python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from multiprocessing import Pool import numpy as np from fairseq import options from fairseq.data import dictionary from fairseq.scoring import bleu from examples.noisychannel import ( rerank_generate, rerank_options, rerank_score_bw, rerank_score_lm, rerank_utils, ) def score_target_hypo( args, a, b, c, lenpen, target_outfile, hypo_outfile, write_hypos, normalize ): print("lenpen", lenpen, "weight1", a, "weight2", b, "weight3", c) gen_output_lst, bitext1_lst, bitext2_lst, lm_res_lst = load_score_files(args) dict = dictionary.Dictionary() scorer = scorer = bleu.Scorer( bleu.BleuConfig( pad=dict.pad(), eos=dict.eos(), unk=dict.unk(), ) ) ordered_hypos = {} ordered_targets = {} for shard_id in range(len(bitext1_lst)): bitext1 = bitext1_lst[shard_id] bitext2 = bitext2_lst[shard_id] gen_output = gen_output_lst[shard_id] lm_res = lm_res_lst[shard_id] total = len(bitext1.rescore_source.keys()) source_lst = [] hypo_lst = [] score_lst = [] reference_lst = [] j = 1 best_score = -math.inf for i in range(total): # length is measured in terms of words, not bpe tokens, since models may not share the same bpe target_len = len(bitext1.rescore_hypo[i].split()) if lm_res is not None: lm_score = lm_res.score[i] else: lm_score = 0 if bitext2 is not None: bitext2_score = bitext2.rescore_score[i] bitext2_backwards = bitext2.backwards else: bitext2_score = None bitext2_backwards = None score = rerank_utils.get_score( a, b, c, target_len, bitext1.rescore_score[i], bitext2_score, lm_score=lm_score, lenpen=lenpen, src_len=bitext1.source_lengths[i], tgt_len=bitext1.target_lengths[i], bitext1_backwards=bitext1.backwards, bitext2_backwards=bitext2_backwards, normalize=normalize, ) if score > best_score: best_score = score best_hypo = bitext1.rescore_hypo[i] if j == gen_output.num_hypos[i] or j == args.num_rescore: j = 1 hypo_lst.append(best_hypo) score_lst.append(best_score) source_lst.append(bitext1.rescore_source[i]) reference_lst.append(bitext1.rescore_target[i]) best_score = -math.inf best_hypo = "" else: j += 1 gen_keys = list(sorted(gen_output.no_bpe_target.keys())) for key in range(len(gen_keys)): if args.prefix_len is None: assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], ( "pred and rescore hypo mismatch: i: " + str(key) + ", " + str(hypo_lst[key]) + str(gen_keys[key]) + str(gen_output.no_bpe_hypo[key]) ) sys_tok = dict.encode_line(hypo_lst[key]) ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]]) scorer.add(ref_tok, sys_tok) else: full_hypo = rerank_utils.get_full_from_prefix( hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]] ) sys_tok = dict.encode_line(full_hypo) ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]]) scorer.add(ref_tok, sys_tok) # if only one set of hyper parameters is provided, write the predictions to a file if write_hypos: # recover the orinal ids from n best list generation for key in range(len(gen_output.no_bpe_target)): if args.prefix_len is None: assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], ( "pred and rescore hypo mismatch:" + "i:" + str(key) + str(hypo_lst[key]) + str(gen_output.no_bpe_hypo[key]) ) ordered_hypos[gen_keys[key]] = hypo_lst[key] ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[ gen_keys[key] ] else: full_hypo = rerank_utils.get_full_from_prefix( hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]] ) ordered_hypos[gen_keys[key]] = full_hypo ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[ gen_keys[key] ] # write the hypos in the original order from nbest list generation if args.num_shards == (len(bitext1_lst)): with open(target_outfile, "w") as t: with open(hypo_outfile, "w") as h: for key in range(len(ordered_hypos)): t.write(ordered_targets[key]) h.write(ordered_hypos[key]) res = scorer.result_string(4) if write_hypos: print(res) score = rerank_utils.parse_bleu_scoring(res) return score def match_target_hypo(args, target_outfile, hypo_outfile): """combine scores from the LM and bitext models, and write the top scoring hypothesis to a file""" if len(args.weight1) == 1: res = score_target_hypo( args, args.weight1[0], args.weight2[0], args.weight3[0], args.lenpen[0], target_outfile, hypo_outfile, True, args.normalize, ) rerank_scores = [res] else: print("launching pool") with Pool(32) as p: rerank_scores = p.starmap( score_target_hypo, [ ( args, args.weight1[i], args.weight2[i], args.weight3[i], args.lenpen[i], target_outfile, hypo_outfile, False, args.normalize, ) for i in range(len(args.weight1)) ], ) if len(rerank_scores) > 1: best_index = np.argmax(rerank_scores) best_score = rerank_scores[best_index] print("best score", best_score) print("best lenpen", args.lenpen[best_index]) print("best weight1", args.weight1[best_index]) print("best weight2", args.weight2[best_index]) print("best weight3", args.weight3[best_index]) return ( args.lenpen[best_index], args.weight1[best_index], args.weight2[best_index], args.weight3[best_index], best_score, ) else: return ( args.lenpen[0], args.weight1[0], args.weight2[0], args.weight3[0], rerank_scores[0], ) def load_score_files(args): if args.all_shards: shard_ids = list(range(args.num_shards)) else: shard_ids = [args.shard_id] gen_output_lst = [] bitext1_lst = [] bitext2_lst = [] lm_res1_lst = [] for shard_id in shard_ids: using_nbest = args.nbest_list is not None ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) if args.language_model is not None: lm_score_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.lm_name, lm_file=True ) # get gen output predictions_bpe_file = pre_gen + "/generate_output_bpe.txt" if using_nbest: print("Using predefined n-best list from interactive.py") predictions_bpe_file = args.nbest_list gen_output = rerank_utils.BitextOutputFromGen( predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest, prefix_len=args.prefix_len, target_prefix_frac=args.target_prefix_frac, ) if rerank1_is_gen: bitext1 = gen_output else: bitext1 = rerank_utils.BitextOutput( score1_file, args.backwards1, args.right_to_left1, args.post_process, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) if args.score_model2 is not None or args.nbest_list is not None: if rerank2_is_gen: bitext2 = gen_output else: bitext2 = rerank_utils.BitextOutput( score2_file, args.backwards2, args.right_to_left2, args.post_process, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) assert ( bitext2.source_lengths == bitext1.source_lengths ), "source lengths for rescoring models do not match" assert ( bitext2.target_lengths == bitext1.target_lengths ), "target lengths for rescoring models do not match" else: if args.diff_bpe: assert args.score_model2 is None bitext2 = gen_output else: bitext2 = None if args.language_model is not None: lm_res1 = rerank_utils.LMOutput( lm_score_file, args.lm_dict, args.prefix_len, args.post_process, args.target_prefix_frac, ) else: lm_res1 = None gen_output_lst.append(gen_output) bitext1_lst.append(bitext1) bitext2_lst.append(bitext2) lm_res1_lst.append(lm_res1) return gen_output_lst, bitext1_lst, bitext2_lst, lm_res1_lst def rerank(args): if type(args.lenpen) is not list: args.lenpen = [args.lenpen] if type(args.weight1) is not list: args.weight1 = [args.weight1] if type(args.weight2) is not list: args.weight2 = [args.weight2] if type(args.weight3) is not list: args.weight3 = [args.weight3] if args.all_shards: shard_ids = list(range(args.num_shards)) else: shard_ids = [args.shard_id] for shard_id in shard_ids: ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) rerank_generate.gen_and_reprocess_nbest(args) rerank_score_bw.score_bw(args) rerank_score_lm.score_lm(args) if args.write_hypos is None: write_targets = pre_gen + "/matched_targets" write_hypos = pre_gen + "/matched_hypos" else: write_targets = args.write_hypos + "_targets" + args.gen_subset write_hypos = args.write_hypos + "_hypos" + args.gen_subset if args.all_shards: write_targets += "_all_shards" write_hypos += "_all_shards" ( best_lenpen, best_weight1, best_weight2, best_weight3, best_score, ) = match_target_hypo(args, write_targets, write_hypos) return best_lenpen, best_weight1, best_weight2, best_weight3, best_score def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) rerank(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/rerank.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq import options def get_reranking_parser(default_task="translation"): parser = options.get_parser("Generation and reranking", default_task) add_reranking_args(parser) return parser def get_tuning_parser(default_task="translation"): parser = options.get_parser("Reranking tuning", default_task) add_reranking_args(parser) add_tuning_args(parser) return parser def add_reranking_args(parser): group = parser.add_argument_group("Reranking") # fmt: off group.add_argument('--score-model1', '-s1', type=str, metavar='FILE', required=True, help='path to first model or ensemble of models for rescoring') group.add_argument('--score-model2', '-s2', type=str, metavar='FILE', required=False, help='path to second model or ensemble of models for rescoring') group.add_argument('--num-rescore', '-n', type=int, metavar='N', default=10, help='the number of candidate hypothesis to rescore') group.add_argument('-bz', '--batch-size', type=int, metavar='N', default=128, help='batch size for generating the nbest list') group.add_argument('--gen-subset', default='test', metavar='SET', choices=['test', 'train', 'valid'], help='data subset to generate (train, valid, test)') group.add_argument('--gen-model', default=None, metavar='FILE', help='the model to generate translations') group.add_argument('-b1', '--backwards1', action='store_true', help='whether or not the first model group is backwards') group.add_argument('-b2', '--backwards2', action='store_true', help='whether or not the second model group is backwards') group.add_argument('-a', '--weight1', default=1, nargs='+', type=float, help='the weight(s) of the first model') group.add_argument('-b', '--weight2', default=1, nargs='+', type=float, help='the weight(s) of the second model, or the gen model if using nbest from interactive.py') group.add_argument('-c', '--weight3', default=1, nargs='+', type=float, help='the weight(s) of the third model') # lm arguments group.add_argument('-lm', '--language-model', default=None, metavar='FILE', help='language model for target language to rescore translations') group.add_argument('--lm-dict', default=None, metavar='FILE', help='the dict of the language model for the target language') group.add_argument('--lm-name', default=None, help='the name of the language model for the target language') group.add_argument('--lm-bpe-code', default=None, metavar='FILE', help='the bpe code for the language model for the target language') group.add_argument('--data-dir-name', default=None, help='name of data directory') group.add_argument('--lenpen', default=1, nargs='+', type=float, help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences') group.add_argument('--score-dict-dir', default=None, help='the directory with dictionaries for the scoring models') group.add_argument('--right-to-left1', action='store_true', help='whether the first model group is a right to left model') group.add_argument('--right-to-left2', action='store_true', help='whether the second model group is a right to left model') group.add_argument('--post-process', '--remove-bpe', default='@@ ', help='the bpe symbol, used for the bitext and LM') group.add_argument('--prefix-len', default=None, type=int, help='the length of the target prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--sampling', action='store_true', help='use sampling instead of beam search for generating n best list') group.add_argument('--diff-bpe', action='store_true', help='bpe for rescoring and nbest list not the same') group.add_argument('--rescore-bpe-code', default=None, help='bpe code for rescoring models') group.add_argument('--nbest-list', default=None, help='use predefined nbest list in interactive.py format') group.add_argument('--write-hypos', default=None, help='filename prefix to write hypos to') group.add_argument('--ref-translation', default=None, help='reference translation to use with nbest list from interactive.py') group.add_argument('--backwards-score-dict-dir', default=None, help='the directory with dictionaries for the backwards model,' 'if None then it is assumed the fw and backwards models share dictionaries') # extra scaling args group.add_argument('--gen-model-name', default=None, help='the name of the models that generated the nbest list') group.add_argument('--model1-name', default=None, help='the name of the set for model1 group ') group.add_argument('--model2-name', default=None, help='the name of the set for model2 group') group.add_argument('--shard-id', default=0, type=int, help='the id of the shard to generate') group.add_argument('--num-shards', default=1, type=int, help='the number of shards to generate across') group.add_argument('--all-shards', action='store_true', help='use all shards') group.add_argument('--target-prefix-frac', default=None, type=float, help='the fraction of the target prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--source-prefix-frac', default=None, type=float, help='the fraction of the source prefix to use in rescoring (in terms of words wo bpe)') group.add_argument('--normalize', action='store_true', help='whether to normalize by src and target len') # fmt: on return group def add_tuning_args(parser): group = parser.add_argument_group("Tuning") group.add_argument( "--lower-bound", default=[-0.7], nargs="+", type=float, help="lower bound of search space", ) group.add_argument( "--upper-bound", default=[3], nargs="+", type=float, help="upper bound of search space", ) group.add_argument( "--tune-param", default=["lenpen"], nargs="+", choices=["lenpen", "weight1", "weight2", "weight3"], help="the parameter(s) to tune", ) group.add_argument( "--tune-subset", default="valid", choices=["valid", "test", "train"], help="the subset to tune on ", ) group.add_argument( "--num-trials", default=1000, type=int, help="number of trials to do for random search", ) group.add_argument( "--share-weights", action="store_true", help="share weight2 and weight 3" ) return group
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/rerank_options.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import random import numpy as np from fairseq import options from examples.noisychannel import rerank, rerank_options def random_search(args): param_values = [] tuneable_parameters = ["lenpen", "weight1", "weight2", "weight3"] initial_params = [args.lenpen, args.weight1, args.weight2, args.weight3] for i, elem in enumerate(initial_params): if type(elem) is not list: initial_params[i] = [elem] else: initial_params[i] = elem tune_parameters = args.tune_param.copy() for i in range(len(args.tune_param)): assert args.upper_bound[i] >= args.lower_bound[i] index = tuneable_parameters.index(args.tune_param[i]) del tuneable_parameters[index] del initial_params[index] tune_parameters += tuneable_parameters param_values += initial_params random.seed(args.seed) random_params = np.array( [ [ random.uniform(args.lower_bound[i], args.upper_bound[i]) for i in range(len(args.tune_param)) ] for k in range(args.num_trials) ] ) set_params = np.array( [ [initial_params[i][0] for i in range(len(tuneable_parameters))] for k in range(args.num_trials) ] ) random_params = np.concatenate((random_params, set_params), 1) rerank_args = vars(args).copy() if args.nbest_list: rerank_args["gen_subset"] = "test" else: rerank_args["gen_subset"] = args.tune_subset for k in range(len(tune_parameters)): rerank_args[tune_parameters[k]] = list(random_params[:, k]) if args.share_weights: k = tune_parameters.index("weight2") rerank_args["weight3"] = list(random_params[:, k]) rerank_args = argparse.Namespace(**rerank_args) best_lenpen, best_weight1, best_weight2, best_weight3, best_score = rerank.rerank( rerank_args ) rerank_args = vars(args).copy() rerank_args["lenpen"] = [best_lenpen] rerank_args["weight1"] = [best_weight1] rerank_args["weight2"] = [best_weight2] rerank_args["weight3"] = [best_weight3] # write the hypothesis from the valid set from the best trial if args.gen_subset != "valid": rerank_args["gen_subset"] = "valid" rerank_args = argparse.Namespace(**rerank_args) rerank.rerank(rerank_args) # test with the best hyperparameters on gen subset rerank_args = vars(args).copy() rerank_args["gen_subset"] = args.gen_subset rerank_args["lenpen"] = [best_lenpen] rerank_args["weight1"] = [best_weight1] rerank_args["weight2"] = [best_weight2] rerank_args["weight3"] = [best_weight3] rerank_args = argparse.Namespace(**rerank_args) rerank.rerank(rerank_args) def cli_main(): parser = rerank_options.get_tuning_parser() args = options.parse_args_and_arch(parser) random_search(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/rerank_tune.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .rerank_options import * # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/__init__.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Generate n-best translations using a trained model. """ import os import subprocess from contextlib import redirect_stdout from fairseq import options from fairseq_cli import generate, preprocess from examples.noisychannel import rerank_options, rerank_utils def gen_and_reprocess_nbest(args): if args.score_dict_dir is None: args.score_dict_dir = args.data if args.prefix_len is not None: assert ( args.right_to_left1 is False ), "prefix length not compatible with right to left models" assert ( args.right_to_left2 is False ), "prefix length not compatible with right to left models" if args.nbest_list is not None: assert args.score_model2 is None if args.backwards1: scorer1_src = args.target_lang scorer1_tgt = args.source_lang else: scorer1_src = args.source_lang scorer1_tgt = args.target_lang store_data = ( os.path.join(os.path.dirname(__file__)) + "/rerank_data/" + args.data_dir_name ) if not os.path.exists(store_data): os.makedirs(store_data) ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, args.shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) assert not ( args.right_to_left1 and args.backwards1 ), "backwards right to left not supported" assert not ( args.right_to_left2 and args.backwards2 ), "backwards right to left not supported" assert not ( args.prefix_len is not None and args.target_prefix_frac is not None ), "target prefix frac and target prefix len incompatible" # make directory to store generation results if not os.path.exists(pre_gen): os.makedirs(pre_gen) rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) if args.nbest_list is not None: rerank2_is_gen = True # make directories to store preprossed nbest list for reranking if not os.path.exists(left_to_right_preprocessed_dir): os.makedirs(left_to_right_preprocessed_dir) if not os.path.exists(right_to_left_preprocessed_dir): os.makedirs(right_to_left_preprocessed_dir) if not os.path.exists(lm_preprocessed_dir): os.makedirs(lm_preprocessed_dir) if not os.path.exists(backwards_preprocessed_dir): os.makedirs(backwards_preprocessed_dir) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) predictions_bpe_file = pre_gen + "/generate_output_bpe.txt" using_nbest = args.nbest_list is not None if using_nbest: print("Using predefined n-best list from interactive.py") predictions_bpe_file = args.nbest_list else: if not os.path.isfile(predictions_bpe_file): print("STEP 1: generate predictions using the p(T|S) model with bpe") print(args.data) param1 = [ args.data, "--path", args.gen_model, "--shard-id", str(args.shard_id), "--num-shards", str(args.num_shards), "--nbest", str(args.num_rescore), "--batch-size", str(args.batch_size), "--beam", str(args.num_rescore), "--batch-size", str(args.num_rescore), "--gen-subset", args.gen_subset, "--source-lang", args.source_lang, "--target-lang", args.target_lang, ] if args.sampling: param1 += ["--sampling"] gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, param1) print(input_args) with open(predictions_bpe_file, "w") as f: with redirect_stdout(f): generate.main(input_args) gen_output = rerank_utils.BitextOutputFromGen( predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest, prefix_len=args.prefix_len, target_prefix_frac=args.target_prefix_frac, ) if args.diff_bpe: rerank_utils.write_reprocessed( gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, pre_gen + "/source_gen_bpe." + args.source_lang, pre_gen + "/target_gen_bpe." + args.target_lang, pre_gen + "/reference_gen_bpe." + args.target_lang, ) bitext_bpe = args.rescore_bpe_code bpe_src_param = [ "-c", bitext_bpe, "--input", pre_gen + "/source_gen_bpe." + args.source_lang, "--output", pre_gen + "/rescore_data." + args.source_lang, ] bpe_tgt_param = [ "-c", bitext_bpe, "--input", pre_gen + "/target_gen_bpe." + args.target_lang, "--output", pre_gen + "/rescore_data." + args.target_lang, ] subprocess.call( [ "python", os.path.join( os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" ), ] + bpe_src_param, shell=False, ) subprocess.call( [ "python", os.path.join( os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" ), ] + bpe_tgt_param, shell=False, ) if (not os.path.isfile(score1_file) and not rerank1_is_gen) or ( args.score_model2 is not None and not os.path.isfile(score2_file) and not rerank2_is_gen ): print( "STEP 2: process the output of generate.py so we have clean text files with the translations" ) rescore_file = "/rescore_data" if args.prefix_len is not None: prefix_len_rescore_file = rescore_file + "prefix" + str(args.prefix_len) if args.target_prefix_frac is not None: target_prefix_frac_rescore_file = ( rescore_file + "target_prefix_frac" + str(args.target_prefix_frac) ) if args.source_prefix_frac is not None: source_prefix_frac_rescore_file = ( rescore_file + "source_prefix_frac" + str(args.source_prefix_frac) ) if not args.right_to_left1 or not args.right_to_left2: if not args.diff_bpe: rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + rescore_file + "." + args.source_lang, pre_gen + rescore_file + "." + args.target_lang, pre_gen + "/reference_file", bpe_symbol=args.post_process, ) if args.prefix_len is not None: bw_rescore_file = prefix_len_rescore_file rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + prefix_len_rescore_file + "." + args.source_lang, pre_gen + prefix_len_rescore_file + "." + args.target_lang, pre_gen + "/reference_file", prefix_len=args.prefix_len, bpe_symbol=args.post_process, ) elif args.target_prefix_frac is not None: bw_rescore_file = target_prefix_frac_rescore_file rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + target_prefix_frac_rescore_file + "." + args.source_lang, pre_gen + target_prefix_frac_rescore_file + "." + args.target_lang, pre_gen + "/reference_file", bpe_symbol=args.post_process, target_prefix_frac=args.target_prefix_frac, ) else: bw_rescore_file = rescore_file if args.source_prefix_frac is not None: fw_rescore_file = source_prefix_frac_rescore_file rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + source_prefix_frac_rescore_file + "." + args.source_lang, pre_gen + source_prefix_frac_rescore_file + "." + args.target_lang, pre_gen + "/reference_file", bpe_symbol=args.post_process, source_prefix_frac=args.source_prefix_frac, ) else: fw_rescore_file = rescore_file if args.right_to_left1 or args.right_to_left2: rerank_utils.write_reprocessed( gen_output.source, gen_output.hypo, gen_output.target, pre_gen + "/right_to_left_rescore_data." + args.source_lang, pre_gen + "/right_to_left_rescore_data." + args.target_lang, pre_gen + "/right_to_left_reference_file", right_to_left=True, bpe_symbol=args.post_process, ) print("STEP 3: binarize the translations") if ( not args.right_to_left1 or args.score_model2 is not None and not args.right_to_left2 or not rerank1_is_gen ): if args.backwards1 or args.backwards2: if args.backwards_score_dict_dir is not None: bw_dict = args.backwards_score_dict_dir else: bw_dict = args.score_dict_dir bw_preprocess_param = [ "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, "--trainpref", pre_gen + bw_rescore_file, "--srcdict", bw_dict + "/dict." + scorer1_src + ".txt", "--tgtdict", bw_dict + "/dict." + scorer1_tgt + ".txt", "--destdir", backwards_preprocessed_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(bw_preprocess_param) preprocess.main(input_args) preprocess_param = [ "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, "--trainpref", pre_gen + fw_rescore_file, "--srcdict", args.score_dict_dir + "/dict." + scorer1_src + ".txt", "--tgtdict", args.score_dict_dir + "/dict." + scorer1_tgt + ".txt", "--destdir", left_to_right_preprocessed_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_param) preprocess.main(input_args) if args.right_to_left1 or args.right_to_left2: preprocess_param = [ "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, "--trainpref", pre_gen + "/right_to_left_rescore_data", "--srcdict", args.score_dict_dir + "/dict." + scorer1_src + ".txt", "--tgtdict", args.score_dict_dir + "/dict." + scorer1_tgt + ".txt", "--destdir", right_to_left_preprocessed_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_param) preprocess.main(input_args) return gen_output def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) gen_and_reprocess_nbest(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/rerank_generate.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import os import re import subprocess from contextlib import redirect_stdout from fairseq import options from fairseq_cli import eval_lm, preprocess def reprocess(fle): # takes in a file of generate.py translation generate_output # returns a source dict and hypothesis dict, where keys are the ID num (as a string) # and values and the corresponding source and translation. There may be several translations # per source, so the values for hypothesis_dict are lists. # parses output of generate.py with open(fle, "r") as f: txt = f.read() """reprocess generate.py output""" p = re.compile(r"[STHP][-]\d+\s*") hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)") source_dict = {} hypothesis_dict = {} score_dict = {} target_dict = {} pos_score_dict = {} lines = txt.split("\n") for line in lines: line += "\n" prefix = re.search(p, line) if prefix is not None: assert len(prefix.group()) > 2, "prefix id not found" _, j = prefix.span() id_num = prefix.group()[2:] id_num = int(id_num) line_type = prefix.group()[0] if line_type == "H": h_txt = line[j:] hypo = re.search(hp, h_txt) assert ( hypo is not None ), "regular expression failed to find the hypothesis scoring" _, i = hypo.span() score = hypo.group() if id_num in hypothesis_dict: hypothesis_dict[id_num].append(h_txt[i:]) score_dict[id_num].append(float(score)) else: hypothesis_dict[id_num] = [h_txt[i:]] score_dict[id_num] = [float(score)] elif line_type == "S": source_dict[id_num] = line[j:] elif line_type == "T": target_dict[id_num] = line[j:] elif line_type == "P": pos_scores = (line[j:]).split() pos_scores = [float(x) for x in pos_scores] if id_num in pos_score_dict: pos_score_dict[id_num].append(pos_scores) else: pos_score_dict[id_num] = [pos_scores] return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict def reprocess_nbest(fle): """reprocess interactive.py output""" with open(fle, "r") as f: txt = f.read() source_dict = {} hypothesis_dict = {} score_dict = {} target_dict = {} pos_score_dict = {} lines = txt.split("\n") hp = re.compile(r"[-]?\d+[.]?\d+") j = -1 for _i, line in enumerate(lines): line += "\n" line_type = line[0] if line_type == "H": hypo = re.search(hp, line) _, start_index = hypo.span() score = hypo.group() if j in score_dict: score_dict[j].append(float(score)) hypothesis_dict[j].append(line[start_index:].strip("\t")) else: score_dict[j] = [float(score)] hypothesis_dict[j] = [line[start_index:].strip("\t")] elif line_type == "O": j += 1 source_dict[j] = line[2:] # we don't have the targets for interactive.py target_dict[j] = "filler" elif line_type == "P": pos_scores = [float(pos_score) for pos_score in line.split()[1:]] if j in pos_score_dict: pos_score_dict[j].append(pos_scores) else: pos_score_dict[j] = [pos_scores] assert source_dict.keys() == hypothesis_dict.keys() assert source_dict.keys() == pos_score_dict.keys() assert source_dict.keys() == score_dict.keys() return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict def write_reprocessed( sources, hypos, targets, source_outfile, hypo_outfile, target_outfile, right_to_left=False, prefix_len=None, bpe_symbol=None, target_prefix_frac=None, source_prefix_frac=None, ): """writes nbest hypothesis for rescoring""" assert not ( prefix_len is not None and target_prefix_frac is not None ), "in writing reprocessed, only one type of prefix may be used" assert not ( prefix_len is not None and source_prefix_frac is not None ), "in writing reprocessed, only one type of prefix may be used" assert not ( target_prefix_frac is not None and source_prefix_frac is not None ), "in writing reprocessed, only one type of prefix may be used" with open(source_outfile, "w") as source_file, open( hypo_outfile, "w" ) as hypo_file, open(target_outfile, "w") as target_file: assert len(sources) == len(hypos), "sources and hypos list length mismatch" if right_to_left: for i in range(len(sources)): for j in range(len(hypos[i])): if prefix_len is None: hypo_file.write(make_right_to_left(hypos[i][j]) + "\n") else: raise NotImplementedError() source_file.write(make_right_to_left(sources[i]) + "\n") target_file.write(make_right_to_left(targets[i]) + "\n") else: for i in sorted(sources.keys()): for j in range(len(hypos[i])): if prefix_len is not None: shortened = ( get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len) + "\n" ) hypo_file.write(shortened) source_file.write(sources[i]) target_file.write(targets[i]) elif target_prefix_frac is not None: num_words, shortened, num_bpe_tokens = calc_length_from_frac( hypos[i][j], target_prefix_frac, bpe_symbol ) shortened += "\n" hypo_file.write(shortened) source_file.write(sources[i]) target_file.write(targets[i]) elif source_prefix_frac is not None: num_words, shortened, num_bpe_tokensn = calc_length_from_frac( sources[i], source_prefix_frac, bpe_symbol ) shortened += "\n" hypo_file.write(hypos[i][j]) source_file.write(shortened) target_file.write(targets[i]) else: hypo_file.write(hypos[i][j]) source_file.write(sources[i]) target_file.write(targets[i]) def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol): # return number of words, (not bpe tokens) that we want no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol) len_sen = len(no_bpe_sen.split()) num_words = math.ceil(len_sen * prefix_frac) prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words) num_bpe_tokens = len(prefix.split()) return num_words, prefix, num_bpe_tokens def get_prefix(sentence, prefix_len): """assuming no bpe, gets the prefix of the sentence with prefix_len words""" tokens = sentence.strip("\n").split() if prefix_len >= len(tokens): return sentence.strip("\n") else: return " ".join(tokens[:prefix_len]) def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len): if bpe_symbol is None: return get_prefix(sentence, prefix_len) else: return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len)) def get_prefix_from_len(sentence, bpe_symbol, prefix_len): """get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens""" bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]]) if bpe_count == 0: return sentence[:prefix_len] else: return sentence[:prefix_len] + get_prefix_from_len( sentence[prefix_len:], bpe_symbol, bpe_count ) def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len): """given a prefix length in terms of words, return the number of bpe tokens""" prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len) assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len return len(prefix.split(" ")) def make_right_to_left(line): tokens = line.split() tokens.reverse() new_line = " ".join(tokens) return new_line def remove_bpe(line, bpe_symbol): line = line.replace("\n", "") line = (line + " ").replace(bpe_symbol, "").rstrip() return line + ("\n") def remove_bpe_dict(pred_dict, bpe_symbol): new_dict = {} for i in pred_dict: if type(pred_dict[i]) == list: new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]] new_dict[i] = new_list else: new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol) return new_dict def parse_bleu_scoring(line): p = re.compile(r"(BLEU4 = )\d+[.]\d+") res = re.search(p, line) assert res is not None, line return float(res.group()[8:]) def get_full_from_prefix(hypo_prefix, hypos): """given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix""" for hypo in hypos: hypo_prefix = hypo_prefix.strip("\n") len_prefix = len(hypo_prefix) if hypo[:len_prefix] == hypo_prefix: return hypo # no match found raise Exception() def get_score( a, b, c, target_len, bitext_score1, bitext_score2=None, lm_score=None, lenpen=None, src_len=None, tgt_len=None, bitext1_backwards=False, bitext2_backwards=False, normalize=False, ): if bitext1_backwards: bitext1_norm = src_len else: bitext1_norm = tgt_len if bitext_score2 is not None: if bitext2_backwards: bitext2_norm = src_len else: bitext2_norm = tgt_len else: bitext2_norm = 1 bitext_score2 = 0 if normalize: score = ( a * bitext_score1 / bitext1_norm + b * bitext_score2 / bitext2_norm + c * lm_score / src_len ) else: score = a * bitext_score1 + b * bitext_score2 + c * lm_score if lenpen is not None: score /= (target_len) ** float(lenpen) return score class BitextOutput(object): def __init__( self, output_file, backwards, right_to_left, bpe_symbol, prefix_len=None, target_prefix_frac=None, source_prefix_frac=None, ): """process output from rescoring""" source, hypo, score, target, pos_score = reprocess(output_file) if backwards: self.hypo_fracs = source_prefix_frac else: self.hypo_fracs = target_prefix_frac # remove length penalty so we can use raw scores score, num_bpe_tokens = get_score_from_pos( pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards ) source_lengths = {} target_lengths = {} assert hypo.keys() == source.keys(), "key mismatch" if backwards: tmp = hypo hypo = source source = tmp for i in source: # since we are reranking, there should only be one hypo per source sentence if backwards: len_src = len(source[i][0].split()) # record length without <eos> if len_src == num_bpe_tokens[i][0] - 1: source_lengths[i] = num_bpe_tokens[i][0] - 1 else: source_lengths[i] = num_bpe_tokens[i][0] target_lengths[i] = len(hypo[i].split()) source[i] = remove_bpe(source[i][0], bpe_symbol) target[i] = remove_bpe(target[i], bpe_symbol) hypo[i] = remove_bpe(hypo[i], bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] else: len_tgt = len(hypo[i][0].split()) # record length without <eos> if len_tgt == num_bpe_tokens[i][0] - 1: target_lengths[i] = num_bpe_tokens[i][0] - 1 else: target_lengths[i] = num_bpe_tokens[i][0] source_lengths[i] = len(source[i].split()) if right_to_left: source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol) target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol) hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] else: assert ( len(hypo[i]) == 1 ), "expected only one hypothesis per source sentence" source[i] = remove_bpe(source[i], bpe_symbol) target[i] = remove_bpe(target[i], bpe_symbol) hypo[i] = remove_bpe(hypo[i][0], bpe_symbol) score[i] = float(score[i][0]) pos_score[i] = pos_score[i][0] self.rescore_source = source self.rescore_hypo = hypo self.rescore_score = score self.rescore_target = target self.rescore_pos_score = pos_score self.backwards = backwards self.right_to_left = right_to_left self.target_lengths = target_lengths self.source_lengths = source_lengths class BitextOutputFromGen(object): def __init__( self, predictions_bpe_file, bpe_symbol=None, nbest=False, prefix_len=None, target_prefix_frac=None, ): if nbest: ( pred_source, pred_hypo, pred_score, pred_target, pred_pos_score, ) = reprocess_nbest(predictions_bpe_file) else: pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess( predictions_bpe_file ) assert len(pred_source) == len(pred_hypo) assert len(pred_source) == len(pred_score) assert len(pred_source) == len(pred_target) assert len(pred_source) == len(pred_pos_score) # remove length penalty so we can use raw scores pred_score, num_bpe_tokens = get_score_from_pos( pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False ) self.source = pred_source self.target = pred_target self.score = pred_score self.pos_score = pred_pos_score self.hypo = pred_hypo self.target_lengths = {} self.source_lengths = {} self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol) self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol) self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol) # indexes to match those from the rescoring models self.rescore_source = {} self.rescore_target = {} self.rescore_pos_score = {} self.rescore_hypo = {} self.rescore_score = {} self.num_hypos = {} self.backwards = False self.right_to_left = False index = 0 for i in sorted(pred_source.keys()): for j in range(len(pred_hypo[i])): self.target_lengths[index] = len(self.hypo[i][j].split()) self.source_lengths[index] = len(self.source[i].split()) self.rescore_source[index] = self.no_bpe_source[i] self.rescore_target[index] = self.no_bpe_target[i] self.rescore_hypo[index] = self.no_bpe_hypo[i][j] self.rescore_score[index] = float(pred_score[i][j]) self.rescore_pos_score[index] = pred_pos_score[i][j] self.num_hypos[index] = len(pred_hypo[i]) index += 1 def get_score_from_pos( pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards ): score_dict = {} num_bpe_tokens_dict = {} assert prefix_len is None or hypo_frac is None for key in pos_score_dict: score_dict[key] = [] num_bpe_tokens_dict[key] = [] for i in range(len(pos_score_dict[key])): if prefix_len is not None and not backwards: num_bpe_tokens = get_num_bpe_tokens_from_len( hypo_dict[key][i], bpe_symbol, prefix_len ) score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens])) num_bpe_tokens_dict[key].append(num_bpe_tokens) elif hypo_frac is not None: num_words, shortened, hypo_prefix_len = calc_length_from_frac( hypo_dict[key][i], hypo_frac, bpe_symbol ) score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len])) num_bpe_tokens_dict[key].append(hypo_prefix_len) else: score_dict[key].append(sum(pos_score_dict[key][i])) num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i])) return score_dict, num_bpe_tokens_dict class LMOutput(object): def __init__( self, lm_score_file, lm_dict=None, prefix_len=None, bpe_symbol=None, target_prefix_frac=None, ): ( lm_sentences, lm_sen_scores, lm_sen_pos_scores, lm_no_bpe_sentences, lm_bpe_tokens, ) = parse_lm( lm_score_file, prefix_len=prefix_len, bpe_symbol=bpe_symbol, target_prefix_frac=target_prefix_frac, ) self.sentences = lm_sentences self.score = lm_sen_scores self.pos_score = lm_sen_pos_scores self.lm_dict = lm_dict self.no_bpe_sentences = lm_no_bpe_sentences self.bpe_tokens = lm_bpe_tokens def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None): """parse output of eval_lm""" with open(input_file, "r") as f: text = f.readlines() text = text[7:] cleaned_text = text[:-2] sentences = {} sen_scores = {} sen_pos_scores = {} no_bpe_sentences = {} num_bpe_tokens_dict = {} for _i, line in enumerate(cleaned_text): tokens = line.split() if tokens[0].isdigit(): line_id = int(tokens[0]) scores = [float(x[1:-1]) for x in tokens[2::2]] sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n" if bpe_symbol is not None: # exclude <eos> symbol to match output from generate.py bpe_sen = " ".join(tokens[1::2][:-1]) + "\n" no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol) no_bpe_sentences[line_id] = no_bpe_sen if prefix_len is not None: num_bpe_tokens = get_num_bpe_tokens_from_len( bpe_sen, bpe_symbol, prefix_len ) sen_scores[line_id] = sum(scores[:num_bpe_tokens]) num_bpe_tokens_dict[line_id] = num_bpe_tokens elif target_prefix_frac is not None: num_words, shortened, target_prefix_len = calc_length_from_frac( bpe_sen, target_prefix_frac, bpe_symbol ) sen_scores[line_id] = sum(scores[:target_prefix_len]) num_bpe_tokens_dict[line_id] = target_prefix_len else: sen_scores[line_id] = sum(scores) num_bpe_tokens_dict[line_id] = len(scores) sen_pos_scores[line_id] = scores return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict def get_directories( data_dir_name, num_rescore, gen_subset, fw_name, shard_id, num_shards, sampling=False, prefix_len=None, target_prefix_frac=None, source_prefix_frac=None, ): nbest_file_id = ( "nbest_" + str(num_rescore) + "_subset_" + gen_subset + "_fw_name_" + fw_name + "_shard_" + str(shard_id) + "_of_" + str(num_shards) ) if sampling: nbest_file_id += "_sampling" # the directory containing all information for this nbest list pre_gen = ( os.path.join(os.path.dirname(__file__)) + "/rerank_data/" + data_dir_name + "/" + nbest_file_id ) # the directory to store the preprocessed nbest list, for left to right rescoring left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed" if source_prefix_frac is not None: left_to_right_preprocessed_dir = ( left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac) ) # the directory to store the preprocessed nbest list, for right to left rescoring right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed" # the directory to store the preprocessed nbest list, for backwards rescoring backwards_preprocessed_dir = pre_gen + "/backwards" if target_prefix_frac is not None: backwards_preprocessed_dir = ( backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac) ) elif prefix_len is not None: backwards_preprocessed_dir = ( backwards_preprocessed_dir + "/prefix_" + str(prefix_len) ) # the directory to store the preprocessed nbest list, for rescoring with P(T) lm_preprocessed_dir = pre_gen + "/lm_preprocessed" return ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) def lm_scoring( preprocess_directory, bpe_status, gen_output, pre_gen, cur_lm_dict, cur_lm_name, cur_language_model, cur_lm_bpe_code, batch_size, lm_score_file, target_lang, source_lang, prefix_len=None, ): if prefix_len is not None: assert ( bpe_status == "different" ), "bpe status must be different to use prefix len" if bpe_status == "no bpe": # run lm on output without bpe write_reprocessed( gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, pre_gen + "/rescore_data_no_bpe.de", pre_gen + "/rescore_data_no_bpe.en", pre_gen + "/reference_file_no_bpe", ) preprocess_lm_param = [ "--only-source", "--trainpref", pre_gen + "/rescore_data_no_bpe." + target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_directory, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [ preprocess_directory, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--max-tokens", "1024", "--sample-break-mode", "eos", "--gen-subset", "train", ] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, "w") as f: with redirect_stdout(f): eval_lm.main(input_args) elif bpe_status == "shared": preprocess_lm_param = [ "--only-source", "--trainpref", pre_gen + "/rescore_data." + target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_directory, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [ preprocess_directory, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--sample-break-mode", "eos", "--gen-subset", "train", ] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, "w") as f: with redirect_stdout(f): eval_lm.main(input_args) elif bpe_status == "different": rescore_file = pre_gen + "/rescore_data_no_bpe" rescore_bpe = pre_gen + "/rescore_data_new_bpe" rescore_file += "." rescore_bpe += "." write_reprocessed( gen_output.no_bpe_source, gen_output.no_bpe_hypo, gen_output.no_bpe_target, rescore_file + source_lang, rescore_file + target_lang, pre_gen + "/reference_file_no_bpe", bpe_symbol=None, ) # apply LM bpe to nbest list bpe_src_param = [ "-c", cur_lm_bpe_code, "--input", rescore_file + target_lang, "--output", rescore_bpe + target_lang, ] subprocess.call( [ "python", os.path.join( os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" ), ] + bpe_src_param, shell=False, ) # uncomment to use fastbpe instead of subword-nmt bpe # bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code] # subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False) preprocess_dir = preprocess_directory preprocess_lm_param = [ "--only-source", "--trainpref", rescore_bpe + target_lang, "--srcdict", cur_lm_dict, "--destdir", preprocess_dir, ] preprocess_parser = options.get_preprocessing_parser() input_args = preprocess_parser.parse_args(preprocess_lm_param) preprocess.main(input_args) eval_lm_param = [ preprocess_dir, "--path", cur_language_model, "--output-word-probs", "--batch-size", str(batch_size), "--max-tokens", "1024", "--sample-break-mode", "eos", "--gen-subset", "train", ] eval_lm_parser = options.get_eval_lm_parser() input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) with open(lm_score_file, "w") as f: with redirect_stdout(f): eval_lm.main(input_args) def rescore_file_name( nbest_dir, prefix_len, scorer_name, lm_file=False, target_prefix_frac=None, source_prefix_frac=None, backwards=None, ): if lm_file: score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt" else: score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt" if backwards: if prefix_len is not None: score_file += "prefix_len" + str(prefix_len) elif target_prefix_frac is not None: score_file += "target_prefix_frac" + str(target_prefix_frac) else: if source_prefix_frac is not None: score_file += "source_prefix_frac" + str(source_prefix_frac) return score_file
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/rerank_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from fairseq import options from examples.noisychannel import rerank_options, rerank_utils def score_lm(args): using_nbest = args.nbest_list is not None ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, args.shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) predictions_bpe_file = pre_gen + "/generate_output_bpe.txt" if using_nbest: print("Using predefined n-best list from interactive.py") predictions_bpe_file = args.nbest_list gen_output = rerank_utils.BitextOutputFromGen( predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest ) if args.language_model is not None: lm_score_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.lm_name, lm_file=True ) if args.language_model is not None and not os.path.isfile(lm_score_file): print("STEP 4.5: language modeling for P(T)") if args.lm_bpe_code is None: bpe_status = "no bpe" elif args.lm_bpe_code == "shared": bpe_status = "shared" else: bpe_status = "different" rerank_utils.lm_scoring( lm_preprocessed_dir, bpe_status, gen_output, pre_gen, args.lm_dict, args.lm_name, args.language_model, args.lm_bpe_code, 128, lm_score_file, args.target_lang, args.source_lang, prefix_len=args.prefix_len, ) def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) score_lm(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/rerank_score_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from contextlib import redirect_stdout from fairseq import options from fairseq_cli import generate from examples.noisychannel import rerank_options, rerank_utils def score_bw(args): if args.backwards1: scorer1_src = args.target_lang scorer1_tgt = args.source_lang else: scorer1_src = args.source_lang scorer1_tgt = args.target_lang if args.score_model2 is not None: if args.backwards2: scorer2_src = args.target_lang scorer2_tgt = args.source_lang else: scorer2_src = args.source_lang scorer2_tgt = args.target_lang rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, args.shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) if args.right_to_left1: rerank_data1 = right_to_left_preprocessed_dir elif args.backwards1: rerank_data1 = backwards_preprocessed_dir else: rerank_data1 = left_to_right_preprocessed_dir gen_param = ["--batch-size", str(128), "--score-reference", "--gen-subset", "train"] if not rerank1_is_gen and not os.path.isfile(score1_file): print("STEP 4: score the translations for model 1") model_param1 = [ "--path", args.score_model1, "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, ] gen_model1_param = [rerank_data1] + gen_param + model_param1 gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, gen_model1_param) with open(score1_file, "w") as f: with redirect_stdout(f): generate.main(input_args) if ( args.score_model2 is not None and not os.path.isfile(score2_file) and not rerank2_is_gen ): print("STEP 4: score the translations for model 2") if args.right_to_left2: rerank_data2 = right_to_left_preprocessed_dir elif args.backwards2: rerank_data2 = backwards_preprocessed_dir else: rerank_data2 = left_to_right_preprocessed_dir model_param2 = [ "--path", args.score_model2, "--source-lang", scorer2_src, "--target-lang", scorer2_tgt, ] gen_model2_param = [rerank_data2] + gen_param + model_param2 gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, gen_model2_param) with open(score2_file, "w") as f: with redirect_stdout(f): generate.main(input_args) def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) score_bw(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/noisychannel/rerank_score_bw.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from itertools import zip_longest def replace_oovs(source_in, target_in, vocabulary, source_out, target_out): """Replaces out-of-vocabulary words in source and target text with <unk-N>, where N in is the position of the word in the source sequence. """ def format_unk(pos): return "<unk-{}>".format(pos) if target_in is None: target_in = [] for seq_num, (source_seq, target_seq) in enumerate( zip_longest(source_in, target_in) ): source_seq_out = [] target_seq_out = [] word_to_pos = dict() for position, token in enumerate(source_seq.strip().split()): if token in vocabulary: token_out = token else: if token in word_to_pos: oov_pos = word_to_pos[token] else: word_to_pos[token] = position oov_pos = position token_out = format_unk(oov_pos) source_seq_out.append(token_out) source_out.write(" ".join(source_seq_out) + "\n") if target_seq is not None: for token in target_seq.strip().split(): if token in word_to_pos: token_out = format_unk(word_to_pos[token]) else: token_out = token target_seq_out.append(token_out) if target_out is not None: target_out.write(" ".join(target_seq_out) + "\n") def main(): parser = argparse.ArgumentParser( description="Replaces out-of-vocabulary words in both source and target " "sequences with tokens that indicate the position of the word " "in the source sequence." ) parser.add_argument( "--source", type=str, help="text file with source sequences", required=True ) parser.add_argument( "--target", type=str, help="text file with target sequences", default=None ) parser.add_argument("--vocab", type=str, help="vocabulary file", required=True) parser.add_argument( "--source-out", type=str, help="where to write source sequences with <unk-N> entries", required=True, ) parser.add_argument( "--target-out", type=str, help="where to write target sequences with <unk-N> entries", default=None, ) args = parser.parse_args() with open(args.vocab, encoding="utf-8") as vocab: vocabulary = vocab.read().splitlines() target_in = ( open(args.target, "r", encoding="utf-8") if args.target is not None else None ) target_out = ( open(args.target_out, "w", encoding="utf-8") if args.target_out is not None else None ) with open(args.source, "r", encoding="utf-8") as source_in, open( args.source_out, "w", encoding="utf-8" ) as source_out: replace_oovs(source_in, target_in, vocabulary, source_out, target_out) if target_in is not None: target_in.close() if target_out is not None: target_out.close() if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/pointer_generator/preprocess.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import re import sys class OOVIndexError(IndexError): def __init__(self, pos, source_seq, target_seq): super(OOVIndexError, self).__init__( "A <unk-N> tag in the target sequence refers to a position that is " "outside the source sequence. Most likely there was a mismatch in " "provided source and target sequences. Otherwise this would mean that " "the pointing mechanism somehow attended to a position that is past " "the actual sequence end." ) self.source_pos = pos self.source_seq = source_seq self.target_seq = target_seq def replace_oovs(source_in, target_in, target_out): """Replaces <unk-N> tokens in the target text with the corresponding word in the source text. """ oov_re = re.compile("^<unk-([0-9]+)>$") for source_seq, target_seq in zip(source_in, target_in): target_seq_out = [] pos_to_word = source_seq.strip().split() for token in target_seq.strip().split(): m = oov_re.match(token) if m: pos = int(m.group(1)) if pos >= len(pos_to_word): raise OOVIndexError(pos, source_seq, target_seq) token_out = pos_to_word[pos] else: token_out = token target_seq_out.append(token_out) target_out.write(" ".join(target_seq_out) + "\n") def main(): parser = argparse.ArgumentParser( description="Replaces <unk-N> tokens in target sequences with words from " "the corresponding position in the source sequence." ) parser.add_argument( "--source", type=str, help="text file with source sequences", required=True ) parser.add_argument( "--target", type=str, help="text file with target sequences", required=True ) parser.add_argument( "--target-out", type=str, help="where to write target sequences without <unk-N> " "entries", required=True, ) args = parser.parse_args() target_in = ( open(args.target, "r", encoding="utf-8") if args.target is not None else None ) target_out = ( open(args.target_out, "w", encoding="utf-8") if args.target_out is not None else None ) with open(args.source, "r", encoding="utf-8") as source_in, open( args.target, "r", encoding="utf-8" ) as target_in, open(args.target_out, "w", encoding="utf-8") as target_out: replace_oovs(source_in, target_in, target_out) if __name__ == "__main__": try: main() except OOVIndexError as e: print(e, file=sys.stderr) print("Source sequence:", e.source_seq.strip(), file=sys.stderr) print("Target sequence:", e.target_seq.strip(), file=sys.stderr) print( "Source sequence length:", len(e.source_seq.strip().split()), file=sys.stderr, ) print("The offending tag points to:", e.source_pos) sys.exit(2)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/pointer_generator/postprocess.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Any, Dict, Optional import torch import torch.nn as nn from fairseq import metrics, utils from fairseq.models import register_model, register_model_architecture from fairseq.models.fairseq_encoder import EncoderOut from fairseq.models.transformer import ( DEFAULT_MAX_SOURCE_POSITIONS, DEFAULT_MAX_TARGET_POSITIONS, TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture, ) from torch import Tensor logger = logging.getLogger(__name__) @register_model("transformer_pointer_generator") class TransformerPointerGeneratorModel(TransformerModel): """ Transformer model from `"Attention Is All You Need" (Vaswani et al, 2017) <https://arxiv.org/abs/1706.03762>`_, augmented with a pointer-generator network from `"Get To The Point: Summarization with Pointer-Generator Networks" (See et al, 2017) <https://arxiv.org/abs/1704.04368>`_. Args: encoder (TransformerPointerGeneratorEncoder): the encoder decoder (TransformerPointerGeneratorDecoder): the decoder The Transformer pointer-generator model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_pointer_generator_parser :prog: """ @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off TransformerModel.add_args(parser) parser.add_argument('--alignment-heads', type=int, metavar='N', help='number of attention heads to be used for ' 'pointing') parser.add_argument('--alignment-layer', type=int, metavar='I', help='layer number to be used for pointing (0 ' 'corresponding to the bottommost layer)') parser.add_argument('--source-position-markers', type=int, metavar='N', help='dictionary includes N additional items that ' 'represent an OOV token at a particular input ' 'position') parser.add_argument('--force-generation', type=float, metavar='P', default=None, help='set the vocabulary distribution weight to P, ' 'instead of predicting it from the input (1.0 ' 'corresponding to generation, 0.0 to pointing)') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS if getattr(args, "source_position_markers", None) is None: args.source_position_markers = args.max_source_positions src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if src_dict != tgt_dict: raise ValueError("Pointer-generator requires a joined dictionary") def build_embedding(dictionary, embed_dim, path=None): # The dictionary may include additional items that can be used in # place of the normal OOV token and that all map to the same # embedding. Using a different token for each input position allows # one to restore the word identities from the original source text. num_embeddings = len(dictionary) - args.source_position_markers padding_idx = dictionary.pad() unk_idx = dictionary.unk() logger.info( "dictionary indices from {0} to {1} will be mapped to {2}".format( num_embeddings, len(dictionary) - 1, unk_idx ) ) emb = Embedding(num_embeddings, embed_dim, padding_idx, unk_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return cls(args, encoder, decoder) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerPointerGeneratorEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerPointerGeneratorDecoder(args, tgt_dict, embed_tokens) class TransformerPointerGeneratorEncoder(TransformerEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. The pointer-generator variant adds the source tokens to the encoder output as these are otherwise not passed to the decoder. """ def forward(self, src_tokens, src_lengths, **kwargs): """ Runs the `forward()` method of the parent Transformer class. Then adds the source tokens into the encoder output tuple. While it might be more elegant that the model would pass the source tokens to the `forward()` method of the decoder too, this would require changes to `SequenceGenerator`. Args: src_tokens (torch.LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` Returns: namedtuple: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. - **src_tokens** (Tensor): input token ids of shape `(batch, src_len)` """ encoder_out = super().forward(src_tokens, src_lengths, **kwargs) return { "encoder_out": encoder_out["encoder_out"], # T x B x C "encoder_padding_mask": encoder_out["encoder_padding_mask"], # B x T "encoder_embedding": encoder_out["encoder_embedding"], # B x T x C "encoder_states": encoder_out["encoder_states"], # List[T x B x C] "src_tokens": [src_tokens], # B x T "src_lengths": [], } class TransformerPointerGeneratorDecoder(TransformerDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. The pointer-generator variant mixes the output probabilities with an attention distribution in the output layer. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False) # In the pointer-generator model these arguments define the decoder # layer and the number of attention heads that will be averaged to # create the alignment for pointing. self.alignment_heads = args.alignment_heads self.alignment_layer = args.alignment_layer input_embed_dim = embed_tokens.embedding_dim # Generation probabilities / interpolation coefficients are predicted # from the current decoder input embedding and the decoder output, which # is the size of output_embed_dim. p_gen_input_size = input_embed_dim + self.output_embed_dim self.project_p_gens = nn.Linear(p_gen_input_size, 1) nn.init.zeros_(self.project_p_gens.bias) # The dictionary may include a separate entry for an OOV token in each # input position, so that their identity can be restored from the # original source text. self.num_types = len(dictionary) self.num_oov_types = args.source_position_markers self.num_embeddings = self.num_types - self.num_oov_types self.force_p_gen = args.force_generation def forward( self, prev_output_tokens, encoder_out: Optional[EncoderOut] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, alignment_layer: Optional[int] = 0, alignment_heads: Optional[int] = 1, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (EncoderOut, optional): output from the encoder, used for encoder-side attention incremental_state (dict, optional): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False) alignment_layer (int, optional): 0-based index of the layer to be used for pointing (default: 0) alignment_heads (int, optional): number of attention heads to be used for pointing (default: 1) Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ # The normal Transformer model doesn't pass the alignment_layer and # alignment_heads parameters correctly. We use our local variables. x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, alignment_layer=self.alignment_layer, alignment_heads=self.alignment_heads, ) if not features_only: # Embedding the tokens again for generation probability prediction, # so that we don't have to reimplement the whole extract_features() # method. if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] prev_output_embed = self.embed_tokens(prev_output_tokens) prev_output_embed *= self.embed_scale predictors = torch.cat((prev_output_embed, x), 2) p_gens = self.project_p_gens(predictors) p_gens = torch.sigmoid(p_gens) x = self.output_layer(x, extra["attn"][0], encoder_out["src_tokens"][0], p_gens) return x, extra def output_layer(self, features, attn, src_tokens, p_gens, **kwargs): """ Project features to the vocabulary size and mix with the attention distributions. """ if self.force_p_gen is not None: p_gens = self.force_p_gen # project back to size of vocabulary logits = super().output_layer(features, **kwargs) batch_size = logits.shape[0] output_length = logits.shape[1] assert logits.shape[2] == self.num_embeddings assert src_tokens.shape[0] == batch_size src_length = src_tokens.shape[1] # The final output distribution will be a mixture of the normal output # distribution (softmax of logits) and attention weights. gen_dists = super().get_normalized_probs( (logits, None), log_probs=False, sample=None ) gen_dists = torch.mul(gen_dists, p_gens) padding_size = (batch_size, output_length, self.num_oov_types) padding = gen_dists.new_zeros(padding_size) gen_dists = torch.cat((gen_dists, padding), 2) assert gen_dists.shape[2] == self.num_types # Scatter attention distributions to distributions over the extended # vocabulary in a tensor of shape [batch_size, output_length, # vocab_size]. Each attention weight will be written into a location # that is for other dimensions the same as in the index tensor, but for # the third dimension it's the value of the index tensor (the token ID). attn = torch.mul(attn, 1 - p_gens) index = src_tokens[:, None, :] index = index.expand(batch_size, output_length, src_length) attn_dists_size = (batch_size, output_length, self.num_types) attn_dists = attn.new_zeros(attn_dists_size) attn_dists.scatter_add_(2, index, attn) # Final distributions, [batch_size, output_length, num_types]. return gen_dists + attn_dists def get_normalized_probs(self, net_output, log_probs, sample): """ Get normalized probabilities (or log probs) from a net's output. Pointer-generator network output is already normalized. """ probs = net_output[0] # Make sure the probabilities are greater than zero when returning log # probabilities. return probs.clamp(1e-10, 1.0).log() if log_probs else probs class Embedding(nn.Embedding): r"""A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. This subclass differs from the standard PyTorch Embedding class by allowing additional vocabulary entries that will be mapped to the unknown token embedding. Args: num_embeddings (int): size of the dictionary of embeddings embedding_dim (int): the size of each embedding vector padding_idx (int): Pads the output with the embedding vector at :attr:`padding_idx` (initialized to zeros) whenever it encounters the index. unk_idx (int): Maps all token indices that are greater than or equal to num_embeddings to this index. Attributes: weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from :math:`\mathcal{N}(0, 1)` Shape: - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` .. note:: Keep in mind that only a limited number of optimizers support sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) .. note:: With :attr:`padding_idx` set, the embedding vector at :attr:`padding_idx` is initialized to all zeros. However, note that this vector can be modified afterwards, e.g., using a customized initialization method, and thus changing the vector used to pad the output. The gradient for this vector from :class:`~torch.nn.Embedding` is always zero. """ __constants__ = ["unk_idx"] def __init__(self, num_embeddings, embedding_dim, padding_idx, unk_idx): super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx) self.unk_idx = unk_idx nn.init.normal_(self.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(self.weight[padding_idx], 0) def forward(self, input): input = torch.where( input >= self.num_embeddings, torch.ones_like(input) * self.unk_idx, input ) return super().forward(input) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator" ) def transformer_pointer_generator(args): args.alignment_heads = getattr(args, "alignment_heads", 1) args.alignment_layer = getattr(args, "alignment_layer", -1) base_architecture(args) if args.alignment_layer < 0: args.alignment_layer = args.decoder_layers + args.alignment_layer @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_iwslt_de_en" ) def transformer_pointer_generator_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) transformer_pointer_generator(args) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de" ) def transformer_pointer_generator_wmt_en_de(args): transformer_pointer_generator(args) # Transformer pointer-generator with the base Transformer parameters as used in # the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_vaswani_wmt_en_de_big", ) def transformer_pointer_generator_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) transformer_pointer_generator(args) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_vaswani_wmt_en_fr_big", ) def transformer_pointer_generator_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) transformer_pointer_generator_vaswani_wmt_en_de_big(args) @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big" ) def transformer_pointer_generator_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) transformer_pointer_generator_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture( "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big_t2t" ) def transformer_pointer_generator_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) transformer_pointer_generator_vaswani_wmt_en_de_big(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import transformer_pg # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/pointer_generator/pointer_generator_src/__init__.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import fileinput from tqdm import tqdm def main(): parser = argparse.ArgumentParser( description=( "Extract back-translations from the stdout of fairseq-generate. " "If there are multiply hypotheses for a source, we only keep the first one. " ) ) parser.add_argument("--output", required=True, help="output prefix") parser.add_argument( "--srclang", required=True, help="source language (extracted from H-* lines)" ) parser.add_argument( "--tgtlang", required=True, help="target language (extracted from S-* lines)" ) parser.add_argument("--minlen", type=int, help="min length filter") parser.add_argument("--maxlen", type=int, help="max length filter") parser.add_argument("--ratio", type=float, help="ratio filter") parser.add_argument("files", nargs="*", help="input files") args = parser.parse_args() def validate(src, tgt): srclen = len(src.split(" ")) if src != "" else 0 tgtlen = len(tgt.split(" ")) if tgt != "" else 0 if ( (args.minlen is not None and (srclen < args.minlen or tgtlen < args.minlen)) or ( args.maxlen is not None and (srclen > args.maxlen or tgtlen > args.maxlen) ) or ( args.ratio is not None and (max(srclen, tgtlen) / float(min(srclen, tgtlen)) > args.ratio) ) ): return False return True def safe_index(toks, index, default): try: return toks[index] except IndexError: return default with open(args.output + "." + args.srclang, "w") as src_h, open( args.output + "." + args.tgtlang, "w" ) as tgt_h: for line in tqdm(fileinput.input(args.files)): if line.startswith("S-"): tgt = safe_index(line.rstrip().split("\t"), 1, "") elif line.startswith("H-"): if tgt is not None: src = safe_index(line.rstrip().split("\t"), 2, "") if validate(src, tgt): print(src, file=src_h) print(tgt, file=tgt_h) tgt = None if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/backtranslation/extract_bt_data.py
#!/usr/bin/python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import fileinput import hashlib import sys from multiprocessing import Pool def get_hashes_and_lines(raw_line): hash = hashlib.md5(raw_line).hexdigest() return hash, raw_line def main(): parser = argparse.ArgumentParser() parser.add_argument("--workers", type=int, default=10) parser.add_argument("files", nargs="*", help="input files") args = parser.parse_args() seen = set() with fileinput.input(args.files, mode="rb") as h: pool = Pool(args.workers) results = pool.imap_unordered(get_hashes_and_lines, h, 1000) for i, (hash, raw_line) in enumerate(results): if hash not in seen: seen.add(hash) sys.stdout.buffer.write(raw_line) if i % 1000000 == 0: print(i, file=sys.stderr, end="", flush=True) elif i % 100000 == 0: print(".", file=sys.stderr, end="", flush=True) print(file=sys.stderr, flush=True) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/backtranslation/deduplicate_lines.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import shutil from tempfile import NamedTemporaryFile from typing import Optional, Tuple import pandas as pd import torchaudio from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, ) from torch import Tensor from torch.utils.data import Dataset from torchaudio.datasets.utils import download_url, extract_archive from tqdm import tqdm log = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] class CoVoST(Dataset): """Create a Dataset for CoVoST (https://github.com/facebookresearch/covost). Args: root (str): root path to the dataset and generated manifests/features source_language (str): source (audio) language target_language (str, optional): target (text) language, None for no translation (default: None) version (int, optional): CoVoST version. (default: 2) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``). """ COVOST_URL_TEMPLATE = ( "https://dl.fbaipublicfiles.com/covost/" "covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz" ) VERSIONS = {2} SPLITS = ["train", "dev", "test"] XX_EN_LANGUAGES = { 1: ["fr", "de", "nl", "ru", "es", "it", "tr", "fa", "sv-SE", "mn", "zh-CN"], 2: [ "fr", "de", "es", "ca", "it", "ru", "zh-CN", "pt", "fa", "et", "mn", "nl", "tr", "ar", "sv-SE", "lv", "sl", "ta", "ja", "id", "cy", ], } EN_XX_LANGUAGES = { 1: [], 2: [ "de", "tr", "fa", "sv-SE", "mn", "zh-CN", "cy", "ca", "sl", "et", "id", "ar", "ta", "lv", "ja", ], } def __init__( self, root: str, split: str, source_language: str, target_language: Optional[str] = None, version: int = 2, ) -> None: assert version in self.VERSIONS and split in self.SPLITS assert source_language is not None self.no_translation = target_language is None if not self.no_translation: assert "en" in {source_language, target_language} if source_language == "en": assert target_language in self.EN_XX_LANGUAGES[version] else: assert source_language in self.XX_EN_LANGUAGES[version] else: # Hack here so that we can get "split" column from CoVoST TSV. # Note that we use CoVoST train split for ASR which is an extension # to Common Voice train split. target_language = "de" if source_language == "en" else "en" self.root: Path = Path(root) cv_tsv_path = self.root / "validated.tsv" assert cv_tsv_path.is_file() covost_url = self.COVOST_URL_TEMPLATE.format( src_lang=source_language, tgt_lang=target_language ) covost_archive = self.root / Path(covost_url).name if not covost_archive.is_file(): download_url(covost_url, self.root.as_posix(), hash_value=None) extract_archive(covost_archive.as_posix()) cv_tsv = load_df_from_tsv(cv_tsv_path) covost_tsv = load_df_from_tsv( self.root / Path(covost_url).name.replace(".tar.gz", "") ) df = pd.merge( left=cv_tsv[["path", "sentence", "client_id"]], right=covost_tsv[["path", "translation", "split"]], how="inner", on="path", ) if split == "train": df = df[(df["split"] == split) | (df["split"] == f"{split}_covost")] else: df = df[df["split"] == split] data = df.to_dict(orient="index").items() data = [v for k, v in sorted(data, key=lambda x: x[0])] self.data = [] for e in data: try: path = self.root / "clips" / e["path"] _ = torchaudio.info(path.as_posix()) self.data.append(e) except RuntimeError: pass def __getitem__( self, n: int ) -> Tuple[Tensor, int, str, str, Optional[str], str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: tuple: ``(waveform, sample_rate, sentence, translation, speaker_id, sample_id)`` """ data = self.data[n] path = self.root / "clips" / data["path"] waveform, sample_rate = torchaudio.load(path) sentence = data["sentence"] translation = None if self.no_translation else data["translation"] speaker_id = data["client_id"] _id = data["path"].replace(".mp3", "") return waveform, sample_rate, sentence, translation, speaker_id, _id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() / args.src_lang if not root.is_dir(): raise NotADirectoryError(f"{root} does not exist") # Extract features feature_root = root / "fbank80" feature_root.mkdir(exist_ok=True) for split in CoVoST.SPLITS: print(f"Fetching split {split}...") dataset = CoVoST(root, split, args.src_lang, args.tgt_lang) print("Extracting log mel filter bank features...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): extract_fbank_features( waveform, sample_rate, feature_root / f"{utt_id}.npy" ) # Pack features into ZIP zip_path = root / "fbank80.zip" print("ZIPing features...") create_zip(feature_root, zip_path) print("Fetching ZIP manifest...") zip_manifest = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] task = f"asr_{args.src_lang}" if args.tgt_lang is not None: task = f"st_{args.src_lang}_{args.tgt_lang}" for split in CoVoST.SPLITS: manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = CoVoST(root, split, args.src_lang, args.tgt_lang) for wav, sr, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset): manifest["id"].append(utt_id) manifest["audio"].append(zip_manifest[utt_id]) duration_ms = int(wav.size(1) / sr * 1000) manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10)) manifest["tgt_text"].append(src_utt if args.tgt_lang is None else tgt_utt) manifest["speaker"].append(speaker_id) is_train_split = split.startswith("train") if is_train_split: train_text.extend(manifest["tgt_text"]) df = pd.DataFrame.from_dict(manifest) df = filter_manifest_df(df, is_train_split=is_train_split) save_df_to_tsv(df, root / f"{split}_{task}.tsv") # Generate vocab vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{task}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), root / spm_filename_prefix, args.vocab_type, args.vocab_size ) # Generate config YAML gen_config_yaml( root, spm_filename_prefix + ".model", yaml_filename=f"config_{task}.yaml", specaugment_policy="lb", ) # Clean up shutil.rmtree(feature_root) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--data-root", "-d", required=True, type=str, help="data root with sub-folders for each language <root>/<src_lang>" ) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=1000, type=int) parser.add_argument("--src-lang", "-s", required=True, type=str) parser.add_argument("--tgt-lang", "-t", type=str) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_to_text/prep_covost_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os from pathlib import Path import shutil from itertools import groupby from tempfile import NamedTemporaryFile from typing import Tuple import pandas as pd import torchaudio from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, ) from torch import Tensor from torch.utils.data import Dataset from tqdm import tqdm log = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] class MUSTC(Dataset): """ Create a Dataset for MuST-C. Each item is a tuple of the form: waveform, sample_rate, source utterance, target utterance, speaker_id, utterance_id """ SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"] LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru"] def __init__(self, root: str, lang: str, split: str) -> None: assert split in self.SPLITS and lang in self.LANGUAGES _root = Path(root) / f"en-{lang}" / "data" / split wav_root, txt_root = _root / "wav", _root / "txt" assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir() # Load audio segments try: import yaml except ImportError: print("Please install PyYAML to load the MuST-C YAML files") with open(txt_root / f"{split}.yaml") as f: segments = yaml.load(f, Loader=yaml.BaseLoader) # Load source and target utterances for _lang in ["en", lang]: with open(txt_root / f"{split}.{_lang}") as f: utterances = [r.strip() for r in f] assert len(segments) == len(utterances) for i, u in enumerate(utterances): segments[i][_lang] = u # Gather info self.data = [] for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]): wav_path = wav_root / wav_filename sample_rate = torchaudio.info(wav_path.as_posix())[0].rate seg_group = sorted(_seg_group, key=lambda x: x["offset"]) for i, segment in enumerate(seg_group): offset = int(float(segment["offset"]) * sample_rate) n_frames = int(float(segment["duration"]) * sample_rate) _id = f"{wav_path.stem}_{i}" self.data.append( ( wav_path.as_posix(), offset, n_frames, sample_rate, segment["en"], segment[lang], segment["speaker_id"], _id, ) ) def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, str, str]: wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, utt_id = self.data[n] waveform, _ = torchaudio.load(wav_path, offset=offset, num_frames=n_frames) return waveform, sr, src_utt, tgt_utt, spk_id, utt_id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() for lang in MUSTC.LANGUAGES: cur_root = root / f"en-{lang}" if not cur_root.is_dir(): print(f"{cur_root.as_posix()} does not exist. Skipped.") continue # Extract features feature_root = cur_root / "fbank80" feature_root.mkdir(exist_ok=True) for split in MUSTC.SPLITS: print(f"Fetching split {split}...") dataset = MUSTC(root.as_posix(), lang, split) print("Extracting log mel filter bank features...") for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset): extract_fbank_features( waveform, sample_rate, feature_root / f"{utt_id}.npy" ) # Pack features into ZIP zip_path = cur_root / "fbank80.zip" print("ZIPing features...") create_zip(feature_root, zip_path) print("Fetching ZIP manifest...") zip_manifest = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] for split in MUSTC.SPLITS: is_train_split = split.startswith("train") manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = MUSTC(args.data_root, lang, split) for wav, sr, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset): manifest["id"].append(utt_id) manifest["audio"].append(zip_manifest[utt_id]) duration_ms = int(wav.size(1) / sr * 1000) manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10)) manifest["tgt_text"].append(src_utt if args.task == "asr" else tgt_utt) manifest["speaker"].append(speaker_id) if is_train_split: train_text.extend(manifest["tgt_text"]) df = pd.DataFrame.from_dict(manifest) df = filter_manifest_df(df, is_train_split=is_train_split) save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv") # Generate vocab v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, ) # Generate config YAML gen_config_yaml( cur_root, spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="lb", ) # Clean up shutil.rmtree(feature_root) def process_joint(args): cur_root = Path(args.data_root) assert all((cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES), \ "do not have downloaded data available for all 8 languages" # Generate vocab vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}" with NamedTemporaryFile(mode="w") as f: for lang in MUSTC.LANGUAGES: tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv" df = load_df_from_tsv(tsv_path) for t in df["tgt_text"]: f.write(t + "\n") special_symbols = None if args.task == 'st': special_symbols = [f'<lang:{lang}>' for lang in MUSTC.LANGUAGES] gen_vocab( Path(f.name), cur_root / spm_filename_prefix, args.vocab_type, args.vocab_size, special_symbols=special_symbols ) # Generate config YAML gen_config_yaml( cur_root, spm_filename_prefix + ".model", yaml_filename=f"config_{args.task}.yaml", specaugment_policy="ld", prepend_tgt_lang_tag=(args.task == "st"), ) # Make symbolic links to manifests for lang in MUSTC.LANGUAGES: for split in MUSTC.SPLITS: src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv" desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv" if not desc_path.is_symlink(): os.symlink(src_path, desc_path) def main(): parser = argparse.ArgumentParser() parser.add_argument("--data-root", "-d", required=True, type=str) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=8000, type=int) parser.add_argument("--task", type=str, choices=["asr", "st"]) parser.add_argument("--joint", action="store_true", help="") args = parser.parse_args() if args.joint: process_joint(args) else: process(args) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_to_text/prep_mustc_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import csv from pathlib import Path import zipfile from functools import reduce from multiprocessing import cpu_count from typing import Any, Dict, List, Optional, Union import numpy as np import pandas as pd import sentencepiece as sp from fairseq.data.audio.audio_utils import _get_kaldi_fbank, _get_torchaudio_fbank from tqdm import tqdm UNK_TOKEN, UNK_TOKEN_ID = "<unk>", 3 BOS_TOKEN, BOS_TOKEN_ID = "<s>", 0 EOS_TOKEN, EOS_TOKEN_ID = "</s>", 2 PAD_TOKEN, PAD_TOKEN_ID = "<pad>", 1 def gen_vocab( input_path: Path, output_path_prefix: Path, model_type="bpe", vocab_size=1000, special_symbols: Optional[List[str]] = None ): # Train SentencePiece Model arguments = [ f"--input={input_path.as_posix()}", f"--model_prefix={output_path_prefix.as_posix()}", f"--model_type={model_type}", f"--vocab_size={vocab_size}", "--character_coverage=1.0", f"--num_threads={cpu_count()}", f"--unk_id={UNK_TOKEN_ID}", f"--bos_id={BOS_TOKEN_ID}", f"--eos_id={EOS_TOKEN_ID}", f"--pad_id={PAD_TOKEN_ID}", ] if special_symbols is not None: _special_symbols = ",".join(special_symbols) arguments.append(f"--user_defined_symbols={_special_symbols}") sp.SentencePieceTrainer.Train(" ".join(arguments)) # Export fairseq dictionary spm = sp.SentencePieceProcessor() spm.Load(output_path_prefix.as_posix() + ".model") vocab = {i: spm.IdToPiece(i) for i in range(spm.GetPieceSize())} assert ( vocab.get(UNK_TOKEN_ID) == UNK_TOKEN and vocab.get(PAD_TOKEN_ID) == PAD_TOKEN and vocab.get(BOS_TOKEN_ID) == BOS_TOKEN and vocab.get(EOS_TOKEN_ID) == EOS_TOKEN ) vocab = { i: s for i, s in vocab.items() if s not in {UNK_TOKEN, BOS_TOKEN, EOS_TOKEN, PAD_TOKEN} } with open(output_path_prefix.as_posix() + ".txt", "w") as f_out: for _, s in sorted(vocab.items(), key=lambda x: x[0]): f_out.write(f"{s} 1\n") def extract_fbank_features( waveform, sample_rate: int, output_path: Optional[Path] = None, n_mel_bins: int = 80, overwrite: bool = False, ): if output_path is not None and output_path.is_file() and not overwrite: return _waveform = waveform * (2 ** 15) # Kaldi compliance: 16-bit signed integers _waveform = _waveform.squeeze().numpy() features = _get_kaldi_fbank(_waveform, sample_rate, n_mel_bins) if features is None: features = _get_torchaudio_fbank(_waveform, sample_rate, n_mel_bins) if features is None: raise ImportError( "Please install pyKaldi or torchaudio to enable fbank feature extraction" ) if output_path is not None: np.save(output_path.as_posix(), features) else: return features def create_zip(data_root: Path, zip_path: Path): paths = list(data_root.glob("*.npy")) with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_STORED) as f: for path in tqdm(paths): f.write(path, arcname=path.name) def is_npy_data(data: bytes) -> bool: return data[0] == 147 and data[1] == 78 def get_zip_manifest(zip_path: Path, zip_root: Optional[Path] = None): _zip_path = zip_path if zip_root is None else Path.joinpath(zip_root, zip_path) with zipfile.ZipFile(_zip_path, mode="r") as f: info = f.infolist() manifest = {} for i in tqdm(info): utt_id = Path(i.filename).stem offset, file_size = i.header_offset + 30 + len(i.filename), i.file_size manifest[utt_id] = f"{zip_path.as_posix()}:{offset}:{file_size}" with open(_zip_path, "rb") as f: f.seek(offset) data = f.read(file_size) assert len(data) > 1 and is_npy_data(data) return manifest def gen_config_yaml( manifest_root: Path, spm_filename: str, yaml_filename: str = "config.yaml", specaugment_policy: str = "lb", prepend_tgt_lang_tag: bool = False, sampling_alpha: float = 1.0, audio_root: str = "" ): manifest_root = manifest_root.absolute() writer = S2TDataConfigWriter(manifest_root / yaml_filename) writer.set_vocab_filename(spm_filename.replace(".model", ".txt")) writer.set_input_channels(1) writer.set_input_feat_per_channel(80) specaugment_setters = { "lb": writer.set_specaugment_lb_policy, "ld": writer.set_specaugment_ld_policy, "sm": writer.set_specaugment_sm_policy, "ss": writer.set_specaugment_ss_policy, } specaugment_setter = specaugment_setters.get(specaugment_policy, None) if specaugment_setter is not None: specaugment_setter() writer.set_bpe_tokenizer( { "bpe": "sentencepiece", "sentencepiece_model": (manifest_root / spm_filename).as_posix(), } ) if prepend_tgt_lang_tag: writer.set_prepend_tgt_lang_tag(True) writer.set_sampling_alpha(sampling_alpha) writer.set_feature_transforms("_train", ["utterance_cmvn", "specaugment"]) writer.set_feature_transforms("*", ["utterance_cmvn"]) if len(audio_root) > 0: writer.set_audio_root(audio_root) writer.flush() def load_df_from_tsv(path: Union[str, Path]): _path = path if isinstance(path, str) else path.as_posix() return pd.read_csv( _path, sep="\t", header=0, encoding="utf-8", escapechar="\\", quoting=csv.QUOTE_NONE, na_filter=False, ) def save_df_to_tsv(dataframe, path: Union[str, Path]): _path = path if isinstance(path, str) else path.as_posix() dataframe.to_csv( _path, sep="\t", header=True, index=False, encoding="utf-8", escapechar="\\", quoting=csv.QUOTE_NONE, ) def filter_manifest_df( df, is_train_split=False, extra_filters=None, min_n_frames=5, max_n_frames=3000 ): filters = { "no speech": df["audio"] == "", f"short speech (<{min_n_frames} frames)": df["n_frames"] < min_n_frames, "empty sentence": df["tgt_text"] == "", } if is_train_split: filters[f"long speech (>{max_n_frames} frames)"] = df["n_frames"] > max_n_frames if extra_filters is not None: filters.update(extra_filters) invalid = reduce(lambda x, y: x | y, filters.values()) valid = ~invalid print( "| " + ", ".join(f"{n}: {f.sum()}" for n, f in filters.items()) + f", total {invalid.sum()} filtered, {valid.sum()} remained." ) return df[valid] class S2TDataConfigWriter(object): DEFAULT_VOCAB_FILENAME = "dict.txt" DEFAULT_INPUT_FEAT_PER_CHANNEL = 80 DEFAULT_INPUT_CHANNELS = 1 def __init__(self, yaml_path: Path): try: import yaml except ImportError: print("Please install PyYAML for S2T data config YAML files") self.yaml = yaml self.yaml_path = yaml_path self.config = {} def flush(self): with open(self.yaml_path, "w") as f: self.yaml.dump(self.config, f) def set_audio_root(self, audio_root=""): self.config["audio_root"] = audio_root def set_vocab_filename(self, vocab_filename: str = "dict.txt"): self.config["vocab_filename"] = vocab_filename def set_specaugment( self, time_wrap_w: int, freq_mask_n: int, freq_mask_f: int, time_mask_n: int, time_mask_t: int, time_mask_p: float, ): self.config["specaugment"] = { "time_wrap_W": time_wrap_w, "freq_mask_N": freq_mask_n, "freq_mask_F": freq_mask_f, "time_mask_N": time_mask_n, "time_mask_T": time_mask_t, "time_mask_p": time_mask_p, } def set_specaugment_lb_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=1, freq_mask_f=27, time_mask_n=1, time_mask_t=100, time_mask_p=1.0, ) def set_specaugment_ld_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=2, freq_mask_f=27, time_mask_n=2, time_mask_t=100, time_mask_p=1.0, ) def set_specaugment_sm_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=2, freq_mask_f=15, time_mask_n=2, time_mask_t=70, time_mask_p=0.2, ) def set_specaugment_ss_policy(self): self.set_specaugment( time_wrap_w=0, freq_mask_n=2, freq_mask_f=27, time_mask_n=2, time_mask_t=70, time_mask_p=0.2, ) def set_input_channels(self, input_channels: int = 1): self.config["input_channels"] = input_channels def set_input_feat_per_channel(self, input_feat_per_channel: int = 80): self.config["input_feat_per_channel"] = input_feat_per_channel def set_bpe_tokenizer(self, bpe_tokenizer: Dict[str, Any]): self.config["bpe_tokenizer"] = bpe_tokenizer def set_feature_transforms(self, split: str, transforms: List[str]): if "transforms" not in self.config: self.config["transforms"] = {} self.config["transforms"][split] = transforms def set_prepend_tgt_lang_tag(self, flag: bool = True): self.config["prepend_tgt_lang_tag"] = flag def set_sampling_alpha(self, sampling_alpha: float = 1.0): self.config["sampling_alpha"] = sampling_alpha
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_to_text/data_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import shutil from tempfile import NamedTemporaryFile import pandas as pd from examples.speech_to_text.data_utils import ( create_zip, extract_fbank_features, gen_config_yaml, gen_vocab, get_zip_manifest, save_df_to_tsv, ) from torchaudio.datasets import LIBRISPEECH from tqdm import tqdm log = logging.getLogger(__name__) SPLITS = [ "train-clean-100", "train-clean-360", "train-other-500", "dev-clean", "dev-other", "test-clean", "test-other", ] MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] def process(args): out_root = Path(args.output_root).absolute() out_root.mkdir(exist_ok=True) # Extract features feature_root = out_root / "fbank80" feature_root.mkdir(exist_ok=True) for split in SPLITS: print(f"Fetching split {split}...") dataset = LIBRISPEECH(out_root.as_posix(), url=split, download=True) print("Extracting log mel filter bank features...") for wav, sample_rate, _, spk_id, chapter_no, utt_no in tqdm(dataset): sample_id = f"{spk_id}-{chapter_no}-{utt_no}" extract_fbank_features( wav, sample_rate, feature_root / f"{sample_id}.npy" ) # Pack features into ZIP zip_path = out_root / "fbank80.zip" print("ZIPing features...") create_zip(feature_root, zip_path) print("Fetching ZIP manifest...") zip_manifest = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] for split in SPLITS: manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = LIBRISPEECH(out_root.as_posix(), url=split) for wav, sample_rate, utt, spk_id, chapter_no, utt_no in tqdm(dataset): sample_id = f"{spk_id}-{chapter_no}-{utt_no}" manifest["id"].append(sample_id) manifest["audio"].append(zip_manifest[sample_id]) duration_ms = int(wav.size(1) / sample_rate * 1000) manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10)) manifest["tgt_text"].append(utt) manifest["speaker"].append(spk_id) save_df_to_tsv( pd.DataFrame.from_dict(manifest), out_root / f"{split}.tsv" ) if split.startswith("train"): train_text.extend(manifest["tgt_text"]) # Generate vocab vocab_size = "" if args.vocab_type == "char" else str(args.vocab_size) spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size}" with NamedTemporaryFile(mode="w") as f: for t in train_text: f.write(t + "\n") gen_vocab( Path(f.name), out_root / spm_filename_prefix, args.vocab_type, args.vocab_size, ) # Generate config YAML gen_config_yaml( out_root, spm_filename_prefix + ".model", specaugment_policy="ld" ) # Clean up shutil.rmtree(feature_root) def main(): parser = argparse.ArgumentParser() parser.add_argument("--output-root", "-o", required=True, type=str) parser.add_argument( "--vocab-type", default="unigram", required=True, type=str, choices=["bpe", "unigram", "char"], ), parser.add_argument("--vocab-size", default=10000, type=int) args = parser.parse_args() process(args) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_to_text/prep_librispeech_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Use: echo {text} | python tokenize_indic.py {language} import sys from indicnlp.normalize.indic_normalize import IndicNormalizerFactory from indicnlp.tokenize.indic_tokenize import trivial_tokenize factory = IndicNormalizerFactory() normalizer = factory.get_normalizer( sys.argv[1], remove_nuktas=False, nasals_mode="do_nothing" ) for line in sys.stdin: normalized_line = normalizer.normalize(line.strip()) tokenized_line = " ".join(trivial_tokenize(normalized_line, sys.argv[1])) print(tokenized_line)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/m2m_100/tokenizers/tokenize_indic.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys from pythainlp import word_tokenize for line in sys.stdin: print(" ".join(word_tokenize(line.strip())))
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/m2m_100/tokenizers/tokenize_thai.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import fileinput import sacrebleu for line in fileinput.input(): print(sacrebleu.tokenize_zh(line))
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/m2m_100/tokenizers/tokenize_zh.py
import argparse from collections import namedtuple import os DATADIR = "/path/to/train_data" DEDUP_FROM_DIR = "/path/to/eval/data" OUTPUT_DIR = "/path/to/output/data" def main(args): languages = set() for language_directory in os.listdir(DATADIR): if "_" in language_directory: src, tgt = language_directory.split("_") languages.add(LanguagePair(src=src, tgt=tgt)) data = existing_data() train_languages = sorted(languages) for language_pair in train_languages[args.start_index:args.start_index + args.size]: print(language_pair) dedup(language_pair, data) LanguagePair = namedtuple("LanguagePair", ["src", "tgt"]) def existing_data(): data = set() for file in os.listdir(DEDUP_FROM_DIR): with open(os.path.join(DEDUP_FROM_DIR, file)) as f: data |= set(f.readlines()) return data def dedup(language_pair, data, verbose=True, output=True): train_filenames = LanguagePair( src=f"{DATADIR}/{language_pair.src}_{language_pair.tgt}/train.{language_pair.src}", tgt=f"{DATADIR}/{language_pair.src}_{language_pair.tgt}/train.{language_pair.tgt}", ) output_filenames = LanguagePair( src=f"{OUTPUT_DIR}/train.dedup.{language_pair.src}-{language_pair.tgt}.{language_pair.src}", tgt=f"{OUTPUT_DIR}/train.dedup.{language_pair.src}-{language_pair.tgt}.{language_pair.tgt}" ) # If output exists, skip this pair. It has already been done. if (os.path.exists(output_filenames.src) and os.path.exists(output_filenames.tgt)): if verbose: print(f"{language_pair.src}-{language_pair.tgt} already done.") return if verbose: print(f"{language_pair.src}-{language_pair.tgt} ready, will check dups.") # If there is no output, no need to actually do the loop. if not output: return if os.path.exists(train_filenames.src) and os.path.exists(train_filenames.tgt): with open(train_filenames.src) as f: train_source = f.readlines() with open(train_filenames.tgt) as f: train_target = f.readlines() # do dedup new_train_source = [] new_train_target = [] for i, train_line in enumerate(train_source): if train_line not in data and train_target[i] not in data: new_train_source.append(train_line) new_train_target.append(train_target[i]) assert len(train_source) == len(train_target) assert len(new_train_source) == len(new_train_target) assert len(new_train_source) <= len(train_source) with open(output_filenames.src, "w") as o: for line in new_train_source: o.write(line) with open(output_filenames.tgt, "w") as o: for line in new_train_target: o.write(line) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-s", "--start-index", required=True, type=int) parser.add_argument("-n", "--size", required=True, type=int) main(parser.parse_args())
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/m2m_100/process_data/dedup_data.py
import gzip import argparse from string import punctuation def len_no_punc(s, punc): return len([ch for ch in s if ch in punc]) def filter_overpunc(len_npunc, len_sen): return len_npunc < 0.5*len_sen def main(args): punc = punctuation + "—|–" print('Processing file {}'.format(args.input)) with gzip.open(args.input, 'rt', encoding=args.encoding) as tsv: with open(args.bitext + '.' + args.src_lang, 'wt', encoding=args.encoding) as fsrc: with open(args.bitext + '.' + args.tgt_lang, 'wt', encoding=args.encoding) as ftgt: line = tsv.readline() fields = line.split('\t') src, tgt = fields[1], fields[2] nchar_npunc_src = len_no_punc(src, punc) nchar_npunc_tgt = len_no_punc(tgt, punc) if filter_overpunc(nchar_npunc_src, len(src)) and filter_overpunc(nchar_npunc_tgt, len(tgt)): fsrc.write(src.strip() + '\n') ftgt.write(tgt.strip() + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--input", required=True, type=str) parser.add_argument('--encoding', default='utf-8', help='character encoding for input/output') parser.add_argument('--bitext', type=str, required=True, help='language direction') parser.add_argument('--src-lang', type=str, required=True, help='Source language') parser.add_argument('--tgt-lang', type=str, required=True, help='Target language') main(parser.parse_args())
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/m2m_100/process_data/remove_too_much_punc.py
import argparse parser = argparse.ArgumentParser() parser.add_argument('--src', type=str, help='Source language') parser.add_argument('--tgt', type=str, help='Target language') parser.add_argument('--src-file', type=str, help='Input source file') parser.add_argument('--tgt-file', type=str, help='Input target file') parser.add_argument('--src-output-file', type=str, help='Output source file') parser.add_argument('--tgt-output-file', type=str, help='Output target file') parser.add_argument('--threshold', type=float, default=0.5, help='Threshold') parser.add_argument('--threshold-character', type=str, default=']', help='Threshold character') parser.add_argument('--histograms', type=str, help='Path to histograms') args = parser.parse_args() def read_hist(f): ch = [] for line in f: c = line[0] if c == args.threshold_character: break ch.append(c) return ch with(open("{}/{}".format(args.histograms, args.src), 'r', encoding='utf8')) as f: ch1 = read_hist(f) with(open("{}/{}".format(args.histograms, args.tgt), 'r', encoding='utf8')) as f: ch2 = read_hist(f) print("Accepted characters for {}: {}".format(args.src, ch1)) print("Accepted characters for {}: {}".format(args.tgt, ch2)) with open(args.src_file, 'r', encoding='utf8') as fs1, open(args.tgt_file, 'r', encoding='utf8') as fs2, open(args.src_output_file, 'w', encoding='utf8') as fos1, open(args.tgt_output_file, 'w', encoding='utf8') as fos2: ls1 = fs1.readline() ls2 = fs2.readline() while ls1 or ls2: cnt1 = len([c for c in ls1.strip() if c in ch1]) cnt2 = len([c for c in ls2.strip() if c in ch2]) if cnt1 / len(ls1) > args.threshold and cnt2 / len(ls2) > args.threshold: fos1.write(ls1) fos2.write(ls2) else: print("{} {} {} \n{} {} {}".format(args.src, cnt1 / len(ls1), ls1.strip(), args.tgt, cnt2 / len(ls2), ls2.strip())) ls1 = fs1.readline() ls2 = fs2.readline()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/m2m_100/process_data/clean_histogram.py
#!/usr/bin/env python3 -u import argparse import fileinput import logging import os import sys from fairseq.models.transformer import TransformerModel logging.getLogger().setLevel(logging.INFO) def main(): parser = argparse.ArgumentParser(description="") parser.add_argument("--en2fr", required=True, help="path to en2fr model") parser.add_argument( "--fr2en", required=True, help="path to fr2en mixture of experts model" ) parser.add_argument( "--user-dir", help="path to fairseq examples/translation_moe/src directory" ) parser.add_argument( "--num-experts", type=int, default=10, help="(keep at 10 unless using a different model)", ) parser.add_argument( "files", nargs="*", default=["-"], help='input files to paraphrase; "-" for stdin', ) args = parser.parse_args() if args.user_dir is None: args.user_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), # examples/ "translation_moe", "src", ) if os.path.exists(args.user_dir): logging.info("found user_dir:" + args.user_dir) else: raise RuntimeError( "cannot find fairseq examples/translation_moe/src " "(tried looking here: {})".format(args.user_dir) ) logging.info("loading en2fr model from:" + args.en2fr) en2fr = TransformerModel.from_pretrained( model_name_or_path=args.en2fr, tokenizer="moses", bpe="sentencepiece", ).eval() logging.info("loading fr2en model from:" + args.fr2en) fr2en = TransformerModel.from_pretrained( model_name_or_path=args.fr2en, tokenizer="moses", bpe="sentencepiece", user_dir=args.user_dir, task="translation_moe", ).eval() def gen_paraphrases(en): fr = en2fr.translate(en) return [ fr2en.translate(fr, inference_step_args={"expert": i}) for i in range(args.num_experts) ] logging.info("Type the input sentence and press return:") for line in fileinput.input(args.files): line = line.strip() if len(line) == 0: continue for paraphrase in gen_paraphrases(line): print(paraphrase) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/paraphraser/paraphrase.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys import numpy as np aggregate_funcs = { "std": np.std, "var": np.var, "median": np.median, "mean": np.mean, "min": np.min, "max": np.max, } def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_file", required=True, type=str) parser.add_argument("-n", "--repeat_times", required=True, type=int) parser.add_argument("-o", "--output_file", required=False) parser.add_argument("-f", "--func", required=False, default="mean") args = parser.parse_args() stream = open(args.output_file, "w") if args.output_file else sys.stdout segment_scores = [] for line in open(args.input_file): segment_scores.append(float(line.strip())) if len(segment_scores) == args.repeat_times: stream.write("{}\n".format(aggregate_funcs[args.func](segment_scores))) segment_scores = [] if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/unsupervised_quality_estimation/aggregate_scores.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys def _normalize_spaces(line): return " ".join(line.split()) def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_file", required=True, type=str) parser.add_argument("-n", "--repeat_times", required=True, type=int) parser.add_argument("-o", "--output_file", required=False, type=str) args = parser.parse_args() stream = open(args.output_file, "w") if args.output_file else sys.stdout for line in open(args.input_file): for _ in range(args.repeat_times): stream.write(_normalize_spaces(line) + "\n") if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/unsupervised_quality_estimation/repeat_lines.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import math import os import subprocess import sys import tempfile from collections import defaultdict from itertools import combinations def read_translations(path, n_repeats): segment_counter = 0 segment_translations = [] translations = defaultdict(list) for line in open(path): segment_translations.append(" ".join(line.split())) if len(segment_translations) == n_repeats: translations[segment_counter] = segment_translations segment_translations = [] segment_counter += 1 return translations def generate_input(translations, n_repeats): _, ref_path = tempfile.mkstemp() _, mt_path = tempfile.mkstemp() ref_fh = open(ref_path, "w") mt_fh = open(mt_path, "w") for segid in sorted(translations.keys()): assert len(translations[segid]) == n_repeats indexes = combinations(range(n_repeats), 2) for idx1, idx2 in indexes: mt_fh.write(translations[segid][idx1].strip() + "\n") ref_fh.write(translations[segid][idx2].strip() + "\n") sys.stderr.write("\nSaved translations to %s and %s" % (ref_path, mt_path)) return ref_path, mt_path def run_meteor(ref_path, mt_path, metric_path, lang="en"): _, out_path = tempfile.mkstemp() subprocess.call( [ "java", "-Xmx2G", "-jar", metric_path, mt_path, ref_path, "-p", "0.5 0.2 0.6 0.75", # default parameters, only changed alpha to give equal weight to P and R "-norm", "-l", lang, ], stdout=open(out_path, "w"), ) os.remove(ref_path) os.remove(mt_path) sys.stderr.write("\nSaved Meteor output to %s" % out_path) return out_path def read_output(meteor_output_path, n_repeats): n_combinations = math.factorial(n_repeats) / ( math.factorial(2) * math.factorial(n_repeats - 2) ) raw_scores = [] average_scores = [] for line in open(meteor_output_path): if not line.startswith("Segment "): continue score = float(line.strip().split("\t")[1]) raw_scores.append(score) if len(raw_scores) == n_combinations: average_scores.append(sum(raw_scores) / n_combinations) raw_scores = [] os.remove(meteor_output_path) return average_scores def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input") parser.add_argument("-n", "--repeat_times", type=int) parser.add_argument("-m", "--meteor") parser.add_argument("-o", "--output") args = parser.parse_args() translations = read_translations(args.infile, args.repetitions) sys.stderr.write("\nGenerating input for Meteor...") ref_path, mt_path = generate_input(translations, args.repetitions) sys.stderr.write("\nRunning Meteor...") out_path = run_meteor(ref_path, mt_path, args.meteor) sys.stderr.write("\nReading output...") scores = read_output(out_path, args.repetitions) sys.stderr.write("\nWriting results...") with open(args.output, "w") as o: for scr in scores: o.write("{}\n".format(scr)) o.close() if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/unsupervised_quality_estimation/meteor.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import criterions, eval, models # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch def exclusive_cumprod(tensor, dim: int, eps: float = 1e-10): """ Implementing exclusive cumprod. There is cumprod in pytorch, however there is no exclusive mode. cumprod(x) = [x1, x1x2, x2x3x4, ..., prod_{i=1}^n x_i] exclusive means cumprod(x) = [1, x1, x1x2, x1x2x3, ..., prod_{i=1}^{n-1} x_i] """ tensor_size = list(tensor.size()) tensor_size[dim] = 1 return_tensor = safe_cumprod( torch.cat([torch.ones(tensor_size).type_as(tensor), tensor], dim=dim), dim=dim, eps=eps, ) if dim == 0: return return_tensor[:-1] elif dim == 1: return return_tensor[:, :-1] elif dim == 2: return return_tensor[:, :, :-1] else: raise RuntimeError("Cumprod on dimension 3 and more is not implemented") def safe_cumprod(tensor, dim: int, eps: float = 1e-10): """ An implementation of cumprod to prevent precision issue. cumprod(x) = [x1, x1x2, x1x2x3, ....] = [exp(log(x1)), exp(log(x1) + log(x2)), exp(log(x1) + log(x2) + log(x3)), ...] = exp(cumsum(log(x))) """ if (tensor + eps < 0).any().item(): raise RuntimeError( "Safe cumprod can only take non-negative tensors as input." "Consider use torch.cumprod if you want to calculate negative values." ) log_tensor = torch.log(tensor + eps) cumsum_log_tensor = torch.cumsum(log_tensor, dim) exp_cumsum_log_tensor = torch.exp(cumsum_log_tensor) return exp_cumsum_log_tensor def lengths_to_mask(lengths, max_len: int, dim: int = 0, negative_mask: bool = False): """ Convert a tensor of lengths to mask For example, lengths = [[2, 3, 4]], max_len = 5 mask = [[1, 1, 1], [1, 1, 1], [0, 1, 1], [0, 0, 1], [0, 0, 0]] """ assert len(lengths.size()) <= 2 if len(lengths) == 2: if dim == 1: lengths = lengths.t() lengths = lengths else: lengths = lengths.unsqueeze(1) # lengths : batch_size, 1 lengths = lengths.view(-1, 1) batch_size = lengths.size(0) # batch_size, max_len mask = torch.arange(max_len).expand(batch_size, max_len).type_as(lengths) < lengths if negative_mask: mask = ~mask if dim == 0: # max_len, batch_size mask = mask.t() return mask def moving_sum(x, start_idx: int, end_idx: int): """ From MONOTONIC CHUNKWISE ATTENTION https://arxiv.org/pdf/1712.05382.pdf Equation (18) x = [x_1, x_2, ..., x_N] MovingSum(x, start_idx, end_idx)_n = Sigma_{m=n−(start_idx−1)}^{n+end_idx-1} x_m for n in {1, 2, 3, ..., N} x : src_len, batch_size start_idx : start idx end_idx : end idx Example src_len = 5 batch_size = 3 x = [[ 0, 5, 10], [ 1, 6, 11], [ 2, 7, 12], [ 3, 8, 13], [ 4, 9, 14]] MovingSum(x, 3, 1) = [[ 0, 5, 10], [ 1, 11, 21], [ 3, 18, 33], [ 6, 21, 36], [ 9, 24, 39]] MovingSum(x, 1, 3) = [[ 3, 18, 33], [ 6, 21, 36], [ 9, 24, 39], [ 7, 17, 27], [ 4, 9, 14]] """ assert start_idx > 0 and end_idx > 0 assert len(x.size()) == 2 src_len, batch_size = x.size() # batch_size, 1, src_len x = x.t().unsqueeze(1) # batch_size, 1, src_len moving_sum_weight = x.new_ones([1, 1, end_idx + start_idx - 1]) moving_sum = ( torch.nn.functional.conv1d( x, moving_sum_weight, padding=start_idx + end_idx - 1 ) .squeeze(1) .t() ) moving_sum = moving_sum[end_idx:-start_idx] assert src_len == moving_sum.size(0) assert batch_size == moving_sum.size(1) return moving_sum
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/utils/functions.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch class LatencyMetric(object): @staticmethod def length_from_padding_mask(padding_mask, batch_first: bool = False): dim = 1 if batch_first else 0 return padding_mask.size(dim) - padding_mask.sum(dim=dim, keepdim=True) def prepare_latency_metric( self, delays, src_lens, target_padding_mask=None, batch_first: bool = False, start_from_zero: bool = True, ): assert len(delays.size()) == 2 assert len(src_lens.size()) == 2 if start_from_zero: delays = delays + 1 if batch_first: # convert to batch_last delays = delays.t() src_lens = src_lens.t() tgt_len, bsz = delays.size() _, bsz_1 = src_lens.size() if target_padding_mask is not None: target_padding_mask = target_padding_mask.t() tgt_len_1, bsz_2 = target_padding_mask.size() assert tgt_len == tgt_len_1 assert bsz == bsz_2 assert bsz == bsz_1 if target_padding_mask is None: tgt_lens = tgt_len * delays.new_ones([1, bsz]).float() else: # 1, batch_size tgt_lens = self.length_from_padding_mask(target_padding_mask, False).float() delays = delays.masked_fill(target_padding_mask, 0) return delays, src_lens, tgt_lens, target_padding_mask def __call__( self, delays, src_lens, target_padding_mask=None, batch_first: bool = False, start_from_zero: bool = True, ): delays, src_lens, tgt_lens, target_padding_mask = self.prepare_latency_metric( delays, src_lens, target_padding_mask, batch_first, start_from_zero ) return self.cal_metric(delays, src_lens, tgt_lens, target_padding_mask) @staticmethod def cal_metric(delays, src_lens, tgt_lens, target_padding_mask): """ Expected sizes: delays: tgt_len, batch_size src_lens: 1, batch_size target_padding_mask: tgt_len, batch_size """ raise NotImplementedError class AverageProportion(LatencyMetric): """ Function to calculate Average Proportion from Can neural machine translation do simultaneous translation? (https://arxiv.org/abs/1606.02012) Delays are monotonic steps, range from 1 to src_len. Give src x tgt y, AP is calculated as: AP = 1 / (|x||y]) sum_i^|Y| deleys_i """ @staticmethod def cal_metric(delays, src_lens, tgt_lens, target_padding_mask): if target_padding_mask is not None: AP = torch.sum( delays.masked_fill(target_padding_mask, 0), dim=0, keepdim=True ) else: AP = torch.sum(delays, dim=0, keepdim=True) AP = AP / (src_lens * tgt_lens) return AP class AverageLagging(LatencyMetric): """ Function to calculate Average Lagging from STACL: Simultaneous Translation with Implicit Anticipation and Controllable Latency using Prefix-to-Prefix Framework (https://arxiv.org/abs/1810.08398) Delays are monotonic steps, range from 1 to src_len. Give src x tgt y, AP is calculated as: AL = 1 / tau sum_i^tau delays_i - (i - 1) / gamma Where gamma = |y| / |x| tau = argmin_i(delays_i = |x|) """ @staticmethod def cal_metric(delays, src_lens, tgt_lens, target_padding_mask): # tau = argmin_i(delays_i = |x|) tgt_len, bsz = delays.size() lagging_padding_mask = delays >= src_lens lagging_padding_mask = torch.nn.functional.pad( lagging_padding_mask.t(), (1, 0) ).t()[:-1, :] gamma = tgt_lens / src_lens lagging = ( delays - torch.arange(delays.size(0)) .unsqueeze(1) .type_as(delays) .expand_as(delays) / gamma ) lagging.masked_fill_(lagging_padding_mask, 0) tau = (1 - lagging_padding_mask.type_as(lagging)).sum(dim=0, keepdim=True) AL = lagging.sum(dim=0, keepdim=True) / tau return AL class DifferentiableAverageLagging(LatencyMetric): """ Function to calculate Differentiable Average Lagging from Monotonic Infinite Lookback Attention for Simultaneous Machine Translation (https://arxiv.org/abs/1906.05218) Delays are monotonic steps, range from 0 to src_len-1. (In the original paper thery are from 1 to src_len) Give src x tgt y, AP is calculated as: DAL = 1 / |Y| sum_i^|Y| delays'_i - (i - 1) / gamma Where delays'_i = 1. delays_i if i == 1 2. max(delays_i, delays'_{i-1} + 1 / gamma) """ @staticmethod def cal_metric(delays, src_lens, tgt_lens, target_padding_mask): tgt_len, bsz = delays.size() gamma = tgt_lens / src_lens new_delays = torch.zeros_like(delays) for i in range(delays.size(0)): if i == 0: new_delays[i] = delays[i] else: new_delays[i] = torch.cat( [ new_delays[i - 1].unsqueeze(0) + 1 / gamma, delays[i].unsqueeze(0), ], dim=0, ).max(dim=0)[0] DAL = ( new_delays - torch.arange(delays.size(0)) .unsqueeze(1) .type_as(delays) .expand_as(delays) / gamma ) if target_padding_mask is not None: DAL = DAL.masked_fill(target_padding_mask, 0) DAL = DAL.sum(dim=0, keepdim=True) / tgt_lens return DAL class LatencyMetricVariance(LatencyMetric): def prepare_latency_metric( self, delays, src_lens, target_padding_mask=None, batch_first: bool = True, start_from_zero: bool = True, ): assert batch_first assert len(delays.size()) == 3 assert len(src_lens.size()) == 2 if start_from_zero: delays = delays + 1 # convert to batch_last bsz, num_heads_x_layers, tgt_len = delays.size() bsz_1, _ = src_lens.size() assert bsz == bsz_1 if target_padding_mask is not None: bsz_2, tgt_len_1 = target_padding_mask.size() assert tgt_len == tgt_len_1 assert bsz == bsz_2 if target_padding_mask is None: tgt_lens = tgt_len * delays.new_ones([bsz, tgt_len]).float() else: # batch_size, 1 tgt_lens = self.length_from_padding_mask(target_padding_mask, True).float() delays = delays.masked_fill(target_padding_mask.unsqueeze(1), 0) return delays, src_lens, tgt_lens, target_padding_mask class VarianceDelay(LatencyMetricVariance): @staticmethod def cal_metric(delays, src_lens, tgt_lens, target_padding_mask): """ delays : bsz, num_heads_x_layers, tgt_len src_lens : bsz, 1 target_lens : bsz, 1 target_padding_mask: bsz, tgt_len or None """ if delays.size(1) == 1: return delays.new_zeros([1]) variance_delays = delays.var(dim=1) if target_padding_mask is not None: variance_delays.masked_fill_(target_padding_mask, 0) return variance_delays.sum(dim=1, keepdim=True) / tgt_lens class LatencyInference(object): def __init__(self, start_from_zero=True): self.metric_calculator = { "differentiable_average_lagging": DifferentiableAverageLagging(), "average_lagging": AverageLagging(), "average_proportion": AverageProportion(), } self.start_from_zero = start_from_zero def __call__(self, monotonic_step, src_lens): """ monotonic_step range from 0 to src_len. src_len means eos delays: bsz, tgt_len src_lens: bsz, 1 """ if not self.start_from_zero: monotonic_step -= 1 src_lens = src_lens delays = monotonic_step.view( monotonic_step.size(0), -1, monotonic_step.size(-1) ).max(dim=1)[0] delays = delays.masked_fill(delays >= src_lens, 0) + (src_lens - 1).expand_as( delays ).masked_fill(delays < src_lens, 0) return_dict = {} for key, func in self.metric_calculator.items(): return_dict[key] = func( delays.float(), src_lens.float(), target_padding_mask=None, batch_first=True, start_from_zero=True, ).t() return return_dict class LatencyTraining(object): def __init__( self, avg_weight, var_weight, avg_type, var_type, stay_on_last_token, average_method, ): self.avg_weight = avg_weight self.var_weight = var_weight self.avg_type = avg_type self.var_type = var_type self.stay_on_last_token = stay_on_last_token self.average_method = average_method self.metric_calculator = { "differentiable_average_lagging": DifferentiableAverageLagging(), "average_lagging": AverageLagging(), "average_proportion": AverageProportion(), } self.variance_calculator = { "variance_delay": VarianceDelay(), } def expected_delays_from_attention( self, attention, source_padding_mask=None, target_padding_mask=None ): if type(attention) == list: # bsz, num_heads, tgt_len, src_len bsz, num_heads, tgt_len, src_len = attention[0].size() attention = torch.cat(attention, dim=1) bsz, num_heads_x_layers, tgt_len, src_len = attention.size() # bsz * num_heads * num_layers, tgt_len, src_len attention = attention.view(-1, tgt_len, src_len) else: # bsz * num_heads * num_layers, tgt_len, src_len bsz, tgt_len, src_len = attention.size() num_heads_x_layers = 1 attention = attention.view(-1, tgt_len, src_len) if not self.stay_on_last_token: residual_attention = 1 - attention[:, :, :-1].sum(dim=2, keepdim=True) attention = torch.cat([attention[:, :, :-1], residual_attention], dim=2) # bsz * num_heads_x_num_layers, tgt_len, src_len for MMA steps = ( torch.arange(1, 1 + src_len) .unsqueeze(0) .unsqueeze(1) .expand_as(attention) .type_as(attention) ) if source_padding_mask is not None: src_offset = ( source_padding_mask.type_as(attention) .sum(dim=1, keepdim=True) .expand(bsz, num_heads_x_layers) .contiguous() .view(-1, 1) ) src_lens = src_len - src_offset if source_padding_mask[:, 0].any(): # Pad left src_offset = src_offset.view(-1, 1, 1) steps = steps - src_offset steps = steps.masked_fill(steps <= 0, 0) else: src_lens = attention.new_ones([bsz, num_heads_x_layers]) * src_len src_lens = src_lens.view(-1, 1) # bsz * num_heads_num_layers, tgt_len, src_len expected_delays = ( (steps * attention).sum(dim=2).view(bsz, num_heads_x_layers, tgt_len) ) if target_padding_mask is not None: expected_delays.masked_fill_(target_padding_mask.unsqueeze(1), 0) return expected_delays, src_lens def avg_loss(self, expected_delays, src_lens, target_padding_mask): bsz, num_heads_x_layers, tgt_len = expected_delays.size() target_padding_mask = ( target_padding_mask.unsqueeze(1) .expand_as(expected_delays) .contiguous() .view(-1, tgt_len) ) if self.average_method == "average": # bsz * tgt_len expected_delays = expected_delays.mean(dim=1) elif self.average_method == "weighted_average": weights = torch.nn.functional.softmax(expected_delays, dim=1) expected_delays = torch.sum(expected_delays * weights, dim=1) elif self.average_method == "max": # bsz * num_heads_x_num_layers, tgt_len expected_delays = expected_delays.max(dim=1)[0] else: raise RuntimeError(f"{self.average_method} is not supported") src_lens = src_lens.view(bsz, -1)[:, :1] target_padding_mask = target_padding_mask.view(bsz, -1, tgt_len)[:, 0] if self.avg_weight > 0.0: if self.avg_type in self.metric_calculator: average_delays = self.metric_calculator[self.avg_type]( expected_delays, src_lens, target_padding_mask, batch_first=True, start_from_zero=False, ) else: raise RuntimeError(f"{self.avg_type} is not supported.") # bsz * num_heads_x_num_layers, 1 return self.avg_weight * average_delays.sum() else: return 0.0 def var_loss(self, expected_delays, src_lens, target_padding_mask): src_lens = src_lens.view(expected_delays.size(0), expected_delays.size(1))[ :, :1 ] if self.var_weight > 0.0: if self.var_type in self.variance_calculator: variance_delays = self.variance_calculator[self.var_type]( expected_delays, src_lens, target_padding_mask, batch_first=True, start_from_zero=False, ) else: raise RuntimeError(f"{self.var_type} is not supported.") return self.var_weight * variance_delays.sum() else: return 0.0 def loss(self, attention, source_padding_mask=None, target_padding_mask=None): expected_delays, src_lens = self.expected_delays_from_attention( attention, source_padding_mask, target_padding_mask ) latency_loss = 0 latency_loss += self.avg_loss(expected_delays, src_lens, target_padding_mask) latency_loss += self.var_loss(expected_delays, src_lens, target_padding_mask) return latency_loss
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/utils/latency.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the criterions/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("examples.simultaneous_translation.utils." + module)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/utils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from examples.simultaneous_translation.modules.monotonic_transformer_layer import ( TransformerMonotonicDecoderLayer, TransformerMonotonicEncoderLayer, ) from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture, transformer_iwslt_de_en, transformer_vaswani_wmt_en_de_big, ) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("transformer_unidirectional") class TransformerUnidirectionalModel(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerMonotonicEncoder(args, src_dict, embed_tokens) @register_model("transformer_monotonic") class TransformerMonotonicModel(TransformerModel): @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerMonotonicEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerMonotonicDecoder(args, tgt_dict, embed_tokens) def _indices_from_states(self, states): if type(states["indices"]["src"]) == list: if next(self.parameters()).is_cuda: tensor = torch.cuda.LongTensor else: tensor = torch.LongTensor src_indices = tensor( [states["indices"]["src"][: 1 + states["steps"]["src"]]] ) tgt_indices = tensor( [[self.decoder.dictionary.eos()] + states["indices"]["tgt"]] ) else: src_indices = states["indices"]["src"][: 1 + states["steps"]["src"]] tgt_indices = states["indices"]["tgt"] return src_indices, None, tgt_indices def predict_from_states(self, states): decoder_states = self.decoder.output_layer(states["decoder_features"]) lprobs = self.get_normalized_probs([decoder_states[:, -1:]], log_probs=True) index = lprobs.argmax(dim=-1) token = self.decoder.dictionary.string(index) return token, index[0, 0].item() def decision_from_states(self, states): """ This funcion take states dictionary as input, and gives the agent a decision of whether read a token from server. Moreover, the decoder states are also calculated here so we can directly generate a target token without recompute every thing """ self.eval() if len(states["tokens"]["src"]) == 0: return 0 src_indices, src_lengths, tgt_indices = self._indices_from_states(states) # Update encoder states if needed if ( "encoder_states" not in states or states["encoder_states"][0].size(1) <= states["steps"]["src"] ): encoder_out_dict = self.encoder(src_indices, src_lengths) states["encoder_states"] = encoder_out_dict else: encoder_out_dict = states["encoder_states"] # online means we still need tokens to feed the model states["model_states"]["online"] = not ( states["finish_read"] and len(states["tokens"]["src"]) == states["steps"]["src"] ) states["model_states"]["steps"] = states["steps"] x, outputs = self.decoder.forward( prev_output_tokens=tgt_indices, encoder_out=encoder_out_dict, incremental_state=states["model_states"], features_only=True, ) states["decoder_features"] = x return outputs["action"] class TransformerMonotonicEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) self.dictionary = dictionary self.layers = nn.ModuleList([]) self.layers.extend( [TransformerMonotonicEncoderLayer(args) for i in range(args.encoder_layers)] ) class TransformerMonotonicDecoder(TransformerDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False) self.dictionary = dictionary self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerMonotonicDecoderLayer(args, no_encoder_attn) for _ in range(args.decoder_layers) ] ) def pre_attention( self, prev_output_tokens, encoder_out_dict, incremental_state=None ): positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_out = encoder_out_dict.encoder_out encoder_padding_mask = encoder_out_dict.encoder_padding_mask return x, encoder_out, encoder_padding_mask def post_attention(self, x): if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x def extract_features( self, prev_output_tokens, encoder_out, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # incremental_state = None (x, encoder_outs, encoder_padding_mask) = self.pre_attention( prev_output_tokens, encoder_out, incremental_state ) attn = None inner_states = [x] attn_list = [] step_list = [] for i, layer in enumerate(self.layers): x, attn, _ = layer( x=x, encoder_out=encoder_outs, encoder_padding_mask=encoder_padding_mask, incremental_state=incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) attn_list.append(attn) if incremental_state is not None: curr_steps = layer.get_steps(incremental_state) step_list.append(curr_steps) if incremental_state.get("online", False): p_choose = ( attn["p_choose"].squeeze(0).squeeze(1).gather(1, curr_steps.t()) ) new_steps = curr_steps + (p_choose < 0.5).t().type_as(curr_steps) if (new_steps >= incremental_state["steps"]["src"]).any(): # We need to prune the last self_attn saved_state # if model decide not to read # otherwise there will be duplicated saved_state for j in range(i + 1): self.layers[j].prune_incremental_state(incremental_state) return x, {"action": 0} if incremental_state is not None and not incremental_state.get("online", False): # Here is for fast evaluation fastest_step = ( torch.max(torch.cat(step_list, dim=1), dim=1, keepdim=True)[0] + 1 ) if "fastest_step" in incremental_state: incremental_state["fastest_step"] = torch.cat( [incremental_state["fastest_step"], fastest_step], dim=1 ) else: incremental_state["fastest_step"] = fastest_step x = self.post_attention(x) return x, { "action": 1, "attn_list": attn_list, "step_list": step_list, "encoder_out": encoder_out, "encoder_padding_mask": encoder_padding_mask, } def reorder_incremental_state(self, incremental_state, new_order): super().reorder_incremental_state(incremental_state, new_order) if "fastest_step" in incremental_state: incremental_state["fastest_step"] = incremental_state[ "fastest_step" ].index_select(0, new_order) @register_model_architecture("transformer_monotonic", "transformer_monotonic") def base_monotonic_rchitecture(args): base_architecture(args) args.encoder_unidirectional = getattr(args, "encoder_unidirectional", False) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_iwslt_de_en" ) def transformer_monotonic_iwslt_de_en(args): transformer_iwslt_de_en(args) base_monotonic_rchitecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_de_big" ) def transformer_monotonic_vaswani_wmt_en_de_big(args): transformer_vaswani_wmt_en_de_big(args) @register_model_architecture( "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_fr_big" ) def transformer_monotonic_vaswani_wmt_en_fr_big(args): transformer_monotonic_vaswani_wmt_en_fr_big(args) @register_model_architecture( "transformer_unidirectional", "transformer_unidirectional_iwslt_de_en" ) def transformer_unidirectional_iwslt_de_en(args): transformer_iwslt_de_en(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/models/transformer_monotonic_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module( "examples.simultaneous_translation.models." + model_name )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import sys from scorers import build_scorer from tornado import ioloop, web DEFAULT_HOSTNAME = "localhost" DEFAULT_PORT = 12321 class ScorerHandler(web.RequestHandler): def initialize(self, scorer): self.scorer = scorer class EvalSessionHandler(ScorerHandler): def post(self): self.scorer.reset() def get(self): r = json.dumps(self.scorer.get_info()) self.write(r) class ResultHandler(ScorerHandler): def get(self): r = json.dumps(self.scorer.score()) self.write(r) class SourceHandler(ScorerHandler): def get(self): sent_id = int(self.get_argument("sent_id")) segment_size = None if "segment_size" in self.request.arguments: string = self.get_argument("segment_size") if len(string) > 0: segment_size = int(string) r = json.dumps(self.scorer.send_src(int(sent_id), segment_size)) self.write(r) class HypothesisHandler(ScorerHandler): def put(self): sent_id = int(self.get_argument("sent_id")) list_of_tokens = self.request.body.decode("utf-8").strip().split() self.scorer.recv_hyp(sent_id, list_of_tokens) def add_args(): parser = argparse.ArgumentParser() # fmt: off parser.add_argument('--hostname', type=str, default=DEFAULT_HOSTNAME, help='Server hostname') parser.add_argument('--port', type=int, default=DEFAULT_PORT, help='Server port number') args, _ = parser.parse_known_args() # fmt: on return args def start_server(scorer, hostname=DEFAULT_HOSTNAME, port=DEFAULT_PORT, debug=False): app = web.Application( [ (r"/result", ResultHandler, dict(scorer=scorer)), (r"/src", SourceHandler, dict(scorer=scorer)), (r"/hypo", HypothesisHandler, dict(scorer=scorer)), (r"/", EvalSessionHandler, dict(scorer=scorer)), ], debug=debug, ) app.listen(port, max_buffer_size=1024 ** 3) sys.stdout.write(f"Evaluation Server Started. Listening to port {port}\n") ioloop.IOLoop.current().start() if __name__ == "__main__": args = add_args() scorer = build_scorer(args) start_server(scorer, args.hostname, args.port, args.debug)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/server.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import torch from examples.simultaneous_translation.utils.latency import LatencyInference LATENCY_METRICS = [ "differentiable_average_lagging", "average_lagging", "average_proportion", ] class LatencyScorer: def __init__(self, start_from_zero=True): self.recorder = [] self.scores = {} self.scorer = LatencyInference() self.start_from_zero = start_from_zero def update_reorder(self, list_of_dict): self.recorder = [] for info in list_of_dict: delays = [int(x) - int(not self.start_from_zero) for x in info["delays"]] delays = torch.LongTensor(delays).unsqueeze(0) src_len = torch.LongTensor([info["src_len"]]).unsqueeze(0) self.recorder.append(self.scorer(delays, src_len)) def cal_latency(self): self.scores = {} for metric in LATENCY_METRICS: self.scores[metric] = sum( [x[metric][0, 0].item() for x in self.recorder] ) / len(self.recorder) return self.scores @classmethod def score(cls, list_of_dict, start_from_zero=True): scorer_to_return = cls(start_from_zero) scorer_to_return.update_reorder(list_of_dict) scorer_to_return.cal_latency() return scorer_to_return.scores if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input", required=True) parser.add_argument("--start-from-zero", action="store_true") args = parser.parse_args() scorer = LatencyInference() recorder = [] with open(args.input, "r") as f: for line in f: info = json.loads(line) delays = [int(x) - int(not args.start_from_zero) for x in info["delays"]] delays = torch.LongTensor(delays).unsqueeze(0) src_len = torch.LongTensor([info["src_len"]]).unsqueeze(0) recorder.append(scorer(delays, src_len)) average_results = {} for metric in LATENCY_METRICS: average_results[metric] = sum([x[metric][0, 0].item() for x in recorder]) / len( recorder ) print(f"{metric}: {average_results[metric]}")
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/eval_latency.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import requests from scorers import build_scorer class SimulSTEvaluationService(object): DEFAULT_HOSTNAME = "localhost" DEFAULT_PORT = 12321 def __init__(self, hostname=DEFAULT_HOSTNAME, port=DEFAULT_PORT): self.hostname = hostname self.port = port self.base_url = f"http://{self.hostname}:{self.port}" def __enter__(self): self.new_session() def __exit__(self, exc_type, exc_val, exc_tb): pass def new_session(self): # start eval session url = f"{self.base_url}" try: _ = requests.post(url) except Exception as e: print(f"Failed to start an evaluation session: {e}") print("Evaluation session started.") return self def get_scores(self): # end eval session url = f"{self.base_url}/result" try: r = requests.get(url) print("Scores: {}".format(r.json())) print("Evaluation session finished.") except Exception as e: print(f"Failed to end an evaluation session: {e}") def get_src(self, sent_id: int, extra_params: Optional[dict] = None) -> str: url = f"{self.base_url}/src" params = {"sent_id": sent_id} if extra_params is not None: for key in extra_params.keys(): params[key] = extra_params[key] try: r = requests.get(url, params=params) except Exception as e: print(f"Failed to request a source segment: {e}") return r.json() def send_hypo(self, sent_id: int, hypo: str) -> None: url = f"{self.base_url}/hypo" params = {"sent_id": sent_id} try: requests.put(url, params=params, data=hypo.encode("utf-8")) except Exception as e: print(f"Failed to send a translated segment: {e}") def corpus_info(self): url = f"{self.base_url}" try: r = requests.get(url) except Exception as e: print(f"Failed to request corpus information: {e}") return r.json() class SimulSTLocalEvaluationService(object): def __init__(self, args): self.scorer = build_scorer(args) def get_scores(self): return self.scorer.score() def get_src(self, sent_id: int, extra_params: Optional[dict] = None) -> str: if extra_params is not None: segment_size = extra_params.get("segment_size", None) else: segment_size = None return self.scorer.send_src(int(sent_id), segment_size) def send_hypo(self, sent_id: int, hypo: str) -> None: list_of_tokens = hypo.strip().split() self.scorer.recv_hyp(sent_id, list_of_tokens) def corpus_info(self): return self.scorer.get_info()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/client.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from agents import build_agent from client import SimulSTEvaluationService, SimulSTLocalEvaluationService from fairseq.registry import REGISTRIES DEFAULT_HOSTNAME = "localhost" DEFAULT_PORT = 12321 def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--hostname", type=str, default=DEFAULT_HOSTNAME, help="server hostname" ) parser.add_argument( "--port", type=int, default=DEFAULT_PORT, help="server port number" ) parser.add_argument("--agent-type", default="simul_trans_text", help="Agent type") parser.add_argument("--scorer-type", default="text", help="Scorer type") parser.add_argument( "--start-idx", type=int, default=0, help="Start index of the sentence to evaluate", ) parser.add_argument( "--end-idx", type=int, default=float("inf"), help="End index of the sentence to evaluate", ) parser.add_argument( "--scores", action="store_true", help="Request scores from server" ) parser.add_argument("--reset-server", action="store_true", help="Reset the server") parser.add_argument( "--num-threads", type=int, default=10, help="Number of threads used by agent" ) parser.add_argument( "--local", action="store_true", default=False, help="Local evaluation" ) args, _ = parser.parse_known_args() for registry_name, REGISTRY in REGISTRIES.items(): choice = getattr(args, registry_name, None) if choice is not None: cls = REGISTRY["registry"][choice] if hasattr(cls, "add_args"): cls.add_args(parser) args = parser.parse_args() return args if __name__ == "__main__": args = get_args() if args.local: session = SimulSTLocalEvaluationService(args) else: session = SimulSTEvaluationService(args.hostname, args.port) if args.reset_server: session.new_session() if args.agent_type is not None: agent = build_agent(args) agent.decode(session, args.start_idx, args.end_idx, args.num_threads) if args.scores: session.get_scores() print(session.get_scores())
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/evaluate.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. class SubwordSplitter(object): def process_line(self, string): raise NotImplementedError def split(self, string): raise NotImplementedError class NoneWordSplitter(object): def __init__(self, model): pass def split(self, string): return [string] def process_line(self, string): return [string] def finished_word(self, string): return True def merge(self, list_of_string): return "".join(list_of_string) def last_full_word_step(self, tokens, step): return len(tokens) def end_idx_last_full_word(self, tokens): return len(tokens) class BPEWordSplitter(object): # TODO: lock back here def __init__(self, model_path): super().__init__() from subword_nmt.apply_bpe import BPE with open(model_path) as f: self.model = BPE(f) def split(self, string): return self.model.process_line(string).split() def end_idx_last_full_word(self, tokens): # Begin of word indices bow_indices = [0] + [i + 1 for i, t in enumerate(tokens[1:]) if t[-2:] != "@@"] if len(bow_indices) < 2: return 0 else: return bow_indices[-1] def merge(self, list_of_string): return " ".join([item.replace("@@", "") for item in list_of_string]) class SentencePieceModelWordSplitter(object): def __init__(self, model_path): super().__init__() import sentencepiece as spm self.model = spm.SentencePieceProcessor() self.model.Load(model_path) def split(self, string): return self.model.EncodeAsPieces(string) def end_idx_last_full_word(self, tokens): # Begin of word indices bow_indices = [i for i, t in enumerate(tokens) if t[0] == "\u2581"] if len(bow_indices) < 2: return 0 else: return bow_indices[-1] def merge(self, list_of_string): return self.model.DecodePieces(list_of_string) SPLITTER_DICT = { None: NoneWordSplitter, "BPE": BPEWordSplitter, "SentencePieceModel": SentencePieceModelWordSplitter, }
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/agents/word_splitter.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from fairseq import registry build_agent, register_agent, MONOTONIC_AGENT, _ = registry.setup_registry( "--agent-type" ) DEFAULT_EOS = "</s>" GET = 0 SEND = 1 for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("agents." + module)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/agents/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import DEFAULT_EOS, GET, register_agent from .simul_trans_agent import SimulTransAgent from .word_splitter import SPLITTER_DICT @register_agent("simul_trans_text") class SimulTransTextAgent(SimulTransAgent): def build_word_splitter(self, args): self.word_splitter = {} self.word_splitter["src"] = SPLITTER_DICT[args.src_splitter_type]( getattr(args, f"src_splitter_path") ) self.word_splitter["tgt"] = SPLITTER_DICT[args.tgt_splitter_type]( getattr(args, f"tgt_splitter_path") ) def load_dictionary(self, task): self.dict = {} self.dict["tgt"] = task.target_dictionary self.dict["src"] = task.source_dictionary def update_states(self, states, new_state): if states["finish_read"]: return states new_word = new_state["segment"] # Split words and index the token if new_word not in [DEFAULT_EOS]: tokens = self.word_splitter["src"].split(new_word) # Get indices from dictionary # You can change to you own dictionary indices = ( self.dict["src"] .encode_line( tokens, line_tokenizer=lambda x: x, add_if_not_exist=False, append_eos=False, ) .tolist() ) else: tokens = [new_word] indices = [self.dict["src"].eos()] states["finish_read"] = True # Update states states["segments"]["src"] += [new_word] states["tokens"]["src"] += tokens self._append_indices(states, indices, "src") return states def read_action(self, states): # Increase source step by one states["steps"]["src"] += 1 # At leat one word is read if len(states["tokens"]["src"]) == 0: return {"key": GET, "value": None} # Only request new word if there is no buffered tokens if len(states["tokens"]["src"]) <= states["steps"]["src"]: return {"key": GET, "value": None} return None def finish_read(self, states): # The first means all segments (full words) has been read from server # The second means all tokens (subwords) has been read locally return ( states["finish_read"] and len(states["tokens"]["src"]) == states["steps"]["src"] )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/agents/simul_trans_text_agent.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time from functools import partial from multiprocessing.pool import ThreadPool as Pool from . import DEFAULT_EOS, GET, SEND class Agent(object): "an agent needs to follow this pattern" def __init__(self, *args, **kwargs): pass def init_states(self, *args, **kwargs): raise NotImplementedError def update_states(self, states, new_state): raise NotImplementedError def finish_eval(self, states, new_state): raise NotImplementedError def policy(self, state): raise NotImplementedError def reset(self): raise NotImplementedError def decode(self, session, low=0, high=100000, num_thread=10): corpus_info = session.corpus_info() high = min(corpus_info["num_sentences"] - 1, high) if low >= high: return t0 = time.time() if num_thread > 1: with Pool(10) as p: p.map( partial(self._decode_one, session), [sent_id for sent_id in range(low, high + 1)], ) else: for sent_id in range(low, high + 1): self._decode_one(session, sent_id) print(f"Finished {low} to {high} in {time.time() - t0}s") def _decode_one(self, session, sent_id): action = {} self.reset() states = self.init_states() while action.get("value", None) != DEFAULT_EOS: # take an action action = self.policy(states) if action["key"] == GET: new_states = session.get_src(sent_id, action["value"]) states = self.update_states(states, new_states) elif action["key"] == SEND: session.send_hypo(sent_id, action["value"]) print(" ".join(states["tokens"]["tgt"]))
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/agents/agent.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os from fairseq import checkpoint_utils, tasks, utils from . import DEFAULT_EOS, GET, SEND from .agent import Agent class SimulTransAgent(Agent): def __init__(self, args): # Load Model self.load_model(args) # build word spliter self.build_word_splitter(args) self.max_len = args.max_len self.eos = DEFAULT_EOS @staticmethod def add_args(parser): # fmt: off parser.add_argument('--model-path', type=str, required=True, help='path to your pretrained model.') parser.add_argument("--data-bin", type=str, required=True, help="Path of data binary") parser.add_argument("--user-dir", type=str, default="example/simultaneous_translation", help="User directory for simultaneous translation") parser.add_argument("--src-splitter-type", type=str, default=None, help="Subword splitter type for source text") parser.add_argument("--tgt-splitter-type", type=str, default=None, help="Subword splitter type for target text") parser.add_argument("--src-splitter-path", type=str, default=None, help="Subword splitter model path for source text") parser.add_argument("--tgt-splitter-path", type=str, default=None, help="Subword splitter model path for target text") parser.add_argument("--max-len", type=int, default=150, help="Maximum length difference between source and target prediction") parser.add_argument('--model-overrides', default="{}", type=str, metavar='DICT', help='A dictionary used to override model args at generation ' 'that were used during model training') # fmt: on return parser def load_dictionary(self, task): raise NotImplementedError def load_model(self, args): args.user_dir = os.path.join(os.path.dirname(__file__), "..", "..") utils.import_user_module(args) filename = args.model_path if not os.path.exists(filename): raise IOError("Model file not found: {}".format(filename)) state = checkpoint_utils.load_checkpoint_to_cpu( filename, json.loads(args.model_overrides) ) saved_args = state["args"] saved_args.data = args.data_bin task = tasks.setup_task(saved_args) # build model for ensemble self.model = task.build_model(saved_args) self.model.load_state_dict(state["model"], strict=True) # Set dictionary self.load_dictionary(task) def init_states(self): return { "indices": {"src": [], "tgt": []}, "tokens": {"src": [], "tgt": []}, "segments": {"src": [], "tgt": []}, "steps": {"src": 0, "tgt": 0}, "finished": False, "finish_read": False, "model_states": {}, } def update_states(self, states, new_state): raise NotImplementedError def policy(self, states): # Read and Write policy action = None while action is None: if states["finished"]: # Finish the hypo by sending eos to server return self.finish_action() # Model make decision given current states decision = self.model.decision_from_states(states) if decision == 0 and not self.finish_read(states): # READ action = self.read_action(states) else: # WRITE action = self.write_action(states) # None means we make decision again but not sending server anything # This happened when read a bufffered token # Or predict a subword return action def finish_read(self, states): raise NotImplementedError def write_action(self, states): token, index = self.model.predict_from_states(states) if ( index == self.dict["tgt"].eos() or len(states["tokens"]["tgt"]) > self.max_len ): # Finish this sentence is predict EOS states["finished"] = True end_idx_last_full_word = self._target_length(states) else: states["tokens"]["tgt"] += [token] end_idx_last_full_word = self.word_splitter["tgt"].end_idx_last_full_word( states["tokens"]["tgt"] ) self._append_indices(states, [index], "tgt") if end_idx_last_full_word > states["steps"]["tgt"]: # Only sent detokenized full words to the server word = self.word_splitter["tgt"].merge( states["tokens"]["tgt"][states["steps"]["tgt"] : end_idx_last_full_word] ) states["steps"]["tgt"] = end_idx_last_full_word states["segments"]["tgt"] += [word] return {"key": SEND, "value": word} else: return None def read_action(self, states): return {"key": GET, "value": None} def finish_action(self): return {"key": SEND, "value": DEFAULT_EOS} def reset(self): pass def finish_eval(self, states, new_state): if len(new_state) == 0 and len(states["indices"]["src"]) == 0: return True return False def _append_indices(self, states, new_indices, key): states["indices"][key] += new_indices def _target_length(self, states): return len(states["tokens"]["tgt"])
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/agents/simul_trans_agent.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from fairseq import registry (build_scorer, register_scorer, SCORER_REGISTRIES, _) = registry.setup_registry( "--scorer-type" ) for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("scorers." + module)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/scorers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import register_scorer from .scorer import SimulScorer @register_scorer("text") class SimulTextScorer(SimulScorer): def __init__(self, args): super().__init__(args) self.data = { "src": self._load_text_file(args.src_file, split=True), "tgt": self._load_text_file(args.tgt_file, split=False), } def send_src(self, sent_id, *args): if self.steps[sent_id] >= len(self.data["src"][sent_id]): dict_to_return = { "sent_id": sent_id, "segment_id": self.steps[sent_id], "segment": self.eos, } # Consider EOS self.steps[sent_id] = len(self.data["src"][sent_id]) + 1 else: dict_to_return = { "sent_id": sent_id, "segment_id": self.steps[sent_id], "segment": self.data["src"][sent_id][self.steps[sent_id]], } self.steps[sent_id] += 1 return dict_to_return def src_lengths(self): # +1 for eos return [len(sent) + 1 for sent in self.data["src"]]
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/scorers/text_scorer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os from collections import defaultdict from examples.simultaneous_translation.eval.eval_latency import LatencyScorer from vizseq.scorers.bleu import BLEUScorer from vizseq.scorers.meteor import METEORScorer from vizseq.scorers.ter import TERScorer DEFAULT_EOS = "</s>" class SimulScorer(object): def __init__(self, args): self.tokenizer = args.tokenizer self.output_dir = args.output if args.output is not None: self.output_files = { "text": os.path.join(args.output, "text"), "delay": os.path.join(args.output, "delay"), "scores": os.path.join(args.output, "scores"), } else: self.output_files = None self.eos = DEFAULT_EOS self.data = {"tgt": []} self.reset() def get_info(self): return {"num_sentences": len(self)} @staticmethod def add_args(parser): # fmt: off parser.add_argument('--src-file', type=str, required=True, help='Source input file') parser.add_argument('--tgt-file', type=str, required=True, help='Target reference file') parser.add_argument('--tokenizer', default="13a", choices=["none", "13a"], help='Tokenizer used for sacrebleu') parser.add_argument('--output', type=str, default=None, help='Path for output directory') # fmt: on def send_src(self, sent_id, *args): raise NotImplementedError def recv_hyp(self, sent_id, list_of_tokens): for token in list_of_tokens: self.translations[sent_id].append((token, self.steps[sent_id])) def reset(self): self.steps = defaultdict(int) self.translations = defaultdict(list) def src_lengths(self): raise NotImplementedError def score(self): translations = [] delays = [] for i in range(1 + max(self.translations.keys())): translations += [" ".join(t[0] for t in self.translations[i][:-1])] delays += [[t[1] for t in self.translations[i]]] bleu_score = BLEUScorer( sent_level=False, corpus_level=True, extra_args={"bleu_tokenizer": self.tokenizer}, ).score(translations, [self.data["tgt"]]) ter_score = TERScorer(sent_level=False, corpus_level=True).score( translations, [self.data["tgt"]] ) meteor_score = METEORScorer(sent_level=False, corpus_level=True).score( translations, [self.data["tgt"]] ) latency_score = LatencyScorer().score( [ {"src_len": src_len, "delays": delay} for src_len, delay in zip(self.src_lengths(), delays) ], start_from_zero=False, ) scores = { "BLEU": bleu_score[0], "TER": ter_score[0], "METEOR": meteor_score[0], "DAL": latency_score["differentiable_average_lagging"], "AL": latency_score["average_lagging"], "AP": latency_score["average_proportion"], } if self.output_files is not None: try: os.makedirs(self.output_dir, exist_ok=True) self.write_results_to_file(translations, delays, scores) except BaseException as be: print(f"Failed to write results to {self.output_dir}.") print(be) print("Skip writing predictions") return scores def write_results_to_file(self, translations, delays, scores): if self.output_files["text"] is not None: with open(self.output_files["text"], "w") as f: for line in translations: f.write(line + "\n") if self.output_files["delay"] is not None: with open(self.output_files["delay"], "w") as f: for i, delay in enumerate(delays): f.write( json.dumps({"src_len": self.src_lengths()[i], "delays": delay}) + "\n" ) with open(self.output_files["scores"], "w") as f: for key, value in scores.items(): f.write(f"{key}, {value}\n") @classmethod def _load_text_file(cls, file, split=False): with open(file) as f: if split: return [r.strip().split() for r in f] else: return [r.strip() for r in f] @classmethod def _load_text_from_json(cls, file): list_to_return = [] with open(file) as f: content = json.load(f) for item in content["utts"].values(): list_to_return.append(item["output"]["text"].strip()) return list_to_return @classmethod def _load_wav_info_from_json(cls, file): list_to_return = [] with open(file) as f: content = json.load(f) for item in content["utts"].values(): list_to_return.append( { "path": item["input"]["path"].strip(), "length": item["input"]["length_ms"], } ) return list_to_return @classmethod def _load_wav_info_from_list(cls, file): list_to_return = [] with open(file) as f: for line in f: list_to_return.append( { "path": line.strip(), } ) return list_to_return def __len__(self): return len(self.data["tgt"])
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/eval/scorers/scorer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.modules import LayerNorm, TransformerDecoderLayer, TransformerEncoderLayer from . import build_monotonic_attention class TransformerMonotonicEncoderLayer(TransformerEncoderLayer): def forward(self, x, encoder_padding_mask): seq_len, _, _ = x.size() attn_mask = x.new_ones([seq_len, seq_len]).triu(1) attn_mask = attn_mask.masked_fill(attn_mask.bool(), float("-inf")) return super().forward(x, encoder_padding_mask, attn_mask) class TransformerMonotonicDecoderLayer(TransformerDecoderLayer): def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super().__init__( args, no_encoder_attn=True, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.encoder_attn = build_monotonic_attention(args) self.encoder_attn_layer_norm = LayerNorm( self.embed_dim, export=getattr(args, "char_inputs", False) ) def prune_incremental_state(self, incremental_state): def prune(module): input_buffer = module._get_input_buffer(incremental_state) for key in ["prev_key", "prev_value"]: if input_buffer[key].size(2) > 1: input_buffer[key] = input_buffer[key][:, :, :-1, :] else: input_buffer = {} break module._set_input_buffer(incremental_state, input_buffer) prune(self.self_attn) def get_steps(self, incremental_state): return self.encoder_attn._get_monotonic_buffer(incremental_state).get("step", 0)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/modules/monotonic_transformer_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from examples.simultaneous_translation.utils.functions import ( exclusive_cumprod, lengths_to_mask, ) from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules import MultiheadAttention from fairseq.utils import convert_padding_direction from . import register_monotonic_attention @with_incremental_state class MonotonicAttention(nn.Module): """ Abstract class of monotonic attentions """ def __init__(self, args): self.eps = args.attention_eps self.mass_preservation = args.mass_preservation self.noise_mean = args.noise_mean self.noise_var = args.noise_var self.energy_bias_init = args.energy_bias_init self.energy_bias = ( nn.Parameter(self.energy_bias_init * torch.ones([1])) if args.energy_bias is True else 0 ) @staticmethod def add_args(parser): # fmt: off parser.add_argument('--no-mass-preservation', action="store_false", dest="mass_preservation", help='Do not stay on the last token when decoding') parser.add_argument('--mass-preservation', action="store_true", dest="mass_preservation", help='Stay on the last token when decoding') parser.set_defaults(mass_preservation=True) parser.add_argument('--noise-var', type=float, default=1.0, help='Variance of discretness noise') parser.add_argument('--noise-mean', type=float, default=0.0, help='Mean of discretness noise') parser.add_argument('--energy-bias', action="store_true", default=False, help='Bias for energy') parser.add_argument('--energy-bias-init', type=float, default=-2.0, help='Initial value of the bias for energy') parser.add_argument('--attention-eps', type=float, default=1e-6, help='Epsilon when calculating expected attention') # fmt: on def p_choose(self, *args): raise NotImplementedError def input_projections(self, *args): raise NotImplementedError def attn_energy(self, q_proj, k_proj, key_padding_mask=None): """ Calculating monotonic energies ============================================================ Expected input size q_proj: bsz * num_heads, tgt_len, self.head_dim k_proj: bsz * num_heads, src_len, self.head_dim key_padding_mask: bsz, src_len attn_mask: tgt_len, src_len """ bsz, tgt_len, embed_dim = q_proj.size() bsz = bsz // self.num_heads src_len = k_proj.size(1) attn_energy = torch.bmm(q_proj, k_proj.transpose(1, 2)) + self.energy_bias attn_energy = attn_energy.view(bsz, self.num_heads, tgt_len, src_len) if key_padding_mask is not None: attn_energy = attn_energy.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).bool(), float("-inf"), ) return attn_energy def expected_alignment_train(self, p_choose, key_padding_mask): """ Calculating expected alignment for MMA Mask is not need because p_choose will be 0 if masked q_ij = (1 − p_{ij−1})q_{ij−1} + a+{i−1j} a_ij = p_ij q_ij parellel solution: ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi)) ============================================================ Expected input size p_choose: bsz * num_heads, tgt_len, src_len """ # p_choose: bsz * num_heads, tgt_len, src_len bsz_num_heads, tgt_len, src_len = p_choose.size() # cumprod_1mp : bsz * num_heads, tgt_len, src_len cumprod_1mp = exclusive_cumprod(1 - p_choose, dim=2, eps=self.eps) cumprod_1mp_clamp = torch.clamp(cumprod_1mp, self.eps, 1.0) init_attention = p_choose.new_zeros([bsz_num_heads, 1, src_len]) init_attention[:, :, 0] = 1.0 previous_attn = [init_attention] for i in range(tgt_len): # p_choose: bsz * num_heads, tgt_len, src_len # cumprod_1mp_clamp : bsz * num_heads, tgt_len, src_len # previous_attn[i]: bsz * num_heads, 1, src_len # alpha_i: bsz * num_heads, src_len alpha_i = ( p_choose[:, i] * cumprod_1mp[:, i] * torch.cumsum(previous_attn[i][:, 0] / cumprod_1mp_clamp[:, i], dim=1) ).clamp(0, 1.0) previous_attn.append(alpha_i.unsqueeze(1)) # alpha: bsz * num_heads, tgt_len, src_len alpha = torch.cat(previous_attn[1:], dim=1) if self.mass_preservation: # Last token has the residual probabilities alpha[:, :, -1] = 1 - alpha[:, :, :-1].sum(dim=-1).clamp(0.0, 1.0) assert not torch.isnan(alpha).any(), "NaN detected in alpha." return alpha def expected_alignment_infer(self, p_choose, key_padding_mask, incremental_state): """ Calculating mo alignment for MMA during inference time ============================================================ Expected input size p_choose: bsz * num_heads, tgt_len, src_len key_padding_mask: bsz * src_len incremental_state: dict """ # p_choose: bsz * self.num_heads, src_len bsz_num_heads, tgt_len, src_len = p_choose.size() # One token at a time assert tgt_len == 1 p_choose = p_choose[:, 0, :] monotonic_cache = self._get_monotonic_buffer(incremental_state) # prev_monotonic_step: bsz, num_heads bsz = bsz_num_heads // self.num_heads prev_monotonic_step = monotonic_cache.get( "step", p_choose.new_zeros([bsz, self.num_heads]).long() ) bsz, num_heads = prev_monotonic_step.size() assert num_heads == self.num_heads assert bsz * num_heads == bsz_num_heads # p_choose: bsz, num_heads, src_len p_choose = p_choose.view(bsz, num_heads, src_len) if key_padding_mask is not None: src_lengths = src_len - key_padding_mask.sum(dim=1, keepdim=True).long() else: src_lengths = prev_monotonic_step.new_ones(bsz, 1) * src_len # src_lengths: bsz, num_heads src_lengths = src_lengths.expand_as(prev_monotonic_step) # new_monotonic_step: bsz, num_heads new_monotonic_step = prev_monotonic_step step_offset = 0 if key_padding_mask is not None: if key_padding_mask[:, 0].any(): # left_pad_source = True: step_offset = key_padding_mask.sum(dim=-1, keepdim=True) max_steps = src_lengths - 1 if self.mass_preservation else src_lengths # finish_read: bsz, num_heads finish_read = new_monotonic_step.eq(max_steps) while finish_read.sum().item() < bsz * self.num_heads: # p_choose: bsz * self.num_heads, src_len # only choose the p at monotonic steps # p_choose_i: bsz , self.num_heads p_choose_i = ( p_choose.gather( 2, (step_offset + new_monotonic_step) .unsqueeze(2) .clamp(0, src_len - 1), ) ).squeeze(2) action = ( (p_choose_i < 0.5) .type_as(prev_monotonic_step) .masked_fill(finish_read, 0) ) # 1 x bsz # sample actions on unfinished seq # 1 means stay, finish reading # 0 means leave, continue reading # dist = torch.distributions.bernoulli.Bernoulli(p_choose) # action = dist.sample().type_as(finish_read) * (1 - finish_read) new_monotonic_step += action finish_read = new_monotonic_step.eq(max_steps) | (action == 0) # finish_read = (~ (finish_read.sum(dim=1, keepdim=True) < self.num_heads / 2)) | finish_read monotonic_cache["step"] = new_monotonic_step # alpha: bsz * num_heads, 1, src_len # new_monotonic_step: bsz, num_heads alpha = p_choose.new_zeros([bsz * self.num_heads, src_len]).scatter( 1, (step_offset + new_monotonic_step) .view(bsz * self.num_heads, 1) .clamp(0, src_len - 1), 1, ) if not self.mass_preservation: alpha = alpha.masked_fill( (new_monotonic_step == max_steps).view(bsz * self.num_heads, 1), 0 ) alpha = alpha.unsqueeze(1) self._set_monotonic_buffer(incremental_state, monotonic_cache) return alpha def v_proj_output(self, value): raise NotImplementedError def forward( self, query, key, value, key_padding_mask=None, incremental_state=None, *args, **kwargs, ): tgt_len, bsz, embed_dim = query.size() src_len = value.size(0) # stepwise prob # p_choose: bsz * self.num_heads, tgt_len, src_len p_choose = self.p_choose(query, key, key_padding_mask) # expected alignment alpha # bsz * self.num_heads, tgt_len, src_len if incremental_state is not None: alpha = self.expected_alignment_infer( p_choose, key_padding_mask, incremental_state ) else: alpha = self.expected_alignment_train(p_choose, key_padding_mask) # expected attention beta # bsz * self.num_heads, tgt_len, src_len beta = self.expected_attention( alpha, query, key, value, key_padding_mask, incremental_state ) attn_weights = beta v_proj = self.v_proj_output(value) attn = torch.bmm(attn_weights.type_as(v_proj), v_proj) attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) beta = beta.view(bsz, self.num_heads, tgt_len, src_len) alpha = alpha.view(bsz, self.num_heads, tgt_len, src_len) p_choose = p_choose.view(bsz, self.num_heads, tgt_len, src_len) return attn, {"alpha": alpha, "beta": beta, "p_choose": p_choose} def reorder_incremental_state(self, incremental_state, new_order): """Reorder buffered internal state (for incremental generation).""" super().reorder_incremental_state(incremental_state, new_order) input_buffer = self._get_monotonic_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer[k] = input_buffer[k].index_select(0, new_order) self._set_monotonic_buffer(incremental_state, input_buffer) def _get_monotonic_buffer(self, incremental_state): return ( utils.get_incremental_state( self, incremental_state, "monotonic", ) or {} ) def _set_monotonic_buffer(self, incremental_state, buffer): utils.set_incremental_state( self, incremental_state, "monotonic", buffer, ) def get_pointer(self, incremental_state): return ( utils.get_incremental_state( self, incremental_state, "monotonic", ) or {} ) def get_fastest_pointer(self, incremental_state): return self.get_pointer(incremental_state)["step"].max(0)[0] def set_pointer(self, incremental_state, p_choose): curr_pointer = self.get_pointer(incremental_state) if len(curr_pointer) == 0: buffer = torch.zeros_like(p_choose) else: buffer = self.get_pointer(incremental_state)["step"] buffer += (p_choose < 0.5).type_as(buffer) utils.set_incremental_state( self, incremental_state, "monotonic", {"step": buffer}, ) @register_monotonic_attention("hard_aligned") class MonotonicMultiheadAttentionHard(MonotonicAttention, MultiheadAttention): def __init__(self, args): MultiheadAttention.__init__( self, embed_dim=args.decoder_embed_dim, num_heads=args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, ) MonotonicAttention.__init__(self, args) self.k_in_proj = {"monotonic": self.k_proj} self.q_in_proj = {"monotonic": self.q_proj} self.v_in_proj = {"output": self.v_proj} def input_projections(self, query, key, value, name): """ Prepare inputs for multihead attention ============================================================ Expected input size query: tgt_len, bsz, embed_dim key: src_len, bsz, embed_dim value: src_len, bsz, embed_dim name: monotonic or soft """ if query is not None: bsz = query.size(1) q = self.q_in_proj[name](query) q *= self.scaling q = ( q.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) else: q = None if key is not None: bsz = key.size(1) k = self.k_in_proj[name](key) k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) else: k = None if value is not None: bsz = value.size(1) v = self.v_in_proj[name](value) v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) else: v = None return q, k, v def p_choose(self, query, key, key_padding_mask=None): """ Calculating step wise prob for reading and writing 1 to read, 0 to write ============================================================ Expected input size query: bsz, tgt_len, embed_dim key: bsz, src_len, embed_dim value: bsz, src_len, embed_dim key_padding_mask: bsz, src_len attn_mask: bsz, src_len query: bsz, tgt_len, embed_dim """ # prepare inputs q_proj, k_proj, _ = self.input_projections(query, key, None, "monotonic") # attention energy attn_energy = self.attn_energy(q_proj, k_proj, key_padding_mask) noise = 0 if self.training: # add noise here to encourage discretness noise = ( torch.normal(self.noise_mean, self.noise_var, attn_energy.size()) .type_as(attn_energy) .to(attn_energy.device) ) p_choose = torch.sigmoid(attn_energy + noise) _, _, tgt_len, src_len = p_choose.size() # p_choose: bsz * self.num_heads, tgt_len, src_len return p_choose.view(-1, tgt_len, src_len) def expected_attention(self, alpha, *args): """ For MMA-H, beta = alpha """ return alpha def v_proj_output(self, value): _, _, v_proj = self.input_projections(None, None, value, "output") return v_proj @register_monotonic_attention("infinite_lookback") class MonotonicMultiheadAttentionInfiniteLookback(MonotonicMultiheadAttentionHard): def __init__(self, args): super().__init__(args) self.init_soft_attention() def init_soft_attention(self): self.k_proj_soft = nn.Linear(self.kdim, self.embed_dim, bias=True) self.q_proj_soft = nn.Linear(self.embed_dim, self.embed_dim, bias=True) self.k_in_proj["soft"] = self.k_proj_soft self.q_in_proj["soft"] = self.q_proj_soft if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_( self.k_in_proj["soft"].weight, gain=1 / math.sqrt(2) ) nn.init.xavier_uniform_( self.q_in_proj["soft"].weight, gain=1 / math.sqrt(2) ) else: nn.init.xavier_uniform_(self.k_in_proj["soft"].weight) nn.init.xavier_uniform_(self.q_in_proj["soft"].weight) def expected_attention( self, alpha, query, key, value, key_padding_mask, incremental_state ): # monotonic attention, we will calculate milk here bsz_x_num_heads, tgt_len, src_len = alpha.size() bsz = int(bsz_x_num_heads / self.num_heads) q, k, _ = self.input_projections(query, key, None, "soft") soft_energy = self.attn_energy(q, k, key_padding_mask) assert list(soft_energy.size()) == [bsz, self.num_heads, tgt_len, src_len] soft_energy = soft_energy.view(bsz * self.num_heads, tgt_len, src_len) if incremental_state is not None: monotonic_cache = self._get_monotonic_buffer(incremental_state) monotonic_step = monotonic_cache["step"] + 1 step_offset = 0 if key_padding_mask is not None: if key_padding_mask[:, 0].any(): # left_pad_source = True: step_offset = key_padding_mask.sum(dim=-1, keepdim=True) monotonic_step += step_offset mask = lengths_to_mask( monotonic_step.view(-1), soft_energy.size(2), 1 ).unsqueeze(1) soft_energy = soft_energy.masked_fill(~mask.bool(), float("-inf")) soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0] exp_soft_energy = torch.exp(soft_energy) exp_soft_energy_sum = exp_soft_energy.sum(dim=2) beta = exp_soft_energy / exp_soft_energy_sum.unsqueeze(2) else: # bsz * num_heads, tgt_len, src_len soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0] exp_soft_energy = torch.exp(soft_energy) exp_soft_energy_cumsum = torch.cumsum(exp_soft_energy, dim=2) if key_padding_mask is not None: if key_padding_mask.any(): exp_soft_energy_cumsum = ( exp_soft_energy_cumsum.view( -1, self.num_heads, tgt_len, src_len ) .masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(1), self.eps ) .view(-1, tgt_len, src_len) ) inner_items = alpha / exp_soft_energy_cumsum beta = exp_soft_energy * torch.cumsum( inner_items.flip(dims=[2]), dim=2 ).flip(dims=[2]) beta = self.dropout_module(beta) assert not torch.isnan(beta).any(), "NaN detected in beta." return beta @register_monotonic_attention("waitk") class MonotonicMultiheadAttentionWaitk(MonotonicMultiheadAttentionInfiniteLookback): def __init__(self, args): super().__init__(args) self.q_in_proj["soft"] = self.q_in_proj["monotonic"] self.k_in_proj["soft"] = self.k_in_proj["monotonic"] self.waitk_lagging = args.waitk_lagging assert ( self.waitk_lagging > 0 ), f"Lagging has to been larger than 0, get {self.waitk_lagging}." @staticmethod def add_args(parser): super( MonotonicMultiheadAttentionWaitk, MonotonicMultiheadAttentionWaitk, ).add_args(parser) parser.add_argument( "--waitk-lagging", type=int, required=True, help="Wait k lagging" ) def p_choose( self, query, key, key_padding_mask=None, attn_mask=None, incremental_state=None ): """ query: bsz, tgt_len key: bsz, src_len key_padding_mask: bsz, src_len """ src_len, bsz, _ = key.size() tgt_len, bsz, _ = query.size() p_choose = query.new_ones(bsz, tgt_len, src_len) p_choose = torch.tril(p_choose, diagonal=self.waitk_lagging - 1) p_choose = torch.triu(p_choose, diagonal=self.waitk_lagging - 1) if key_padding_mask is not None and key_padding_mask[:, 0].eq(1).any(): # Left pad source # add -1 to the end p_choose = p_choose.masked_fill( key_padding_mask.float().flip(1).unsqueeze(1).bool(), -1 ) p_choose = convert_padding_direction( p_choose.view(-1, src_len).long(), padding_idx=-1, right_to_left=True ) p_choose = p_choose.view(bsz, tgt_len, src_len).type_as(query) # remove -1 p_choose[p_choose.eq(-1)] = 0 # Extend to each head p_choose = ( p_choose.contiguous() .unsqueeze(1) .expand(-1, self.num_heads, -1, -1) .contiguous() .view(-1, tgt_len, src_len) ) return p_choose
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/modules/monotonic_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from fairseq import registry ( build_monotonic_attention, register_monotonic_attention, MONOTONIC_ATTENTION_REGISTRY, _, ) = registry.setup_registry("--simul-type") for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module( "examples.simultaneous_translation.modules." + model_name )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): criterion_name = file[: file.find(".py")] importlib.import_module( "examples.simultaneous_translation.criterions." + criterion_name )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/criterions/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from examples.simultaneous_translation.utils.latency import LatencyTraining from fairseq.criterions import register_criterion from fairseq.criterions.label_smoothed_cross_entropy import ( LabelSmoothedCrossEntropyCriterion, ) @register_criterion("latency_augmented_label_smoothed_cross_entropy") class LatencyAugmentedLabelSmoothedCrossEntropyCriterion( LabelSmoothedCrossEntropyCriterion ): def __init__( self, task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy, latency_weight_avg, latency_weight_avg_type, latency_weight_var, latency_weight_var_type, mass_preservation, average_method, ): super().__init__( task, sentence_avg, label_smoothing, ignore_prefix_size, report_accuracy ) self.eps = label_smoothing self.latency_weight_avg = latency_weight_avg self.latency_weight_avg_type = latency_weight_avg_type self.latency_weight_var = latency_weight_var self.latency_weight_var_type = latency_weight_var_type self.mass_preservation = mass_preservation self.average_method = average_method self.latency_train = LatencyTraining( self.latency_weight_avg, self.latency_weight_var, self.latency_weight_avg_type, self.latency_weight_var_type, self.mass_preservation, self.average_method, ) @staticmethod def add_args(parser): super( LatencyAugmentedLabelSmoothedCrossEntropyCriterion, LatencyAugmentedLabelSmoothedCrossEntropyCriterion, ).add_args(parser) """Add criterion-specific arguments to the parser.""" # fmt: off parser.add_argument("--latency-weight-avg", default=0., type=float, metavar='D', help="Average loss weight") parser.add_argument("--latency-weight-var", default=0., type=float, metavar='D', help="Variance loss weight") parser.add_argument("--latency-weight-avg-type", default="differentiable_average_lagging", help="Statistics for Average loss type") parser.add_argument("--latency-weight-var-type", default="variance_delay", help="Statistics for variance loss type") parser.add_argument("--average-method", default="weighted_average", help="Average loss type") # fmt: on def compute_loss(self, model, net_output, sample, reduce=True): # Compute cross entropy loss first loss, nll_loss = super().compute_loss(model, net_output, sample, reduce) # Obtain the expected alignment attn_list = [item["alpha"] for item in net_output[-1]["attn_list"]] target_padding_mask = model.get_targets(sample, net_output).eq(self.padding_idx) source_padding_mask = net_output[-1].get("encoder_padding_mask", None) # Get latency loss latency_loss = self.latency_train.loss( attn_list, source_padding_mask, target_padding_mask ) loss += latency_loss return loss, nll_loss
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/simultaneous_translation/criterions/label_smoothed_cross_entropy_latency_augmented.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .models import linformer_roberta # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/linformer/linformer_src/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Linformer: Self-Attention with Linear Complexity """ import logging from fairseq.models import register_model, register_model_architecture from fairseq.models.roberta import RobertaEncoder, RobertaModel from ..modules.linformer_sentence_encoder import LinformerSentenceEncoder logger = logging.getLogger(__name__) @register_model("linformer_roberta") class LinformerModel(RobertaModel): @staticmethod def add_args(parser): RobertaModel.add_args(parser) # add args for Linformer parser.add_argument( "--compressed", type=int, help="compressed ratio of sequence length" ) parser.add_argument( "--shared-kv-compressed", type=int, help="share compressed matrix between k and v, in each layer", ) parser.add_argument( "--shared-layer-kv-compressed", type=int, help="share compressed matrix between k and v and across all layers", ) parser.add_argument( "--freeze-compress", type=int, help="freeze the parameters in compressed layer", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present base_architecture(args) if not hasattr(args, "max_positions"): args.max_positions = args.tokens_per_sample encoder = LinformerEncoder(args, task.source_dictionary) return cls(args, encoder) class LinformerEncoder(RobertaEncoder): """Linformer encoder.""" def __init__(self, args, dictionary): super().__init__(args, dictionary) self.sentence_encoder = LinformerSentenceEncoder( padding_idx=dictionary.pad(), vocab_size=len(dictionary), num_encoder_layers=args.encoder_layers, embedding_dim=args.encoder_embed_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, layerdrop=args.encoder_layerdrop, max_seq_len=args.max_positions, num_segments=0, encoder_normalize_before=True, apply_bert_init=True, activation_fn=args.activation_fn, q_noise=args.quant_noise_pq, qn_block_size=args.quant_noise_pq_block_size, compressed=args.compressed, shared_kv_compressed=args.shared_kv_compressed, shared_layer_kv_compressed=args.shared_layer_kv_compressed, freeze_compress=args.freeze_compress, ) @register_model_architecture("linformer_roberta", "linformer_roberta") def base_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.0) args.compressed = getattr(args, "compressed", 4) args.shared_kv_compressed = getattr(args, "shared_kv_compressed", 0) args.shared_layer_kv_compressed = getattr(args, "shared_layer_kv_compressed", 0) args.freeze_compress = getattr(args, "freeze_compress", 0) @register_model_architecture("linformer_roberta", "linformer_roberta_base") def linformer_roberta_base_architecture(args): base_architecture(args) @register_model_architecture("linformer_roberta", "linformer_roberta_large") def linformer_roberta_large_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.compressed = getattr(args, "compressed", 4) args.shared_kv_compressed = getattr(args, "shared_kv_compressed", 0) args.shared_layer_kv_compressed = getattr(args, "shared_layer_kv_compressed", 0)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/linformer/linformer_src/models/linformer_roberta.py
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/linformer/linformer_src/models/__init__.py
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/linformer/linformer_src/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.quant_noise import quant_noise from torch import Tensor, nn from torch.nn import Parameter @with_incremental_state class MultiheadLinearAttention(nn.Module): """Multi-headed linformer attention. Projects the key and values down to the compressed dimension, before computing self-attention. See "Linformer: Self-Attention with Linear Complexity" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, compressed=1, max_seq_len=256, shared_kv_compressed=0, shared_compress_layer=None, freeze_compress=0, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) self.k_proj = quant_noise( nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) # used for compress sequence to subsequence if shared_compress_layer is None: self.compress_seq_len = max_seq_len // compressed self.compress_k = nn.Linear(max_seq_len, self.compress_seq_len, bias=False) if shared_kv_compressed == 0: self.compress_v = nn.Linear( max_seq_len, self.compress_seq_len, bias=False ) self.layerwise_sharing = False else: self.compress_k = shared_compress_layer if shared_kv_compressed == 0: self.compress_v = shared_compress_layer self.layerwise_sharing = True self.shared_kv_compressed = shared_kv_compressed self.out_proj = quant_noise( nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() if freeze_compress == 1: self.compress_k.weight.requires_grad = False if shared_kv_compressed == 0: self.compress_v.weight.requires_grad = False self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) if ( not self.layerwise_sharing ): # otherwise, we already initialize the parameters nn.init.xavier_uniform_(self.compress_k.weight, gain=1 / math.sqrt(2)) if self.shared_kv_compressed == 0: nn.init.xavier_uniform_( self.compress_v.weight, gain=1 / math.sqrt(2) ) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) if ( not self.layerwise_sharing ): # otherwise, we already initialize the parameters nn.init.xavier_uniform_(self.compress_k.weight) if self.shared_kv_compressed == 0: nn.init.xavier_uniform_(self.compress_v.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k_input = query.permute(1, 2, 0).contiguous() # B * C * T k_input = ( F.linear(k_input, self.compress_k.weight[:, 0:tgt_len]) .permute(2, 0, 1) .contiguous() ) k = self.k_proj(k_input) v_input = query.permute(1, 2, 0).contiguous() # B * C * T if self.shared_kv_compressed == 0: v_input = ( F.linear(v_input, self.compress_v.weight[:, 0:tgt_len]) .permute(2, 0, 1) .contiguous() ) if self.shared_kv_compressed == 1: # use shared kv compressed linear layer v_input = ( F.linear(v_input, self.compress_k.weight[:, 0:tgt_len]) .permute(2, 0, 1) .contiguous() ) v = self.v_proj(v_input) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadLinearAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = MultiheadLinearAttention.apply_sparse_mask( attn_weights, tgt_len, src_len, bsz ) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout( attn_weights, p=self.dropout, training=self.training, ) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/linformer/linformer_src/modules/multihead_linear_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn from fairseq.modules import TransformerSentenceEncoder from .linformer_sentence_encoder_layer import LinformerSentenceEncoderLayer class LinformerSentenceEncoder(TransformerSentenceEncoder): """ Implementation for a Bi-directional Linformer based Sentence Encoder used in BERT/XLM style pre-trained models. This first computes the token embedding using the token embedding matrix, position embeddings (if specified) and segment embeddings (if specified). After applying the specified number of LinformerEncoderLayers, it outputs all the internal states of the encoder as well as the final representation associated with the first token (usually CLS token). Input: - tokens: B x T matrix representing sentences - segment_labels: B x T matrix representing segment label for tokens Output: - a tuple of the following: - a list of internal model states used to compute the predictions where each tensor has shape T x B x C - sentence representation associated with first input token in format B x C. """ def __init__( self, padding_idx: int, vocab_size: int, num_encoder_layers: int = 6, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, layerdrop: float = 0.0, max_seq_len: int = 256, num_segments: int = 2, use_position_embeddings: bool = True, offset_positions_by_padding: bool = True, encoder_normalize_before: bool = False, apply_bert_init: bool = False, activation_fn: str = "relu", learned_pos_embedding: bool = True, embed_scale: float = None, freeze_embeddings: bool = False, n_trans_layers_to_freeze: int = 0, export: bool = False, traceable: bool = False, q_noise: float = 0.0, qn_block_size: int = 8, compressed: int = 4, shared_kv_compressed: int = 0, shared_layer_kv_compressed: int = 0, freeze_compress: int = 0, ) -> None: # Initialize linformer parameters self.compressed = compressed self.shared_kv_compressed = shared_kv_compressed self.shared_layer_kv_compressed = shared_layer_kv_compressed self.compress_layer = None self.freeze_compress = freeze_compress super().__init__( padding_idx=padding_idx, vocab_size=vocab_size, num_encoder_layers=num_encoder_layers, embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, layerdrop=layerdrop, max_seq_len=max_seq_len, num_segments=num_segments, use_position_embeddings=use_position_embeddings, offset_positions_by_padding=offset_positions_by_padding, encoder_normalize_before=encoder_normalize_before, apply_bert_init=apply_bert_init, activation_fn=activation_fn, learned_pos_embedding=learned_pos_embedding, embed_scale=embed_scale, freeze_embeddings=freeze_embeddings, n_trans_layers_to_freeze=n_trans_layers_to_freeze, export=export, traceable=traceable, q_noise=q_noise, qn_block_size=qn_block_size, ) def build_transformer_sentence_encoder_layer( self, embedding_dim, ffn_embedding_dim, num_attention_heads, dropout, attention_dropout, activation_dropout, activation_fn, export, q_noise, qn_block_size, ): if self.shared_layer_kv_compressed == 1: compress_layer = nn.Linear( self.max_seq_len, self.max_seq_len // self.compressed ) # intialize parameters for compressed layer nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2)) if self.freeze_compress == 1: compress_layer.weight.requires_grad = False self.compress_layer = compress_layer return LinformerSentenceEncoderLayer( embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, export=export, q_noise=q_noise, qn_block_size=qn_block_size, compressed=self.compressed, max_seq_len=self.max_seq_len, shared_kv_compressed=self.shared_kv_compressed, shared_compress_layer=( None if self.shared_layer_kv_compressed == 0 else self.compress_layer ), freeze_compress=self.freeze_compress, ) def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] # update key name for shared layer in new version of code for k in state_dict.keys(): if k.startswith(prefix + "compress_layer"): if self.shared_layer_kv_compressed: for layer_idx in range(len(self.layers)): new_k = prefix + "layers.{0}.shared_compress_layer.{1}".format( layer_idx, k[len(prefix + "compress_layer.") :], ) items_to_add[new_k] = state_dict[k] for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable from fairseq.modules import TransformerSentenceEncoderLayer from .multihead_linear_attention import MultiheadLinearAttention class LinformerSentenceEncoderLayer(TransformerSentenceEncoderLayer): """ Implements a Linformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", export: bool = False, q_noise: float = 0.0, qn_block_size: int = 8, init_fn: Callable = None, compressed: int = 1, max_seq_len: int = 256, shared_kv_compressed: int = 0, shared_compress_layer: any = None, freeze_compress: int = 0, ) -> None: # Initialize linformer parameters self.compressed = compressed self.max_seq_len = max_seq_len self.shared_kv_compressed = shared_kv_compressed self.freeze_compress = freeze_compress def init_fn(): # This needs to be set after nn.Module.__init__ is called self.shared_compress_layer = shared_compress_layer super().__init__( embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, export=export, q_noise=q_noise, qn_block_size=qn_block_size, init_fn=init_fn, ) def build_self_attention( self, embed_dim, num_attention_heads, dropout, self_attention, q_noise, qn_block_size, ): return MultiheadLinearAttention( embed_dim, num_attention_heads, dropout=dropout, self_attention=True, q_noise=q_noise, qn_block_size=qn_block_size, compressed=self.compressed, max_seq_len=self.max_seq_len, shared_kv_compressed=self.shared_kv_compressed, shared_compress_layer=self.shared_compress_layer, freeze_compress=self.freeze_compress, )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.tasks import register_task from fairseq.tasks.multilingual_translation import MultilingualTranslationTask from .loss.latent_depth import LatentLayersKLLoss, LatentLayersSparsityLoss @register_task("multilingual_translation_latent_depth") class MultilingualTranslationTaskLatentDepth(MultilingualTranslationTask): """A task for multiple translation with latent depth. See `"Deep Transformer with Latent Depth" (Li et al., 2020) <https://arxiv.org/pdf/2009.13102.pdf>`_. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off MultilingualTranslationTask.add_args(parser) parser.add_argument('--encoder-latent-layer', action='store_true', help='latent layer selection in encoder') parser.add_argument('--decoder-latent-layer', action='store_true', help='latent layer selection in decoder') parser.add_argument('--target-layers', default=-1, type=int, help='number of effective layers to learn; -1 means no constraint') parser.add_argument('--sparsity-weight', default=0.0, type=float, help='weight for sparsity loss') parser.add_argument('--share-weight', default=0.0, type=float, help='weight for sharing loss') parser.add_argument('--soft-update', default=1, type=int, help='number of updates with soft sampling') parser.add_argument('--anneal-updates', default=1, type=int, help='number of updates to anneal the KL loss weight') parser.add_argument('--prior', default="uniform", type=str, help='prior used for computing KL loss') # fmt: on def __init__(self, args, dicts, training): super().__init__(args, dicts, training) self.src_langs, self.tgt_langs = zip( *[(lang.split("-")[0], lang.split("-")[1]) for lang in args.lang_pairs] ) if self.training and self.encoder_latent_layer: assert self.args.share_encoders if self.training and self.decoder_latent_layer: assert self.args.share_decoders if training or self.encoder_latent_layer or self.decoder_latent_layer: self.lang_pairs = args.lang_pairs else: self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)] self.eval_lang_pairs = self.lang_pairs self.model_lang_pairs = self.lang_pairs if self.training and (self.encoder_latent_layer or self.decoder_latent_layer): self.kl_loss = LatentLayersKLLoss(self.args) self.sparsity_loss = LatentLayersSparsityLoss(self.args) def _per_lang_pair_train_loss( self, lang_pair, model, update_num, criterion, sample, optimizer, ignore_grad ): src, tgt = lang_pair.split("-") if self.encoder_latent_layer: src_lang_idx = self.src_lang_idx_dict[src] model.models[lang_pair].encoder.set_lang_idx(src_lang_idx) model.models[lang_pair].encoder.layer_select.hard_select = ( update_num > self.args.soft_update ) if self.decoder_latent_layer: tgt_lang_idx = self.tgt_lang_idx_dict[tgt] model.models[lang_pair].decoder.set_lang_idx(tgt_lang_idx) model.models[lang_pair].decoder.layer_select.hard_select = ( update_num > self.args.soft_update ) loss, sample_size, logging_output = criterion( model.models[lang_pair], sample[lang_pair] ) if self.encoder_latent_layer: none_samples = sum( 1 if x is None else 0 for x in model.models[lang_pair].encoder.layer_select.layer_samples ) if none_samples == 0 or self.args.prior != "agged_posterior": loss += self.kl_loss( model.models[lang_pair].encoder.layer_select.layer_samples, src_lang_idx, update_num, sample_size, ) if self.decoder_latent_layer: none_samples = sum( 1 if x is None else 0 for x in model.models[lang_pair].decoder.layer_select.layer_samples ) if none_samples == 0 or self.args.prior != "agged_posterior": loss += self.kl_loss( model.models[lang_pair].decoder.layer_select.layer_samples, tgt_lang_idx, update_num, sample_size, ) if ignore_grad: loss *= 0 if hasattr(self, "sparsity_loss") and self.sparsity_loss.is_valid(update_num): # need to retain the graph if sparsity loss needs to be added loss.backward(retain_graph=True) else: optimizer.backward(loss) return loss, sample_size, logging_output def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): agg_loss, agg_sample_size, agg_logging_output = super().train_step( sample, model, criterion, optimizer, update_num, ignore_grad ) # compute auxiliary loss from layere sparsity, based on all samples from all languages if hasattr(self, "sparsity_loss") and self.sparsity_loss.is_valid(update_num): sparsity_loss = 0 if self.encoder_latent_layer: sparsity_loss += self.sparsity_loss( next( iter(model.models.values()) ).encoder.layer_select.layer_samples, update_num, agg_sample_size, ) if self.decoder_latent_layer: sparsity_loss += self.sparsity_loss( next( iter(model.models.values()) ).decoder.layer_select.layer_samples, update_num, agg_sample_size, ) if sparsity_loss > 0: optimizer.backward(sparsity_loss) return agg_loss, agg_sample_size, agg_logging_output def _per_lang_pair_valid_loss(self, lang_pair, model, criterion, sample): src, tgt = lang_pair.split("-") if self.encoder_latent_layer: src_lang_idx = self.src_lang_idx_dict[src] model.models[lang_pair].encoder.set_lang_idx(src_lang_idx) if self.decoder_latent_layer: tgt_lang_idx = self.tgt_lang_idx_dict[tgt] model.models[lang_pair].decoder.set_lang_idx(tgt_lang_idx) loss, sample_size, logging_output = criterion( model.models[lang_pair], sample[lang_pair] ) return loss, sample_size, logging_output def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): if self.encoder_latent_layer or self.decoder_latent_layer: for model in models: if self.encoder_latent_layer: assert model.encoder.layer_select is not None src_lang_idx = self.src_lang_idx_dict[self.args.source_lang] model.encoder.set_lang_idx(src_lang_idx) if self.decoder_latent_layer: assert model.decoder.layer_select is not None tgt_lang_idx = self.tgt_lang_idx_dict[self.args.target_lang] model.decoder.set_lang_idx(tgt_lang_idx) return super().inference_step( generator, models, sample, prefix_tokens, constraints ) @property def encoder_latent_layer(self): return ( hasattr(self.args, "encoder_latent_layer") and self.args.encoder_latent_layer ) @property def decoder_latent_layer(self): return ( hasattr(self.args, "decoder_latent_layer") and self.args.decoder_latent_layer ) @property def src_lang_idx_dict(self): return {lang: lang_idx for lang_idx, lang in enumerate(self.src_langs)} @property def tgt_lang_idx_dict(self): return {lang: lang_idx for lang_idx, lang in enumerate(self.tgt_langs)}
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/multilingual_translation_latent_depth.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import multilingual_translation_latent_depth # noqa from .loss import latent_depth # noqa from .models import latent_multilingual_transformer # noqa from .modules import latent_layers # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from torch.nn.modules.loss import _Loss class LatentLayersKLLoss(_Loss): def __init__(self, args): super().__init__() self.args = args def forward(self, layer_samples, lang_idx, update_num, sample_size): prior = self.args.prior samples = layer_samples[lang_idx] eps = 1e-7 if prior == "uniform": # uniform prior kl_loss = (samples * (torch.log(samples + eps) - math.log(0.5))).sum(-1) elif prior == "agged_posterior": # aggregated posterior y_t = torch.stack([x.detach() for x in layer_samples], dim=0) agged_q = torch.sum(y_t, dim=0) row_norm = agged_q.sum(-1) normed_agg_q = agged_q / row_norm kl_loss = ( samples * (torch.log(samples + eps) - torch.log(normed_agg_q + eps)) ).sum(-1) else: raise NotImplementedError("The specified prior is not implemented.") # normalized by number of layers kl_loss /= layer_samples[0].size()[0] kl_weight = min( self.args.sparsity_weight, (update_num - self.args.soft_update) * self.args.sparsity_weight / self.args.anneal_updates, ) kl_loss *= kl_weight * sample_size return kl_loss class LatentLayersSparsityLoss(_Loss): def __init__(self, args): super().__init__() self.args = args def is_valid(self, update_num): if self.args.target_layers <= 0: return False return update_num > (self.args.soft_update + self.args.anneal_updates) def forward(self, layer_samples_list, update_num, sample_size): batch_loss = 0 share_loss = 0 global_sparsity_loss = 0 layer_samples = torch.stack(layer_samples_list, dim=0) if ( self.args.target_layers > 0 or self.args.share_weight > 0 ) and update_num > (self.args.soft_update + self.args.anneal_updates): # anneal sparsity weight if update_num < (self.args.anneal_updates + self.args.soft_update): weight_anneal = 0 elif update_num < (2 * self.args.anneal_updates + self.args.soft_update): weight_anneal = ( (update_num - self.args.soft_update - self.args.anneal_updates) * self.args.share_weight / self.args.anneal_updates ) else: weight_anneal = 1 # compute ratio among languages layer_utilization = torch.sum(layer_samples, dim=0) layer_utilization /= layer_samples.size()[0] if self.args.share_weight > 0: # encouraging sharing across languages share_loss = sum( -1.0 * v * math.log(v) for v in layer_utilization if v > 0 ) batch_loss += ( weight_anneal * self.args.share_weight * sample_size * share_loss ) if self.args.target_layers > 0: # computed expected number of layers selected expeted_layers = sum(layer_utilization) # compute l2 loss wrt target number of layers global_sparsity_loss = (expeted_layers - self.args.target_layers) ** 2 batch_loss += ( weight_anneal * self.args.share_weight * sample_size * global_sparsity_loss ) return batch_loss
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/loss/latent_depth.py
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/loss/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models import register_model, register_model_architecture from fairseq.models.multilingual_transformer import MultilingualTransformerModel from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, base_architecture, ) from .latent_transformer import LatentTransformerDecoder, LatentTransformerEncoder @register_model("latent_multilingual_transformer") class LatentMultilingualTransformerModel(MultilingualTransformerModel): """A variant of standard multilingual Transformer models which encoder and/or decoders supports latent depth, as is in "Deep Transformer with Latent Depth" (https://arxiv.org/abs/2009.13102). """ @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" MultilingualTransformerModel.add_args(parser) parser.add_argument( '--soft-select', action='store_true', help='use soft samples in training an inference', ) parser.add_argument( '--sampling-tau', type=float, default=5., help='sampling temperature', ) @classmethod def _get_module_class(cls, is_encoder, args, lang_dict, embed_tokens, langs): if is_encoder: if hasattr(args, "encoder_latent_layer") and args.encoder_latent_layer: return LatentTransformerEncoder( args, lang_dict, embed_tokens, num_logits=len(langs) ) else: return TransformerEncoder(args, lang_dict, embed_tokens) else: if hasattr(args, "decoder_latent_layer") and args.decoder_latent_layer: return LatentTransformerDecoder( args, lang_dict, embed_tokens, num_logits=len(langs) ) else: return TransformerDecoder(args, lang_dict, embed_tokens) @register_model_architecture( "latent_multilingual_transformer", "latent_multilingual_transformer" ) def latent_multilingual_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 24) args.share_encoders = getattr(args, "share_encoders", True) args.share_decoders = getattr(args, "share_decoders", True) args.share_encoder_embeddings = getattr(args, "share_encoder_embeddings", True) args.share_decoder_embeddings = getattr(args, "share_decoder_embeddings", True) base_architecture(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/models/latent_multilingual_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Optional import torch.nn as nn from fairseq.models.fairseq_encoder import EncoderOut from fairseq.models.transformer import TransformerDecoder, TransformerEncoder from fairseq.modules import TransformerDecoderLayer, TransformerEncoderLayer from torch import Tensor from ..modules.latent_layers import LayerSelect class LatentTransformerEncoder(TransformerEncoder): """Latent depth (https://arxiv.org/abs/2009.13102) implemented in TransformerEncoder. """ def __init__(self, args, dictionary, embed_tokens, num_logits=1): self.num_logits = num_logits self.num_layers = args.encoder_layers super().__init__(args, dictionary, embed_tokens) self.layer_select = LayerSelect( num_layers=self.num_layers, num_logits=self.num_logits, soft_select=getattr(args, "soft_select", False), sampling_tau=getattr(args, "sampling_tau", 5.), ) self.lang_idx = None self.layers = nn.ModuleList( [self._build_encoder_layer(args, idx) for idx in range(args.encoder_layers)] ) def set_lang_idx(self, lang_idx): self.lang_idx = lang_idx def _build_encoder_layer(self, args, idx=None): return LatentTransformerEncoderLayer(args, idx, layer_select=self.layer_select) def forward(self, src_tokens, src_lengths, return_all_hiddens: bool = False): self.layer_select.sample(self.lang_idx) return super().forward(src_tokens, src_lengths, return_all_hiddens) class LatentTransformerEncoderLayer(TransformerEncoderLayer): """Encoder layer with each (non_residual) block weighted by samples of Bernouli or Gumbel Signmoid samples. Args: args (argparse.Namespace): parsed command-line arguments from standard TransformerEncoderLayer. idx (int): layer index (used to retrieve samples). layer_select (LayerSelect, optional): instance of LayerSelect module with logits parameters and sampling method. """ def __init__(self, args, idx, layer_select=None): super().__init__(args) self.idx = idx self.layer_select = layer_select def residual_connection(self, x, residual): return residual + x * self.layer_select(self.idx) class LatentTransformerDecoder(TransformerDecoder): """Latent depth (https://arxiv.org/abs/2009.13102) implemented in TransformerDecoder. """ def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, num_logits=1 ): self.num_logits = num_logits self.num_layers = args.decoder_layers super().__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.layer_select = LayerSelect( num_layers=self.num_layers, num_logits=self.num_logits, soft_select=getattr(args, "soft_select", False), sampling_tau=getattr(args, "sampling_tau", 5.), ) self.lang_idx = None self.layers = nn.ModuleList( [ self._build_decoder_layer(args, no_encoder_attn, idx) for idx in range(args.decoder_layers) ] ) def set_lang_idx(self, lang_idx): self.lang_idx = lang_idx def _build_decoder_layer(self, args, no_encoder_attn=False, idx=None): return LatentTransformerDecoderLayer( args, idx, layer_select=self.layer_select, no_encoder_attn=no_encoder_attn ) def forward( self, prev_output_tokens, encoder_out: Optional[EncoderOut] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, ): self.layer_select.sample(self.lang_idx) return super().forward( prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, features_only=features_only, alignment_layer=alignment_layer, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) class LatentTransformerDecoderLayer(TransformerDecoderLayer): """Decoder layer with each (non_residual) block weighted by samples of Bernouli or Gumbel Signmoid samples. Args: args (argparse.Namespace): parsed command-line arguments from standard TransformerDecoderLayer. idx (int): layer index (used to retrieve samples). layer_select (LayerSelect, optional): instance of LayerSelect module with logits parameters and sampling method. no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, idx, layer_select=None, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, ): super().__init__(args, no_encoder_attn, add_bias_kv, add_zero_attn) self.idx = idx self.layer_select = layer_select def residual_connection(self, x, residual): return residual + x * self.layer_select(self.idx)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/models/latent_transformer.py
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/models/__init__.py
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn class LayerSelect(nn.Module): """Compute samples (from a Gumbel-Sigmoid distribution) which is used as either (soft) weighting or (hard) selection of residual connection. https://arxiv.org/abs/2009.13102 """ def __init__(self, num_layers, num_logits, soft_select=False, sampling_tau=5.): super(LayerSelect, self).__init__() self.layer_logits = torch.nn.Parameter( torch.Tensor(num_logits, num_layers), requires_grad=True, ) self.hard_select = not soft_select self.tau = sampling_tau self.detach_grad = False self.layer_samples = [None] * num_logits def sample(self, logit_idx): """To leverage the efficiency of distributed training, samples for all layers are computed at once for each logit_idx. Logits are parameters learnt independent of each other. Args: logit_idx: The index of logit parameters used for sampling. """ assert logit_idx is not None self.samples = self._gumbel_sigmoid( self.layer_logits[logit_idx, :].detach() if self.detach_grad else self.layer_logits[logit_idx, :], dim=-1, tau=self.tau, hard=self.hard_select, ) self.layer_samples[logit_idx] = self.samples def forward(self, i): sample = self.samples[i] return sample def _gumbel_sigmoid( self, logits, tau=1, hard=False, eps=1e-10, dim=-1, threshold=0.5 ): # ~Gumbel(0,1) gumbels1 = ( -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format) .exponential_() .log() ) gumbels2 = ( -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format) .exponential_() .log() ) # Difference of two gumbels because we apply a sigmoid gumbels1 = (logits + gumbels1 - gumbels2) / tau y_soft = gumbels1.sigmoid() if hard: # Straight through. y_hard = torch.zeros_like( logits, memory_format=torch.legacy_contiguous_format ).masked_fill(y_soft > threshold, 1.0) ret = y_hard - y_soft.detach() + y_soft else: # Reparametrization trick. ret = y_soft return ret
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/latent_depth/latent_depth_src/modules/latent_layers.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Scoring script for computing pairwise BLEU and multi-ref BLEU over a set of candidate hypotheses. See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade" (Shen et al., 2019) <https://arxiv.org/abs/1902.07816>`_. """ import argparse import random import sys from itertools import chain import numpy as np from sacrebleu import compute_bleu, corpus_bleu as _corpus_bleu def main(): parser = argparse.ArgumentParser(sys.argv[0]) parser.add_argument( "--sys", nargs="*", default="", metavar="FILE", help="path to system output" ) parser.add_argument("--ref", default="", metavar="FILE", help="path to references") parser.add_argument( "--output", default="", metavar="FILE", help="print outputs into a pretty format", ) args = parser.parse_args() if args.sys: src, tgt, hypos, log_probs = load_sys(args.sys) print("pairwise BLEU: %.2f" % pairwise(hypos)) if args.output: merge(src, tgt, hypos, log_probs, args.output) if args.ref: _, _, refs = load_ref(args.ref) if args.sys: multi_ref(refs, hypos) else: intra_ref(refs) def dictolist(d): a = sorted(d.items(), key=lambda i: i[0]) return [i[1] for i in a] def load_sys(paths): src, tgt, hypos, log_probs = {}, {}, {}, {} for path in paths: with open(path) as f: for line in f: line = line.rstrip() # S: source # T: target # D: detokenized system output if line.startswith(("S-", "T-", "D-")): i = int(line[line.find("-") + 1 : line.find("\t")]) if line.startswith("S-"): src[i] = line.split("\t")[1] if line.startswith("T-"): tgt[i] = line.split("\t")[1] if line.startswith("D-"): if i not in hypos: hypos[i] = [] log_probs[i] = [] hypos[i].append(line.split("\t")[2]) log_probs[i].append(float(line.split("\t")[1])) return dictolist(src), dictolist(tgt), dictolist(hypos), dictolist(log_probs) def load_ref(path): with open(path) as f: lines = f.readlines() src, tgt, refs = [], [], [] i = 0 while i < len(lines): if lines[i].startswith("S-"): src.append(lines[i].split("\t")[1].rstrip()) i += 1 elif lines[i].startswith("T-"): tgt.append(lines[i].split("\t")[1].rstrip()) i += 1 else: a = [] while i < len(lines) and lines[i].startswith("R"): a.append(lines[i].split("\t")[1].rstrip()) i += 1 refs.append(a) return src, tgt, refs def merge(src, tgt, hypos, log_probs, path): with open(path, "w") as f: for s, t, hs, lps in zip(src, tgt, hypos, log_probs): f.write(s + "\n") f.write(t + "\n") f.write("\n") for h, lp in zip(hs, lps): f.write("\t%f\t%s\n" % (lp, h.strip())) f.write("------------------------------------------------------\n") def corpus_bleu(sys_stream, ref_streams): bleu = _corpus_bleu(sys_stream, ref_streams, tokenize="none") return bleu.score def sentence_bleu(hypothesis, reference): bleu = _corpus_bleu(hypothesis, reference) for i in range(1, 4): bleu.counts[i] += 1 bleu.totals[i] += 1 bleu = compute_bleu( bleu.counts, bleu.totals, bleu.sys_len, bleu.ref_len, smooth_method="exp", ) return bleu.score def pairwise(sents): _ref, _hypo = [], [] for s in sents: for i in range(len(s)): for j in range(len(s)): if i != j: _ref.append(s[i]) _hypo.append(s[j]) return corpus_bleu(_hypo, [_ref]) def multi_ref(refs, hypos): _ref, _hypo = [], [] ref_cnt = 0 assert len(refs) == len(hypos) # count number of refs covered for rs, hs in zip(refs, hypos): a = set() for h in hs: s = [sentence_bleu(h, r) for r in rs] j = np.argmax(s) _ref.append(rs[j]) _hypo.append(h) best = [k for k in range(len(rs)) if s[k] == s[j]] a.add(random.choice(best)) ref_cnt += len(a) print("#refs covered: %.2f" % (ref_cnt / len(refs))) # transpose refs and hypos refs = list(zip(*refs)) hypos = list(zip(*hypos)) # compute multi-ref corpus BLEU (leave-one-out to be comparable to intra_ref) k = len(hypos) m = len(refs) flat_hypos = [hypos[j][i] for i in range(len(hypos[0])) for j in range(k)] duplicated_refs = [[ref for ref in refs_i for _ in range(k)] for refs_i in refs] loo_bleus = [] for held_out_ref in range(m): remaining_refs = ( duplicated_refs[:held_out_ref] + duplicated_refs[held_out_ref + 1 :] ) assert len(remaining_refs) == m - 1 loo_bleus.append(corpus_bleu(flat_hypos, remaining_refs)) print("average multi-reference BLEU (leave-one-out): %.2f" % np.mean(loo_bleus)) def intra_ref(refs): print("ref pairwise BLEU: %.2f" % pairwise(refs)) refs = list(zip(*refs)) m = len(refs) concat_h = [] concat_rest = [[] for j in range(m - 1)] for i, h in enumerate(refs): rest = refs[:i] + refs[i + 1 :] concat_h.append(h) for j in range(m - 1): concat_rest[j].extend(rest[j]) concat_h = list(chain.from_iterable(concat_h)) bleu = corpus_bleu(concat_h, concat_rest) print("multi-reference BLEU (leave-one-out): %.2f" % bleu) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/translation_moe/score.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F class MeanPoolGatingNetwork(torch.nn.Module): """A simple mean-pooling gating network for selecting experts. This module applies mean pooling over an encoder's output and returns reponsibilities for each expert. The encoder format is expected to match :class:`fairseq.models.transformer.TransformerEncoder`. """ def __init__(self, embed_dim, num_experts, dropout=None): super().__init__() self.embed_dim = embed_dim self.num_experts = num_experts self.fc1 = torch.nn.Linear(embed_dim, embed_dim) self.dropout = torch.nn.Dropout(dropout) if dropout is not None else None self.fc2 = torch.nn.Linear(embed_dim, num_experts) def forward(self, encoder_out): if not ( "encoder_out" in encoder_out and "encoder_padding_mask" in encoder_out and encoder_out["encoder_out"][0].size(2) == self.embed_dim ): raise ValueError("Unexpected format for encoder_out") # mean pooling over time encoder_padding_mask = encoder_out["encoder_padding_mask"][0] # B x T encoder_out = encoder_out["encoder_out"][0].transpose(0, 1) # B x T x C if encoder_padding_mask is not None: encoder_out = encoder_out.clone() # required because of transpose above encoder_out[encoder_padding_mask] = 0 ntokens = torch.sum(~encoder_padding_mask, dim=1, keepdim=True) x = torch.sum(encoder_out, dim=1) / ntokens.type_as(encoder_out) else: x = torch.mean(encoder_out, dim=1) x = torch.tanh(self.fc1(x)) if self.dropout is not None: x = self.dropout(x) x = self.fc2(x) return F.log_softmax(x, dim=-1, dtype=torch.float32).type_as(x)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/translation_moe/translation_moe_src/mean_pool_gating_network.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import translation_moe # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/translation_moe/translation_moe_src/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch class LogSumExpMoE(torch.autograd.Function): """Standard LogSumExp forward pass, but use *posterior* for the backward. See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade" (Shen et al., 2019) <https://arxiv.org/abs/1902.07816>`_. """ @staticmethod def forward(ctx, logp, posterior, dim=-1): ctx.save_for_backward(posterior) ctx.dim = dim return torch.logsumexp(logp, dim=dim) @staticmethod def backward(ctx, grad_output): (posterior,) = ctx.saved_tensors grad_logp = grad_output.unsqueeze(ctx.dim) * posterior return grad_logp, None, None
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/translation_moe/translation_moe_src/logsumexp_moe.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq import metrics, utils from fairseq.tasks import register_task from fairseq.tasks.translation import TranslationTask from .logsumexp_moe import LogSumExpMoE from .mean_pool_gating_network import MeanPoolGatingNetwork @register_task("translation_moe") class TranslationMoETask(TranslationTask): """ Translation task for Mixture of Experts (MoE) models. See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade" (Shen et al., 2019) <https://arxiv.org/abs/1902.07816>`_. Args: src_dict (~fairseq.data.Dictionary): dictionary for the source language tgt_dict (~fairseq.data.Dictionary): dictionary for the target language .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. The translation task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.translation_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off TranslationTask.add_args(parser) parser.add_argument('--method', default='hMoEup', choices=['sMoElp', 'sMoEup', 'hMoElp', 'hMoEup']) parser.add_argument('--num-experts', default=3, type=int, metavar='N', help='number of experts') parser.add_argument('--mean-pool-gating-network', action='store_true', help='use a simple mean-pooling gating network') parser.add_argument('--mean-pool-gating-network-dropout', type=float, help='dropout for mean-pooling gating network') parser.add_argument('--mean-pool-gating-network-encoder-dim', type=float, help='encoder output dim for mean-pooling gating network') parser.add_argument('--gen-expert', type=int, default=0, help='which expert to use for generation') # fmt: on def __init__(self, args, src_dict, tgt_dict): if args.method == "sMoElp": # soft MoE with learned prior self.uniform_prior = False self.hard_selection = False elif args.method == "sMoEup": # soft MoE with uniform prior self.uniform_prior = True self.hard_selection = False elif args.method == "hMoElp": # hard MoE with learned prior self.uniform_prior = False self.hard_selection = True elif args.method == "hMoEup": # hard MoE with uniform prior self.uniform_prior = True self.hard_selection = True # add indicator tokens for each expert for i in range(args.num_experts): # add to both dictionaries in case we're sharing embeddings src_dict.add_symbol("<expert_{}>".format(i)) tgt_dict.add_symbol("<expert_{}>".format(i)) super().__init__(args, src_dict, tgt_dict) def build_model(self, args): from fairseq import models model = models.build_model(args, self) if not self.uniform_prior and not hasattr(model, "gating_network"): if self.args.mean_pool_gating_network: if getattr(args, "mean_pool_gating_network_encoder_dim", None): encoder_dim = args.mean_pool_gating_network_encoder_dim elif getattr(args, "encoder_embed_dim", None): # assume that encoder_embed_dim is the encoder's output dimension encoder_dim = args.encoder_embed_dim else: raise ValueError( "Must specify --mean-pool-gating-network-encoder-dim" ) if getattr(args, "mean_pool_gating_network_dropout", None): dropout = args.mean_pool_gating_network_dropout elif getattr(args, "dropout", None): dropout = args.dropout else: raise ValueError("Must specify --mean-pool-gating-network-dropout") model.gating_network = MeanPoolGatingNetwork( encoder_dim, args.num_experts, dropout, ) else: raise ValueError( "translation_moe task with learned prior requires the model to " "have a gating network; try using --mean-pool-gating-network" ) return model def expert_index(self, i): return i + self.tgt_dict.index("<expert_0>") def _get_loss(self, sample, model, criterion): assert hasattr( criterion, "compute_loss" ), "translation_moe task requires the criterion to implement the compute_loss() method" k = self.args.num_experts bsz = sample["target"].size(0) def get_lprob_y(encoder_out, prev_output_tokens_k): net_output = model.decoder( prev_output_tokens=prev_output_tokens_k, encoder_out=encoder_out, ) loss, _ = criterion.compute_loss(model, net_output, sample, reduce=False) loss = loss.view(bsz, -1) return -loss.sum(dim=1, keepdim=True) # -> B x 1 def get_lprob_yz(winners=None): encoder_out = model.encoder( src_tokens=sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], ) if winners is None: lprob_y = [] for i in range(k): prev_output_tokens_k = sample["net_input"][ "prev_output_tokens" ].clone() assert not prev_output_tokens_k.requires_grad prev_output_tokens_k[:, 0] = self.expert_index(i) lprob_y.append(get_lprob_y(encoder_out, prev_output_tokens_k)) lprob_y = torch.cat(lprob_y, dim=1) # -> B x K else: prev_output_tokens_k = sample["net_input"]["prev_output_tokens"].clone() prev_output_tokens_k[:, 0] = self.expert_index(winners) lprob_y = get_lprob_y(encoder_out, prev_output_tokens_k) # -> B if self.uniform_prior: lprob_yz = lprob_y else: lprob_z = model.gating_network(encoder_out) # B x K if winners is not None: lprob_z = lprob_z.gather(dim=1, index=winners.unsqueeze(-1)) lprob_yz = lprob_y + lprob_z.type_as(lprob_y) # B x K return lprob_yz # compute responsibilities without dropout with utils.model_eval(model): # disable dropout with torch.no_grad(): # disable autograd lprob_yz = get_lprob_yz() # B x K prob_z_xy = torch.nn.functional.softmax(lprob_yz, dim=1) assert not prob_z_xy.requires_grad # compute loss with dropout if self.hard_selection: winners = prob_z_xy.max(dim=1)[1] loss = -get_lprob_yz(winners) else: lprob_yz = get_lprob_yz() # B x K loss = -LogSumExpMoE.apply(lprob_yz, prob_z_xy, 1) loss = loss.sum() sample_size = ( sample["target"].size(0) if self.args.sentence_avg else sample["ntokens"] ) logging_output = { "loss": utils.item(loss.data), "ntokens": sample["ntokens"], "nsentences": bsz, "sample_size": sample_size, "posterior": prob_z_xy.float().sum(dim=0).cpu(), } return loss, sample_size, logging_output def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): model.train() loss, sample_size, logging_output = self._get_loss(sample, model, criterion) if ignore_grad: loss *= 0 optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): loss, sample_size, logging_output = self._get_loss(sample, model, criterion) return loss, sample_size, logging_output def inference_step( self, generator, models, sample, prefix_tokens=None, expert=None, constraints=None, ): expert = expert or self.args.gen_expert with torch.no_grad(): return generator.generate( models, sample, prefix_tokens=prefix_tokens, constraints=constraints, bos_token=self.expert_index(expert), ) def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) metrics.log_scalar( "posterior", sum(log["posterior"] for log in logging_outputs if "posterior" in log), )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/translation_moe/translation_moe_src/translation_moe.py
from . import criterions, models, tasks # noqa
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Flashlight decoders. """ import gc import itertools as it import os.path as osp import warnings from collections import deque, namedtuple import numpy as np import torch from examples.speech_recognition.data.replabels import unpack_replabels from fairseq import tasks from fairseq.utils import apply_to_sample from omegaconf import open_dict from fairseq.dataclass.utils import convert_namespace_to_omegaconf try: from flashlight.lib.text.dictionary import create_word_dict, load_words from flashlight.lib.sequence.criterion import CpuViterbiPath, get_data_ptr_as_bytes from flashlight.lib.text.decoder import ( CriterionType, LexiconDecoderOptions, KenLM, LM, LMState, SmearingMode, Trie, LexiconDecoder, ) except: warnings.warn( "flashlight python bindings are required to use this functionality. Please install from https://github.com/facebookresearch/flashlight/tree/master/bindings/python" ) LM = object LMState = object class W2lDecoder(object): def __init__(self, args, tgt_dict): self.tgt_dict = tgt_dict self.vocab_size = len(tgt_dict) self.nbest = args.nbest # criterion-specific init if args.criterion == "ctc": self.criterion_type = CriterionType.CTC self.blank = ( tgt_dict.index("<ctc_blank>") if "<ctc_blank>" in tgt_dict.indices else tgt_dict.bos() ) if "<sep>" in tgt_dict.indices: self.silence = tgt_dict.index("<sep>") elif "|" in tgt_dict.indices: self.silence = tgt_dict.index("|") else: self.silence = tgt_dict.eos() self.asg_transitions = None elif args.criterion == "asg_loss": self.criterion_type = CriterionType.ASG self.blank = -1 self.silence = -1 self.asg_transitions = args.asg_transitions self.max_replabel = args.max_replabel assert len(self.asg_transitions) == self.vocab_size ** 2 else: raise RuntimeError(f"unknown criterion: {args.criterion}") def generate(self, models, sample, **unused): """Generate a batch of inferences.""" # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens" } emissions = self.get_emissions(models, encoder_input) return self.decode(emissions) def get_emissions(self, models, encoder_input): """Run encoder and normalize emissions""" model = models[0] encoder_out = model(**encoder_input) if self.criterion_type == CriterionType.CTC: if hasattr(model, "get_logits"): emissions = model.get_logits(encoder_out) # no need to normalize emissions else: emissions = model.get_normalized_probs(encoder_out, log_probs=True) elif self.criterion_type == CriterionType.ASG: emissions = encoder_out["encoder_out"] return emissions.transpose(0, 1).float().cpu().contiguous() def get_tokens(self, idxs): """Normalize tokens by handling CTC blank, ASG replabels, etc.""" idxs = (g[0] for g in it.groupby(idxs)) if self.criterion_type == CriterionType.CTC: idxs = filter(lambda x: x != self.blank, idxs) elif self.criterion_type == CriterionType.ASG: idxs = filter(lambda x: x >= 0, idxs) idxs = unpack_replabels(list(idxs), self.tgt_dict, self.max_replabel) return torch.LongTensor(list(idxs)) class W2lViterbiDecoder(W2lDecoder): def __init__(self, args, tgt_dict): super().__init__(args, tgt_dict) def decode(self, emissions): B, T, N = emissions.size() hypos = [] if self.asg_transitions is None: transitions = torch.FloatTensor(N, N).zero_() else: transitions = torch.FloatTensor(self.asg_transitions).view(N, N) viterbi_path = torch.IntTensor(B, T) workspace = torch.ByteTensor(CpuViterbiPath.get_workspace_size(B, T, N)) CpuViterbiPath.compute( B, T, N, get_data_ptr_as_bytes(emissions), get_data_ptr_as_bytes(transitions), get_data_ptr_as_bytes(viterbi_path), get_data_ptr_as_bytes(workspace), ) return [ [{"tokens": self.get_tokens(viterbi_path[b].tolist()), "score": 0}] for b in range(B) ] class W2lKenLMDecoder(W2lDecoder): def __init__(self, args, tgt_dict): super().__init__(args, tgt_dict) self.unit_lm = getattr(args, "unit_lm", False) if args.lexicon: self.lexicon = load_words(args.lexicon) self.word_dict = create_word_dict(self.lexicon) self.unk_word = self.word_dict.get_index("<unk>") self.lm = KenLM(args.kenlm_model, self.word_dict) self.trie = Trie(self.vocab_size, self.silence) start_state = self.lm.start(False) for i, (word, spellings) in enumerate(self.lexicon.items()): word_idx = self.word_dict.get_index(word) _, score = self.lm.score(start_state, word_idx) for spelling in spellings: spelling_idxs = [tgt_dict.index(token) for token in spelling] assert ( tgt_dict.unk() not in spelling_idxs ), f"{spelling} {spelling_idxs}" self.trie.insert(spelling_idxs, word_idx, score) self.trie.smear(SmearingMode.MAX) self.decoder_opts = LexiconDecoderOptions( beam_size=args.beam, beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), beam_threshold=args.beam_threshold, lm_weight=args.lm_weight, word_score=args.word_score, unk_score=args.unk_weight, sil_score=args.sil_weight, log_add=False, criterion_type=self.criterion_type, ) if self.asg_transitions is None: N = 768 # self.asg_transitions = torch.FloatTensor(N, N).zero_() self.asg_transitions = [] self.decoder = LexiconDecoder( self.decoder_opts, self.trie, self.lm, self.silence, self.blank, self.unk_word, self.asg_transitions, self.unit_lm, ) else: assert args.unit_lm, "lexicon free decoding can only be done with a unit language model" from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions d = {w: [[w]] for w in tgt_dict.symbols} self.word_dict = create_word_dict(d) self.lm = KenLM(args.kenlm_model, self.word_dict) self.decoder_opts = LexiconFreeDecoderOptions( beam_size=args.beam, beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), beam_threshold=args.beam_threshold, lm_weight=args.lm_weight, sil_score=args.sil_weight, log_add=False, criterion_type=self.criterion_type, ) self.decoder = LexiconFreeDecoder( self.decoder_opts, self.lm, self.silence, self.blank, [] ) def decode(self, emissions): B, T, N = emissions.size() hypos = [] for b in range(B): emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0) results = self.decoder.decode(emissions_ptr, T, N) nbest_results = results[: self.nbest] hypos.append( [ { "tokens": self.get_tokens(result.tokens), "score": result.score, "words": [ self.word_dict.get_entry(x) for x in result.words if x >= 0 ], } for result in nbest_results ] ) return hypos FairseqLMState = namedtuple("FairseqLMState", ["prefix", "incremental_state", "probs"]) class FairseqLM(LM): def __init__(self, dictionary, model): LM.__init__(self) self.dictionary = dictionary self.model = model self.unk = self.dictionary.unk() self.save_incremental = False # this currently does not work properly self.max_cache = 20_000 model.cuda() model.eval() model.make_generation_fast_() self.states = {} self.stateq = deque() def start(self, start_with_nothing): state = LMState() prefix = torch.LongTensor([[self.dictionary.eos()]]) incremental_state = {} if self.save_incremental else None with torch.no_grad(): res = self.model(prefix.cuda(), incremental_state=incremental_state) probs = self.model.get_normalized_probs(res, log_probs=True, sample=None) if incremental_state is not None: incremental_state = apply_to_sample(lambda x: x.cpu(), incremental_state) self.states[state] = FairseqLMState( prefix.numpy(), incremental_state, probs[0, -1].cpu().numpy() ) self.stateq.append(state) return state def score(self, state: LMState, token_index: int, no_cache: bool = False): """ Evaluate language model based on the current lm state and new word Parameters: ----------- state: current lm state token_index: index of the word (can be lexicon index then you should store inside LM the mapping between indices of lexicon and lm, or lm index of a word) Returns: -------- (LMState, float): pair of (new state, score for the current word) """ curr_state = self.states[state] def trim_cache(targ_size): while len(self.stateq) > targ_size: rem_k = self.stateq.popleft() rem_st = self.states[rem_k] rem_st = FairseqLMState(rem_st.prefix, None, None) self.states[rem_k] = rem_st if curr_state.probs is None: new_incremental_state = ( curr_state.incremental_state.copy() if curr_state.incremental_state is not None else None ) with torch.no_grad(): if new_incremental_state is not None: new_incremental_state = apply_to_sample( lambda x: x.cuda(), new_incremental_state ) elif self.save_incremental: new_incremental_state = {} res = self.model( torch.from_numpy(curr_state.prefix).cuda(), incremental_state=new_incremental_state, ) probs = self.model.get_normalized_probs( res, log_probs=True, sample=None ) if new_incremental_state is not None: new_incremental_state = apply_to_sample( lambda x: x.cpu(), new_incremental_state ) curr_state = FairseqLMState( curr_state.prefix, new_incremental_state, probs[0, -1].cpu().numpy() ) if not no_cache: self.states[state] = curr_state self.stateq.append(state) score = curr_state.probs[token_index].item() trim_cache(self.max_cache) outstate = state.child(token_index) if outstate not in self.states and not no_cache: prefix = np.concatenate( [curr_state.prefix, torch.LongTensor([[token_index]])], -1 ) incr_state = curr_state.incremental_state self.states[outstate] = FairseqLMState(prefix, incr_state, None) if token_index == self.unk: score = float("-inf") return outstate, score def finish(self, state: LMState): """ Evaluate eos for language model based on the current lm state Returns: -------- (LMState, float): pair of (new state, score for the current word) """ return self.score(state, self.dictionary.eos()) def empty_cache(self): self.states = {} self.stateq = deque() gc.collect() class W2lFairseqLMDecoder(W2lDecoder): def __init__(self, args, tgt_dict): super().__init__(args, tgt_dict) self.unit_lm = getattr(args, "unit_lm", False) self.lexicon = load_words(args.lexicon) if args.lexicon else None self.idx_to_wrd = {} checkpoint = torch.load(args.kenlm_model, map_location="cpu") if "cfg" in checkpoint and checkpoint["cfg"] is not None: lm_args = checkpoint["cfg"] else: lm_args = convert_namespace_to_omegaconf(checkpoint["args"]) with open_dict(lm_args.task): lm_args.task.data = osp.dirname(args.kenlm_model) task = tasks.setup_task(lm_args.task) model = task.build_model(lm_args.model) model.load_state_dict(checkpoint["model"], strict=False) self.trie = Trie(self.vocab_size, self.silence) self.word_dict = task.dictionary self.unk_word = self.word_dict.unk() self.lm = FairseqLM(self.word_dict, model) if self.lexicon: start_state = self.lm.start(False) for i, (word, spellings) in enumerate(self.lexicon.items()): if self.unit_lm: word_idx = i self.idx_to_wrd[i] = word score = 0 else: word_idx = self.word_dict.index(word) _, score = self.lm.score(start_state, word_idx, no_cache=True) for spelling in spellings: spelling_idxs = [tgt_dict.index(token) for token in spelling] assert ( tgt_dict.unk() not in spelling_idxs ), f"{spelling} {spelling_idxs}" self.trie.insert(spelling_idxs, word_idx, score) self.trie.smear(SmearingMode.MAX) self.decoder_opts = LexiconDecoderOptions( beam_size=args.beam, beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), beam_threshold=args.beam_threshold, lm_weight=args.lm_weight, word_score=args.word_score, unk_score=args.unk_weight, sil_score=args.sil_weight, log_add=False, criterion_type=self.criterion_type, ) self.decoder = LexiconDecoder( self.decoder_opts, self.trie, self.lm, self.silence, self.blank, self.unk_word, self.asg_transitions, self.unit_lm, ) else: assert args.unit_lm, "lexicon free decoding can only be done with a unit language model" from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions d = {w: [[w]] for w in tgt_dict.symbols} self.word_dict = create_word_dict(d) self.lm = KenLM(args.kenlm_model, self.word_dict) self.decoder_opts = LexiconFreeDecoderOptions( beam_size=args.beam, beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), beam_threshold=args.beam_threshold, lm_weight=args.lm_weight, sil_score=args.sil_weight, log_add=False, criterion_type=self.criterion_type, ) self.decoder = LexiconFreeDecoder( self.decoder_opts, self.lm, self.silence, self.blank, [] ) def decode(self, emissions): B, T, N = emissions.size() hypos = [] def idx_to_word(idx): if self.unit_lm: return self.idx_to_wrd[idx] else: return self.word_dict[idx] def make_hypo(result): hypo = {"tokens": self.get_tokens(result.tokens), "score": result.score} if self.lexicon: hypo["words"] = [idx_to_word(x) for x in result.words if x >= 0] return hypo for b in range(B): emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0) results = self.decoder.decode(emissions_ptr, T, N) nbest_results = results[: self.nbest] hypos.append([make_hypo(result) for result in nbest_results]) self.lm.empty_cache() return hypos
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/w2l_decoder.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Run inference for pre-processed data with a trained model. """ import ast import logging import math import os import sys import editdistance import numpy as np import torch from fairseq import checkpoint_utils, options, progress_bar, tasks, utils from fairseq.data.data_utils import post_process from fairseq.logging.meters import StopwatchMeter, TimeMeter logging.basicConfig() logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def add_asr_eval_argument(parser): parser.add_argument("--kspmodel", default=None, help="sentence piece model") parser.add_argument( "--wfstlm", default=None, help="wfstlm on dictonary output units" ) parser.add_argument( "--rnnt_decoding_type", default="greedy", help="wfstlm on dictonary\ output units", ) try: parser.add_argument( "--lm-weight", "--lm_weight", type=float, default=0.2, help="weight for lm while interpolating with neural score", ) except: pass parser.add_argument( "--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level" ) parser.add_argument( "--w2l-decoder", choices=["viterbi", "kenlm", "fairseqlm"], help="use a w2l decoder", ) parser.add_argument("--lexicon", help="lexicon for w2l decoder") parser.add_argument("--unit-lm", action="store_true", help="if using a unit lm") parser.add_argument("--kenlm-model", "--lm-model", help="lm model for w2l decoder") parser.add_argument("--beam-threshold", type=float, default=25.0) parser.add_argument("--beam-size-token", type=float, default=100) parser.add_argument("--word-score", type=float, default=1.0) parser.add_argument("--unk-weight", type=float, default=-math.inf) parser.add_argument("--sil-weight", type=float, default=0.0) parser.add_argument( "--dump-emissions", type=str, default=None, help="if present, dumps emissions into this file and exits", ) parser.add_argument( "--dump-features", type=str, default=None, help="if present, dumps features into this file and exits", ) parser.add_argument( "--load-emissions", type=str, default=None, help="if present, loads emissions from this file", ) return parser def check_args(args): # assert args.path is not None, "--path required for generation!" # assert args.results_path is not None, "--results_path required for generation!" assert ( not args.sampling or args.nbest == args.beam ), "--sampling requires --nbest to be equal to --beam" assert ( args.replace_unk is None or args.raw_text ), "--replace-unk requires a raw text dataset (--raw-text)" def get_dataset_itr(args, task, models): return task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.batch_size, max_positions=(sys.maxsize, sys.maxsize), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, data_buffer_size=args.data_buffer_size, ).next_epoch_itr(shuffle=False) def process_predictions( args, hypos, sp, tgt_dict, target_tokens, res_files, speaker, id ): for hypo in hypos[: min(len(hypos), args.nbest)]: hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu()) if "words" in hypo: hyp_words = " ".join(hypo["words"]) else: hyp_words = post_process(hyp_pieces, args.post_process) if res_files is not None: print( "{} ({}-{})".format(hyp_pieces, speaker, id), file=res_files["hypo.units"], ) print( "{} ({}-{})".format(hyp_words, speaker, id), file=res_files["hypo.words"], ) tgt_pieces = tgt_dict.string(target_tokens) tgt_words = post_process(tgt_pieces, args.post_process) if res_files is not None: print( "{} ({}-{})".format(tgt_pieces, speaker, id), file=res_files["ref.units"], ) print( "{} ({}-{})".format(tgt_words, speaker, id), file=res_files["ref.words"] ) # only score top hypothesis if not args.quiet: logger.debug("HYPO:" + hyp_words) logger.debug("TARGET:" + tgt_words) logger.debug("___________________") hyp_words = hyp_words.split() tgt_words = tgt_words.split() return editdistance.eval(hyp_words, tgt_words), len(tgt_words) def prepare_result_files(args): def get_res_file(file_prefix): if args.num_shards > 1: file_prefix = f"{args.shard_id}_{file_prefix}" path = os.path.join( args.results_path, "{}-{}-{}.txt".format( file_prefix, os.path.basename(args.path), args.gen_subset ), ) return open(path, "w", buffering=1) if not args.results_path: return None return { "hypo.words": get_res_file("hypo.word"), "hypo.units": get_res_file("hypo.units"), "ref.words": get_res_file("ref.word"), "ref.units": get_res_file("ref.units"), } def optimize_models(args, use_cuda, models): """Optimize ensemble for generation""" for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() class ExistingEmissionsDecoder(object): def __init__(self, decoder, emissions): self.decoder = decoder self.emissions = emissions def generate(self, models, sample, **unused): ids = sample["id"].cpu().numpy() try: emissions = np.stack(self.emissions[ids]) except: print([x.shape for x in self.emissions[ids]]) raise Exception("invalid sizes") emissions = torch.from_numpy(emissions) return self.decoder.decode(emissions) def main(args, task=None, model_state=None): check_args(args) if args.max_tokens is None and args.batch_size is None: args.max_tokens = 4000000 logger.info(args) use_cuda = torch.cuda.is_available() and not args.cpu logger.info("| decoding with criterion {}".format(args.criterion)) task = tasks.setup_task(args) # Load ensemble if args.load_emissions: models, criterions = [], [] task.load_dataset(args.gen_subset) else: logger.info("| loading model(s) from {}".format(args.path)) models, saved_cfg = checkpoint_utils.load_model_ensemble( utils.split_paths(args.path), arg_overrides=ast.literal_eval(args.model_overrides), task=task, suffix=args.checkpoint_suffix, strict=(args.checkpoint_shard_count == 1), num_shards=args.checkpoint_shard_count, state=model_state, ) optimize_models(args, use_cuda, models) task.load_dataset(args.gen_subset, task_cfg=saved_cfg.task) # Set dictionary tgt_dict = task.target_dictionary logger.info( "| {} {} {} examples".format( args.data, args.gen_subset, len(task.dataset(args.gen_subset)) ) ) # hack to pass transitions to W2lDecoder if args.criterion == "asg_loss": raise NotImplementedError("asg_loss is currently not supported") # trans = criterions[0].asg.trans.data # args.asg_transitions = torch.flatten(trans).tolist() # Load dataset (possibly sharded) itr = get_dataset_itr(args, task, models) # Initialize generator gen_timer = StopwatchMeter() def build_generator(args): w2l_decoder = getattr(args, "w2l_decoder", None) if w2l_decoder == "viterbi": from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder return W2lViterbiDecoder(args, task.target_dictionary) elif w2l_decoder == "kenlm": from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder return W2lKenLMDecoder(args, task.target_dictionary) elif w2l_decoder == "fairseqlm": from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder return W2lFairseqLMDecoder(args, task.target_dictionary) else: print( "only flashlight decoders with (viterbi, kenlm, fairseqlm) options are supported at the moment" ) # please do not touch this unless you test both generate.py and infer.py with audio_pretraining task generator = build_generator(args) if args.load_emissions: generator = ExistingEmissionsDecoder( generator, np.load(args.load_emissions, allow_pickle=True) ) logger.info("loaded emissions from " + args.load_emissions) num_sentences = 0 if args.results_path is not None and not os.path.exists(args.results_path): os.makedirs(args.results_path) max_source_pos = ( utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ), ) if max_source_pos is not None: max_source_pos = max_source_pos[0] if max_source_pos is not None: max_source_pos = max_source_pos[0] - 1 if args.dump_emissions: emissions = {} if args.dump_features: features = {} models[0].bert.proj = None else: res_files = prepare_result_files(args) errs_t = 0 lengths_t = 0 with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample if "net_input" not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample["target"][:, : args.prefix_size] gen_timer.start() if args.dump_emissions: with torch.no_grad(): encoder_out = models[0](**sample["net_input"]) emm = models[0].get_normalized_probs(encoder_out, log_probs=True) emm = emm.transpose(0, 1).cpu().numpy() for i, id in enumerate(sample["id"]): emissions[id.item()] = emm[i] continue elif args.dump_features: with torch.no_grad(): encoder_out = models[0](**sample["net_input"]) feat = encoder_out["encoder_out"].transpose(0, 1).cpu().numpy() for i, id in enumerate(sample["id"]): padding = ( encoder_out["encoder_padding_mask"][i].cpu().numpy() if encoder_out["encoder_padding_mask"] is not None else None ) features[id.item()] = (feat[i], padding) continue hypos = task.inference_step(generator, models, sample, prefix_tokens) num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample["id"].tolist()): speaker = None # id = task.dataset(args.gen_subset).ids[int(sample_id)] id = sample_id toks = ( sample["target"][i, :] if "target_label" not in sample else sample["target_label"][i, :] ) target_tokens = utils.strip_pad(toks, tgt_dict.pad()).int().cpu() # Process top predictions errs, length = process_predictions( args, hypos[i], None, tgt_dict, target_tokens, res_files, speaker, id, ) errs_t += errs lengths_t += length wps_meter.update(num_generated_tokens) t.log({"wps": round(wps_meter.avg)}) num_sentences += ( sample["nsentences"] if "nsentences" in sample else sample["id"].numel() ) wer = None if args.dump_emissions: emm_arr = [] for i in range(len(emissions)): emm_arr.append(emissions[i]) np.save(args.dump_emissions, emm_arr) logger.info(f"saved {len(emissions)} emissions to {args.dump_emissions}") elif args.dump_features: feat_arr = [] for i in range(len(features)): feat_arr.append(features[i]) np.save(args.dump_features, feat_arr) logger.info(f"saved {len(features)} emissions to {args.dump_features}") else: if lengths_t > 0: wer = errs_t * 100.0 / lengths_t logger.info(f"WER: {wer}") logger.info( "| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}" "sentences/s, {:.2f} tokens/s)".format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1.0 / gen_timer.avg, ) ) logger.info("| Generate {} with beam={}".format(args.gen_subset, args.beam)) return task, wer def make_parser(): parser = options.get_generation_parser() parser = add_asr_eval_argument(parser) return parser def cli_main(): parser = make_parser() args = options.parse_args_and_arch(parser) main(args) if __name__ == "__main__": cli_main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/infer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import os import re import sys import torch from examples.speech_recognition.data import AsrDataset from examples.speech_recognition.data.replabels import replabel_symbol from fairseq.data import Dictionary from fairseq.tasks import LegacyFairseqTask, register_task def get_asr_dataset_from_json(data_json_path, tgt_dict): """ Parse data json and create dataset. See scripts/asr_prep_json.py which pack json from raw files Json example: { "utts": { "4771-29403-0025": { "input": { "length_ms": 170, "path": "/tmp/file1.flac" }, "output": { "text": "HELLO \n", "token": "HE LLO", "tokenid": "4815, 861" } }, "1564-142299-0096": { ... } } """ if not os.path.isfile(data_json_path): raise FileNotFoundError("Dataset not found: {}".format(data_json_path)) with open(data_json_path, "rb") as f: data_samples = json.load(f)["utts"] assert len(data_samples) != 0 sorted_samples = sorted( data_samples.items(), key=lambda sample: int(sample[1]["input"]["length_ms"]), reverse=True, ) aud_paths = [s[1]["input"]["path"] for s in sorted_samples] ids = [s[0] for s in sorted_samples] speakers = [] for s in sorted_samples: m = re.search("(.+?)-(.+?)-(.+?)", s[0]) speakers.append(m.group(1) + "_" + m.group(2)) frame_sizes = [s[1]["input"]["length_ms"] for s in sorted_samples] tgt = [ [int(i) for i in s[1]["output"]["tokenid"].split(", ")] for s in sorted_samples ] # append eos tgt = [[*t, tgt_dict.eos()] for t in tgt] return AsrDataset(aud_paths, frame_sizes, tgt, tgt_dict, ids, speakers) @register_task("speech_recognition") class SpeechRecognitionTask(LegacyFairseqTask): """ Task for training speech recognition model. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", help="path to data directory") parser.add_argument( "--silence-token", default="\u2581", help="token for silence (used by w2l)" ) parser.add_argument( "--max-source-positions", default=sys.maxsize, type=int, metavar="N", help="max number of frames in the source sequence", ) parser.add_argument( "--max-target-positions", default=1024, type=int, metavar="N", help="max number of tokens in the target sequence", ) def __init__(self, args, tgt_dict): super().__init__(args) self.tgt_dict = tgt_dict @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries).""" dict_path = os.path.join(args.data, "dict.txt") if not os.path.isfile(dict_path): raise FileNotFoundError("Dict not found: {}".format(dict_path)) tgt_dict = Dictionary.load(dict_path) if args.criterion == "ctc_loss": tgt_dict.add_symbol("<ctc_blank>") elif args.criterion == "asg_loss": for i in range(1, args.max_replabel + 1): tgt_dict.add_symbol(replabel_symbol(i)) print("| dictionary: {} types".format(len(tgt_dict))) return cls(args, tgt_dict) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ data_json_path = os.path.join(self.args.data, "{}.json".format(split)) self.datasets[split] = get_asr_dataset_from_json(data_json_path, self.tgt_dict) def build_generator(self, models, args, **unused): w2l_decoder = getattr(args, "w2l_decoder", None) if w2l_decoder == "viterbi": from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder return W2lViterbiDecoder(args, self.target_dictionary) elif w2l_decoder == "kenlm": from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder return W2lKenLMDecoder(args, self.target_dictionary) elif w2l_decoder == "fairseqlm": from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder return W2lFairseqLMDecoder(args, self.target_dictionary) else: return super().build_generator(models, args) @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.tgt_dict @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary` (if applicable for this task).""" return None def max_positions(self): """Return the max speech and sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/tasks/speech_recognition.py
import importlib import os for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): task_name = file[: file.find(".py")] importlib.import_module("examples.speech_recognition.tasks." + task_name)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/tasks/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import argparse import concurrent.futures import json import multiprocessing import os from collections import namedtuple from itertools import chain import sentencepiece as spm from fairseq.data import Dictionary MILLISECONDS_TO_SECONDS = 0.001 def process_sample(aud_path, lable, utt_id, sp, tgt_dict): import torchaudio input = {} output = {} si, ei = torchaudio.info(aud_path) input["length_ms"] = int( si.length / si.channels / si.rate / MILLISECONDS_TO_SECONDS ) input["path"] = aud_path token = " ".join(sp.EncodeAsPieces(lable)) ids = tgt_dict.encode_line(token, append_eos=False) output["text"] = lable output["token"] = token output["tokenid"] = ", ".join(map(str, [t.tolist() for t in ids])) return {utt_id: {"input": input, "output": output}} def main(): parser = argparse.ArgumentParser() parser.add_argument( "--audio-dirs", nargs="+", default=["-"], required=True, help="input directories with audio files", ) parser.add_argument( "--labels", required=True, help="aggregated input labels with format <ID LABEL> per line", type=argparse.FileType("r", encoding="UTF-8"), ) parser.add_argument( "--spm-model", required=True, help="sentencepiece model to use for encoding", type=argparse.FileType("r", encoding="UTF-8"), ) parser.add_argument( "--dictionary", required=True, help="file to load fairseq dictionary from", type=argparse.FileType("r", encoding="UTF-8"), ) parser.add_argument("--audio-format", choices=["flac", "wav"], default="wav") parser.add_argument( "--output", required=True, type=argparse.FileType("w"), help="path to save json output", ) args = parser.parse_args() sp = spm.SentencePieceProcessor() sp.Load(args.spm_model.name) tgt_dict = Dictionary.load(args.dictionary) labels = {} for line in args.labels: (utt_id, label) = line.split(" ", 1) labels[utt_id] = label if len(labels) == 0: raise Exception("No labels found in ", args.labels_path) Sample = namedtuple("Sample", "aud_path utt_id") samples = [] for path, _, files in chain.from_iterable( os.walk(path) for path in args.audio_dirs ): for f in files: if f.endswith(args.audio_format): if len(os.path.splitext(f)) != 2: raise Exception("Expect <utt_id.extension> file name. Got: ", f) utt_id = os.path.splitext(f)[0] if utt_id not in labels: continue samples.append(Sample(os.path.join(path, f), utt_id)) utts = {} num_cpu = multiprocessing.cpu_count() with concurrent.futures.ThreadPoolExecutor(max_workers=num_cpu) as executor: future_to_sample = { executor.submit( process_sample, s.aud_path, labels[s.utt_id], s.utt_id, sp, tgt_dict ): s for s in samples } for future in concurrent.futures.as_completed(future_to_sample): try: data = future.result() except Exception as exc: print("generated an exception: ", exc) else: utts.update(data) json.dump({"utts": utts}, args.output, indent=4) if __name__ == "__main__": main()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/datasets/asr_prep_json.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import re from collections import deque from enum import Enum import numpy as np """ Utility modules for computation of Word Error Rate, Alignments, as well as more granular metrics like deletion, insersion and substitutions. """ class Code(Enum): match = 1 substitution = 2 insertion = 3 deletion = 4 class Token(object): def __init__(self, lbl="", st=np.nan, en=np.nan): if np.isnan(st): self.label, self.start, self.end = "", 0.0, 0.0 else: self.label, self.start, self.end = lbl, st, en class AlignmentResult(object): def __init__(self, refs, hyps, codes, score): self.refs = refs # std::deque<int> self.hyps = hyps # std::deque<int> self.codes = codes # std::deque<Code> self.score = score # float def coordinate_to_offset(row, col, ncols): return int(row * ncols + col) def offset_to_row(offset, ncols): return int(offset / ncols) def offset_to_col(offset, ncols): return int(offset % ncols) def trimWhitespace(str): return re.sub(" +", " ", re.sub(" *$", "", re.sub("^ *", "", str))) def str2toks(str): pieces = trimWhitespace(str).split(" ") toks = [] for p in pieces: toks.append(Token(p, 0.0, 0.0)) return toks class EditDistance(object): def __init__(self, time_mediated): self.time_mediated_ = time_mediated self.scores_ = np.nan # Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> self.backtraces_ = ( np.nan ) # Eigen::Matrix<size_t, Eigen::Dynamic, Eigen::Dynamic> backtraces_; self.confusion_pairs_ = {} def cost(self, ref, hyp, code): if self.time_mediated_: if code == Code.match: return abs(ref.start - hyp.start) + abs(ref.end - hyp.end) elif code == Code.insertion: return hyp.end - hyp.start elif code == Code.deletion: return ref.end - ref.start else: # substitution return abs(ref.start - hyp.start) + abs(ref.end - hyp.end) + 0.1 else: if code == Code.match: return 0 elif code == Code.insertion or code == Code.deletion: return 3 else: # substitution return 4 def get_result(self, refs, hyps): res = AlignmentResult(refs=deque(), hyps=deque(), codes=deque(), score=np.nan) num_rows, num_cols = self.scores_.shape res.score = self.scores_[num_rows - 1, num_cols - 1] curr_offset = coordinate_to_offset(num_rows - 1, num_cols - 1, num_cols) while curr_offset != 0: curr_row = offset_to_row(curr_offset, num_cols) curr_col = offset_to_col(curr_offset, num_cols) prev_offset = self.backtraces_[curr_row, curr_col] prev_row = offset_to_row(prev_offset, num_cols) prev_col = offset_to_col(prev_offset, num_cols) res.refs.appendleft(curr_row - 1) # Note: this was .push_front() in C++ res.hyps.appendleft(curr_col - 1) if curr_row - 1 == prev_row and curr_col == prev_col: res.codes.appendleft(Code.deletion) elif curr_row == prev_row and curr_col - 1 == prev_col: res.codes.appendleft(Code.insertion) else: # assert(curr_row - 1 == prev_row and curr_col - 1 == prev_col) ref_str = refs[res.refs[0]].label hyp_str = hyps[res.hyps[0]].label if ref_str == hyp_str: res.codes.appendleft(Code.match) else: res.codes.appendleft(Code.substitution) confusion_pair = "%s -> %s" % (ref_str, hyp_str) if confusion_pair not in self.confusion_pairs_: self.confusion_pairs_[confusion_pair] = 1 else: self.confusion_pairs_[confusion_pair] += 1 curr_offset = prev_offset return res def align(self, refs, hyps): if len(refs) == 0 and len(hyps) == 0: return np.nan # NOTE: we're not resetting the values in these matrices because every value # will be overridden in the loop below. If this assumption doesn't hold, # be sure to set all entries in self.scores_ and self.backtraces_ to 0. self.scores_ = np.zeros((len(refs) + 1, len(hyps) + 1)) self.backtraces_ = np.zeros((len(refs) + 1, len(hyps) + 1)) num_rows, num_cols = self.scores_.shape for i in range(num_rows): for j in range(num_cols): if i == 0 and j == 0: self.scores_[i, j] = 0.0 self.backtraces_[i, j] = 0 continue if i == 0: self.scores_[i, j] = self.scores_[i, j - 1] + self.cost( None, hyps[j - 1], Code.insertion ) self.backtraces_[i, j] = coordinate_to_offset(i, j - 1, num_cols) continue if j == 0: self.scores_[i, j] = self.scores_[i - 1, j] + self.cost( refs[i - 1], None, Code.deletion ) self.backtraces_[i, j] = coordinate_to_offset(i - 1, j, num_cols) continue # Below here both i and j are greater than 0 ref = refs[i - 1] hyp = hyps[j - 1] best_score = self.scores_[i - 1, j - 1] + ( self.cost(ref, hyp, Code.match) if (ref.label == hyp.label) else self.cost(ref, hyp, Code.substitution) ) prev_row = i - 1 prev_col = j - 1 ins = self.scores_[i, j - 1] + self.cost(None, hyp, Code.insertion) if ins < best_score: best_score = ins prev_row = i prev_col = j - 1 delt = self.scores_[i - 1, j] + self.cost(ref, None, Code.deletion) if delt < best_score: best_score = delt prev_row = i - 1 prev_col = j self.scores_[i, j] = best_score self.backtraces_[i, j] = coordinate_to_offset( prev_row, prev_col, num_cols ) return self.get_result(refs, hyps) class WERTransformer(object): def __init__(self, hyp_str, ref_str, verbose=True): self.ed_ = EditDistance(False) self.id2oracle_errs_ = {} self.utts_ = 0 self.words_ = 0 self.insertions_ = 0 self.deletions_ = 0 self.substitutions_ = 0 self.process(["dummy_str", hyp_str, ref_str]) if verbose: print("'%s' vs '%s'" % (hyp_str, ref_str)) self.report_result() def process(self, input): # std::vector<std::string>&& input if len(input) < 3: print( "Input must be of the form <id> ... <hypo> <ref> , got ", len(input), " inputs:", ) return None # Align # std::vector<Token> hyps; # std::vector<Token> refs; hyps = str2toks(input[-2]) refs = str2toks(input[-1]) alignment = self.ed_.align(refs, hyps) if alignment is None: print("Alignment is null") return np.nan # Tally errors ins = 0 dels = 0 subs = 0 for code in alignment.codes: if code == Code.substitution: subs += 1 elif code == Code.insertion: ins += 1 elif code == Code.deletion: dels += 1 # Output row = input row.append(str(len(refs))) row.append(str(ins)) row.append(str(dels)) row.append(str(subs)) # print(row) # Accumulate kIdIndex = 0 kNBestSep = "/" pieces = input[kIdIndex].split(kNBestSep) if len(pieces) == 0: print( "Error splitting ", input[kIdIndex], " on '", kNBestSep, "', got empty list", ) return np.nan id = pieces[0] if id not in self.id2oracle_errs_: self.utts_ += 1 self.words_ += len(refs) self.insertions_ += ins self.deletions_ += dels self.substitutions_ += subs self.id2oracle_errs_[id] = [ins, dels, subs] else: curr_err = ins + dels + subs prev_err = np.sum(self.id2oracle_errs_[id]) if curr_err < prev_err: self.id2oracle_errs_[id] = [ins, dels, subs] return 0 def report_result(self): # print("---------- Summary ---------------") if self.words_ == 0: print("No words counted") return # 1-best best_wer = ( 100.0 * (self.insertions_ + self.deletions_ + self.substitutions_) / self.words_ ) print( "\tWER = %0.2f%% (%i utts, %i words, %0.2f%% ins, " "%0.2f%% dels, %0.2f%% subs)" % ( best_wer, self.utts_, self.words_, 100.0 * self.insertions_ / self.words_, 100.0 * self.deletions_ / self.words_, 100.0 * self.substitutions_ / self.words_, ) ) def wer(self): if self.words_ == 0: wer = np.nan else: wer = ( 100.0 * (self.insertions_ + self.deletions_ + self.substitutions_) / self.words_ ) return wer def stats(self): if self.words_ == 0: stats = {} else: wer = ( 100.0 * (self.insertions_ + self.deletions_ + self.substitutions_) / self.words_ ) stats = dict( { "wer": wer, "utts": self.utts_, "numwords": self.words_, "ins": self.insertions_, "dels": self.deletions_, "subs": self.substitutions_, "confusion_pairs": self.ed_.confusion_pairs_, } ) return stats def calc_wer(hyp_str, ref_str): t = WERTransformer(hyp_str, ref_str, verbose=0) return t.wer() def calc_wer_stats(hyp_str, ref_str): t = WERTransformer(hyp_str, ref_str, verbose=0) return t.stats() def get_wer_alignment_codes(hyp_str, ref_str): """ INPUT: hypothesis string, reference string OUTPUT: List of alignment codes (intermediate results from WER computation) """ t = WERTransformer(hyp_str, ref_str, verbose=0) return t.ed_.align(str2toks(ref_str), str2toks(hyp_str)).codes def merge_counts(x, y): # Merge two hashes which have 'counts' as their values # This can be used for example to merge confusion pair counts # conf_pairs = merge_counts(conf_pairs, stats['confusion_pairs']) for k, v in y.items(): if k not in x: x[k] = 0 x[k] += v return x
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/utils/wer_utils.py
import importlib import os for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module("examples.speech_recognition.models." + model_name)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import math from collections.abc import Iterable import torch import torch.nn as nn from examples.speech_recognition.data.data_utils import lengths_to_encoder_padding_mask from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqEncoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( LinearizedConvolution, TransformerDecoderLayer, TransformerEncoderLayer, VGGBlock, ) @register_model("asr_vggtransformer") class VGGTransformerModel(FairseqEncoderDecoderModel): """ Transformers with convolutional context for ASR https://arxiv.org/abs/1904.11660 """ def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--input-feat-per-channel", type=int, metavar="N", help="encoder input dimension per input channel", ) parser.add_argument( "--vggblock-enc-config", type=str, metavar="EXPR", help=""" an array of tuples each containing the configuration of one vggblock: [(out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, use_layer_norm), ...]) """, ) parser.add_argument( "--transformer-enc-config", type=str, metavar="EXPR", help="""" a tuple containing the configuration of the encoder transformer layers configurations: [(input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout), ...]') """, ) parser.add_argument( "--enc-output-dim", type=int, metavar="N", help=""" encoder output dimension, can be None. If specified, projecting the transformer output to the specified dimension""", ) parser.add_argument( "--in-channels", type=int, metavar="N", help="number of encoder input channels", ) parser.add_argument( "--tgt-embed-dim", type=int, metavar="N", help="embedding dimension of the decoder target tokens", ) parser.add_argument( "--transformer-dec-config", type=str, metavar="EXPR", help=""" a tuple containing the configuration of the decoder transformer layers configurations: [(input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout), ...] """, ) parser.add_argument( "--conv-dec-config", type=str, metavar="EXPR", help=""" an array of tuples for the decoder 1-D convolution config [(out_channels, conv_kernel_size, use_layer_norm), ...]""", ) @classmethod def build_encoder(cls, args, task): return VGGTransformerEncoder( input_feat_per_channel=args.input_feat_per_channel, vggblock_config=eval(args.vggblock_enc_config), transformer_config=eval(args.transformer_enc_config), encoder_output_dim=args.enc_output_dim, in_channels=args.in_channels, ) @classmethod def build_decoder(cls, args, task): return TransformerDecoder( dictionary=task.target_dictionary, embed_dim=args.tgt_embed_dim, transformer_config=eval(args.transformer_dec_config), conv_config=eval(args.conv_dec_config), encoder_output_dim=args.enc_output_dim, ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure that all args are properly defaulted # (in case there are any new ones) base_architecture(args) encoder = cls.build_encoder(args, task) decoder = cls.build_decoder(args, task) return cls(encoder, decoder) def get_normalized_probs(self, net_output, log_probs, sample=None): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = super().get_normalized_probs(net_output, log_probs, sample) lprobs.batch_first = True return lprobs DEFAULT_ENC_VGGBLOCK_CONFIG = ((32, 3, 2, 2, False),) * 2 DEFAULT_ENC_TRANSFORMER_CONFIG = ((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2 # 256: embedding dimension # 4: number of heads # 1024: FFN # True: apply layerNorm before (dropout + resiaul) instead of after # 0.2 (dropout): dropout after MultiheadAttention and second FC # 0.2 (attention_dropout): dropout in MultiheadAttention # 0.2 (relu_dropout): dropout after ReLu DEFAULT_DEC_TRANSFORMER_CONFIG = ((256, 2, 1024, True, 0.2, 0.2, 0.2),) * 2 DEFAULT_DEC_CONV_CONFIG = ((256, 3, True),) * 2 # TODO: repace transformer encoder config from one liner # to explicit args to get rid of this transformation def prepare_transformer_encoder_params( input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout, ): args = argparse.Namespace() args.encoder_embed_dim = input_dim args.encoder_attention_heads = num_heads args.attention_dropout = attention_dropout args.dropout = dropout args.activation_dropout = relu_dropout args.encoder_normalize_before = normalize_before args.encoder_ffn_embed_dim = ffn_dim return args def prepare_transformer_decoder_params( input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout, ): args = argparse.Namespace() args.decoder_embed_dim = input_dim args.decoder_attention_heads = num_heads args.attention_dropout = attention_dropout args.dropout = dropout args.activation_dropout = relu_dropout args.decoder_normalize_before = normalize_before args.decoder_ffn_embed_dim = ffn_dim return args class VGGTransformerEncoder(FairseqEncoder): """VGG + Transformer encoder""" def __init__( self, input_feat_per_channel, vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG, transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG, encoder_output_dim=512, in_channels=1, transformer_context=None, transformer_sampling=None, ): """constructor for VGGTransformerEncoder Args: - input_feat_per_channel: feature dim (not including stacked, just base feature) - in_channel: # input channels (e.g., if stack 8 feature vector together, this is 8) - vggblock_config: configuration of vggblock, see comments on DEFAULT_ENC_VGGBLOCK_CONFIG - transformer_config: configuration of transformer layer, see comments on DEFAULT_ENC_TRANSFORMER_CONFIG - encoder_output_dim: final transformer output embedding dimension - transformer_context: (left, right) if set, self-attention will be focused on (t-left, t+right) - transformer_sampling: an iterable of int, must match with len(transformer_config), transformer_sampling[i] indicates sampling factor for i-th transformer layer, after multihead att and feedfoward part """ super().__init__(None) self.num_vggblocks = 0 if vggblock_config is not None: if not isinstance(vggblock_config, Iterable): raise ValueError("vggblock_config is not iterable") self.num_vggblocks = len(vggblock_config) self.conv_layers = nn.ModuleList() self.in_channels = in_channels self.input_dim = input_feat_per_channel self.pooling_kernel_sizes = [] if vggblock_config is not None: for _, config in enumerate(vggblock_config): ( out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, layer_norm, ) = config self.conv_layers.append( VGGBlock( in_channels, out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, input_dim=input_feat_per_channel, layer_norm=layer_norm, ) ) self.pooling_kernel_sizes.append(pooling_kernel_size) in_channels = out_channels input_feat_per_channel = self.conv_layers[-1].output_dim transformer_input_dim = self.infer_conv_output_dim( self.in_channels, self.input_dim ) # transformer_input_dim is the output dimension of VGG part self.validate_transformer_config(transformer_config) self.transformer_context = self.parse_transformer_context(transformer_context) self.transformer_sampling = self.parse_transformer_sampling( transformer_sampling, len(transformer_config) ) self.transformer_layers = nn.ModuleList() if transformer_input_dim != transformer_config[0][0]: self.transformer_layers.append( Linear(transformer_input_dim, transformer_config[0][0]) ) self.transformer_layers.append( TransformerEncoderLayer( prepare_transformer_encoder_params(*transformer_config[0]) ) ) for i in range(1, len(transformer_config)): if transformer_config[i - 1][0] != transformer_config[i][0]: self.transformer_layers.append( Linear(transformer_config[i - 1][0], transformer_config[i][0]) ) self.transformer_layers.append( TransformerEncoderLayer( prepare_transformer_encoder_params(*transformer_config[i]) ) ) self.encoder_output_dim = encoder_output_dim self.transformer_layers.extend( [ Linear(transformer_config[-1][0], encoder_output_dim), LayerNorm(encoder_output_dim), ] ) def forward(self, src_tokens, src_lengths, **kwargs): """ src_tokens: padded tensor (B, T, C * feat) src_lengths: tensor of original lengths of input utterances (B,) """ bsz, max_seq_len, _ = src_tokens.size() x = src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim) x = x.transpose(1, 2).contiguous() # (B, C, T, feat) for layer_idx in range(len(self.conv_layers)): x = self.conv_layers[layer_idx](x) bsz, _, output_seq_len, _ = x.size() # (B, C, T, feat) -> (B, T, C, feat) -> (T, B, C, feat) -> (T, B, C * feat) x = x.transpose(1, 2).transpose(0, 1) x = x.contiguous().view(output_seq_len, bsz, -1) input_lengths = src_lengths.clone() for s in self.pooling_kernel_sizes: input_lengths = (input_lengths.float() / s).ceil().long() encoder_padding_mask, _ = lengths_to_encoder_padding_mask( input_lengths, batch_first=True ) if not encoder_padding_mask.any(): encoder_padding_mask = None subsampling_factor = int(max_seq_len * 1.0 / output_seq_len + 0.5) attn_mask = self.lengths_to_attn_mask(input_lengths, subsampling_factor) transformer_layer_idx = 0 for layer_idx in range(len(self.transformer_layers)): if isinstance(self.transformer_layers[layer_idx], TransformerEncoderLayer): x = self.transformer_layers[layer_idx]( x, encoder_padding_mask, attn_mask ) if self.transformer_sampling[transformer_layer_idx] != 1: sampling_factor = self.transformer_sampling[transformer_layer_idx] x, encoder_padding_mask, attn_mask = self.slice( x, encoder_padding_mask, attn_mask, sampling_factor ) transformer_layer_idx += 1 else: x = self.transformer_layers[layer_idx](x) # encoder_padding_maks is a (T x B) tensor, its [t, b] elements indicate # whether encoder_output[t, b] is valid or not (valid=0, invalid=1) return { "encoder_out": x, # (T, B, C) "encoder_padding_mask": encoder_padding_mask.t() if encoder_padding_mask is not None else None, # (B, T) --> (T, B) } def infer_conv_output_dim(self, in_channels, input_dim): sample_seq_len = 200 sample_bsz = 10 x = torch.randn(sample_bsz, in_channels, sample_seq_len, input_dim) for i, _ in enumerate(self.conv_layers): x = self.conv_layers[i](x) x = x.transpose(1, 2) mb, seq = x.size()[:2] return x.contiguous().view(mb, seq, -1).size(-1) def validate_transformer_config(self, transformer_config): for config in transformer_config: input_dim, num_heads = config[:2] if input_dim % num_heads != 0: msg = ( "ERROR in transformer config {}: ".format(config) + "input dimension {} ".format(input_dim) + "not dividable by number of heads {}".format(num_heads) ) raise ValueError(msg) def parse_transformer_context(self, transformer_context): """ transformer_context can be the following: - None; indicates no context is used, i.e., transformer can access full context - a tuple/list of two int; indicates left and right context, any number <0 indicates infinite context * e.g., (5, 6) indicates that for query at x_t, transformer can access [t-5, t+6] (inclusive) * e.g., (-1, 6) indicates that for query at x_t, transformer can access [0, t+6] (inclusive) """ if transformer_context is None: return None if not isinstance(transformer_context, Iterable): raise ValueError("transformer context must be Iterable if it is not None") if len(transformer_context) != 2: raise ValueError("transformer context must have length 2") left_context = transformer_context[0] if left_context < 0: left_context = None right_context = transformer_context[1] if right_context < 0: right_context = None if left_context is None and right_context is None: return None return (left_context, right_context) def parse_transformer_sampling(self, transformer_sampling, num_layers): """ parsing transformer sampling configuration Args: - transformer_sampling, accepted input: * None, indicating no sampling * an Iterable with int (>0) as element - num_layers, expected number of transformer layers, must match with the length of transformer_sampling if it is not None Returns: - A tuple with length num_layers """ if transformer_sampling is None: return (1,) * num_layers if not isinstance(transformer_sampling, Iterable): raise ValueError( "transformer_sampling must be an iterable if it is not None" ) if len(transformer_sampling) != num_layers: raise ValueError( "transformer_sampling {} does not match with the number " "of layers {}".format(transformer_sampling, num_layers) ) for layer, value in enumerate(transformer_sampling): if not isinstance(value, int): raise ValueError("Invalid value in transformer_sampling: ") if value < 1: raise ValueError( "{} layer's subsampling is {}.".format(layer, value) + " This is not allowed! " ) return transformer_sampling def slice(self, embedding, padding_mask, attn_mask, sampling_factor): """ embedding is a (T, B, D) tensor padding_mask is a (B, T) tensor or None attn_mask is a (T, T) tensor or None """ embedding = embedding[::sampling_factor, :, :] if padding_mask is not None: padding_mask = padding_mask[:, ::sampling_factor] if attn_mask is not None: attn_mask = attn_mask[::sampling_factor, ::sampling_factor] return embedding, padding_mask, attn_mask def lengths_to_attn_mask(self, input_lengths, subsampling_factor=1): """ create attention mask according to sequence lengths and transformer context Args: - input_lengths: (B, )-shape Int/Long tensor; input_lengths[b] is the length of b-th sequence - subsampling_factor: int * Note that the left_context and right_context is specified in the input frame-level while input to transformer may already go through subsampling (e.g., the use of striding in vggblock) we use subsampling_factor to scale the left/right context Return: - a (T, T) binary tensor or None, where T is max(input_lengths) * if self.transformer_context is None, None * if left_context is None, * attn_mask[t, t + right_context + 1:] = 1 * others = 0 * if right_context is None, * attn_mask[t, 0:t - left_context] = 1 * others = 0 * elsif * attn_mask[t, t - left_context: t + right_context + 1] = 0 * others = 1 """ if self.transformer_context is None: return None maxT = torch.max(input_lengths).item() attn_mask = torch.zeros(maxT, maxT) left_context = self.transformer_context[0] right_context = self.transformer_context[1] if left_context is not None: left_context = math.ceil(self.transformer_context[0] / subsampling_factor) if right_context is not None: right_context = math.ceil(self.transformer_context[1] / subsampling_factor) for t in range(maxT): if left_context is not None: st = 0 en = max(st, t - left_context) attn_mask[t, st:en] = 1 if right_context is not None: st = t + right_context + 1 st = min(st, maxT - 1) attn_mask[t, st:] = 1 return attn_mask.to(input_lengths.device) def reorder_encoder_out(self, encoder_out, new_order): encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(1, new_order) return encoder_out class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs. Default: ``False`` left_pad (bool, optional): whether the input is left-padded. Default: ``False`` """ def __init__( self, dictionary, embed_dim=512, transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG, conv_config=DEFAULT_DEC_CONV_CONFIG, encoder_output_dim=512, ): super().__init__(dictionary) vocab_size = len(dictionary) self.padding_idx = dictionary.pad() self.embed_tokens = Embedding(vocab_size, embed_dim, self.padding_idx) self.conv_layers = nn.ModuleList() for i in range(len(conv_config)): out_channels, kernel_size, layer_norm = conv_config[i] if i == 0: conv_layer = LinearizedConv1d( embed_dim, out_channels, kernel_size, padding=kernel_size - 1 ) else: conv_layer = LinearizedConv1d( conv_config[i - 1][0], out_channels, kernel_size, padding=kernel_size - 1, ) self.conv_layers.append(conv_layer) if layer_norm: self.conv_layers.append(nn.LayerNorm(out_channels)) self.conv_layers.append(nn.ReLU()) self.layers = nn.ModuleList() if conv_config[-1][0] != transformer_config[0][0]: self.layers.append(Linear(conv_config[-1][0], transformer_config[0][0])) self.layers.append( TransformerDecoderLayer( prepare_transformer_decoder_params(*transformer_config[0]) ) ) for i in range(1, len(transformer_config)): if transformer_config[i - 1][0] != transformer_config[i][0]: self.layers.append( Linear(transformer_config[i - 1][0], transformer_config[i][0]) ) self.layers.append( TransformerDecoderLayer( prepare_transformer_decoder_params(*transformer_config[i]) ) ) self.fc_out = Linear(transformer_config[-1][0], vocab_size) def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the last decoder layer's output of shape `(batch, tgt_len, vocab)` - the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)` """ target_padding_mask = ( (prev_output_tokens == self.padding_idx).to(prev_output_tokens.device) if incremental_state is None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] # embed tokens x = self.embed_tokens(prev_output_tokens) # B x T x C -> T x B x C x = self._transpose_if_training(x, incremental_state) for layer in self.conv_layers: if isinstance(layer, LinearizedConvolution): x = layer(x, incremental_state) else: x = layer(x) # B x T x C -> T x B x C x = self._transpose_if_inference(x, incremental_state) # decoder layers for layer in self.layers: if isinstance(layer, TransformerDecoderLayer): x, *_ = layer( x, (encoder_out["encoder_out"] if encoder_out is not None else None), ( encoder_out["encoder_padding_mask"].t() if encoder_out["encoder_padding_mask"] is not None else None ), incremental_state, self_attn_mask=( self.buffered_future_mask(x) if incremental_state is None else None ), self_attn_padding_mask=( target_padding_mask if incremental_state is None else None ), ) else: x = layer(x) # T x B x C -> B x T x C x = x.transpose(0, 1) x = self.fc_out(x) return x, None def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) if self._future_mask.size(0) < dim: self._future_mask = torch.triu( utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def _transpose_if_training(self, x, incremental_state): if incremental_state is None: x = x.transpose(0, 1) return x def _transpose_if_inference(self, x, incremental_state): if incremental_state: x = x.transpose(0, 1) return x @register_model("asr_vggtransformer_encoder") class VGGTransformerEncoderModel(FairseqEncoderModel): def __init__(self, encoder): super().__init__(encoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--input-feat-per-channel", type=int, metavar="N", help="encoder input dimension per input channel", ) parser.add_argument( "--vggblock-enc-config", type=str, metavar="EXPR", help=""" an array of tuples each containing the configuration of one vggblock [(out_channels, conv_kernel_size, pooling_kernel_size,num_conv_layers), ...] """, ) parser.add_argument( "--transformer-enc-config", type=str, metavar="EXPR", help=""" a tuple containing the configuration of the Transformer layers configurations: [(input_dim, num_heads, ffn_dim, normalize_before, dropout, attention_dropout, relu_dropout), ]""", ) parser.add_argument( "--enc-output-dim", type=int, metavar="N", help="encoder output dimension, projecting the LSTM output", ) parser.add_argument( "--in-channels", type=int, metavar="N", help="number of encoder input channels", ) parser.add_argument( "--transformer-context", type=str, metavar="EXPR", help=""" either None or a tuple of two ints, indicating left/right context a transformer can have access to""", ) parser.add_argument( "--transformer-sampling", type=str, metavar="EXPR", help=""" either None or a tuple of ints, indicating sampling factor in each layer""", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" base_architecture_enconly(args) encoder = VGGTransformerEncoderOnly( vocab_size=len(task.target_dictionary), input_feat_per_channel=args.input_feat_per_channel, vggblock_config=eval(args.vggblock_enc_config), transformer_config=eval(args.transformer_enc_config), encoder_output_dim=args.enc_output_dim, in_channels=args.in_channels, transformer_context=eval(args.transformer_context), transformer_sampling=eval(args.transformer_sampling), ) return cls(encoder) def get_normalized_probs(self, net_output, log_probs, sample=None): # net_output['encoder_out'] is a (T, B, D) tensor lprobs = super().get_normalized_probs(net_output, log_probs, sample) # lprobs is a (T, B, D) tensor # we need to transoose to get (B, T, D) tensor lprobs = lprobs.transpose(0, 1).contiguous() lprobs.batch_first = True return lprobs class VGGTransformerEncoderOnly(VGGTransformerEncoder): def __init__( self, vocab_size, input_feat_per_channel, vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG, transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG, encoder_output_dim=512, in_channels=1, transformer_context=None, transformer_sampling=None, ): super().__init__( input_feat_per_channel=input_feat_per_channel, vggblock_config=vggblock_config, transformer_config=transformer_config, encoder_output_dim=encoder_output_dim, in_channels=in_channels, transformer_context=transformer_context, transformer_sampling=transformer_sampling, ) self.fc_out = Linear(self.encoder_output_dim, vocab_size) def forward(self, src_tokens, src_lengths, **kwargs): """ src_tokens: padded tensor (B, T, C * feat) src_lengths: tensor of original lengths of input utterances (B,) """ enc_out = super().forward(src_tokens, src_lengths) x = self.fc_out(enc_out["encoder_out"]) # x = F.log_softmax(x, dim=-1) # Note: no need this line, because model.get_normalized_prob will call # log_softmax return { "encoder_out": x, # (T, B, C) "encoder_padding_mask": enc_out["encoder_padding_mask"], # (T, B) } def max_positions(self): """Maximum input length supported by the encoder.""" return (1e6, 1e6) # an arbitrary large number def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) # nn.init.uniform_(m.weight, -0.1, 0.1) # nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True, dropout=0): """Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features, bias=bias) # m.weight.data.uniform_(-0.1, 0.1) # if bias: # m.bias.data.uniform_(-0.1, 0.1) return m def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0, **kwargs): """Weight-normalized Conv1d layer optimized for decoding""" m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) nn.init.normal_(m.weight, mean=0, std=std) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m, dim=2) def LayerNorm(embedding_dim): m = nn.LayerNorm(embedding_dim) return m # seq2seq models def base_architecture(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", DEFAULT_ENC_VGGBLOCK_CONFIG ) args.transformer_enc_config = getattr( args, "transformer_enc_config", DEFAULT_ENC_TRANSFORMER_CONFIG ) args.enc_output_dim = getattr(args, "enc_output_dim", 512) args.in_channels = getattr(args, "in_channels", 1) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128) args.transformer_dec_config = getattr( args, "transformer_dec_config", DEFAULT_ENC_TRANSFORMER_CONFIG ) args.conv_dec_config = getattr(args, "conv_dec_config", DEFAULT_DEC_CONV_CONFIG) args.transformer_context = getattr(args, "transformer_context", "None") @register_model_architecture("asr_vggtransformer", "vggtransformer_1") def vggtransformer_1(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 14", ) args.enc_output_dim = getattr(args, "enc_output_dim", 1024) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128) args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4") args.transformer_dec_config = getattr( args, "transformer_dec_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 4", ) @register_model_architecture("asr_vggtransformer", "vggtransformer_2") def vggtransformer_2(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16", ) args.enc_output_dim = getattr(args, "enc_output_dim", 1024) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512) args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4") args.transformer_dec_config = getattr( args, "transformer_dec_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 6", ) @register_model_architecture("asr_vggtransformer", "vggtransformer_base") def vggtransformer_base(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 12" ) args.enc_output_dim = getattr(args, "enc_output_dim", 512) args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512) args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4") args.transformer_dec_config = getattr( args, "transformer_dec_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 6" ) # Size estimations: # Encoder: # - vggblock param: 64*1*3*3 + 64*64*3*3 + 128*64*3*3 + 128*128*3 = 258K # Transformer: # - input dimension adapter: 2560 x 512 -> 1.31M # - transformer_layers (x12) --> 37.74M # * MultiheadAttention: 512*512*3 (in_proj) + 512*512 (out_proj) = 1.048M # * FFN weight: 512*2048*2 = 2.097M # - output dimension adapter: 512 x 512 -> 0.26 M # Decoder: # - LinearizedConv1d: 512 * 256 * 3 + 256 * 256 * 3 * 3 # - transformer_layer: (x6) --> 25.16M # * MultiheadAttention (self-attention): 512*512*3 + 512*512 = 1.048M # * MultiheadAttention (encoder-attention): 512*512*3 + 512*512 = 1.048M # * FFN: 512*2048*2 = 2.097M # Final FC: # - FC: 512*5000 = 256K (assuming vocab size 5K) # In total: # ~65 M # CTC models def base_architecture_enconly(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(32, 3, 2, 2, True)] * 2" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2" ) args.enc_output_dim = getattr(args, "enc_output_dim", 512) args.in_channels = getattr(args, "in_channels", 1) args.transformer_context = getattr(args, "transformer_context", "None") args.transformer_sampling = getattr(args, "transformer_sampling", "None") @register_model_architecture("asr_vggtransformer_encoder", "vggtransformer_enc_1") def vggtransformer_enc_1(args): # vggtransformer_1 is the same as vggtransformer_enc_big, except the number # of layers is increased to 16 # keep it here for backward compatiablity purpose args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.vggblock_enc_config = getattr( args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]" ) args.transformer_enc_config = getattr( args, "transformer_enc_config", "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16", ) args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/models/vggtransformer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq.models import ( FairseqEncoder, FairseqEncoderModel, register_model, register_model_architecture, ) from fairseq.modules.fairseq_dropout import FairseqDropout default_conv_enc_config = """[ (400, 13, 170, 0.2), (440, 14, 0, 0.214), (484, 15, 0, 0.22898), (532, 16, 0, 0.2450086), (584, 17, 0, 0.262159202), (642, 18, 0, 0.28051034614), (706, 19, 0, 0.30014607037), (776, 20, 0, 0.321156295296), (852, 21, 0, 0.343637235966), (936, 22, 0, 0.367691842484), (1028, 23, 0, 0.393430271458), (1130, 24, 0, 0.42097039046), (1242, 25, 0, 0.450438317792), (1366, 26, 0, 0.481969000038), (1502, 27, 0, 0.51570683004), (1652, 28, 0, 0.551806308143), (1816, 29, 0, 0.590432749713), ]""" @register_model("asr_w2l_conv_glu_encoder") class W2lConvGluEncoderModel(FairseqEncoderModel): def __init__(self, encoder): super().__init__(encoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--input-feat-per-channel", type=int, metavar="N", help="encoder input dimension per input channel", ) parser.add_argument( "--in-channels", type=int, metavar="N", help="number of encoder input channels", ) parser.add_argument( "--conv-enc-config", type=str, metavar="EXPR", help=""" an array of tuples each containing the configuration of one conv layer [(out_channels, kernel_size, padding, dropout), ...] """, ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" conv_enc_config = getattr(args, "conv_enc_config", default_conv_enc_config) encoder = W2lConvGluEncoder( vocab_size=len(task.target_dictionary), input_feat_per_channel=args.input_feat_per_channel, in_channels=args.in_channels, conv_enc_config=eval(conv_enc_config), ) return cls(encoder) def get_normalized_probs(self, net_output, log_probs, sample=None): lprobs = super().get_normalized_probs(net_output, log_probs, sample) lprobs.batch_first = False return lprobs class W2lConvGluEncoder(FairseqEncoder): def __init__( self, vocab_size, input_feat_per_channel, in_channels, conv_enc_config ): super().__init__(None) self.input_dim = input_feat_per_channel if in_channels != 1: raise ValueError("only 1 input channel is currently supported") self.conv_layers = nn.ModuleList() self.linear_layers = nn.ModuleList() self.dropouts = [] cur_channels = input_feat_per_channel for out_channels, kernel_size, padding, dropout in conv_enc_config: layer = nn.Conv1d(cur_channels, out_channels, kernel_size, padding=padding) layer.weight.data.mul_(math.sqrt(3)) # match wav2letter init self.conv_layers.append(nn.utils.weight_norm(layer)) self.dropouts.append( FairseqDropout(dropout, module_name=self.__class__.__name__) ) if out_channels % 2 != 0: raise ValueError("odd # of out_channels is incompatible with GLU") cur_channels = out_channels // 2 # halved by GLU for out_channels in [2 * cur_channels, vocab_size]: layer = nn.Linear(cur_channels, out_channels) layer.weight.data.mul_(math.sqrt(3)) self.linear_layers.append(nn.utils.weight_norm(layer)) cur_channels = out_channels // 2 def forward(self, src_tokens, src_lengths, **kwargs): """ src_tokens: padded tensor (B, T, C * feat) src_lengths: tensor of original lengths of input utterances (B,) """ B, T, _ = src_tokens.size() x = src_tokens.transpose(1, 2).contiguous() # (B, feat, T) assuming C == 1 for layer_idx in range(len(self.conv_layers)): x = self.conv_layers[layer_idx](x) x = F.glu(x, dim=1) x = self.dropouts[layer_idx](x) x = x.transpose(1, 2).contiguous() # (B, T, 908) x = self.linear_layers[0](x) x = F.glu(x, dim=2) x = self.dropouts[-1](x) x = self.linear_layers[1](x) assert x.size(0) == B assert x.size(1) == T encoder_out = x.transpose(0, 1) # (T, B, vocab_size) # need to debug this -- find a simpler/elegant way in pytorch APIs encoder_padding_mask = ( torch.arange(T).view(1, T).expand(B, -1).to(x.device) >= src_lengths.view(B, 1).expand(-1, T) ).t() # (B x T) -> (T x B) return { "encoder_out": encoder_out, # (T, B, vocab_size) "encoder_padding_mask": encoder_padding_mask, # (T, B) } def reorder_encoder_out(self, encoder_out, new_order): encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(1, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return (1e6, 1e6) # an arbitrary large number @register_model_architecture("asr_w2l_conv_glu_encoder", "w2l_conv_glu_enc") def w2l_conv_glu_enc(args): args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80) args.in_channels = getattr(args, "in_channels", 1) args.conv_enc_config = getattr(args, "conv_enc_config", default_conv_enc_config)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/models/w2l_conv_glu_enc.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Replabel transforms for use with flashlight's ASG criterion. """ def replabel_symbol(i): """ Replabel symbols used in flashlight, currently just "1", "2", ... This prevents training with numeral tokens, so this might change in the future """ return str(i) def pack_replabels(tokens, dictionary, max_reps): """ Pack a token sequence so that repeated symbols are replaced by replabels """ if len(tokens) == 0 or max_reps <= 0: return tokens replabel_value_to_idx = [0] * (max_reps + 1) for i in range(1, max_reps + 1): replabel_value_to_idx[i] = dictionary.index(replabel_symbol(i)) result = [] prev_token = -1 num_reps = 0 for token in tokens: if token == prev_token and num_reps < max_reps: num_reps += 1 else: if num_reps > 0: result.append(replabel_value_to_idx[num_reps]) num_reps = 0 result.append(token) prev_token = token if num_reps > 0: result.append(replabel_value_to_idx[num_reps]) return result def unpack_replabels(tokens, dictionary, max_reps): """ Unpack a token sequence so that replabels are replaced by repeated symbols """ if len(tokens) == 0 or max_reps <= 0: return tokens replabel_idx_to_value = {} for i in range(1, max_reps + 1): replabel_idx_to_value[dictionary.index(replabel_symbol(i))] = i result = [] prev_token = -1 for token in tokens: try: for _ in range(replabel_idx_to_value[token]): result.append(prev_token) prev_token = -1 except KeyError: result.append(token) prev_token = token return result
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/data/replabels.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .asr_dataset import AsrDataset __all__ = [ "AsrDataset", ]
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This module contains collection of classes which implement collate functionalities for various tasks. Collaters should know what data to expect for each sample and they should pack / collate them into batches """ from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import torch from fairseq.data import data_utils as fairseq_data_utils class Seq2SeqCollater(object): """ Implements collate function mainly for seq2seq tasks This expects each sample to contain feature (src_tokens) and targets. This collator is also used for aligned training task. """ def __init__( self, feature_index=0, label_index=1, pad_index=1, eos_index=2, move_eos_to_beginning=True, ): self.feature_index = feature_index self.label_index = label_index self.pad_index = pad_index self.eos_index = eos_index self.move_eos_to_beginning = move_eos_to_beginning def _collate_frames(self, frames): """Convert a list of 2d frames into a padded 3d tensor Args: frames (list): list of 2d frames of size L[i]*f_dim. Where L[i] is length of i-th frame and f_dim is static dimension of features Returns: 3d tensor of size len(frames)*len_max*f_dim where len_max is max of L[i] """ len_max = max(frame.size(0) for frame in frames) f_dim = frames[0].size(1) res = frames[0].new(len(frames), len_max, f_dim).fill_(0.0) for i, v in enumerate(frames): res[i, : v.size(0)] = v return res def collate(self, samples): """ utility function to collate samples into batch for speech recognition. """ if len(samples) == 0: return {} # parse samples into torch tensors parsed_samples = [] for s in samples: # skip invalid samples if s["data"][self.feature_index] is None: continue source = s["data"][self.feature_index] if isinstance(source, (np.ndarray, np.generic)): source = torch.from_numpy(source) target = s["data"][self.label_index] if isinstance(target, (np.ndarray, np.generic)): target = torch.from_numpy(target).long() elif isinstance(target, list): target = torch.LongTensor(target) parsed_sample = {"id": s["id"], "source": source, "target": target} parsed_samples.append(parsed_sample) samples = parsed_samples id = torch.LongTensor([s["id"] for s in samples]) frames = self._collate_frames([s["source"] for s in samples]) # sort samples by descending number of frames frames_lengths = torch.LongTensor([s["source"].size(0) for s in samples]) frames_lengths, sort_order = frames_lengths.sort(descending=True) id = id.index_select(0, sort_order) frames = frames.index_select(0, sort_order) target = None target_lengths = None prev_output_tokens = None if samples[0].get("target", None) is not None: ntokens = sum(len(s["target"]) for s in samples) target = fairseq_data_utils.collate_tokens( [s["target"] for s in samples], self.pad_index, self.eos_index, left_pad=False, move_eos_to_beginning=False, ) target = target.index_select(0, sort_order) target_lengths = torch.LongTensor( [s["target"].size(0) for s in samples] ).index_select(0, sort_order) prev_output_tokens = fairseq_data_utils.collate_tokens( [s["target"] for s in samples], self.pad_index, self.eos_index, left_pad=False, move_eos_to_beginning=self.move_eos_to_beginning, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) else: ntokens = sum(len(s["source"]) for s in samples) batch = { "id": id, "ntokens": ntokens, "net_input": {"src_tokens": frames, "src_lengths": frames_lengths}, "target": target, "target_lengths": target_lengths, "nsentences": len(samples), } if prev_output_tokens is not None: batch["net_input"]["prev_output_tokens"] = prev_output_tokens return batch
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/data/collaters.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch def calc_mean_invstddev(feature): if len(feature.size()) != 2: raise ValueError("We expect the input feature to be 2-D tensor") mean = feature.mean(0) var = feature.var(0) # avoid division by ~zero eps = 1e-8 if (var < eps).any(): return mean, 1.0 / (torch.sqrt(var) + eps) return mean, 1.0 / torch.sqrt(var) def apply_mv_norm(features): # If there is less than 2 spectrograms, the variance cannot be computed (is NaN) # and normalization is not possible, so return the item as it is if features.size(0) < 2: return features mean, invstddev = calc_mean_invstddev(features) res = (features - mean) * invstddev return res def lengths_to_encoder_padding_mask(lengths, batch_first=False): """ convert lengths (a 1-D Long/Int tensor) to 2-D binary tensor Args: lengths: a (B, )-shaped tensor Return: max_length: maximum length of B sequences encoder_padding_mask: a (max_length, B) binary mask, where [t, b] = 0 for t < lengths[b] and 1 otherwise TODO: kernelize this function if benchmarking shows this function is slow """ max_lengths = torch.max(lengths).item() bsz = lengths.size(0) encoder_padding_mask = torch.arange( max_lengths ).to( # a (T, ) tensor with [0, ..., T-1] lengths.device ).view( # move to the right device 1, max_lengths ).expand( # reshape to (1, T)-shaped tensor bsz, -1 ) >= lengths.view( # expand to (B, T)-shaped tensor bsz, 1 ).expand( -1, max_lengths ) if not batch_first: return encoder_padding_mask.t(), max_lengths else: return encoder_padding_mask, max_lengths def encoder_padding_mask_to_lengths( encoder_padding_mask, max_lengths, batch_size, device ): """ convert encoder_padding_mask (2-D binary tensor) to a 1-D tensor Conventionally, encoder output contains a encoder_padding_mask, which is a 2-D mask in a shape (T, B), whose (t, b) element indicate whether encoder_out[t, b] is a valid output (=0) or not (=1). Occasionally, we need to convert this mask tensor to a 1-D tensor in shape (B, ), where [b] denotes the valid length of b-th sequence Args: encoder_padding_mask: a (T, B)-shaped binary tensor or None; if None, indicating all are valid Return: seq_lengths: a (B,)-shaped tensor, where its (b, )-th element is the number of valid elements of b-th sequence max_lengths: maximum length of all sequence, if encoder_padding_mask is not None, max_lengths must equal to encoder_padding_mask.size(0) batch_size: batch size; if encoder_padding_mask is not None, max_lengths must equal to encoder_padding_mask.size(1) device: which device to put the result on """ if encoder_padding_mask is None: return torch.Tensor([max_lengths] * batch_size).to(torch.int32).to(device) assert encoder_padding_mask.size(0) == max_lengths, "max_lengths does not match" assert encoder_padding_mask.size(1) == batch_size, "batch_size does not match" return max_lengths - torch.sum(encoder_padding_mask, dim=0)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/data/data_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from fairseq.data import FairseqDataset from . import data_utils from .collaters import Seq2SeqCollater class AsrDataset(FairseqDataset): """ A dataset representing speech and corresponding transcription. Args: aud_paths: (List[str]): A list of str with paths to audio files. aud_durations_ms (List[int]): A list of int containing the durations of audio files. tgt (List[torch.LongTensor]): A list of LongTensors containing the indices of target transcriptions. tgt_dict (~fairseq.data.Dictionary): target vocabulary. ids (List[str]): A list of utterance IDs. speakers (List[str]): A list of speakers corresponding to utterances. num_mel_bins (int): Number of triangular mel-frequency bins (default: 80) frame_length (float): Frame length in milliseconds (default: 25.0) frame_shift (float): Frame shift in milliseconds (default: 10.0) """ def __init__( self, aud_paths, aud_durations_ms, tgt, tgt_dict, ids, speakers, num_mel_bins=80, frame_length=25.0, frame_shift=10.0, ): assert frame_length > 0 assert frame_shift > 0 assert all(x > frame_length for x in aud_durations_ms) self.frame_sizes = [ int(1 + (d - frame_length) / frame_shift) for d in aud_durations_ms ] assert len(aud_paths) > 0 assert len(aud_paths) == len(aud_durations_ms) assert len(aud_paths) == len(tgt) assert len(aud_paths) == len(ids) assert len(aud_paths) == len(speakers) self.aud_paths = aud_paths self.tgt_dict = tgt_dict self.tgt = tgt self.ids = ids self.speakers = speakers self.num_mel_bins = num_mel_bins self.frame_length = frame_length self.frame_shift = frame_shift self.s2s_collater = Seq2SeqCollater( 0, 1, pad_index=self.tgt_dict.pad(), eos_index=self.tgt_dict.eos(), move_eos_to_beginning=True, ) def __getitem__(self, index): import torchaudio import torchaudio.compliance.kaldi as kaldi tgt_item = self.tgt[index] if self.tgt is not None else None path = self.aud_paths[index] if not os.path.exists(path): raise FileNotFoundError("Audio file not found: {}".format(path)) sound, sample_rate = torchaudio.load_wav(path) output = kaldi.fbank( sound, num_mel_bins=self.num_mel_bins, frame_length=self.frame_length, frame_shift=self.frame_shift, ) output_cmvn = data_utils.apply_mv_norm(output) return {"id": index, "data": [output_cmvn.detach(), tgt_item]} def __len__(self): return len(self.aud_paths) def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[int]): sample indices to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ return self.s2s_collater.collate(samples) def num_tokens(self, index): return self.frame_sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return ( self.frame_sizes[index], len(self.tgt[index]) if self.tgt is not None else 0, ) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" return np.arange(len(self))
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/data/asr_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("cross_entropy_acc") class CrossEntropyWithAccCriterion(FairseqCriterion): def __init__(self, task, sentence_avg): super().__init__(task) self.sentence_avg = sentence_avg def compute_loss(self, model, net_output, target, reduction, log_probs): # N, T -> N * T target = target.view(-1) lprobs = model.get_normalized_probs(net_output, log_probs=log_probs) if not hasattr(lprobs, "batch_first"): logging.warning( "ERROR: we need to know whether " "batch first for the net output; " "you need to set batch_first attribute for the return value of " "model.get_normalized_probs. Now, we assume this is true, but " "in the future, we will raise exception instead. " ) batch_first = getattr(lprobs, "batch_first", True) if not batch_first: lprobs = lprobs.transpose(0, 1) # N, T, D -> N * T, D lprobs = lprobs.view(-1, lprobs.size(-1)) loss = F.nll_loss( lprobs, target, ignore_index=self.padding_idx, reduction=reduction ) return lprobs, loss def get_logging_output(self, sample, target, lprobs, loss): target = target.view(-1) mask = target != self.padding_idx correct = torch.sum( lprobs.argmax(1).masked_select(mask) == target.masked_select(mask) ) total = torch.sum(mask) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": utils.item(loss.data), # * sample['ntokens'], "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, "correct": utils.item(correct.data), "total": utils.item(total.data), "nframes": torch.sum(sample["net_input"]["src_lengths"]).item(), } return sample_size, logging_output def forward(self, model, sample, reduction="sum", log_probs=True): """Computes the cross entropy with accuracy metric for the given sample. This is similar to CrossEntropyCriterion in fairseq, but also computes accuracy metrics as part of logging Args: logprobs (Torch.tensor) of shape N, T, D i.e. batchsize, timesteps, dimensions targets (Torch.tensor) of shape N, T i.e batchsize, timesteps Returns: tuple: With three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training TODO: * Currently this Criterion will only work with LSTMEncoderModels or FairseqModels which have decoder, or Models which return TorchTensor as net_output. We need to make a change to support all FairseqEncoder models. """ net_output = model(**sample["net_input"]) target = model.get_targets(sample, net_output) lprobs, loss = self.compute_loss( model, net_output, target, reduction, log_probs ) sample_size, logging_output = self.get_logging_output( sample, target, lprobs, loss ) return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" correct_sum = sum(log.get("correct", 0) for log in logging_outputs) total_sum = sum(log.get("total", 0) for log in logging_outputs) loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) nframes = sum(log.get("nframes", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / sample_size / math.log(2) if sample_size > 0 else 0.0, # if args.sentence_avg, then sample_size is nsentences, then loss # is per-sentence loss; else sample_size is ntokens, the loss # becomes per-output token loss "ntokens": ntokens, "nsentences": nsentences, "nframes": nframes, "sample_size": sample_size, "acc": correct_sum * 100.0 / total_sum if total_sum > 0 else 0.0, "correct": correct_sum, "total": total_sum, # total is the number of validate tokens } if sample_size != ntokens: agg_output["nll_loss"] = loss_sum / ntokens / math.log(2) # loss: per output token loss # nll_loss: per sentence loss return agg_output
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/criterions/cross_entropy_acc.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from examples.speech_recognition.data.replabels import pack_replabels from fairseq import utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("asg_loss") class ASGCriterion(FairseqCriterion): @staticmethod def add_args(parser): group = parser.add_argument_group("ASG Loss") group.add_argument( "--asg-transitions-init", help="initial diagonal value of transition matrix", type=float, default=0.0, ) group.add_argument( "--max-replabel", help="maximum # of replabels", type=int, default=2 ) group.add_argument( "--linseg-updates", help="# of training updates to use LinSeg initialization", type=int, default=0, ) group.add_argument( "--hide-linseg-messages", help="hide messages about LinSeg initialization", action="store_true", ) def __init__( self, task, silence_token, asg_transitions_init, max_replabel, linseg_updates, hide_linseg_messages, ): from flashlight.lib.sequence.criterion import ASGLoss, CriterionScaleMode super().__init__(task) self.tgt_dict = task.target_dictionary self.eos = self.tgt_dict.eos() self.silence = ( self.tgt_dict.index(silence_token) if silence_token in self.tgt_dict else None ) self.max_replabel = max_replabel num_labels = len(self.tgt_dict) self.asg = ASGLoss(num_labels, scale_mode=CriterionScaleMode.TARGET_SZ_SQRT) self.asg.trans = torch.nn.Parameter( asg_transitions_init * torch.eye(num_labels), requires_grad=True ) self.linseg_progress = torch.nn.Parameter( torch.tensor([0], dtype=torch.int), requires_grad=False ) self.linseg_maximum = linseg_updates self.linseg_message_state = "none" if hide_linseg_messages else "start" @classmethod def build_criterion(cls, args, task): return cls( task, args.silence_token, args.asg_transitions_init, args.max_replabel, args.linseg_updates, args.hide_linseg_messages, ) def linseg_step(self): if not self.training: return False if self.linseg_progress.item() < self.linseg_maximum: if self.linseg_message_state == "start": print("| using LinSeg to initialize ASG") self.linseg_message_state = "finish" self.linseg_progress.add_(1) return True elif self.linseg_message_state == "finish": print("| finished LinSeg initialization") self.linseg_message_state = "none" return False def replace_eos_with_silence(self, tgt): if tgt[-1] != self.eos: return tgt elif self.silence is None or (len(tgt) > 1 and tgt[-2] == self.silence): return tgt[:-1] else: return tgt[:-1] + [self.silence] def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) emissions = net_output["encoder_out"].transpose(0, 1).contiguous() B = emissions.size(0) T = emissions.size(1) device = emissions.device target = torch.IntTensor(B, T) target_size = torch.IntTensor(B) using_linseg = self.linseg_step() for b in range(B): initial_target_size = sample["target_lengths"][b].item() if initial_target_size == 0: raise ValueError("target size cannot be zero") tgt = sample["target"][b, :initial_target_size].tolist() tgt = self.replace_eos_with_silence(tgt) tgt = pack_replabels(tgt, self.tgt_dict, self.max_replabel) tgt = tgt[:T] if using_linseg: tgt = [tgt[t * len(tgt) // T] for t in range(T)] target[b][: len(tgt)] = torch.IntTensor(tgt) target_size[b] = len(tgt) loss = self.asg.forward(emissions, target.to(device), target_size.to(device)) if reduce: loss = torch.sum(loss) sample_size = ( sample["target"].size(0) if self.args.sentence_avg else sample["ntokens"] ) logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / nsentences, "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } return agg_output
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/criterions/ASG_loss.py
import importlib import os # ASG loss requires flashlight bindings files_to_skip = set() try: import flashlight.lib.sequence.criterion except ImportError: files_to_skip.add("ASG_loss.py") for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_") and file not in files_to_skip: criterion_name = file[: file.find(".py")] importlib.import_module( "examples.speech_recognition.criterions." + criterion_name )
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/speech_recognition/criterions/__init__.py
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys from sacremoses.normalize import MosesPunctNormalizer def main(args): normalizer = MosesPunctNormalizer(lang=args.lang, penn=args.penn) for line in sys.stdin: print(normalizer.normalize(line.rstrip()), flush=True) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--lang", "-l", default="en") parser.add_argument("--penn", "-p", action="store_true") args = parser.parse_args() main(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/constrained_decoding/normalize.py
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys import sacremoses def main(args): """Tokenizes, preserving tabs""" mt = sacremoses.MosesTokenizer(lang=args.lang) def tok(s): return mt.tokenize(s, return_str=True) for line in sys.stdin: parts = list(map(tok, line.split("\t"))) print(*parts, sep="\t", flush=True) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--lang", "-l", default="en") parser.add_argument("--penn", "-p", action="store_true") parser.add_argument("--fields", "-f", help="fields to tokenize") args = parser.parse_args() main(args)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/constrained_decoding/tok.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass from typing import Dict, List, Optional import torch from fairseq.dataclass import FairseqDataclass from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, ) from .adaptive_span_model import TransformerSeq as AdaptiveSpanTransformerModel logger = logging.getLogger(__name__) @dataclass class AdaptiveSpanSmallConfig(FairseqDataclass): # defaults come from https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8_small.sh vocab_size: int = 50 d_model: int = 256 n_head: int = 4 d_inner: int = 1024 n_layer: int = 8 attn_span: int = 1024 dropout: float = 0.0 emb_dropout: float = 0.0 adapt_span_ramp: int = 32 adapt_span_init: float = 0.0 aux_loss_scaler: float = 0.000002 adapt_span_layer: bool = False @register_model("adaptive_span", dataclass=AdaptiveSpanSmallConfig) class AdaptiveSpanTransformer(FairseqLanguageModel): @classmethod def build_model(cls, cfg: AdaptiveSpanSmallConfig, task): return cls(AdaptiveSpanDecoder(cfg, task)) def get_aux_loss(self): return self.decoder.get_aux_loss() def get_current_max_span(self): return self.decoder.get_current_max_span() def get_current_avg_span(self): return self.decoder.get_current_avg_span() class AdaptiveSpanDecoder(FairseqIncrementalDecoder): def __init__(self, cfg, task): super().__init__(task.target_dictionary) self.config = cfg config = AdaptiveSpanSmallConfig( vocab_size=len(task.target_dictionary), d_model=cfg.d_model, n_head=cfg.n_head, d_inner=cfg.d_inner, n_layer=cfg.n_layer, attn_span=cfg.attn_span, dropout=cfg.dropout, emb_dropout=cfg.emb_dropout, adapt_span_ramp=cfg.adapt_span_ramp, adapt_span_init=cfg.adapt_span_init, aux_loss_scaler=cfg.aux_loss_scaler, adapt_span_layer=cfg.adapt_span_layer, ) logger.info(config) self.model = AdaptiveSpanTransformerModel(**config.__dict__) self._mems = None def forward( self, src_tokens, incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, encoder_out=None, ): bsz = src_tokens.size(0) if incremental_state is not None: # used during inference mems = self.get_incremental_state("mems") src_tokens = src_tokens[:, -1:] # only keep the most recent token else: mems = self._mems if mems is None: # first time init mems = self.init_hid_cache(bsz) output = self.model(x=src_tokens, h_cache=mems,) if incremental_state is not None: self.set_incremental_state(incremental_state, "mems", output[1]) else: self._mems = output[1] return (output[0],) def max_positions(self): return self.config.attn_span def init_hid_cache(self, batch_sz): hid = [] for layer in self.model.layers: param = next(self.model.parameters()) h = torch.zeros( batch_sz, layer.get_cache_size(), self.config.d_model, dtype=param.dtype, device=param.device, ) hid.append(h) return hid def get_aux_loss(self): return self.model.get_aux_loss() def get_current_max_span(self): return self.model.get_current_max_span() def get_current_avg_span(self): return self.model.get_current_avg_span() def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]], new_order: torch.Tensor, ): """Reorder incremental state. This will be called when the order of the input has changed from the previous time step. A typical use case is beam search, where the input order changes between time steps based on the selection of beams. """ raise NotImplementedError("This is required for generation/beam search") # mems = self.get_incremental_state(incremental_state, "mems") # if mems is not None: # new_mems = [mems_i.index_select(1, new_order) for mems_i in mems] # self.set_incremental_state(incremental_state, "mems", new_mems)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/adaptive_span/adaptive_span_model_wrapper.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq.modules.layer_norm import LayerNorm from .adaptive_span_attention import AdaptiveSpan # Size notations: # B = batch_size, H = d_model, M = block_size, L = attn_span def _skew(X, pad_value): """shift every row 1 step to right""" # X = B x M x L B, M, L = X.size() X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1) X = X.view(B, -1) # B x ML+MM+M X = X[:, :-M] # B x ML+MM X = X.view(B, M, M + L) # B x M x L+M return X def _unskew(X): """reverse _skew operation""" # X = B x M x L+M B, M, L = X.size() L -= M X = X.view(B, -1) # B x ML+MM X = F.pad(X, (0, M)) # B x ML+MM+M X = X.view(B, M, M + L + 1) # B x M x L+M+1 X = X[:, :, :L] # B x M x L return X class SeqAttention(nn.Module): """Sequential self-attention layer. Each token will attend to its previous fixed number of steps. Note that attention doesn't include the current step itself. """ def __init__(self, d_model, n_head, attn_span, dropout, adapt_span_layer, **kargs): nn.Module.__init__(self) self.dropout = nn.Dropout(dropout) self.d_model = d_model # size of a single head self.attn_span = attn_span self.adaptive_span = AdaptiveSpan( attn_span=attn_span, n_head=n_head, adapt_span_layer=adapt_span_layer, **kargs ) def forward(self, query, key, value, key_pe): # query size = B x M x H # key, value sizes = B x (M+L) x H key, value, key_pe = self.adaptive_span.trim_memory(query, key, value, key_pe) # compute attention from context # B x M (dest) x (M+L) (src) attn_cont = torch.matmul(query, key.transpose(-1, -2)) attn_cont = _unskew(attn_cont) # B x M x L # compute the effect of position embedding attn_pos = torch.matmul(query, key_pe) # B x M x L_pos attn = attn_cont + attn_pos attn = attn / math.sqrt(self.d_model) # B x M X L_pos attn = F.softmax(attn.float(), dim=-1).type_as(attn) # trim attention lengths according to the learned span attn = self.adaptive_span(attn) attn = self.dropout(attn) # B x M X L_pos attn_cont = _skew(attn, 0) # B x M X (L+M) out = torch.matmul(attn_cont, value) # B x M x H return out def get_cache_size(self): return self.adaptive_span.get_cache_size() class MultiHeadSeqAttention(nn.Module): def __init__(self, d_model, n_head, **kargs): nn.Module.__init__(self) assert d_model % n_head == 0 self.n_head = n_head self.head_dim = d_model // n_head self.attn = SeqAttention(d_model=self.head_dim, n_head=n_head, **kargs) self.proj_query = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_query.weight) self.proj_out = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_out.weight) self.proj_val = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_val.weight) self.proj_key = nn.Linear(d_model, d_model, bias=False) nn.init.xavier_normal_(self.proj_key.weight) def head_reshape(self, x): K = self.n_head D = self.head_dim x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D return x def forward(self, query, key, value, key_pe): B = query.size(0) K = self.n_head D = self.head_dim M = query.size(1) query = self.proj_query(query) query = self.head_reshape(query) value = self.proj_val(value) value = self.head_reshape(value) key = self.proj_key(key) key = self.head_reshape(key) out = self.attn(query, key, value, key_pe) # B_K x M x D out = out.view(B, K, M, D) # B x K x M x D out = out.transpose(1, 2).contiguous() # B x M x K x D out = out.view(B, M, -1) # B x M x K_D out = self.proj_out(out) return out class FeedForwardLayer(nn.Module): def __init__(self, d_model, d_inner, dropout, **kargs): nn.Module.__init__(self) self.fc1 = nn.Linear(d_model, d_inner) self.fc2 = nn.Linear(d_inner, d_model) nn.init.xavier_uniform_(self.fc1.weight) nn.init.xavier_uniform_(self.fc2.weight) self.dropout = nn.Dropout(dropout) def forward(self, h): h1 = F.relu(self.fc1(h)) h1 = self.dropout(h1) h2 = self.fc2(h1) return h2 class TransformerSeqLayer(nn.Module): def __init__(self, d_model, **kargs): nn.Module.__init__(self) self.attn = MultiHeadSeqAttention(d_model=d_model, **kargs) self.norm1 = LayerNorm(d_model) self.ff = FeedForwardLayer(d_model=d_model, **kargs) self.norm2 = LayerNorm(d_model) def forward(self, h, h_cache, key_pe): # h = B x M x H # h_cache = B x L x H h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H attn_out = self.attn(h, h_all, h_all, key_pe) h = self.norm1(h + attn_out) # B x M x H if self.ff is not None: ff_out = self.ff(h) out = self.norm2(h + ff_out) # B x M x H else: out = h return out def get_cache_size(self): return self.attn.attn.get_cache_size() class TransformerSeq(nn.Module): def __init__( self, vocab_size, d_model, n_head, n_layer, attn_span, emb_dropout, aux_loss_scaler, adapt_span_layer, **kargs ): nn.Module.__init__(self) # token embeddings self.in_emb = nn.Embedding(vocab_size, d_model) nn.init.normal_(self.in_emb.weight, mean=0, std=d_model ** -0.5) self.out_emb = nn.Linear(d_model, vocab_size) self.aux_loss_scaler = aux_loss_scaler if emb_dropout > 0: self.emb_dropout = nn.Dropout(emb_dropout) else: self.emb_dropout = None # position embeddings self.key_pe = nn.Parameter(torch.randn(1, d_model // n_head, attn_span)) self.layers = nn.ModuleList() self.layers.extend( TransformerSeqLayer( d_model=d_model, n_head=n_head, attn_span=attn_span, adapt_span_layer=adapt_span_layer, **kargs ) for _ in range(n_layer) ) def forward(self, x, h_cache, target=None): # x size = B x M block_size = x.size(1) h = self.in_emb(x) # B x M x H if self.emb_dropout is not None: h = self.emb_dropout(h) h_cache_next = [] for l, layer in enumerate(self.layers): cache_size = layer.attn.attn.get_cache_size() if cache_size > block_size: h_cache_next_l = torch.cat( [h_cache[l][:, -cache_size + block_size :, :], h], dim=1 ).detach() else: h_cache_next_l = h[:, -cache_size:, :].detach() h_cache_next.append(h_cache_next_l) h = layer(h, h_cache[l], self.key_pe) # B x M x H if self.emb_dropout is not None: h = self.emb_dropout(h) out = F.log_softmax(self.out_emb(h).float(), dim=-1).type_as(h) dummy_loss = None return out, h_cache_next, dummy_loss def get_aux_loss(self): loss = 0.0 for layer in self.layers: loss += layer.attn.attn.adaptive_span.get_loss() return self.aux_loss_scaler * loss def get_current_max_span(self): max_span = 0.0 for layer in self.layers: max_span = max( max_span, layer.attn.attn.adaptive_span.get_current_max_span() ) return max_span def get_current_avg_span(self): avg_span = 0.0 for layer in self.layers: avg_span += layer.attn.attn.adaptive_span.get_current_avg_span() return avg_span / len(self.layers)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/adaptive_span/adaptive_span_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the current directory cur_dir = os.path.dirname(__file__) for file in os.listdir(cur_dir): path = os.path.join(cur_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): mod_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module(__name__ + "." + mod_name)
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/adaptive_span/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import register_criterion from fairseq.criterions.cross_entropy import CrossEntropyCriterion from fairseq.dataclass import FairseqDataclass from omegaconf import II @dataclass class AdaptiveSpanCriterionConfig(FairseqDataclass): sentence_avg: bool = II("optimization.sentence_avg") @register_criterion("adaptive_span_loss", dataclass=AdaptiveSpanCriterionConfig) class AdaptiveSpanCriterion(CrossEntropyCriterion): def __init__(self, task, sentence_avg): super().__init__(task, sentence_avg) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss here is summed, different from the adaptive span code 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) loss, aux_loss, avg_span, max_span = self.compute_loss( model, net_output, sample, reduce=reduce ) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) loss /= sample_size total_loss = loss + aux_loss sample_size = 1 logging_output = { "loss": loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, "total_loss": total_loss.data, "avg_span": avg_span * sample_size, "max_span": max_span * sample_size, } return total_loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): loss, _ = super().compute_loss(model, net_output, sample, reduce) aux_loss = model.get_aux_loss() avg_span = model.get_current_avg_span() max_span = model.get_current_max_span() return loss, aux_loss, avg_span, max_span @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) total_loss_sum = sum(log.get("total_loss", 0) for log in logging_outputs) avg_span_sum = sum(log.get("avg_span", 0) for log in logging_outputs) max_span_sum = sum(log.get("max_span", 0) for log in logging_outputs) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar("avg_span", avg_span_sum / sample_size, sample_size, round=3) metrics.log_scalar("max_span", max_span_sum / sample_size, sample_size, round=3) # total loss contains the L1 norm on adaptive-span metrics.log_scalar( "total_loss", total_loss_sum / sample_size / math.log(2), sample_size, round=3, ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/adaptive_span/adaptive_span_loss.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import List, Optional, Tuple import torch from fairseq import distributed_utils as dist_utils, utils from fairseq.data import ( Dictionary, TokenBlockDataset, data_utils, iterators, ) from fairseq.dataclass import FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II logger = logging.getLogger(__name__) @dataclass class TruncatedBPTTLMConfig(FairseqDataclass): data: str = field(default="???", metadata={"help": "path to data directory"}) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sequence"}, ) batch_size: int = II("dataset.batch_size") # Some models use *max_target_positions* to know how many positional # embeddings to learn. We use II(...) to make it default to # *tokens_per_sample*, but in principle there could be more positional # embeddings than tokens in a single batch. This may also be irrelevant for # custom model implementations. max_target_positions: int = II("task.tokens_per_sample") # these will be populated automatically if not provided data_parallel_rank: Optional[int] = None data_parallel_size: Optional[int] = None @register_task("truncated_bptt_lm", dataclass=TruncatedBPTTLMConfig) class TruncatedBPTTLMTask(FairseqTask): def __init__(self, cfg: TruncatedBPTTLMConfig): super().__init__(cfg) if cfg.data_parallel_rank is None or cfg.data_parallel_size is None: if torch.distributed.is_initialized(): cfg.data_parallel_rank = dist_utils.get_data_parallel_rank() cfg.data_parallel_size = dist_utils.get_data_parallel_world_size() else: cfg.data_parallel_rank = 0 cfg.data_parallel_size = 1 # load the dictionary paths = utils.split_paths(cfg.data) assert len(paths) > 0 self.dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(self.dictionary))) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test)""" # support sharded datasets paths = utils.split_paths(self.cfg.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) # each element of *data* will be a tensorized line from the original # text dataset, similar to ``open(split_path).readlines()`` data = data_utils.load_indexed_dataset( split_path, self.dictionary, combine=combine ) if data is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) # this is similar to ``data.view(-1).split(tokens_per_sample)`` data = TokenBlockDataset( data, data.sizes, block_size=self.cfg.tokens_per_sample, pad=None, # unused eos=None, # unused break_mode="none", ) self.datasets[split] = TruncatedBPTTDataset( data=data, bsz_per_shard=self.cfg.batch_size, shard_id=self.cfg.data_parallel_rank, num_shards=self.cfg.data_parallel_size, ) def dataset(self, split): return self.datasets[split] def get_batch_iterator( self, dataset, num_workers=0, epoch=1, data_buffer_size=0, **kwargs ): return iterators.EpochBatchIterator( dataset=dataset, collate_fn=self._collate_fn, num_workers=num_workers, epoch=epoch, buffer_size=data_buffer_size, # we don't use the batching functionality from EpochBatchIterator; # instead every item in *dataset* is a whole batch batch_sampler=[[i] for i in range(len(dataset))], disable_shuffling=True, ) def _collate_fn(self, items: List[List[torch.Tensor]]): # we don't use fairseq's batching functionality, so we expect a single # Tensor of type List[torch.Tensor] assert len(items) == 1 # item will have shape B x T (the last batch may have length < T) id, item = items[0] item = data_utils.collate_tokens(item, pad_idx=self.source_dictionary.pad()) B, T = item.size() # shift item one position over and append a padding token for the target target = torch.nn.functional.pad( item[:, 1:], (0, 1, 0, 0), value=self.target_dictionary.pad() ) # fairseq expects batches to have the following structure return { "id": torch.tensor([id]*item.size(0)), "net_input": { "src_tokens": item, }, "target": target, "nsentences": item.size(0), "ntokens": item.numel(), } def build_dataset_for_inference( self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs ) -> torch.utils.data.Dataset: eos = self.source_dictionary.eos() dataset = TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=eos, break_mode="eos", ) class Dataset(torch.utils.data.Dataset): def __getitem__(self, i): item = dataset[i] if item[-1] == eos: # remove eos to support generating with a prefix item = item[:-1] return (i, [item]) def __len__(self): return len(dataset) return Dataset() def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): if constraints is not None: raise NotImplementedError # SequenceGenerator doesn't use *src_tokens* directly, we need to # pass the *prefix_tokens* argument instead. if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] # begin generation with the end-of-sentence token bos_token = self.source_dictionary.eos() return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token ) def eval_lm_dataloader( self, dataset, max_tokens: Optional[int] = 36000, batch_size: Optional[int] = None, max_positions: Optional[int] = None, num_shards: int = 1, shard_id: int = 0, num_workers: int = 1, data_buffer_size: int = 10, context_window: int = 0, ): if context_window > 0: raise NotImplementedError( "Transformer-XL doesn't need --context-window, try " "--model-overrides '{\"mem_len\":42}' instead " ) return self.get_batch_iterator( dataset=dataset, max_tokens=max_tokens, max_sentences=batch_size, max_positions=max_positions, ignore_invalid_inputs=True, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, data_buffer_size=data_buffer_size, ).next_epoch_itr(shuffle=False) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class TruncatedBPTTDataset(torch.utils.data.Dataset): def __init__( self, data: List[torch.Tensor], # ordered list of items bsz_per_shard, # number of items processed per GPUs per forward shard_id, # current GPU ID num_shards, # number of GPUs ): super().__init__() self.data = data def batchify(data, bsz): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).contiguous() return data # total number of sequences processed by all GPUs in each forward pass global_batch_size = bsz_per_shard * num_shards """ With a 16 item dataset, bsz_per_shard=2 and num_shards=3, *indices* might look like: indices = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]] The size of the TruncatedBPTTDataset instance will be 2, and shard 1 will see items: [(0, [data[4], data[6]]), (1, [data[5], data[7]])] """ indices = batchify(torch.arange(len(data)), global_batch_size) assert indices.size(0) == global_batch_size self.my_indices = indices[ shard_id * bsz_per_shard : (shard_id + 1) * bsz_per_shard ] assert self.my_indices.size(0) == bsz_per_shard def __len__(self): return self.my_indices.size(1) def __getitem__(self, i) -> Tuple[int, List[torch.Tensor]]: return (i, [self.data[idx] for idx in self.my_indices[:, i]])
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/adaptive_span/truncated_bptt_lm_task.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F class AdaptiveMask(nn.Module): """Soft masking function for adaptive size. It masks out the last K values of an input. The masking value goes from 1 to 0 gradually, so K can be learned with back-propagation. Args: max_size: maximum size (i.e. input dimension) ramp_size: size of the ramp going from 0 to 1 init_val: initial size proportion not to be masked out shape: learn multiple sizes independent of each other """ def __init__(self, max_size, ramp_size, init_val=0, shape=(1,)): nn.Module.__init__(self) self._max_size = max_size self._ramp_size = ramp_size self.current_val = nn.Parameter(torch.zeros(*shape) + init_val) mask_template = torch.linspace(1 - max_size, 0, steps=max_size) self.register_buffer("mask_template", mask_template) def forward(self, x): mask = self.mask_template.float() + self.current_val.float() * self._max_size mask = mask / self._ramp_size + 1 mask = mask.clamp(0, 1) if x.size(-1) < self._max_size: # the input could have been trimmed beforehand to save computation mask = mask.narrow(-1, self._max_size - x.size(-1), x.size(-1)) x = (x * mask).type_as(x) return x def get_current_max_size(self, include_ramp=True): current_size = math.ceil(self.current_val.max().item() * self._max_size) if include_ramp: current_size += self._ramp_size current_size = max(0, min(self._max_size, current_size)) return current_size def get_current_avg_size(self, include_ramp=True): current_size = math.ceil( self.current_val.float().mean().item() * self._max_size ) if include_ramp: current_size += self._ramp_size current_size = max(0, min(self._max_size, current_size)) return current_size def clamp_param(self): """this need to be called after each update""" self.current_val.data.clamp_(0, 1) class AdaptiveSpan(nn.Module): """Adaptive attention span for Transformerself. This module learns an attention span length from data for each self-attention head. Args: attn_span: maximum attention span adapt_span_loss: loss coefficient for the span length adapt_span_ramp: length of the masking ramp adapt_span_init: initial size ratio adapt_span_cache: adapt cache size to reduce memory usage """ def __init__( self, attn_span, adapt_span_ramp, adapt_span_init, n_head, adapt_span_layer, **kargs ): nn.Module.__init__(self) self._max_span = attn_span self._n_head = n_head self._adapt_span_layer = adapt_span_layer if self._adapt_span_layer: self._mask = AdaptiveMask( max_size=self._max_span, ramp_size=adapt_span_ramp, init_val=adapt_span_init, ) else: self._mask = AdaptiveMask( max_size=self._max_span, ramp_size=adapt_span_ramp, init_val=adapt_span_init, shape=(n_head, 1, 1), ) def forward(self, attn, normalize=True): """mask attention with the right span""" # batch and head dimensions are merged together, so separate them first self.clamp_param() if self._adapt_span_layer: attn = self._mask(attn) else: B = attn.size(0) # batch size M = attn.size(1) # block size attn = attn.reshape(B // self._n_head, self._n_head, M, -1) attn = self._mask(attn) attn = attn.view(B, M, -1) return attn def get_trim_len(self): """how much of memory can be trimmed to reduce computation""" L = self._max_span trim_len = min(L - 1, L - self._mask.get_current_max_size()) # too fine granularity might be bad for the memory management trim_len = math.floor(trim_len / 64) * 64 return trim_len def trim_memory(self, query, key, value, key_pe): """trim out unnecessary memory beforehand to reduce computation""" trim_len = self.get_trim_len() cache_size = key.size(1) - query.size(1) trim_len_cache = trim_len - (self._max_span - cache_size) if trim_len_cache > 0: key = key[:, trim_len_cache:, :] value = value[:, trim_len_cache:, :] elif trim_len_cache < 0: # cache is too short! this happens when validation resumes # after a lot of updates. key = F.pad(key, [0, 0, -trim_len_cache, 0]) value = F.pad(value, [0, 0, -trim_len_cache, 0]) if trim_len > 0: if key_pe is not None: key_pe = key_pe[:, :, trim_len:] return key, value, key_pe def get_cache_size(self): """determine how long the cache should be""" trim_len = self.get_trim_len() # give a buffer of 64 steps since a span might increase # in future updates return min(self._max_span, self._max_span - trim_len + 64) def get_loss(self): """a loss term for regularizing the span length""" return self._max_span * self._mask.current_val.float().mean() def get_current_max_span(self): return self._mask.get_current_max_size() def get_current_avg_span(self): return self._mask.get_current_avg_size() def clamp_param(self): self._mask.clamp_param()
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/adaptive_span/adaptive_span_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch.optim import Adagrad from fairseq.optim import LegacyFairseqOptimizer, register_optimizer @register_optimizer("adagrad_with_grad_clip") class FairseqAdagradWithGradClip(LegacyFairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = AdagradWithGradClip(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') parser.add_argument('--adagrad-clip', default=0.0, type=float, metavar='D', help='internal grad clip') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "weight_decay": self.args.weight_decay, "grad_clip": self.args.adagrad_clip, } @property def supports_flat_params(self): return False def _clip_grad(clr, grad, group_grad_clip): if group_grad_clip > 0: norm = grad.norm(2).item() if norm > group_grad_clip: clr *= group_grad_clip / (norm + 1e-10) return clr class AdagradWithGradClip(Adagrad): """Adagrad algorithm with custom gradient clipping""" def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, grad_clip=0, ): Adagrad.__init__( self, params, lr=lr, lr_decay=lr_decay, weight_decay=weight_decay, initial_accumulator_value=initial_accumulator_value, ) self.defaults["grad_clip"] = grad_clip self.param_groups[0].setdefault("grad_clip", grad_clip) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data state = self.state[p] state["step"] += 1 if group["weight_decay"] != 0: if p.grad.data.is_sparse: raise RuntimeError( "weight_decay option is " "not compatible with sparse " "gradients" ) grad = grad.add(group["weight_decay"], p.data) clr = group["lr"] / (1 + (state["step"] - 1) * group["lr_decay"]) # clip clr = _clip_grad(clr=clr, grad=grad, group_grad_clip=group["grad_clip"]) if grad.is_sparse: # the update is non-linear so indices must be unique grad = grad.coalesce() grad_indices = grad._indices() grad_values = grad._values() size = grad.size() def make_sparse(values): constructor = grad.new if grad_indices.dim() == 0 or values.dim() == 0: return constructor().resize_as_(grad) return constructor(grad_indices, values, size) state["sum"].add_(make_sparse(grad_values.pow(2))) std = state["sum"]._sparse_mask(grad) std_values = std._values().sqrt_().add_(1e-10) p.data.add_(-clr, make_sparse(grad_values / std_values)) else: state["sum"].addcmul_(1, grad, grad) std = state["sum"].sqrt().add_(1e-10) p.data.addcdiv_(-clr, grad, std) return loss
EXA-1-master
exa/models/unilm-master/decoding/IAD/fairseq/examples/adaptive_span/adagrad_with_grad_clip.py