.reset_cluster_size(device) print("Reset the codebook statistic info in quantizer before each epoch") except: pass for step, (batch, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # assign learning rate & weight decay for each step it = start_steps + step # global training iteration if lr_schedule_values is not None: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group.get("lr_scale", 1.0) images = batch.to(device, non_blocking=True) with torch.cuda.amp.autocast(enabled=True): loss, log_loss = model(images) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value), force=True) utils.save_nan_model(args, model) sys.exit(1) optimizer.zero_grad() # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler(loss, optimizer, clip_grad=clip_grad, parameters=model.parameters(), create_graph=is_second_order) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() metric_logger.update(loss=loss_value) new_log_loss = {k.split('/')[-1]:v for k, v in log_loss.items() if k not in ['total_loss']} metric_logger.update(**new_log_loss) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(**new_log_loss, head="train/loss") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.set_step() if lr_scheduler is not None: lr_scheduler.step_update(start_steps + step) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) # stat the codebook usage information if hasattr(model.module, 'quantize'): try: codebook_cluster_size = model.module.quantize._codebook.cluster_size except: codebook_cluster_size = model.module.quantize.cluster_size zero_cnt = (codebook_cluster_size == 0).sum().item() train_stat = {k: meter.global_avg for k, meter in metric_logger.meters.items()} train_stat['Unused_code'] = zero_cnt print(f"Unused code in codebook: {zero_cnt}") return train_stat return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(data_loader, model, device, log_writer=None, epoch=None, args=None): metric_logger = utils.MetricLogger(delimiter=" ") header = 'Validation:' # switch to evaluation mode model.eval() if hasattr(model.module, 'quantize'): try: model.module.quantize.reset_cluster_size(device) print("Reset the codebook statistic info in quantizer before testing") except: pass for step, (batch, extra_info) in enumerate(metric_logger.log_every(data_loader, 10, header)): images = batch.to(device, non_blocking=True) loss, log_loss = model(images) metric_logger.update(loss=loss.item()) new_log_loss = {k.split('/')[-1]:v for k, v in log_loss.items() if k not in ['total_loss']} metric_logger.update(**new_log_loss) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) # stat the codebook usage information if hasattr(model, 'module') and hasattr(model.module, 'quantize'): try: codebook_cluster_size = model.module.quantize._codebook.cluster_size except: codebook_cluster_size = model.module.quantize.cluster_size zero_cnt = (codebook_cluster_size == 0).sum().item() test_stat = {k: meter.global_avg for k, meter in metric_logger.meters.items()} test_stat['unused_code'] = zero_cnt print(f"Unused code in codebook: {zero_cnt}") return test_stat return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def calculate_codebook_usage(data_loader, model, device, log_writer=None, epoch=None, args=None): metric_logger = utils.MetricLogger(delimiter=" ") header = 'Calculating codebook usage:' # switch to evaluation mode model.eval() codebook_num = args.codebook_n_emd codebook_cnt = torch.zeros(codebook_num, dtype=torch.float64).to(device) for step, (images, _) in enumerate(metric_logger.log_every(data_loader, 10, header)): images = images.to(device, non_blocking=True) outputs = utils.get_model(model).get_tokens(images)['token'].view(-1) outputs_gather_list = [torch.zeros_like(outputs) for _ in range(utils.get_world_size())] torch.distributed.all_gather(outputs_gather_list, outputs) all_tokens = torch.cat(outputs_gather_list, dim=0).view(-1) # [B * N * Ngpu, ] codebook_cnt += torch.bincount(all_tokens, minlength=codebook_num) # statistic zero_cnt = (codebook_cnt == 0).sum() # 0 print(f"STAT: {zero_cnt} tokens ({(zero_cnt / codebook_num) * 100}%) never are used in this codebook.")
EXA-1-master
exa/models/unilm-master/beit2/engine_for_vqkd.py
all_wnids = ['n01440764', 'n01443537', 'n01484850', 'n01491361', 'n01494475', 'n01496331', 'n01498041', 'n01514668', 'n01514859', 'n01518878', 'n01530575', 'n01531178', 'n01532829', 'n01534433', 'n01537544', 'n01558993', 'n01560419', 'n01580077', 'n01582220', 'n01592084', 'n01601694', 'n01608432', 'n01614925', 'n01616318', 'n01622779', 'n01629819', 'n01630670', 'n01631663', 'n01632458', 'n01632777', 'n01641577', 'n01644373', 'n01644900', 'n01664065', 'n01665541', 'n01667114', 'n01667778', 'n01669191', 'n01675722', 'n01677366', 'n01682714', 'n01685808', 'n01687978', 'n01688243', 'n01689811', 'n01692333', 'n01693334', 'n01694178', 'n01695060', 'n01697457', 'n01698640', 'n01704323', 'n01728572', 'n01728920', 'n01729322', 'n01729977', 'n01734418', 'n01735189', 'n01737021', 'n01739381', 'n01740131', 'n01742172', 'n01744401', 'n01748264', 'n01749939', 'n01751748', 'n01753488', 'n01755581', 'n01756291', 'n01768244', 'n01770081', 'n01770393', 'n01773157', 'n01773549', 'n01773797', 'n01774384', 'n01774750', 'n01775062', 'n01776313', 'n01784675', 'n01795545', 'n01796340', 'n01797886', 'n01798484', 'n01806143', 'n01806567', 'n01807496', 'n01817953', 'n01818515', 'n01819313', 'n01820546', 'n01824575', 'n01828970', 'n01829413', 'n01833805', 'n01843065', 'n01843383', 'n01847000', 'n01855032', 'n01855672', 'n01860187', 'n01871265', 'n01872401', 'n01873310', 'n01877812', 'n01882714', 'n01883070', 'n01910747', 'n01914609', 'n01917289', 'n01924916', 'n01930112', 'n01943899', 'n01944390', 'n01945685', 'n01950731', 'n01955084', 'n01968897', 'n01978287', 'n01978455', 'n01980166', 'n01981276', 'n01983481', 'n01984695', 'n01985128', 'n01986214', 'n01990800', 'n02002556', 'n02002724', 'n02006656', 'n02007558', 'n02009229', 'n02009912', 'n02011460', 'n02012849', 'n02013706', 'n02017213', 'n02018207', 'n02018795', 'n02025239', 'n02027492', 'n02028035', 'n02033041', 'n02037110', 'n02051845', 'n02056570', 'n02058221', 'n02066245', 'n02071294', 'n02074367', 'n02077923', 'n02085620', 'n02085782', 'n02085936', 'n02086079', 'n02086240', 'n02086646', 'n02086910', 'n02087046', 'n02087394', 'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02088632', 'n02089078', 'n02089867', 'n02089973', 'n02090379', 'n02090622', 'n02090721', 'n02091032', 'n02091134', 'n02091244', 'n02091467', 'n02091635', 'n02091831', 'n02092002', 'n02092339', 'n02093256', 'n02093428', 'n02093647', 'n02093754', 'n02093859', 'n02093991', 'n02094114', 'n02094258', 'n02094433', 'n02095314', 'n02095570', 'n02095889', 'n02096051', 'n02096177', 'n02096294', 'n02096437', 'n02096585', 'n02097047', 'n02097130', 'n02097209', 'n02097298', 'n02097474', 'n02097658', 'n02098105', 'n02098286', 'n02098413', 'n02099267', 'n02099429', 'n02099601', 'n02099712', 'n02099849', 'n02100236', 'n02100583', 'n02100735', 'n02100877', 'n02101006', 'n02101388', 'n02101556', 'n02102040', 'n02102177', 'n02102318', 'n02102480', 'n02102973', 'n02104029', 'n02104365', 'n02105056', 'n02105162', 'n02105251', 'n02105412', 'n02105505', 'n02105641', 'n02105855', 'n02106030', 'n02106166', 'n02106382', 'n02106550', 'n02106662', 'n02107142', 'n02107312', 'n02107574', 'n02107683', 'n02107908', 'n02108000', 'n02108089', 'n02108422', 'n02108551', 'n02108915', 'n02109047', 'n02109525', 'n02109961', 'n02110063', 'n02110185', 'n02110341', 'n02110627', 'n02110806', 'n02110958', 'n02111129', 'n02111277', 'n02111500', 'n02111889', 'n02112018', 'n02112137', 'n02112350', 'n02112706', 'n02113023', 'n02113186', 'n02113624', 'n02113712', 'n02113799', 'n02113978', 'n02114367', 'n02114548', 'n02114712', 'n02114855', 'n02115641', 'n02115913', 'n02116738', 'n02117135', 'n02119022', 'n02119789', 'n02120079', 'n02120505', 'n02123045', 'n02123159', 'n02123394', 'n02123597', 'n02124075', 'n02125311', 'n02127052', 'n02128385', 'n02128757', 'n02128925', 'n02129165', 'n02129604', 'n02130308', 'n02132136', 'n02133161', 'n02134084', 'n02134418', 'n02137549', 'n02138441', 'n02165105', 'n02165456', 'n02167151', 'n02168699', 'n02169497', 'n02172182', 'n02174001', 'n02177972', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02229544', 'n02231487', 'n02233338', 'n02236044', 'n02256656', 'n02259212', 'n02264363', 'n02268443', 'n02268853', 'n02276258', 'n02277742', 'n02279972', 'n02280649', 'n02281406', 'n02281787', 'n02317335', 'n02319095', 'n02321529', 'n02325366', 'n02326432', 'n02328150', 'n02342885', 'n02346627', 'n02356798', 'n02361337', 'n02363005', 'n02364673', 'n02389026', 'n02391049', 'n02395406', 'n02396427', 'n02397096', 'n02398521', 'n02403003', 'n02408429', 'n02410509', 'n02412080', 'n02415577', 'n02417914', 'n02422106', 'n02422699', 'n02423022', 'n02437312', 'n02437616', 'n02441942', 'n02442845', 'n02443114', 'n02443484', 'n02444819', 'n02445715', 'n02447366', 'n02454379', 'n02457408', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02483708', 'n02484975', 'n02486261', 'n02486410', 'n02487347', 'n02488291', 'n02488702', 'n02489166', 'n02490219', 'n02492035', 'n02492660', 'n02493509', 'n02493793', 'n02494079', 'n02497673', 'n02500267', 'n02504013', 'n02504458', 'n02509815', 'n02510455', 'n02514041', 'n02526121', 'n02536864', 'n02606052', 'n02607072', 'n02640242', 'n02641379', 'n02643566', 'n02655020', 'n02666196', 'n02667093', 'n02669723', 'n02672831', 'n02676566', 'n02687172', 'n02690373', 'n02692877', 'n02699494', 'n02701002', 'n02704792', 'n02708093', 'n02727426', 'n02730930', 'n02747177', 'n02749479', 'n02769748', 'n02776631', 'n02777292', 'n02782093', 'n02783161', 'n02786058', 'n02787622', 'n02788148', 'n02790996', 'n02791124', 'n02791270', 'n02793495', 'n02794156', 'n02795169', 'n02797295', 'n02799071', 'n02802426', 'n02804414', 'n02804610', 'n02807133', 'n02808304', 'n02808440', 'n02814533', 'n02814860', 'n02815834', 'n02817516', 'n02823428', 'n02823750', 'n02825657', 'n02834397', 'n02835271', 'n02837789', 'n02840245', 'n02841315', 'n02843684', 'n02859443', 'n02860847', 'n02865351', 'n02869837', 'n02870880', 'n02871525', 'n02877765', 'n02879718', 'n02883205', 'n02892201', 'n02892767', 'n02894605', 'n02895154', 'n02906734', 'n02909870', 'n02910353', 'n02916936', 'n02917067', 'n02927161', 'n02930766', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02951585', 'n02963159', 'n02965783', 'n02966193', 'n02966687', 'n02971356', 'n02974003', 'n02977058', 'n02978881', 'n02979186', 'n02980441', 'n02981792', 'n02988304', 'n02992211', 'n02992529', 'n02999410', 'n03000134', 'n03000247', 'n03000684', 'n03014705', 'n03016953', 'n03017168', 'n03018349', 'n03026506', 'n03028079', 'n03032252', 'n03041632', 'n03042490', 'n03045698', 'n03047690', 'n03062245', 'n03063599', 'n03063689', 'n03065424', 'n03075370', 'n03085013', 'n03089624', 'n03095699', 'n03100240', 'n03109150', 'n03110669', 'n03124043', 'n03124170', 'n03125729', 'n03126707', 'n03127747', 'n03127925', 'n03131574', 'n03133878', 'n03134739', 'n03141823', 'n03146219', 'n03160309', 'n03179701', 'n03180011', 'n03187595', 'n03188531', 'n03196217', 'n03197337', 'n03201208', 'n03207743', 'n03207941', 'n03208938', 'n03216828', 'n03218198', 'n03220513', 'n03223299', 'n03240683', 'n03249569', 'n03250847', 'n03255030', 'n03259280', 'n03271574', 'n03272010', 'n03272562', 'n03290653', 'n03291819', 'n03297495', 'n03314780', 'n03325584', 'n03337140', 'n03344393', 'n03345487', 'n03347037', 'n03355925', 'n03372029', 'n03376595', 'n03379051', 'n03384352', 'n03388043', 'n03388183', 'n03388549', 'n03393912', 'n03394916', 'n03400231', 'n03404251', 'n03417042', 'n03424325', 'n03425413', 'n03443371', 'n03444034', 'n03445777', 'n03445924', 'n03447447', 'n03447721', 'n03450230', 'n03452741', 'n03457902', 'n03459775', 'n03461385', 'n03467068', 'n03476684', 'n03476991', 'n03478589', 'n03481172', 'n03482405', 'n03483316', 'n03485407', 'n03485794', 'n03492542', 'n03494278', 'n03495258', 'n03496892', 'n03498962', 'n03527444', 'n03529860', 'n03530642', 'n03532672', 'n03534580', 'n03535780', 'n03538406', 'n03544143', 'n03584254', 'n03584829', 'n03590841', 'n03594734', 'n03594945', 'n03595614', 'n03598930', 'n03599486', 'n03602883', 'n03617480', 'n03623198', 'n03627232', 'n03630383', 'n03633091', 'n03637318', 'n03642806', 'n03649909', 'n03657121', 'n03658185', 'n03661043', 'n03662601', 'n03666591', 'n03670208', 'n03673027', 'n03676483', 'n03680355', 'n03690938', 'n03691459', 'n03692522', 'n03697007', 'n03706229', 'n03709823', 'n03710193', 'n03710637', 'n03710721', 'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03729826', 'n03733131', 'n03733281', 'n03733805', 'n03742115', 'n03743016', 'n03759954', 'n03761084', 'n03763968', 'n03764736', 'n03769881', 'n03770439', 'n03770679', 'n03773504', 'n03775071', 'n03775546', 'n03776460', 'n03777568', 'n03777754', 'n03781244', 'n03782006', 'n03785016', 'n03786901', 'n03787032', 'n03788195', 'n03788365', 'n03791053', 'n03792782', 'n03792972', 'n03793489', 'n03794056', 'n03796401', 'n03803284', 'n03804744', 'n03814639', 'n03814906', 'n03825788', 'n03832673', 'n03837869', 'n03838899', 'n03840681', 'n03841143', 'n03843555', 'n03854065', 'n03857828', 'n03866082', 'n03868242', 'n03868863', 'n03871628', 'n03873416', 'n03874293', 'n03874599', 'n03876231', 'n03877472', 'n03877845', 'n03884397', 'n03887697', 'n03888257', 'n03888605', 'n03891251', 'n03891332', 'n03895866', 'n03899768', 'n03902125', 'n03903868', 'n03908618', 'n03908714', 'n03916031', 'n03920288', 'n03924679', 'n03929660', 'n03929855', 'n03930313', 'n03930630', 'n03933933', 'n03935335', 'n03937543', 'n03938244', 'n03942813', 'n03944341', 'n03947888', 'n03950228', 'n03954731', 'n03956157', 'n03958227', 'n03961711', 'n03967562', 'n03970156', 'n03976467', 'n03976657', 'n03977966', 'n03980874', 'n03982430', 'n03983396', 'n03991062', 'n03992509', 'n03995372', 'n03998194', 'n04004767', 'n04005630', 'n04008634', 'n04009552', 'n04019541', 'n04023962', 'n04026417', 'n04033901', 'n04033995', 'n04037443', 'n04039381', 'n04040759', 'n04041544', 'n04044716', 'n04049303', 'n04065272', 'n04067472', 'n04069434', 'n04070727', 'n04074963', 'n04081281', 'n04086273', 'n04090263', 'n04099969', 'n04111531', 'n04116512', 'n04118538', 'n04118776', 'n04120489', 'n04125021', 'n04127249', 'n04131690', 'n04133789', 'n04136333', 'n04141076', 'n04141327', 'n04141975', 'n04146614', 'n04147183', 'n04149813', 'n04152593', 'n04153751', 'n04154565', 'n04162706', 'n04179913', 'n04192698', 'n04200800', 'n04201297', 'n04204238', 'n04204347', 'n04208210', 'n04209133', 'n04209239', 'n04228054', 'n04229816', 'n04235860', 'n04238763', 'n04239074', 'n04243546', 'n04251144', 'n04252077', 'n04252225', 'n04254120', 'n04254680', 'n04254777', 'n04258138', 'n04259630', 'n04263257', 'n04264628', 'n04265275', 'n04266014', 'n04270147', 'n04273569', 'n04275548', 'n04277352', 'n04285008', 'n04286575', 'n04296562', 'n04310018', 'n04311004', 'n04311174', 'n04317175', 'n04325704', 'n04326547', 'n04328186', 'n04330267', 'n04332243', 'n04335435', 'n04336792', 'n04344873', 'n04346328', 'n04347754', 'n04350905', 'n04355338', 'n04355933', 'n04356056', 'n04357314', 'n04366367', 'n04367480', 'n04370456', 'n04371430', 'n04371774', 'n04372370', 'n04376876', 'n04380533', 'n04389033', 'n04392985', 'n04398044', 'n04399382', 'n04404412', 'n04409515', 'n04417672', 'n04418357', 'n04423845', 'n04428191', 'n04429376', 'n04435653', 'n04442312', 'n04443257', 'n04447861', 'n04456115', 'n04458633', 'n04461696', 'n04462240', 'n04465501', 'n04467665', 'n04476259', 'n04479046', 'n04482393', 'n04483307', 'n04485082', 'n04486054', 'n04487081', 'n04487394', 'n04493381', 'n04501370', 'n04505470', 'n04507155', 'n04509417', 'n04515003', 'n04517823', 'n04522168', 'n04523525', 'n04525038', 'n04525305', 'n04532106', 'n04532670', 'n04536866', 'n04540053', 'n04542943', 'n04548280', 'n04548362', 'n04550184', 'n04552348', 'n04553703', 'n04554684', 'n04557648', 'n04560804', 'n04562935', 'n04579145', 'n04579432', 'n04584207', 'n04589890', 'n04590129', 'n04591157', 'n04591713', 'n04592741', 'n04596742', 'n04597913', 'n04599235', 'n04604644', 'n04606251', 'n04612504', 'n04613696', 'n06359193', 'n06596364', 'n06785654', 'n06794110', 'n06874185', 'n07248320', 'n07565083', 'n07579787', 'n07583066', 'n07584110', 'n07590611', 'n07613480', 'n07614500', 'n07615774', 'n07684084', 'n07693725', 'n07695742', 'n07697313', 'n07697537', 'n07711569', 'n07714571', 'n07714990', 'n07715103', 'n07716358', 'n07716906', 'n07717410', 'n07717556', 'n07718472', 'n07718747', 'n07720875', 'n07730033', 'n07734744', 'n07742313', 'n07745940', 'n07747607', 'n07749582', 'n07753113', 'n07753275', 'n07753592', 'n07754684', 'n07760859', 'n07768694', 'n07802026', 'n07831146', 'n07836838', 'n07860988', 'n07871810', 'n07873807', 'n07875152', 'n07880968', 'n07892512', 'n07920052', 'n07930864', 'n07932039', 'n09193705', 'n09229709', 'n09246464', 'n09256479', 'n09288635', 'n09332890', 'n09399592', 'n09421951', 'n09428293', 'n09468604', 'n09472597', 'n09835506', 'n10148035', 'n10565667', 'n11879895', 'n11939491', 'n12057211', 'n12144580', 'n12267677', 'n12620546', 'n12768682', 'n12985857', 'n12998815', 'n13037406', 'n13040303', 'n13044778', 'n13052670', 'n13054560', 'n13133613', 'n15075141'] imagenet_a_wnids = ['n01498041', 'n01531178', 'n01534433', 'n01558993', 'n01580077', 'n01614925', 'n01616318', 'n01631663', 'n01641577', 'n01669191', 'n01677366', 'n01687978', 'n01694178', 'n01698640', 'n01735189', 'n01770081', 'n01770393', 'n01774750', 'n01784675', 'n01819313', 'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01882714', 'n01910747', 'n01914609', 'n01924916', 'n01944390', 'n01985128', 'n01986214', 'n02007558', 'n02009912', 'n02037110', 'n02051845', 'n02077923', 'n02085620', 'n02099601', 'n02106550', 'n02106662', 'n02110958', 'n02119022', 'n02123394', 'n02127052', 'n02129165', 'n02133161', 'n02137549', 'n02165456', 'n02174001', 'n02177972', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02231487', 'n02233338', 'n02236044', 'n02259212', 'n02268443', 'n02279972', 'n02280649', 'n02281787', 'n02317335', 'n02325366', 'n02346627', 'n02356798', 'n02361337', 'n02410509', 'n02445715', 'n02454379', 'n02486410', 'n02492035', 'n02504458', 'n02655020', 'n02669723', 'n02672831', 'n02676566', 'n02690373', 'n02701002', 'n02730930', 'n02777292', 'n02782093', 'n02787622', 'n02793495', 'n02797295', 'n02802426', 'n02814860', 'n02815834', 'n02837789', 'n02879718', 'n02883205', 'n02895154', 'n02906734', 'n02948072', 'n02951358', 'n02980441', 'n02992211', 'n02999410', 'n03014705', 'n03026506', 'n03124043', 'n03125729', 'n03187595', 'n03196217', 'n03223299', 'n03250847', 'n03255030', 'n03291819', 'n03325584', 'n03355925', 'n03384352', 'n03388043', 'n03417042', 'n03443371', 'n03444034', 'n03445924', 'n03452741', 'n03483316', 'n03584829', 'n03590841', 'n03594945', 'n03617480', 'n03666591', 'n03670208', 'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03775071', 'n03788195', 'n03804744', 'n03837869', 'n03840681', 'n03854065', 'n03888257', 'n03891332', 'n03935335', 'n03982430', 'n04019541', 'n04033901', 'n04039381', 'n04067472', 'n04086273', 'n04099969', 'n04118538', 'n04131690', 'n04133789', 'n04141076', 'n04146614', 'n04147183', 'n04179913', 'n04208210', 'n04235860', 'n04252077', 'n04252225', 'n04254120', 'n04270147', 'n04275548', 'n04310018', 'n04317175', 'n04344873', 'n04347754', 'n04355338', 'n04366367', 'n04376876', 'n04389033', 'n04399382', 'n04442312', 'n04456115', 'n04482393', 'n04507155', 'n04509417', 'n04532670', 'n04540053', 'n04554684', 'n04562935', 'n04591713', 'n04606251', 'n07583066', 'n07695742', 'n07697313', 'n07697537', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07749582', 'n07753592', 'n07760859', 'n07768694', 'n07831146', 'n09229709', 'n09246464', 'n09472597', 'n09835506', 'n11879895', 'n12057211', 'n12144580', 'n12267677'] imagenet_a_mask = [wnid in set(imagenet_a_wnids) for wnid in all_wnids] imagenet_r_wnids = {'n01443537', 'n01484850', 'n01494475', 'n01498041', 'n01514859', 'n01518878', 'n01531178', 'n01534433', 'n01614925', 'n01616318', 'n01630670', 'n01632777', 'n01644373', 'n01677366', 'n01694178', 'n01748264', 'n01770393', 'n01774750', 'n01784675', 'n01806143', 'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01860187', 'n01882714', 'n01910747', 'n01944390', 'n01983481', 'n01986214', 'n02007558', 'n02009912', 'n02051845', 'n02056570', 'n02066245', 'n02071294', 'n02077923', 'n02085620', 'n02086240', 'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02091032', 'n02091134', 'n02092339', 'n02094433', 'n02096585', 'n02097298', 'n02098286', 'n02099601', 'n02099712', 'n02102318', 'n02106030', 'n02106166', 'n02106550', 'n02106662', 'n02108089', 'n02108915', 'n02109525', 'n02110185', 'n02110341', 'n02110958', 'n02112018', 'n02112137', 'n02113023', 'n02113624', 'n02113799', 'n02114367', 'n02117135', 'n02119022', 'n02123045', 'n02128385', 'n02128757', 'n02129165', 'n02129604', 'n02130308', 'n02134084', 'n02138441', 'n02165456', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02233338', 'n02236044', 'n02268443', 'n02279972', 'n02317335', 'n02325366', 'n02346627', 'n02356798', 'n02363005', 'n02364673', 'n02391049', 'n02395406', 'n02398521', 'n02410509', 'n02423022', 'n02437616', 'n02445715', 'n02447366', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02486410', 'n02510455', 'n02526121', 'n02607072', 'n02655020', 'n02672831', 'n02701002', 'n02749479', 'n02769748', 'n02793495', 'n02797295', 'n02802426', 'n02808440', 'n02814860', 'n02823750', 'n02841315', 'n02843684', 'n02883205', 'n02906734', 'n02909870', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02966193', 'n02980441', 'n02992529', 'n03124170', 'n03272010', 'n03345487', 'n03372029', 'n03424325', 'n03452741', 'n03467068', 'n03481172', 'n03494278', 'n03495258', 'n03498962', 'n03594945', 'n03602883', 'n03630383', 'n03649909', 'n03676483', 'n03710193', 'n03773504', 'n03775071', 'n03888257', 'n03930630', 'n03947888', 'n04086273', 'n04118538', 'n04133789', 'n04141076', 'n04146614', 'n04147183', 'n04192698', 'n04254680', 'n04266014', 'n04275548', 'n04310018', 'n04325704', 'n04347754', 'n04389033', 'n04409515', 'n04465501', 'n04487394', 'n04522168', 'n04536866', 'n04552348', 'n04591713', 'n07614500', 'n07693725', 'n07695742', 'n07697313', 'n07697537', 'n07714571', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07742313', 'n07745940', 'n07749582', 'n07753275', 'n07753592', 'n07768694', 'n07873807', 'n07880968', 'n07920052', 'n09472597', 'n09835506', 'n10565667', 'n12267677'} imagenet_r_mask = [wnid in imagenet_r_wnids for wnid in all_wnids]
EXA-1-master
exa/models/unilm-master/beit2/imagenet_a_r_indices.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on BEiT, timm, DeiT and DINO code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from timm.models.registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None, return_attention=False, return_qkv=False): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) (B, H, N, C) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) if return_attention: return attn x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) if return_qkv: return x, qkv return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None, return_attention=False, return_qkv=False): if return_attention: return self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, return_attention=True) if return_qkv: y, qkv = self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, return_qkv=return_qkv) x = x + self.drop_path(self.gamma_1 * y) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x, qkv if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) if isinstance(self.head, nn.Linear): trunc_normal_(self.head.weight, std=.02) self.apply(self._init_weights) self.fix_init_weight() if isinstance(self.head, nn.Linear): self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def interpolate_pos_encoding(self, x, w, h): npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_size[0] h0 = h // self.patch_embed.patch_size[0] # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward_features(self, x, return_patch_tokens=False, return_all_tokens=False, **kwargs): B, nc, w, h = x.shape x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: if x.shape[1] != self.pos_embed.shape[1]: x = x + self.interpolate_pos_encoding(x, w, h) else: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias=rel_pos_bias) x = self.norm(x) if self.fc_norm is not None: if return_all_tokens: return self.fc_norm(x) t = x[:, 1:, :] if return_patch_tokens: return self.fc_norm(t) else: return self.fc_norm(t.mean(1)) else: if return_all_tokens: return x elif return_patch_tokens: return x[:, 1:] else: return x[:, 0] def forward(self, x, return_patch_tokens=False, return_all_tokens=False, **kwargs): x = self.forward_features(x, return_patch_tokens=return_patch_tokens, return_all_tokens=return_all_tokens, **kwargs) x = self.head(x) return x def forward_intermediate(self, x, layer_id=12, norm_output=False): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None if isinstance(layer_id, list): output_list = [] for l, blk in enumerate(self.blocks): x = blk(x, rel_pos_bias=rel_pos_bias) # use last norm for all intermediate layers if l in layer_id: if norm_output: x_norm = self.fc_norm(self.norm(x[:, 1:])) output_list.append(x_norm) else: output_list.append(x[:, 1:]) return output_list elif isinstance(layer_id, int): for l, blk in enumerate(self.blocks): if l < layer_id: x = blk(x, rel_pos_bias=rel_pos_bias) elif l == layer_id: x = blk.norm1(x) else: break return x[:, 1:] else: raise NotImplementedError(f"Not support for layer id is {layer_id} now!") def get_intermediate_layers(self, x, use_last_norm=False): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) features = [] rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x = blk(x, rel_pos_bias) if use_last_norm: features.append(self.norm(x)) else: features.append(x) return features @register_model def beit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, # qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_base_patch16_256(pretrained=False, **kwargs): model = VisionTransformer( img_size=256, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, # qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, #qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_24x544_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( img_size=224, patch_size=16, embed_dim=544, depth=24, num_heads=16, mlp_ratio=4, # qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, #qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, #qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_512(pretrained=False, **kwargs): model = VisionTransformer( img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_huge_patch14_224(pretrained=False, **kwargs): model = VisionTransformer( img_size=224, patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, # qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_giant_patch14_224(pretrained=False, **kwargs): model = VisionTransformer( img_size=224, patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=6144 / 1408, # qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model
EXA-1-master
exa/models/unilm-master/beit2/modeling_finetune.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import torch from torch import optim as optim from timm.optim.adafactor import Adafactor from timm.optim.adahessian import Adahessian from timm.optim.adamp import AdamP from timm.optim.lookahead import Lookahead from timm.optim.nadam import Nadam from timm.optim.novograd import NovoGrad from timm.optim.nvnovograd import NvNovoGrad from timm.optim.radam import RAdam from timm.optim.rmsprop_tf import RMSpropTF from timm.optim.sgdp import SGDP import json try: from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD has_apex = True except ImportError: has_apex = False def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("cls_token", "mask_token", "pos_embed"): return 0 elif var_name.startswith("patch_embed"): return 0 elif var_name.startswith("rel_pos_bias"): return num_max_layer - 1 elif var_name.startswith("blocks"): layer_id = int(var_name.split('.')[1]) return layer_id + 1 else: return num_max_layer - 1 class LayerDecayValueAssigner(object): def __init__(self, values): self.values = values def get_scale(self, layer_id): return self.values[layer_id] def get_layer_id(self, var_name): return get_num_layer_for_vit(var_name, len(self.values)) def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None, **kwargs): parameter_group_names = {} parameter_group_vars = {} for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(kwargs.get('filter_name', [])) > 0: flag = False for filter_n in kwargs.get('filter_name', []): if filter_n in name: print(f"filter {name} because of the pattern {filter_n}") flag = True if flag: continue if param.ndim <= 1 or name.endswith(".bias") or name in skip_list: # param.ndim <= 1 len(param.shape) == 1 group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if get_num_layer is not None: layer_id = get_num_layer(name) group_name = "layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if get_layer_scale is not None: scale = get_layer_scale(layer_id) else: scale = 1. parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()) def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None, **kwargs): opt_lower = args.opt.lower() weight_decay = args.weight_decay if weight_decay and filter_bias_and_bn: skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() print(f"Skip weight decay name marked in model: {skip}") parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale, **kwargs) weight_decay = 0. else: parameters = model.parameters() if 'fused' in opt_lower: assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, 'opt_eps') and args.opt_eps is not None: opt_args['eps'] = args.opt_eps if hasattr(args, 'opt_betas') and args.opt_betas is not None: opt_args['betas'] = args.opt_betas print('Optimizer config:', opt_args) opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd' or opt_lower == 'nesterov': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'momentum': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'adam': optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == 'nadam': optimizer = Nadam(parameters, **opt_args) elif opt_lower == 'radam': optimizer = RAdam(parameters, **opt_args) elif opt_lower == 'adamp': optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == 'sgdp': optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'adadelta': optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == 'adafactor': if not args.lr: opt_args['lr'] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == 'adahessian': optimizer = Adahessian(parameters, **opt_args) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'novograd': optimizer = NovoGrad(parameters, **opt_args) elif opt_lower == 'nvnovograd': optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == 'fusedsgd': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'fusedmomentum': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'fusedadam': optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == 'fusedadamw': optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == 'fusedlamb': optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == 'fusednovograd': opt_args.setdefault('betas', (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer
EXA-1-master
exa/models/unilm-master/beit2/optim_factory.py
from .dino import * from .clip import *
EXA-1-master
exa/models/unilm-master/beit2/vqkd_teacher/__init__.py
# -------------------------------------------------------- # BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) # Github source: https://github.com/microsoft/unilm/tree/master/beitv2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Zhiliang Peng # Based on DINO code bases # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from functools import partial, reduce from collections import OrderedDict from timm.models.layers import drop_path, to_2tuple, trunc_normal_ import pdb # https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth def drop_path(x, drop_prob: float = 0., training: bool = False): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, return_attention=False): y, attn = self.attn(self.norm1(x)) if return_attention: return attn x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size // patch_size) * (img_size // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) return x class VisionTransformer(nn.Module): """ Vision Transformer """ def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs): super().__init__() self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed( img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) if kwargs.get('pretrained', True): self.load_from_pretrained('https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth') if not kwargs.get('requires_grad', False): for param in self.parameters(): param.requires_grad = False def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def load_from_pretrained(self, ckpt_path): if ckpt_path.startswith('https'): sd = torch.hub.load_state_dict_from_url(ckpt_path, map_location='cpu', check_hash=True) else: sd = torch.load(ckpt_path, map_location='cpu') missing_keys, unexpected_keys = self.load_state_dict(sd, strict=False) print(f"Load weight for dino model: {ckpt_path}") print(f"missing_keys: {missing_keys}") print(f"unexpected_keys: {unexpected_keys}") def interpolate_pos_encoding(self, x, w, h): npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == h: return self.pos_embed class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_size h0 = h // self.patch_embed.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def prepare_tokens(self, x): B, nc, w, h = x.shape x = self.patch_embed(x) # patch linear embedding # add the [CLS] token to the embed patch tokens cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) # add positional encoding to each token x = x + self.interpolate_pos_encoding(x, w, h) return self.pos_drop(x) def forward(self, x, return_patch_tokens=False, return_all_tokens=False): x = self.prepare_tokens(x) for blk in self.blocks: x = blk(x) x = self.norm(x) if return_all_tokens: return x elif return_patch_tokens: return x[:, 1:] else: return x[:, 0] def get_last_selfattention(self, x): x = self.prepare_tokens(x) for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: # return attention of the last block return blk(x, return_attention=True) def get_intermediate_layers(self, x, n=1): x = self.prepare_tokens(x) # we return the output tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: output.append(self.norm(x)) return output def forward_intermediate(self, x, layer_id=12): x = self.prepare_tokens(x) if isinstance(layer_id, list): output_list = [] for l, blk in enumerate(self.blocks): x = blk(x) if l in layer_id: output_list.append(x[:, 1:]) # output_list.append(self.norm(x)) return output_list elif isinstance(layer_id, int): for l, blk in enumerate(self.blocks): if l < layer_id: x = blk(x) elif l == layer_id: # pdb.set_trace() x = blk.norm1(x) else: break return x[:, 1:] def vit_tiny(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def vit_small(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def vit_base(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def get_dino_vit_base(): return vit_base(pretrained=True, requires_grad=False) class DINOHead(nn.Module): def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256): super().__init__() nlayers = max(nlayers, 1) if nlayers == 1: self.mlp = nn.Linear(in_dim, bottleneck_dim) else: layers = [nn.Linear(in_dim, hidden_dim)] if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) for _ in range(nlayers - 2): layers.append(nn.Linear(hidden_dim, hidden_dim)) if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) layers.append(nn.Linear(hidden_dim, bottleneck_dim)) self.mlp = nn.Sequential(*layers) self.apply(self._init_weights) self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) self.last_layer.weight_g.data.fill_(1) if norm_last_layer: self.last_layer.weight_g.requires_grad = False def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.mlp(x) x = nn.functional.normalize(x, dim=-1, p=2) x = self.last_layer(x) return x
EXA-1-master
exa/models/unilm-master/beit2/vqkd_teacher/dino.py
from .clip import * from .model import *
EXA-1-master
exa/models/unilm-master/beit2/vqkd_teacher/clip/__init__.py
from collections import OrderedDict from typing import Tuple, Union import math import numpy as np import torch import torch.nn.functional as F from torch import nn import pdb class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x, return_all_tokens=False): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) if return_all_tokens: return x else: return x[0] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x, return_side_out=False, return_all_tokens=False): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x out = [] x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) if return_side_out: out.append(x) x = self.layer2(x) if return_side_out: out.append(x) x = self.layer3(x) if return_side_out: out.append(x) x = self.layer4(x) if return_side_out: out.append(x) x = self.attnpool(x, return_all_tokens) out.append(x) if len(out) == 1: return x else: return out class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # pdb.set_trace() return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor, return_intermediate_out: bool = False): if return_intermediate_out: output = [] for block in self.resblocks: x = block(x) output.append(x) return output return self.resblocks(x) class VisionTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.patch_size = patch_size self.output_dim = output_dim self.width = width self.heads = heads self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor, return_all_tokens=False, return_all_final_tokens=False, **kwargs): B, nc, w, h = x.shape x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] if x.shape[1] != self.positional_embedding.shape[0]: x = x + self.interpolate_pos_encoding(x, w, h).to(x.dtype) else: x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD if return_all_tokens: x = self.ln_post(x) return x[:, 1:, :] if return_all_final_tokens: return self.ln_post(x) @ self.proj x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x def interpolate_pos_encoding(self, x, w, h): # pdb.set_trace() npatch = x.shape[1] - 1 N = self.positional_embedding.shape[0] - 1 # 256 for large if npatch == N and w == h: return self.positional_embedding class_pos_embed = self.positional_embedding[[0]] patch_pos_embed = self.positional_embedding[1:] dim = x.shape[-1] w0 = w // self.patch_size h0 = h // self.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) class CLIP(nn.Module): def __init__(self, embed_dim: int, # 512 # vision image_resolution: int, # 224 vision_layers: Union[Tuple[int, int, int, int], int], # 12 vision_width: int, # 768 vision_patch_size: int, # 16 # text context_length: int, # 77 vocab_size: int, # 49408 transformer_width: int, # 512 transformer_heads: int, # 8 transformer_layers: int # 12 ): super().__init__() # pdb.set_trace() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisionTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image, return_side_out=False, return_all_tokens=False, return_all_final_tokens=False, **kwargs): return self.visual(image.type(self.dtype), return_all_tokens, return_all_final_tokens, **kwargs) def encode_text(self, text, return_all_tokens=False, return_patch_tokens=False): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) if return_patch_tokens: return x # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) if return_all_tokens: # pdb.set_trace() x = x @ self.text_projection else: x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] convert_weights(model) model.load_state_dict(state_dict) return model.eval()
EXA-1-master
exa/models/unilm-master/beit2/vqkd_teacher/clip/model.py
import hashlib import os import urllib import warnings from typing import Any, Union, List from pkg_resources import packaging import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer try: from torchvision.transforms import InterpolationMode BICUBIC = InterpolationMode.BICUBIC except ImportError: BICUBIC = Image.BICUBIC if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] _tokenizer = _Tokenizer() _MODELS = { "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", } def _download(url: str, root: str): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _convert_image_to_rgb(image): return image.convert("RGB") def _transform(n_px): return Compose([ Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") try: # loading JIT archive model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") if not jit: model = build_model(state_dict or model.state_dict()).to(device) if str(device) == "cpu": model.float() return model, _transform(model.visual.input_resolution) # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform(model.input_resolution.item()) def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length truncate: bool Whether to truncate the text in case its encoding is longer than the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result
EXA-1-master
exa/models/unilm-master/beit2/vqkd_teacher/clip/clip.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
EXA-1-master
exa/models/unilm-master/beit2/vqkd_teacher/clip/simple_tokenizer.py
import argparse import os import mmcv import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from mmcv.utils import DictAction from mmseg.apis import multi_gpu_test, single_gpu_test from mmseg.datasets import build_dataloader, build_dataset from mmseg.models import build_segmentor from backbone import beit def parse_args(): parser = argparse.ArgumentParser( description='mmseg test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--aug-test', action='store_true', help='Use Flip and Multi scale aug') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' ' for generic datasets, and "cityscapes" for Cityscapes') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu_collect is not specified') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True if args.aug_test: # hard code index cfg.data.test.pipeline[1].img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 ] cfg.data.test.pipeline[1].flip = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') model.CLASSES = checkpoint['meta']['CLASSES'] model.PALETTE = checkpoint['meta']['PALETTE'] efficient_test = False if args.eval_options is not None: efficient_test = args.eval_options.get('efficient_test', False) if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, efficient_test) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect, efficient_test) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs) if __name__ == '__main__': main()
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/tools/test.py
import argparse import copy import os import os.path as osp import time import mmcv import mmcv_custom import torch from mmcv.runner import init_dist from mmcv.utils import Config, DictAction, get_git_hash from mmseg import __version__ from mmseg.apis import set_random_seed from mmcv_custom import train_segmentor from mmseg.datasets import build_dataset from mmseg.models import build_segmentor from mmseg.utils import collect_env, get_root_logger from backbone import beit def parse_args(): parser = argparse.ArgumentParser(description='Train a segmentor') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--load-from', help='the checkpoint file to load weights from') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.load_from is not None: cfg.load_from = args.load_from if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, deterministic: ' f'{args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_segmentor( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) logger.info(model) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmseg version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmseg_version=f'{__version__}+{get_git_hash()[:7]}', config=cfg.pretty_text, CLASSES=datasets[0].CLASSES, PALETTE=datasets[0].PALETTE) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_segmentor( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/tools/train.py
import json from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor from mmcv.runner import get_dist_info def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.patch_embed"): return 0 elif var_name.startswith("backbone.blocks"): layer_id = int(var_name.split('.')[2]) return layer_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LayerDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate') print("Build LayerDecayOptimizerConstructor %f - %d" % (layer_decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token'): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay layer_id = get_num_layer_for_vit(name, num_layers) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_groups: scale = layer_decay_rate ** (num_layers - layer_id - 1) parameter_groups[group_name] = { "weight_decay": this_weight_decay, "params": [], "param_names": [], "lr_scale": scale, "group_name": group_name, "lr": scale * self.base_lr, } parameter_groups[group_name]["params"].append(param) parameter_groups[group_name]["param_names"].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { "param_names": parameter_groups[key]["param_names"], "lr_scale": parameter_groups[key]["lr_scale"], "lr": parameter_groups[key]["lr"], "weight_decay": parameter_groups[key]["weight_decay"], } print("Param groups = %s" % json.dumps(to_display, indent=2)) # state_dict = module.state_dict() # for group_name in parameter_groups: # group = parameter_groups[group_name] # for name in group["param_names"]: # group["params"].append(state_dict[name]) params.extend(parameter_groups.values())
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/layer_decay_optimizer_constructor.py
import random import warnings import numpy as np import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import build_optimizer, build_runner from mmseg.core import DistEvalHook, EvalHook from mmseg.datasets import build_dataloader, build_dataset from mmseg.utils import get_root_logger try: import apex except: print('apex is not installed') def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def train_segmentor(model, dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): """Launch segmentor training.""" logger = get_root_logger(cfg.log_level) # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, # cfg.gpus will be ignored if distributed len(cfg.gpu_ids), dist=distributed, seed=cfg.seed, drop_last=True) for ds in dataset ] # build optimizer optimizer = build_optimizer(model, cfg.optimizer) # use apex fp16 optimizer if cfg.optimizer_config.get("type", None) and cfg.optimizer_config["type"] == "DistOptimizerHook": if cfg.optimizer_config.get("use_fp16", False): model, optimizer = apex.amp.initialize( model.cuda(), optimizer, opt_level="O1") for m in model.modules(): if hasattr(m, "fp16_enabled"): m.fp16_enabled = True # put model on gpus if distributed: find_unused_parameters = cfg.get('find_unused_parameters', False) # Sets the `find_unused_parameters` parameter in # torch.nn.parallel.DistributedDataParallel model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: model = MMDataParallel( model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) if cfg.get('runner') is None: cfg.runner = {'type': 'IterBasedRunner', 'max_iters': cfg.total_iters} warnings.warn( 'config is now expected to have a `runner` section, ' 'please set `runner` in your config.', UserWarning) runner = build_runner( cfg.runner, default_args=dict( model=model, batch_processor=None, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta)) # register hooks runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None)) # an ugly walkaround to make the .log and .log.json filenames the same runner.timestamp = timestamp # register eval hooks if validate: val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) val_dataloader = build_dataloader( val_dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) eval_cfg = cfg.get('evaluation', {}) eval_cfg['by_epoch'] = 'IterBasedRunner' not in cfg.runner['type'] eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow)
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/train_api.py
import mmcv import numpy as np from mmseg.datasets.builder import PIPELINES @PIPELINES.register_module() class SETR_Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes: - ``ratio_range is not None``: randomly sample a ratio from the ratio range and multiply it with the image scale. - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, crop_size=None, setr_multi_scale=False): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] # assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given a scale and a range of image ratio assert len(self.img_scale) == 1 else: # mode 2: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.crop_size = crop_size self.setr_multi_scale = setr_multi_scale @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: if self.setr_multi_scale: if min(results['scale']) < self.crop_size[0]: new_short = self.crop_size[0] else: new_short = min(results['scale']) h, w = results['img'].shape[:2] if h > w: new_h, new_w = new_short * h / w, new_short else: new_h, new_w = new_short, new_short * w / h results['scale'] = (new_h, new_w) img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') results['gt_semantic_seg'] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/resize_transform.py
# Copyright (c) Open-MMLab. All rights reserved. import io import os import os.path as osp import pkgutil import time import warnings from collections import OrderedDict from importlib import import_module from tempfile import TemporaryDirectory import torch import torchvision from torch.optim import Optimizer from torch.utils import model_zoo from torch.nn import functional as F import mmcv from mmcv.fileio import FileClient from mmcv.fileio import load as load_file from mmcv.parallel import is_module_wrapper from mmcv.utils import mkdir_or_exist from mmcv.runner import get_dist_info from scipy import interpolate import numpy as np import math ENV_MMCV_HOME = 'MMCV_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' def _get_mmcv_home(): mmcv_home = os.path.expanduser( os.getenv( ENV_MMCV_HOME, os.path.join( os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] all_missing_keys = [] err_msg = [] metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # use _load_from_state_dict to enable checkpoint version control def load(module, prefix=''): # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, all_missing_keys, unexpected_keys, err_msg) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(module) load = None # break load->load reference cycle # ignore "num_batches_tracked" of BN layers missing_keys = [ key for key in all_missing_keys if 'num_batches_tracked' not in key ] if unexpected_keys: err_msg.append('unexpected key in source ' f'state_dict: {", ".join(unexpected_keys)}\n') if missing_keys: err_msg.append( f'missing keys in source state_dict: {", ".join(missing_keys)}\n') rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert( 0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: print(err_msg) def load_url_dist(url, model_dir=None, map_location="cpu"): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) return checkpoint def load_pavimodel_dist(model_path, map_location=None): """In distributed setting, this function only download checkpoint at local rank 0.""" try: from pavi import modelcloud except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load(downloaded_file, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load( downloaded_file, map_location=map_location) return checkpoint def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def _load_checkpoint(filename, map_location=None): """Load checkpoint from somewhere (modelzoo, file, url). Args: filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Default: None. Returns: dict | OrderedDict: The loaded checkpoint. It can be either an OrderedDict storing model weights or a dict containing other information, which depends on the checkpoint. """ if filename.startswith('modelzoo://'): warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' 'use "torchvision://" instead') model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_urls = get_external_models() model_name = filename[13:] deprecated_urls = get_deprecated_model_names() if model_name in deprecated_urls: warnings.warn(f'open-mmlab://{model_name} is deprecated in favor ' f'of open-mmlab://{deprecated_urls[model_name]}') model_name = deprecated_urls[model_name] model_url = model_urls[model_name] # check if is url if model_url.startswith(('http://', 'https://')): checkpoint = load_url_dist(model_url) else: filename = osp.join(_get_mmcv_home(), model_url) if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) elif filename.startswith('mmcls://'): model_urls = get_mmcls_models() model_name = filename[8:] checkpoint = load_url_dist(model_urls[model_name]) checkpoint = _process_mmcls_checkpoint(checkpoint) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) elif filename.startswith('pavi://'): model_path = filename[7:] checkpoint = load_pavimodel_dist(model_path, map_location=map_location) elif filename.startswith('s3://'): checkpoint = load_fileclient_dist( filename, backend='ceph', map_location=map_location) else: if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) return checkpoint def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def load_checkpoint(model, filename, map_location='cpu', strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = _load_checkpoint(filename, map_location) # OrderedDict is a subclass of dict if not isinstance(checkpoint, dict): raise RuntimeError( f'No state_dict found in checkpoint file {filename}') # get state_dict from checkpoint if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] elif 'module' in checkpoint: state_dict = checkpoint['module'] else: state_dict = checkpoint # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} # for MoBY, load model of online branch if sorted(list(state_dict.keys()))[0].startswith('encoder'): state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')} # reshape absolute position embedding for Swin if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H*W: logger.warning("Error in loading absolute_pos_embed, pass") else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) rank, _ = get_dist_info() if "rel_pos_bias.relative_position_bias_table" in state_dict: if rank == 0: print("Expand the shared relative position embedding to each layers. ") num_layers = model.get_num_layers() rel_pos_bias = state_dict["rel_pos_bias.relative_position_bias_table"] for i in range(num_layers): state_dict["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() state_dict.pop("rel_pos_bias.relative_position_bias_table") all_keys = list(state_dict.keys()) for key in all_keys: if "relative_position_index" in key: state_dict.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: if rank == 0: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.13492: # q = 1.13492 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) if rank == 0: print("x = {}".format(x)) print("dx = {}".format(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict[key] = new_rel_pos_bias if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: if rank == 0: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed # interpolate position bias table if needed relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f"Error in loading {table_key}, pass") else: if L1 != L2: S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) table_pretrained_resized = F.interpolate( table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0) # load state_dict load_state_dict(model, state_dict, strict, logger) return checkpoint def weights_to_cpu(state_dict): """Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU. """ state_dict_cpu = OrderedDict() for key, val in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu def _save_to_state_dict(module, destination, prefix, keep_vars): """Saves module state to `destination` dictionary. This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. Args: module (nn.Module): The module to generate state_dict. destination (dict): A dict where state will be stored. prefix (str): The prefix for parameters and buffers used in this module. """ for name, param in module._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.detach() for name, buf in module._buffers.items(): # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d if buf is not None: destination[prefix + name] = buf if keep_vars else buf.detach() def get_state_dict(module, destination=None, prefix='', keep_vars=False): """Returns a dictionary containing a whole state of the module. Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. This method is modified from :meth:`torch.nn.Module.state_dict` to recursively check parallel module in case that the model has a complicated structure, e.g., nn.Module(nn.Module(DDP)). Args: module (nn.Module): The module to generate state_dict. destination (OrderedDict): Returned dict for the state of the module. prefix (str): Prefix of the key. keep_vars (bool): Whether to keep the variable property of the parameters. Default: False. Returns: dict: A dictionary containing a whole state of the module. """ # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module # below is the same as torch.nn.Module.state_dict() if destination is None: destination = OrderedDict() destination._metadata = OrderedDict() destination._metadata[prefix[:-1]] = local_metadata = dict( version=module._version) _save_to_state_dict(module, destination, prefix, keep_vars) for name, child in module._modules.items(): if child is not None: get_state_dict( child, destination, prefix + name + '.', keep_vars=keep_vars) for hook in module._state_dict_hooks.values(): hook_result = hook(module, destination, prefix, local_metadata) if hook_result is not None: destination = hook_result return destination def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 3 fields: ``meta``, ``state_dict`` and ``optimizer``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/checkpoint.py
# -*- coding: utf-8 -*- from .checkpoint import load_checkpoint from .layer_decay_optimizer_constructor import LayerDecayOptimizerConstructor from .resize_transform import SETR_Resize from .apex_runner.optimizer import DistOptimizerHook from .train_api import train_segmentor __all__ = ['load_checkpoint', 'LayerDecayOptimizerConstructor', 'SETR_Resize', 'DistOptimizerHook', 'train_segmentor']
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/__init__.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import platform import shutil import torch from torch.optim import Optimizer import mmcv from mmcv.runner import RUNNERS, IterBasedRunner from .checkpoint import save_checkpoint try: import apex except: print('apex is not installed') @RUNNERS.register_module() class IterBasedRunnerAmp(IterBasedRunner): """Iteration-based Runner with AMP support. This runner train models iteration by iteration. """ def save_checkpoint(self, out_dir, filename_tmpl='iter_{}.pth', meta=None, save_optimizer=True, create_symlink=False): """Save checkpoint to file. Args: out_dir (str): Directory to save checkpoint files. filename_tmpl (str, optional): Checkpoint file template. Defaults to 'iter_{}.pth'. meta (dict, optional): Metadata to be saved in checkpoint. Defaults to None. save_optimizer (bool, optional): Whether save optimizer. Defaults to True. create_symlink (bool, optional): Whether create symlink to the latest checkpoint file. Defaults to True. """ if meta is None: meta = dict(iter=self.iter + 1, epoch=self.epoch + 1) elif isinstance(meta, dict): meta.update(iter=self.iter + 1, epoch=self.epoch + 1) else: raise TypeError( f'meta should be a dict or None, but got {type(meta)}') if self.meta is not None: meta.update(self.meta) filename = filename_tmpl.format(self.iter + 1) filepath = osp.join(out_dir, filename) optimizer = self.optimizer if save_optimizer else None save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta) # in some environments, `os.symlink` is not supported, you may need to # set `create_symlink` to False # if create_symlink: # dst_file = osp.join(out_dir, 'latest.pth') # if platform.system() != 'Windows': # mmcv.symlink(filename, dst_file) # else: # shutil.copy(filepath, dst_file) def resume(self, checkpoint, resume_optimizer=True, map_location='default'): if map_location == 'default': if torch.cuda.is_available(): device_id = torch.cuda.current_device() checkpoint = self.load_checkpoint( checkpoint, map_location=lambda storage, loc: storage.cuda(device_id)) else: checkpoint = self.load_checkpoint(checkpoint) else: checkpoint = self.load_checkpoint( checkpoint, map_location=map_location) self._epoch = checkpoint['meta']['epoch'] self._iter = checkpoint['meta']['iter'] self._inner_iter = checkpoint['meta']['iter'] if 'optimizer' in checkpoint and resume_optimizer: if isinstance(self.optimizer, Optimizer): self.optimizer.load_state_dict(checkpoint['optimizer']) elif isinstance(self.optimizer, dict): for k in self.optimizer.keys(): self.optimizer[k].load_state_dict( checkpoint['optimizer'][k]) else: raise TypeError( 'Optimizer should be dict or torch.optim.Optimizer ' f'but got {type(self.optimizer)}') if 'amp' in checkpoint: apex.amp.load_state_dict(checkpoint['amp']) self.logger.info('load amp state dict') self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}')
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/apex_runner/apex_iter_based_runner.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import time from tempfile import TemporaryDirectory import torch from torch.optim import Optimizer import mmcv from mmcv.parallel import is_module_wrapper from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict try: import apex except: print('apex is not installed') def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 4 fields: ``meta``, ``state_dict`` and ``optimizer``, ``amp``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() # save amp state dict in the checkpoint checkpoint['amp'] = apex.amp.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/apex_runner/checkpoint.py
# Copyright (c) Open-MMLab. All rights reserved. from .checkpoint import save_checkpoint from .apex_iter_based_runner import IterBasedRunnerAmp __all__ = [ 'save_checkpoint', 'IterBasedRunnerAmp', ]
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/apex_runner/__init__.py
from mmcv.runner import OptimizerHook, HOOKS try: import apex except: print('apex is not installed') @HOOKS.register_module() class DistOptimizerHook(OptimizerHook): """Optimizer hook for distributed training.""" def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval self.use_fp16 = use_fp16 def before_run(self, runner): runner.optimizer.zero_grad() def after_train_iter(self, runner): runner.outputs['loss'] /= self.update_interval if self.use_fp16: with apex.amp.scale_loss(runner.outputs['loss'], runner.optimizer) as scaled_loss: scaled_loss.backward() else: runner.outputs['loss'].backward() if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad()
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/mmcv_custom/apex_runner/optimizer.py
# yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook', by_epoch=False), # dict(type='TensorboardLoggerHook') ]) # yapf:enable dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] cudnn_benchmark = True
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/_base_/default_runtime.py
# dataset settings dataset_type = 'ADE20KDataset' data_root = 'data/ade/ADEChallengeData2016' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (640, 640) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2560, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/_base_/datasets/ade20k_640x640.py
# dataset settings dataset_type = 'ADE20KDataset' data_root = 'data/ade/ADEChallengeData2016' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/_base_/datasets/ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='UPerHead', in_channels=[384, 384, 384, 384], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=384, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/_base_/models/upernet_beit.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=160000) checkpoint_config = dict(by_epoch=False, interval=16000) evaluation = dict(interval=16000, metric='mIoU')
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/_base_/schedules/schedule_160k.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=320000) checkpoint_config = dict(by_epoch=False, interval=32000) evaluation = dict(interval=32000, metric='mIoU')
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/_base_/schedules/schedule_320k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.15, rel_pos_bias_interpolation_type=0, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) optimizer = dict(_delete_=True, type='AdamW', lr=5e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.85)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_512_slide_160k_21ktoade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_512_slide_160k_21ktoade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) optimizer = dict(_delete_=True, type='AdamW', lr=4e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_512_slide_160k_ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.15, rel_pos_bias_interpolation_type=0, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) optimizer = dict(_delete_=True, type='AdamW', lr=5e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.75)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_512_slide_160k_ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' import math import torch from functools import partial import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from mmcv_custom import load_checkpoint from mmseg.utils import get_root_logger from mmseg.models.builder import BACKBONES class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.0) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww @BACKBONES.register_module() class BEiT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, init_values=None, use_checkpoint=False, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, out_indices=[3, 5, 7, 11]): super().__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.out_indices = out_indices self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.use_checkpoint = use_checkpoint self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) self.out_indices = out_indices if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), nn.SyncBatchNorm(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None features = [] for i, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, rel_pos_bias) else: x = blk(x, rel_pos_bias) if i in self.out_indices: xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) return tuple(features) def forward(self, x): x = self.forward_features(x) return x
EXA-1-master
exa/models/unilm-master/beit2/semantic_segmentation/backbone/beit.py
import random import numpy as np import torch import os import shutil # import logging import sys # def set_logging(args): # ''' # Set logger for recording # ''' # logging.basicConfig(filename="./output/{}/log.txt".format(args.exp_name), level=logging.INFO, # format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S') # logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) # logging.info(str(args)) def set_seed(args): ''' Set seed for reproducibility ''' random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) # if args.n_gpu > 0: # torch.cuda.manual_seed_all(args.seed) def set_exp_folder(args): ''' Create a folder to store experimental results e.g., checkpoints or log ''' os.makedirs(os.path.join(args.output_dir, 'output'), exist_ok=True) if os.path.exists(os.path.join('output', args.exp_name)): if not args.overwrite_output_dir: assert False, 'The exp_name is already used. Please modify the experiment name or use --overwrite_output_dir' else: print('Remove original directories.') shutil.rmtree(os.path.join('output', args.exp_name)) print('Remove successfully.') os.makedirs(os.path.join(args.output_dir, 'output', args.exp_name), exist_ok=True) exp_path = os.path.join(args.output_dir, 'output', args.exp_name) print(f'Path [{exp_path}] has been created') def check_screen(): ''' Check whether the experiment is in screen ''' text = os.popen('echo $STY').readlines() string = '' for line in text: string += line if len(string.strip()) == 0: print("**** Attention Please! The code is not executed in Screen! ****") else: print(f'**** Screen Name : {string} ****')
EXA-1-master
exa/models/unilm-master/xdoc/fine_tuning/websrc/util.py